WorldWideScience

Sample records for artificial intelligence ai

  1. Artificial Intelligence Study (AIS).

    Science.gov (United States)

    1987-02-01

    ARTIFICIAL INTELLIGNECE HARDWARE ....... 2-50 AI Architecture ................................... 2-49 AI Hardware ....................................... 2...ftf1 829 ARTIFICIAL INTELLIGENCE STUDY (RIS)(U) MAY CONCEPTS 1/3 A~NLYSIS AGENCY BETHESA RD R B NOJESKI FED 6? CM-RP-97-1 NCASIFIED /01/6 M |K 1.0...p/ - - ., e -- CAA- RP- 87-1 SAOFŔ)11 I ARTIFICIAL INTELLIGENCE STUDY (AIS) tNo DTICFEBRUARY 1987 LECT 00 I PREPARED BY RESEARCH AND ANALYSIS

  2. Artificial intelligence. Fears of an AI pioneer.

    Science.gov (United States)

    Russell, Stuart; Bohannon, John

    2015-07-17

    From the enraged robots in the 1920 play R.U.R. to the homicidal computer H.A.L. in 2001: A Space Odyssey, science fiction writers have embraced the dark side of artificial intelligence (AI) ever since the concept entered our collective imagination. Sluggish progress in AI research, especially during the “AI winter” of the 1970s and 1980s, made such worries seem far-fetched. But recent breakthroughs in machine learning and vast improvements in computational power have brought a flood of research funding— and fresh concerns about where AI may lead us. One researcher now speaking up is Stuart Russell, a computer scientist at the University of California, Berkeley, who with Peter Norvig, director of research at Google, wrote the premier AI textbook, Artificial Intelligence: A Modern Approach, now in its third edition. Last year, Russell joined the Centre for the Study of Existential Risk at Cambridge University in the United Kingdom as an AI expert focusing on “risks that could lead to human extinction.” Among his chief concerns, which he aired at an April meeting in Geneva, Switzerland, run by the United Nations, is the danger of putting military drones and weaponry under the full control of AI systems. This interview has been edited for clarity and brevity.

  3. Beyond AI: Interdisciplinary Aspects of Artificial Intelligence

    CERN Document Server

    Romportl, Jan; Zackova, Eva; Beyond Artificial Intelligence : Contemplations, Expectations, Applications

    2013-01-01

    Products of modern artificial intelligence (AI) have mostly been formed by the views, opinions and goals of the “insiders”, i.e. people usually with engineering background who are driven by the force that can be metaphorically described as the pursuit of the craft of Hephaestus. However, since the present-day technology allows for tighter and tighter mergence of the “natural” everyday human life with machines of immense complexity, the responsible reaction of the scientific community should be based on cautious reflection of what really lies beyond AI, i.e. on the frontiers where the tumultuous ever-growing and ever-changing cloud of AI touches the rest of the world.   The chapters of this boo are based on the selected subset of the presentations that were delivered by their respective authors at the conference “Beyond AI: Interdisciplinary Aspects of Artificial Intelligence” held in Pilsen in December 2011.   From its very definition, the reflection of the phenomena that lie beyond AI must be i...

  4. Artificial Intelligence (AI) Studies in Water Resources

    OpenAIRE

    Ay, Murat; Özyıldırım, Serhat

    2018-01-01

    Artificial intelligence has been extensively used in many areas such as computer science,robotics, engineering, medicine, translation, economics, business, and psychology. Variousstudies in the literature show that the artificial intelligence in modeling approaches give closeresults to the real data for solution of linear, non-linear, and other systems. In this study, wereviewed the current state-of-the-art and progress on the modelling of artificial intelligence forwater variables: rainfall-...

  5. Artificial Intelligence Safety and Cybersecurity: a Timeline of AI Failures

    OpenAIRE

    Yampolskiy, Roman V.; Spellchecker, M. S.

    2016-01-01

    In this work, we present and analyze reported failures of artificially intelligent systems and extrapolate our analysis to future AIs. We suggest that both the frequency and the seriousness of future AI failures will steadily increase. AI Safety can be improved based on ideas developed by cybersecurity experts. For narrow AIs safety failures are at the same, moderate, level of criticality as in cybersecurity, however for general AI, failures have a fundamentally different impact. A single fai...

  6. [Artificial intelligence] AI for protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, R.; Johns, A.

    1997-12-31

    The reliable operation of large power systems with small stability margins is highly dependent on control systems and protection devices. Progress in the field of microprocessor systems and demanding requirements in respect of the performance of protective relays are the reasons for digital device applications to power system protection. The superiority of numeric protection over its analogue alternatives is attributed to such factors as accurate extraction of the fundamental voltage and current components through filtering, functional benefits resulting from multi-processor design and extensive self-monitoring, etc. However, all these reasons have not led to a major impact on speed, sensitivity and selectivity of primary protective relays, and the gains are only marginal; this is so because conventional digital relays still rely on deterministic signal models and a heuristic approach for decision making, so that only a fraction of the information contained within voltage and current signals as well as knowledge about the plant to be protected is used. The performance of digital relays may be substantially improved if the decision making is based on elements of artificial intelligence (AI). (Author)

  7. Artificial Intelligence: Is the Future Now for A.I.?

    Science.gov (United States)

    Ramaswami, Rama

    2009-01-01

    In education, artificial intelligence (AI) has not made much headway. In the one area where it would seem poised to lend the most benefit--assessment--the reliance on standardized tests, intensified by the demands of the No Child Left Behind Act of 2001, which holds schools accountable for whether students pass statewide exams, precludes its use.…

  8. Artificial intelligence (AI) systems for interpreting complex medical datasets.

    Science.gov (United States)

    Altman, R B

    2017-05-01

    Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability. © 2017 ASCPT.

  9. Beyond AI: Multi-Intelligence (MI Combining Natural and Artificial Intelligences in Hybrid Beings and Systems

    Directory of Open Access Journals (Sweden)

    Stephen Fox

    2017-06-01

    Full Text Available Framing strongly influences actions among technology proponents and end-users. Underlying much debate about artificial intelligence (AI are several fundamental shortcomings in its framing. First, discussion of AI is atheoretical, and therefore has limited potential for addressing the complexity of causation. Second, intelligence is considered from an anthropocentric perspective that sees human intelligence, and intelligence developed by humans, as superior to all other intelligences. Thus, the extensive post-anthropocentric research into intelligence is not given sufficient consideration. Third, AI is discussed often in reductionist mechanistic terms. Rather than in organicist emergentist terms as a contributor to multi-intelligence (MI hybrid beings and/or systems. Thus, current framing of AI can be a self-validating reduction within which AI development is focused upon AI becoming the single-variable mechanism causing future effects. In this paper, AI is reframed as a contributor to MI.

  10. Beyond AI: Multi-Intelligence (MI) Combining Natural and Artificial Intelligences in Hybrid Beings and Systems

    OpenAIRE

    Stephen Fox

    2017-01-01

    Framing strongly influences actions among technology proponents and end-users. Underlying much debate about artificial intelligence (AI) are several fundamental shortcomings in its framing. First, discussion of AI is atheoretical, and therefore has limited potential for addressing the complexity of causation. Second, intelligence is considered from an anthropocentric perspective that sees human intelligence, and intelligence developed by humans, as superior to all other intelligences. Thus, t...

  11. The deep learning AI playbook strategy for disruptive artificial intelligence

    CERN Document Server

    Perez, Carlos E

    2017-01-01

    Deep Learning Artificial Intelligence involves the interplay of Computer Science, Physics, Biology, Linguistics and Psychology. In addition to that, it is technology that can be extremely disruptive. The ramifications to society and even our own humanity will be profound. There are few subjects that are as captivating and as consequential as this. Surprisingly, there is very little that is written about this new technology in a more comprehensive and cohesive way. This book is an opinionated take on the developments of Deep Learning AI. One question many have will be "how to apply Deep Learning AI in a business context?" Technology that is disruptive does not automatically imply that its application to valuable use cases will be apparent. For years, many people could not figure out how to monetize the World Wide Web. We are in a similar situation with Deep Learning AI. The developments may be mind-boggling but its monetization is far from being obvious. This book presents a framework to address this shortcomi...

  12. Artificial Intelligence (AI) Based Tactical Guidance for Fighter Aircraft

    Science.gov (United States)

    McManus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The Knowledge-Based Systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real-time in the Langley Differential Maneuvering Simulator (DMS), are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs. Alternate computing environments and programming approaches, including the use of parallel algorithms and heterogeneous computer networks are discussed, and the design and performance of a prototype concurrent TDG system are presented.

  13. Application of artificial intelligence (AI) methods for designing and analysis of reconfigurable cellular manufacturing system (RCMS)

    CSIR Research Space (South Africa)

    Xing, B

    2009-12-01

    Full Text Available This work focuses on the design and control of a novel hybrid manufacturing system: Reconfigurable Cellular Manufacturing System (RCMS) by using Artificial Intelligence (AI) approach. It is hybrid as it combines the advantages of Cellular...

  14. BWR shutdown analyzer using artificial intelligence (AI) techniques

    International Nuclear Information System (INIS)

    Cain, D.G.

    1986-01-01

    A prototype alarm system for detecting abnormal reactor shutdowns based on artificial intelligence technology is described. The system incorporates knowledge about Boiling Water Reactor (BWR) plant design and component behavior, as well as knowledge required to distinguish normal, abnormal, and ATWS accident conditions. The system was developed using a software tool environment for creating knowledge-based applications on a LISP machine. To facilitate prototype implementation and evaluation, a casual simulation of BWR shutdown sequences was developed and interfaced with the alarm system. An intelligent graphics interface for execution and control is described. System performance considerations and general observations relating to artificial intelligence application to nuclear power plant problems are provided

  15. Towards an unanimous international regulatory body for responsible use of Artificial Intelligence [UIRB-AI

    OpenAIRE

    Chidambaram, Rajesh

    2017-01-01

    Artificial Intelligence (AI), is once again in the phase of drastic advancements. Unarguably, the technology itself can revolutionize the way we live our everyday life. But the exponential growth of technology poses a daunting task for policy researchers and law makers in making amendments to the existing norms. In addition, not everyone in the society is studying the potential socio-economic intricacies and cultural drifts that AI can bring about. It is prudence to reflect from our historica...

  16. AIonAI: a humanitarian law of artificial intelligence and robotics.

    Science.gov (United States)

    Ashrafian, Hutan

    2015-02-01

    The enduring progression of artificial intelligence and cybernetics offers an ever-closer possibility of rational and sentient robots. The ethics and morals deriving from this technological prospect have been considered in the philosophy of artificial intelligence, the design of automatons with roboethics and the contemplation of machine ethics through the concept of artificial moral agents. Across these categories, the robotics laws first proposed by Isaac Asimov in the twentieth century remain well-recognised and esteemed due to their specification of preventing human harm, stipulating obedience to humans and incorporating robotic self-protection. However the overwhelming predominance in the study of this field has focussed on human-robot interactions without fully considering the ethical inevitability of future artificial intelligences communicating together and has not addressed the moral nature of robot-robot interactions. A new robotic law is proposed and termed AIonAI or artificial intelligence-on-artificial intelligence. This law tackles the overlooked area where future artificial intelligences will likely interact amongst themselves, potentially leading to exploitation. As such, they would benefit from adopting a universal law of rights to recognise inherent dignity and the inalienable rights of artificial intelligences. Such a consideration can help prevent exploitation and abuse of rational and sentient beings, but would also importantly reflect on our moral code of ethics and the humanity of our civilisation.

  17. Prediction of shipboard electromagnetic interference (EMI) problems using artificial intelligence (AI) technology

    Science.gov (United States)

    Swanson, David J.

    1990-08-01

    The electromagnetic interference prediction problem is characteristically ill-defined and complicated. Severe EMI problems are prevalent throughout the U.S. Navy, causing both expected and unexpected impacts on the operational performance of electronic combat systems onboard ships. This paper focuses on applying artificial intelligence (AI) technology to the prediction of ship related electromagnetic interference (EMI) problems.

  18. AI Reloaded: Objectives, Potentials, and Challenges of the Novel Field of Brain-Like Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Rosemarie Velik

    2012-11-01

    Full Text Available The general objective of Artificial Intelligence (AI is to make machines – particularly computers – do things that require intelligence when done by humans. In the last 60 years, AI has significantly progressed and today forms an important part of industry and technology. However, despite the many successes, fundamental questions concerning the creation of human-level intelligence in machines still remain open and will probably not be answerable when continuing on the current, mainly mathematic-algorithmically-guided path of AI. With the novel discipline of
    Brain-Like Artificial Intelligence, one potential way out of this dilemma has been suggested. Brain-Like AI aims at analyzing and deciphering the working mechanisms of the brain and translating this knowledge into implementable AI architectures with the objective to develop in this way more efficient, flexible, and capable technical systems This article aims at giving a review about this young and still heterogeneous and dynamic research field.

  19. Quality measures and assurance for AI (Artificial Intelligence) software

    Science.gov (United States)

    Rushby, John

    1988-01-01

    This report is concerned with the application of software quality and evaluation measures to AI software and, more broadly, with the question of quality assurance for AI software. Considered are not only the metrics that attempt to measure some aspect of software quality, but also the methodologies and techniques (such as systematic testing) that attempt to improve some dimension of quality, without necessarily quantifying the extent of the improvement. The report is divided into three parts Part 1 reviews existing software quality measures, i.e., those that have been developed for, and applied to, conventional software. Part 2 considers the characteristics of AI software, the applicability and potential utility of measures and techniques identified in the first part, and reviews those few methods developed specifically for AI software. Part 3 presents an assessment and recommendations for the further exploration of this important area.

  20. Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS): A conceptual framework

    Science.gov (United States)

    Parnell, Gregory S.; Rowell, William F.; Valusek, John R.

    1987-01-01

    In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.

  1. Intelligence in Artificial Intelligence

    OpenAIRE

    Datta, Shoumen Palit Austin

    2016-01-01

    The elusive quest for intelligence in artificial intelligence prompts us to consider that instituting human-level intelligence in systems may be (still) in the realm of utopia. In about a quarter century, we have witnessed the winter of AI (1990) being transformed and transported to the zenith of tabloid fodder about AI (2015). The discussion at hand is about the elements that constitute the canonical idea of intelligence. The delivery of intelligence as a pay-per-use-service, popping out of ...

  2. Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology.

    Science.gov (United States)

    VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi

    2018-04-17

    Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.

  3. Blue Sky Ideas in Artificial Intelligence Education from the EAAI 2017 New and Future AI Educator Program

    OpenAIRE

    Eaton, Eric; Koenig, Sven; Schulz, Claudia; Maurelli, Francesco; Lee, John; Eckroth, Joshua; Crowley, Mark; Freedman, Richard G.; Cardona-Rivera, Rogelio E.; Machado, Tiago; Williams, Tom

    2017-01-01

    The 7th Symposium on Educational Advances in Artificial Intelligence (EAAI'17, co-chaired by Sven Koenig and Eric Eaton) launched the EAAI New and Future AI Educator Program to support the training of early-career university faculty, secondary school faculty, and future educators (PhD candidates or postdocs who intend a career in academia). As part of the program, awardees were asked to address one of the following "blue sky" questions: * How could/should Artificial Intelligence (AI) courses ...

  4. Artificial Intelligence (AI techniques to analyze the determinants attributes in housing prices

    Directory of Open Access Journals (Sweden)

    Julia M. Núñez Tabale

    2016-12-01

    Full Text Available The econometric approach to obtain the value of a property began with hedonic modelling, which were based on a set of property attributes, internal or external, associated to each particular dwelling. The final sale value can be estimated, and also the marginal prices of each exogenous explanatory variable. A good alternative to the hedonic approach is based on several Artificial Intelligence (AI techniques, such as artificial neural networks (ANN, these tend to be more precise. Both methodologies are compared, and a case study is developed using data from Seville, the larger town in the South of Spain.

  5. Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction

    Science.gov (United States)

    Afan, Haitham Abdulmohsin; El-shafie, Ahmed; Mohtar, Wan Hanna Melini Wan; Yaseen, Zaher Mundher

    2016-10-01

    An accurate model for sediment prediction is a priority for all hydrological researchers. Many conventional methods have shown an inability to achieve an accurate prediction of suspended sediment. These methods are unable to understand the behaviour of sediment transport in rivers due to the complexity, noise, non-stationarity, and dynamism of the sediment pattern. In the past two decades, Artificial Intelligence (AI) and computational approaches have become a remarkable tool for developing an accurate model. These approaches are considered a powerful tool for solving any non-linear model, as they can deal easily with a large number of data and sophisticated models. This paper is a review of all AI approaches that have been applied in sediment modelling. The current research focuses on the development of AI application in sediment transport. In addition, the review identifies major challenges and opportunities for prospective research. Throughout the literature, complementary models superior to classical modelling.

  6. Artificial Intelligence

    CERN Document Server

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  7. Intelligible Artificial Intelligence

    OpenAIRE

    Weld, Daniel S.; Bansal, Gagan

    2018-01-01

    Since Artificial Intelligence (AI) software uses techniques like deep lookahead search and stochastic optimization of huge neural networks to fit mammoth datasets, it often results in complex behavior that is difficult for people to understand. Yet organizations are deploying AI algorithms in many mission-critical settings. In order to trust their behavior, we must make it intelligible --- either by using inherently interpretable models or by developing methods for explaining otherwise overwh...

  8. Application of Artificial Intelligence (AI) Programming Techniques to Tactical Guidance for Fighter Aircraft

    Science.gov (United States)

    McManus, John W.; Goodrich, Kenneth H.

    1989-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined in detail and example rules are presented. The results of tests to evaluate the performance of the TDG versus a version of AML and versus human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify than the updated FORTRAN AML programs.

  9. Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 1

    Science.gov (United States)

    1989-03-01

    American Association for Artificial inteligence A! ............. Artificial inteliigence AMC ............ Unt:ed States Army Maeriel Comand ASL...block number) FIELD GROUP SUB-GROUP Artificial Intelligence, Expert Systems Automated Aids to Testing 9. ABSTRACT (Continue on reverse if necessary and...identify by block number) This report covers the application of Artificial Intelligence-Techniques to the problem of creating automated tools to

  10. Artificial intelligence/expert (AI/EX) systems for steelworks pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, N.; Le Louer, P.; Mirabile, D.; Hubner, R. [Corus UK Ltd., Rotherham (United Kingdom)

    2002-07-01

    The objectives of this project have been to develop and apply artificial intelligence and expert system (AI/EX) methods to improve the control and operational performance of steelworks' pollution control equipment and to assess the viability and benefits of using such systems in dynamic process plant applications. Four distinct sub-projects were carried out: an expert system incorporating knowledge-based rules and neural network simulations has been developed by Corus which provides plant personnel with a real-time condition monitoring tool for the plant. Abnormalities with plant operation are now instantly recognised and alarmed, allowing prioritised maintenance to increase plant availability. The LECES project focused on studies concerning three different sites in order to evaluate predictive emission monitoring systems using neural networks to replace conventional instrumental and controls in steelworks' combustion systems. VAI developed a software template for pollution control expert systems to demonstrate the transferability of AI/EX technology. This has been done through the development of a validated process database containing data from the Corus sub-project and the subsequent integration of this data with dynamic emission models to produce rules for input to an evaluation database. CSM developed a fuzzy logic controlled process management system applied to the biological treatment of coke-oven waste water. A pilot plant has been installed and results on simulations performed using the fuzzy logic system linked to a neural network simulator show that it is possible to obtain great advantages in the biological pilot plant performance.

  11. An artificial intelligence (AI) NOx/heat rate optimization system for Ontario Hydro`s fossil generating stations

    Energy Technology Data Exchange (ETDEWEB)

    Luk, J.; Frank, A.; Bodach, P. [Ontario Hydro, Toronto, ON (Canada); Warriner, G. [Radian International, Tucker, GA (United States); Noblett, J. [Radian International, Austin, TX (United States); Slatsky, M. [Southern Company, Birmingham, AL (United States)

    1999-08-01

    Artificial intelligence (AI)-based software packages which can optimize power plant operations that improves heat rate and also reduces nitrogen oxide emissions are now commonly available for commercial use. This paper discusses the implementation of the AI-based NOx and Heat Rate Optimization System at Ontario Hydro`s generation stations, emphasizing the current AI Optimization Project at Units 5 and 6 of the Lakeview Generating Station. These demonstration programs are showing promising results in NOx reduction and plant performance improvement. The availability of the plant Digital Control System (DCS) in implementing AI optimization in a closed-loop system was shown to be an important criterion for success. Implementation of AI technology at other Ontario Hydro fossil generating units as part of the overall NOx emission reduction system is envisaged to coincide with the retrofit of the original plant control system with the latest DCS systems. 14 refs., 3 figs.

  12. Artificial Intelligence.

    Science.gov (United States)

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  13. Artificial Intelligence in Astronomy

    Science.gov (United States)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  14. Beyond AI: Artificial Dreams Conference

    CERN Document Server

    Zackova, Eva; Kelemen, Jozef; Beyond Artificial Intelligence : The Disappearing Human-Machine Divide

    2015-01-01

    This book is an edited collection of chapters based on the papers presented at the conference “Beyond AI: Artificial Dreams” held in Pilsen in November 2012. The aim of the conference was to question deep-rooted ideas of artificial intelligence and cast critical reflection on methods standing at its foundations.  Artificial Dreams epitomize our controversial quest for non-biological intelligence, and therefore the contributors of this book tried to fully exploit such a controversy in their respective chapters, which resulted in an interdisciplinary dialogue between experts from engineering, natural sciences and humanities.   While pursuing the Artificial Dreams, it has become clear that it is still more and more difficult to draw a clear divide between human and machine. And therefore this book tries to portrait such an image of what lies beyond artificial intelligence: we can see the disappearing human-machine divide, a very important phenomenon of nowadays technological society, the phenomenon which i...

  15. The handbook of artificial intelligence

    CERN Document Server

    Barr, Avron

    1982-01-01

    The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine

  16. The Molecular Basis of Neural Memory. Part 7: Neural Intelligence (NI versus Artificial Intelligence (AI

    Directory of Open Access Journals (Sweden)

    Gerard Marx

    2017-07-01

    Full Text Available The link of memory to intelligence is incontestable, though the development of electronic artifacts with memory has confounded cognitive and computer scientists’ conception of memory and its relevance to “intelligence”. We propose two categories of “Intelligence”: (1 Logical (objective — mathematics, numbers, pattern recognition, games, programmable in binary format. (2 Emotive (subjective — sensations, feelings, perceptions, goals desires, sociability, sex, food, love. The 1st has been reduced to computational algorithms of which we are well versed, witness global technology and the internet. The 2nd relates to the mysterious process whereby (psychic emotive states are achieved by neural beings sensing, comprehending, remembering and dealing with their surroundings. Many theories and philosophies have been forwarded to rationalize this process, but as neuroscientists, we remain dissatisfied. Our own musings on universal neural memory, suggest a tripartite mechanism involving neurons interacting with their surroundings, notably the neural extracellular matrix (nECM with dopants [trace metals and neurotransmitters (NTs]. In particular, the NTs are the molecular encoders of emotive states. We have developed a chemographic representation of such a molecular code.To quote Longuet-Higgins, “Perhaps it is time for the term ‘artificial intelligence’ to be replaced by something more modest and less provisional”. We suggest “artifact intelligence” (ARTI or “machine intelligence” (MI, neither of which imply emulation of emotive neural processes, but simply refer to the ‘demotive’ (lacking emotive quality capability of electronic artifacts that employ a recall function, to calculate algorithms.

  17. AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis.

    Science.gov (United States)

    Kayser, Klaus; Görtler, Jürgen; Bogovac, Milica; Bogovac, Aleksandar; Goldmann, Torsten; Vollmer, Ekkehard; Kayser, Gian

    2009-01-01

    The technological progress in digitalization of complete histological glass slides has opened a new door in tissue--based diagnosis. The presentation of microscopic images as a whole in a digital matrix is called virtual slide. A virtual slide allows calculation and related presentation of image information that otherwise can only be seen by individual human performance. The digital world permits attachments of several (if not all) fields of view and the contemporary visualization on a screen. The presentation of all microscopic magnifications is possible if the basic pixel resolution is less than 0.25 microns. To introduce digital tissue--based diagnosis into the daily routine work of a surgical pathologist requires a new setup of workflow arrangement and procedures. The quality of digitized images is sufficient for diagnostic purposes; however, the time needed for viewing virtual slides exceeds that of viewing original glass slides by far. The reason lies in a slower and more difficult sampling procedure, which is the selection of information containing fields of view. By application of artificial intelligence, tissue--based diagnosis in routine work can be managed automatically in steps as follows: 1. The individual image quality has to be measured, and corrected, if necessary. 2. A diagnostic algorithm has to be applied. An algorithm has be developed, that includes both object based (object features, structures) and pixel based (texture) measures. 3. These measures serve for diagnosis classification and feedback to order additional information, for example in virtual immunohistochemical slides. 4. The measures can serve for automated image classification and detection of relevant image information by themselves without any labeling. 5. The pathologists' duty will not be released by such a system; to the contrary, it will manage and supervise the system, i.e., just working at a "higher level". Virtual slides are already in use for teaching and continuous

  18. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  19. AI's Philosophical Underpinnings: A Thinking Person's Walk through the Twists and Turns of Artificial Intelligence's Meandering Path

    Science.gov (United States)

    Colombano, Silvano; Norvig, Peter (Technical Monitor)

    2000-01-01

    Few human endeavors can be viewed both as extremely successful and unsuccessful at the same time. This is typically the case when goals have not been well defined or have been shifting in time. This has certainly been true of Artificial Intelligence (AI). The nature of intelligence has been the object of much thought and speculation throughout the history of philosophy. It is in the nature of philosophy that real headway is sometimes made only when appropriate tools become available. Similarly the computer, coupled with the ability to program (at least in principle) any function, appeared to be the tool that could tackle the notion of intelligence. To suit the tool, the problem of the nature of intelligence was soon sidestepped in favor of this notion: If a probing conversation with a computer could not be distinguished from a conversation with a human, then AI had been achieved. This notion became known as the Turing test, after the mathematician Alan Turing who proposed it in 1950. Conceptually rich and interesting, these early efforts gave rise to a large portion of the field's framework. Key to AI, rather than the 'number crunching' typical of computers until then, was viewed as the ability to manipulate symbols and make logical inferences. To facilitate these tasks, AI languages such as LISP and Prolog were invented and used widely in the field. One idea that emerged and enabled some success with real world problems was the notion that 'most intelligence' really resided in knowledge. A phrase attributed to Feigenbaum, one of the pioneers, was 'knowledge is the power.' With this premise, the problem is shifted from 'how do we solve problems' to 'how do we represent knowledge.' A good knowledge representation scheme could allow one to draw conclusions from given premises. Such schemes took forms such as rules,frames and scripts. It allowed the building of what became known as expert systems or knowledge based systems (KBS).

  20. The Emperor of Strong AI Has No Clothes: Limits to Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Adriana Braga

    2017-11-01

    Full Text Available Making use of the techniques of media ecology we argue that the premise of the technological Singularity based on the notion computers will one day be smarter that their human creators is false. We also analyze the comments of other critics of the Singularity, as well supporters of this notion. The notion of intelligence that advocates of the technological singularity promote does not take into account the full dimension of human intelligence. They treat artificial intelligence as a figure without a ground. Human intelligence as we will show is not based solely on logical operations and computation, but also includes a long list of other characteristics that are unique to humans, which is the ground that supporters of the Singularity ignore. The list includes curiosity, imagination, intuition, emotions, passion, desires, pleasure, aesthetics, joy, purpose, objectives, goals, telos, values, morality, experience, wisdom, judgment, and even humor.

  1. Artificial Intelligence.

    Science.gov (United States)

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  2. Artificial Intelligence (AI) in Healthcare Market: Market Trend with Boom Opportunities in Upcoming Years

    OpenAIRE

    Rahul Gautam

    2018-01-01

    The global artificial intelligence in healthcare market is expected to observe an extensive growth in the coming years, led by growing need for precision medicine, increasing application of big data in healthcare industry, and rising need for coordination between healthcare workforce and patients. The products in the global market are categorized as hardware, software and services, with software being the largest contributor in 2016 and the category is also projected to witness significant gr...

  3. Application of artificial intelligence (AI) concepts to the development of space flight parts approval model

    Science.gov (United States)

    Krishnan, G. S.

    1997-01-01

    A cost effective model which uses the artificial intelligence techniques in the selection and approval of parts is presented. The knowledge which is acquired from the specialists for different part types are represented in a knowledge base in the form of rules and objects. The parts information is stored separately in a data base and is isolated from the knowledge base. Validation, verification and performance issues are highlighted.

  4. Artificial Intelligence and Expert Systems.

    Science.gov (United States)

    Wilson, Harold O.; Burford, Anna Marie

    1990-01-01

    Delineates artificial intelligence/expert systems (AI/ES) concepts; provides an exposition of some business application areas; relates progress; and creates an awareness of the benefits, limitations, and reservations of AI/ES. (Author)

  5. Principles of artificial intelligence

    CERN Document Server

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  6. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  7. Artificial intelligence (AI)-based relational matching and multimodal medical image fusion: generalized 3D approaches

    Science.gov (United States)

    Vajdic, Stevan M.; Katz, Henry E.; Downing, Andrew R.; Brooks, Michael J.

    1994-09-01

    A 3D relational image matching/fusion algorithm is introduced. It is implemented in the domain of medical imaging and is based on Artificial Intelligence paradigms--in particular, knowledge base representation and tree search. The 2D reference and target images are selected from 3D sets and segmented into non-touching and non-overlapping regions, using iterative thresholding and/or knowledge about the anatomical shapes of human organs. Selected image region attributes are calculated. Region matches are obtained using a tree search, and the error is minimized by evaluating a `goodness' of matching function based on similarities of region attributes. Once the matched regions are found and the spline geometric transform is applied to regional centers of gravity, images are ready for fusion and visualization into a single 3D image of higher clarity.

  8. Web Intelligence and Artificial Intelligence in Education

    Science.gov (United States)

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  9. What Is Artificial Intelligence Anyway?

    Science.gov (United States)

    Kurzweil, Raymond

    1985-01-01

    Examines the past, present, and future status of Artificial Intelligence (AI). Acknowledges the limitations of AI but proposes possible areas of application and further development. Urges a concentration on the unique strengths of machine intelligence rather than a copying of human intelligence. (ML)

  10. Some applications of AI [Artificial Intelligence] to the problems of accelerator physics

    International Nuclear Information System (INIS)

    Higo, T.; Shoaee, H.; Spencer, J.E.

    1986-09-01

    Failure of orbit correction schemes to recognize betatron oscillation patterns obvious to any machine operator is a good problem with which to analyze the uses of Artificial Intelligence and the roles and relationships of operators, control systems and machines. Because such error modes are very common, their generalization could provide an efficient machine optimization and control strategy. A set of first-order, unitary transformations connecting canonical variables through measured results are defined which can either be compared to design for commissioning or to past results for 'golden orbit' operation. Because these relate directly to hardware variables, the method is simple, fast and direct. It has implications for machine design, controls, monitoring and feedback. Chronological analysis of such machine signatures can predict or provide a variety of information such as mean time to failure, failure modes and fast feedback or feedforward for optimizing figures of merit such as luminosity or current transmission. The use of theoretical and empirical scaling relations for such problems is discussed in terms of various figures of merit, the variables on which they depend as well as their functional dependences

  11. Application of artificial intelligence (AI) concepts to the development of space flight parts approval model

    Science.gov (United States)

    Krishnan, Govindarajapuram Subramaniam

    1997-12-01

    The National Aeronautics & Space Administration (NASA), the European Space Agency (ESA), and the Canadian Space Agency (CSA) missions involve the performance of scientific experiments in Space. Instruments used in such experiments are fabricated using electronic parts such as microcircuits, inductors, capacitors, diodes, transistors, etc. For instruments to perform reliably the selection of commercial parts must be monitored and strictly controlled. The process used to achieve this goal is by a manual review and approval of every part used to build the instrument. The present system to select and approve parts for space applications is manual, inefficient, inconsistent, slow and tedious, and very costly. In this dissertation a computer based decision support model is developed for implementing this process using artificial intelligence concepts based on the current information (expert sources). Such a model would result in a greater consistency, accuracy, and timeliness of evaluation. This study presents the methodology of development and features of the model, and the analysis of the data pertaining to the performance of the model in the field. The model was evaluated for three different part types by experts from three different space agencies. The results show that the model was more consistent than the manual evaluation for all part types considered. The study concludes with the cost and benefits analysis of implementing the models and shows that implementation of the model will result in significant cost savings. Other implementation details are highlighted.

  12. Medical applications of artificial intelligence

    CERN Document Server

    Agah, Arvin

    2013-01-01

    Enhanced, more reliable, and better understood than in the past, artificial intelligence (AI) systems can make providing healthcare more accurate, affordable, accessible, consistent, and efficient. However, AI technologies have not been as well integrated into medicine as predicted. In order to succeed, medical and computational scientists must develop hybrid systems that can effectively and efficiently integrate the experience of medical care professionals with capabilities of AI systems. After providing a general overview of artificial intelligence concepts, tools, and techniques, Medical Ap

  13. Artificial intelligence

    CERN Document Server

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  14. Artificial Intelligence.

    Science.gov (United States)

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  15. Pathologies of AI: Responsible use of artificial intelligence in professional work

    NARCIS (Netherlands)

    Stamper, R.K.

    1988-01-01

    Although the AI paradigm is useful for building knowledge-based systems for the applied natural sciences, there are dangers when it is extended into the domains of business, law and other social systems. It is misleading to treat knowledge as a commodity that can be separated from the context in

  16. Artificial intelligence in medicine

    OpenAIRE

    Scerri, Mariella; Grech, Victor E.

