WorldWideScience

Sample records for arthropods

  1. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-01-01

    Abstract. Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy. PMID:26334858

  2. Quantitative phase imaging of arthropods

    Science.gov (United States)

    Sridharan, Shamira; Katz, Aron; Soto-Adames, Felipe; Popescu, Gabriel

    2015-11-01

    Classification of arthropods is performed by characterization of fine features such as setae and cuticles. An unstained whole arthropod specimen mounted on a slide can be preserved for many decades, but is difficult to study since current methods require sample manipulation or tedious image processing. Spatial light interference microscopy (SLIM) is a quantitative phase imaging (QPI) technique that is an add-on module to a commercial phase contrast microscope. We use SLIM to image a whole organism springtail Ceratophysella denticulata mounted on a slide. This is the first time, to our knowledge, that an entire organism has been imaged using QPI. We also demonstrate the ability of SLIM to image fine structures in addition to providing quantitative data that cannot be obtained by traditional bright field microscopy.

  3. Factors Influencing Arthropod Diversity on Green Roofs

    Directory of Open Access Journals (Sweden)

    Bracha Y. Schindler

    2011-01-01

    Full Text Available Green roofs have potential for providing substantial habitat to plants, birds, and arthropod species that are not well supported by other urban habitats. Whereas the plants on a typical green roof are chosen and planted by people, the arthropods that colonize it can serve as an indicator of the ability of this novel habitat to support a diverse community of organisms. The goal of this observational study was to determine which physical characteristics of a roof or characteristics of its vegetation correlate with arthropod diversity on the roof. We intensively sampled the number of insect families on one roof with pitfall traps and also measured the soil arthropod species richness on six green roofs in the Boston, MA area. We found that the number of arthropod species in soil, and arthropod families in pitfall traps, was positively correlated with living vegetation cover. The number of arthropod species was not significantly correlated with plant diversity, green roof size, distance from the ground, or distance to the nearest vegetated habitat from the roof. Our results suggest that vegetation cover may be more important than vegetation diversity for roof arthropod diversity, at least for the first few years after establishment. Additionally, we found that even green roofs that are small and isolated can support a community of arthropods that include important functional groups of the soil food web.

  4. Knowledge of Arthropod Carnivory and Herbivory: Factors Influencing Preservice Elementary Teacher's Attitudes and Beliefs toward Arthropods

    Science.gov (United States)

    Wagler, Ron; Wagler, Amy

    2013-01-01

    Human negativity toward arthropods has been well documented but the factors that contribute to this negativity have been elusive. This study explored knowledge of arthropod carnivory and herbivory as possible casual factors that contribute to the negative tendencies preservice elementary teachers have toward most arthropods. Specifically, this…

  5. Arthropod Diversity in a Tropical Forest

    DEFF Research Database (Denmark)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe;

    2012-01-01

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic...

  6. Noninsect Arthropods in Popular Music

    Directory of Open Access Journals (Sweden)

    Joseph R. Coelho

    2011-05-01

    Full Text Available The occurrence of noninsect arthropods in popular music was examined in order to explore human attitudes toward these species, especially as compared to insects. Crustaceans were the most commonly referenced taxonomic group in artist names, album titles and cover art, followed by spiders and scorpions. The surprising prevalence of crustaceans may be related to the palatability of many of the species. Spiders and scorpions were primarily used for shock value, as well as totemic qualities of strength and ferocity. Spiders were the most abundant group among song titles, perhaps because of their familiarity to the general public. Three noninsect arthropod album titles were found from the early 1970s, then none appear until 1990. Older albums are difficult to find unless they are quite popular, and the resurgence of albums coincides with the rise of the internet. After 1990, issuance of such albums increased approximately linearly. Giant and chimeric album covers were the most common of themes, indicating the use of these animals to inspire fear and surprise. The lyrics of select songs are presented to illustrate the diversity of sentiments present, from camp spookiness to edibility.

  7. Effects of invasive plants on arthropods.

    Science.gov (United States)

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  8. Arthropods (http://www.iaees.org/publications/journals/arthropods/online-version.asp

    Directory of Open Access Journals (Sweden)

    arthropods@iaees.org

    Full Text Available Arthropods ISSN 2224-4255 URL: http://www.iaees.org/publications/journals/arthropods/online-version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E-mail: arthropods@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope ARTHROPODS (ISSN 2224-4255 is an international journal devoted to the publication of articles on various aspects of arthropods, e.g., ecology, biogeography, systematics, biodiversity (species diversity, genetic diversity, et al., conservation, control, etc. The journal provides a forum for examining the importance of arthropods in biosphere (both terrestrial and marine ecosystems and human life in such fields as agriculture, forestry, fishery, environmental management and human health. The scope of Arthropods is wide and embraces all arthropods-insects, arachnids, crustaceans, centipedes, millipedes, and other arthropods. Articles/short communications on new taxa (species, genus, families, orders, etc. and new records of arthropods are particularly welcome. Authors can submit their works to the email box of this journal, arthropods@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal. Authors are asked to read Author Guidelines before submitting manuscripts. In addition to free submissions from authors around the world, special issues are also accepted. The organizer of a special issue can collect submissions (yielded from a research project, a research group, etc. on a specific research topic, or submissions of a scientific conference for publication of special issue.

  9. Factors Influencing Arthropod Diversity on Green Roofs

    OpenAIRE

    Bracha Y. Schindler; Alden B. Griffith; Kristina N. Jones

    2011-01-01

    Green roofs have potential for providing substantial habitat to plants, birds, and arthropod species that are not well supported by other urban habitats. Whereas the plants on a typical green roof are chosen and planted by people, the arthropods that colonize it can serve as an indicator of the ability of this novel habitat to support a diverse community of organisms. The goal of this observational study was to determine which physical characteristics of a roof or characteristics of its veget...

  10. Simulation of arthropod abundance from plant composition

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2011-04-01

    Full Text Available The relationship between arthropod abundance and plant composition is extremely complex. It is very hard to develop a mechanistic model to describe the relationship. This study aimed to simulate arthropod abundance from plant composition on grassland using an artificial neural network developed by the author, and to compare simulation performances between the neural network and conventional models. The results revealed that there were complex interactions between plants and arthropods, and the arthropod abundance on grassland was significantly determined of plant families and their cover-degrees rather than plant species and their cover-degrees. Neural network exhibited a better simulation performance than multivariate regression and response surface model. Cross validation indicated that prediction performance of neural network was also superior to these models. It was concluded that neural network is an effective tool to model arthropod abundance from plant composition on grassland. A moderate dimensionality for input space may be determined to produce a reasonably trained neural network. Such procedures for dimensionality reduction as PCE, etc., were suggested being used in the data treatment in neural network modeling. A high dimensionality for input space and a few samples in the input set would result in the deficient learning of neural network. Randomization procedure for sample submission would help to eliminate the sequence correlation but may result in a worse performance in simulation and prediction. It was suggested that randomization procedure could be used to the sample submission for these situations with a lot of samples and a lower dimensionality.

  11. Sophisticated digestive systems in early arthropods.

    Science.gov (United States)

    Vannier, Jean; Liu, Jianni; Lerosey-Aubril, Rudy; Vinther, Jakob; Daley, Allison C

    2014-01-01

    Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the 'Cambrian explosion', which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian. PMID:24785191

  12. Responses of prairie arthropod communities to fire and fertilizer: Balancing plant and arthropod conservation

    Science.gov (United States)

    Hartley, M.K.; Rogers, W.E.; Siemann, E.; Grace, J.

    2007-01-01

    Fire is an important tool for limiting woody plant invasions into prairies, but using fire management to maintain grassland plant communities may inadvertently reduce arthropod diversity. To test this, we established twenty-four 100 m2 plots in a tallgrass prairie in Galveston County, Texas, in spring 2000. Plots were assigned a fire (no burn, one time burn [2000], two time burn [2000, 2001]) and fertilization treatment (none, NPK addition) in a full factorial design. Fertilization treatments allowed us to examine the effects of fire at a different level of productivity. We measured plant cover by species and sampled arthropods with sweep nets during the 2001 growing season. Path analysis indicated that fertilization reduced while annual fires increased arthropod diversity via increases and decreases in woody plant abundance, respectively. There was no direct effect of fire on arthropod diversity or abundance. Diptera and Homoptera exhibited particularly strong positive responses to fires. Lepidoptera had a negative response to nutrient enrichment. Overall, the negative effects of fire on the arthropod community were minor in contrast to the strong positive indirect effects of small-scale burning on arthropod diversity if conservation of particular taxa is not a priority. The same fire regime that minimized woody plant invasion also maximized arthropod diversity.

  13. Pacific Remote Islands MNM: Initial Survey Instructions for Terrestrial Arthropods

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purposes of the terrestrial arthropod surveys are to: develop a species list of native and non-native terrestrial arthropods on land portions of the refuge;...

  14. Collective behavior in an early Cambrian arthropod.

    Science.gov (United States)

    Hou, Xian-Guang; Siveter, Derek J; Aldridge, Richard J; Siveter, David J

    2008-10-10

    Examples that indicate collective behavior in the fossil record are rare. A group association of specimens that belong to a previously unknown arthropod from the Chengjiang Lagerstätte, China, provides evidence that such behavior was present in the early Cambrian (about 525 million years ago), coincident with the earliest extensive diversification of the Metazoa, the so-called Cambrian explosion event. The chainlike form of these specimens is unique for any arthropod, fossil or living, and most likely represents behavior associated with migration. PMID:18845748

  15. Arthropod pattern theory and Cambrian trilobites

    NARCIS (Netherlands)

    Sundberg, Frederick A.

    1995-01-01

    An analysis of duplomere (= segment) distribution within the cephalon, thorax, and pygidium of Cambrian trilobites was undertaken to determine if the Arthropod Pattern Theory (APT) proposed by Schram & Emerson (1991) applies to Cambrian trilobites. The boundary of the cephalon/thorax occurs within t

  16. Arthropods vector grapevine trunk disease pathogens.

    Science.gov (United States)

    Moyo, P; Allsopp, E; Roets, F; Mostert, L; Halleen, F

    2014-10-01

    Arthropod-mediated dispersal of pathogens is known in many cropping systems but has never been demonstrated for grapevine trunk disease pathogens. Arthropods from vineyards were screened for the presence of pathogens associated with Petri disease and esca using cultural and molecular techniques. The ability of the most abundant pathogen-carrying species to inoculate healthy grapevine vascular tissues was also determined. Millipedes and ants were allowed to associate with a DsRed- Express-transformed Phaeomoniella chlamydospora, after which they were exposed to freshly pruned healthy grapevines under controlled conditions and wounds were monitored for subsequent infection. In addition, the possibility of millipede excreta, commonly found on pruning wounds in the field, to act as inoculum source was determined. A diverse arthropod fauna was associated with declining grapevines and many of these carried trunk disease pathogens. However, spiders, the ant Crematogaster peringueyi, and the millipede Ommattoiulus moreleti were the most abundant pathogen carriers. The ant and millipede species fed on pruning wound sap and effectively transmitted trunk disease pathogens. Millipede excreta contained viable spores of Phaeomoniella chlamydospora and may serve as an inoculum source. Numerous arthropods, including beneficial predators, are potential vectors of grapevine trunk disease pathogens. Our results highlight the need for an integrated approach, including targeted management of ants and millipedes at the time of pruning, to limit the spread of grapevine trunk diseases. PMID:24624953

  17. Physical conditions affecting pyrethroid toxicity in arthropods.

    NARCIS (Netherlands)

    Jagers op Akkerhuis, G.A.J.M.

    1993-01-01

    The aim of this thesis was to obtain mechanistic information about how the toxicity of pesticides in the field is affected by physical factors, pesticide bioavailability and arthropod behaviour. The pyrethroid insecticide deltamethrin and linyphiid spiders were selected as pesticide-effect model. In

  18. Folsomia candida (Collembola): a "standard" soil arthropod.

    Science.gov (United States)

    Fountain, Michelle T; Hopkin, Steve P

    2005-01-01

    Folsomia candida Willem 1902, a member of the order Collembola (colloquially called springtails), is a common and widespread arthropod that occurs in soils throughout the world. The species is parthenogenetic and is easy to maintain in the laboratory on a diet of granulated dry yeast. F. candida has been used as a "standard" test organism for more than 40 years for estimating the effects of pesticides and environmental pollutants on nontarget soil arthropods. However, it has also been employed as a model for the investigation of numerous other phenomena such as cold tolerance, quality as a prey item, and effects of microarthropod grazing on pathogenic fungi and mycorrhizae of plant roots. In this comprehensive review, aspects of the life history, ecology, and ecotoxicology of F. candida are covered. We focus on the recent literature, especially studies that have examined the effects of soil pollutants on reproduction in F. candida using the protocol published by the International Standards Organization in 1999.