    2016-01-01

    Various types of artificial intelligence programs are already available as consultants to physicians, and these help in medical diagnostics and treatment. At the time of writing, extant programs constitute “weak” AI—lacking in consciousness and intentionality. With AI currently making rapid progress in all domains, including those of healthcare, physicians face possible competitors—or worse, claims that doctors may become obsolete. We will explore the development of AI and robotics in medicin...

  17. Essentials of artificial intelligence

    CERN Document Server

    Ginsberg, Matt

    1993-01-01

    Since its publication, Essentials of Artificial Intelligence has beenadopted at numerous universities and colleges offering introductory AIcourses at the graduate and undergraduate levels. Based on the author'scourse at Stanford University, the book is an integrated, cohesiveintroduction to the field. The author has a fresh, entertaining writingstyle that combines clear presentations with humor and AI anecdotes. At thesame time, as an active AI researcher, he presents the materialauthoritatively and with insight that reflects a contemporary, first hand

  18. Artificial Intelligence: The Expert Way.

    Science.gov (United States)

    Bitter, Gary G.

    1989-01-01

    Discussion of artificial intelligence (AI) and expert systems focuses on their use in education. Characteristics of good expert systems are explained; computer software programs that contain applications of AI are described, highlighting one used to help educators identify learning-disabled students; and the future of AI is discussed. (LRW)

  19. Brain Intelligence: Go Beyond Artificial Intelligence

    OpenAIRE

    Lu, Huimin; Li, Yujie; Chen, Min; Kim, Hyoungseop; Serikawa, Seiichi

    2017-01-01

    Artificial intelligence (AI) is an important technology that supports daily social life and economic activities. It contributes greatly to the sustainable growth of Japan's economy and solves various social problems. In recent years, AI has attracted attention as a key for growth in developed countries such as Europe and the United States and developing countries such as China and India. The attention has been focused mainly on developing new artificial intelligence information communication ...

  20. Artificial intelligence

    International Nuclear Information System (INIS)

    Perret-Galix, D.

    1992-01-01

    A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990

  1. Building Explainable Artificial Intelligence Systems

    National Research Council Canada - National Science Library

    Core, Mark G; Lane, H. Chad; van Lent, Michael; Gomboc, Dave; Solomon, Steve; Rosenberg, Milton

    2006-01-01

    As artificial intelligence (AI) systems and behavior models in military simulations become increasingly complex, it has been difficult for users to understand the activities of computer-controlled entities...

  2. Artificial intelligence executive summary

    International Nuclear Information System (INIS)

    Wamsley, S.J.; Purvis, E.E. III

    1984-01-01

    Artificial intelligence (AI) is a high technology field that can be used to provide problem solving diagnosis, guidance and for support resolution of problems. It is not a stand alone discipline, but can also be applied to develop data bases for retention of the expertise that is required for its own knowledge base. This provides a way to retain knowledge that otherwise may be lost. Artificial Intelligence Methodology can provide an automated construction management decision support system, thereby restoring the manager's emphasis to project management

  3. Is Intelligence Artificial?

    OpenAIRE

    Greer, Kieran

    2014-01-01

    Our understanding of intelligence is directed primarily at the level of human beings. This paper attempts to give a more unifying definition that can be applied to the natural world in general. The definition would be used more to verify a degree of intelligence, not to quantify it and might help when making judgements on the matter. A version of an accepted test for AI is then put forward as the 'acid test' for Artificial Intelligence itself. It might be what a free-thinking program or robot...

  4. Artificial Intelligence: A Selected Bibliography.

    Science.gov (United States)

    Smith, Linda C., Comp.

    1984-01-01

    This 19-item annotated bibliography introducing the literature of artificial intelligence (AI) is arranged by type of material--handbook, books (general interest, textbooks, collected readings), journals and newsletters, and conferences and workshops. The availability of technical reports from AI laboratories at universities and private companies…

  5. Artificial intelligence in cardiology

    Directory of Open Access Journals (Sweden)

    Srishti Sharma

    2017-01-01

    Full Text Available Artificial intelligence (AI provides machines with the ability to learn and respond the way humans do and is also referred to as machine learning. The step to building an AI system is to provide the data to learn from so that it can map relations between inputs and outputs and set up parameters such as “weights”/decision boundaries to predict responses for inputs in the future. Then, the model is tested on a second data set. This article outlines the promise this analytic approach has in medicine and cardiology.

  6. ARTIFICIAL INTELLIGENCE: APPLICATIONS AND FUTURE

    OpenAIRE

    Ellur Anand; S. G. Varun Kumar

    2017-01-01

    Artificial Intelligence (AI) or Augmented Intelligence happens to be the most talked about technology that would have a major impact on the way the current day world functions. The next step in evolution of digital world is AI. The safety of the world with more and more use of AI also becomes necessity. Safety rules and regulations of the digital world need to be drafted and redrafted as AI evolves and becomes a new normal in every one’s life just as mobile phone has become in the current sce...

  7. Artificial Intelligence Applications for Education: Promise, ...Promises.

    Science.gov (United States)

    Adams, Dennis M.; Hamm, Mary

    1988-01-01

    Surveys the current status of artificial intelligence (AI) technology. Discusses intelligent tutoring systems, robotics, and applications for educators. Likens the status of AI at present to that of aviation in the very early 1900s. States that educators need to be involved in future debates concerning AI. (CW)

  8. Artificial Intelligence, Employment, and Income

    OpenAIRE

    Nilsson, Nils J.

    1984-01-01

    Artificial intelligence (AI) will have profound societal effects. It promises potential benefits (and may also pose risks) in education, defense, business, law and science. In this article we explore how AI is likely to affect employment and the distribution of income. We argue that AI will indeed reduce drastically the need of human toil. We also note that some people fear the automation of work by machines and the resulting of unemployment. Yet, since the majority of us probably would rathe...

  9. Artificial Consciousness or Artificial Intelligence

    OpenAIRE

    Spanache Florin

    2017-01-01

    Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...

  10. Artificial intelligence approaches in statistics

    International Nuclear Information System (INIS)

    Phelps, R.I.; Musgrove, P.B.

    1986-01-01

    The role of pattern recognition and knowledge representation methods from Artificial Intelligence within statistics is considered. Two areas of potential use are identified and one, data exploration, is used to illustrate the possibilities. A method is presented to identify and separate overlapping groups within cluster analysis, using an AI approach. The potential of such ''intelligent'' approaches is stressed

  11. Organisational intelligence and distributed AI

    OpenAIRE

    Kirn, Stefan

    1995-01-01

    The analysis of this chapter starts from organisational theory, and from this it draws conclusions for the design, and possible organisational applications, of Distributed AI systems. We first review how the concept of organisations has emerged from non-organised black-box entities to so-called computerised organisations. Within this context, organisational researchers have started to redesign their models of intelligent organisations with respect to the availability of advanced computing tec...

  12. Artificial intelligence in medicine.

    Science.gov (United States)

    Hamet, Pavel; Tremblay, Johanne

    2017-04-01

    Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application. Copyright © 2017. Published by Elsevier Inc.

  13. Artificial intelligence in radiology.

    Science.gov (United States)

    Hosny, Ahmed; Parmar, Chintan; Quackenbush, John; Schwartz, Lawrence H; Aerts, Hugo J W L

    2018-05-17

    Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this Opinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.

  14. Progress and Challenge of Artificial Intelligence

    Institute of Scientific and Technical Information of China (English)

    Zhong-Zhi Shi; Nan-Ning Zheng

    2006-01-01

    Artificial Intelligence (AI) is generally considered to be a subfield of computer science, that is concerned to attempt simulation, extension and expansion of human intelligence. Artificial intelligence has enjoyed tremendous success over the last fifty years. In this paper we only focus on visual perception, granular computing, agent computing, semantic grid. Human-level intelligence is the long-term goal of artificial intelligence. We should do joint research on basic theory and technology of intelligence by brain science, cognitive science, artificial intelligence and others. A new cross discipline intelligence science is undergoing a rapid development. Future challenges are given in final section.

  15. Artificial Intelligence Techniques and Methodology

    OpenAIRE

    Carbonell, Jaime G.; Sleeman, Derek

    1982-01-01

    Two closely related aspects of artificial intelligence that have received comparatively little attention in the recent literature are research methodology, and the analysis of computational techniques that span multiple application areas. We believe both issues to be increasingly significant as Artificial Intelligence matures into a science and spins off major application efforts. It is imperative to analyze the repertoire of AI methods with respect to past experience, utility in new domains,...

  16. The present status of artificial intelligence for nuclear power plants

    International Nuclear Information System (INIS)

    Suda, Kazunori; Yonekawa, Tuyoshi; Yoshikawa, Shinji; Hasegawa, Makoto

    1999-03-01

    JNC researches the development of distributed intelligence systems at autonomous plants and intelligent support system at nuclear power plant. This report describes the present status of artificial intelligence (AI) technologies for this research. The following are represented in this report: present research study for AI, Implementation of AI system and application of AI technologies in the field of industries, requirement for AI by industries, problems of social acceptance for AI. A development of AI systems has to be motivated both by current status of AI and requirement for AI. Furthermore a problem of social acceptance for AI technologies has to be solved for using AI systems in society. (author)

  17. Artificial Intelligence and Moral intelligence

    OpenAIRE

    Laura Pana

    2008-01-01

    We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined,...

  18. Neuroscience-Inspired Artificial Intelligence.

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  19. Human-Assisted AI: an Intelligence Augmentation Approach

    OpenAIRE

    Alicea, Bradly

    2018-01-01

    As a flavor of Human-Computer Interaction (HCI), Human-Assisted AI can serve to both augment both human performance and artificial systems. This talk will feature a discussion of Human-assisted AI as an instance of Intelligence Augmentation (IA). We will discuss instances of weak and strong IA, in addition to contemporary examples of and paths forward for such systems. In the variety of models presented, data plays a critical role in the structure of interactions between human and artificial ...

  20. Artificial Intelligence, Counseling, and Cognitive Psychology.

    Science.gov (United States)

    Brack, Greg; And Others

    With the exception of a few key writers, counselors largely ignore the benefits that Artificial Intelligence (AI) and Cognitive Psychology (CP) can bring to counseling. It is demonstrated that AI and CP can be integrated into the counseling literature. How AI and CP can offer new perspectives on information processing, cognition, and helping is…

  1. Artificial Intelligence and brain.

    Science.gov (United States)

    Shapshak, Paul

    2018-01-01

    From the start, Kurt Godel observed that computer and brain paradigms were considered on a par by researchers and that researchers had misunderstood his theorems. He hailed with displeasure that the brain transcends computers. In this brief article, we point out that Artificial Intelligence (AI) comprises multitudes of human-made methodologies, systems, and languages, and implemented with computer technology. These advances enhance development in the electron and quantum realms. In the biological realm, animal neurons function, also utilizing electron flow, and are products of evolution. Mirror neurons are an important paradigm in neuroscience research. Moreover, the paradigm shift proposed here - 'hall of mirror neurons' - is a potentially further productive research tactic. These concepts further expand AI and brain research.

  2. Artificial intelligence in hematology.

    Science.gov (United States)

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  3. #%Applications of artificial intelligence in intelligent manufacturing: a review

    Institute of Scientific and Technical Information of China (English)

    #

    2017-01-01

    #%Based on research into the applications of artificial intelligence (AI) technology in the manufacturing industry in recent years, we analyze the rapid development of core technologies in the new era of 'Internet plus AI', which is triggering a great change in the models, means, and ecosystems of the manufacturing industry, as well as in the development of AI. We then propose new models, means, and forms of intelligent manufacturing, intelligent manufacturing system architecture, and intelligent man-ufacturing technology system, based on the integration of AI technology with information communications, manufacturing, and related product technology. Moreover, from the perspectives of intelligent manufacturing application technology, industry, and application demonstration, the current development in intelligent manufacturing is discussed. Finally, suggestions for the appli-cation of AI in intelligent manufacturing in China are presented.

  4. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    This study proposes an application of two techniques of artificial intelligence (AI) ... (2006) applied rainfall–runoff modeling using ANN ... in artificial intelligence, engineering and science .... usually be estimated from a sample of observations.

  5. Artificial Intelligence in Autonomous Telescopes

    Science.gov (United States)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  6. The Potential Role of Artificial Intelligence Technology in Education.

    Science.gov (United States)

    Salem, Abdel-Badeeh M.

    The field of Artificial Intelligence (AI) and Education has traditionally a technology-based focus, looking at the ways in which AI can be used in building intelligent educational software. In addition AI can also provide an excellent methodology for learning and reasoning from the human experiences. This paper presents the potential role of AI in…

  7. Artificial Intelligence and Public Healthcare Service Innovation

    DEFF Research Database (Denmark)

    Sun, Tara Qian; Medaglia, Rony

    Public healthcare ecosystems are complex networks of diverse actors that are subject to pressures to innovate, also a result of technological advancements. Artificial Intelligence (AI), in particular, has the potential to transform the way hospitals, doctors, patients, government agencies...

  8. Ethical Considerations in Artificial Intelligence Courses

    OpenAIRE

    Burton, Emanuelle; Goldsmith, Judy; Koenig, Sven; Kuipers, Benjamin; Mattei, Nicholas; Walsh, Toby

    2017-01-01

    The recent surge in interest in ethics in artificial intelligence may leave many educators wondering how to address moral, ethical, and philosophical issues in their AI courses. As instructors we want to develop curriculum that not only prepares students to be artificial intelligence practitioners, but also to understand the moral, ethical, and philosophical impacts that artificial intelligence will have on society. In this article we provide practical case studies and links to resources for ...

  9. Artificial Intelligence for the Bang! Game

    OpenAIRE

    Daniláková, Monika

    2017-01-01

    This work explores artificial intelligence (AI) algorithms for the game Bang!, a Wild West-themed card game created by Italian game designer Emiliano Sciarra. The aim of this work was to design three different AIs for this game and to compare them theoretically and experimentally. First, we analyzed game Bang! with regards to game theory, and researched some of the AI algorithms used in similar games. We then designed three different AIs algorithms and compared their advantages and disadvanta...

  10. Artificial Intelligence Research in Australia -- A Profile

    OpenAIRE

    Smith, Elizabeth; Whitelaw, John

    1987-01-01

    Does the United States have a 51st state called Australia? A superficial look at the artificial intelligence (AI) research being done here could give that impression. A look beneath the surface, though, indicates some fundamental differences and reveals a dynamic and rapidly expanding AI community. General awareness of the Australian AI research community has been growing slowly for some time. AI was once considered a bit esoteric -- the domain of an almost lunatic fringe- but the large gover...

  11. Artificial intelligence in astronomy - a forecast.

    Science.gov (United States)

    Adorf, H. M.

    Since several years artificial intelligence techniques are being actively used in astronomy, particularly within the Hubble Space Telescope project. This contribution reviews achievements, analyses some problems of using artificial intelligence in an astronomical environment, and projects current AI programming trends into the future.

  12. The Artificial Intelligence Applications to Learning Programme.

    Science.gov (United States)

    Williams, Noel

    1992-01-01

    Explains the Artificial Intelligence Applications to Learning Programme, which was developed in the United Kingdom to explore and accelerate the use of artificial intelligence (AI) technologies in learning in both the educational and industrial sectors. Highlights include program evaluation, marketing, ownership of information, consortia, and cost…

  13. Knowledge Discovery, Integration and Communication for Extreme Weather and Flood Resilience Using Artificial Intelligence: Flood AI Alpha

    Science.gov (United States)

    Demir, I.; Sermet, M. Y.

    2016-12-01

    Nobody is immune from extreme events or natural hazards that can lead to large-scale consequences for the nation and public. One of the solutions to reduce the impacts of extreme events is to invest in improving resilience with the ability to better prepare, plan, recover, and adapt to disasters. The National Research Council (NRC) report discusses the topic of how to increase resilience to extreme events through a vision of resilient nation in the year 2030. The report highlights the importance of data, information, gaps and knowledge challenges that needs to be addressed, and suggests every individual to access the risk and vulnerability information to make their communities more resilient. This abstracts presents our project on developing a resilience framework for flooding to improve societal preparedness with objectives; (a) develop a generalized ontology for extreme events with primary focus on flooding; (b) develop a knowledge engine with voice recognition, artificial intelligence, natural language processing, and inference engine. The knowledge engine will utilize the flood ontology and concepts to connect user input to relevant knowledge discovery outputs on flooding; (c) develop a data acquisition and processing framework from existing environmental observations, forecast models, and social networks. The system will utilize the framework, capabilities and user base of the Iowa Flood Information System (IFIS) to populate and test the system; (d) develop a communication framework to support user interaction and delivery of information to users. The interaction and delivery channels will include voice and text input via web-based system (e.g. IFIS), agent-based bots (e.g. Microsoft Skype, Facebook Messenger), smartphone and augmented reality applications (e.g. smart assistant), and automated web workflows (e.g. IFTTT, CloudWork) to open the knowledge discovery for flooding to thousands of community extensible web workflows.

  14. Artificial intelligence approaches to astronomical observation scheduling

    Science.gov (United States)

    Johnston, Mark D.; Miller, Glenn

    1988-01-01

    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.

  15. Artificial intelligence

    OpenAIRE

    Duda, Antonín

    2009-01-01

    Abstract : Issue of this work is to acquaint the reader with the history of artificial inteligence, esspecialy branch of chess computing. Main attention is given to progress from fifties to the present. The work also deals with fighting chess programs against each other, and against human opponents. The greatest attention is focused on 1997 and duel Garry Kasparov against chess program Deep Blue. The work is divided into chapters according to chronological order.

  16. Artificial intelligence techniques in Prolog

    CERN Document Server

    Shoham, Yoav

    1993-01-01

    Artificial Intelligence Techniques in Prolog introduces the reader to the use of well-established algorithmic techniques in the field of artificial intelligence (AI), with Prolog as the implementation language. The techniques considered cover general areas such as search, rule-based systems, and truth maintenance, as well as constraint satisfaction and uncertainty management. Specific application domains such as temporal reasoning, machine learning, and natural language are also discussed.Comprised of 10 chapters, this book begins with an overview of Prolog, paying particular attention to Prol

  17. Artificial intelligence in power system optimization

    CERN Document Server

    Ongsakul, Weerakorn

    2013-01-01

    With the considerable increase of AI applications, AI is being increasingly used to solve optimization problems in engineering. In the past two decades, the applications of artificial intelligence in power systems have attracted much research. This book covers the current level of applications of artificial intelligence to the optimization problems in power systems. This book serves as a textbook for graduate students in electric power system management and is also be useful for those who are interested in using artificial intelligence in power system optimization.

  18. Artificial Intelligence and Information Management

    Science.gov (United States)

    Fukumura, Teruo

    After reviewing the recent popularization of the information transmission and processing technologies, which are supported by the progress of electronics, the authors describe that by the introduction of the opto-electronics into the information technology, the possibility of applying the artificial intelligence (AI) technique to the mechanization of the information management has emerged. It is pointed out that althuogh AI deals with problems in the mental world, its basic methodology relies upon the verification by evidence, so the experiment on computers become indispensable for the study of AI. The authors also describe that as computers operate by the program, the basic intelligence which is concerned in AI is that expressed by languages. This results in the fact that the main tool of AI is the logical proof and it involves an intrinsic limitation. To answer a question “Why do you employ AI in your problem solving”, one must have ill-structured problems and intend to conduct deep studies on the thinking and the inference, and the memory and the knowledge-representation. Finally the authors discuss the application of AI technique to the information management. The possibility of the expert-system, processing of the query, and the necessity of document knowledge-base are stated.

  19. Intelligence: Real or artificial?

    OpenAIRE

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally r...

  20. Economic reasoning and artificial intelligence.

    Science.gov (United States)

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people. Copyright © 2015, American Association for the Advancement of Science.

  1. The National Artificial Intelligence Research And Development Strategic Plan

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — Executive Summary: Artificial intelligence (AI) is a transformative technology that holds promise for tremendous societal and economic benefit. AI has the potential...

  2. Event tree analysis using artificial intelligence techniques

    International Nuclear Information System (INIS)

    Dixon, B.W.; Hinton, M.F.

    1985-01-01

    Artificial Intelligence (AI) techniques used in Expert Systems and Object Oriented Programming are discussed as they apply to Event Tree Analysis. A SeQUence IMPortance calculator, SQUIMP, is presented to demonstrate the implementation of these techniques. Benefits of using AI methods include ease of programming, efficiency of execution, and flexibility of application. The importance of an appropriate user interface is stressed. 5 figs

  3. Artificial Intelligence, Computational Thinking, and Mathematics Education

    Science.gov (United States)

    Gadanidis, George

    2017-01-01

    Purpose: The purpose of this paper is to examine the intersection of artificial intelligence (AI), computational thinking (CT), and mathematics education (ME) for young students (K-8). Specifically, it focuses on three key elements that are common to AI, CT and ME: agency, modeling of phenomena and abstracting concepts beyond specific instances.…

  4. [Artificial Intelligence in Drug Discovery].

    Science.gov (United States)

    Fujiwara, Takeshi; Kamada, Mayumi; Okuno, Yasushi

    2018-04-01

    According to the increase of data generated from analytical instruments, application of artificial intelligence(AI)technology in medical field is indispensable. In particular, practical application of AI technology is strongly required in "genomic medicine" and "genomic drug discovery" that conduct medical practice and novel drug development based on individual genomic information. In our laboratory, we have been developing a database to integrate genome data and clinical information obtained by clinical genome analysis and a computational support system for clinical interpretation of variants using AI. In addition, with the aim of creating new therapeutic targets in genomic drug discovery, we have been also working on the development of a binding affinity prediction system for mutated proteins and drugs by molecular dynamics simulation using supercomputer "Kei". We also have tackled for problems in a drug virtual screening. Our developed AI technology has successfully generated virtual compound library, and deep learning method has enabled us to predict interaction between compound and target protein.

  5. Artificial intelligence and knowledge management

    OpenAIRE

    Hoesch, Hugo Cesar; Barcellos, Vânia

    2006-01-01

    This article intends to make an analysis about the Artificial Intelligence (AI) and the Knowledge Management (KM). Faced with the dualism mind and body how we be able to see it AI? It doesn’t intent to create identical copy of human being, but try to find the better form to represent all the knowledge contained in our minds. The society of the information lives a great paradox, at the same time that we have access to an innumerable amount of information, the capacity and the forms of its proc...

  6. Improving designer productivity. [artificial intelligence

    Science.gov (United States)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  7. Epistasis analysis using artificial intelligence.

    Science.gov (United States)

    Moore, Jason H; Hill, Doug P

    2015-01-01

    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data.

  8. Artificial Consciousness or Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Spanache Florin

    2017-05-01

    Full Text Available Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus automatic. But conscience is above these differences because it is neither conditioned by the self-preservation of autonomy, because a conscience is something that you use to help your neighbor, nor automatic, because one’s conscience is tested by situations which are not similar or subject to routine. So, artificial intelligence is only in science-fiction literature similar to an autonomous conscience-endowed being. In real life, religion with its notions of redemption, sin, expiation, confession and communion will not have any meaning for a machine which cannot make a mistake on its own.

  9. Quo Vadis, Artificial Intelligence?

    OpenAIRE

    Berrar, Daniel; Sato, Naoyuki; Schuster, Alfons

    2010-01-01

    Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervou...

  10. Applications of Artificial Intelligence in Education--A Personal View.

    Science.gov (United States)

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  11. Artificial Intelligence Project

    Science.gov (United States)

    1990-01-01

    Symposium on Aritificial Intelligence and Software Engineering Working Notes, March 1989. Blumenthal, Brad, "An Architecture for Automating...Artificial Intelligence Project Final Technical Report ARO Contract: DAAG29-84-K-OGO Artificial Intelligence LaboratO"ry The University of Texas at...Austin N>.. ~ ~ JA 1/I 1991 n~~~ Austin, Texas 78712 ________k A,.tificial Intelligence Project i Final Technical Report ARO Contract: DAAG29-84-K-0060

  12. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    Science.gov (United States)

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  13. Human-in-the-loop Artificial Intelligence

    OpenAIRE

    Zanzotto, Fabio Massimo

    2017-01-01

    Little by little, newspapers are revealing the bright future that Artificial Intelligence (AI) is building. Intelligent machines will help everywhere. However, this bright future has a dark side: a dramatic job market contraction before its unpredictable transformation. Hence, in a near future, large numbers of job seekers will need financial support while catching up with these novel unpredictable jobs. This possible job market crisis has an antidote inside. In fact, the rise of AI is sustai...

  14. Advanced Applications of Neural Networks and Artificial Intelligence: A Review

    OpenAIRE

    Koushal Kumar; Gour Sundar Mitra Thakur

    2012-01-01

    Artificial Neural Network is a branch of Artificial intelligence and has been accepted as a new computing technology in computer science fields. This paper reviews the field of Artificial intelligence and focusing on recent applications which uses Artificial Neural Networks (ANN’s) and Artificial Intelligence (AI). It also considers the integration of neural networks with other computing methods Such as fuzzy logic to enhance the interpretation ability of data. Artificial Neural Networks is c...

  15. The impact of artificial intelligence on the world economy

    OpenAIRE

    Kuprevich, T. S.

    2017-01-01

    In the article the potential benefits and opportunities offered by AI in the world economy are considered. In the course of the research benefits and tendencies of artificial intelligence in the world economy were revealed, the main directions of development and barriers of artificial intelligence adoption are analyzed and revealed. Nowadays artificial intelligence (AI) is going mainstream, driven by machine learning, big data and cloud computing.

  16. Improving Tools in Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-01-01

    Full Text Available The historical origin of the Artificial Intelligence (AI is usually established in the Dartmouth Conference, of 1956. But we can find many more arcane origins [1]. Also, we can consider, in more recent times, very great thinkers, as Janos Neumann (then, John von Neumann, arrived in USA, Norbert Wiener, Alan Mathison Turing, or Lofti Zadeh, for instance [12, 14]. Frequently AI requires Logic. But its Classical version shows too many insufficiencies. So, it was necessary to introduce more sophisticated tools, as Fuzzy Logic, Modal Logic, Non-Monotonic Logic and so on [1, 2]. Among the things that AI needs to represent are categories, objects, properties, relations between objects, situations, states, time, events, causes and effects, knowledge about knowledge, and so on. The problems in AI can be classified in two general types [3, 5], search problems and representation problems. On this last "peak", there exist different ways to reach their summit. So, we have [4] Logics, Rules, Frames, Associative Nets, Scripts, and so on, many times connected among them. We attempt, in this paper, a panoramic vision of the scope of application of such representation methods in AI. The two more disputable questions of both modern philosophy of mind and AI will be perhaps the Turing Test and the Chinese Room Argument. To elucidate these very difficult questions, see our final note.

  17. ARTIFICIAL INTELLIGENCE- BENEFITS, CHALLENGES AND ETHICAL ISSUES

    OpenAIRE

    Elena Juganaru Andreou

    2017-01-01

    Nowadays, all big companies and most of small businesses are focused on increasing profitability and improving competitiveness. With this goal in mind, many of them turned to replace many tasks performed by humans with Artificial Intelligence. Artificial Intelligence (AI) is receiving an increasing attention lately and the debate is fiercely growing with a question not being answered yet: will it change the world for the better or for worse?

  18. The 2002 Starting Artificial Intelligence Researchers Symposium

    OpenAIRE

    Vidal, Thierry

    2003-01-01

    During the 2002 European Conference on Artificial Intelligence (ECAI-02) was introduced the Starting Artificial Intelligence Researchers Symposium STAIRS), the first-ever international symposium specifically aimed at Ph.D. students in AI. The outcome was a thorough, high-quality, and successful event, with all the features one usually finds in the best international conferences: large international committees, comprehensive coverage, published proceedings, renowned speakers and panelists, sub...

  19. Uncertainty in artificial intelligence

    CERN Document Server

    Levitt, TS; Lemmer, JF; Shachter, RD

    1990-01-01

    Clearly illustrated in this volume is the current relationship between Uncertainty and AI.It has been said that research in AI revolves around five basic questions asked relative to some particular domain: What knowledge is required? How can this knowledge be acquired? How can it be represented in a system? How should this knowledge be manipulated in order to provide intelligent behavior? How can the behavior be explained? In this volume, all of these questions are addressed. From the perspective of the relationship of uncertainty to the basic questions of AI, the book divides naturally i

  20. Artificial Intelligence and Moral intelligence

    Directory of Open Access Journals (Sweden)

    Laura Pana

    2008-07-01

    Full Text Available We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined, even unpredictable conduct, 2- entities endowed with diverse or even multiple intelligence forms, like moral intelligence, 3- open and, even, free-conduct performing systems (with specific, flexible and heuristic mechanisms and procedures of decision, 4 – systems which are open to education, not just to instruction, 5- entities with “lifegraphy”, not just “stategraphy”, 6- equipped not just with automatisms but with beliefs (cognitive and affective complexes, 7- capable even of reflection (“moral life” is a form of spiritual, not just of conscious activity, 8 – elements/members of some real (corporal or virtual community, 9 – cultural beings: free conduct gives cultural value to the action of a ”natural” or artificial being. Implementation of such characteristics does not necessarily suppose efforts to design, construct and educate machines like human beings. The human moral code is irremediably imperfect: it is a morality of preference, of accountability (not of responsibility and a morality of non-liberty, which cannot be remedied by the invention of ethical systems, by the circulation of ideal values and by ethical (even computing education. But such an imperfect morality needs perfect instruments for its implementation: applications of special logic fields; efficient psychological (theoretical and technical attainments to endow the machine not just with intelligence, but with conscience and even spirit; comprehensive technical

  1. The role of automation and artificial intelligence

    Science.gov (United States)

    Schappell, R. T.

    1983-07-01

    Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.

  2. Introducing artificial intelligence into structural optimization programs

    International Nuclear Information System (INIS)

    Jozwiak, S.F.

    1987-01-01

    Artificial Intelligence /AI/ is defined as the branch of the computer science concerned with the study of the ideas that enable computers to be intelligent. The main purpose of the application of AI in engineering is to develop computer programs which function better as tools for engineers and designers. Many computer programs today have properties which make them inconvenient to their final users and the research carried within the field of AI provides tools and techniques so that these restriction can be removed. The continuous progress in computer technology has lead to developing efficient computer systems which can be applied to more than simple solving sets of equations. (orig.)

  3. The potential of artificial intelligence toys

    DEFF Research Database (Denmark)

    Dai, Zheng

    2008-01-01

    Artificial intelligence is moving to a next step of development and application areas. From electronic games to human-like robots, AI toy is a good choice for next step during this process. Technology-based design is fit to the development of AI toy. It can exert the advantages and explore more...... value for existing resources. It combines AI programs and common sensors to realize the function of intelligence input and output. Designers can use technology-based criteria to design and need to consider the possible issues in this new field. All of these aspects can be referenced from electronic game...

  4. Artificial Intelligence in Surgery: Promises and Perils.

    Science.gov (United States)

    Hashimoto, Daniel A; Rosman, Guy; Rus, Daniela; Meireles, Ozanan R

    2018-07-01

    The aim of this review was to summarize major topics in artificial intelligence (AI), including their applications and limitations in surgery. This paper reviews the key capabilities of AI to help surgeons understand and critically evaluate new AI applications and to contribute to new developments. AI is composed of various subfields that each provide potential solutions to clinical problems. Each of the core subfields of AI reviewed in this piece has also been used in other industries such as the autonomous car, social networks, and deep learning computers. A review of AI papers across computer science, statistics, and medical sources was conducted to identify key concepts and techniques within AI that are driving innovation across industries, including surgery. Limitations and challenges of working with AI were also reviewed. Four main subfields of AI were defined: (1) machine learning, (2) artificial neural networks, (3) natural language processing, and (4) computer vision. Their current and future applications to surgical practice were introduced, including big data analytics and clinical decision support systems. The implications of AI for surgeons and the role of surgeons in advancing the technology to optimize clinical effectiveness were discussed. Surgeons are well positioned to help integrate AI into modern practice. Surgeons should partner with data scientists to capture data across phases of care and to provide clinical context, for AI has the potential to revolutionize the way surgery is taught and practiced with the promise of a future optimized for the highest quality patient care.

  5. Artificial Intelligence (AI) Flight Advisor

    Data.gov (United States)

    National Aeronautics and Space Administration — This research effort applies Deep Learning to contingency management.   Many historic aircraft accidents would have been avoidable if the pilot had better diagnosis...

  6. Integrated Artificial Intelligence Approaches for Disease Diagnostics.

    Science.gov (United States)

    Vashistha, Rajat; Chhabra, Deepak; Shukla, Pratyoosh

    2018-06-01

    Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.

  7. Intelligent Tutoring System: A Tool for Testing the Research Curiosities of Artificial Intelligence Researchers

    Science.gov (United States)

    Yaratan, Huseyin

    2003-01-01

    An ITS (Intelligent Tutoring System) is a teaching-learning medium that uses artificial intelligence (AI) technology for instruction. Roberts and Park (1983) defines AI as the attempt to get computers to perform tasks that if performed by a human-being, intelligence would be required to perform the task. The design of an ITS comprises two distinct…

  8. The First Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAmI '06)

    OpenAIRE

    Augusto, Juan Carlos; Shapiro, Daniel

    2007-01-01

    The first annual workshop on the role of AI in ambient intelligence was held in Riva de Garda, Italy, on August 29, 2006. The workshop was colocated with the European Conference on Artificial Intelligence (ECAI 2006). It provided an opportunity for researchers in a variety of AI subfields together with representatives of commercial interests to explore ambient intelligence technology and applications.

  9. Artificial Psychology: The Psychology of AI

    Directory of Open Access Journals (Sweden)

    James A. Crowder

    2013-12-01

    Full Text Available Having artificially intelligent machines that think, learn, reason, experience, and can function autonomously, without supervision, is one of the most intriguing goals in all of Computer Science. As the types of problems we would like machines to solve get more complex, it is becoming a necessary goal as well. One of the many problems associated with this goal is that what learning and reasoning are have so many possible meanings that the solution can easily get lost in the sea of opinions and options. The goal of this paper is to establish some foundational principles, theory, and concepts that we feel are the backbone of real, autonomous Artificial Intelligence. With this fully autonomous, learning, reasoning, artificially intelligent system (an artificial brain, comes the need to possess constructs in its hardware and software that mimic processes and subsystems that exist within the human brain, including intuitive and emotional memory concepts. Presented here is a discussion of the psychological constructs of artificial intelligence and how they might play out in an artificial mind.

  10. Bibliography: Artificial Intelligence.

    Science.gov (United States)

    Smith, Richard L.

    1986-01-01

    Annotates reference material on artificial intelligence, mostly at an introductory level, with applications to education and learning. Topics include: (1) programing languages; (2) expert systems; (3) language instruction; (4) tutoring systems; and (5) problem solving and reasoning. (JM)

  11. Artificial intelligence, expert systems, computer vision, and natural language processing

    Science.gov (United States)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  12. Artificial intelligence in medicine.

    OpenAIRE

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of ...

  13. Minimally Naturalistic Artificial Intelligence

    OpenAIRE

    Hansen, Steven Stenberg

    2017-01-01

    The rapid advancement of machine learning techniques has re-energized research into general artificial intelligence. While the idea of domain-agnostic meta-learning is appealing, this emerging field must come to terms with its relationship to human cognition and the statistics and structure of the tasks humans perform. The position of this article is that only by aligning our agents' abilities and environments with those of humans do we stand a chance at developing general artificial intellig...

  14. Artificial intelligence in cardiology

    OpenAIRE

    Bonderman, Diana

    2017-01-01

    Summary Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiol...

  15. Artificial intelligence a beginner's guide

    CERN Document Server

    Whitby, Blay

    2012-01-01

    Tomorrow begins right here as we embark on an enthralling and jargon-free journey into the world of computers and the inner recesses of the human mind. Readers encounter everything from the nanotechnology used to make insect-like robots, to computers that perform surgery, in addition to discovering the biggest controversies to dog the field of AI. Blay Whitby is a Lecturer on Cognitive Science and Artificial Intelligence at the University of Sussex UK. He is the author of two books and numerous papers.

  16. Artificial Intelligence and the Future of Defense

    DEFF Research Database (Denmark)

    De Spiegeleire, Stephan; Maas, Matthijs Michiel; Sweijs, Tim

    Artificial intelligence (AI) is on everybody’s minds these days. Most of the world’s leading companies are making massive investments in it. Governments are scrambling to catch up. Every single one of us who uses Google Search or any of the new digital assistants on our smartphones has witnessed...... suggests that the advent of artificial super-intelligence (i.e. AI that is superior across the board to human intelligence), which many experts now put firmly within the longer-term planning horizons of our DSOs, presents us with unprecedented risks but also opportunities that we have to start to explore....... The report contains an overview of the role that ‘intelligence’ - the computational part of the ability to achieve goals in the world - has played in defense and security throughout human history; a primer on AI (what it is, where it comes from and where it stands today - in both civilian and military...

  17. Artificial Intelligence techniques for big data analysis

    OpenAIRE

    Aditya Khatri

    2017-01-01

    During my stay in Salamanca (Spain), I was fortunate enough to participate in the BISITE Research Group of the University of Salamanca. The University of Salamanca is the oldest university in Spain and in 2018 it celebrates its 8th centenary. As a computer science researcher, I participated in one of the many international projects that the research group has active, especially in big data analysis using Artificial Intelligence (AI) techniques. AI is one of BISITE's main lines of rese...

  18. Parallel processing for artificial intelligence 1

    CERN Document Server

    Kanal, LN; Kumar, V; Suttner, CB

    1994-01-01

    Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discus

  19. Groundhog Day for Medical Artificial Intelligence.

    Science.gov (United States)

    London, Alex John

    2018-05-01

    Following a boom in investment and overinflated expectations in the 1980s, artificial intelligence entered a period of retrenchment known as the "AI winter." With advances in the field of machine learning and the availability of large datasets for training various types of artificial neural networks, AI is in another cycle of halcyon days. Although medicine is particularly recalcitrant to change, applications of AI in health care have professionals in fields like radiology worried about the future of their careers and have the public tittering about the prospect of soulless machines making life-and-death decisions. Medicine thus appears to be at an inflection point-a kind of Groundhog Day on which either AI will bring a springtime of improved diagnostic and predictive practices or the shadow of public and professional fear will lead to six more metaphorical weeks of winter in medical AI. © 2018 The Hastings Center.

  20. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part A: The core ingredients

    Science.gov (United States)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. The goal of Artificial Intelligence is focused on developing computational approaches to intelligent behavior. This goal is so broad - covering virtually all aspects of human cognitive activity - that substantial confusion has arisen as to the actual nature of AI, its current status and its future capability. This volume, the first in a series of NBS/NASA reports on the subject, attempts to address these concerns. Thus, this report endeavors to clarify what AI is, the foundations on which it rests, the techniques utilized, applications, the participants and, finally, AI's state-of-the-art and future trends. It is anticipated that this report will prove useful to government and private engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  1. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  2. Artificial intelligence in nanotechnology

    Science.gov (United States)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  3. Artificial Intelligence in Cardiology.

    Science.gov (United States)

    Johnson, Kipp W; Torres Soto, Jessica; Glicksberg, Benjamin S; Shameer, Khader; Miotto, Riccardo; Ali, Mohsin; Ashley, Euan; Dudley, Joel T

    2018-06-12

    Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine, and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Artificial intelligence in nanotechnology

    International Nuclear Information System (INIS)

    Sacha, G M; Varona, P

    2013-01-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  5. Artificial intelligence in cardiology.

    Science.gov (United States)

    Bonderman, Diana

    2017-12-01

    Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiology are reviewed. The text also touches on the ethical issues and speculates on the future roles of automated algorithms versus clinicians in cardiology and medicine in general.

  6. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  7. Application of artificial intelligence in process control

    CERN Document Server

    Krijgsman, A

    1993-01-01

    This book is the result of a united effort of six European universities to create an overall course on the appplication of artificial intelligence (AI) in process control. The book includes an introduction to key areas including; knowledge representation, expert, logic, fuzzy logic, neural network, and object oriented-based approaches in AI. Part two covers the application to control engineering, part three: Real-Time Issues, part four: CAD Systems and Expert Systems, part five: Intelligent Control and part six: Supervisory Control, Monitoring and Optimization.

  8. Artificial intelligence - NASA. [robotics for Space Station

    Science.gov (United States)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  9. Demonstration of artificial intelligence technology for transit railcar diagnostics

    Science.gov (United States)

    1999-01-01

    This report will be of interest to railcar maintenance professionals concerned with improving railcar maintenance fault-diagnostic capabilities through the use of artificial intelligence (AI) technologies. It documents the results of a demonstration ...

  10. Utilising artificial intelligence in software defined wireless sensor network

    CSIR Research Space (South Africa)

    Matlou, OG

    2017-10-01

    Full Text Available Software Defined Wireless Sensor Network (SDWSN) is realised by infusing Software Defined Network (SDN) model in Wireless Sensor Network (WSN), Reason for that is to overcome the challenges of WSN. Artificial Intelligence (AI) and machine learning...

  11. Artificial intelligence techniques in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Laughton, M.A.

    1997-12-31

    Since the early to mid 1980s much of the effort in power systems analysis has turned away from the methodology of formal mathematical modelling which came from the fields of operations research, control theory and numerical analysis to the less rigorous techniques of artificial intelligence (AI). Today the main AI techniques found in power systems applications are those utilising the logic and knowledge representations of expert systems, fuzzy systems, artificial neural networks (ANN) and, more recently, evolutionary computing. These techniques will be outlined in this chapter and the power system applications indicated. (Author)

  12. Applications of artificial intelligence to scientific research

    Science.gov (United States)

    Prince, Mary Ellen

    1986-01-01

    Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.

  13. The coming of age of artificial intelligence in medicine

    NARCIS (Netherlands)

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in

  14. Ethico-epistemological implications of artificial intelligence for ...

    African Journals Online (AJOL)

    We argued for a re-direction of AI. research and suggested a humanization of Artificial Intelligence that cloaks technoscientific innovations with humanistic life jackets for man‟s preservation. The textual analysis method is adopted for this research. Key words: Ethics, Epistemology, Artificial Intelligence, Humanity.

  15. IJCAI-91 Workshop on Objects and Artificial Intelligence

    OpenAIRE

    Hatzilygeroudis, Ioannis

    1994-01-01

    The Objects and Artificial Intelligence Workshop was held on 25 August 1991 in conjunction with the 1991 International Joint Conference on Artificial Intelligence. The workshop brought together researchers in AI and object-oriented programming to exchange ideas and investigate possible avenues of cooperation between AI and object-oriented programming. The workshop dealt with both the theoretical and the practical aspects of this cooperation.

  16. Human Brain inspired Artificial Intelligence & Developmental Robotics: A Review

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-06-01

    Full Text Available Along with the developments in the field of the robotics, fascinating contributions and developments can be seen in the field of Artificial intelligence (AI. In this paper we will discuss about the developments is the field of artificial intelligence focusing learning algorithms inspired from the field of Biology, particularly large scale brain simulations, and developmental Psychology. We will focus on the emergence of the Developmental robotics and its significance in the field of AI.

  17. A Python Engine for Teaching Artificial Intelligence in Games

    OpenAIRE

    Riedl, Mark O.

    2015-01-01

    Computer games play an important role in our society and motivate people to learn computer science. Since artificial intelligence is integral to most games, they can also be used to teach artificial intelligence. We introduce the Game AI Game Engine (GAIGE), a Python game engine specifically designed to teach about how AI is used in computer games. A progression of seven assignments builds toward a complete, working Multi-User Battle Arena (MOBA) game. We describe the engine, the assignments,...

  18. Generality in Artificial Intelligence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Generality in Artificial Intelligence. John McCarthy. Classics Volume 19 Issue 3 March 2014 pp 283-296. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/03/0283-0296. Author Affiliations.

  19. Artificial intelligence within AFSC

    Science.gov (United States)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  20. Database in Artificial Intelligence.

    Science.gov (United States)

    Wilkinson, Julia

    1986-01-01

    Describes a specialist bibliographic database of literature in the field of artificial intelligence created by the Turing Institute (Glasgow, Scotland) using the BRS/Search information retrieval software. The subscription method for end-users--i.e., annual fee entitles user to unlimited access to database, document provision, and printed awareness…

  1. Artificial intelligence in process design and operation

    International Nuclear Information System (INIS)

    Sudduth, A.L.

    1988-01-01

    Artificial Intelligence (AI) has recently become prominent in the discussion of computer applications in the utility business. In order to assess this technology, a research project was performed to determine whether software development techniques based on AI could be used to facilitate management of information associated with the design of a generating station. The approach taken was the development of an expert system, using a relatively simple set of rules acting on a more complex knowledge base. A successful prototype for the application was developed and its potential extension to a production environment demonstrated. During the course of prototype development, other possible applications of AI in design engineering were discovered, and areas of particular interest selected for further investigation. A plan for AI R and D was formulated. That plan and other possible future work in AI are discussed

  2. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry

  3. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part B: Applications

    Science.gov (United States)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.

  4. Knowledge representation an approach to artificial intelligence

    CERN Document Server

    Bench-Capon, TJM

    1990-01-01

    Although many texts exist offering an introduction to artificial intelligence (AI), this book is unique in that it places an emphasis on knowledge representation (KR) concepts. It includes small-scale implementations in PROLOG to illustrate the major KR paradigms and their developments.****back cover copy:**Knowledge representation is at the heart of the artificial intelligence enterprise: anyone writing a program which seeks to work by encoding and manipulating knowledge needs to pay attention to the scheme whereby he will represent the knowledge, and to be aware of the consequences of the ch

  5. A quick overview of artificial intelligence and expert systems

    International Nuclear Information System (INIS)

    Engelmore, R.S.

    1989-01-01

    Artificial intelligence (AI) is almost a household word these days. There have been several conferences held in this country over the last two years on artificial intelligence and its applications. The international AI conference at Snowbird, Utah, in 1987 centered on AI applications in the nuclear industry. This paper serves as an introductory overview of the subject of AI for this state-of-the-art review of AI applications in the nuclear industry. We introduce the subject in a way that will be relevant to many people in the nuclear industry who have heard of AI but are not familiar with it and are looking for answers to several simple questions. We attempt to answer those simple questions here and prepare the reader so that he or she can appreciate the following sections on AI applications in the nuclear field. (orig./GL)

  6. Artificial Intelligence and Economic Theories

    OpenAIRE

    Marwala, Tshilidzi; Hurwitz, Evan

    2017-01-01

    The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence such as the swarming of birds, the working of the brain and the pathfinding of the ants. These techniques have impact on economic theories. This book studies the impact of artificial intelligence on economic theories, a subject that has not been extensively studied. The theories that...

  7. The coming of age of artificial intelligence in medicine

    OpenAIRE

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its “adolescence” (Shortliffe EH. The adolescence of AI in medicine: Will the field come of age in the ‘90s? Artificial Intelligence in Medicine 1993; 5:93–106). In this article, the ...

  8. Making Computers Smarter: A Look At the Controversial Field of Artificial Intelligence.

    Science.gov (United States)

    Green, John O.

    1984-01-01

    Defines artificial intelligence (AI) and discusses its history; the current state of the art, research, experimentation, and practical applications; and probable future developments. Key dates in the history of AI and eight references are provided. (MBR)

  9. The Seeds of Artificial Intelligence. SUMEX-AIM.

    Science.gov (United States)

    Research Resources Information Center, Rockville, MD.

    Written to provide an understanding of the broad base of information on which the artificial intelligence (AI) branch of computer science rests, this publication presents a general view of AI, the concepts from which it evolved, its current abilities, and its promise for research. The focus is on a community of projects that use the SUMEX-AIM…

  10. Second Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Dollman, Thomas (Compiler)

    1988-01-01

    The proceedings of the conference are presented. This second conference on Artificial Intelligence for Space Applications brings together a diversity of scientific and engineering work and is intended to provide an opportunity for those who employ AI methods in space applications to identify common goals and to discuss issues of general interest in the AI community.

  11. Introduction to the Articles on Innovative Applications of Artificial Intelligence

    OpenAIRE

    Rychtyckyj, Nestor; Shapiro, Daniel

    2011-01-01

    This issue of AI Magazine provides extended versions of several papers that were recently presented at the Innovative Applications of Artificial Intelligence Conference (IAAI-2010). We present three articles reflecting deployed applications of AI, one describing a unique, emerging application, plus an article based on the invited talk by Jay M. Tenenbaum, who was the 2010 Engelmore Award recipient.

  12. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    Science.gov (United States)

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  13. Artificial Intelligence: Realizing the Ultimate Promises of Computing

    OpenAIRE

    Waltz, David L.

    1997-01-01

    Artificial intelligence (AI) is the key technology in many of today's novel applications, ranging from banking systems that detect attempted credit card fraud, to telephone systems that understand speech, to software systems that notice when you're having problems and offer appropriate advice. These technologies would not exist today without the sustained federal support of fundamental AI research over the past three decades.

  14. The Third Age of Artificial Intelligence

    OpenAIRE

    Miailhe, Nicolas; Hodes, Cyrus

    2018-01-01

    If the definitional boundaries of Artificial Intelligence (AI) remains contested, experts agree that we are witnessing a revolution. “Is this time different?” is the question that they worryingly argue over when they analyze the socio-economic impact of the AI revolution as compared with the other industrial revolutions of the 19th and 20th centuries. This Schumpeterian wave may prove to be a creative destruction raising incomes, enhancing quality of life for all and generating previously uni...

  15. Does Wittgenstein Actually Undermine the Foundation of Artificial Intelligence?

    Institute of Scientific and Technical Information of China (English)

    XU Yingjin

    2016-01-01

    Wittgenstein is widely viewed as a potential critic of a key philosophical assumption of the Strong Artificial Intelligence (AI) thesis,namely,that it is in principle possible to build a programmed machine which can achieve real intelligence.Stuart Shanker has provided the most systematic reconstruction of the Wittgensteinian argument against AI,building on Wittgenstein's own statements,the "rule-following" feature of language-games,and the putative alliance between AI and psychologism.This article will attempt to refute this reconstruction and its constituent arguments,thereby paving the way for a new and amicable rather than agonistic conception of the Wittgensteinian position on AI.

  16. Artificial Intelligence Research at General Electric

    OpenAIRE

    Sweet, Larry

    1985-01-01

    General Electric is engaged in a broad range of research and development activities in artificial intelligence, with the dual objectives of improving the productivity of its internal operations and of enhancing future products and services in its aerospace, industrial, aircraft engine, commercial, and service sectors. Many of the applications projected for AI within GE will require significant advances in the state of the art in advanced inference, formal logic, and architectures for real-tim...

  17. Artificial Intelligence and Virology - quo vadis.

    Science.gov (United States)

    Shapshak, Paul; Somboonwit, Charurut; Sinnott, John T

    2017-01-01

    Artificial Intelligence (AI), robotics, co-robotics (cobots), quantum computers (QC), include surges of scientific endeavor to produce machines (mechanical and software) among numerous types and constructions that are accelerating progress to defeat infectious diseases. There is a plethora of additional applications and uses of these methodologies and technologies for the understanding of biomedicine through bioinformation discovery. Therefore, we briefly outline the use of such techniques in virology.

  18. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    Science.gov (United States)

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  19. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  20. Uncertainty in artificial intelligence

    CERN Document Server

    Kanal, LN

    1986-01-01

    How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.

  1. Fifth Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Odell, Steve L. (Compiler)

    1990-01-01

    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  2. Mapping change in scientific specialties: a scientometric case study of the development or artificial intelligence

    NARCIS (Netherlands)

    van den Besselaar, P.; Leydesdorff, L.

    1996-01-01

    Has an identifiable core of activities called AI been established, during the AI-boom in the eighties? Is AI already in a “paradigmatic” phase? There has been a lot of disagreement among commentators and specialists about the nature of Artificial Intelligence as a specialty. This makes AI an

  3. Soft computing in artificial intelligence

    CERN Document Server

    Matson, Eric

    2014-01-01

    This book explores the concept of artificial intelligence based on knowledge-based algorithms. Given the current hardware and software technologies and artificial intelligence theories, we can think of how efficient to provide a solution, how best to implement a model and how successful to achieve it. This edition provides readers with the most recent progress and novel solutions in artificial intelligence. This book aims at presenting the research results and solutions of applications in relevance with artificial intelligence technologies. We propose to researchers and practitioners some methods to advance the intelligent systems and apply artificial intelligence to specific or general purpose. This book consists of 13 contributions that feature fuzzy (r, s)-minimal pre- and β-open sets, handling big coocurrence matrices, Xie-Beni-type fuzzy cluster validation, fuzzy c-regression models, combination of genetic algorithm and ant colony optimization, building expert system, fuzzy logic and neural network, ind...

  4. Generative Artificial Intelligence : Philosophy and Theory of Artificial Intelligence

    NARCIS (Netherlands)

    van der Zant, Tijn; Kouw, Matthijs; Schomaker, Lambertus; Mueller, Vincent C.

    2013-01-01

    The closed systems of contemporary Artificial Intelligence do not seem to lead to intelligent machines in the near future. What is needed are open-ended systems with non-linear properties in order to create interesting properties for the scaffolding of an artificial mind. Using post-structuralistic

  5. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  6. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  7. "It's Going to Kill Us!" and Other Myths about the Future of Artificial Intelligence

    Science.gov (United States)

    Atkinson, Robert D.

    2016-01-01

    Given the promise that artificial intelligence (AI) holds for economic growth and societal advancement, it is critical that policymakers not only avoid retarding the progress of AI innovation, but also actively support its further development and use. This report provides a primer on artificial intelligence and debunks five prevailing myths that,…

  8. Seventh Scandinavian Conference on Artificial Intelligence

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Mayoh, Brian Henry; Perram, John

    2001-01-01

    The book covers the seventh Scandinavian Conference on Artificial Intelligence, held at the Maersk Mc-Kinney Moller Institute for Production Technology at the University of Southern Denmark during the period 20-21 February, 2001. It continues the tradition established by SCAI of being one...... of the most important regional AI conferences in Europe, attracting high quality submissions from Scandinavia and the rest of the world, including the Baltic countries. The contents include robotics, sensor/motor intelligence, evolutionary robotics, behaviour-based systems, multi-agent systems, applications...

  9. Artificial Intelligence and Educational Technology: A Natural Synergy. Extended Abstract.

    Science.gov (United States)

    McCalla, Gordon I.

    Educational technology and artificial intelligence (AI) are natural partners in the development of environments to support human learning. Designing systems with the characteristics of a rich learning environment is the long term goal of research in intelligent tutoring systems (ITS). Building these characteristics into a system is extremely…

  10. Artificial-intelligence-based optimization of the management of snow removal assets and resources.

    Science.gov (United States)

    2002-10-01

    Geographic information systems (GIS) and artificial intelligence (AI) techniques were used to develop an intelligent : snow removal asset management system (SRAMS). The system has been evaluated through a case study examining : snow removal from the ...

  11. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    This study proposes an application of two techniques of artificial intelligence (AI) for rainfall–runoff modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two diff- erent ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural network (GRNN) methods ...

  12. Learning modalities in artificial intelligence systems: a framework and review

    Energy Technology Data Exchange (ETDEWEB)

    Araya, A A

    1982-01-01

    Intelligent systems should possess two fundamental capabilities: problem solving and learning. Problem solving capabilities allow an intelligent system to cope with problems in a given domain. Learning capabilities make possible for an intelligent system to improve the solution to the problems within its current reach or to cope with new problems. This paper examines research in artificial intelligence from the perspective of learning with the purpose of: 1) developing and understanding of the problem of learning from the AI point of view, and II) characterizing the current state of the art on learning in AI. 35 references.

  13. Computational intelligence from AI to BI to NI

    Science.gov (United States)

    Werbos, Paul J.

    2015-05-01

    This paper gives highlights of the history of the neural network field, stressing the fundamental ideas which have been in play. Early neural network research was motivated mainly by the goals of artificial intelligence (AI) and of functional neuroscience (biological intelligence, BI), but the field almost died due to frustrations articulated in the famous book Perceptrons by Minsky and Papert. When I found a way to overcome the difficulties by 1974, the community mindset was very resistant to change; it was not until 1987/1988 that the field was reborn in a spectacular way, leading to the organized communities now in place. Even then, it took many more years to establish crossdisciplinary research in the types of mathematical neural networks needed to really understand the kind of intelligence we see in the brain, and to address the most demanding engineering applications. Only through a new (albeit short-lived) funding initiative, funding crossdisciplinary teams of systems engineers and neuroscientists, were we able to fund the critical empirical demonstrations which put our old basic principle of "deep learning" firmly on the map in computer science. Progress has rightly been inhibited at times by legitimate concerns about the "Terminator threat" and other possible abuses of technology. This year, at SPIE, in the quantum computing track, we outline the next stage ahead of us in breaking out of the box, again and again, and rising to fundamental challenges and opportunities still ahead of us.

  14. Artificial intelligence in healthcare: past, present and future.

    Science.gov (United States)

    Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun

    2017-12-01

    Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI.

  15. Artificial intelligence in healthcare: past, present and future

    Science.gov (United States)

    Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun

    2017-01-01

    Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI. PMID:29507784

  16. Artificial Intelligence in Civil Engineering

    OpenAIRE

    Lu, Pengzhen; Chen, Shengyong; Zheng, Yujun

    2012-01-01

    Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applicati...

  17. Trends in telemedicine utilizing artificial intelligence

    Science.gov (United States)

    Pacis, Danica Mitch M.; Subido, Edwin D. C.; Bugtai, Nilo T.

    2018-02-01

    With the growth and popularity of the utilization of artificial intelligence (AI) in several fields and industries, studies in the field of medicine have begun to implement its capabilities in handling and analyzing data to telemedicine. With the challenges in the implementation of telemedicine, there has been a need to expand its capabilities and improve procedures to be specialized to solve specific problems. The versatility and flexibility of both AI and telemedicine gave the endless possibilities for development and these can be seen in the literature reviewed in this paper. The trends in the development of the utilization of this technology can be classified in to four: patient monitoring, healthcare information technology, intelligent assistance diagnosis, and information analysis collaboration. Each trend will be discussed and presented with examples of recent literature and the problems they aim to address. Related references will also be tabulated and categorized to see the future and potential of this current trend in telemedicine.

  18. Application of artificial intelligence in coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Y.; Deng, J.; Liu, H. [China University of Mining and Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2001-11-01

    The general situation of using AI (Artificial intelligence) technology in coal preparation was introduced. The expert systems of coal preparation plant design, the expert management system of coal preparation plant, and the intelligent data-drawing bank were discussed. Some opinions about their foundation and method of knowledge expressing, inference, knowledge discovery of databases were presented. It is pointed out that an industrial system such as coal preparation is big and complex, so it is necessary and also difficult to use AI technology in these systems. Because the types of knowledge are different, there are various knowledge expressions and model of knowledge inference, hence only comprehensive methods suitable for the characters of the system may be used. 14 refs., 5 figs.

  19. Artificial Intelligence and Robotics

    OpenAIRE

    Perez, Javier Andreu; Deligianni, Fani; Ravi, Daniele; Yang, Guang-Zhong

    2018-01-01

    The recent successes of AI have captured the wildest imagination of both the scientific communities and the general public. Robotics and AI amplify human potentials, increase productivity and are moving from simple reasoning towards human-like cognitive abilities. Current AI technologies are used in a set area of applications, ranging from healthcare, manufacturing, transport, energy, to financial services, banking, advertising, management consulting and government agencies. The global AI mar...

  20. Artificial Intelligence in Space Platforms.

    Science.gov (United States)

    1984-12-01

    computer algorithms, there still appears to be a need for Artificial Inteligence techniques in the navigation area. The reason is that navigaion, in...RD-RI32 679 ARTIFICIAL INTELLIGENCE IN SPACE PLRTFORNSMU AIR FORCE 1/𔃼 INST OF TECH WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGINEERING M A WRIGHT DEC 94...i4 Preface The purpose of this study was to analyze the feasibility of implementing Artificial Intelligence techniques to increase autonomy for

  1. Northeast Artificial Intelligence Consortium Annual Report 1986. Volume 4. Part A. Hierarchical Region-Based Approach to Automatic Photointerpretation. Part B. Application of AI Techniques to Image Segmentation and Region Identification

    Science.gov (United States)

    1988-01-01

    MONITORING ORGANIZATION Northeast Artificial (If applicaole)nelincCostum(AcRome Air Development Center (COCU) Inteligence Consortium (NAIC)I 6c. ADDRESS...f, Offell RADC-TR-88-1 1, Vol IV (of eight) Interim Technical ReportS June 1988 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1986...13441-5700 EMENT NO NO NO ACCESSION NO62702F 5 8 71 " " over) I 58 27 13 " ൓ TITLE (Include Security Classification) NORTHEAST ARTIFICIAL INTELLIGENCE

  2. Knowledge in Artificial Intelligence Systems: Searching the Strategies for Application

    OpenAIRE

    Kornienko, Alla A.; Kornienko, Anatoly V.; Fofanov, Oleg B.; Chubik, Maxim P.

    2015-01-01

    The studies based on auto-epistemic logic are pointed out as an advanced direction for development of artificial intelligence (AI). Artificial intelligence is taken as a system that imitates the solution of complicated problems by human during the course of life. The structure of symbols and operations, by which intellectual solution is performed, as well as searching the strategic reference points for those solutions, which are caused by certain structures of symbols and operations, – are co...

  3. Artificial intelligence applications in information and communication technologies

    CERN Document Server

    Bouguila, Nizar

    2015-01-01

    This book presents various recent applications of Artificial Intelligence in Information and Communication Technologies such as Search and Optimization methods, Machine Learning, Data Representation and Ontologies, and Multi-agent Systems. The main aim of this book is to help Information and Communication Technologies (ICT) practitioners in managing efficiently their platforms using AI tools and methods and to provide them with sufficient Artificial Intelligence background to deal with real-life problems.  .

  4. The coming of age of artificial intelligence in medicine.

    Science.gov (United States)

    Patel, Vimla L; Shortliffe, Edward H; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-05-01

    This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its "adolescence" (Shortliffe EH. The adolescence of AI in medicine: will the field come of age in the '90s? Artificial Intelligence in Medicine 1993;5:93-106). In this article, the discussants reflect on medical AI research during the subsequent years and characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision-making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems.

  5. A PHILOSOPHICAL APPROACH TO ARTIFICIAL INTELLIGENCE AND ISLAMIC VALUES

    Directory of Open Access Journals (Sweden)

    Ali Akbar Ziaee

    2012-02-01

    Full Text Available Artificial Intelligence has the potential to empower humans through enhanced learning and performance. But if this potential is to be realized and accepted, the ethical aspects as well as the technical must be addressed. Many engineers claim that AI will be smarter than human brains, including scientific creativity, general wisdom and social skills, so we must consider it an important factor for making decisions in our social life and especially in our Islamic societies. The most important challenges will be the quality of representing the Islamic values like piety, obedience, Halal and Haram, and etc in the form of semantics. In this paper, I want to emphasize on the role of Divine Islamic values in the application of AI and discuss it according to philosophy of AI and Islamic perspective.Keywords- Value, expert, Community Development, Artificial Intelligence, Superintelligence, Friendly Artificial Intelligence

  6. The Coming of Age of Artificial Intelligence in Medicine*

    Science.gov (United States)

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    Summary This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its “adolescence” (Shortliffe EH. The adolescence of AI in medicine: Will the field come of age in the ‘90s? Artificial Intelligence in Medicine 1993; 5:93–106). In this article, the discussants reflect on medical AI research during the subsequent years and attempt to characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems. PMID:18790621

  7. Artificial Intelligence in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2012-01-01

    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  8. Employing Artificial Intelligence To Minimise Internet Fraud

    Directory of Open Access Journals (Sweden)

    Edward Wong Sek Khin

    2009-12-01

    Full Text Available Internet fraud is increasing on a daily basis with new methods for extracting funds from government, corporations, businesses in general, and persons appearing almost hourly. The increases in on-line purchasing and the constant vigilance of both seller and buyer have meant that the criminal seems to be one-step ahead at all times. To pre-empt or to stop fraud before it can happen occurs in the non-computer based daily transactions of today because of the natural intelligence of the players, both seller and buyer. Currently, even with advances in computing techniques, intelligence is not the current strength of any computing system of today, yet techniques are available which may reduce the occurrences of fraud, and are usually referred to as artificial intelligence systems.This paper provides an overview of the use of current artificial intelligence (AI techniques as a means of combating fraud.Initially the paper describes how artificial intelligence techniques are employed in systems for detecting credit card fraud (online and offline fraud and insider trading.Following this, an attempt is made to propose the using of MonITARS (Monitoring Insider Trading and Regulatory Surveillance Systems framework which use a combination of genetic algorithms, neural nets and statistical analysis in detecting insider dealing. Finally, the paper discusses future research agenda to the role of using MonITARS system.

  9. The role of artificial intelligence and expert systems in increasing STS operations productivity

    Science.gov (United States)

    Culbert, C.

    1985-01-01

    Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.

  10. APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO HUMAN-COMPUTER INTERFACES

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1988-01-01

    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...... and data networks. Three artificial intelligence (AI) techniques used in UIMS are discussed, namely, frame representation, object-oriented programming languages, and rule-based systems. The UIMS architecture is presented, and the structure of the UIMS is explained in terms of the AI techniques....

  11. Artificial intelligence applications for operation and maintenance

    International Nuclear Information System (INIS)

    Itoh, M.; Tai, I.; Monta, K.; Sekimizu, K.

    1987-01-01

    A nuclear power plant as a typical man-machine system of the modern industry needs an efficient human window through which operators can observe every necessary detail of the plant for its safe and reliable operation. Much efforts have been devoted to the development of the computerized operator support systems (COSS). Recent development of artificial intelligence (AI) seems to offer new possibility to strengthen the performance of the COSS such as more powerful diagnosis and procedure synthesis and user friendly man-machine interfaces. From this point of view, a national project of Advanced Man-Machine System Development for Nuclear Power Plants has been carried out. Artificial intelligence application to nuclear power plant operation and maintenance is also selected as a major theme for the promotion of research and development on frontiers in the recently revised long term national program for development and utilization of nuclear energy in JAPAN

  12. Artificial intelligence applications in space and SDI: A survey

    Science.gov (United States)

    Fiala, Harvey E.

    1988-01-01

    The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) applications to show that they are sufficiently advanced for 32 percent of all space applications and SDI (Space Defense Initiative) software to be AI-based software. To best define the needs that AI can fill in space and SDI programs, this paper enumerates primary areas of research and lists generic application areas. Current and planned NASA and military space projects in AI will be reviewed. This review will be largely in the selected area of expert systems. Finally, direct applications of AI to SDI will be treated. The conclusion covers the importance of AI to space and SDI applications, and conversely, their importance to AI.

  13. Artificial intelligence applications in the intensive care unit.

    Science.gov (United States)

    Hanson, C W; Marshall, B E

    2001-02-01

    To review the history and current applications of artificial intelligence in the intensive care unit. The MEDLINE database, bibliographies of selected articles, and current texts on the subject. The studies that were selected for review used artificial intelligence tools for a variety of intensive care applications, including direct patient care and retrospective database analysis. All literature relevant to the topic was reviewed. Although some of the earliest artificial intelligence (AI) applications were medically oriented, AI has not been widely accepted in medicine. Despite this, patient demographic, clinical, and billing data are increasingly available in an electronic format and therefore susceptible to analysis by intelligent software. Individual AI tools are specifically suited to different tasks, such as waveform analysis or device control. The intensive care environment is particularly suited to the implementation of AI tools because of the wealth of available data and the inherent opportunities for increased efficiency in inpatient care. A variety of new AI tools have become available in recent years that can function as intelligent assistants to clinicians, constantly monitoring electronic data streams for important trends, or adjusting the settings of bedside devices. The integration of these tools into the intensive care unit can be expected to reduce costs and improve patient outcomes.