  19. Ecology of herbivorous arthropods in urban landscapes.

    Science.gov (United States)

    Raupp, Michael J; Shrewsbury, Paula M; Herms, Daniel A

    2010-01-01

    Urbanization affects communities of herbivorous arthropods and provides opportunities for dramatic changes in their abundance and richness. Underlying these changes are creation of impervious surfaces; variation in the density, diversity, and complexity of vegetation; and maintenance practices including pulsed inputs of fertilizers, water, and pesticides. A rich body of knowledge provides theoretical underpinnings for predicting and understanding impacts of urbanization on arthropods. However, relatively few studies have elucidated mechanisms that explain patterns of insect and mite abundance and diversity across urbanization gradients. Published accounts suggest that responses to urbanization are often taxon specific, highly variable, and linked to properties of urbanization that weaken top-down and/or bottom-up processes, thereby destabilizing populations of herbivores and their natural enemies. In addition to revealing patterns in diversity and abundance of herbivores across urbanization gradients, a primary objective of this review is to examine mechanisms underlying these patterns and to identify potential hypotheses for future testing.

  20. Role of Arthropods in Maintaining Soil Fertility

    Directory of Open Access Journals (Sweden)

    Thomas W. Culliney

    2013-09-01

    Full Text Available In terms of species richness, arthropods may represent as much as 85% of the soil fauna. They comprise a large proportion of the meso- and macrofauna of the soil. Within the litter/soil system, five groups are chiefly represented: Isopoda, Myriapoda, Insecta, Acari, and Collembola, the latter two being by far the most abundant and diverse. Arthropods function on two of the three broad levels of organization of the soil food web: they are plant litter transformers or ecosystem engineers. Litter transformers fragment, or comminute, and humidify ingested plant debris, which is deposited in feces for further decomposition by micro-organisms, and foster the growth and dispersal of microbial populations. Large quantities of annual litter input may be processed (e.g., up to 60% by termites. The comminuted plant matter in feces presents an increased surface area to attack by micro-organisms, which, through the process of mineralization, convert its organic nutrients into simpler, inorganic compounds available to plants. Ecosystem engineers alter soil structure, mineral and organic matter composition, and hydrology. The burrowing by arthropods, particularly the subterranean network of tunnels and galleries that comprise termite and ant nests, improves soil porosity to provide adequate aeration and water-holding capacity below ground, facilitate root penetration, and prevent surface crusting and erosion of topsoil. Also, the movement of particles from lower horizons to the surface by ants and termites aids in mixing the organic and mineral fractions of the soil. The feces of arthropods are the basis for the formation of soil aggregates and humus, which physically stabilize the soil and increase its capacity to store nutrients.

  1. Arthropod Surveillance Programs: Basic Components, Strategies, and Analysis

    OpenAIRE

    Cohnstaedt, Lee W.; Rochon, Kateryn; Duehl, Adrian J.; Anderson, John F.; Barrera, Roberto; Su, Nan-Yao; Gerry, Alec C.; Obenauer, Peter J.; Campbell, James F.; Lysyk, Tim J.; Allan, Sandra A.

    2012-01-01

    Effective entomological surveillance planning stresses a careful consideration of methodology, trapping technologies, and analysis techniques. Herein, the basic principles and technological components of arthropod surveillance plans are described, as promoted in the symposium “Advancements in arthropod monitoring technology, techniques, and analysis” presented at the 58th annual meeting of the Entomological Society of America in San Diego, CA. Interdisciplinary examples of arthropod monitorin...

  2. Environmental and economic impact of alien terrestrial arthropods in Europe

    OpenAIRE

    Sibylle Vaes-Petignat; Wolfgang Nentwig

    2014-01-01

    In the last few decades, the abundance and importance of invasive alien species have grown continuously due to the undiminished growth of global trade. In most cases, arthropod introductions were unintended and occurred as hitchhikers or contaminants. Alien arthropods can have significant environmental impacts and can be economically costly. To measure these impacts, we expand a generic impact scoring system initially developed for mammals and birds, and applied it to terrestrial arthropods. ...

  3. Repeated Raking of Pine Plantations Alters Soil Arthropod Communities

    Directory of Open Access Journals (Sweden)

    Holly K. Ober

    2014-04-01

    Full Text Available Terrestrial arthropods in forests are engaged in vital ecosystem functions that ultimately help maintain soil productivity. Repeated disturbance can cause abrupt and irreversible changes in arthropod community composition and thereby alter trophic interactions among soil fauna. An increasingly popular means of generating income from pine plantations in the Southeastern U.S. is annual raking to collect pine litter. We raked litter once per year for three consecutive years in the pine plantations of three different species (loblolly, Pinus taeda; longleaf, P. palustris; and slash, P. elliottii. We sampled arthropods quarterly for three years in raked and un-raked pine stands to assess temporal shifts in abundance among dominant orders of arthropods. Effects varied greatly among orders of arthropods, among timber types, and among years. Distinct trends over time were apparent among orders that occupied both high trophic positions (predators and low trophic positions (fungivores, detritivores. Multivariate analyses demonstrated that raking caused stronger shifts in arthropod community composition in longleaf and loblolly than slash pine stands. Results highlight the role of pine litter in shaping terrestrial arthropod communities, and imply that repeated removal of pine straw during consecutive years is likely to have unintended consequences on arthropod communities that exacerbate over time.

  4. Arthropod Borne Diseases in Imposed War during 1980-88

    Directory of Open Access Journals (Sweden)

    M Khoobdel

    2008-06-01

    Full Text Available Background: Personnel of military forces have close contact with natural habitat and usually encounter with bite of arthropods and prone to be infected with arthropod borne diseases. The imposed war against Iran was one of the most important and the longest war in the Middle East and even in the world and military people faced various diseases. The aim of this study was to review prevalence of arthropod borne diseases and to collect relevant information and valuable experiences during the imposed war.Methods: The present survey is a historical research and cross-sectional study, focused on arthropod fauna, situation of different arthropod borne diseases and also the ways which military personnel used to protect themselves against them. The information was adopted from valid military health files and also interviewing people who participated in the war.Results: Scabies, cutaneous leishmaniasis, sandfly fever and pediculosis were more prevalent among other arthropod -borne diseases in Iran-Iraq war. Measures to control arthropods and diseases at wartime mainly included: scheduled spraying of pesticides, leishmanization and treatment of patients.Conclusion: Although measures used during the war to control arthropods were proper, however, due to needs and importance of military forces to new equipment and technologies, it is recommended to use deltamethrin-impreg­nated bed net, permethrin treated military uniforms and various insect repellents in future.

  5. Soil arthropods as test organisms for ecotoxicology

    Energy Technology Data Exchange (ETDEWEB)

    Iglisch, I.

    1981-02-01

    The importance of arthropods - organisms which usually grow in masses - for soil biology depends on their capacity to participate in the continuous transformation of organic substances within the relevant biocenosis and thus to take part in the maintenance of the ecological balance. In ecotoxicology, i.e. the science of substances having a detrimental effect on the natural balance of ecosystems, we try to find ways to evaluate risk of substances hazardous to the environment. In principle, biocenoses would offer themselves in their entirety as appropriate test objects for ecotoxicological evaluation of chemicals. Since it will not yet be possible in the near future to carry out this kind of studies, individual organisms proved as representatives of terrestial biotopes have to be chosen for these purposes. Primarily, Collembola, Coleoptera, and Diptera (larvae) are part of the meso- and macrofauna of soil arthropods or soil insects according to the experience made up to now in respect of their importance for soil biology. Representatives of such organisms should be used to develop test procedures to indicate damage even of a subacute, chronic nature or the impairment of their functional performance the maintance of which is a prerequisite for the ecological balance.

  6. Hematopoiesis and hematopoietic organs in arthropods.

    Science.gov (United States)

    Grigorian, Melina; Hartenstein, Volker

    2013-03-01

    Hemocytes (blood cells) are motile cells that move throughout the extracellular space and that exist in all clades of the animal kingdom. Hemocytes play an important role in shaping the extracellular environment and in the immune response. Developmentally, hemocytes are closely related to the epithelial cells lining the vascular system (endothelia) and the body cavity (mesothelia). In vertebrates and insects, common progenitors, called hemangioblasts, give rise to the endothelia and blood cells. In the adult animal, many differentiated hemocytes seem to retain the ability to proliferate; however, in most cases investigated closely, the bulk of hemocyte proliferation takes place in specialized hematopoietic organs. Hematopoietic organs provide an environment where undifferentiated blood stem cells are able to self-renew, and at the same time generate offspring that differentiate into different blood cell types. Hematopoiesis in vertebrates, taking place in the bone marrow, has been subject to intensive research by immunologists and stem cell biologists. Much less is known about blood cell formation in invertebrate animals. In this review, we will survey structural and functional properties of invertebrate hematopoietic organs, with a main focus on insects and other arthropod taxa. We will then discuss similarities, at the molecular and structural level, that are apparent when comparing the development of blood cells in hematopoietic organs of vertebrates and arthropods. Our comparative review is intended to elucidate aspects of the biology of blood stem cells that are more easily missed when focusing on one or a few model species. PMID:23319182

  7. A molecular palaeobiological exploration of arthropod terrestrialization

    Science.gov (United States)

    Carton, Robert; Edgecombe, Gregory D.

    2016-01-01

    Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the deepest history of the terrestrial arthropods. We focused on the three independent, Palaeozoic arthropod terrestrialization events (those of Myriapoda, Hexapoda and Arachnida) and showed that a marine route to the colonization of land is the most likely scenario. Molecular clock analyses confirmed an origin for the three terrestrial lineages bracketed between the Cambrian and the Silurian. While molecular divergence times for Arachnida are consistent with the fossil record, Myriapoda are inferred to have colonized land earlier, substantially predating trace or body fossil evidence. An estimated origin of myriapods by the Early Cambrian precedes the appearance of embryophytes and perhaps even terrestrial fungi, raising the possibility that terrestrialization had independent origins in crown-group myriapod lineages, consistent with morphological arguments for convergence in tracheal systems. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325830

  8. Environmental and economic impact of alien terrestrial arthropods in Europe

    Directory of Open Access Journals (Sweden)

    Sibylle Vaes-Petignat

    2014-06-01

    Full Text Available In the last decades abundance and importance of invasive alien species has grown continuously due to the undiminished growth of global trade. In most cases, arthropod introductions were unintended and occurred as hitchhikers or contaminants. Alien arthropods can have significant environmental impacts and can be economically costly. To measure these impacts, we expand the generic impact scoring system initially developed for mammals and birds, and applied it to terrestrial arthropods. The scoring of the 77 most widely distributed arthropod species alien to Europe revealed the mite Varroa destructor as the most harmful species, followed by the Chinese longhorn beetle Anoplophora chinensis and the Argentine ant Linepithema humile. The highest environmental impact is through herbivory, disease transmission, and ecosystem impacts. The highest economic impact is on agriculture and human infrastructure. The generic impact scoring system allows comparing impact scores of vertebrates and arthropods, thus serving as a background for decision making processes of policies and stakeholders.