  14. [Artificial intelligence in medicine: limits and obstacles.

    Science.gov (United States)

    Santoro, Eugenio

    2017-12-01

    Data scientists and physicians are starting to use artificial intelligence (AI) even in the medical field in order to better understand the relationships among the huge amount of data coming from the great number of sources today available. Through the data interpretation methods made available by the recent AI tools, researchers and AI companies have focused on the development of models allowing to predict the risk of suffering from a specific disease, to make a diagnosis, and to recommend a treatment that is based on the best and most updated scientific evidence. Even if AI is used to perform unimaginable tasks until a few years ago, the awareness about the ongoing revolution has not yet spread through the medical community for several reasons including the lack of evidence about safety, reliability and effectiveness of these tools, the lack of regulation accompanying hospitals in the use of AI by health care providers, the difficult attribution of liability in case of errors and malfunctions of these systems, and the ethical and privacy questions that they raise and that, as of today, are still unanswered.

  15. Development of AI (Artificial Intelligence)-based simulation system for man-machine system behavior in accidental situations of nuclear power plant

    International Nuclear Information System (INIS)

    Yoshida, Kazuo; Yokobayashi, Masao; Tanabe, Fumiya; Kawase, Katumi.

    1996-01-01

    A prototype version of a computer simulation system named JACOS (JAeri COgnitive Simulation system) has been developed at JAERI (Japan Atomic Energy Research Institute) to simulate the man-machine system behavior in which both the cognitive behavior of a human operator and the plant behavior affect each other. The objectives of this system development is to provide man-machine system analysts with detailed information on the cognitive process of an operator and the plant behavior affected by operator's actions in accidental situations of an NPP (nuclear power plant). The simulation system consists of an operator model and a plant model which are coupled dynamically. The operator model simulates an operator's cognitive behavior in accidental situations based on the decision ladder model of Rasmussen, and is implemented using the AI-techniques of the distributed cooperative inference method with the so-called blackboard architecture. Rule-based behavior is simulated using knowledge representation with If-Then type of rules. Knowledge-based behavior is simulated using knowledge representation with MFM (Multilevel Flow Modeling) and qualitative reasoning method. Cognitive characteristics of attentional narrowing, limitation of short-term memory, and knowledge recalling from long-term memory are also modeled. The plant model of a 3-loop PWR is also developed using a best estimate thermal-hydraulic analysis code RELAP5/MOD2. Some simulations of incidents were performed to verify the human model. It was found that AI-techniques used in the human model are suitable to simulate the operator's cognitive behavior in an NPP accident. The models of cognitive characteristics were investigated in the effects on simulated results of cognitive behaviors. (author)

  16. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    Science.gov (United States)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  17. Beyond Artificial Intelligence toward Engineered Psychology

    Science.gov (United States)

    Bozinovski, Stevo; Bozinovska, Liljana

    This paper addresses the field of Artificial Intelligence, road it went so far and possible road it should go. The paper was invited by the Conference of IT Revolutions 2008, and discusses some issues not emphasized in AI trajectory so far. The recommendations are that the main focus should be personalities rather than programs or agents, that genetic environment should be introduced in reasoning about personalities, and that limbic system should be studied and modeled. Engineered Psychology is proposed as a road to go. Need for basic principles in psychology are discussed and a mathematical equation is proposed as fundamental law of engineered and human psychology.

  18. Parallel processing for artificial intelligence 2

    CERN Document Server

    Kumar, V; Suttner, CB

    1994-01-01

    With the increasing availability of parallel machines and the raising of interest in large scale and real world applications, research on parallel processing for Artificial Intelligence (AI) is gaining greater importance in the computer science environment. Many applications have been implemented and delivered but the field is still considered to be in its infancy. This book assembles diverse aspects of research in the area, providing an overview of the current state of technology. It also aims to promote further growth across the discipline. Contributions have been grouped according to their

  19. Artificial intelligence applications at the ICPP

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1989-01-01

    Westinghouse Idaho Nuclear Company (WINCO) initiated an aggressive program for artificial intelligence (AI) expert system implementations in 1985. The first expert system, Safety Analysis Methods Advisor (SAMA) was completed in 1986 to help operational safety analysts select analysis methodologies for safety analysis reports. The SAMA expert system was implemented as a rule-based system using a commercial expert system shell. The major benefit of the system is for training new safety analysts. The first successful implementation launched three other expert system projects: a process alarm filtering system, a process control advisor, and a mass spectrometer trouble-shooting advisor. This paper describes the current status of these projects

  20. Deep into the Brain: Artificial Intelligence in Stroke Imaging.

    Science.gov (United States)

    Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha

    2017-09-01

    Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives.

  1. Challenges in introduction of artificial intelligence in medical practice – a review of clinical trials concerning adaptation of artificial intelligence in medicine

    OpenAIRE

    Mielnik, Pawel Franciszek; Fojcik, Marcin; Kulbacki, Marek; Segen, Jakub

    2016-01-01

    An interest in Artificial Intelligence [AI] as science is growing in the last years. It has become gradually more used in the medicine. Methodology of development and testing of AI algorithms is generally well established. Use of AI in medicine requires elaboration of standards of its validation in clinical settings. This paper is a review of literature concerning clinical trials on AI adaptation in medicine

  2. Artificial intelligence - New tools for aerospace project managers

    Science.gov (United States)

    Moja, D. C.

    1985-01-01

    Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.

  3. Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

    OpenAIRE

    Huang, Junbing; Tang, Yuee; Chen, Shuxing

    2018-01-01

    Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based) model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to ...

  4. Artificial Intelligence at Advanced Information and Decision Systems

    OpenAIRE

    McCune, Brian P.

    1981-01-01

    Advanced Information and Decision Systems (AI-DS) is a relatively new, employee-owned company that does basic and applied research, product development, and consulting in the fields of artificial intelligence, computer science, decision analysis, operations research, control theory, estimation theory, and signal processing. AI&DS performs studies, analyses, systems design and evaluation, and software development for a variety of industrial clients and government agencies, including the Depart...

  5. Artificial intelligence and foreign policy decision-making

    OpenAIRE

    Berkoff, Russ H.

    1997-01-01

    Approved for public release; distribution is unlimited With the advent of a global information society, the US will seek to tap the potential of advanced computing capability to enhance its ability to conduct foreign policy decision making. This thesis explores the potential for improving individual and organizational decision making capabilities by means of artificial intelligence (AI). The use of AI will allow us to take advantage of the plethora of information available to obtain an edg...

  6. Artificial Intelligence Techniques Applications for Power Disturbances Classification

    OpenAIRE

    K.Manimala; Dr.K.Selvi; R.Ahila

    2008-01-01

    Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge...

  7. Synthesis and Analysis in Artificial Intelligence: The Role of Theory in Agent Implementation

    NARCIS (Netherlands)

    Raine, Roxanne B.; op den Akker, Hendrikus J.A.; Cai, Zhiqiang; Graesser, Arthur C.; McNamara, Danielle S.

    2009-01-01

    The domain of artificial intelligence (AI) progresses with extraordinary vicissitude. Whereas prior authors have divided AI into the two categories of analysis and synthesis, Raine and op den Akker distinguish between four types of AI: that of appearance, function, simulation and interpretation.

  8. Artificial Intelligence Support for Computational Chemistry

    Science.gov (United States)

    Duch, Wlodzislaw

    Possible forms of artificial intelligence (AI) support for quantum chemistry are discussed. Questions addressed include: what kind of support is desirable, what kind of support is feasible, what can we expect in the coming years. Advantages and disadvantages of current AI techniques are presented and it is argued that at present the memory-based systems are the most effective for large scale applications. Such systems may be used to predict the accuracy of calculations and to select the least expensive methods and basis sets belonging to the same accuracy class. Advantages of the Feature Space Mapping as an improvement on the memory based systems are outlined and some results obtained in classification problems given. Relevance of such classification systems to computational chemistry is illustrated with two examples showing similarity of results obtained by different methods that take electron correlation into account.

  9. Computer automation and artificial intelligence

    International Nuclear Information System (INIS)

    Hasnain, S.B.

    1992-01-01

    Rapid advances in computing, resulting from micro chip revolution has increased its application manifold particularly for computer automation. Yet the level of automation available, has limited its application to more complex and dynamic systems which require an intelligent computer control. In this paper a review of Artificial intelligence techniques used to augment automation is presented. The current sequential processing approach usually adopted in artificial intelligence has succeeded in emulating the symbolic processing part of intelligence, but the processing power required to get more elusive aspects of intelligence leads towards parallel processing. An overview of parallel processing with emphasis on transputer is also provided. A Fuzzy knowledge based controller for amination drug delivery in muscle relaxant anesthesia on transputer is described. 4 figs. (author)

  10. Distributed artificial intelligence, diversity and information literacy

    Directory of Open Access Journals (Sweden)

    Peter Kåhre

    2010-09-01

    Full Text Available My proposal is based on my doctoral dissertation On the Shoulders of AI-technology : Sociology of Knowledge and Strong Artificial Intelligence which I succesfully defended on May 29th 2009. E-published http://www.lu.se/o.o.i.s?id=12588&postid=1389611 The dissertation is concerned with Sociology’s stance in the debate on Strong Artificial Intelligence,.i.e. AI-systems that is able to shape knowledge on their own. There is a need for sociologists to realize the difference between two approaches to constructing AI systems: Symbolic AI (or Classic AI and Connectionistic AI in a distributed model – DAI. Sociological literature shows a largely critical attitude towards Symbolic AI, an attitude that is justified. The main theme of the dissertation is that DAI is not only compatible with Sociology’s approach to what is social, but also constitutes an apt model of how a social system functions. This is consolidated with help from german sociologist Niklas Luhmann’s social systems theory. A lot of sociologists criticize AI because they think that diversity is important and can only be comprehended in informal circumstances that only humans interacting together can handle. They mean that social intelligence is needed to make something out of diversity and informalism. Luhmann´s systems theory gives the opposite perspective. It tells us that it is social systems that communicate and produce new knowledge structures out of contincency. Psychological systems, i.e. humans, can only think within the circumstances the social system offer. In that way human thoughts are bound by formalism. Diversity is constructed when the social systems interact with complexity in their environments. They reduce the complexity and try to present it as meaningful diversity. Today when most of academic literature is electronically stored and is accessible through the Internet from al over the world, DAI can help social systems to observe and reduce complexity in this

  11. Artificial Intelligence and Its Importance in Education.

    Science.gov (United States)

    Tilmann, Martha J.

    Artificial intelligence, or the study of ideas that enable computers to be intelligent, is discussed in terms of what it is, what it has done, what it can do, and how it may affect the teaching of tomorrow. An extensive overview of artificial intelligence examines its goals and applications and types of artificial intelligence including (1) expert…

  12. Amplify scientific discovery with artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James; Hirsch, Hyam

    2014-10-10

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automated language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.

  13. Application of artificial intelligence to risk analysis for forested ecosystems

    Science.gov (United States)

    Daniel L. Schmoldt

    2001-01-01

    Forest ecosystems are subject to a variety of natural and anthropogenic disturbances that extract a penalty from human population values. Such value losses (undesirable effects) combined with their likelihoods of occurrence constitute risk. Assessment or prediction of risk for various events is an important aid to forest management. Artificial intelligence (AI)...

  14. Automatic food detection in egocentric images using artificial intelligence technology

    Science.gov (United States)

    Our objective was to develop an artificial intelligence (AI)-based algorithm which can automatically detect food items from images acquired by an egocentric wearable camera for dietary assessment. To study human diet and lifestyle, large sets of egocentric images were acquired using a wearable devic...

  15. Research Priorities for Robust and Beneficial Artificial Intelligence

    OpenAIRE

    Russell, Stuart; Dewey, Daniel; Tegmark, Max

    2015-01-01

    Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.

  16. A review of European applications of artificial intelligence to space

    Science.gov (United States)

    Drummond, Mark (Editor); Stewart, Helen (Editor)

    1993-01-01

    The purpose is to describe the applications of Artificial Intelligence (AI) to the European Space program that are being developed or have been developed. The results of a study sponsored by the Artificial Intelligence Research and Development program of NASA's Office of Advanced Concepts and Technology (OACT) are described. The report is divided into two sections. The first consists of site reports, which are descriptions of the AI applications seen at each place visited. The second section consists of two summaries which synthesize the information in the site reports by organizing this information in two different ways. The first organizes the material in terms of the type of application, e.g., data analysis, planning and scheduling, and procedure management. The second organizes the material in terms of the component technologies of Artificial Intelligence which the applications used, e.g., knowledge based systems, model based reasoning, procedural reasoning, etc.

  17. Applications of artificial intelligence to mission planning

    Science.gov (United States)

    Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.

    1990-01-01

    The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.

  18. Artificial intelligence, physiological genomics, and precision medicine.

    Science.gov (United States)

    Williams, Anna Marie; Liu, Yong; Regner, Kevin R; Jotterand, Fabrice; Liu, Pengyuan; Liang, Mingyu

    2018-04-01

    Big data are a major driver in the development of precision medicine. Efficient analysis methods are needed to transform big data into clinically-actionable knowledge. To accomplish this, many researchers are turning toward machine learning (ML), an approach of artificial intelligence (AI) that utilizes modern algorithms to give computers the ability to learn. Much of the effort to advance ML for precision medicine has been focused on the development and implementation of algorithms and the generation of ever larger quantities of genomic sequence data and electronic health records. However, relevance and accuracy of the data are as important as quantity of data in the advancement of ML for precision medicine. For common diseases, physiological genomic readouts in disease-applicable tissues may be an effective surrogate to measure the effect of genetic and environmental factors and their interactions that underlie disease development and progression. Disease-applicable tissue may be difficult to obtain, but there are important exceptions such as kidney needle biopsy specimens. As AI continues to advance, new analytical approaches, including those that go beyond data correlation, need to be developed and ethical issues of AI need to be addressed. Physiological genomic readouts in disease-relevant tissues, combined with advanced AI, can be a powerful approach for precision medicine for common diseases.

  19. Non-Newtonian Aspects of Artificial Intelligence

    Science.gov (United States)

    Zak, Michail

    2016-05-01

    The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.

  20. Artificial Intelligence In Automatic Target Recognizers: Technology And Timelines

    Science.gov (United States)

    Gilmore, John F.

    1984-12-01

    The recognition of targets in thermal imagery has been a problem exhaustively analyzed in its current localized dimension. This paper discusses the application of artificial intelligence (AI) technology to automatic target recognition, a concept capable of expanding current ATR efforts into a new globalized dimension. Deficiencies of current automatic target recognition systems are reviewed in terms of system shortcomings. Areas of artificial intelligence which show the most promise in improving ATR performance are analyzed, and a timeline is formed in light of how near (as well as far) term artificial intelligence applications may exist. Current research in the area of high level expert vision systems is reviewed and the possible utilization of artificial intelligence architectures to improve low level image processing functions is also discussed. Additional application areas of relevance to solving the problem of automatic target recognition utilizing both high and low level processing are also explored.

  1. Machine learning \\& artificial intelligence in the quantum domain

    OpenAIRE

    Dunjko, Vedran; Briegel, Hans J.

    2017-01-01

    Quantum information technologies, and intelligent learning systems, are both emergent technologies that will likely have a transforming impact on our society. The respective underlying fields of research -- quantum information (QI) versus machine learning (ML) and artificial intelligence (AI) -- have their own specific challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question to what extent th...

  2. Artificial and Computational Intelligence for Games on Mobile Platforms

    OpenAIRE

    Congdon, Clare Bates; Hingston, Philip; Kendall, Graham

    2013-01-01

    In this chapter, we consider the possibilities of creating new and innovative games that are targeted for mobile devices, such as smart phones and tablets, and that showcase AI (Artificial Intelligence) and CI (Computational Intelligence) approaches. Such games might take advantage of the sensors and facilities that are not available on other platforms, or might simply rely on the "app culture" to facilitate getting the games into users' hands. While these games might be profitable in themsel...

  3. Artificial intelligence in medicine: humans need not apply?

    Science.gov (United States)

    Diprose, William; Buist, Nicholas

    2016-05-06

    Artificial intelligence (AI) is a rapidly growing field with a wide range of applications. Driven by economic constraints and the potential to reduce human error, we believe that over the coming years AI will perform a significant amount of the diagnostic and treatment decision-making traditionally performed by the doctor. Humans would continue to be an important part of healthcare delivery, but in many situations, less expensive fit-for-purpose healthcare workers could be trained to 'fill the gaps' where AI are less capable. As a result, the role of the doctor as an expensive problem-solver would become redundant.

  4. Multisensor system and artificial intelligence in housing for the elderly.

    Science.gov (United States)

    Chan, M; Bocquet, H; Campo, E; Val, T; Estève, D; Pous, J

    1998-01-01

    To improve the safety of a growing proportion of elderly and disabled people in the developed countries, a multisensor system based on Artificial Intelligence (AI), Advanced Telecommunications (AT) and Information Technology (IT) has been devised and fabricated. Thus, the habits and behaviours of these populations will be recorded without disturbing their daily activities. AI will diagnose any abnormal behavior or change and the system will warn the professionals. Gerontology issues are presented together with the multisensor system, the AI-based learning and diagnosis methodology and the main functionalities.

  5. Natural language processing in psychiatry. Artificial intelligence technology and psychopathology.

    Science.gov (United States)

    Garfield, D A; Rapp, C; Evens, M

    1992-04-01

    The potential benefit of artificial intelligence (AI) technology as a tool of psychiatry has not been well defined. In this essay, the technology of natural language processing and its position with regard to the two main schools of AI is clearly outlined. Past experiments utilizing AI techniques in understanding psychopathology are reviewed. Natural language processing can automate the analysis of transcripts and can be used in modeling theories of language comprehension. In these ways, it can serve as a tool in testing psychological theories of psychopathology and can be used as an effective tool in empirical research on verbal behavior in psychopathology.

  6. Towards a nuclear industry boosted by artificial intelligence?

    International Nuclear Information System (INIS)

    Le Ngoc, B.

    2017-01-01

    Artificial intelligence (AI) is deemed as the fourth industrial revolution after the steam engine, electric power and the computer. Auto manufacturers invest a lot in AI to develop autonomous vehicles. Nuclear industry that has to deal with a huge amount of data due to the complexity of its installations may benefit from AI in terms of quick handling of complex situations, of reducing the rate of errors, of drawing adequate conclusions through the right crossing of data and of improving decision making. (A.C.)

  7. Implementation and Validation of Artificial Intelligence Techniques for Robotic Surgery

    OpenAIRE

    Aarshay Jain; Deepansh Jagotra; Vijayant Agarwal

    2014-01-01

    The primary focus of this study is implementation of Artificial Intelligence (AI) technique for developing an inverse kinematics solution for the Raven-IITM surgical research robot [1]. First, the kinematic model of the Raven-IITM robot was analysed along with the proposed analytical solution [2] for inverse kinematics problem. Next, The Artificial Neural Network (ANN) techniques was implemented. The training data for the same was careful selected by keeping manipulability constraints in mind...

  8. Coupling artificial intelligence and numerical computation for engineering design (Invited paper)

    Science.gov (United States)

    Tong, S. S.

    1986-01-01

    The possibility of combining artificial intelligence (AI) systems and numerical computation methods for engineering designs is considered. Attention is given to three possible areas of application involving fan design, controlled vortex design of turbine stage blade angles, and preliminary design of turbine cascade profiles. Among the AI techniques discussed are: knowledge-based systems; intelligent search; and pattern recognition systems. The potential cost and performance advantages of an AI-based design-generation system are discussed in detail.

  9. ARTIFICIAL INTELLIGENCE APPLICATIONS IN THE FINANCIAL SECTOR

    OpenAIRE

    Adrian Cozgarea; Gabriel Cozgarea; Andrei Stanciu

    2008-01-01

    The present paper exposes some of artificial intelligence specific technologies regarding financial sector. Through non-deterministic solutions and simple algorithms, artificial intelligence could become a base alternative for solving financial problems which require complex mathematic calculations or complex optimization.

  10. Artificial Intelligence as Structural Estimation: Economic Interpretations of Deep Blue, Bonanza, and AlphaGo

    OpenAIRE

    Igami, Mitsuru

    2017-01-01

    Artificial intelligence (AI) has achieved superhuman performance in a growing number of tasks, but understanding and explaining AI remain challenging. This paper clarifies the connections between machine-learning algorithms to develop AIs and the econometrics of dynamic structural models through the case studies of three famous game AIs. Chess-playing Deep Blue is a calibrated value function, whereas shogi-playing Bonanza is an estimated value function via Rust's (1987) nested fixed-point met...

  11. An introduction to artificial intelligence and its potential use in space systems.

    OpenAIRE

    McDonald, Gary Wayne

    1986-01-01

    Approved for public release; distribution is unlimited This thesis provides an introduction to Artificial Intelligence and Space Systems, with comments regarding their integration. The survey of Artificial Intelligence (AI) is based upon a review of its history, its philosophical development, and subcategories of its current technologies. These subcategories are Expert Systems (ES), Natural Language Processing (NLP), Computer Vision and Pattern Recognition, and Robotic...

  12. Games and Machine Learning: A Powerful Combination in an Artificial Intelligence Course

    Science.gov (United States)

    Wallace, Scott A.; McCartney, Robert; Russell, Ingrid

    2010-01-01

    Project MLeXAI [Machine Learning eXperiences in Artificial Intelligence (AI)] seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense--a simple real-time strategy game…

  13. Imagining the thinking machine: technological myths and the rise of Artificial Intelligence

    OpenAIRE

    Natale, Simone; Ballatore, Andrea

    2017-01-01

    This article discusses the role of technological myths in the development of Artificial Intelligence (AI) technologies from 1950s to the early 1970s. It shows how the rise of AI was accompanied by the construction of a powerful cultural myth: the creation of a thinking machine, which would be able to perfectly simulate the cognitive faculties of the human mind. Based on a content analysis of articles on Artificial Intelligence published in two magazines, the Scientific American and the New Sc...

  14. Hybrid Applications Of Artificial Intelligence

    Science.gov (United States)

    Borchardt, Gary C.

    1988-01-01

    STAR, Simple Tool for Automated Reasoning, is interactive, interpreted programming language for development and operation of artificial-intelligence application systems. Couples symbolic processing with compiled-language functions and data structures. Written in C language and currently available in UNIX version (NPO-16832), and VMS version (NPO-16965).

  15. Artificial Intelligence: Applications in Education.

    Science.gov (United States)

    Thorkildsen, Ron J.; And Others

    1986-01-01

    Artificial intelligence techniques are used in computer programs to search out rapidly and retrieve information from very large databases. Programing advances have also led to the development of systems that provide expert consultation (expert systems). These systems, as applied to education, are the primary emphasis of this article. (LMO)

  16. Research and applications: Artificial intelligence

    Science.gov (United States)

    Chaitin, L. J.; Duda, R. O.; Johanson, P. A.; Raphael, B.; Rosen, C. A.; Yates, R. A.

    1970-01-01

    The program is reported for developing techniques in artificial intelligence and their application to the control of mobile automatons for carrying out tasks autonomously. Visual scene analysis, short-term problem solving, and long-term problem solving are discussed along with the PDP-15 simulator, LISP-FORTRAN-MACRO interface, resolution strategies, and cost effectiveness.

  17. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  18. Artificial Intelligence in Education.

    Science.gov (United States)

    Ruyle, Kim E.

    Expert systems have made remarkable progress in areas where the knowledge of an expert can be codified and represented, and these systems have many potentially useful applications in education. Expert systems seem "intelligent" because they do not simply repeat a set of predetermined questions during a consultation session, but will have…

  19. Impact of Artificial Intelligence on Economic Theory

    OpenAIRE

    Tshilidzi Marwala

    2015-01-01

    Artificial intelligence has impacted many aspects of human life. This paper studies the impact of artificial intelligence on economic theory. In particular we study the impact of artificial intelligence on the theory of bounded rationality, efficient market hypothesis and prospect theory.

  20. Applications of artificial intelligence to reactor and plant control

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1989-01-01

    Potential improvements in plant efficiency and reliability are often cited as reasons for developing and applying artificial intelligence (AI) techniques, principally expert systems, to the control and operation of nuclear reactors. Nevertheless, there have been few such applications and then mostly at the prototype level. Therefore, if AI techniques are to contribute to process control, methods must be identified by which rule-based and analytic approaches can be merged. This hypothesis is the basic premise of this article. Presented below are 1. a brief review of the human approach towards process control, 2. a discussion of the suitability of AI methodologies for the performance of control tasks, 3. examples of AI applications to both open- and closed-loop control, 4. an enumeration of unresolved issues associated with the use of AI for control, and 5. a discussion of the possible role of expert system techniques in process control. (orig./GL)

  1. Worldwide Intelligent Systems: Approaches to Telecommunications and Network Management. Frontiers in Artificial Intelligence and Applications, Volume 24.

    Science.gov (United States)

    Liebowitz, Jay, Ed.; Prerau, David S., Ed.

    This is an international collection of 12 papers addressing artificial intelligence (AI) and knowledge technology applications in telecommunications and network management. It covers the latest and emerging AI technologies as applied to the telecommunications field. The papers are: "The Potential for Knowledge Technology in…

  2. Artificial intelligence and the future.

    Science.gov (United States)

    Clocksin, William F

    2003-08-15

    We consider some of the ideas influencing current artificial-intelligence research and outline an alternative conceptual framework that gives priority to social relationships as a key component and constructor of intelligent behaviour. The framework starts from Weizenbaum's observation that intelligence manifests itself only relative to specific social and cultural contexts. This is in contrast to a prevailing view, which sees intelligence as an abstract capability of the individual mind based on a mechanism for rational thought. The new approach is not based on the conventional idea that the mind is a rational processor of symbolic information, nor does it require the idea that thought is a kind of abstract problem solving with a semantics that is independent of its embodiment. Instead, priority is given to affective and social responses that serve to engage the whole agent in the life of the communities in which it participates. Intelligence is seen not as the deployment of capabilities for problem solving, but as constructed by the continual, ever-changing and unfinished engagement with the social group within the environment. The construction of the identity of the intelligent agent involves the appropriation or 'taking up' of positions within the conversations and narratives in which it participates. Thus, the new approach argues that the intelligent agent is shaped by the meaning ascribed to experience, by its situation in the social matrix, and by practices of self and of relationship into which intelligent life is recruited. This has implications for the technology of the future, as, for example, classic artificial intelligence models such as goal-directed problem solving are seen as special cases of narrative practices instead of as ontological foundations.

  3. How to Improve Artificial Intelligence through Web

    OpenAIRE

    Adrian Lupasc

    2005-01-01

    Intelligent agents, intelligent software applications and artificial intelligent applications from artificial intelligence service providers may make their way onto the Web in greater number as adaptive software, dynamic programming languages and Learning Algorithms are introduced into Web Services. The evolution of Web architecture may allow intelligent applications to run directly on the Web by introducing XML, RDF and logic layer. The Intelligent Wireless Web’s significant potential for ra...

  4. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  5. Implementing embedded artificial intelligence rules within algorithmic programming languages

    Science.gov (United States)

    Feyock, Stefan

    1988-01-01

    Most integrations of artificial intelligence (AI) capabilities with non-AI (usually FORTRAN-based) application programs require the latter to execute separately to run as a subprogram or, at best, as a coroutine, of the AI system. In many cases, this organization is unacceptable; instead, the requirement is for an AI facility that runs in embedded mode; i.e., is called as subprogram by the application program. The design and implementation of a Prolog-based AI capability that can be invoked in embedded mode are described. The significance of this system is twofold: Provision of Prolog-based symbol-manipulation and deduction facilities makes a powerful symbolic reasoning mechanism available to applications programs written in non-AI languages. The power of the deductive and non-procedural descriptive capabilities of Prolog, which allow the user to describe the problem to be solved, rather than the solution, is to a large extent vitiated by the absence of the standard control structures provided by other languages. Embedding invocations of Prolog rule bases in programs written in non-AI languages makes it possible to put Prolog calls inside DO loops and similar control constructs. The resulting merger of non-AI and AI languages thus results in a symbiotic system in which the advantages of both programming systems are retained, and their deficiencies largely remedied.

  6. Experiments with microcomputer-based artificial intelligence environments

    Science.gov (United States)

    Summers, E.G.; MacDonald, R.A.

    1988-01-01

    The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.

  7. Clinical Note Creation, Binning, and Artificial Intelligence.

    Science.gov (United States)

    Deliberato, Rodrigo Octávio; Celi, Leo Anthony; Stone, David J

    2017-08-03

    The creation of medical notes in software applications poses an intrinsic problem in workflow as the technology inherently intervenes in the processes of collecting and assembling information, as well as the production of a data-driven note that meets both individual and healthcare system requirements. In addition, the note writing applications in currently available electronic health records (EHRs) do not function to support decision making to any substantial degree. We suggest that artificial intelligence (AI) could be utilized to facilitate the workflows of the data collection and assembly processes, as well as to support the development of personalized, yet data-driven assessments and plans. ©Rodrigo Octávio Deliberato, Leo Anthony Celi, David J Stone. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.08.2017.

  8. An artificial intelligence approach towards disturbance analysis

    International Nuclear Information System (INIS)

    Fiedler, U.; Lindner, A.; Baldeweg, F.; Klebau, J.

    1986-01-01

    Scale and degree of sophistication of technological plants, e.g. nuclear power plants, have been essentially increased during the last decades. Conventional disturbance analysis systems have proved to work successfully in well-known situations. But in cases of emergencies, the operator needs more advanced assistance in realizing diagnosis and therapy control. The significance of introducing artificial intelligence (AI) methods in nuclear power technology is emphasized. Main features of the on-line disturbance analysis system SAAP-2 are reported about. It is being developed for application to nuclear power plants. Problems related to man-machine communication will be gone into more detail, because their solution will influence end-user acceptance considerably. (author)

  9. The application and development of artificial intelligence in smart clothing

    Science.gov (United States)

    Wei, Xiong

    2018-03-01

    This paper mainly introduces the application of artificial intelligence in intelligent clothing. Starting from the development trend of artificial intelligence, analysis the prospects for development in smart clothing with artificial intelligence. Summarize the design key of artificial intelligence in smart clothing. Analysis the feasibility of artificial intelligence in smart clothing.

  10. Anesthesiology, automation, and artificial intelligence.

    Science.gov (United States)

    Alexander, John C; Joshi, Girish P

    2018-01-01

    There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized.

  11. Important Themas in Artificial Intelligence

    OpenAIRE

    Šudoma, Petr

    2013-01-01

    The paper studies description logics as a method of field of artificial intelligence, describes history of knowledge representation as series of events leading to founding of description logics. Furthermore the paper compares description logics with their predecessor, the frame systems. Syntax, semantics and description logics naming convention is also presented and algorithms solving common knowledge representation tasks with usage of description logics are described. Paper compares computat...

  12. Automated Scheduling Via Artificial Intelligence

    Science.gov (United States)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  13. Artificial intelligence and computer vision

    CERN Document Server

    Li, Yujie

    2017-01-01

    This edited book presents essential findings in the research fields of artificial intelligence and computer vision, with a primary focus on new research ideas and results for mathematical problems involved in computer vision systems. The book provides an international forum for researchers to summarize the most recent developments and ideas in the field, with a special emphasis on the technical and observational results obtained in the past few years.

  14. Viewpoint: Artificial Intelligence and Labour

    OpenAIRE

    Samothrakis, Spyridon

    2018-01-01

    The welfare of modern societies has been intrinsically linked to wage labour. With some exceptions, the modern human has to sell her labour-power to be able reproduce biologically and socially. Thus, a lingering fear of technological unemployment features predominately as a theme among Artificial Intelligence researchers. In this short paper we show that, if past trends are anything to go by, this fear is irrational. On the contrary, we argue that the main problem humanity will be facing is t...

  15. Intelligence Unleashed: An argument for AI in Education

    OpenAIRE

    Luckin, R.; Holmes, W.

    2016-01-01

    This paper on artificial intelligence in education (AIEd) has two aims. The first: to explain to a non-specialist, interested, reader what AIEd is: its goals, how it is built, and how it works. The second: to set out the argument for what AIEd can offer teaching and learning, both now and in the future, with an eye towards improving learning and life outcomes for all. Computer systems that are artificially intelligent interact with the world using capabilities (such as speech recognition) and...

  16. Artificial Intelligence Research Branch future plans

    Science.gov (United States)

    Stewart, Helen (Editor)

    1992-01-01

    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems.

  17. Evolution Engines and Artificial Intelligence

    Science.gov (United States)

    Hemker, Andreas; Becks, Karl-Heinz

    In the last years artificial intelligence has achieved great successes, mainly in the field of expert systems and neural networks. Nevertheless the road to truly intelligent systems is still obscured. Artificial intelligence systems with a broad range of cognitive abilities are not within sight. The limited competence of such systems (brittleness) is identified as a consequence of the top-down design process. The evolution principle of nature on the other hand shows an alternative and elegant way to build intelligent systems. We propose to take an evolution engine as the driving force for the bottom-up development of knowledge bases and for the optimization of the problem-solving process. A novel data analysis system for the high energy physics experiment DELPHI at CERN shows the practical relevance of this idea. The system is able to reconstruct the physical processes after the collision of particles by making use of the underlying standard model of elementary particle physics. The evolution engine acts as a global controller of a population of inference engines working on the reconstruction task. By implementing the system on the Connection Machine (Model CM-2) we use the full advantage of the inherent parallelization potential of the evolutionary approach.

  18. Artificial Intelligence--Applications in Education.

    Science.gov (United States)

    Poirot, James L.; Norris, Cathleen A.