  9. Evaluating potential risks of transgenic arthropods for pest management programmes

    International Nuclear Information System (INIS)

    Genetic modification using recombinant DNA methods can now be used, almost routinely, to transform pest and beneficial arthropods and such genetically engineered insects and mites could be used to improve pest management programs. Genetic manipulation with recombinant DNA techniques may generate concerns about risk, requiring additional time and resources to resolve. Risk assessments must be conducted prior to releasing transgenic arthropods into the environment for either short term experiments or permanent establishment. Potential risk issues to be resolved include whether: the inserted gene(s) (trait) is stable; the traits can be horizontally transferred to other populations or species; released arthropods will perform as expected (especially with regard to their geographic distribution, host or prey specificity; released arthropods will have unintended environmental effects; and, in the case of short term releases, the released arthropods can be recovered from field sites. If the transgenic arthropods strain(s) perform well in preliminary, short term releases and risk assessments are completed satisfactorily, permanent releases into the environment may follow. Many pest management programs, especially those involving replacement of pest populations by the transgenic population, will require permanent establishment in the environment and the use of 'drive mechanisms', have been proposed to achieve this. Because efficacy can be severely compromised by 'transgene silencing', plant molecular biologists are now attempting to stabilize gene expression by building in 'insulators'. Transgene silencing occurs in Drosophila and will no doubt be a factor in other transgenic arthropods. (author)

  10. Role of arthropod communities in bioenergy crop litter decomposition†.

    Science.gov (United States)

    Zangerl, Arthur R; Miresmailli, Saber; Nabity, Paul; Lawrance, Allen; Yanahan, Alan; Mitchell, Corey A; Anderson-Teixeira, Kristina J; David, Mark B; Berenbaum, May R; DeLucia, Evan H

    2013-10-01

    The extensive land use conversion expected to occur to meet demands for bioenergy feedstock production will likely have widespread impacts on agroecosystem biodiversity and ecosystem services, including carbon sequestration. Although arthropod detritivores are known to contribute to litter decomposition and thus energy flow and nutrient cycling in many plant communities, their importance in bioenergy feedstock communities has not yet been assessed. We undertook an experimental study quantifying rates of litter mass loss and nutrient cycling in the presence and absence of these organisms in three bioenergy feedstock crops-miscanthus (Miscanthus x giganteus), switchgrass (Panicum virgatum), and a planted prairie community. Overall arthropod abundance and litter decomposition rates were similar in all three communities. Despite effective reduction of arthropods in experimental plots via insecticide application, litter decomposition rates, inorganic nitrogen leaching, and carbon-nitrogen ratios did not differ significantly between control (with arthropods) and treatment (without arthropods) plots in any of the three community types. Our findings suggest that changes in arthropod faunal composition associated with widespread adoption of bioenergy feedstock crops may not be associated with profoundly altered arthropod-mediated litter decomposition and nutrient release.

  11. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-01-01

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  12. Repeated Raking of Pine Plantations Alters Soil Arthropod Communities

    OpenAIRE

    Holly K. Ober; Lucas W. DeGroote

    2014-01-01

    Terrestrial arthropods in forests are engaged in vital ecosystem functions that ultimately help maintain soil productivity. Repeated disturbance can cause abrupt and irreversible changes in arthropod community composition and thereby alter trophic interactions among soil fauna. An increasingly popular means of generating income from pine plantations in the Southeastern U.S. is annual raking to collect pine litter. We raked litter once per year for three consecutive years in the pine plantatio...

  13. Arthropod responses to the experimental isolation of Amazonian forest fragments

    Directory of Open Access Journals (Sweden)

    Heraldo L. Vasconcelos

    2012-12-01

    Full Text Available Arthropods are the most diverse and abundant group of animals found in tropical lowland forests, and in light of ongoing global change phenomena, it is essential to better understand their responses to anthropogenic disturbances. Here we present a review of arthropod responses to forest deforestation and fragmentation based on studies conducted at the Biological Dynamics of Forest Fragments Project (BDFFP, located in central Amazonia. These studies involved a wide range of arthropod groups. All but one of the studies evaluated changes in total species number or species density in relation to fragment size, (i.e. area effects, and one-third also evaluated edge effects. Our review indicates that almost every arthropod group studied showed some kind of response to reduction in forest area, including altered abundances, species richness or composition in comparisons of different-sized fragments, fragmented and non-fragmented areas, or comparisons of forest edges and forest interiors. These responses tended to be idiosyncratic, with some groups showing predicted declines in abundance or diversity in the fragments while others show no response or even increases. However, some of the observed effects on arthropods, or on the ecological processes in which they are involved, were transient. The most likely explanation for this was the rapid development of secondary growth around fragments, which greatly increased the connectivity between fragments and the remaining forest. Although the BDFFP has provided many insights regarding the effects of forest fragmentation on arthropod assemblages, many diverse groups, such as canopy arthropods, have received scant attention. For those that have been studied, much remains to be learned regarding the long-term dynamics of these assemblages and how landscape context influences local biodiversity. The BDFFP remains an exceptional site in which to investigate how the ecological interactions in which arthropods are

  14. Antiviral responses of arthropod vectors: an update on recent advances.

    Science.gov (United States)

    Rückert, Claudia; Bell-Sakyi, Lesley; Fazakerley, John K; Fragkoudis, Rennos

    2014-01-01

    Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity. PMID:25674592

  15. Antiviral responses of arthropod vectors: an update on recent advances.

    Science.gov (United States)

    Rückert, Claudia; Bell-Sakyi, Lesley; Fazakerley, John K; Fragkoudis, Rennos

    2014-01-01

    Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity.

  16. The role of ecological infrastructure on beneficial arthropods in vineyards

    Directory of Open Access Journals (Sweden)

    Gabrijela Kuštera

    2016-03-01

    Full Text Available Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive. Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard. Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%; among insects, Coleoptera was the most abundant taxonomic group (10.6%; Neuroptera showed the lowest value (0.88%. Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46 was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests.

  17. The non-target impact of spinosyns on beneficial arthropods.

    Science.gov (United States)

    Biondi, Antonio; Mommaerts, Veerle; Smagghe, Guy; Viñuela, Elisa; Zappalà, Lucia; Desneux, Nicolas

    2012-12-01

    Spinosyn-based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad-based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods.

  18. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods.

    Science.gov (United States)

    Leong, Misha; Bertone, Matthew A; Bayless, Keith M; Dunn, Robert R; Trautwein, Michelle D

    2016-08-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The 'luxury effect', in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements.

  19. Epigeic soil arthropod abundance under different agricultural land uses

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Bote, J. L.; Romero, A. J.

    2012-11-01

    The study of soil arthropods can provide valuable information how ecosystems respond to different management practices. The objective was to assess the total abundance, richness, and composition of epiedaphic arthropods in different agrosystems from southwestern Spain. Six sites with different agricultural uses were selected: olive grove, vineyards, olive grove with vineyards, wheat fields, fallows (150-300 m long), and abandoned vineyards. Crops were managed in extensive. Field margins were used as reference habitats. At the seven sites a total of 30 pitfall traps were arranged in a 10 × 3 grid. Traps were arranged to short (SD, 1 m), medium (MD, 6 m) and large (LD, 11 m) distance to the field margins in the middle of selected plots. Pitfall traps captured a total of 11,992 edaphic arthropods belonging to 11 different taxa. Soil fauna was numerically dominated by Formicidae (26.60%), Coleoptera (19.77%), and Aranae (16.76%). The higher number of soil arthropods were captured in the field margins followed by the abandoned vineyard. Significant differences were found between sites for total abundance, and zones. However, no significant differences for total abundance were found between months (April-July). Richness and diversity was highest in field margins and abandoned vineyards. Significant differences were found for these variables between sites. Our results suggest that agricultural intensification affects soil arthropods in Tierra de Barros area, a taxonomic group with an important role in the functioning of agricultural ecosystems. (Author) 32 refs.

  20. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods.

    Science.gov (United States)

    Leong, Misha; Bertone, Matthew A; Bayless, Keith M; Dunn, Robert R; Trautwein, Michelle D

    2016-08-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The 'luxury effect', in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements. PMID:27484644

  1. The occurrence of arthropods in processed rice products in Malaysia

    Institute of Scientific and Technical Information of China (English)

    Mariana A; Heah SK; Wong AL; Ho TM

    2010-01-01

    Objective:To determine distribution of arthropods in processed rice products such as rice flour and rice cereal-based infant food. Methods: Random samples of rice flour and rice cereal-based infant food purchased from commercial outlets were examined for the presence of arthropods using a modified Berlese Tullgren Funnel Method. Mites were mounted prior to identification and weevils were directly identified. Results: For non-expired products, infestation was found in 6.7%of rice flour and none was found in rice cereal-based infant food samples. The arthropods found in the flour samples were Cheyletus spp., Suidasia pontifica (S. pontifica), Tarsonemus spp., Tyrophagus putrescentiae (T. putrescentiae), Sitophilus granarius (S. granarius) and Sitophilus oryzae (S. oryzae). Others which cannot be identified were Oribatid and Prostigmatid mites. The most common mites in rice flour were Tarsonemus spp. (69.1%), followed by S. pontifica (18.2%). For expired products, only one sample of rice cereal-based infant food was infested and the infestation was by mites of the family Tydeidae. Conclusions:This study demonstrates the presence of 4 allergenic species of S. pontifica, T. putrescentiae, S. granarius and S. oryzae in rice flour. These arthropods can contribute to the incidence of anaphylaxis upon consumption by atopic individuals. There was no infestation of arthropods in rice cereal-based infant food surveyed except for an expired product in a moderate rusty tin container.

  2. Exoskeletons and economics: indoor arthropod diversity increases in affluent neighbourhoods

    Science.gov (United States)

    Bertone, Matthew A.; Bayless, Keith M.; Dunn, Robert R.; Trautwein, Michelle D.

    2016-01-01

    In urban ecosystems, socioeconomics contribute to patterns of biodiversity. The ‘luxury effect’, in which wealthier neighbourhoods are more biologically diverse, has been observed for plants, birds, bats and lizards. Here, we used data from a survey of indoor arthropod diversity (defined throughout as family-level richness) from 50 urban houses and found that house size, surrounding vegetation, as well as mean neighbourhood income best predict the number of kinds of arthropods found indoors. Our finding, that homes in wealthier neighbourhoods host higher indoor arthropod diversity (consisting of primarily non-pest species), shows that the luxury effect can extend to the indoor environment. The effect of mean neighbourhood income on indoor arthropod diversity was particularly strong for individual houses that lacked high surrounding vegetation ground cover, suggesting that neighbourhood dynamics can compensate for local choices of homeowners. Our work suggests that the management of neighbourhoods and cities can have effects on biodiversity that can extend from trees and birds all the way to the arthropod life in bedrooms and basements. PMID:27484644

  3. Inbreeding and the evolution of sociality in arthropods

    Science.gov (United States)

    Tabadkani, Seyed Mohammad; Nozari, Jamasb; Lihoreau, Mathieu

    2012-10-01

    Animals have evolved strategies to optimally balance costs and benefits of inbreeding. In social species, these adaptations can have a considerable impact on the structure, the organization, and the functioning of groups. Here, we consider how selection for inbreeding avoidance fashions the social behavior of arthropods, a phylum exhibiting an unparalleled richness of social lifestyles. We first examine life histories and parental investment patterns determining whether individuals should actively avoid or prefer inbreeding. Next, we illustrate the diversity of inbreeding avoidance mechanisms in arthropods, from the dispersal of individuals to the rejection of kin during mate choice and the production of unisexual broods by females. Then, we address the particular case of haplodiploid insects. Finally, we discuss how inbreeding may drive and shape the evolution of arthropods societies along two theoretical pathways.

  4. [Diversity and stability of arthropod assemblage in tea orchard].

    Science.gov (United States)

    Chen, Yigen; Xiong, Jinjun; Huang, Mingdu; Gu, Dejiu

    2004-05-01

    Two tea orchards, simplex tea orchard with weeds removed manually or by herbicides (STO) and complex tea orchard with the weed Hedyotis uncinella (CTO), each with an area of 0. 4 hm2, were established in 1995 in Yingde Hongxing Tea Plantation, Guangdong Province. The primary eigenvalues, species richness index (R), assemblage diversity index (H'), evenness index (J) and species concentration index (C) of arthropod assemblage were employed and compared to assess the efficacy of STO and CTO on the diversity and stabilityof arthropod assemblage. Stability indexes Ss/Si and Sn/Sp and variation coefficient of diversity index ds/dm were utilized as well. The results demonstrated that the R of arthropod assemblage in CTO ranged from 4 to 8, with the highest of 7.7403, while that in STO varied mainly between 4 to 6. The average R of arthropod assemblage in CTO was 5.4672 +/- 0.3483, higher than that in STO (4.8809 +/- 0.3175). The H' of arthropod in CTO (3.8535 +/- 0.1232) was higher, in contrast to the value in STO (3.4654 +/- 0.1856). The J in CTO was higher, while the species concentration index (C) was lower, in comparison to STO. The stability indexes Ss/Si and Sn/Sp of CTO were greater than those of STO, while the ds/dm in CTO (0.1107) was lower than that in STO (0.1855). All these indicated that the diversity of arthropod assemblage was better preserved in CTO, and the assemblage in CTO was more stable.