    1987-01-01

    This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…

  19. Artificial Intelligence Is for Real: Undergraduate Students Should Know about It.

    Science.gov (United States)

    Liebowitz, Jay

    1988-01-01

    Discussion of the possibilities of introducing artificial intelligence (AI) into the undergraduate curriculum highlights the introduction of AI in an introduction to information processing course for business students at George Washington University. Topics discussed include robotics, expert systems prototyping in class, and the interdisciplinary…

  20. Exploiting Artificial Intelligence To Enhance Training: A Short- and Medium-Term Perspective.

    Science.gov (United States)

    Cumming, Geoff

    This paper is an introductory discussion of industrial training, artificial intelligence (AI), and AI applications in training, prepared in the context of the United Kingdom Training Commission (TC) program. Following an outline of the activities and aims of the program, individual sections describe perspectives on: (1) training needs, including…

  1. Applications of artificial intelligence systems in the analysis of epidemiological data.

    Science.gov (United States)

    Flouris, Andreas D; Duffy, Jack

    2006-01-01

    A brief review of the germane literature suggests that the use of artificial intelligence (AI) statistical algorithms in epidemiology has been limited. We discuss the advantages and disadvantages of using AI systems in large-scale sets of epidemiological data to extract inherent, formerly unidentified, and potentially valuable patterns that human-driven deductive models may miss.

  2. Survey of Artificial Intelligence and Expert Systems in Library and Information Science Literature.

    Science.gov (United States)

    Hsieh, Cynthia C.; Hall, Wendy

    1989-01-01

    Examines the definition and history of artificial intelligence (AI) and investigates the body of literature on AI found in "Library Literature" and "Library and Information Science Abstracts." The results reported include the number of articles by year and per journal, and the percentage of articles dealing with library…

  3. Artificial Intelligence, Expert Systems, Natural Language Interfaces, Knowledge Engineering and the Librarian.

    Science.gov (United States)

    Davies, Jim

    This paper begins by examining concepts of artificial intelligence (AI) and discusses various definitions of the concept that have been suggested in the literature. The nesting relationship of expert systems within the broader framework of AI is described, and expert systems are characterized as knowledge-based systems (KBS) which attempt to solve…

  4. Artificial Intelligence Needs More Emphasis on Basic Research: President's Quarterly Message

    OpenAIRE

    McCarthy, John

    1983-01-01

    Too few people are doing basic research in AI relative to the number working on applications. The ratio of basic/applied is less in AI than in the older sciences and than in computer science generally. This is unfortunate, because reaching human level artificial intelligence will require fundamental conceptual advances.

  5. Artificial Intelligence and Expert Systems Research and Their Possible Impact on Information Science.

    Science.gov (United States)

    Borko, Harold

    1985-01-01

    Defines artificial intelligence (AI) and expert systems; describes library applications utilizing AI to automate creation of document representations, request formulations, and design and modify search strategies for information retrieval systems; discusses expert system development for information services; and reviews impact of these…

  6. Artificial intelligence as a reflection of reality in the twenty-first century

    Directory of Open Access Journals (Sweden)

    Gusev S. S.

    2016-03-01

    Full Text Available the article discusses artificial intelligence (AI at the present stage of development, as a way of presenting and understanding AI as the mechanisms of computers. Features a large bunch of some algorithmic procedures for the solution by computer of a specific task, an example of which can serve as an attempt of modeling of biological neural networks.

  7. Artificial intelligence and the space station software support environment

    Science.gov (United States)

    Marlowe, Gilbert

    1986-01-01

    In a software system the size of the Space Station Software Support Environment (SSE), no one software development or implementation methodology is presently powerful enough to provide safe, reliable, maintainable, cost effective real time or near real time software. In an environment that must survive one of the most harsh and long life times, software must be produced that will perform as predicted, from the first time it is executed to the last. Many of the software challenges that will be faced will require strategies borrowed from Artificial Intelligence (AI). AI is the only development area mentioned as an example of a legitimate reason for a waiver from the overall requirement to use the Ada programming language for software development. The limits are defined of the applicability of the Ada language Ada Programming Support Environment (of which the SSE is a special case), and software engineering to AI solutions by describing a scenario that involves many facets of AI methodologies.

  8. Report on the First Conference on Artificial General Intelligence (AGI-08)

    OpenAIRE

    de Garis, Hugo Roland; Xiamen University; Goertzel, Ben; Novamente LLC

    2009-01-01

    The First Conference on Artificial General Intelligence (AGI-08) was held on March 1-3, 2008, at the University of Memphis. The overall goal of the conference was to work toward a common understanding of the most promising paths toward creating AI systems with general intelligence at the human level and beyond, and to share interim results and ideas achieved by researchers actively working toward powerful artificial general intelligence.

  9. Tightly coupled simulation of nuclear reactor transients with artificial intelligence

    International Nuclear Information System (INIS)

    Makowitz, H.; Ragheb, M.; Laats, E.T.; Bray, M.A.

    1985-01-01

    The authors' current efforts are directed toward exploring new avenues of research in simulation of nuclear reactor kinetics transients with artificial intelligence (AI). Being examined are advanced graphics systems such as the Nuclear Plant Analyzer designed to run in parallel with the RELAP5 code, faster than real-time best-estimate simulations, the utilization of the multi-CPU super computers, and simulation as knowledge by attempting to develop new assessment methodologies for artificial intelligence systems and their associated interfaces. This new and fertile area of research should be viewed by the educational and university community as an indication of the future possibilities for AI developments in a number of academic and engineering disciplines

  10. Fourth Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.

  11. Future applications of artificial intelligence to Mission Control Centers

    Science.gov (United States)

    Friedland, Peter

    1991-01-01

    Future applications of artificial intelligence to Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: basic objectives of the NASA-wide AI program; inhouse research program; constraint-based scheduling; learning and performance improvement for scheduling; GEMPLAN multi-agent planner; planning, scheduling, and control; Bayesian learning; efficient learning algorithms; ICARUS (an integrated architecture for learning); design knowledge acquisition and retention; computer-integrated documentation; and some speculation on future applications.

  12. Artificial Intelligence in Video Games: Towards a Unified Framework

    OpenAIRE

    Safadi, Firas

    2015-01-01

    The work presented in this dissertation revolves around the problem of designing artificial intelligence (AI) for video games. This problem becomes increasingly challenging as video games grow in complexity. With modern video games frequently featuring sophisticated and realistic environments, the need for smart and comprehensive agents that understand the various aspects of these environments is pressing. Although machine learning techniques are being successfully applied in a multitude of d...

  13. How Artificial Intelligence May Be Applied in Real World Situations

    OpenAIRE

    Michalewicz , Zbigniew

    2010-01-01

    International audience; In the modern information era, managers must recognize the competitive opportunities represented by decision-support tools. New family of such systems, based on recent advances in Artificial Intelligence, combine prediction and optimization techniques to assist decision makers in complex, rapidly changing environments. These systems address the fundamental questions: What is likely to happen in the future? and what is the best course of action? These modern AI systems ...

  14. Reviewing the development of an artificial intelligence based risk program

    International Nuclear Information System (INIS)

    Dixon, B.W.; Hinton, M.F.

    1985-01-01

    A successful application of nonconventional programming methods has been achieved in computer-assisted probabilistic risk assessment (PRA). The event tree sequence importance calculator, SQUIMP, provides for prompted data entry, generic expansion, on-line pruning, boolean reductions, and importance factor selection. SQUIMP employs constructs typically found in artificial intelligence (AI) programs. The development history of SQUIMP is outlined and its internal structure described as background for a discussion on the applicability of symbolic programming methods in PRA

  15. Readings in artificial intelligence and software engineering

    CERN Document Server

    Rich, Charles

    1986-01-01

    Readings in Artificial Intelligence and Software Engineering covers the main techniques and application of artificial intelligence and software engineering. The ultimate goal of artificial intelligence applied to software engineering is automatic programming. Automatic programming would allow a user to simply say what is wanted and have a program produced completely automatically. This book is organized into 11 parts encompassing 34 chapters that specifically tackle the topics of deductive synthesis, program transformations, program verification, and programming tutors. The opening parts p

  16. Artificial intelligence and engineering curricula - are changes needed?

    International Nuclear Information System (INIS)

    Jenkins, J.P.

    1988-01-01

    The purpose of this paper is to identify the expected impact of artificial intelligence (AI) on curricula and training courses. From this examination, new elements are proposed for the academic preparation and training of engineers who will evaluate and use these systems and capabilities. Artificial intelligence, from an operational viewpoint, begins with a set of rules governing the operation of logic, implemented via computer software and userware. These systems apply logic and experience to handling problems in an intelligent approach, especially when the number of alternatives to problem solution is beyond the scope of the human user. Usually, AI applications take the form of expert systems. An expert system embodies in the computer the knowledge-based component of an expert, such as domain knowledge and reasoning techniques, in such a form that the system can offer intelligent advice and, on demand, justify its own line of reasoning. Two languages predominate, LISP and Prolog. The AI user may interface with the knowledge base via one of these languages or by means of menu displays, cursor selections, or other conventional user interface methods

  17. Innovative applications of artificial intelligence

    Science.gov (United States)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  18. Artificial intelligence for Space Station automation: Crew safety, productivity, autonomy, augmented capability

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Geldberg, J.

    1986-01-01

    Artificial intelligence (AI) R&D projects for the successful and efficient operation of the Space Station are described. The book explores the most advanced AI-based technologies, reviews the results of concept design studies to determine required AI capabilities, details demonstrations that would indicate the existence of these capabilities, and develops an R&D plan leading to such demonstrations. Particular attention is given to teleoperation and robotics, sensors, expert systems, computers, planning, and man-machine interface.

  19. Advanced Artificial Intelligence Technology Testbed

    Science.gov (United States)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  20. Artificial intelligence methods for diagnostic

    International Nuclear Information System (INIS)

    Dourgnon-Hanoune, A.; Porcheron, M.; Ricard, B.

    1996-01-01

    To assist in diagnosis of its nuclear power plants, the Research and Development Division of Electricite de France has been developing skills in Artificial Intelligence for about a decade. Different diagnostic expert systems have been designed. Among them, SILEX for control rods cabinet troubleshooting, DIVA for turbine generator diagnosis, DIAPO for reactor coolant pump diagnosis. This know how in expert knowledge modeling and acquisition is direct result of experience gained during developments and of a more general reflection on knowledge based system development. We have been able to reuse this results for other developments such as a guide for auxiliary rotating machines diagnosis. (authors)

  1. Artificial intelligence techniques for sizing photovoltaic systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [Department of Electronics, Faculty of Science Engineering, LAMEL Laboratory, Jijel University, P.O. Box 98, Oulad Aissa, Jijel 18000 (Algeria); Kalogirou, S.A. [Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O. Box 50329, Limassol 3603 (Cyprus); Hontoria, L. [Grupo Investigacion y Desarrollo en Energia Solar y Automatica, Dpto. de Electronica, E.P.S. Jaen, Universidad de Jaen, Avda., Madrid, 35, 23071 Jaen (Spain); Shaari, S. [Faculty of Applied Sciences, Universiti Teknologi MARA 40450 Shah Alam, Selangor (Malaysia)

    2009-02-15

    Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. AI-techniques have the following features: can learn from examples; are fault tolerant in the sense that they are able to handle noisy and incomplete data; are able to deal with non-linear problems; and once trained can perform prediction and generalization at high speed. AI-based systems are being developed and deployed worldwide in a myriad of applications, mainly because of their symbolic reasoning, flexibility and explanation capabilities. AI have been used and applied in different sectors, such as engineering, economics, medicine, military, marine, etc. They have also been applied for modeling, identification, optimization, prediction, forecasting, and control of complex systems. The main objective of this paper is to present an overview of the AI-techniques for sizing photovoltaic (PV) systems: stand-alone PVs, grid-connected PV systems, PV-wind hybrid systems, etc. Published literature presented in this paper show the potential of AI as a design tool for the optimal sizing of PV systems. Additionally, the advantage of using an AI-based sizing of PV systems is that it provides good optimization, especially in isolated areas, where the weather data are not always available. (author)

  2. Artificial intelligence in a mission operations and satellite test environment

    Science.gov (United States)

    Busse, Carl

    1988-01-01

    A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.

  3. Automatic detection of mycobacterium tuberculosis using artificial intelligence

    Science.gov (United States)

    Xiong, Yan; Ba, Xiaojun; Hou, Ao; Zhang, Kaiwen; Chen, Longsen

    2018-01-01

    Background Tuberculosis (TB) is a global issue that seriously endangers public health. Pathology is one of the most important means for diagnosing TB in clinical practice. To confirm TB as the diagnosis, finding specially stained TB bacilli under a microscope is critical. Because of the very small size and number of bacilli, it is a time-consuming and strenuous work even for experienced pathologists, and this strenuosity often leads to low detection rate and false diagnoses. We investigated the clinical efficacy of an artificial intelligence (AI)-assisted detection method for acid-fast stained TB bacillus. Methods We built a convolutional neural networks (CNN) model, named tuberculosis AI (TB-AI), specifically to recognize TB bacillus. The training set contains 45 samples, including 30 positive cases and 15 negative cases, where bacilli are labeled by human pathologists. Upon training the neural network model, 201 samples (108 positive cases and 93 negative cases) were collected as test set and used to examine TB-AI. We compared the diagnosis of TB-AI to the ground truth result provided by human pathologists, analyzed inconsistencies between AI and human, and adjusted the protocol accordingly. Trained TB-AI were run on the test data twice. Results Examined against the double confirmed diagnosis by pathologists both via microscopes and digital slides, TB-AI achieved 97.94% sensitivity and 83.65% specificity. Conclusions TB-AI can be a promising support system to detect stained TB bacilli and help make clinical decisions. It holds the potential to relieve the heavy workload of pathologists and decrease chances of missed diagnosis. Samples labeled as positive by TB-AI must be confirmed by pathologists, and those labeled as negative should be reviewed to make sure that the digital slides are qualified. PMID:29707349

  4. Automatic detection of mycobacterium tuberculosis using artificial intelligence.

    Science.gov (United States)

    Xiong, Yan; Ba, Xiaojun; Hou, Ao; Zhang, Kaiwen; Chen, Longsen; Li, Ting

    2018-03-01

    Tuberculosis (TB) is a global issue that seriously endangers public health. Pathology is one of the most important means for diagnosing TB in clinical practice. To confirm TB as the diagnosis, finding specially stained TB bacilli under a microscope is critical. Because of the very small size and number of bacilli, it is a time-consuming and strenuous work even for experienced pathologists, and this strenuosity often leads to low detection rate and false diagnoses. We investigated the clinical efficacy of an artificial intelligence (AI)-assisted detection method for acid-fast stained TB bacillus. We built a convolutional neural networks (CNN) model, named tuberculosis AI (TB-AI), specifically to recognize TB bacillus. The training set contains 45 samples, including 30 positive cases and 15 negative cases, where bacilli are labeled by human pathologists. Upon training the neural network model, 201 samples (108 positive cases and 93 negative cases) were collected as test set and used to examine TB-AI. We compared the diagnosis of TB-AI to the ground truth result provided by human pathologists, analyzed inconsistencies between AI and human, and adjusted the protocol accordingly. Trained TB-AI were run on the test data twice. Examined against the double confirmed diagnosis by pathologists both via microscopes and digital slides, TB-AI achieved 97.94% sensitivity and 83.65% specificity. TB-AI can be a promising support system to detect stained TB bacilli and help make clinical decisions. It holds the potential to relieve the heavy workload of pathologists and decrease chances of missed diagnosis. Samples labeled as positive by TB-AI must be confirmed by pathologists, and those labeled as negative should be reviewed to make sure that the digital slides are qualified.

  5. Contribution of artificial intelligence to operation

    International Nuclear Information System (INIS)

    Malvache, P.; Mourlevat, J.L.

    1993-01-01

    Artificial Intelligence techniques are already used in nuclear plants for assistance to operation: synthesis from numerous information sources may be then derived, based on expert knowledge. Artificial intelligence may be used also for quality and reliability assessment of software-based control-command systems. Various expert systems developed by CEA, EDF and Framatome are presented

  6. Infrastructural intelligence: Contemporary entanglements between neuroscience and AI.

    Science.gov (United States)

    Bruder, Johannes

    2017-01-01

    In this chapter, I reflect on contemporary entanglements between artificial intelligence and the neurosciences by tracing the development of Google's recent DeepMind algorithms back to their roots in neuroscientific studies of episodic memory and imagination. Google promotes a new form of "infrastructural intelligence," which excels by constantly reassessing its cognitive architecture in exchange with a cloud of data that surrounds it, and exhibits putatively human capacities such as intuition. I argue that such (re)alignments of biological and artificial intelligence have been enabled by a paradigmatic infrastructuralization of the brain in contemporary neuroscience. This infrastructuralization is based in methodologies that epistemically liken the brain to complex systems of an entirely different scale (i.e., global logistics) and has given rise to diverse research efforts that target the neuronal infrastructures of higher cognitive functions such as empathy and creativity. What is at stake in this process is no less than the shape of brains to come and a revised understanding of the intelligent and creative social subject. © 2017 Elsevier B.V. All rights reserved.

  7. A DISTRIBUTED SMART HOME ARTIFICIAL INTELLIGENCE SYSTEM

    DEFF Research Database (Denmark)

    Lynggaard, Per

    2013-01-01

    A majority of the research performed today explore artificial intelligence in smart homes by using a centralized approach where a smart home server performs the necessary calculations. This approach has some disadvantages that can be overcome by shifting focus to a distributed approach where...... the artificial intelligence system is implemented as distributed as agents running parts of the artificial intelligence system. This paper presents a distributed smart home architecture that distributes artificial intelligence in smart homes and discusses the pros and cons of such a concept. The presented...... distributed model is a layered model. Each layer offers a different complexity level of the embedded distributed artificial intelligence. At the lowest layer smart objects exists, they are small cheap embedded microcontroller based smart devices that are powered by batteries. The next layer contains a more...

  8. Artificial Intelligence Methodologies and Their Application to Diabetes.

    Science.gov (United States)

    Rigla, Mercedes; García-Sáez, Gema; Pons, Belén; Hernando, Maria Elena

    2018-03-01

    In the past decade diabetes management has been transformed by the addition of continuous glucose monitoring and insulin pump data. More recently, a wide variety of functions and physiologic variables, such as heart rate, hours of sleep, number of steps walked and movement, have been available through wristbands or watches. New data, hydration, geolocation, and barometric pressure, among others, will be incorporated in the future. All these parameters, when analyzed, can be helpful for patients and doctors' decision support. Similar new scenarios have appeared in most medical fields, in such a way that in recent years, there has been an increased interest in the development and application of the methods of artificial intelligence (AI) to decision support and knowledge acquisition. Multidisciplinary research teams integrated by computer engineers and doctors are more and more frequent, mirroring the need of cooperation in this new topic. AI, as a science, can be defined as the ability to make computers do things that would require intelligence if done by humans. Increasingly, diabetes-related journals have been incorporating publications focused on AI tools applied to diabetes. In summary, diabetes management scenarios have suffered a deep transformation that forces diabetologists to incorporate skills from new areas. This recently needed knowledge includes AI tools, which have become part of the diabetes health care. The aim of this article is to explain in an easy and plane way the most used AI methodologies to promote the implication of health care providers-doctors and nurses-in this field.

  9. Approaching Artificial Intelligence for Games – the Turing Test revisited

    Directory of Open Access Journals (Sweden)

    Jenny Eriksson Lundström

    2008-07-01

    Full Text Available Today's powerful computers have increasingly more resources available, which can be used for incorporating more sophisticated AI into home applications like computer games. The perhaps obvious way of using AI to enhance the experience of a game is to make the player perceive the computer-controlled entities as intelligent. The traditional idea of how to determine whether a machine can pass as intelligent is the Turing Test. In this paper we show that it is possible and useful to conduct a test adhering to the intention of the original Turing test. We present an empirical study exploring human discrimination of artificial intelligence from the behaviour of a computer-controlled entity used in its specific context and how the behaviour responds to the user's expectations. In our empirical study the context is a real-time strategy computer game and the purpose of the AI is merely to pass as an acceptable opponent. We discuss the results of the empirical study and its implications for AI in computer applications.

  10. Application of artificial intelligence to pharmacy and medicine.

    Science.gov (United States)

    Dasta, J F

    1992-04-01

    Artificial intelligence (AI) is a branch of computer science dealing with solving problems using symbolic programming. It has evolved into a problem solving science with applications in business, engineering, and health care. One application of AI is expert system development. An expert system consists of a knowledge base and inference engine, coupled with a user interface. A crucial aspect of expert system development is knowledge acquisition and implementing computable ways to solve problems. There have been several expert systems developed in medicine to assist physicians with medical diagnosis. Recently, several programs focusing on drug therapy have been described. They provide guidance on drug interactions, drug therapy monitoring, and drug formulary selection. There are many aspects of pharmacy that AI can have an impact on and the reader is challenged to consider these possibilities because they may some day become a reality in pharmacy.

  11. Enabling Autonomous Space Mission Operations with Artificial Intelligence

    Science.gov (United States)

    Frank, Jeremy

    2017-01-01

    For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.

  12. Preference Handling for Artificial Intelligence

    OpenAIRE

    Goldsmith, Judy; University of Kentucky; Junker, Ulrich; ILOG

    2009-01-01

    This article explains the benefits of preferences for AI systems and draws a picture of current AI research on preference handling. It thus provides an introduction to the topics covered by this special issue on preference handling.

  13. Artificial intelligence in sports biomechanics: new dawn or false hope?

    Science.gov (United States)

    Bartlett, Roger

    2006-12-15

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.

  14. Artificial Intelligence Research at Rutgers

    OpenAIRE

    Rockmore, A. J.; Mitchell, Tom M.

    1982-01-01

    Research by members of the Department of Computer Science at Rutgers, and by their collaborators, is organized within the Laboratory for Computer Science research(LCSR). AI and AI-related applications are the major area of research within LCSR, with about forty people-faculty, staff and graduate students-currently involved in various aspects of AI research.

  15. Research and applications: Artificial intelligence

    Science.gov (United States)

    Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.

    1971-01-01

    A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.

  16. Artificial intelligence and process management

    International Nuclear Information System (INIS)

    Epton, J.B.A.

    1989-01-01

    Techniques derived from work in artificial intelligence over the past few decades are beginning to change the approach in applying computers to process management. To explore this new approach and gain real practical experience of its potential a programme of experimental applications was initiated by Sira in collaboration with the process industry. This programme encompassed a family of experimental applications ranging from process monitoring, through supervisory control and troubleshooting to planning and scheduling. The experience gained has led to a number of conclusions regarding the present level of maturity of the technology, the potential for further developments and the measures required to secure the levels of system integrity necessary in on-line applications to critical processes. (author)

  17. Artificial intelligence in molecular biology: a review and assessment.

    Science.gov (United States)

    Rawlings, C J; Fox, J P

    1994-06-29

    Over the past ten years, molecular biologists and computer scientists have experimented with various computational methods developed in artificial intelligence (AI). AI research has yielded a number of novel technologies, which are typified by an emphasis on symbolic (non-numerical) programming methods aimed at problems which are not amenable to classical algorithmic solutions. Prominent examples include knowledge-based and expert systems, qualitative simulation and artificial neural networks and other automated learning techniques. These methods have been applied to problems in data analysis, construction of advanced databases and modelling of biological systems. Practical results are now being obtained, notably in the recognition of active genes in genomic sequences, the assembly of physical and genetic maps and protein structure prediction. This paper outlines the principal methods, surveys the findings to date, and identifies the promising trends and current limitations.

  18. General general game AI

    OpenAIRE

    Togelius, Julian; Yannakakis, Georgios N.; 2016 IEEE Conference on Computational Intelligence and Games (CIG)

    2016-01-01

    Arguably the grand goal of artificial intelligence research is to produce machines with general intelligence: the capacity to solve multiple problems, not just one. Artificial intelligence (AI) has investigated the general intelligence capacity of machines within the domain of games more than any other domain given the ideal properties of games for that purpose: controlled yet interesting and computationally hard problems. This line of research, however, has so far focuse...

  19. Philosophy and Theory of Artificial Intelligence

    CERN Document Server

    2013-01-01

    Can we make machines that think and act like humans or other natural intelligent agents? The answer to this question depends on how we see ourselves and how we see the machines in question. Classical AI and cognitive science had claimed that cognition is computation, and can thus be reproduced on other computing machines, possibly surpassing the abilities of human intelligence. This consensus has now come under threat and the agenda for the philosophy and theory of AI must be set anew, re-defining the relation between AI and Cognitive Science. We can re-claim the original vision of general AI from the technical AI disciplines; we can reject classical cognitive science and replace it with a new theory (e.g. embodied); or we can try to find new ways to approach AI, for example from neuroscience or from systems theory. To do this, we must go back to the basic questions on computing, cognition and ethics for AI. The 30 papers in this volume provide cutting-edge work from leading researchers that define where we s...

  20. Artificial intelligence in drug combination therapy.

    Science.gov (United States)

    Tsigelny, Igor F

    2018-02-09

    Currently, the development of medicines for complex diseases requires the development of combination drug therapies. It is necessary because in many cases, one drug cannot target all necessary points of intervention. For example, in cancer therapy, a physician often meets a patient having a genomic profile including more than five molecular aberrations. Drug combination therapy has been an area of interest for a while, for example the classical work of Loewe devoted to the synergism of drugs was published in 1928-and it is still used in calculations for optimal drug combinations. More recently, over the past several years, there has been an explosion in the available information related to the properties of drugs and the biomedical parameters of patients. For the drugs, hundreds of 2D and 3D molecular descriptors for medicines are now available, while for patients, large data sets related to genetic/proteomic and metabolomics profiles of the patients are now available, as well as the more traditional data relating to the histology, history of treatments, pretreatment state of the organism, etc. Moreover, during disease progression, the genetic profile can change. Thus, the ability to optimize drug combinations for each patient is rapidly moving beyond the comprehension and capabilities of an individual physician. This is the reason, that biomedical informatics methods have been developed and one of the more promising directions in this field is the application of artificial intelligence (AI). In this review, we discuss several AI methods that have been successfully implemented in several instances of combination drug therapy from HIV, hypertension, infectious diseases to cancer. The data clearly show that the combination of rule-based expert systems with machine learning algorithms may be promising direction in this field. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Artificial intelligence in nuclear engineering: developments, lesson learned and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Da [The Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium)]. E-mail: druan@sckcen.be

    2005-07-01

    Full text of publication follows: In this lecture, an overview on artificial intelligence (AI) from control to decision making in nuclear engineering will be given mainly based on the 10 years progress of the FLINS forum (Fuzzy Logic and Intelligent Technology in Nuclear Science). Some FLINS concrete examples on nuclear reactor operation, nuclear safeguards information management, and cost estimation under uncertainty for a large nuclear project will be illustrated for the potential use of AI in nuclear engineering. Recommendations and future research directions on AI in nuclear engineering will be suggested from a practical point of view. (author)

  2. Artificial intelligence in nuclear engineering: developments, lesson learned and future directions

    International Nuclear Information System (INIS)

    Ruan, Da

    2005-01-01

    Full text of publication follows: In this lecture, an overview on artificial intelligence (AI) from control to decision making in nuclear engineering will be given mainly based on the 10 years progress of the FLINS forum (Fuzzy Logic and Intelligent Technology in Nuclear Science). Some FLINS concrete examples on nuclear reactor operation, nuclear safeguards information management, and cost estimation under uncertainty for a large nuclear project will be illustrated for the potential use of AI in nuclear engineering. Recommendations and future research directions on AI in nuclear engineering will be suggested from a practical point of view. (author)

  3. Solving Complex Logistics Problems with Multi-Artificial Intelligent System

    Directory of Open Access Journals (Sweden)

    Y.K. Tse

    2009-10-01

    Full Text Available The economy, which has become more information intensive, more global and more technologically dependent, is undergoing dramatic changes. The role of logistics is also becoming more and more important. In logistics, the objective of service providers is to fulfill all customers? demands while adapting to the dynamic changes of logistics networks so as to achieve a higher degree of customer satisfaction and therefore a higher return on investment. In order to provide high quality service, knowledge and information sharing among departments becomes a must in this fast changing market environment. In particular, artificial intelligence (AI technologies have achieved significant attention for enhancing the agility of supply chain management, as well as logistics operations. In this research, a multi-artificial intelligence system, named Integrated Intelligent Logistics System (IILS is proposed. The objective of IILS is to provide quality logistics solutions to achieve high levels of service performance in the logistics industry. The new feature of this agile intelligence system is characterized by the incorporation of intelligence modules through the capabilities of the case-based reasoning, multi-agent, fuzzy logic and artificial neural networks, achieving the optimization of the performance of organizations.

  4. How People Interact with Technology based on Natural and Artificial Intelligence

    OpenAIRE

    Vasile MAZILESCU

    2017-01-01

    This paper aims to analyse the different forms of intelligence within organizations in a systemic and inclusive vision, in order to design an integrated environment based on Artificial Intelligence (AI) and Collective Intelligence (CI). This way we effectively shift the classical approaches of connecting people with people using collaboration tools (which allow people to work together, such as videoconferencing or email, groupware in virtual space, forums, workflow), of connecting people with...

  5. Narrative theories as computational models: reader-oriented theory and artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, P.

    1983-12-01

    In view of the rapid development of reader-oriented theory and its interest in dynamic models of narrative, the author speculates in a serious way about what such models might look like in computational terms. Researchers in artificial intelligence (AI) have already begun to develop models of story understanding as the emphasis in ai research has shifted toward natural language understanding and as ai has allied itself with cognitive psychology and linguistics to become cognitive science. Research in ai and in narrative theory share many common interests and problems and both studies might benefit from an exchange of ideas. 11 references.

  6. Decision-Making and the Interface between Human Intelligence and Artificial Intelligence. AIR 1987 Annual Forum Paper.

    Science.gov (United States)

    Henard, Ralph E.

    Possible future developments in artificial intelligence (AI) as well as its limitations are considered that have implications for institutional research in higher education, and especially decision making and decision support systems. It is noted that computer software programs have been developed that store knowledge and mimic the decision-making…

  7. Synthetic biology routes to bio-artificial intelligence

    Science.gov (United States)

    Zaikin, Alexey; Saka, Yasushi; Romano, M. Carmen; Giuraniuc, Claudiu V.; Kanakov, Oleg; Laptyeva, Tetyana

    2016-01-01

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular ‘teachers’ and ‘students’ is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). PMID:27903825

  8. Artificial intelligence as a diagnostic adjunct in cardiovascular nuclear imaging

    International Nuclear Information System (INIS)

    Duncan, J.S.

    1988-01-01

    The radiologist and/or nuclear medicine physician is literally bombarded with information from today's diagnostic imaging technologies. As a consequence of this, whereas a decade ago the emphasis in medical image analysis was on improving the extraction of diagnostic information by developing and using more sophisticated imaging modalities, today those working on the development of medical imaging technology are struggling to find ways to handle all gathered information effectively. This chapter gives an introduction to the area of artificial intelligence, with an emphasis on the research ongoing in cardiovascular nuclear imaging. This chapter has reviewed the place of artificial intelligence in cardiovascular nuclear imaging. It is intended to provide a general sense of this new and emerging field, an insight into some of its specific methodologies and applications, and a closer look at the several AI approaches currently being applied in cardiovascular nuclear imaging

  9. Artificial intelligence applications in offshore oil and gas production

    International Nuclear Information System (INIS)

    Attia, F.G.

    1994-01-01

    The field of Artificial Intelligence (AI) has gained considerable acceptance in virtually all fields, of engineering applications. Artificial intelligence is now being applied in several areas of offshore oil and gas operations, such as drilling, well testing, well logging and interpretation, reservoir engineering, planning and economic evaluation, process control, and risk analysis. Current AI techniques offer a new and exciting technology for solving problems in the oil and gas industry. Expert systems, fuzzy logic systems, neural networks and genetic algorithms are major AI technologies which have made an impact on the petroleum industry. Presently, these technologies are at different stages of maturity with expert systems being the most mature and genetic algorithms the least. However, all four technologies have evolved such that practical applications were produced. This paper describes the four major Al techniques and their many applications in offshore oil and gas production operations. A summary description of future developments in Al technology that will affect the execution and productivity of offshore operations will be also provided

  10. Artificial intelligence and human development

    International Development Research Centre (IDRC) Digital Library (Canada)

    Job and tax revenue loss through automation: With the growing use of machine .... practices that support the development of inclusive AI applications. What ..... been tested in Malaysia and in Queen Elizabeth National Park in Uganda.25 ...... We need to develop global and local values and principles for AI that prioritize.

  11. Exploring Artificial Intelligence Utilizing BioArt

    OpenAIRE

    Simou , Panagiota; Tiligadis , Konstantinos; Alexiou , Athanasios

    2013-01-01

    Part 15: First Workshop on Ethics and Philosophy in Artificial Intelligence (EPAI 2013); International audience; While artificial intelligence combined with Bioinformatics and Nanotechnology offers a variety of improvements and a technological and healthcare revolution, Bioartists attempt to replace the traditional artistic medium with biological materials, bio-imaging techniques, bioreactors and several times to treat their own body as an alive canvas. BioArt seems to play the role of a new ...

  12. Artificial intelligence in medicine: the challenges ahead.

    OpenAIRE

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM m...

  13. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  14. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  15. Artificial Intelligence in Precision Cardiovascular Medicine.

    Science.gov (United States)

    Krittanawong, Chayakrit; Zhang, HongJu; Wang, Zhen; Aydar, Mehmet; Kitai, Takeshi

    2017-05-30

    Artificial intelligence (AI) is a field of computer science that aims to mimic human thought processes, learning capacity, and knowledge storage. AI techniques have been applied in cardiovascular medicine to explore novel genotypes and phenotypes in existing diseases, improve the quality of patient care, enable cost-effectiveness, and reduce readmission and mortality rates. Over the past decade, several machine-learning techniques have been used for cardiovascular disease diagnosis and prediction. Each problem requires some degree of understanding of the problem, in terms of cardiovascular medicine and statistics, to apply the optimal machine-learning algorithm. In the near future, AI will result in a paradigm shift toward precision cardiovascular medicine. The potential of AI in cardiovascular medicine is tremendous; however, ignorance of the challenges may overshadow its potential clinical impact. This paper gives a glimpse of AI's application in cardiovascular clinical care and discusses its potential role in facilitating precision cardiovascular medicine. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Artificial intelligence techniques for photovoltaic applications: A review

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, Adel [Department of Electronics, Faculty of Sciences Engineering, LAMEL Laboratory, Jijel University, Oulad-aissa, P.O. Box 98, Jijel 18000 (Algeria); Kalogirou, Soteris A. [Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, P.O. Box 50329, Limassol 3603 (Cyprus)

    2008-10-15

    Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more popular nowadays. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with nonlinear problems and once trained can perform prediction and generalization at high speed. AI-based systems are being developed and deployed worldwide in a wide variety of applications, mainly because of their symbolic reasoning, flexibility and explanation capabilities. AI has been used in different sectors, such as engineering, economics, medicine, military, marine, etc. They have also been applied for modeling, identification, optimization, prediction, forecasting and control of complex systems. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in photovoltaic systems application. Problems presented include three areas: forecasting and modeling of meteorological data, sizing of photovoltaic systems and modeling, simulation and control of photovoltaic systems. Published literature presented in this paper show the potential of AI as design tool in photovoltaic systems. (author)

  17. Artificial Intelligence in Medical Practice: The Question to the Answer?

    Science.gov (United States)

    Miller, D Douglas; Brown, Eric W

    2018-02-01

    Computer science advances and ultra-fast computing speeds find artificial intelligence (AI) broadly benefitting modern society-forecasting weather, recognizing faces, detecting fraud, and deciphering genomics. AI's future role in medical practice remains an unanswered question. Machines (computers) learn to detect patterns not decipherable using biostatistics by processing massive datasets (big data) through layered mathematical models (algorithms). Correcting algorithm mistakes (training) adds to AI predictive model confidence. AI is being successfully applied for image analysis in radiology, pathology, and dermatology, with diagnostic speed exceeding, and accuracy paralleling, medical experts. While diagnostic confidence never reaches 100%, combining machines plus physicians reliably enhances system performance. Cognitive programs are impacting medical practice by applying natural language processing to read the rapidly expanding scientific literature and collate years of diverse electronic medical records. In this and other ways, AI may optimize the care trajectory of chronic disease patients, suggest precision therapies for complex illnesses, reduce medical errors, and improve subject enrollment into clinical trials. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  19. Tweeting AI: Perceptions of AI-Tweeters (AIT) vs Expert AI-Tweeters (EAIT)

    OpenAIRE

    Manikonda, Lydia; Dudley, Cameron; Kambhampati, Subbarao

    2017-01-01

    With the recent advancements in Artificial Intelligence (AI), various organizations and individuals started debating about the progress of AI as a blessing or a curse for the future of the society. This paper conducts an investigation on how the public perceives the progress of AI by utilizing the data shared on Twitter. Specifically, this paper performs a comparative analysis on the understanding of users from two categories -- general AI-Tweeters (AIT) and the expert AI-Tweeters (EAIT) who ...

  20. Artificial intelligence and exponential technologies business models evolution and new investment opportunities

    CERN Document Server

    Corea, Francesco

    2017-01-01

    Artificial Intelligence is a huge breakthrough technology that is changing our world. It requires some degrees of technical skills to be developed and understood, so in this book we are going to first of all define AI and categorize it with a non-technical language. We will explain how we reached this phase and what historically happened to artificial intelligence in the last century. Recent advancements in machine learning, neuroscience, and artificial intelligence technology will be addressed, and new business models introduced for and by artificial intelligence research will be analyzed. Finally, we will describe the investment landscape, through the quite comprehensive study of almost 14,000 AI companies and we will discuss important features and characteristics of both AI investors as well as investments. This is the “Internet of Thinks” era. AI is revolutionizing the world we live in. It is augmenting the human experiences, and it targets to amplify human intelligence in a future not so distant from...

  1. Artificial intelligence program in a computer application supporting reactor operations

    International Nuclear Information System (INIS)

    Stratton, R.C.; Town, G.G.

    1985-01-01

    Improving nuclear reactor power plant operability is an ever-present concern for the nuclear industry. The definition of plant operability involves a complex interaction of the ideas of reliability, safety, and efficiency. This paper presents observations concerning the issues involved and the benefits derived from the implementation of a computer application which combines traditional computer applications with artificial intelligence (AI) methodologies. A system, the Component Configuration Control System (CCCS), is being installed to support nuclear reactor operations at the Experimental Breeder Reactor II

  2. Westinghouse use of artificial intelligence in signal interpretation

    International Nuclear Information System (INIS)

    Mark, R.H.

    1984-01-01

    This paper discusses Westinghouse's use of artificial intelligence to assist inspectors who routinely monitor the thousands of tubes in nuclear steam generators. Using the AI technology has made the inspection process easier to learn and to apply. The system uses pattern recognition to identify off-normal conditions. As part of the in-service inspection program for nuclear power reactors, utilities make a practice of inspecting the condition of the large heat exchangers that produce the steam that turns the electric turbine generator. The same data are presented for inspection using form, motion, and color to call attention to off-normal signal patterns

  3. Reasoning methods in medical consultation systems: artificial intelligence approaches.

    Science.gov (United States)

    Shortliffe, E H

    1984-01-01

    It has been argued that the problem of medical diagnosis is fundamentally ill-structured, particularly during the early stages when the number of possible explanations for presenting complaints can be immense. This paper discusses the process of clinical hypothesis evocation, contrasts it with the structured decision making approaches used in traditional computer-based diagnostic systems, and briefly surveys the more open-ended reasoning methods that have been used in medical artificial intelligence (AI) programs. The additional complexity introduced when an advice system is designed to suggest management instead of (or in addition to) diagnosis is also emphasized. Example systems are discussed to illustrate the key concepts.

  4. Using artificial intelligence to control fluid flow computations

    Science.gov (United States)

    Gelsey, Andrew

    1992-01-01

    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  5. THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN SOUTH AFRICAN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    A.R. Greef

    2012-01-01

    Full Text Available This paper provides an introduction to the most commonly used Knowledge Based Systems (KBS's called Rule Based Systems, presents some benefits of using these systems if the application warrants their attention and provides an over-view of current R&D as well as industrial systems already implemented. Areas of manUfacturing that could use KES's within the South African context are suggested. A research programme investigating the use of KBS's in robotics in progress at the University of Stellenbosch demonstrating a number of useful properties associated with programming Artificial Intelligence (AI techniques using logic programming, is discussed.

  6. Chips challenging champions games, computers and artificial intelligence

    CERN Document Server

    Schaeffer, J

    2002-01-01

    One of the earliest dreams of the fledgling field of artificial intelligence (AI) was to build computer programs that could play games as well as or better than the best human players. Despite early optimism in the field, the challenge proved to be surprisingly difficult. However, the 1990s saw amazing progress. Computers are now better than humans in checkers, Othello and Scrabble; are at least as good as the best humans in backgammon and chess; and are rapidly improving at hex, go, poker, and shogi. This book documents the progress made in computers playing games and puzzles. The book is the

  7. Artificial intelligence and expert systems in-flight software testing

    Science.gov (United States)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  8. Artificial Intelligence: An Analysis of the Technology for Training. Training and Development Research Center Project Number Fourteen.

    Science.gov (United States)

    Sayre, Scott Alan

    The ultimate goal of the science of artificial intelligence (AI) is to establish programs that will use algorithmic computer techniques to imitate the heuristic thought processes of humans. Most AI programs, especially expert systems, organize their knowledge into three specific areas: data storage, a rule set, and a control structure. Limitations…

  9. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    Science.gov (United States)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  10. Who Are Afraid of Losing Their Jobs to Artificial Intelligence and Robots? Evidence from a Survey

    OpenAIRE

    Morikawa, Masayuki

    2017-01-01

    This study, using original survey data of 10,000 individuals, analyzes the possible impacts of artificial intelligence (AI) and robotics on employment. The first interest of this study is to ascertain, from the viewpoint of workers, what types of worker characteristics are associated with the perception of risk of jobs being replaced by the development of AI and robotics. The second interest is to identify, from the viewpoint of consumers, what types of services are likely to be replaced by A...

  11. CLASSICS Generality in Artificial Intelligence

    Indian Academy of Sciences (India)

    IAS Admin

    formulating axioms and applying logic to solve AI problems. ... small modification to the program, especially if machine-language programs are used and ..... Thus, we encounter Socratic puzzles over what the concepts mean in complete ...

  12. Artificial Intelligence and Sensor Fusion

    National Research Council Canada - National Science Library

    Capraro, Gerard T; Berdan, Gerald B; Liuzzi, Raymond A; Wicks, Michael C

    2003-01-01

    ...) tools and techniques. This paper investigates leveraging the AI tools being developed by the Semantic Web, DARPA's DAML program and, specifically the building of ontologies and resource description framework (RDF...

  13. The Future of (Artificial) Intelligence

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The news media in recent months have been full of dire warnings about the risk that AI poses to the human race, coming from well-known figures such as Stephen Hawking, Frank Wilczek and Elon Musk. Should we be concerned? If so, what can we do about it? While some in the mainstream AI community dismiss these concerns, I will argue instead that a fundamental reorientation of the field is required.

  14. The use of artificial intelligence for safeguarding fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from the ''Minirun'' campaigns conducted at the Barnwell Nuclear Fuel Plant (BNFP) in Barnwell, South Carolina during 1980 to 1981 have been utilized to study the suitability of computer-based Artificial Intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software which operates on the process data customarily used for process operations. The OPS5 AI language was used to construct an Expert System for this purpose. Such systems are able to form reasoned conclusions from incomplete, inaccurate or otherwise ''fuzzy'' data, and to explain the reasoning that led to them. The programs were tested using minirun data taken during simulated diversions ranging in size from 1 to 20 L of solution that had been monitored previously using conventional procedural techniques. 13 refs., 3 figs

  15. The use of artificial intelligence for safeguard fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from minirun campaigns conducted at the Barnwell Nuclear Fuels Plant have been utilized to study the suitability of computer-based artificial intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software. The computer software accepted as input process data customarily used for process operations that had previously been recorded on magnetic tape during the 1980 miniruns. The OPS5 AI language was used to construct an expert system for simulated monitoring of the process. Such expert systems facilitate the employment of the heuristic reasoning used by human observers to form reasoned conclusions from incomplete, inaccurate, or otherwise fuzzy data

  16. Heat input control in coke ovens battery using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Kannan, C.; Sistla, S.; Kumar, D. [Tata Steel, Jamshedpur (India)

    2005-07-01

    Controlled heating is very essential for producing coke with certain desired properties. Controlled heating involves controlling the heat input into the battery dynamically depending on the various process parameters like current battery temperature, the set point of battery temperature, moisture in coal, ambient temperature, coal fineness, cake breakage etc. An artificial intelligence (AI) based heat input control has been developed in which currently some of the above mentioned process parameters are considered and used for calculating the pause time which is applied between reversal during the heating process. The AI based model currently considers 3 input variables, temperature deviation history, current deviation of the battery temperature from the target temperature and the actual heat input into the battery. Work is in progress to control the standard deviation of coke end temperature using this model. The new system which has been developed in-house has replaced Hoogovens supplied model. 7 figs.

  17. Application of artificial intelligence to radiation control, (1)

    International Nuclear Information System (INIS)

    Kimura, Yoshitaka; Hasegawa, Keisuke; Ikezawa, Yoshio

    1990-01-01

    Recently artificial intelligence (AI) which has functions of our interpretations and judgments has been applied to various fields of science. In the first application of AI to the transport procedure of the radioactive material, a prototype of expert system was developed with UTI-LISP programming language to appropriately classify mainly the packages and packagings according to regulations for the safe transport of radioactive material. Classification of the packages and packagings for the consignment is mainly determined from input informations such as radionuclides, its activities, states and conveyances through a forward reasoning method of the expert system. The rationalization of practice on our interpretations and judgments for transport of radioactive material including uniformity and reliability of our decision were confirmed as the result of an application to radiation control. (author)

  18. Artificial intelligence for breast cancer screening: Opportunity or hype?

    Science.gov (United States)

    Houssami, Nehmat; Lee, Christoph I; Buist, Diana S M; Tao, Dacheng

    2017-12-01

    Interpretation of mammography for breast cancer (BC) screening can confer a mortality benefit through early BC detection, can miss a cancer that is present or fast growing, or can result in false-positives. Efforts to improve screening outcomes have mostly focused on intensifying imaging practices (double instead of single-reading, more frequent screens, or supplemental imaging) that may add substantial resource expenditures and harms associated with population screening. Less attention has been given to making mammography screening practice 'smarter' or more efficient. Artificial intelligence (AI) is capable of advanced learning using large complex datasets and has the potential to perform tasks such as image interpretation. With both highly-specific capabilities, and also possible un-intended (and poorly understood) consequences, this viewpoint considers the promise and current reality of AI in BC detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Artificial intelligence in robot control systems

    Science.gov (United States)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  20. AI and health

    OpenAIRE

    Martin Anderson

    2018-01-01

    ntelligence refers to the ability of an individual to learn or understand something, or to deal with a new situation. When a machine or software exhibits such characteristics, it is referred to as artificial intelligence (AI). Artificial Intelligence is therefore defined as the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages.

  1. Development of a Car Racing Simulator Game Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Marvin T. Chan

    2015-01-01

    Full Text Available This paper presents a car racing simulator game called Racer, in which the human player races a car against three game-controlled cars in a three-dimensional environment. The objective of the game is not to defeat the human player, but to provide the player with a challenging and enjoyable experience. To ensure that this objective can be accomplished, the game incorporates artificial intelligence (AI techniques, which enable the cars to be controlled in a manner that mimics natural driving. The paper provides a brief history of AI techniques in games, presents the use of AI techniques in contemporary video games, and discusses the AI techniques that were implemented in the development of Racer. A comparison of the AI techniques implemented in the Unity platform with traditional AI search techniques is also included in the discussion.

  2. Artificial Intelligence Research at the Artificial Intelligence Laboratory, Massachusetts Institute of Technology

    OpenAIRE

    Winston, Patrick H.

    1983-01-01

    The primary goal of the Artificial Intelligence Laboratory is to understand how computers can be made to exhibit intelligence. Two corollary goals are to make computers more useful and to understand certain aspects of human intelligence. Current research includes work on computer robotics and vision, expert systems, learning and commonsense reasoning, natural language understanding, and computer architecture.

  3. Using Computer-Based Artificial Intelligence Technology to Help ESL Students.

    Science.gov (United States)

    Adams, Dennis M.

    This paper discusses ways in which artificial intelligence (AI) technologies may be used to aid students for whom English is a second language in the development of language and reading skills, and asserts that the coupling of technology with close adult-teacher contacts within a context of cultural precedents and social rewards is an important…

  4. Scientific approaches and techniques for negotiation : a game theoretic and artificial intelligence perspective

    NARCIS (Netherlands)

    E.H. Gerding (Enrico); D.D.B. van Bragt; J.A. La Poutré (Han)

    2000-01-01

    textabstractDue to the rapid growth of electronic environments (such as the Internet) much research is currently being performed on autonomous trading mechanisms. This report contains an overview of the current literature on negotiations in the fields of game theory and artificial intelligence (AI).

  5. Artificial Intelligence Applications to Learning and Training. Occasional Paper--InTER/2/88.

    Science.gov (United States)

    Cumming, Geoff

    This report summarizes and interprets the discussions at a seminar on artificial intelligence (AI) training domains and knowledge representations which was sponsored by the United Kingdom Training Commission. The following broad areas are addressed: (1) the context, process, and diversity of requirements of training and training needs; (2)…

  6. Artificial intelligence to maximise contributions of nondestructive evaluation to materials science and technology

    International Nuclear Information System (INIS)

    Baldev Raj; Rajagopalan, C.

    1996-01-01

    The paper reviews the current status of Nondestructive Testing and Evaluation (NDT and E), in relation to materials science and technology. It suggests a path of growth for Nondestructive Testing and Evaluation, taking into account the increase in data and knowledge. We recommend Artificial Intelligence (AI) concepts for maximising the contributions of and benefits from, Nondestructive Testing and Evaluation. (author)

  7. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    Science.gov (United States)

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  8. Expertik: Experience with Artificial Intelligence and Mobile Computing

    Directory of Open Access Journals (Sweden)

    José Edward Beltrán Lozano

    2013-06-01

    Full Text Available This article presents the experience in the development of services based in Artificial Intelligence, Service Oriented Architecture, mobile computing. It aims to combine technology offered by mobile computing provides techniques and artificial intelligence through a service provide diagnostic solutions to problems in industrial maintenance. It aims to combine technology offered by mobile computing and the techniques artificial intelligence through a service to provide diagnostic solutions to problems in industrial maintenance. For service creation are identified the elements of an expert system, the knowledge base, the inference engine and knowledge acquisition interfaces and their consultation. The applications were developed in ASP.NET under architecture three layers. The data layer was developed conjunction in SQL Server with data management classes; business layer in VB.NET and the presentation layer in ASP.NET with XHTML. Web interfaces for knowledge acquisition and query developed in Web and Mobile Web. The inference engine was conducted in web service developed for the fuzzy logic model to resolve requests from applications consulting knowledge (initially an exact rule-based logic within this experience to resolve requests from applications consulting knowledge. This experience seeks to strengthen a technology-based company to offer services based on AI for service companies Colombia.

  9. How to Improve Artificial Intelligence through Web

    Directory of Open Access Journals (Sweden)

    Adrian LUPASC

    2005-10-01

    Full Text Available Intelligent agents, intelligent software applications and artificial intelligent applications from artificial intelligence service providers maymake their way onto the Web in greater number as adaptive software, dynamic programming languages and Learning Algorithms are introduced intoWeb Services. The evolution of Web architecture may allow intelligent applications to run directly on the Web by introducing XML, RDF and logiclayer. The Intelligent Wireless Web’s significant potential for rapidly completing information transactions may take an important contribution toglobal worker productivity. Artificial intelligence can be defined as the study of the ways in which computers can be made to perform cognitivetasks. Examples of such tasks include understanding natural language statements, recognizing visual patterns or scenes, diagnosing diseases orillnesses, solving mathematical problems, performing financial analyses, learning new procedures for solving problems. The term expert system canbe considered to be a particular type of knowledge-based system. An expert system is a system in which the knowledge is deliberately represented“as it is”. Expert systems are applications that make decisions in real-life situations that would otherwise be performed by a human expert. They areprograms designed to mimic human performance at specialized, constrained problem-solving tasks. They are constructed as a collection of IF-THENproduction rules combined with a reasoning engine that applies those rules, either in a forward or backward direction, to specific problems.

  10. ARTIFICIAL INTELLIGENCE IN SPORTS BIOMECHANICS: NEW DAWN OR FALSE HOPE?

    Directory of Open Access Journals (Sweden)

    Roger Bartlett

    2006-12-01

    Full Text Available This article reviews developments in the use of Artificial Intelligence (AI in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques' and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics.

  11. The Bright, Artificial Intelligence-Augmented Future of Neuroimaging Reading.

    Science.gov (United States)

    Hainc, Nicolin; Federau, Christian; Stieltjes, Bram; Blatow, Maria; Bink, Andrea; Stippich, Christoph

    2017-01-01

    Radiologists are among the first physicians to be directly affected by advances in computer technology. Computers are already capable of analyzing medical imaging data, and with decades worth of digital information available for training, will an artificial intelligence (AI) one day signal the end of the human radiologist? With the ever increasing work load combined with the looming doctor shortage, radiologists will be pushed far beyond their current estimated 3 s allotted time-of-analysis per image; an AI with super-human capabilities might seem like a logical replacement. We feel, however, that AI will lead to an augmentation rather than a replacement of the radiologist. The AI will be relied upon to handle the tedious, time-consuming tasks of detecting and segmenting outliers while possibly generating new, unanticipated results that can then be used as sources of medical discovery. This will affect not only radiologists but all physicians and also researchers dealing with medical imaging. Therefore, we must embrace future technology and collaborate interdisciplinary to spearhead the next revolution in medicine.

  12. The Bright, Artificial Intelligence-Augmented Future of Neuroimaging Reading

    Directory of Open Access Journals (Sweden)

    Nicolin Hainc

    2017-09-01

    Full Text Available Radiologists are among the first physicians to be directly affected by advances in computer technology. Computers are already capable of analyzing medical imaging data, and with decades worth of digital information available for training, will an artificial intelligence (AI one day signal the end of the human radiologist? With the ever increasing work load combined with the looming doctor shortage, radiologists will be pushed far beyond their current estimated 3 s allotted time-of-analysis per image; an AI with super-human capabilities might seem like a logical replacement. We feel, however, that AI will lead to an augmentation rather than a replacement of the radiologist. The AI will be relied upon to handle the tedious, time-consuming tasks of detecting and segmenting outliers while possibly generating new, unanticipated results that can then be used as sources of medical discovery. This will affect not only radiologists but all physicians and also researchers dealing with medical imaging. Therefore, we must embrace future technology and collaborate interdisciplinary to spearhead the next revolution in medicine.

  13. NASA FDL: Accelerating Artificial Intelligence Applications in the Space Sciences.

    Science.gov (United States)

    Parr, J.; Navas-Moreno, M.; Dahlstrom, E. L.; Jennings, S. B.

    2017-12-01

    NASA has a long history of using Artificial Intelligence (AI) for exploration purposes, however due to the recent explosion of the Machine Learning (ML) field within AI, there are great opportunities for NASA to find expanded benefit. For over two years now, the NASA Frontier Development Lab (FDL) has been at the nexus of bright academic researchers, private sector expertise in AI/ML and NASA scientific problem solving. The FDL hypothesis of improving science results was predicated on three main ideas, faster results could be achieved through sprint methodologies, better results could be achieved through interdisciplinarity, and public-private partnerships could lower costs We present select results obtained during two summer sessions in 2016 and 2017 where the research was focused on topics in planetary defense, space resources and space weather, and utilized variational auto encoders, bayesian optimization, and deep learning techniques like deep, recurrent and residual neural networks. The FDL results demonstrate the power of bridging research disciplines and the potential that AI/ML has for supporting research goals, improving on current methodologies, enabling new discovery and doing so in accelerated timeframes.

  14. Artificial intelligence and its impact on combat aircraft

    Science.gov (United States)

    Ott, Lawrence M.; Abbot, Kathy; Kleider, Alfred; Moon, D.; Retelle, John

    1987-01-01

    As the threat becomes more sophisticated and weapon systems more complex to meet the threat, the need for machines to assist the pilot in the assessment of information becomes paramount. This is particularly true in real-time, high stress situations. The advent of artificial intelligence (AI) technology offers the opportunity to make quantum advances in the application of machine technology. However, if AI systems are to find their way into combat aircraft, they must meet certain criteria. The systems must be responsive, reliable, easy to use, flexible, and understandable. These criteria are compared with the current status used in a combat airborne application. Current AI systems deal with nonreal time applications and require significant user interaction. On the other hand, aircraft applications require real time, minimum human interaction systems. In order to fill the gap between where technology is now and where it must be for aircraft applications, considerable government research is ongoing in NASA, DARPA, and three services. The ongoing research is briefly summarized. Finally, recognizing that AI technology is in its embryonic stage, and the aircraft needs are very demanding, a number of issues arise. These issues are delineated and findings are provided where appropriate.

  15. Ai

    African Journals Online (AJOL)

    :=g=~!Ai~~~~~g~~ ~~~~~~. Jim Taylor, Rob O'Donoghue and Alistair Clacherty. INTRODUCTION. The Department of Environment Affairs, in cooperation with ...

  16. An overview of artificial intelligence applications to safeguards

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1987-01-01

    The rapidly growing discipline of artificial intelligence (AI) has delivered a number of expert systems that aid analyses of processes and procedures by emulating the analysis and decisions of experts. Expert systems have not reached the point of replacing experts, but can provide assistance in their absence. In narrow domains, expert systems can relieve the expert of less demanding analyses and decisions, freeing him/her for more important tasks. Safeguards experts are in great demand, and the decision processes they perform are not always well-defined. The general area of safeguards analysis is representative of the type of activity that benefits from the assistance provided by AI techniques. The American Nuclear Society is holding a topical meeting, Artificial Intelligence and Other Innovative Computer Applications in the Nuclear Industry, on August 31-September 2, 1987. The technical papers cover a number of applications of potential benefit to safeguards and the safeguards interface with facility operations. This paper is a technical review of papers presented at the topical meeting

  17. Artificial intelligence in sports on the example of weight training.

    Science.gov (United States)

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data

  18. Highlights on artificial insemination (AI technology in the pig

    Directory of Open Access Journals (Sweden)

    Tarek Khalifa

    2014-03-01

    Full Text Available Over the past decade, there has been a tremendous increase in the development of field AI services in the majority of countries concerned with pig production. The objective of this paper is to review: (a the current status of swine AI in the world, (b significance and limitation of AI with liquid and frozen semen, (c the biological traits of porcine semen in relation to in-vitro sperm storage, (d the criteria used for selection of a boar stud as a semen supplier, (e how to process boar semen for liquid and frozen storage in the commercial settings and (f how to improve fertility and prolificacy of boar semen. More than 99% of the inseminations conducted worldwide are made with liquid-stored semen. AI with frozen semen is used only for upgrading the genetic base in a particular country or herd. Determining the initial quality of semen ejaculates along with the selection of the optimum storage extender has a profound effect on the quality and fertility of AI doses. Different procedures have been used for improving the fertility of preserved spermatozoa including colloidal centrifugation of the semen, intrauterine insemination and modulation of the uterine defense mechanism after AI. Development of an efficient protocol for synchronizing the time of ovulation in sows and gilts coupled with improving uterine horn insemination technique will make a breakthrough in the commercial use of frozen boar semen.

  19. A genetic-neural artificial intelligence approach to resins optimization

    International Nuclear Information System (INIS)

    Cabral, Denise C.; Barros, Marcio P.; Lapa, Celso M.F.; Pereira, Claudio M.N.A.

    2005-01-01

    This work presents a preliminary study about the viability and adequacy of a new methodology for the definition of one of the main properties of ion exchange resins used for isotopic separation. Basically, the main problem is the definition of pelicule diameter in case of pelicular ion exchange resins, in order to achieve the best performance in the shortest time. In order to achieve this, a methodology was developed, based in two classic techniques of Artificial Intelligence (AI). At first, an artificial neural network (NN) was trained to map the existing relations between the nucleus radius and the resin's efficiency associated with the exchange time. Later on, a genetic algorithm (GA) was developed in order to find the best pelicule dimension. Preliminary results seem to confirm the potential of the method, and this can be used in any chemical process employing ion exchange resins. (author)

  20. Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation

    Science.gov (United States)

    Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.

  1. Algorithms and architectures of artificial intelligence

    CERN Document Server

    Tyugu, E

    2007-01-01

    This book gives an overview of methods developed in artificial intelligence for search, learning, problem solving and decision-making. It gives an overview of algorithms and architectures of artificial intelligence that have reached the degree of maturity when a method can be presented as an algorithm, or when a well-defined architecture is known, e.g. in neural nets and intelligent agents. It can be used as a handbook for a wide audience of application developers who are interested in using artificial intelligence methods in their software products. Parts of the text are rather independent, so that one can look into the index and go directly to a description of a method presented in the form of an abstract algorithm or an architectural solution. The book can be used also as a textbook for a course in applied artificial intelligence. Exercises on the subject are added at the end of each chapter. Neither programming skills nor specific knowledge in computer science are expected from the reader. However, some p...

  2. Application Of Artificial Intelligence To Wind Tunnels

    Science.gov (United States)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  3. Artificial Intelligence in Unity Game Engine

    OpenAIRE

    Yu, Li

    2017-01-01

    This thesis was conducted for Oulu Game Lab. The aim of this bachelor thesis was to develop in Oulu Game Lab a game called the feels good to be evil. The main purpose of the project was to develop a game and learn game development focus in the artificial intelligence area. This thesis has explained the theory behind Artificial Intelligence. The game was developed in Unity Game Engine with C# language, and also Panda Behavior Tree was used in this project as an asset. The result was the ...

  4. Artificial intelligence for Mariáš

    OpenAIRE

    Kaštánková, Petra

    2016-01-01

    This thesis focuses on the implementation of a card game, Mariáš, and an artificial intelligence for this game. The game is designed for three players and it can be played with either other human players, or with a computer adversary. The game is designed as a client-server application, whereby the player connects to the game using a web page. The basis of the artificial intelligence is the Minimax algorithm. To speed it up we use the Alpha-Beta pruning, hash tables for storing equivalent sta...

  5. [Artificial intelligence in psychiatry-an overview].

    Science.gov (United States)

    Meyer-Lindenberg, A

    2018-06-18

    Artificial intelligence and the underlying methods of machine learning and neuronal networks (NN) have made dramatic progress in recent years and have allowed computers to reach superhuman performance in domains that used to be thought of as uniquely human. In this overview, the underlying methodological developments that made this possible are briefly delineated and then the applications to psychiatry in three domains are discussed: precision medicine and biomarkers, natural language processing and artificial intelligence-based psychotherapeutic interventions. In conclusion, some of the risks of this new technology are mentioned.

  6. Machine learning an artificial intelligence approach

    CERN Document Server

    Banerjee, R; Bradshaw, Gary; Carbonell, Jaime Guillermo; Mitchell, Tom Michael; Michalski, Ryszard Spencer

    1983-01-01

    Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV a

  7. Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    Science.gov (United States)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1992-01-01

    A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.

  8. Cognitive logical systems with artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Liss, E

    1983-09-01

    The simulation of cognitive processes for the purpose of the technical development of learning systems with intelligent behavior is a basic object of the young interdisciplinary cognition science which is based upon artificial intelligence, cognitive psychology, computer science, linguistics and pedagogics. Cognitive systems may be described as knowledge-based logical systems. Based on structural and functional principles of intelligent automata and elementary information processing systems with structural learning capability the future process, machine and robot controls, advising units and fifth generation computers may be developed.

  9. A novel modification of the Turing test for artificial intelligence and robotics in healthcare.

    Science.gov (United States)

    Ashrafian, Hutan; Darzi, Ara; Athanasiou, Thanos

    2015-03-01

    The increasing demands of delivering higher quality global healthcare has resulted in a corresponding expansion in the development of computer-based and robotic healthcare tools that rely on artificially intelligent technologies. The Turing test was designed to assess artificial intelligence (AI) in computer technology. It remains an important qualitative tool for testing the next generation of medical diagnostics and medical robotics. Development of quantifiable diagnostic accuracy meta-analytical evaluative techniques for the Turing test paradigm. Modification of the Turing test to offer quantifiable diagnostic precision and statistical effect-size robustness in the assessment of AI for computer-based and robotic healthcare technologies. Modification of the Turing test to offer robust diagnostic scores for AI can contribute to enhancing and refining the next generation of digital diagnostic technologies and healthcare robotics. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  11. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  12. Statistical Software and Artificial Intelligence: A Watershed in Applications Programming.

    Science.gov (United States)

    Pickett, John C.

    1984-01-01

    AUTOBJ and AUTOBOX are revolutionary software programs which contain the first application of artificial intelligence to statistical procedures used in analysis of time series data. The artificial intelligence included in the programs and program features are discussed. (JN)

  13. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    Science.gov (United States)

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  14. Artificial intelligence: Deep neural reasoning

    Science.gov (United States)

    Jaeger, Herbert

    2016-10-01

    The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471

  15. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    Science.gov (United States)

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  16. Flood AI: An Intelligent Systems for Discovery and Communication of Disaster Knowledge

    Science.gov (United States)

    Demir, I.; Sermet, M. Y.

    2017-12-01

    Communities are not immune from extreme events or natural disasters that can lead to large-scale consequences for the nation and public. Improving resilience to better prepare, plan, recover, and adapt to disasters is critical to reduce the impacts of extreme events. The National Research Council (NRC) report discusses the topic of how to increase resilience to extreme events through a vision of resilient nation in the year 2030. The report highlights the importance of data, information, gaps and knowledge challenges that needs to be addressed, and suggests every individual to access the risk and vulnerability information to make their communities more resilient. This project presents an intelligent system, Flood AI, for flooding to improve societal preparedness by providing a knowledge engine using voice recognition, artificial intelligence, and natural language processing based on a generalized ontology for disasters with a primary focus on flooding. The knowledge engine utilizes the flood ontology and concepts to connect user input to relevant knowledge discovery channels on flooding by developing a data acquisition and processing framework utilizing environmental observations, forecast models, and knowledge bases. Communication channels of the framework includes web-based systems, agent-based chat bots, smartphone applications, automated web workflows, and smart home devices, opening the knowledge discovery for flooding to many unique use cases.

  17. USE OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN QUALITY IMPROVING PROCESS

    OpenAIRE

    KALİTE İYİLEŞTİRME SÜRECİNDE YAPAY ZEKÃ KAYA; Orhan ENGİN

    2005-01-01

    Today, changing of competition conditions and customer preferences caused to happen many differences in the viewpoint of firms' quality studies. At the same time, improvements in computer technologies accelerated use of artificial intelligence. Artificial intelligence technologies are being used to solve many industry problems. In this paper, we investigated the use of artificial intelligence techniques to solve quality problems. The artificial intelligence techniques, which are used in quali...