  5. [2013 update about arthropod envenomations in French Guyana].

    Science.gov (United States)

    Ganteaume, F; Imbert, C

    2014-02-01

    French Guiana, by its geographical situation, its climate and its biodiversity, is often called "the green hell". Indeed, this French department of America shelters a wildlife rich, abundant among which many species of arthropods, some of which are responsible for envenomations. These accidents consist of scorpion's or hymenoptera's stings or spider's bites. The associated clinical aspect is variable, from simple pain to circulatory collapse, or lung oedema. However, symptomatology is generally mild; four deaths associated to arthropod envenomations have been reported in the past 25 years. This article focuses on envenomations in French Guiana, describing favoring human behavior, risks and venoms associated with the main related animal species.

  6. [2013 update about arthropod envenomations in French Guyana].

    Science.gov (United States)

    Ganteaume, F; Imbert, C

    2014-02-01

    French Guiana, by its geographical situation, its climate and its biodiversity, is often called "the green hell". Indeed, this French department of America shelters a wildlife rich, abundant among which many species of arthropods, some of which are responsible for envenomations. These accidents consist of scorpion's or hymenoptera's stings or spider's bites. The associated clinical aspect is variable, from simple pain to circulatory collapse, or lung oedema. However, symptomatology is generally mild; four deaths associated to arthropod envenomations have been reported in the past 25 years. This article focuses on envenomations in French Guiana, describing favoring human behavior, risks and venoms associated with the main related animal species. PMID:24415535

  7. Canopy arthropods community within and among oak species in central Mexico

    OpenAIRE

    Efraín TOVAR-SANCHEZ

    2009-01-01

    Quercus rugosa and Q.laurina are species that presents a wide geographical distribution range in temperate forests of Mexico. Oak canopies contain a considerable portion of arthropod diversity and the arthropods fauna fulfill a wide variety of ecological roles. We examined the effect of oak species and seasonal changes on some community structure parameters (diversity, composition, similarity, biomass, rare species, and density of arthropod fauna) of canopy arthropods. In total, 40 oak ca...

  8. Stable isotope methods in biological and ecological studies of arthropods

    NARCIS (Netherlands)

    Hood-Nowotny, R.C.; Knols, B.G.J.

    2007-01-01

    This is an eclectic review and analysis of contemporary and promising stable isotope methodologies to study the biology and ecology of arthropods. It is augmented with literature from other disciplines, indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can b

  9. Arthropods associated with medicinal plants in coastal South Carolina

    Institute of Scientific and Technical Information of China (English)

    ROLANDO LOPEZ; B. MERLE SHEPARD

    2007-01-01

    Arthropods were sampled from feverfew [Tanacetum parthenium (L.) SchultzBip], Echinaceapurpurea (L.) Moench, Echinaceapallida (Nutt.) Nutt., Valeriana officinalis L., and St. John's wort (Hypericum perforatum L.) during 1998-2001. In addition,arthropods were sampled on tansy (Tanacetum vulgare L.) from 2001-2004. In general,50-60 arthropod species where collected and identified among all of the medicinal plant species. Among the predators, Orius insidiosus (Say) (Hemiptera: Anthocoridae), Geocoris punctipes (Say) (Hemiptera: Lygaeidae) and spiders were most abundant from 1998-2004.The three-cornered alfalfa hopper, Spissistilus festinus (Say), was the most abundant herbivore found from 1998 to 2001. Orius insidiosus and G. punctipes were 3-4 times more abundant on T. parthenium than on any other medicinal plant species. Based on the numbers of predatory arthropods found on T. parthenium, this crop could be suitable as a companion or "banker" plant to attract and maintain populations of predators, especially O. insidiosus and G. punctipes. Whitefly nymphs attacked by predators with piercing/sucking mouthparts are easily identified using a microscope because of the general appearance of the carcass left by the predators. Thus, populations of predators on T. parthenium suppressed Bemisia tabaci populations on E. purpurea when these crops were planted as companion crops.

  10. Soluble proteins of chemical communication: an overview across arthropods

    Directory of Open Access Journals (Sweden)

    Paolo ePelosi

    2014-08-01

    Full Text Available Detection of chemical signals both in insects and in vertebrates is mediated by soluble proteins, highly concentrated in olfactory organs, which bind semiochemicals and activate, with still largely unknown mechanisms, specific chemoreceptors. The same proteins are often found in structures where pheromones are synthesised and released, where they likely perform a second role in solubilising and delivering chemical messengers in the environment.A single class of soluble polypeptides, called Odorant-Binding Proteins (OBPs is known in vertebrates, while two have been identified in insects, OBPs and CSPs (Chemosensory Proteins. Despite their common name, OBPs of vertebrates bear no structural similarity with those of insects. We observed that in arthropods OBPs are strictly limited to insects, while a few members of the CSP family have been found in crustacean and other arthropods, where however, based on their very limited numbers, a function in chemical communication seems unlikely.The question we address in this review is whether another class of soluble proteins may have been adopted by other arthropods to perform the role of OBPs and CSPs in insects. We propose that lipid-transporter proteins of the Niemann-Pick type C2 family could represent likely candidates and report the results of an analysis of their sequences in representative species of different arthropods.

  11. Injuries caused by arthropods: diagnostic and therapeutic approach in ER

    Directory of Open Access Journals (Sweden)

    Dutto Moreno

    2009-04-01

    Full Text Available Injuries caused by arthropods, primarily insects and arachnids, represent a significant source of lesions and allergies even in Italy, a country that has a negligible number of species with important toxicological characteristics from an emergency medicine point of view; unlike areas such as the Americas or Africa (including northern Africa where highly toxic autochthonous species are present, whose bite or sting can be life-threatening. Medical consultation both in hospital Emergency Rooms and general practitioners’ surgeries is markedly seasonal, occurring mainly in the spring and summer (April – September, consistent with arthropod activity. At the current time, in Italy, urgent acute arthropod-related injuries are rare and usually involve type I hypersensitivity, and in most cases they are localised lesions that cause discomfort. The aim of the article is to briefly summarise the species of insects and arachnids that are most frequently cause for medical consultation in Italy and to provide assistance in the diagnostic and therapeutic plan, focusing in particular on the importance of health education that in many acute arthropod-derived cases can play an important part in preventing reoccurrence.

  12. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory.

    Science.gov (United States)

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G; Van Leeuwen, Thomas

    2016-01-01

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. PMID:27307274

  13. Consequences of cyclic vegetation management for arthropod survival : Simulation experiments

    NARCIS (Netherlands)

    Hinsch, Martin; Poethke, Hans-Joachim

    2007-01-01

    Many rare arthropod species occupy open grasslands. Mowing or grazing is needed to preserve the habitat for these species. Alternatively the vegetation cover in parts of the managed area can be periodically destroyed by ploughing or rototilling. Such treatment results in a dynamic mosaic of habitat

  14. Diet-consumer nitrogen isotope fractionation for prolonged fasting arthropods.

    Science.gov (United States)

    Mizota, Chitoshi; Yamanaka, Toshiro

    2011-12-01

    Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes. PMID:22166153

  15. Leaf litter arthropod responses to tropical forest restoration.

    Science.gov (United States)

    Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R

    2016-08-01

    Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes. PMID:27551373

  16. Phylogenetic relationships of the Wolbachia of nematodes and arthropods.

    Directory of Open Access Journals (Sweden)

    Katelyn Fenn

    2006-10-01

    Full Text Available Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes.

  17. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  18. Water balance in desert arthropods. Despite their small size, arthropods may be highly adapted for life in xeric conditions.

    Science.gov (United States)

    Edney, E B

    1967-05-26

    As judged by the number of species, or of individuals, arthropods are an extremely successful group of desert inhabitants. There is very great structural and physiological diversity within the group, and since adaptations to desert life open to one are not open to all. we should not expect to find the maximum possible development of adaptive features in any arthropod simply because it lives in a desert. Most adult insects fly; their larvae and all other arthropods do not, and their adaptations will differ accordingly. Desert beetles have very impermeable cuticles and tolerate high body temperatures, while desert cockroaches live below the sand. have more permeable cuticles, and absorb water vapor. There is probably no single respect in which all desert arthropods differ from insects of other environments. Perhaps a profitable way of viewing desert animals is to recognize that each is a whole organism with a specific collection of adaptations that must be consistent within themselves and which are associated with a specific mode of life and a specific evolutionary history. The arthropod organization is capable of producing highly efficient desert species. There is, however, a converse way of looking at the situation, Which is often neglected but which may be of general biological interest: does the evolution of adaptations to desert environments necessarily involve loss of viability in more mesic habitats? If so, then what are these disavantages- what, for example, is the disadvantage of a highly impermeable cuticle? In some cases the answer is clear: sandroaches need sand dunes to live in because they are morphologically and behaviorly specialized for this habitat. More often the answer is not obvious. PMID:6024185

  19. Combined effects of arthropod herbivores and phytopathogens on plant performance

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine;

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should be ex....... However, as interactive impacts also differed among environments and parasite manipulation methods, this suggests that the ability of plants to compensate such losses may depend on environmental conditions and probably also overall infection load......., the patterns we found were related to plant traits and experimental conditions. 5. Our results suggest that immediate loss of resources from interactions between arthropod herbivores and pathogens is generally moderated by compensation to an extent where there are no interactive effects on plant performance...

  20. Survey of the arthropods on jojoba (Simmondsia chinensis)

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, J.D.; Frommer, S.I.

    1980-02-01

    Simmondsia chinensis (jojoba), a plant native to southwestern North America, has become of economic interest due to the various industrial uses of the unique liquid wax found in its seeds. In a survey of arthropods associated with sylvatic jojoba in California and Arizona, we collected 106 species of insects and mites. Of these, 50 are phytophagous, 29 are parasitic, and 18 are predaceous. Most of the phytophagous species are also known to feed on plants other than jojoba; several of these are notorious generalists. The bionomics of the 4 commonest phytophagous species, Asphondylia n. sp. (Cecidomyiidae), Epinotia kasloana (Olethreutidae), Periploca n. sp. (Walshiidae), and Incisitermes fruticavus (Kalotermitidae) are summarized briefly. None of the phytophagous species were observed to cause extensive damage to sylvatic jojoba. The numerous parasitic and predaceous arthropods probably account for the natural control of many of them. These relationships should be kept in mind when planning future commercial plantations of jojoba.

  1. Arthropod-Borne Diseases: The Camper's Uninvited Guests.

    Science.gov (United States)

    Juckett, Gregory

    2015-08-01

    Arthropod-borne diseases are a major problem whenever outdoor activities bring arthropods and people into contact. The arthropods discussed here include arachnids (ticks) and insects. Most arthropod bites and stings are minor, with the notable exception being bee-sting anaphylaxis. Ticks cause the most disease transmission. Key hard tick vectors include black-legged (Ixodes), dog (Dermacentor), and lone star (Amblyomma) ticks, which transmit Lyme and various rickettsial diseases. Insect repellents, permethrin sprays, and proper tick inspection reduce this risk significantly. Lyme disease and the milder southern-tick-associated rash illness (STARI) are characterized by the erythema migrans rash followed, in the case of Lyme disease, by early, disseminated, and late systemic symptoms. Treatment is with doxycycline or ceftriaxone. Indefinite treatment of "chronic Lyme disease" based on subjective symptoms is not beneficial. Rickettsial diseases include ehrlichiosis, anaplasmosis, and Rocky Mountain spotted fever, which are characterized by fever, headache, and possible rash and should be empirically treated with doxycycline while awaiting laboratory confirmation. Tularemia is a bacterial disease (Francisella) spread by ticks and rabbits and characterized by fever and adenopathy. Treatment is with gentamicin or streptomycin. Babesiosis is a protozoal disease, mimicking malaria, that causes a self-limited flu-like disease in healthy hosts but can be life threatening with immune compromise. Treatment is with atovaquone and azithromycin. Other tick-related conditions include viral diseases (Powassan, Colorado tick fever, heartland virus), tick-borne relapsing fever (Borrelia), and tick paralysis (toxin). Mosquitoes, lice, fleas, and mites are notable for their annoying bites but are increasingly significant disease vectors even in the United States.