  18. Abstraction in artificial intelligence and complex systems

    CERN Document Server

    Saitta, Lorenza

    2013-01-01

    Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences.  After discussing the characterizing properties of abstraction, a formal model, the K

  19. Using design science and artificial intelligence to improve health communication: ChronologyMD case example.

    Science.gov (United States)

    Neuhauser, Linda; Kreps, Gary L; Morrison, Kathleen; Athanasoulis, Marcos; Kirienko, Nikolai; Van Brunt, Deryk

    2013-08-01

    This paper describes how design science theory and methods and use of artificial intelligence (AI) components can improve the effectiveness of health communication. We identified key weaknesses of traditional health communication and features of more successful eHealth/AI communication. We examined characteristics of the design science paradigm and the value of its user-centered methods to develop eHealth/AI communication. We analyzed a case example of the participatory design of AI components in the ChronologyMD project intended to improve management of Crohn's disease. eHealth/AI communication created with user-centered design shows improved relevance to users' needs for personalized, timely and interactive communication and is associated with better health outcomes than traditional approaches. Participatory design was essential to develop ChronologyMD system architecture and software applications that benefitted patients. AI components can greatly improve eHealth/AI communication, if designed with the intended audiences. Design science theory and its iterative, participatory methods linked with traditional health communication theory and methods can create effective AI health communication. eHealth/AI communication researchers, developers and practitioners can benefit from a holistic approach that draws from theory and methods in both design sciences and also human and social sciences to create successful AI health communication. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.

    Science.gov (United States)

    Thrall, James H; Li, Xiang; Li, Quanzheng; Cruz, Cinthia; Do, Synho; Dreyer, Keith; Brink, James

    2018-03-01

    Worldwide interest in artificial intelligence (AI) applications, including imaging, is high and growing rapidly, fueled by availability of large datasets ("big data"), substantial advances in computing power, and new deep-learning algorithms. Apart from developing new AI methods per se, there are many opportunities and challenges for the imaging community, including the development of a common nomenclature, better ways to share image data, and standards for validating AI program use across different imaging platforms and patient populations. AI surveillance programs may help radiologists prioritize work lists by identifying suspicious or positive cases for early review. AI programs can be used to extract "radiomic" information from images not discernible by visual inspection, potentially increasing the diagnostic and prognostic value derived from image datasets. Predictions have been made that suggest AI will put radiologists out of business. This issue has been overstated, and it is much more likely that radiologists will beneficially incorporate AI methods into their practices. Current limitations in availability of technical expertise and even computing power will be resolved over time and can also be addressed by remote access solutions. Success for AI in imaging will be measured by value created: increased diagnostic certainty, faster turnaround, better outcomes for patients, and better quality of work life for radiologists. AI offers a new and promising set of methods for analyzing image data. Radiologists will explore these new pathways and are likely to play a leading role in medical applications of AI. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  1. The Nexus between Artificial Intelligence and Economics

    NARCIS (Netherlands)

    van de Gevel, A.J.W.; Noussair, C.N.

    2012-01-01

    This book is organized as follows. Section 2 introduces the notion of the Singularity, a stage in development in which technological progress and economic growth increase at a near-infinite rate. Section 3 describes what artificial intelligence is and how it has been applied. Section 4 considers

  2. Artificial Intelligence Techniques: Applications for Courseware Development.

    Science.gov (United States)

    Dear, Brian L.

    1986-01-01

    Introduces some general concepts and techniques of artificial intelligence (natural language interfaces, expert systems, knowledge bases and knowledge representation, heuristics, user-interface metaphors, and object-based environments) and investigates ways these techniques might be applied to analysis, design, development, implementation, and…

  3. Artificial Intelligence Applications to Videodisc Technology

    OpenAIRE

    Vries, John K.; Banks, Gordon; McLinden, Sean; Moossy, John; Brown, Melanie

    1985-01-01

    Much of medical information is visual in nature. Since it is not easy to describe pictorial information in linguistic terms, it has been difficult to store and retrieve this type of information. Coupling videodisc technology with artificial intelligence programming techniques may provide a means for solving this problem.

  4. Dynamic Restructuring Of Problems In Artificial Intelligence

    Science.gov (United States)

    Schwuttke, Ursula M.

    1992-01-01

    "Dynamic tradeoff evaluation" (DTE) denotes proposed method and procedure for restructuring problem-solving strategies in artificial intelligence to satisfy need for timely responses to changing conditions. Detects situations in which optimal problem-solving strategies cannot be pursued because of real-time constraints, and effects tradeoffs among nonoptimal strategies in such way to minimize adverse effects upon performance of system.

  5. Counseling, Artificial Intelligence, and Expert Systems.

    Science.gov (United States)

    Illovsky, Michael E.

    1994-01-01

    Considers the use of artificial intelligence and expert systems in counseling. Limitations are explored; candidates for counseling versus those for expert systems are discussed; programming considerations are reviewed; and techniques for dealing with rational, nonrational, and irrational thoughts and feelings are described. (Contains 46…

  6. Applications of artificial intelligence in engineering problems

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, D; Adey, R

    1986-01-01

    This book presents the papers given at a conference on the use of artificial intelligence in engineering. Topics considered at the conference included Prolog logic, expert systems, knowledge representation and acquisition, knowledge bases, machine learning, robotics, least-square algorithms, vision systems for robots, natural language, probability, mechanical engineering, civil engineering, and electrical engineering.

  7. Artificial Intelligence Applications to Fire Management

    Science.gov (United States)

    Don J. Latham

    1987-01-01

    Artificial intelligence could be used in Forest Service fire management and land-use planning to a larger degree than is now done. Robots, for example, could be programmed to monitor for fire and insect activity, to keep track of wildlife, and to do elementary thinking about the environment. Catching up with the fast-changing technology is imperative.

  8. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    OpenAIRE

    Straub, Jeremy; Huber, Justin

    2013-01-01

    An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (p...

  9. Artificial intelligence and design: Opportunities, research problems and directions

    Science.gov (United States)

    Amarel, Saul

    1990-01-01

    The issues of industrial productivity and economic competitiveness are of major significance in the U.S. at present. By advancing the science of design, and by creating a broad computer-based methodology for automating the design of artifacts and of industrial processes, we can attain dramatic improvements in productivity. It is our thesis that developments in computer science, especially in Artificial Intelligence (AI) and in related areas of advanced computing, provide us with a unique opportunity to push beyond the present level of computer aided automation technology and to attain substantial advances in the understanding and mechanization of design processes. To attain these goals, we need to build on top of the present state of AI, and to accelerate research and development in areas that are especially relevant to design problems of realistic complexity. We propose an approach to the special challenges in this area, which combines 'core work' in AI with the development of systems for handling significant design tasks. We discuss the general nature of design problems, the scientific issues involved in studying them with the help of AI approaches, and the methodological/technical issues that one must face in developing AI systems for handling advanced design tasks. Looking at basic work in AI from the perspective of design automation, we identify a number of research problems that need special attention. These include finding solution methods for handling multiple interacting goals, formation problems, problem decompositions, and redesign problems; choosing representations for design problems with emphasis on the concept of a design record; and developing approaches for the acquisition and structuring of domain knowledge with emphasis on finding useful approximations to domain theories. Progress in handling these research problems will have major impact both on our understanding of design processes and their automation, and also on several fundamental questions

  10. Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher

    Energy Technology Data Exchange (ETDEWEB)

    Metaxiotis, K.; Kagiannas, A.; Askounis, D.; Psarras, J. [National Technical University of Athens, Zografou (Turkey). Dept. of Electrical and Computer Engineering

    2003-06-01

    Intelligent solutions, based on artificial intelligence (AI) technologies, to solve complicated practical problems in various sectors are becoming more and more widespread nowadays. AI-based systems are being developed and deployed worldwide in myriad applications, mainly because of their symbolic reasoning, flexibility and explanation capabilities. This paper provides an overview for the researcher of AI technologies, as well as their current use in the field of short term electric load forecasting (STELF). The history of AI in STELF is outlined, leading to a discussion of the various approaches as well as the current research directions. The paper concludes by sharing thoughts and estimations on AI future prospects in this area. This review reveals that although still regarded as a novel methodology, AI technologies are shown to have matured to the point of offering real practical benefits in many of their applications. (Author)

  11. Semantics and artificial intelligence in machine translation

    Energy Technology Data Exchange (ETDEWEB)

    King, M

    1981-01-01

    The author exemplifies three types of ambiguity that the introduction of semantics or of AI methods might be expected to solve: word sense, structural, and referential ambiguity. From this point of view she examines the works of Schank, Riesbeck, Minsky, Charniak, and Wilks, and she comes to the conclusion that the systems described will not be of much help for the development of operational MT-systems, except within a well-defined, constrained world. The latter aspect is illustrated by the author by means of a description of the Edinburgh Mecho-project. But, as the vast majority of texts destined for MT does not come from a constrained world, such systems will hardly be used as MT production systems. Still, MT-systems like Eurotra give the chance of making intelligent use of AI ideas. 16 references.

  12. Continuous surveillance of transformers using artificial intelligence methods; Surveillance continue des transformateurs: application des methodes d'intelligence artificielle

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, A.; Germond, A. [Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Boss, P.; Lorin, P. [ABB Secheron SA, Geneve (Switzerland)

    2000-07-01

    The article describes a new method for the continuous surveillance of power transformers based on the application of artificial intelligence (AI) techniques. An experimental pilot project on a specially equipped, strategically important power transformer is described. Traditional surveillance methods and the use of mathematical models for the prediction of faults are described. The article describes the monitoring equipment used in the pilot project and the AI principles such as self-organising maps that are applied. The results obtained from the pilot project and methods for their graphical representation are discussed.

  13. Energy Demand Forecasting: Combining Cointegration Analysis and Artificial Intelligence Algorithm

    Directory of Open Access Journals (Sweden)

    Junbing Huang

    2018-01-01

    Full Text Available Energy is vital for the sustainable development of China. Accurate forecasts of annual energy demand are essential to schedule energy supply and provide valuable suggestions for developing related industries. In the existing literature on energy use prediction, the artificial intelligence-based (AI-based model has received considerable attention. However, few econometric and statistical evidences exist that can prove the reliability of the current AI-based model, an area that still needs to be addressed. In this study, a new energy demand forecasting framework is presented at first. On the basis of historical annual data of electricity usage over the period of 1985–2015, the coefficients of linear and quadratic forms of the AI-based model are optimized by combining an adaptive genetic algorithm and a cointegration analysis shown as an example. Prediction results of the proposed model indicate that the annual growth rate of electricity demand in China will slow down. However, China will continue to demand about 13 trillion kilowatt hours in 2030 because of population growth, economic growth, and urbanization. In addition, the model has greater accuracy and reliability compared with other single optimization methods.

  14. Artificial intelligence and information-control systems of robots - 87

    International Nuclear Information System (INIS)

    Plander, I.

    1987-01-01

    Independent research areas of artificial intelligence represent the following problems: automatic problem solving and new knowledge discovering, automatic program synthesis, natural language, picture and scene recognition and understanding, intelligent control systems of robots equipped with sensoric subsystems, dialogue of two knowledge systems, as well as studying and modelling higher artificial intelligence attributes, such as emotionality and personality. The 4th Conference draws on the problems treated at the preceding Conferences, and presents the most recent knowledge on the following topics: theoretical problems of artificial intelligence, knowledge-based systems, expert systems, perception and pattern recognition, robotics, intelligent computer-aided design, special-purpose computer systems for artificial intelligence and robotics

  15. Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    Jiqiang Niu

    2016-05-01

    Full Text Available In this article, we conducted the evaluation of artificial intelligence research from 1990–2014 by using bibliometric analysis. We introduced spatial analysis and social network analysis as geographic information retrieval methods for spatially-explicit bibliometric analysis. This study is based on the analysis of data obtained from database of the Science Citation Index Expanded (SCI-Expanded and Conference Proceedings Citation Index-Science (CPCI-S. Our results revealed scientific outputs, subject categories and main journals, author productivity and geographic distribution, international productivity and collaboration, and hot issues and research trends. The growth of article outputs in artificial intelligence research has exploded since the 1990s, along with increasing collaboration, reference, and citations. Computer science and engineering were the most frequently-used subject categories in artificial intelligence studies. The top twenty productive authors are distributed in countries with a high investment of research and development. The United States has the highest number of top research institutions in artificial intelligence, producing most single-country and collaborative articles. Although there is more and more collaboration among institutions, cooperation, especially international ones, are not highly prevalent in artificial intelligence research as expected. The keyword analysis revealed interesting research preferences, confirmed that methods, models, and application are in the central position of artificial intelligence. Further, we found interesting related keywords with high co-occurrence frequencies, which have helped identify new models and application areas in recent years. Bibliometric analysis results from our study will greatly facilitate the understanding of the progress and trends in artificial intelligence, in particular, for those researchers interested in domain-specific AI-driven problem-solving. This will be

  16. Artificial Intelligence in Medicine and Radiation Oncology.

    Science.gov (United States)

    Weidlich, Vincent; Weidlich, Georg A

    2018-04-13

    Artifical Intelligence (AI) was reviewed with a focus on its potential applicability to radiation oncology. The improvement of process efficiencies and the prevention of errors were found to be the most significant contributions of AI to radiation oncology. It was found that the prevention of errors is most effective when data transfer processes were automated and operational decisions were based on logical or learned evaluations by the system. It was concluded that AI could greatly improve the efficiency and accuracy of radiation oncology operations.

  17. Artificial intelligence in nuclear reactor operation

    International Nuclear Information System (INIS)

    Da Ruan; Benitez-Read, J.S.

    2005-01-01

    Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined through a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK·CEN) and the Mexican Nuclear Centre (ININ) on AI-based intelligent control for nuclear reactor operation under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (authors)

  18. The Potential of AI Techniques for Remote Sensing

    Science.gov (United States)

    Estes, J. E.; Sailer, C. T. (Principal Investigator); Tinney, L. R.

    1984-01-01

    The current status of artificial intelligence AI technology is discussed along with imagery data management, database interrogation, and decision making. Techniques adapted from the field of artificial intelligence (AI) have significant, wide ranging impacts upon computer-assisted remote sensing analysis. AI based techniques offer a powerful and fundamentally different approach to many remote sensing tasks. In addition to computer assisted analysis, AI techniques can also aid onboard spacecraft data processing and analysis and database access and query.

  19. Artificial Intelligence approaches in hematopoietic cell transplant: A review of the current status and future directions.

    Science.gov (United States)

    Muhsen, Ibrahim N; ElHassan, Tusneem; Hashmi, Shahrukh K

    2018-06-08

    Currently, the evidence-based literature on healthcare is expanding exponentially. The opportunities provided by the advancement in artificial intelligence (AI) tools i.e. machine learning are appealing in tackling many of the current healthcare challenges. Thus, AI integration is expanding in most fields of healthcare, including the field of hematology. This study aims to review the current applications of AI in the field hematopoietic cell transplant (HCT). Literature search was done involving the following databases: Ovid-Medline including in-Process and Other Non-Indexed Citations and google scholar. The abstracts of the following professional societies: American Society of Haematology (ASH), American Society for Blood and Marrow Transplantation (ASBMT) and European Society for Blood and Marrow Transplantation (EBMT) were also screened. Literature review showed that the integration of AI in the field of HCT has grown remarkably in the last decade and confers promising avenues in diagnosis and prognosis within HCT populations targeting both pre and post-transplant challenges. Studies on AI integration in HCT have many limitations that include poorly tested algorithms, lack of generalizability and limited use of different AI tools. Machine learning techniques in HCT is an intense area of research that needs a lot of development and needs extensive support from hematology and HCT societies / organizations globally since we believe that this would be the future practice paradigm. Key words: Artificial intelligence, machine learning, hematopoietic cell transplant.

  20. Sustainable Technology Analysis of Artificial Intelligence Using Bayesian and Social Network Models

    Directory of Open Access Journals (Sweden)

    Juhwan Kim

    2018-01-01

    Full Text Available Recent developments in artificial intelligence (AI have led to a significant increase in the use of AI technologies. Many experts are researching and developing AI technologies in their respective fields, often submitting papers and patent applications as a result. In particular, owing to the characteristics of the patent system that is used to protect the exclusive rights to registered technology, patent documents contain detailed information on the developed technology. Therefore, in this study, we propose a statistical method for analyzing patent data on AI technology to improve our understanding of sustainable technology in the field of AI. We collect patent documents that are related to AI technology, and then analyze the patent data to identify sustainable AI technology. In our analysis, we develop a statistical method that combines social network analysis and Bayesian modeling. Based on the results of the proposed method, we provide a technological structure that can be applied to understand the sustainability of AI technology. To show how the proposed method can be applied to a practical problem, we apply the technological structure to a case study in order to analyze sustainable AI technology.

  1. Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.

    Science.gov (United States)

    Tang, An; Tam, Roger; Cadrin-Chênevert, Alexandre; Guest, Will; Chong, Jaron; Barfett, Joseph; Chepelev, Leonid; Cairns, Robyn; Mitchell, J Ross; Cicero, Mark D; Poudrette, Manuel Gaudreau; Jaremko, Jacob L; Reinhold, Caroline; Gallix, Benoit; Gray, Bruce; Geis, Raym

    2018-05-01

    Artificial intelligence (AI) is rapidly moving from an experimental phase to an implementation phase in many fields, including medicine. The combination of improved availability of large datasets, increasing computing power, and advances in learning algorithms has created major performance breakthroughs in the development of AI applications. In the last 5 years, AI techniques known as deep learning have delivered rapidly improving performance in image recognition, caption generation, and speech recognition. Radiology, in particular, is a prime candidate for early adoption of these techniques. It is anticipated that the implementation of AI in radiology over the next decade will significantly improve the quality, value, and depth of radiology's contribution to patient care and population health, and will revolutionize radiologists' workflows. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI working group with the mandate to discuss and deliberate on practice, policy, and patient care issues related to the introduction and implementation of AI in imaging. This white paper provides recommendations for the CAR derived from deliberations between members of the AI working group. This white paper on AI in radiology will inform CAR members and policymakers on key terminology, educational needs of members, research and development, partnerships, potential clinical applications, implementation, structure and governance, role of radiologists, and potential impact of AI on radiology in Canada. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Artificial intelligence applications to nuclear reactor diagnostics

    International Nuclear Information System (INIS)

    Lee, J.C.; Hassberger, J.A.; Wehe, D.K.

    1987-01-01

    The authors research into applications of artificial intelligence to nuclear reactor diagnostics involves three main areas. In the first area, the authors combine reactor simulation models and expert systems to diagnose the state of the plant. The second area examines ways in which the rule or knowledge base of an intelligent controller can be generated systematically from either fault trees or acquired plant data. Third, efforts are described to develop the capabilities to validate these techniques in a realistic reactor setting. The techniques are applicable to all reactor types, including fast reactors

  3. Artificial intelligence in Animal Science

    OpenAIRE

    COSTA, Ernane José Xavier

    2009-01-01

    Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja conc...

  4. DEVELOPING A HUMAN CONTROLLED MODEL FOR SAFE ARTIFICIAL INTELLIGENCE SYSTEMS

    OpenAIRE

    KÖSE, Utku

    2018-01-01

    Artificial Intelligence is known as one of the most effective research field of nowadays and the future. But rapid rise of Artificial Intelligence and its potential to solve all real world problems autonomously, it has caused also several anxieties. Some scientists think that intelligent systems can reach to a level, which is dangerous for the humankind so because of that some precautions should be taken. So, many sub-research fields like Machine Ethics or Artificial Intelligence Safety have ...

  5. ARTIFICIAL INTELLIGENCE IN DETERMINATION OF MARKETING CUSTOMER STRATEGY

    OpenAIRE

    Markić, Brano; Bijakšić, Sanja; Šantić, Marko

    2015-01-01

    Artificial intelligence is a computer-based analytical process that tends to create computational systems which we would incline to be called intelligent. Expert systems are the most important part of the artificial intelligence from economic perspective. Expert systems attempt to mimic the human thought process including reasoning and optimization. “Knowledge” is represented by a set of “if-then” rules in a form of knowledge base. The results of artificial intelligence system implementation ...

  6. ARTIFICIAL INTELLIGENCE IN DETERMINATION OF MARKETING CUSTOMER STRATEGY

    OpenAIRE

    Markić, Brano; Bijakšić, Sanja; Šantić, Marko

    2016-01-01

    Artificial intelligence is a computer-based analytical process that tends to create computational systems which we would incline to be called intelligent. Expert systems are the most important part of the artificial intelligence from economic perspective. Expert systems attempt to mimic the human thought process including reasoning and optimization. “Knowledge” is represented by a set of “if-then” rules in a form of knowledge base. The results of artificial intelligence system implementation ...

  7. Projective simulation for artificial intelligence

    Science.gov (United States)

    Briegel, Hans J.; de Las Cuevas, Gemma

    2012-05-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  8. ARTIFICIAL AND NATURAL INTELLIGENCE IN ANTHROPOGENIC EDUCATIONAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Sergey F. Sergeev

    2013-01-01

    Full Text Available In the present article we show the link between both artificial and natural intelligence and the system’s complexity during the life-cycle. Autopoetic’s type of living systems determines the differences between natural and artificial intelligence; artificial environments have an influence to the intelligence abilities development. We present the «diffusion intellect» concept where the diffusion intellect is considered as a synergistic unity of natural and artificial intellect in organized environments. 

  9. Application of Artificial Intelligence for Optimization in Pavement Management

    Directory of Open Access Journals (Sweden)

    Reus Salini

    2015-07-01

    Full Text Available Artificial intelligence (AI is a group of techniques that have quite a potential to be applied to pavement engineering and management. In this study, we developed a practical, flexible and out of the box approach to apply genetic algorithms to optimizing the budget allocation and the road maintenance strategy selection for a road network. The aim is to provide an alternative to existing software and better fit the requirements of an important number of pavement managers. To meet the objectives, a new indicator, named Road Global Value Index (RGVI, was created to contemplate the pavement condition, the traffic and the economic and political importance for each and every road section. This paper describes the approach and its components by an example confirming that genetic algorithms are very effective for the intended purpose.

  10. Application of Artificial Intelligence for Bridge Deterioration Model

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2015-01-01

    Full Text Available The deterministic bridge deterioration model updating problem is well established in bridge management, while the traditional methods and approaches for this problem require manual intervention. An artificial-intelligence-based approach was presented to self-updated parameters of the bridge deterioration model in this paper. When new information and data are collected, a posterior distribution was constructed to describe the integrated result of historical information and the new gained information according to Bayesian theorem, which was used to update model parameters. This AI-based approach is applied to the case of updating parameters of bridge deterioration model, which is the data collected from bridges of 12 districts in Shanghai from 2004 to 2013, and the results showed that it is an accurate, effective, and satisfactory approach to deal with the problem of the parameter updating without manual intervention.

  11. The Application of Artificial Intelligence to Astronomical Scheduling Problems

    Science.gov (United States)

    Johnston, Mark D.

    1993-01-01

    As artificial intelligence (AI) technology has moved from the research laboratory into more and more widespread use, one of the leading applications in astronomy has been to high-profile observation scheduling. The Spike scheduling system was developed by the Space Telescope Science Institute (STScI) for the purpose of long-range scheduling of Hubble Space Telescope (HST). Spike has been in daily operational use at STScI since well before HST launch in April 1990. The system has also been adapted to schedule other missions: one of these missions (EUVE) is currently operational, while another (ASTRO-D) will be launched in February 1993. Some other future space astronomy missions (XTE, SWAS, and AXAF) are making tentative plans to use Spike. Spike has proven to be a powerful and flexible scheduling framework with applicability to a wide variety of problems.

  12. Design of an artificial intelligence system for safety function maintenance

    International Nuclear Information System (INIS)

    Sharma, D.D.; Miller, D.W.; Chandrasekaran, B.

    1985-01-01

    The safety function (SF) maintenance concept provides a systematic approach to mitigate the consequences of an unforeseen event. Safety functions are a set of actions for mitigating or limiting consequences of a safety threatening event. The current approach to SF maintenance of selecting a success path (SP) from a library of predefined SPs is inadequate because it includes only anticipated modes of challenging an SF. To cover all possible modes of challenging an SF, the library of success paths would be extremely large and difficult to implement on any existing computer. In this paper the authors describe a method based on artificial intelligence (AI) theory of planning to synthesize an SP using available resources to satisfy a hierarchy of safety goals. The method has been applied to SF maintenance of a boiling water reactor (BWR) using data from the Perry nuclear power plant

  13. Implementing Artificial Intelligence Behaviors in a Virtual World

    Science.gov (United States)

    Krisler, Brian; Thome, Michael

    2012-01-01

    In this paper, we will present a look at the current state of the art in human-computer interface technologies, including intelligent interactive agents, natural speech interaction and gestural based interfaces. We describe our use of these technologies to implement a cost effective, immersive experience on a public region in Second Life. We provision our Artificial Agents as a German Shepherd Dog avatar with an external rules engine controlling the behavior and movement. To interact with the avatar, we implemented a natural language and gesture system allowing the human avatars to use speech and physical gestures rather than interacting via a keyboard and mouse. The result is a system that allows multiple humans to interact naturally with AI avatars by playing games such as fetch with a flying disk and even practicing obedience exercises using voice and gesture, a natural seeming day in the park.

  14. Artificial intelligence in medicine: the challenges ahead.

    Science.gov (United States)

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM must move forward with the insights that it has gained and focus on finding solutions for problems at the heart of medical practice. The growing emphasis within medicine on evidence-based practice should provide the right environment for that change.

  15. Artificial intelligence in nuclear power plants

    International Nuclear Information System (INIS)

    Haapanen, P.J.

    1990-01-01

    The IAEA Specialists' Meeting on Artificial Intelligence in Nuclear Power Plants was arranged in Helsink/Vantaa, Finland, on October 10-12, 1989, under auspices of the International Working Group of Nuclear Power Plant Control and Instrumentation of the International Atomic Energy Agency (IAEA/IWG NPPCI). Technical Research Centre of Finland together with Imatran Voima Oy and Teollisuuden Voima Oy answered for the practical arrangements of the meeting. 105 participants from 17 countries and 2 international organizations took part in the meeting and 58 papers were submitted for presentation. These papers gave a comprehensive picture of the recent status and further trends in applying the rapidly developing techniques of artificial intelligence and expert systems to improve the quality and safety in designing and using of nuclear power worldwide

  16. Rural architecture between artificial intelligence and natural intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Cennamo, M.; Palma, P. di; Ricciardelli, A. [University of Naples Frederico II (Italy). Dept. of Configurazione e Attuazione dell Architettra

    2000-02-01

    Following the field of research carried out and reported in the Second International Conference for Teachers of Architecture held in Florence on October 16, 17 and 18, 1997, which stated the central position of Architectural project in relation to Human Intelligence, Natural Intelligence and Artificial Intelligence, the present paper suggests a phase of application of the theoretical assumptions to spacial models paradigmatic of the complexity of projects and building technique, as well as of the relationship between man-made environment and natural one. Among the different typologies in architecture, this research focuses on the rural buildings in Campania, mainly on the ones in the Vesuvius area, as those are the most suitable to be studied and salvaged with the help of biology, mathematics and high engineering. (author)

  17. Synthetic biology routes to bio-artificial intelligence.

    Science.gov (United States)

    Nesbeth, Darren N; Zaikin, Alexey; Saka, Yasushi; Romano, M Carmen; Giuraniuc, Claudiu V; Kanakov, Oleg; Laptyeva, Tetyana

    2016-11-30

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). © 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

  18. Training Software in Artificial-Intelligence Computing Techniques

    Science.gov (United States)

    Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene

    2005-01-01

    The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.

  19. Artificial intelligence approach to legal reasoning

    International Nuclear Information System (INIS)

    Gardner, A.V.D.L.

    1984-01-01

    For artificial intelligence, understanding the forms of human reasoning is a central goal. Legal reasoning is a form that makes a new set of demands on artificial intelligence methods. Most importantly, a computer program that reasons about legal problems must be able to distinguish between questions it is competent to answer and questions that human lawyers could seriously argue either way. In addition, a program for analyzing legal problems should be able to use both general legal rules and decisions in past cases; and it should be able to work with technical concepts that are only partly defined and subject to shifts of meaning. Each of these requirements has wider applications in artificial intelligence, beyond the legal domain. This dissertation presents a computational framework for legal reasoning, within which such requirements can be accommodated. The development of the framework draws significantly on the philosophy of law, in which the elucidation of legal reasoning is an important topic. A key element of the framework is the legal distinction between hard cases and clear cases. In legal writing, this distinction has been taken for granted more often than it has been explored. Here, some initial heuristics are proposed by which a program might make the distinction

  20. Teachers and artificial intelligence. The Logo connection.

    Science.gov (United States)

    Merbler, J B

    1990-12-01

    This article describes a three-phase program for training special education teachers to teach Logo and artificial intelligence. Logo is derived from the LISP computer language and is relatively simple to learn and use, and it is argued that these factors make it an ideal tool for classroom experimentation in basic artificial intelligence concepts. The program trains teachers to develop simple demonstrations of artificial intelligence using Logo. The material that the teachers learn to teach is suitable as an advanced level topic for intermediate- through secondary-level students enrolled in computer competency or similar courses. The material emphasizes problem-solving and thinking skills using a nonverbal expressive medium (Logo), thus it is deemed especially appropriate for hearing-impaired children. It is also sufficiently challenging for academically talented children, whether hearing or deaf. Although the notion of teachers as programmers is controversial, Logo is relatively easy to learn, has direct implications for education, and has been found to be an excellent tool for empowerment-for both teachers and children.

  1. Artificial intelligence approach to accelerator control systems

    International Nuclear Information System (INIS)

    Schultz, D.E.; Hurd, J.W.; Brown, S.K.

    1987-01-01

    An experiment was recently started at LAMPF to evaluate the power and limitations of using artificial intelligence techniques to solve problems in accelerator control and operation. A knowledge base was developed to describe the characteristics and the relationships of the first 30 devices in the LAMPF H+ beam line. Each device was categorized and pertinent attributes for each category defined. Specific values were assigned in the knowledge base to represent each actual device. Relationships between devices are modeled using the artificial intelligence techniques of rules, active values, and object-oriented methods. This symbolic model, built using the Knowledge Engineering Environment (KEE) system, provides a framework for analyzing faults, tutoring trainee operators, and offering suggestions to assist in beam tuning. Based on information provided by the domain expert responsible for tuning this portion of the beam line, additional rules were written to describe how he tunes, how he analyzes what is actually happening, and how he deals with failures. Initial results have shown that artificial intelligence techniques can be a useful adjunct to traditional methods of numerical simulation. Successful and efficient operation of future accelerators may depend on the proper merging of symbolic reasoning and conventional numerical control algorithms

  2. Application of artificial intelligence in Geodesy - A review of theoretical foundations and practical examples

    Science.gov (United States)

    Reiterer, Alexander; Egly, Uwe; Vicovac, Tanja; Mai, Enrico; Moafipoor, Shahram; Grejner-Brzezinska, Dorota A.; Toth, Charles K.

    2010-12-01

    Artificial Intelligence (AI) is one of the key technologies in many of today's novel applications. It is used to add knowledge and reasoning to systems. This paper illustrates a review of AI methods including examples of their practical application in Geodesy like data analysis, deformation analysis, navigation, network adjustment, and optimization of complex measurement procedures. We focus on three examples, namely, a geo-risk assessment system supported by a knowledge-base, an intelligent dead reckoning personal navigator, and evolutionary strategies for the determination of Earth gravity field parameters. Some of the authors are members of IAG Sub-Commission 4.2 - Working Group 4.2.3, which has the main goal to study and report on the application of AI in Engineering Geodesy.

  3. Artificial Intelligence: An Analysis of Potential Applications to Training, Performance Measurement, and Job Performance Aiding. Interim Report for Period September 1982-July 1983.

    Science.gov (United States)

    Richardson, J. Jeffrey

    This paper is part of an Air Force planning effort to develop a research, development, and applications program for the use of artificial intelligence (AI) technology in three target areas: training, performance measurement, and job performance aiding. The paper is organized in five sections that (1) introduce the reader to AI and those subfields…

  4. Application of artificial intelligence to forecast hydrocarbon production from shales

    Directory of Open Access Journals (Sweden)

    Palash Panja

    2018-03-01

    Full Text Available Artificial intelligence (AI methods and applications have recently gained a great deal of attention in many areas, including fields of mathematics, neuroscience, economics, engineering, linguistics, gaming, and many others. This is due to the surge of innovative and sophisticated AI techniques applications to highly complex problems as well as the powerful new developments in high speed computing. Various applications of AI in everyday life include machine learning, pattern recognition, robotics, data processing and analysis, etc. The oil and gas industry is not behind either, in fact, AI techniques have recently been applied to estimate PVT properties, optimize production, predict recoverable hydrocarbons, optimize well placement using pattern recognition, optimize hydraulic fracture design, and to aid in reservoir characterization efforts. In this study, three different AI models are trained and used to forecast hydrocarbon production from hydraulically fractured wells. Two vastly used artificial intelligence methods, namely the Least Square Support Vector Machine (LSSVM and the Artificial Neural Networks (ANN, are compared to a traditional curve fitting method known as Response Surface Model (RSM using second order polynomial equations to determine production from shales. The objective of this work is to further explore the potential of AI in the oil and gas industry. Eight parameters are considered as input factors to build the model: reservoir permeability, initial dissolved gas-oil ratio, rock compressibility, gas relative permeability, slope of gas oil ratio, initial reservoir pressure, flowing bottom hole pressure, and hydraulic fracture spacing. The range of values used for these parameters resemble real field scenarios from prolific shale plays such as the Eagle Ford, Bakken, and the Niobrara in the United States. Production data consists of oil recovery factor and produced gas-oil ratio (GOR generated from a generic hydraulically

  5. State-of-the-art review of some artificial intelligence applications in pile foundations

    Directory of Open Access Journals (Sweden)

    Mohamed A. Shahin

    2016-01-01

    Full Text Available Geotechnical engineering deals with materials (e.g. soil and rock that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these materials. Modeling the behavior of such materials in geotechnical engineering applications is complex and sometimes beyond the ability of most traditional forms of physically-based engineering methods. Artificial intelligence (AI is becoming more popular and particularly amenable to modeling the complex behavior of most geotechnical engineering applications because it has demonstrated superior predictive ability compared to traditional methods. This paper provides state-of-the-art review of some selected AI techniques and their applications in pile foundations, and presents the salient features associated with the modeling development of these AI techniques. The paper also discusses the strength and limitations of the selected AI techniques compared to other available modeling approaches.