  2. Epidemiology and control of malaria and other arthropod born diseases

    Directory of Open Access Journals (Sweden)

    F. J. López-Antuñano

    1992-01-01

    Full Text Available Malaria and other arthropod born diseases remain a serious public health problem affecting the lives and health of certain social groups when the two basic strategies to control fail due to : (1 the lack of effective chemoprophylaxis/chemotherapy or the rapid development of drug resistance of the infectious agents and (2 the ineffectiveness of pesticides or the arthropod vectors develop resistance to them. These situations enhances the need for the design and implementation of other alternatives for sustainable health programmes. The application of the epidemiological methods is essential not only for analyzing the relevant data for the understanding of the biological characteristics of the infectious agents, their reservoirs and vectors and the methods for their control, but also for the assessment of the human behaviour, the environmental, social and economic factors involved in disease transmission and the capacity of the health systems to implement interventions for both changes in human behaviour and environmental management to purpose guaranteed prevention and control of malaria and other arthropod born diseases with efficiency, efficacy and equity. This paper discuss the evolution of the malaria arthropod diseases programmes in the American Region and the perspectives for their integration into health promotion programs and emphasis is made in the need to establish solid basis in the decision-making process for the selection of intervention strategies to remove the risk factors determining the probability to get sick or die from ABDs. The implications of the general planning and the polices to be adopted in an area should be analyzed in the light of programme feasibility at the local level, in the multisectoral context specific social groups and taking in consideration the principles of stratification and equity

  3. Fossil calibrations for the arthropod Tree of Life

    OpenAIRE

    Wolfe, JM; Daley, A; Legg, DA; Edgecombe, GD

    2016-01-01

    Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeogr...

  4. Genetic diversity in aspen and its relation to arthropod abundance.

    Science.gov (United States)

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2014-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen.

  5. Parallel evolution of the genetic code in arthropod mitochondrial genomes.

    Directory of Open Access Journals (Sweden)

    Federico Abascal

    2006-05-01

    Full Text Available The genetic code provides the translation table necessary to transform the information contained in DNA into the language of proteins. In this table, a correspondence between each codon and each amino acid is established: tRNA is the main adaptor that links the two. Although the genetic code is nearly universal, several variants of this code have been described in a wide range of nuclear and organellar systems, especially in metazoan mitochondria. These variants are generally found by searching for conserved positions that consistently code for a specific alternative amino acid in a new species. We have devised an accurate computational method to automate these comparisons, and have tested it with 626 metazoan mitochondrial genomes. Our results indicate that several arthropods have a new genetic code and translate the codon AGG as lysine instead of serine (as in the invertebrate mitochondrial genetic code or arginine (as in the standard genetic code. We have investigated the evolution of the genetic code in the arthropods and found several events of parallel evolution in which the AGG codon was reassigned between serine and lysine. Our analyses also revealed correlated evolution between the arthropod genetic codes and the tRNA-Lys/-Ser, which show specific point mutations at the anticodons. These rather simple mutations, together with a low usage of the AGG codon, might explain the recurrence of the AGG reassignments.

  6. The i5K Initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment.

    Science.gov (United States)

    2013-01-01

    Insects and their arthropod relatives including mites, spiders, and crustaceans play major roles in the world's terrestrial, aquatic, and marine ecosystems. Arthropods compete with humans for food and transmit devastating diseases. They also comprise the most diverse and successful branch of metazoan evolution, with millions of extant species. Here, we describe an international effort to guide arthropod genomic efforts, from species prioritization to methodology and informatics. The 5000 arthropod genomes initiative (i5K) community met formally in 2012 to discuss a roadmap for sequencing and analyzing 5000 high-priority arthropods and is continuing this effort via pilot projects, the development of standard operating procedures, and training of students and career scientists. With university, governmental, and industry support, the i5K Consortium aspires to deliver sequences and analytical tools for each of the arthropod branches and each of the species having beneficial and negative effects on humankind. PMID:23940263

  7. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods

    OpenAIRE

    Anne Ebeling; Meyer, Sebastian T.; Maike Abbas; Nico Eisenhauer; Helmut Hillebrand; Markus Lange; Christoph Scherber; Anja Vogel; Alexandra Weigelt; Weisser, Wolfgang W.

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ...

  8. Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation

    OpenAIRE

    Purdy, Alexandra E.; Watnick, Paula I.

    2011-01-01

    Vibrio cholerae is an estuarine bacterium and the human pathogen responsible for the diarrheal disease cholera. In the environment, arthropods are proposed to be carriers and reservoirs of V. cholerae. However, the molecular basis of the association between V. cholerae and viable arthropods has not been elucidated previously. Here, we show that the V. cholerae Vibrio polysaccharide (VPS)-dependent biofilm is highly activated upon entry into the arthropod intestine and is specifically required...

  9. Vertical T-maze Choice Assay for Arthropod Response to Odorants

    OpenAIRE

    Stelinski, Lukasz; Tiwari, Siddharth

    2013-01-01

    Given the economic importance of insects and arachnids as pests of agricultural crops, urban environments or as vectors of plant and human diseases, various technologies are being developed as control tools. A subset of these tools focuses on modifying the behavior of arthropods by attraction or repulsion. Therefore, arthropods are often the focus of behavioral investigations. Various tools have been developed to measure arthropod behavior, including wind tunnels, flight mills, servospheres, ...

  10. RSS (http://www.iaees.org/publications/journals/arthropods/rss.xml

    Directory of Open Access Journals (Sweden)

    Arthropods (ISSN 2224-4255

    Full Text Available Arthropods ISSN 2224-4255 URL: http://www.iaees.org/publications/journals/arthropods/online-version.asp RSS: http://www.iaees.org/publications/journals/arthropods/rss.xml E-mail: arthropods@iaees.org Editor-in-Chief: WenJun Zhang Aims and Scope ARTHROPODS (ISSN 2224-4255 is an international journal devoted to the publication of articles on various aspects of arthropods, e.g., ecology, biogeography, systematics, biodiversity (species diversity, genetic diversity, et al., conservation, control, etc. The journal provides a forum for examining the importance of arthropods in biosphere (both terrestrial and marine ecosystems and human life in such fields as agriculture, forestry, fishery, environmental management and human health. The scope of Arthropods is wide and embraces all arthropods-insects, arachnids, crustaceans, centipedes, millipedes, and other arthropods. Articles/short communications on new taxa (species, genus, families, orders, etc. and new records of arthropods are particularly welcome. Authors can submit their works to the email box of this journal, arthropods@iaees.org. All manuscripts submitted to this journal must be previously unpublished and may not be considered for publication elsewhere at any time during review period of this journal. Authors are asked to read Author Guidelines before submitting manuscripts. In addition to free submissions from authors around the world, special issues are also accepted. The organizer of a special issue can collect submissions (yielded from a research project, a research group, etc. on a specific research topic, or submissions of a scientific conference for publication of special issue.

  11. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes.

    Science.gov (United States)

    Bertone, Matthew A; Leong, Misha; Bayless, Keith M; Malow, Tara L F; Dunn, Robert R; Trautwein, Michelle D

    2016-01-01

    Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32-211 morphospecies, and 24-128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications.

  12. Canopy arthropods community within and among oak species in central Mexico

    Institute of Scientific and Technical Information of China (English)

    Efraín TOVAR-SANCHEZ

    2009-01-01

    Quercus rugosa and Q.laurina are species that presents a wide geographical distribution range in temperate forests of Mexico. Oak canopies contain a considerable portion of arthropod diversity and the arthropods fauna fulfill a wide variety of ecological roles. We examined the effect of oak species and seasonal changes on some community structure parameters (diversity, composition, similarity, biomass, rare species, and density of arthropod fauna) of canopy arthropods. In total, 40 oak canopies were fogged during rainy and dry season. A total of 614 identified arthropod morphospecies were recognized belonging to 22 orders associated with tree canopies. A separation of host tree species during both seasons, suggesting a different community structure on host plants species was demonstrated by the principal component analyses (PCA), therefore, differences between oak species results in phenotypes that structure the composition of the arthropod community. Q.laurina registered the highest densities, diversity index and number of rare species in comparison with Q.rugosa. While arthropod biomass showed an inverse pattern. Trees more close to one another (spatial distance) register a more similar canopy arthropod fauna. This study suggests that the trees of Q.laurina could act as a center of biodiversity by the accumulation of arthropod fauna with a considerable number of rare species, which presents wide ecological roles or is involved in critical processes that maintain forest ecosystems[Current Zoology 55(2):132-144,2009].

  13. Arthropods of the great indoorssuburban homes:characterizing diversity inside urban and suburban homes

    OpenAIRE

    Bertone, Matthew A.; Leong, Misha; Bayless, Keith M.; Malow, Tara L.F.; Dunn, Robert Roberdeau; Trautwein, Michelle D.

    2016-01-01

    Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32–211 morphospecies, and 24–128 distinct arthropod families per house. The majority o...

  14. Arthropods of the great indoors: characterizing diversity inside urban and suburban homes.

    Science.gov (United States)

    Bertone, Matthew A; Leong, Misha; Bayless, Keith M; Malow, Tara L F; Dunn, Robert R; Trautwein, Michelle D

    2016-01-01

    Although humans and arthropods have been living and evolving together for all of our history, we know very little about the arthropods we share our homes with apart from major pest groups. Here we surveyed, for the first time, the complete arthropod fauna of the indoor biome in 50 houses (located in and around Raleigh, North Carolina, USA). We discovered high diversity, with a conservative estimate range of 32-211 morphospecies, and 24-128 distinct arthropod families per house. The majority of this indoor diversity (73%) was made up of true flies (Diptera), spiders (Araneae), beetles (Coleoptera), and wasps and kin (Hymenoptera, especially ants: Formicidae). Much of the arthropod diversity within houses did not consist of synanthropic species, but instead included arthropods that were filtered from the surrounding landscape. As such, common pest species were found less frequently than benign species. Some of the most frequently found arthropods in houses, such as gall midges (Cecidomyiidae) and book lice (Liposcelididae), are unfamiliar to the general public despite their ubiquity. These findings present a new understanding of the diversity, prevalence, and distribution of the arthropods in our daily lives. Considering their impact as household pests, disease vectors, generators of allergens, and facilitators of the indoor microbiome, advancing our knowledge of the ecology and evolution of arthropods in homes has major economic and human health implications. PMID:26819844

  15. Distribution of arthropods in rice grains in Malaysia

    Institute of Scientific and Technical Information of China (English)

    Mariana A; Ho TM; Lau TY; Heah SK; Wong AL

    2009-01-01

    Objective:To determine distribution of arthropods in rice grains obtained from different sources.Methods:Rice samples were randomly collected from public in urban areas,farmers in rice field areas,aborigines in un-developed areas and retailers in commercial premises.Random samples of rice were taken out from each sam-ple for isolation of arthropods using a modified Berlese Tullgren Funnel Method.Mites were mounted prior to i-dentification;weevils were directly identified.Results:Samples of rice from retailers in commercial premises had the highest infestation by arthropods followed by samples from urbanites,aborigines and rice farmers.Two species of weevils,Sitophilus oryzae(S.oryzae)and Sitophilus granarius(S.granarius),were found.Samples from commercial premises had the least percentage of weevils compared to those collected from domestic premi-ses.Depending on the source of samples,densities of S.granarius and S.oryzae ranges from 1 1 -1 03 weevils? kg and 7-80 weevils?kg,respectively.Important species of mites in stored rice identified were mainly members of the families Cheyletidae,Echimyopodidae,Pyroglyphidae,Saproglyphidae and Tenuipalpidae.Among the species of mites identified were Austroglycyphagus malaysiensis,Cheyletus fortis,Cheyletus malaccensis,Der-matophagoides pteronyssinus,Grammolichus malukuensis and Suidasia pontifica.Average density of most of the mites was less than 40 mites?kg of rice grains.In this study,the highest number of mites in rice samples was recovered from commercial premises,followed by samples from urbanites.Samples from farmers and aborigines contained lesser mites.Conclusion:This study demonstrated the presence of 3 allergenic mite species in rice, i.e A.malaysiensis,D.pteronyssinus and S.pontifica.Weevils,S.oryzae and S.granarius that are known to be allergenic,were also found.

  16. cuticleDB: a relational database of Arthropod cuticular proteins

    Directory of Open Access Journals (Sweden)

    Willis Judith H

    2004-09-01

    Full Text Available Abstract Background The insect exoskeleton or cuticle is a bi-partite composite of proteins and chitin that provides protective, skeletal and structural functions. Little information is available about the molecular structure of this important complex that exhibits a helicoidal architecture. Scores of sequences of cuticular proteins have been obtained from direct protein sequencing, from cDNAs, and from genomic analyses. Most of these cuticular protein sequences contain motifs found only in arthropod proteins. Description cuticleDB is a relational database containing all structural proteins of Arthropod cuticle identified to date. Many come from direct sequencing of proteins isolated from cuticle and from sequences from cDNAs that share common features with these authentic cuticular proteins. It also includes proteins from the Drosophila melanogaster and the Anopheles gambiae genomes, that have been predicted to be cuticular proteins, based on a Pfam motif (PF00379 responsible for chitin binding in Arthropod cuticle. The total number of the database entries is 445: 370 derive from insects, 60 from Crustacea and 15 from Chelicerata. The database can be accessed from our web server at http://bioinformatics.biol.uoa.gr/cuticleDB. Conclusions CuticleDB was primarily designed to contain correct and full annotation of cuticular protein data. The database will be of help to future genome annotators. Users will be able to test hypotheses for the existence of known and also of yet unknown motifs in cuticular proteins. An analysis of motifs may contribute to understanding how proteins contribute to the physical properties of cuticle as well as to the precise nature of their interaction with chitin.

  17. Impacts of major predators on tropical agroforest arthropods: comparisons within and across taxa.

    Science.gov (United States)

    Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Perfecto, Ivette

    2004-06-01

    In food web studies, taxonomically unrelated predators are often grouped into trophic levels regardless of their relative importance on prey assemblages, multiple predator effects, or interactions such as omnivory. Ants and birds are important predators likely to differentially shape arthropod assemblages, but no studies have compared their effects on a shared prey base. In two separate studies, we excluded birds and ants from branches of a canopy tree ( Inga micheliana) in a coffee farm in Mexico for 2 months in the dry and wet seasons of 2002. We investigated changes in arthropod densities with and without predation pressure from (1) birds and (2) ant assemblages dominated by one of two ant species ( Azteca instabilis and Camponotus senex). We first analyzed individual effects of each predator (birds, Azteca instabilis, and C. senex) then used a per day effect metric to compare differences in effects across (birds vs ants) and within predator taxa (the two ant species). Individually, birds reduced densities of total and large arthropods and some arthropod orders (e.g., spiders, beetles, roaches) in both seasons. Azteca instabilis did not significantly affect arthropods (total, small, large or specific orders). Camponotus senex, however, tended to remove arthropods (total, small), especially in the dry season, and affected arthropod densities of some orders both positively and negatively. Predators greatly differed in their effects on Inga arthropods (for all, small, large, and individual orders of arthropods) both in sign (+/-) and magnitudes of effects. Birds had stronger negative effects on arthropods than ants and the two dominant ant species had stronger effects on arthropods in different seasons. Our results show that aggregating taxonomically related and unrelated predators into trophic levels without prior experimental data quantifying the sign and strengths of effects may lead to a misrepresentation of food web interactions. PMID:15095089

  18. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants.

    Science.gov (United States)

    Mooney, Kailen A; Gruner, Daniel S; Barber, Nicholas A; Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell

    2010-04-20

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities. PMID:20368418

  19. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L.).

    Science.gov (United States)

    Robinson, Kathryn M; Ingvarsson, Pär K; Jansson, Stefan; Albrectsen, Benedicte R

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  20. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Directory of Open Access Journals (Sweden)

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  1. Modification and application of a leaf blower-vac for field sampling of arthropods

    NARCIS (Netherlands)

    Zou, Yi; Telgen, van Mario D.; Chen, Junhui; Xiao, Haijun; Kraker, de Joop; Bianchi, Felix J.J.A.; Werf, van der Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure,

  2. Effects of weed harrowing frequency on beneficial arthropods, plants and crop yield

    DEFF Research Database (Denmark)

    Navntoft, Søren; Kristensen, Kristian; Johnsen, Ib;

    2016-01-01

    * Weed harrowing is an alternative to herbicides but it may have negative effects on epigaeic arthropods. We assessed the effects of frequent (four) versus two harrowings during the growing season on the density and diversity of generalist arthropods and the weed flora. Collection by flooding was...

  3. "Bugs on Bugs": An Inquiry-Based, Collaborative Activity to Learn Arthropod & Microbial Biodiversity

    Science.gov (United States)

    Lampert, Evan C.; Morgan, Jeanelle M.

    2015-01-01

    Diverse communities of arthropods and microbes provide humans with essential ecosystem goods and services. Arthropods are the most diverse and abundant macroscopic animals on the planet, and many remain to be discovered. Much less is known about microbial diversity, despite their importance as free-living species and as symbionts. We created…

  4. Arthropods in no-tillage soybean agroecosystems: Community composition and ecosystem interactions

    Science.gov (United States)

    House, Garfield J.; Stinner, Benjamin R.

    1983-01-01

    Sampling data are provided and concepts discussed regarding soil and foliage arthropod communities in conventional and no-tillage soybean agroecosystems Soil arthropod communities from the two cropping systems were also compared with that from an adjacent old field. Biweekly arthropod samples were collected from conventional, no-tillage, and old-field systems Soil arthropods were sampled by quadrat and pitfall trap methods, foliage arthropods were collected by sweep net Quadrat sampling revealed that ground beetle number, species diversity, and biomass were significantly higher ( Ptrap data indicated higher densities and species diversity for most major soil macro-arthropod guilds Foliage arthropod guilds from no-tillage treatments showed higher species diversity throughout the growing season than those of conventional tillage, possibly because of greater structural diversity provided by weeds and litter in notillage systems No-tillage systems supported a larger and more diverse arthropod community than conventionally grown soybeans, suggesting a need for pest management strategies that simultaneously consider many variables. Both foliar grazing and leaf nitrogen content were higher in conventional than in no-tillage systems, indicating a possible causal connection between soil tillage and insect herbivory rates

  5. Composition and Diversity of Soil Arthropods of Rajegwesi Meru Betiri National Park

    Directory of Open Access Journals (Sweden)

    Hasan Zayadi

    2013-09-01

    Full Text Available Meru Betiri National Park (MBNP is one of the nature conservation area that has the potential of flora, fauna, and ecosystems that could develop as a nature-based tourism attraction. The existence of certain indicator species was related to estimation of stress level and disturbance on ecosystem stability for making strategic decisions about the restoration in this area. One of the important indicator species at forest ecosystem were soil arthropods. Aim this research were analyzed composition and diversity of soil arthropods at Rajegwesi, MBNP areas. The methods in this research used pitfall trap, measurement of distribution structure and soil arthropods composition based on the Shannon - Wiener index, Morisita similarity index and Importance Value Index (IVI. The number of families and individuals of soil arthropods found in the coastal area of Rajegwesi consists of 10 order with 21 families (702 individual. The number of individuals of the order Hymenoptera, Coleoptera, Collembola and Araneida was more widely found. Soil arthropods diversity index on each land use indicated that soil arthropod diversity in these areas were moderate. Soil arthropod community of orchards and forest had a similarity of species composition, whereas soil arthropod community of savanna had a similarity of species composition with paddy fields.

  6. The importance of arthropod pests in Belgian pome fruit orchards.

    Science.gov (United States)

    Bangels, Eva; De Schaetzen, Charles; Hayen, Guy; Paternotte, Edouard; Gobin, Bruno

    2008-01-01

    Located in temperate, maritime climate with frequent rainfall, crop protection in Belgian orchards is dominated by fungicides. Though, the importance of arthropod pests should not be underestimated. Pcfruit, the former Research station of Gorsem, has been maintaining a warning system for fruit pests in Belgium since 1944. Therefore, various pests and beneficial's and their life cycle stages have been monitored in Gorsem and in different observation posts across Belgium, being part of a monitoring network. Although up to 3000 arthropod species are present in pome fruit orchards, about 25% can be considered as harmful and another 25% as beneficial. Out of those species, around 100 harmful and 50 beneficial organisms are omnipresent. The list of monitored species is extended yearly for upcoming or difficult to control organisms. Integrated pest management was introduced in the eighties, with the accent on using selective pesticides and saving beneficial organisms. A shift in pesticide use affected the importance of secondary pests, together with recent exceptional climatic conditions. Following many years of monitoring insects and mites and editing warning bulletins in our station, a ranking of the economical importance of different pest species is presented.

  7. Character combinations, convergence and diversification in ectoparasitic arthropods.

    Science.gov (United States)

    Poulin, Robert

    2009-08-01

    Different lineages of organisms diversify over time at different rates, in part as a consequence of the characteristics of the species in these lineages. Certain suites of traits possessed by species within a clade may determine rates of diversification, with some particular combinations of characters acting synergistically to either limit or promote diversification; the most successful combinations may also emerge repeatedly in different clades via convergent evolution. Here, the association between species characters and diversification is investigated amongst 21 independent lineages of arthropods ectoparasitic on vertebrate hosts. Using nine characters (each with two to four states) that capture general life history strategy, transmission mode and host-parasite interaction, each lineage was described by the set of character states it possesses. The results show, firstly, that most possible pair-wise combinations of character states have been adopted at least once, sometimes several times independently by different lineages; thus, ectoparasitic arthropods have explored most of the life history character space available to them. Secondly, lineages possessing commonly observed combinations of character states are not necessarily the ones that have experienced the highest rates of diversification (measured as a clade's species-per-genus ratio). Thirdly, some specific traits are associated with higher rates of diversification. Using more than one host per generation, laying eggs away from the host and intermediate levels of fecundity are features that appear to have promoted diversification. These findings indicate that particular species characters may be evolutionary drivers of diversity, whose effects could also apply in other taxa.

  8. Arthropod succession on pig carcasses in southeastern Nigeria

    Directory of Open Access Journals (Sweden)

    M.S. Ekanem

    2010-01-01

    Full Text Available The domestic pig (Sus scrofa was used as a model to study arthropod succession on carcasses under tree shade and out of shade in southern Nigeria. Carcass decomposition took longer periods under tree shade than in exposed sites, at 24.5 and 16.5 days, respectively. Four decomposition stages - fresh, bloated, decay, and dry - were observed. No significant variabilities were recorded in the types and patterns of infestation of the carcasses by arthropods in both locations. Four classes of arthropods - Insecta, Arachnida, Diplopoda and Crustacea - were recorded. The class Insecta dominated the total arthropods collected with 24 families, and formed 94% of the catches. The other three classes each had one family represented, and contributed only 2% of the total catches. The calliphorids, a phorid, and sarcophagids arrived and bred on the carcasses only a few hours after death of the pigs. Families of coleopterans came during the bloated stage, and fed on the immature dipterous maggots and carrion materials. The ants (Hymenoptera came in large numbers to eat the carcasses, and also preyed on all other fauna of the food resource. A muscid and a stratiomyiid, bred on the carcass as to the decay stage. Other insects and arthropods arrived mostly during the decay stage to feed on the carcasses. Species richness on the carcasses peaked during the decay stage.O porco branco (Sus scrofa foi usado como modelo para o estudo da sucessão de Artrópodes em cadáveres em zonas sombreadas e não sombreadas por árvores no sul da Nigéria. Nos cadáveres em decomposição em zonas sombreadas observou-se um processo de decomposição mais lento que nos expostos ao sol; 24,5 e 16,5 dias, respectivamente. Foram observadas quatro etapas de decomposição; fresco (autólise, intumescido (putrefação, deteriorado e seco (diagênese. Não foram observadas diferenças significativas de tipo e padrão nas infestações dos cadáveres por Artrópodes em ambas as condi

  9. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types

    Directory of Open Access Journals (Sweden)

    Johann G. Zaller

    2014-10-01

    Full Text Available Climate change scenarios for Central Europe predict less frequent but heavier rainfalls and longer drought periods during the growing season. This is expected to alter arthropods in agroecosystems that are important as biocontrol agents, herbivores or food for predators (e.g. farmland birds. In a lysimeter facility (totally 18 3-m2-plots, we experimentally tested the effects of long-term past vs. prognosticated future rainfall variations (15% increased rainfall per event, 25% more dry days according to regionalized climate change models from the Intergovernmental Panel on Climate Change (IPCC on aboveground arthropods in winter wheat (Triticum aestivum L. cultivated at three different soil types (calcaric phaeozem, calcic chernozem and gleyic phaeozem. Soil types were established 17 years and rainfall treatments one month before arthropod sampling; treatments were fully crossed and replicated three times. Aboveground arthropods were assessed by suction sampling, their mean abundances (± SD differed between April, May and June with 20 ± 3 m-2, 90 ± 35 m-2 and 289 ± 93 individuals m-2, respectively. Averaged across sampling dates, future rainfall reduced the abundance of spiders (Araneae, -47%, cicadas and leafhoppers (Auchenorrhyncha, -39%, beetles (Coleoptera, -52%, ground beetles (Carabidae, -41%, leaf beetles (Chrysomelidae, -64%, spring tails (Collembola, -58%, flies (Diptera, -73% and lacewings (Neuroptera, -73% but increased the abundance of snails (Gastropoda, +69%. Across sampling dates, soil types had no effects on arthropod abundances. Arthropod diversity was neither affected by rainfall nor soil types. Arthropod abundance was positively correlated with weed biomass for almost all taxa; abundance of Hemiptera and of total arthropods was positively correlated with weed density. These detrimental effects of future rainfall varieties on arthropod taxa in wheat fields can potentially alter arthropod-associated agroecosystem services.