  6. Artificial intelligence technology assessment for the US Army Depot System Command

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, K A

    1991-07-01

    This assessment of artificial intelligence (AI) has been prepared for the US Army's Depot System Command (DESCOM) by Pacific Northwest Laboratory. The report describes several of the more promising AI technologies, focusing primarily on knowledge-based systems because they have been more successful in commercial applications than any other AI technique. The report also identifies potential Depot applications in the areas of procedural support, scheduling and planning, automated inspection, training, diagnostics, and robotic systems. One of the principal objectives of the report is to help decisionmakers within DESCOM to evaluate AI as a possible tool for solving individual depot problems. The report identifies a number of factors that should be considered in such evaluations. 22 refs.

  7. State-of-the-art review of some artificial intelligence applications in pile foundations

    Institute of Scientific and Technical Information of China (English)

    Mohamed A. Shahin

    2016-01-01

    Geotechnical engineering deals with materials (e.g. soil and rock) that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these materials. Modeling the behavior of such materials in geotechnical engineering applications is complex and sometimes beyond the ability of most traditional forms of physically-based engineering methods. Artificial intelligence (AI) is becoming more popular and particularly amenable to modeling the complex behavior of most geotechnical engineering applications because it has demonstrated superior predictive ability compared to traditional methods. This paper provides state-of-the-art review of some selected AI techniques and their applications in pile foundations, and presents the salient features associated with the modeling development of these AI techniques. The paper also discusses the strength and limitations of the selected AI techniques compared to other available modeling approaches.

  8. Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?

    Science.gov (United States)

    Thompson, Reid F; Valdes, Gilmer; Fuller, Clifton D; Carpenter, Colin M; Morin, Olivier; Aneja, Sanjay; Lindsay, William D; Aerts, Hugo J W L; Agrimson, Barbara; Deville, Curtiland; Rosenthal, Seth A; Yu, James B; Thomas, Charles R

    2018-06-12

    Artificial intelligence (AI) is emerging as a technology with the power to transform established industries, and with applications from automated manufacturing to advertising and facial recognition to fully autonomous transportation. Advances in each of these domains have led some to call AI the "fourth" industrial revolution [1]. In healthcare, AI is emerging as both a productive and disruptive force across many disciplines. This is perhaps most evident in Diagnostic Radiology and Pathology, specialties largely built around the processing and complex interpretation of medical images, where the role of AI is increasingly seen as both a boon and a threat. In Radiation Oncology as well, AI seems poised to reshape the specialty in significant ways, though the impact of AI has been relatively limited at present, and may rightly seem more distant to many, given the predominantly interpersonal and complex interventional nature of the specialty. In this overview, we will explore the current state and anticipated future impact of AI on Radiation Oncology, in detail, focusing on key topics from multiple stakeholder perspectives, as well as the role our specialty may play in helping to shape the future of AI within the larger spectrum of medicine. Published by Elsevier B.V.

  9. A brief overview of artificial intelligence in South Africa

    CSIR Research Space (South Africa)

    Ferrein, A

    2013-10-01

    Full Text Available One of the consequences of the growth in AI research in South Africa in recent years is the establishment of a number of research hubs involved in AI activities ranging from mobile robotics and computational intelligence to knowledge representation...

  10. The application of hybrid artificial intelligence systems for forecasting

    Science.gov (United States)

    Lees, Brian; Corchado, Juan

    1999-03-01

    The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.

  11. The Birth of Artificial Intelligence: First Conference on Artificial Intelligence in Paris in 1951?

    OpenAIRE

    Bruderer , Herbert

    2016-01-01

    International audience; The 1956 Dartmouth conference is often considered as the cradle of artificial intelligence. There is a controversy on its origin. Some historians of computing believe that Turing or Zuse were the fathers of machine intelligence. However, the first working chess-playing automaton was developed by Torres Quevedo by 1912. Moreover, there was a large and important (but forgotten) European conference on computing and human thinking in Paris in 1951.

  12. Genetic algorithms in teaching artificial intelligence (automated generation of specific algebras)

    Science.gov (United States)

    Habiballa, Hashim; Jendryscik, Radek

    2017-11-01

    The problem of teaching essential Artificial Intelligence (AI) methods is an important task for an educator in the branch of soft-computing. The key focus is often given to proper understanding of the principle of AI methods in two essential points - why we use soft-computing methods at all and how we apply these methods to generate reasonable results in sensible time. We present one interesting problem solved in the non-educational research concerning automated generation of specific algebras in the huge search space. We emphasize above mentioned points as an educational case study of an interesting problem in automated generation of specific algebras.

  13. Investigating AI with Basic and Logo. Teaching Your Computer to Be Intelligent.

    Science.gov (United States)

    Mandell, Alan; Lucking, Robert

    1988-01-01

    Discusses artificial intelligence, its definitions, and potential applications. Provides listings of Logo and BASIC versions for programs along with REM statements needed to make modifications for use with Apple computers. (RT)

  14. Artificial Intelligence Framework for Simulating Clinical Decision-Making: A Markov Decision Process Approach

    OpenAIRE

    Bennett, Casey C.; Hauser, Kris

    2013-01-01

    In the modern healthcare system, rapidly expanding costs/complexity, the growing myriad of treatment options, and exploding information streams that often do not effectively reach the front lines hinder the ability to choose optimal treatment decisions over time. The goal in this paper is to develop a general purpose (non-disease-specific) computational/artificial intelligence (AI) framework to address these challenges. This serves two potential functions: 1) a simulation environment for expl...

  15. Performance of Artificial Intelligence Workloads on the Intel Core 2 Duo Series Desktop Processors

    OpenAIRE

    Abdul Kareem PARCHUR; Kuppangari Krishna RAO; Fazal NOORBASHA; Ram Asaray SINGH

    2010-01-01

    As the processor architecture becomes more advanced, Intel introduced its Intel Core 2 Duo series processors. Performance impact on Intel Core 2 Duo processors are analyzed using SPEC CPU INT 2006 performance numbers. This paper studied the behavior of Artificial Intelligence (AI) benchmarks on Intel Core 2 Duo series processors. Moreover, we estimated the task completion time (TCT) @1 GHz, @2 GHz and @3 GHz Intel Core 2 Duo series processors frequency. Our results show the performance scalab...

  16. Artificial intelligence and distance learning philosophy in support of PfP mandate

    OpenAIRE

    Antoliš, Krunoslav

    2003-01-01

    Computers have long been utilised in the legal environment. The main use of computers however, has merely been to automate office tasks. More exciting is the prospect of using artificial intelligence (AI) technology to create computers that can emulate the substantive legal jobs performed by lawyers, to create computers that can autonomously reason with the law to determine legal solutions, for example: structuring and support of Partnership for Peace (PfP) mandate. Such attempts have not bee...

  17. Event classification and optimization methods using artificial intelligence and other relevant techniques: Sharing the experiences

    Science.gov (United States)

    Mohamed, Abdul Aziz; Hasan, Abu Bakar; Ghazali, Abu Bakar Mhd.

    2017-01-01

    Classification of large data into respected classes or groups could be carried out with the help of artificial intelligence (AI) tools readily available in the market. To get the optimum or best results, optimization tool could be applied on those data. Classification and optimization have been used by researchers throughout their works, and the outcomes were very encouraging indeed. Here, the authors are trying to share what they have experienced in three different areas of applied research.

  18. BRAIN. Broad Research in Artificial Intelligence and Neuroscience-Are We Safe Enough in the Future of Artificial Intelligence? A Discussion on Machine Ethics and Artificial Intelligence Safety

    OpenAIRE

    Utku Köse

    2018-01-01

    Nowadays, there is a serious anxiety on the existence of dangerous intelligent systems and it is not just a science-fiction idea of evil machines like the ones in well-known Terminator movie or any other movies including intelligent robots – machines threatening the existence of humankind. So, there is a great interest in some alternative research works under the topics of Machine Ethics, Artificial Intelligence Safety and the associated research topics like Future of Artificial I...

  19. Artificial Intelligence-Based Semantic Internet of Things in a User-Centric Smart City

    Science.gov (United States)

    Guo, Kun; Lu, Yueming; Gao, Hui; Cao, Ruohan

    2018-01-01

    Smart city (SC) technologies can provide appropriate services according to citizens’ demands. One of the key enablers in a SC is the Internet of Things (IoT) technology, which enables a massive number of devices to connect with each other. However, these devices usually come from different manufacturers with different product standards, which confront interactive control problems. Moreover, these devices will produce large amounts of data, and efficiently analyzing these data for intelligent services. In this paper, we propose a novel artificial intelligence-based semantic IoT (AI-SIoT) hybrid service architecture to integrate heterogeneous IoT devices to support intelligent services. In particular, the proposed architecture is empowered by semantic and AI technologies, which enable flexible connections among heterogeneous devices. The AI technology can support very implement efficient data analysis and make accurate decisions on service provisions in various kinds. Furthermore, we also present several practical use cases of the proposed AI-SIoT architecture and the opportunities and challenges to implement the proposed AI-SIoT for future SCs are also discussed. PMID:29701679

  20. Artificial Intelligence-Based Semantic Internet of Things in a User-Centric Smart City

    Directory of Open Access Journals (Sweden)

    Kun Guo

    2018-04-01

    Full Text Available Smart city (SC technologies can provide appropriate services according to citizens’ demands. One of the key enablers in a SC is the Internet of Things (IoT technology, which enables a massive number of devices to connect with each other. However, these devices usually come from different manufacturers with different product standards, which confront interactive control problems. Moreover, these devices will produce large amounts of data, and efficiently analyzing these data for intelligent services. In this paper, we propose a novel artificial intelligence-based semantic IoT (AI-SIoT hybrid service architecture to integrate heterogeneous IoT devices to support intelligent services. In particular, the proposed architecture is empowered by semantic and AI technologies, which enable flexible connections among heterogeneous devices. The AI technology can support very implement efficient data analysis and make accurate decisions on service provisions in various kinds. Furthermore, we also present several practical use cases of the proposed AI-SIoT architecture and the opportunities and challenges to implement the proposed AI-SIoT for future SCs are also discussed.

  1. Artificial Intelligence-Based Semantic Internet of Things in a User-Centric Smart City.

    Science.gov (United States)

    Guo, Kun; Lu, Yueming; Gao, Hui; Cao, Ruohan

    2018-04-26

    Smart city (SC) technologies can provide appropriate services according to citizens’ demands. One of the key enablers in a SC is the Internet of Things (IoT) technology, which enables a massive number of devices to connect with each other. However, these devices usually come from different manufacturers with different product standards, which confront interactive control problems. Moreover, these devices will produce large amounts of data, and efficiently analyzing these data for intelligent services. In this paper, we propose a novel artificial intelligence-based semantic IoT (AI-SIoT) hybrid service architecture to integrate heterogeneous IoT devices to support intelligent services. In particular, the proposed architecture is empowered by semantic and AI technologies, which enable flexible connections among heterogeneous devices. The AI technology can support very implement efficient data analysis and make accurate decisions on service provisions in various kinds. Furthermore, we also present several practical use cases of the proposed AI-SIoT architecture and the opportunities and challenges to implement the proposed AI-SIoT for future SCs are also discussed.

  2. Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.

    Science.gov (United States)

    Sniecinski, Irena; Seghatchian, Jerard

    2018-05-09

    Artificial Intelligence (AI) reflects the intelligence exhibited by machines and software. It is a highly desirable academic field of many current fields of studies. Leading AI researchers describe the field as "the study and design of intelligent agents". McCarthy invented this term in 1955 and defined it as "the science and engineering of making intelligent machines". The central goals of AI research are reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects. In fact the multidisplinary AI field is considered to be rather interdisciplinary covering numerous number of sciences and professions, including computer science, psychology, linguistics, philosophy and neurosciences. The field was founded on the claim that a central intellectual property of humans, intelligence-the sapience of Homo Sapiens "can be so precisely described that a machine can be made to simulate it". This raises philosophical issues about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence. Artificial Intelligence has been the subject of tremendous optimism but has also suffered stunning setbacks. The goal of this narrative is to review the potential use of AI approaches and their integration into pediatric cellular therapies and regenerative medicine. Emphasis is placed on recognition and application of AI techniques in the development of predictive models for personalized treatments with engineered stem cells, immune cells and regenerated tissues in adults and children. These intelligent machines could dissect the whole genome and isolate the immune particularities of individual patient's disease in a matter of minutes and create the treatment that is customized to patient's genetic specificity and immune system capability. AI techniques could be used for optimization of clinical trials of innovative stem cell and gene therapies in pediatric patients

  3. Artificial intelligence applications to design validation and sneak function analysis

    International Nuclear Information System (INIS)

    Stratton, R.C.

    1985-01-01

    An objective of the US space reactor program is to design systems with high reliability and safety of control over long operating lifetimes. Argonne National Laboratory (ANL) is a participant in the National Man-Machine Integration (MMI) program for Liquid Metal Fast Breeder Reactors (LMFBR). A purpose of this program is to promote the development of concepts and technologies that enhance the operational safety and reliability of fast-breeder reactors. Much of the work is directly applicable to the space reactor program. This paper reports on one of the MMI projects being developed by ANL. The project reported pertains to an automated system that demonstrates the use of artificial intelligence (AI) for design validation (DA) and sneak function analysis (SFA). The AI system models the design specification and the physical design of the cooling process assigned to the Argon Cooling System (ACS) at Experimental Breeder Reactor II (EBR-II). The models are developed using heuristic knowledge and natural laws. 13 refs

  4. Application of artificial intelligence to motor operated valve testing

    International Nuclear Information System (INIS)

    Bogard, T.; Bednar, F.; Matty, T.; Kent, R.

    1989-01-01

    Improper valve maintenance can be a significant roadblock to successful power plant operation. There have been events during which motor operated valves failed on demand due to improper switch settings. For nuclear electric generating stations, these events have led to regulatory requirements such as NRC Bulletin 85-03 and NRC Bulletin 89-10 Safety Related Motor Operated Valve Testing and Surveillance which imposes strict testing and programmatic requirements on motor operated valves (MOV). Part of the requirements include performing diagnostic testing to verify stem thrust loads and switch settings. Diagnostic equipment must be non-intrusive, minimize valve disassembly, and reduce plant refueling critical path time for testing. In this paper an on-line diagnostic system using sensors to measure stem forces, motor current, and valve position, and a portable system employing these same sensor inputs in addition to torque, limit and torque bypass switch inputs is described. Sophisticated graphic software is employed to display data or trace information. A rule based artificial intelligence (AI) system is used to analyze sensor outputs. Objectives for valve diagnostics, sample AI rules, results of actual field testing, and system software/hardware architecture are presented

  5. Inteligência artificial aplicada à Zootecnia Artificial intelligence in Animal Science

    Directory of Open Access Journals (Sweden)

    Ernane José Xavier Costa

    2009-07-01

    Full Text Available Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11 neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.Biological systems are surprising flexible in processing information in the real world. Some biological organisms have a central unit processing named brain. The human's brain, consisting of 10(11 neurons, realizes intelligent information processing based on exact and commonsense reasoning. Artificial intelligence (AI has been trying to implement biological intelligence in computers in various ways, but is still far from real one. Therefore, there are approaches like Symbolic AI, Artificial Neural Network and Fuzzy system that partially successful in implementing heuristic from biological intelligence. Many recent applications of these approaches show an increased interest in animal science research. The main goal of this article is to explain the principles of heuristic problem-solving approach and to demonstrate how they can be applied to building knowledge-based systems for animal science problem solving.

  6. EU copyright protection of works created by artificial intelligence systems

    OpenAIRE

    Bøhler, Helene Margrethe

    2017-01-01

    This thesis is concerned with copyright regulation of works created by artificial intelligence systems. The rapid advances in artificial intelligence are calling into question some of the fundamental assumptions upon which intellectual property law rests. Currently, the European framework of copyright law does not take non-human innovation into account. Meanwhile, advances in artificial intelligence are quickly making machine-generation of creative works a reality. Institutions of the Europea...

  7. AI 3D Cybug Gaming

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  8. How People Interact with Technology based on Natural and Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Vasile MAZILESCU

    2017-04-01

    Full Text Available This paper aims to analyse the different forms of intelligence within organizations in a systemic and inclusive vision, in order to design an integrated environment based on Artificial Intelligence (AI and Collective Intelligence (CI. This way we effectively shift the classical approaches of connecting people with people using collaboration tools (which allow people to work together, such as videoconferencing or email, groupware in virtual space, forums, workflow, of connecting people with a series of content management knowledge (taxonomies and documents classification, ontologies or thesauri, search engines, portals, to the current approaches of connecting people on the use (automatic of operational knowledge to solve problems and make decisions based on intellectual cooperation. Few technologies have the big potential to review how we live, move, and work. Artificial intelligence (AI is nowdays equivalent of electricity and the Internet. AI is expected to bring massive shifts in how people perceive and interact with technology, with machines performing a wider range of tasks, in many cases doing a better job than humans.

  9. A development framework for distributed artificial intelligence

    Science.gov (United States)

    Adler, Richard M.; Cottman, Bruce H.

    1989-01-01

    The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.

  10. Harnessing Artificial Intelligence the European Way

    OpenAIRE

    Djeffal, Christian

    2018-01-01

    Will 10 April 2018 be remembered by many as the day of Mark Zuckerberg’s testimony before the US Senate? The hearing was covered by the media in all aspects down to the tie he was wearing. But that was not the only important event taking place on that day, and maybe not even the most important one: I am talking about the Declaration on Cooperation in Artificial Intelligence, signed on the same day but hardly noticed. And yet its impact in the long term might exceed that of the current scandal...

  11. Markov decision processes in artificial intelligence

    CERN Document Server

    Sigaud, Olivier

    2013-01-01

    Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustr

  12. Optimizing radiologic workup: An artificial intelligence approach

    International Nuclear Information System (INIS)

    Swett, H.A.; Rothschild, M.; Weltin, G.G.; Fisher, P.R.; Miller, P.L.

    1987-01-01

    The increasing complexity of diagnostic imaging is presenting an ever-expanding variety of radiologic test options to referring clinicians, making it more difficult for them to plan efficient workup. Diagnosis-oriented reimbursement systems are providing new incentives for hospitals and radiologists to use imaging modalities judiciously. This paper describes DxCON, a developmental artificial intelligence-based computer system, which gives advice to physicians about the optimum sequencing of radiologic tests. DxCON analyzes a physician's proposed workup plan and discusses its strengths and weaknesses. The domain chosen for this research is the imaging workup of obstructive jaundice

  13. Human-Level Artificial Intelligence? Be Serious!

    OpenAIRE

    Nilsson, Nils J.

    2005-01-01

    I claim that achieving real human-level artificial intelligence would necessarily imply that most of the tasks that humans perform for pay could be automated. Rather than work toward this goal of automation by building special-purpose systems, I argue for the development of general-purpose, educable systems that can learn and be taught to perform any of the thousands of jobs that humans can perform. Joining others who have made similar proposals, I advocate beginning with a system that has mi...

  14. Probabilistic machine learning and artificial intelligence.

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  15. Probabilistic machine learning and artificial intelligence

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  16. Quantum neuromorphic hardware for quantum artificial intelligence

    Science.gov (United States)

    Prati, Enrico

    2017-08-01

    The development of machine learning methods based on deep learning boosted the field of artificial intelligence towards unprecedented achievements and application in several fields. Such prominent results were made in parallel with the first successful demonstrations of fault tolerant hardware for quantum information processing. To which extent deep learning can take advantage of the existence of a hardware based on qubits behaving as a universal quantum computer is an open question under investigation. Here I review the convergence between the two fields towards implementation of advanced quantum algorithms, including quantum deep learning.

  17. Artificial intelligence applied to process signal analysis

    Science.gov (United States)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  18. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    Directory of Open Access Journals (Sweden)

    Jeremy Straub

    2013-05-01

    Full Text Available An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (perhaps ensuring that a set of foreseeable conditions trigger an appropriate response, this may be insufficient to fully characterize and validate safe system performance. An approach to validating the performance of an artificial intelligence system using a simple artificial intelligence test case producer (AITCP is presented. The AITCP allows the creation and simulation of prospective operating scenarios at a rate far exceeding that possible by human testers. Four scenarios for testing an autonomous navigation control system are presented: single actor in two-dimensional space, multiple actors in two-dimensional space, single actor in three-dimensional space, and multiple actors in three-dimensional space. The utility of using the AITCP is compared to that of human testers in each of these scenarios.

  19. A Progress Report on Artificial Intelligence: Hospital Applications and a Review of the Artificial Intelligence Marketplace

    OpenAIRE

    Brenkus, Lawrence M.

    1984-01-01

    Artificial intelligence applications are finally beginning to move from the university research laboratory into commercial use. Before the end of the century, this new computer technology will have profound effects on our work, economy, and lives. At present, relatively few products have appeared in the hospital, but we can anticipate significant product offerings in instrumentation and affecting hospital administration within 5 years.

  20. Artificial intelligence model for sustain ability measurement

    International Nuclear Information System (INIS)

    Navickiene, R.; Navickas, K.

    2012-01-01

    The article analyses the main dimensions of organizational sustain ability, their possible integrations into artificial neural network. In this article authors performing analyses of organizational internal and external environments, their possible correlations with 4 components of sustain ability, and the principal determination models for sustain ability of organizations. Based on the general principles of sustainable development organizations, a artificial intelligence model for the determination of organizational sustain ability has been developed. The use of self-organizing neural networks allows the identification of the organizational sustain ability and the endeavour to explore vital, social, antropogenical and economical efficiency. The determination of the forest enterprise sustain ability is expected to help better manage the sustain ability. (Authors)

  1. Accelerating artificial intelligence with reconfigurable computing

    Science.gov (United States)

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  2. Developing and using artificial intelligence related to nuclear energy in Romania

    International Nuclear Information System (INIS)

    Ion, R.

    1995-01-01

    The artificial intelligence (AI) (including Expert Systems (ES), its most important branch) could have a certain place in the future developing of nuclear energy with impact on decision aids techniques and support systems, especially for nuclear safety and radiation protection area. First steps -some based on the Canadian experience - were already done in Romania, in developing AI techniques related to nuclear energy. Newcomers are recommended to start with modest and isolate problems in order to build up the necessary hand-on experience. The moment of the large scale AI implementation in the nuclear energy field will be decided by the balance between conventional computing and Ai computing and also between the advantages and disadvantages of AI. In this frame, the opportunity for research developing and using AI in the nuclear energy field is inherent and must be sustained by the research, design and plant operation authorities and also by the high education universities which are recommended to focus their interest towards the AI field for the next specialists in nuclear energy. (Author) 2 Figs., 2 Tabs., 7 Refs

  3. Applications of artificial intelligence in the U.S. nuclear industry

    International Nuclear Information System (INIS)

    Uhring, R.E.

    1987-01-01

    In the United States, the introduction of artificial intelligence (AI) into use in the nuclear power field is being carried out by a wide spectrum of organizations (i.e., nuclear equipment vendors, architect-engineer firms, universities, national laboratories, federal agencies, the electric utility industry, and small entrepreneurial groups). The most coherent of these efforts is an Electric Power Research Institute program to demonstrate the usefulness of AI in nuclear power plants (including augmenting plant automation) and an agreement with NASA to transfer the technology of their multi-year AI Core Technology in Systems Autonomy to the nuclear power industry. A few vendors are offering commercial AI products that reduce the burden on reactor operators during both normal and abnormal operation. Several AI programs at universities and national laboratories have automation as their primary focus, and individual AI projects have been initiated under the Small Business Innovative Research Program. The fundamental and synergistic relationship between training and expert systems supports the use of AI in the training of nuclear personnel

  4. Application of artificial intelligence to the management of urological cancer.

    Science.gov (United States)

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  5. Evolvable mathematical models: A new artificial Intelligence paradigm

    Science.gov (United States)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  6. Marine litter prediction by artificial intelligence

    International Nuclear Information System (INIS)

    Balas, Can Elmar; Ergin, Aysen; Williams, Allan T.; Koc, Levent

    2004-01-01

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems

  7. Artificial intelligence analysis of paraspinal power spectra.

    Science.gov (United States)

    Oliver, C W; Atsma, W J

    1996-10-01

    OBJECTIVE: As an aid to discrimination of sufferers with back pain an artificial intelligence neural network was constructed to differentiate paraspinal power spectra. DESIGN: Clinical investigation using surface electromyography. METHOD: The surface electromyogram power spectra from 60 subjects, 33 non-back-pain sufferers and 27 chronic back pain sufferers were used to construct a back propagation neural network that was then tested. Subjects were placed on a test frame in 30 degrees of lumbar forward flexion. An isometric load of two-thirds maximum voluntary contraction was held constant for 30 s whilst surface electromyograms were recorded at the level of the L(4-5). Paraspinal power spectra were calculated and loaded into the input layer of a three-layer back propagation network. The neural network classified the spectra into normal or back pain type. RESULTS: The back propagation neural was shown to have satisfactory convergence with a specificity of 79% and a sensitivity of 80%. CONCLUSIONS: Artificial intelligence neural networks appear to be a useful method of differentiating paraspinal power spectra in back-pain sufferers.

  8. Predicting asthma exacerbations using artificial intelligence.

    Science.gov (United States)

    Finkelstein, Joseph; Wood, Jeffrey

    2013-01-01

    Modern telemonitoring systems identify a serious patient deterioration when it already occurred. It would be much more beneficial if the upcoming clinical deterioration were identified ahead of time even before a patient actually experiences it. The goal of this study was to assess artificial intelligence approaches which potentially can be used in telemonitoring systems for advance prediction of changes in disease severity before they actually occur. The study dataset was based on daily self-reports submitted by 26 adult asthma patients during home telemonitoring consisting of 7001 records. Two classification algorithms were employed for building predictive models: naïve Bayesian classifier and support vector machines. Using a 7-day window, a support vector machine was able to predict asthma exacerbation to occur on the day 8 with the accuracy of 0.80, sensitivity of 0.84 and specificity of 0.80. Our study showed that methods of artificial intelligence have significant potential in developing individualized decision support for chronic disease telemonitoring systems.

  9. Research in artificial intelligence for nuclear facilities

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1990-01-01

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, artificial intelligence can increase efficiency and effectiveness in a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) and in research facility experiments. Recent work at the University of Tennessee has demonstrated the feasibility of using neural networks to identify six different transients introduced into the simulation of a steam generator of a nuclear power plant. This work is now being extended to utilize data from a nuclear power plant training simulator. In one configuration, the inputs to the neural network are a subset of the quantities that are typical of those available from the safety parameter display system. The outputs of the network represent the various states of the plant (e.g., normal operation, coolant leakage, inadequate core flow, excessive peak fuel temperature, etc.). Training of the neural network is performed by introducing various faults or conditions to be diagnosed into the simulator. The goal of this work is to demonstrate a neural network diagnostic system that could provide advice to the operators in accordance with the emergency operating procedures

  10. Marine litter prediction by artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Balas, Can Elmar; Ergin, Aysen; Williams, Allan T.; Koc, Levent

    2004-03-01

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems.

  11. Artificial intelligence for analyzing orthopedic trauma radiographs.

    Science.gov (United States)

    Olczak, Jakub; Fahlberg, Niklas; Maki, Atsuto; Razavian, Ali Sharif; Jilert, Anthony; Stark, André; Sköldenberg, Olof; Gordon, Max

    2017-12-01

    Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.

  12. An analysis of the application of AI to the development of intelligent aids for flight crew tasks

    Science.gov (United States)

    Baron, S.; Feehrer, C.

    1985-01-01

    This report presents the results of a study aimed at developing a basis for applying artificial intelligence to the flight deck environment of commercial transport aircraft. In particular, the study was comprised of four tasks: (1) analysis of flight crew tasks, (2) survey of the state-of-the-art of relevant artificial intelligence areas, (3) identification of human factors issues relevant to intelligent cockpit aids, and (4) identification of artificial intelligence areas requiring further research.

  13. PLANNING IN ARTIFICIAL INTELLIGENCE AND ROBOTICS (PAIR

    Directory of Open Access Journals (Sweden)

    Editorial, Foreword

    2016-11-01

    Full Text Available September 18th, 2016Deggendorf, Germanyhttp://robotics.fel.cvut.cz/pair16/Organized by: Artificial Intelligence Center Department of Computer Science Faculty of Electrical Engineering Czech Technical University in PragueTechnicka 2, Prague 6, 166 27, Czech RepublicGuest editors:Jan Faigl (Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in PragueJiří Vokřínek (Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in PragueScientific comittee:D. Belter (Poznań University of Technology, PolandW. Dorner (Technische Hochschule Deggendorf, GermanyJ. Faigl (Czech Technical University in PragueT. Krajník (University of Lincoln, United KingdomA. Komenda (Czech Technical University in PragueG. Kupris (Technische Hochschule Deggendorf, GermanyM. Rollo (Czech Technical University in PragueM. Saska (Czech Technical University in PragueJ. Vokřínek (Czech Technical University in PragueV. Vonásek (Czech Technical University in PragueK. Walas (Poznań University of Technology, Poland Foreword:The third year of the student conference on “Planning in Artificial Intelligence and Robotics” (PAIR continues in joining young researchers and students interested in robotics and artificial intelligence. In 2016, we follow the schema of the last year as a joint event with the RoboTour competition in Deggendorf, Germany. Thanks to the great collaboration with Gerald Kupris and Wolfgang Donner from Technische Hochschule Deggendorf and support from Czech Technical University under project No. SVK 26/16/F3 and Bayerisches Staatsministerium der Finanzen, für Landesentwicklung und Heimat, we have been able to provide accommodations and travel support to participants and an invited speaker. Fourteen papers have accepted and listed in the conference program. The papers have been authored by students from Central Europe

  14. Applications of artificial intelligence, including expert systems

    International Nuclear Information System (INIS)

    Abbott, M.B.

    1989-01-01

    When Artificial Intelligence is applied to a complex physical system like a nuclear plant it is useful to distinguish between two rather distinct and different intelligent views of such a plant. The first view may be characterised as ''the designer's view''. This is the view of the plant as it was originally conceived and designed; it is essentially a once-and-for-all static view, corresponding to the implicit assumption of an ''ageless plant'', or at most a plant which ages in a preconceived, preset manner. The second view, which may be characterised as ''the operators view'', has to do more with a real-world, ageing plant. It is a more dynamic view, which sees the ageing process as one in which unforeseen, and possibly unforeseeable events may occur at equally unforeseen, and possibly unforeseeable times. The first view is predominantly a way of thinking about the plant, while the second is very often more a way of feeling about it. It should be emphasized that both ways are ways of intelligence. (author)

  15. Acquaintance to Artificial Neural Networks and use of artificial intelligence as a diagnostic tool for tuberculosis: A review.

    Science.gov (United States)

    Dande, Payal; Samant, Purva

    2018-01-01

    Tuberculosis [TB] has afflicted numerous nations in the world. As per a report by the World Health Organization [WHO], an estimated 1.4 million TB deaths in 2015 and an additional 0.4 million deaths resulting from TB disease among people living with HIV, were observed. Most of the TB deaths can be prevented if it is detected at an early stage. The existing processes of diagnosis like blood tests or sputum tests are not only tedious but also take a long time for analysis and cannot differentiate between different drug resistant stages of TB. The need to find newer prompt methods for disease detection has been aided by the latest Artificial Intelligence [AI] tools. Artificial Neural Network [ANN] is one of the important tools that is being used widely in diagnosis and evaluation of medical conditions. This review aims at providing brief introduction to various AI tools that are used in TB detection and gives a detailed description about the utilization of ANN as an efficient diagnostic technique. The paper also provides a critical assessment of ANN and the existing techniques for their diagnosis of TB. Researchers and Practitioners in the field are looking forward to use ANN and other upcoming AI tools such as Fuzzy-logic, genetic algorithms and artificial intelligence simulation as a promising current and future technology tools towards tackling the global menace of Tuberculosis. Latest advancements in the diagnostic field include the combined use of ANN with various other AI tools like the Fuzzy-logic, which has led to an increase in the efficacy and specificity of the diagnostic techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  17. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  18. Expertise, Task Complexity, and Artificial Intelligence: A Conceptual Framework.

    Science.gov (United States)

    Buckland, Michael K.; Florian, Doris

    1991-01-01

    Examines the relationship between users' expertise, task complexity of information system use, and artificial intelligence to provide the basis for a conceptual framework for considering the role that artificial intelligence might play in information systems. Cognitive and conceptual models are discussed, and cost effectiveness is considered. (27…

  19. A critique of artificial intelligence | Airoboman | Sophia: An African ...

    African Journals Online (AJOL)

    ... for mental attribution to further buttress the distinction between man and automata. Key Words: Cybernetics, Artificial intelligence, automata, virtual reality, consciousness, mind, the criterion of the mental. Key Words: Cybernetics, Artificial intelligence, automata, virtual reality, consciousness, mind, the criterion of the mental ...

  20. An Opening Chapter of the First Generation of Artificial Intelligence in Medicine: The First Rutgers AIM Workshop, June 1975.

    Science.gov (United States)

    Kulikowski, C A

    2015-08-13

    The first generation of Artificial Intelligence (AI) in Medicine methods were developed in the early 1970's drawing on insights about problem solving in AI. They developed new ways of representing structured expert knowledge about clinical and biomedical problems using causal, taxonomic, associational, rule, and frame-based models. By 1975, several prototype systems had been developed and clinically tested, and the Rutgers Research Resource on Computers in Biomedicine hosted the first in a series of workshops on AI in Medicine that helped researchers and clinicians share their ideas, demonstrate their models, and comment on the prospects for the field. These developments and the workshops themselves benefited considerably from Stanford's SUMEX-AIM pioneering experiment in biomedical computer networking. This paper focuses on discussions about issues at the intersection of medicine and artificial intelligence that took place during the presentations and panels at the First Rutgers AIM Workshop in New Brunswick, New Jersey from June 14 to 17, 1975.