  10. Herbivore-induced plant volatiles as a rich source of information for arthropod predators: fundamental and applied aspects

    NARCIS (Netherlands)

    Dicke, M.

    2015-01-01

    Plants respond to arthropod herbivory with the induction of volatiles that attract predatory arthropods that attack the herbivores. These so-called herbivore-induced plant volatiles (HIPVs) appear to be important sources of information that mediate many interactions within a plant–arthropod communit

  11. Bacteria, fungi and arthropod pests collected on modern human mummies

    Directory of Open Access Journals (Sweden)

    F. Palla

    2011-08-01

    Full Text Available A survey of opportunistic biocenosis (macro and micro organisms associated with a rest of human mummy samples was carried out to characterise the biocenosis and to detect the potential of biodeteriogens. The rests of the human modern mummies come from a hypogeic site. Since mummies are relevant from a historic-artistic-scientific point of view, an aspect of this study was the identification and characterization of the biological systems related with biodeterioration of organic matter. In a first step, different sampling methods, according to the taxa, were applied. Technological procedures were combined in order to have an interdisciplinary approach to the conservation actions for testing future restoration protocols. Specimens were collected, identified and characterized by Microscopy (light, SEM, CLSM and molecular analyses (DNA extraction, in vitro target sequence amplification, sequencing, sequence analysis. The results highlight a rather complex biocenonsis consisting of fungi, cyanobacteria, several insects and other arthropods.

  12. Comparison of Arthropod Prey of Red-Cockaded Woodpeckers on the Boles of Longleaf and Loblolly Pines

    Energy Technology Data Exchange (ETDEWEB)

    Horn, S.; Hanula, J.

    2002-01-01

    Use of knockdown insecticides to sample arthropods on longleaf and loblolly pine to determine which harbored the greater abundance of potential prey. Alterations of longleaf pine bark surface to determine whether bark structure may affect arthropods residing on a tree's bole. Recovery revealed fewer arthropods from scraped trees. Results suggest the bark structure and not the chemical nature of the bark is responsible for differences in arthropod abundance and biomass. Retaining or restoring longleaf pine in red-cockaded woodpecker habitats should increase arthropod availability for this endangered bird and other back-foraging species.

  13. Phenoptosis in arthropods and immortality of social insects.

    Science.gov (United States)

    Kartsev, V M

    2014-10-01

    In general, there are no drastic differences in phenoptosis patterns in plant and animal organisms. However, there are some specific features characteristic for insects and other arthropods: 1) their development includes metamorphosis with different biochemical laws at consecutive developmental stages; 2) arthropods can reduce or stop development and aging when in a state of diapause or temporal cold immobility; 3) their life cycle often correlates with seasonal changes of surroundings; 4) polymorphism is widespread - conspecifics differ by their lifespans and phenoptosis features; 5) lifespan-related sexual dimorphism is common; 6) significant situational plasticity of life cycle organization is an important feature; for example, the German wasp (Paravespula germanica) is obligatorily univoltine in the temperate zone, while in tropical regions its lifespan increases and leads to repeated reproduction; 7) life cycles of closely related species may differ significantly, for example, in contrast to German wasp, some tropical hornets (Vespa) have only one reproduction period. Surprisingly, many insect species have been shown to be subjected to gradual aging and phenoptosis, like the highest mammals. However, queens of social insects and some long-lived arachnids can apparently be considered non-aging organisms. In some species, lifespan is limited to one season, while others live much longer or shorter. Cases of one-time reproduction are rather rare. Aphagia is common in insects (over 10,000 species). Cannibalism is an important mortality factor in insects as well as in spiders. In social insects, which exist only in colonies (families), the lifetime of a colony can be virtually unlimited. However, in case of some species the developmental cycle and death of a colony after its completion are predetermined. Most likely, natural selection in insects does not lengthen individual lifespan, but favors increase in reproduction efficiency based on fast succession of

  14. Phenoptosis in arthropods and immortality of social insects.

    Science.gov (United States)

    Kartsev, V M

    2014-10-01

    In general, there are no drastic differences in phenoptosis patterns in plant and animal organisms. However, there are some specific features characteristic for insects and other arthropods: 1) their development includes metamorphosis with different biochemical laws at consecutive developmental stages; 2) arthropods can reduce or stop development and aging when in a state of diapause or temporal cold immobility; 3) their life cycle often correlates with seasonal changes of surroundings; 4) polymorphism is widespread - conspecifics differ by their lifespans and phenoptosis features; 5) lifespan-related sexual dimorphism is common; 6) significant situational plasticity of life cycle organization is an important feature; for example, the German wasp (Paravespula germanica) is obligatorily univoltine in the temperate zone, while in tropical regions its lifespan increases and leads to repeated reproduction; 7) life cycles of closely related species may differ significantly, for example, in contrast to German wasp, some tropical hornets (Vespa) have only one reproduction period. Surprisingly, many insect species have been shown to be subjected to gradual aging and phenoptosis, like the highest mammals. However, queens of social insects and some long-lived arachnids can apparently be considered non-aging organisms. In some species, lifespan is limited to one season, while others live much longer or shorter. Cases of one-time reproduction are rather rare. Aphagia is common in insects (over 10,000 species). Cannibalism is an important mortality factor in insects as well as in spiders. In social insects, which exist only in colonies (families), the lifetime of a colony can be virtually unlimited. However, in case of some species the developmental cycle and death of a colony after its completion are predetermined. Most likely, natural selection in insects does not lengthen individual lifespan, but favors increase in reproduction efficiency based on fast succession of

  15. New insights on arthropod toxins that potentiate erectile function.

    Science.gov (United States)

    Nunes, Kenia P; Torres, Fernanda S; Borges, Marcia H; Matavel, Alessandra; Pimenta, Adriano M C; De Lima, Maria E

    2013-07-01

    The use of natural substances for the treatment of diseases or injuries is an ancient practice of many cultures. According to folklore, natural aphrodisiacs may help to raise libido and increase desire. The supposed aphrodisiacs mainly include a plethora of preparations of plants, among other substances. However, the real boundary between myth and reality has not been established yet in most cases and such boundaries must be drawn by scientific methods. A growing interest of the scientific community has been focused on animal venoms, especially those from arthropods, i.e. spiders and scorpions, which cause priapism, a prolonged and painful erection. This review highlights the studies that have been performed with venoms and toxins from arthropods known to cause priapism, among other toxic symptoms, pointing out some pharmacological approaches for better understanding this effect. To date, the venom of some spiders, mainly Phoneutria nigriventer, and scorpions, such as the yellow South American scorpion Tityus serrulatus, among others, have been known to cause priapism. Since erectile dysfunction (ED) is a growing health problem in the world, more common in patients with vascular diseases as diabetes and hypertension, the use of animal venoms and toxins as pharmacological tools could not only shed light to the mechanisms involved in erectile function, but also represent a possible model for new drugs to treat ED. Unfortunately, attempts to correlate the structure of those priapism-related toxins were unfruitful. Such difficulties lie firstly on the poor data concerning purified priapism-related toxins, instead of whole venoms and/or semi-purified fractions, and secondly, on the scarce available primary sequences and structural data, mainly from spider toxins. It has been shown that all these toxins modify the sodium (Na(+)) channel activity, mostly slowing down its inactivation current. Improving the knowledge on the tertiary structure of these toxins could provide

  16. A systematic review of arthropod community diversity in association with invasive plants

    Directory of Open Access Journals (Sweden)

    Ryan Spafford

    2013-04-01

    Full Text Available Invasive plants represent a significant financial burden for land managers and also have the potential to severely degrade ecosystems. Arthropods interact strongly with plants, relying on them for food, shelter, and as nurseries for their young. For these reasons, the impacts of plant invasions are likely strongly reflected by arthropod community dynamics including diversity and abundances. A systematic review was conducted to ascertain the state of the literature with respect to plant invaders and their associated arthropod communities. We found that the majority of studies did not biogeographically contrast arthropod community dynamics from both the home and away ranges and that studies were typically narrow in scope, focusing only on the herbivore feeding guild, rather than assessing two or more trophic levels. Importantly, relative arthropod richness was significantly reduced on invasive plant species. Phylogenetic differences between the invasive and local plant community as well as the plant functional group impact arthropod diversity patterns. A framework highlighting some interaction mechanisms between multiple arthropod trophic levels and native and invasive plants is discussed and future research directions relating to these interactions and the findings herein are proposed.

  17. Arthropod abundance and seasonal bird use of bottomland forest harvest gaps.

    Energy Technology Data Exchange (ETDEWEB)

    Moorman, Christopher, E.; Bowen, Liessa T.; Kilgo, John, C.; Hanula, James, L.; Horn, Scott; Ulyshen, Michael, D.

    2012-03-01

    We investigated the influence of arthropod abundance and vegetation structure on shifts in avian use of canopy gap, gap edge, and surrounding forest understory in a bottomland hardwood forest in the Upper Coastal Plain of South Carolina. We compared captures of foliage-gleaning birds among locations during four periods (spring migration, breeding, post-breeding, and fall migration). Foliage arthropod densities were greatest in the forest understory in all four seasons, but understory vegetation density was greatest in gaps. Foliage-gleaning bird abundance was positively associated with foliage-dwelling arthropods during the breeding (F = 18.5, P < 0.001) and post-breeding periods (F = 9.4, P = 0.004), and negatively associated with foliage-dwelling arthropods during fall migration (F = 5.4, P = 0.03). Relationships between birds and arthropods were inconsistent, but the arthropod prey base seemed to be least important during migratory periods. Conversely, bird captures were positively correlated with understory vegetation density during all four periods (P < 0.001). Our study suggests high bird abundance associated with canopy gaps during the non-breeding period resulted less from high arthropod food resource availability than from complex understory and midstory vegetation structure.

  18. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Science.gov (United States)

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  19. Effects of persistent insecticides on beneficial soil arthropod in conventional fields compared to organic fields, puducherry.

    Science.gov (United States)

    Anbarashan, Padmavathy; Gopalswamy, Poyyamoli

    2013-07-15

    The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.

  20. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Directory of Open Access Journals (Sweden)

    Huilin Yu

    Full Text Available Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA. Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults and sampling dates (before, during, and after flowering. Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  1. Aerial arthropod communities of native and invaded forests, Robinson Crusoe Island, Chile.

    Science.gov (United States)

    Hagen, Erin N; Bakker, Jonathan D; Gara, Robert I

    2010-08-01

    Invasive species significantly contribute to biological change and threaten biodiversity, with a growing body of evidence that plant invasions affect higher trophic levels. We explored the relative importance of plant invasion and forest structure on aerial arthropod abundance, diversity, and composition on Robinson Crusoe Island, Chile. We used flight intercept traps to sample aerial arthropods within distinct canopy strata of native and invaded forests over 3-mo periods in 2006 and 2007. Arthropod abundance and diversity were higher in native than invaded forest, and arthropod communities were distinct between forest types. In both forest types, arthropod abundance was highest in the lower canopy, and canopy strata exhibited some differences in arthropod community composition. Several morphospecies were distinctly associated with each forest type. The strong differences in aerial arthropod communities associated with the invasion of native forest by non-native plants may affect other trophic levels, such as insectivorous birds. Steps to stop invasive plant spread and to restore native forest composition and structure are needed to safeguard the integrity of native communities, from plants to higher-level consumers.

  2. Arthropods of Medical Importance in Brazil: Retrospective Epidemiological Information about Accidents Involving these Animals

    Directory of Open Access Journals (Sweden)

    Danon Clemes Cardoso

    2009-01-01

    Full Text Available Problem statement: The epidemiological information about arthropods bites/sting in Criciúma region no was reported. The aim of this Research was to draw the epidemiologic profile of accidents with arthropods in Criciúma region. Approach: The information regarding accidents with arthropods from 1994-2006 was prospectively collected from SINAN (System of Injury Notification Information files of the 21a Municipal Health Secretary of Criciúma region. Was calculated the frequency for each variable studied and incidence coefficient for period of study. Results: Results were recorded 1821 notifications of accidents with arthropods in region studied. The numbers of occurrence increased along of the years studied. The arthropod that most result in accidents was the spider with 1,126 (75.9% cases followed by Honeybees and others Arthropods with 149 (10.0% cases, Caterpillars including Lonomia genus and others genera (54/3.7% and scorpions with the least number of accidents with 6 (0.4% cases. The incidence of accidents every thousand inhabitants had a significant increase starting in the year of 2000. The majority of accidents occurred in the warmest months, increasing in the spring and summer seasons. Was recorded more than twice of accidents with arthropods in Urban area than in rural areas. The Chi-square test revealed that the frequency of accidents between locations and type of arthropods is different. Likewise, the number the victims and activity type in moment of the bite/sting had been a differ behavior between arthropods type. However, the number of accidents involving victims of male and female gender is equal. Conclusion: Epidemiological studies of this type in the extreme south of Santa Catarina are scarce. Only few studies have reported the patterns of occurrence and incidence of accidents with poisonous animals. These and other studies are of great importance for implementation of measures mitigation programs and education for

  3. Sweeping beauty: is grassland arthropod community composition effectively estimated by sweep netting?

    Science.gov (United States)

    Spafford, Ryan D; Lortie, Christopher J

    2013-01-01

    Arthropods are critical ecosystem components due to their high diversity and sensitivity to perturbation. Furthermore, due to their ease of capture they are often the focus of environmental health surveys. There is much debate regarding the best sampling method to use in these surveys. Sweep netting and pan trapping are two sampling methods commonly used in agricultural arthropod surveys, but have not been contrasted in natural grassland systems at the community level. The purpose of this study was to determine whether sweep netting was effective at estimating arthropod diversity at the community level in grasslands or if supplemental pan trapping was needed. Arthropods were collected from grassland sites in Montana, USA, in the summer of 2011. The following three standardized evaluation criteria (consistency, reliability, and precision) were developed to assess the efficacy of sweep netting and pan trapping, based on analyses of variations in arthropod abundances, species richness, evenness, capture frequency, and community composition. Neither sampling method was sufficient in any criteria to be used alone for community-level arthropod surveys. On a taxa-specific basis, however, sweep netting was consistent, reliable, and precise for Thysanoptera, infrequently collected (i.e., rare) insects, and Arachnida, whereas pan trapping was consistent, reliable, and precise for Collembola and bees, which is especially significant given current threats to the latter's populations worldwide. Species-level identifications increase the detected dissimilarity between sweep netting and pan trapping. We recommend that community-level arthropod surveys use both sampling methods concurrently, at least in grasslands, but likely in most nonagricultural systems. Target surveys, such as monitoring bee communities in fragmented grassland habitat or where detailed information on behavior of the target arthropod groups is available can in some instances employ singular methods. As a

  4. Grassland Arthropods Are Controlled by Direct and Indirect Interactions with Cattle but Are Largely Unaffected by Plant Provenance.

    Directory of Open Access Journals (Sweden)

    Kelly Anne Farrell

    Full Text Available Cattle grazing and invasion by non-native plant species are globally-ubiquitous changes occurring to plant communities that are likely to reverberate through whole food webs. We used a manipulative field experiment to quantify how arthropod community structure differed in native and non-native California grassland communities in the presence and absence of grazing. The arthropod community was strongly affected by cattle grazing: the biovolume of herbivorous arthropods was 79% higher in grazed than ungrazed plots, whereas the biovolume of predatory arthropods was 13% higher in ungrazed plots. In plots where non-native grasses were grazed, arthropod biovolume increased, possibly in response to increased plant productivity or increased nutritional quality of rapidly-growing annual plants. Grazing may thus affect plant biomass both through the direct removal of biomass, and through arthropod-mediated impacts. We also expected the arthropod community to differ between native and non-native plant communities; surprisingly, arthropod richness and diversity did not vary consistently between these grass community types, although arthropod abundance was slightly higher in plots with native and ungrazed grasses. These results suggest that whereas cattle grazing affects the arthropod community via direct and indirect pathways, arthropod community changes commonly associated with non-native plant invasions may not be due to the identity or dominance of the invasive species in those systems, but to accompanying changes in plant traits or functional group composition, not seen in this experiment because of the similarity of the plant communities.

  5. Longleaf Pine Characterists Associated with Arthropods Available for Red-Cockaded Woodpeckers

    Energy Technology Data Exchange (ETDEWEB)

    Hanula, J.L.; Franzreb, K.E.; Pepper, W.D.

    1999-01-25

    The authors sampled arthropods on 300 longleaf pine under varying stand conditions and ranging in age from 20 to 100 years. The most diverse orders were beetles, spiders, ants, wasps and bees. The most abundant were aphids and Hymenoptera with a large number of ants. Arthropod biomass per tree increased in age up to 65-70 years, but biomass was highest in the youngest stands. Arthropods were positively correlated to bark thickness and tree diameter, but negatively related to the stand basal area. No relationships were found between abundance and ground vegetation conditions.

  6. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    OpenAIRE

    Huilin Yu; Jörg Romeis; Yunhe Li; Xiangju Li; Kongming Wu

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentra...

  7. Introduction to symposium: Arthropods and wildlife conservation: synergy in complex biological systems

    Science.gov (United States)

    The symposium will discuss the effects of arthropods and other stressors on wildlife conservation programs. Speakers with affiliations in wildlife biology, parasitology and entomology will be included in the program. Research of national and international interest will be presented....

  8. Manipulation of arthropod sex determination by endosymbionts : Diversity and molecular mechanisms

    NARCIS (Netherlands)

    Ma, W. -J.; Vavre, F.; Beukeboom, L. W.

    2014-01-01

    Arthropods exhibit a large variety of sex determination systems both at the chromosomal and molecular level. Male heterogamety, female heterogamety, and haplodiploidy occur frequently, but partially different genes are involved. Endosymbionts, such as Wolbachia, Cardinium, Rickettsia, and Spiroplasm

  9. Arthropod trace fossils from the Zhujiaqing Formation (Meishucunian, Yunnan) and their palaeobiological implications

    Institute of Scientific and Technical Information of China (English)

    Bernd WEBER1; ZHU Maoyan

    2003-01-01

    Along with several non-arthropod ichnotaxa and rather non-specific scratchmarks, the Upper Phosphate of the Zhujiaqing Formation (Early Meishucunian Stage) in Eastern Yunnan yielded well-preserved resting and digging traces of the Rusophycus-type interpreted as resting traces of unknown large arthropods (ca. 3~6 cm in length). The discernible morphological details of these trace fossils enable a rough estimation of the body plan characteristics of the trace originators placing the latter doubtless into the early arthropods, if not euarthropods. The spectrum of the Meishucunian ichnoassemblage, especially the different types of arthropod repichnia point to the existence of a complex benthic ecosystem consisting of animals with different behavioural patterns and life styles already during the earliest Cambrian (Nemakit-Daldyn), and demands the assumption of a longer evolutionary past history of the benthic life on earth before the so-called "Cambrian Explosion" of the metazoans.

  10. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic.

    Science.gov (United States)

    Vannier, Jean; Schoenemann, Brigitte; Gillot, Thomas; Charbonnier, Sylvain; Clarkson, Euan

    2016-01-01

    Vision has revolutionized the way animals explore their environment and interact with each other and rapidly became a major driving force in animal evolution. However, direct evidence of how ancient animals could perceive their environment is extremely difficult to obtain because internal eye structures are almost never fossilized. Here, we reconstruct with unprecedented resolution the three-dimensional structure of the huge compound eye of a 160-million-year-old thylacocephalan arthropod from the La Voulte exceptional fossil biota in SE France. This arthropod had about 18,000 lenses on each eye, which is a record among extinct and extant arthropods and is surpassed only by modern dragonflies. Combined information about its eyes, internal organs and gut contents obtained by X-ray microtomography lead to the conclusion that this thylacocephalan arthropod was a visual hunter probably adapted to illuminated environments, thus contradicting the hypothesis that La Voulte was a deep-water environment. PMID:26785293

  11. A systematic review of arthropod community diversity in association with invasive plants

    OpenAIRE

    Spafford, Ryan D; Lortie, Christopher J.; Butterfield, Bradley J.

    2013-01-01

    Invasive plants represent a significant financial burden for land managers and also have the potential to severely degrade ecosystems. Arthropods interact strongly with plants, relying on them for food, shelter, and as nurseries for their young. For these reasons, the impacts of plant invasions are likely strongly reflected by arthropod community dynamics including diversity and abundances. A systematic review was conducted to ascertain the state of the literature with respect to plant invade...

  12. Possible developmental mechanisms underlying the origin of the crown lineages of arthropods

    Institute of Scientific and Technical Information of China (English)

    WANG Xiuqiang; CHEN Junyuan

    2004-01-01

    The extraordinarily preserved, diverse arthropod fauna from the Lower Cambrian Maotianshan shale, central Yunnan (southwest China), represents different evolutionary stages stepping from stem lineages towards crown arthropods (also called euarthropods), which makes this fauna extremely significant for discussion of the origin and early diversification of the arthropods. Anatomical analyses of the Maotianshan shale arthropods strongly indicate that the origin of crown arthropods involved three major evolutionary events, arthrodisation, arthropodisation and cephali- zation. We try to explore possible evolutionary changes of the developmental mechanism that may have underlain origins of euarthropod appendage and head. Fossil evidence suggests that the formation of a jointed limb known as arthropodisation and formation of multi-segmented head (called cephalization), which characterize euarthropods, is an event after arthrodisation characterized with the formation of segmented-exoskeleton and the joint membrane between tergites. We propose that the Hox complex was already operating at least as early as in the Early Cambrian and is responsible for the formation of the joint membrane between two semgents through Hox gene regulation along the D-V and P-D axis. Fossil evidence indicates that the head in ground state of arthropods consists only of two segments, an ocular and an antennal one. The formation of multiple segmented, euarthropod head (called syncephalon) from the two-segmented head was a separate event, which is called cephali- zation. Presence of the Hox gene head expression domain and change of developmental mechanism in head segments might be responsible for the formation of the syncephalon and this event has been broadly finished in the Early Cambrian arthropods. The post-oral limbs in the early syncephalons as evidenced from the Lower Cambrian Maotianshan shale arthropods however were almost identical to those in trunk. Therefore we proposed that the Hox

  13. Arthropod diversity in pure oak forests of coppice origin in northern Thrace (Turkey

    Directory of Open Access Journals (Sweden)

    Keten A

    2015-10-01

    Full Text Available Oak (Quercus spp. forests are among the most important forest types in Turkey. In the past, oak forests were managed through coppice clear-cutting, but in recent decades they have mostly been converted to high forest. This study was aimed at explaining how arthropod diversity is affected during conversion from coppice to high oak forest and during the early stages of coppice succession. We tested the hypothesis that arthropod richness, abundance and diversity in coppice oak sites varied according to stand age and a number of other forest characteristics. Arthropod communities were sampled in 50 plots using four different methods: pitfall traps, sweep nets, sticky cards and cloth shaking. A total of 13 084 individuals were collected and classified into 193 Recognizable Taxonomic Units (RTUs, with the most RTUs and the greatest number of specimens captured by sweep netting. We identified 17 taxa within RTU’s with more than 1% of the captured arthropods, which constituted 75% of the total specimens. The number of RTUs varied significantly according to trap type. Arthropod richness and Shannon-Wiener biodiversity index (H′ increased with elevation and precipitation. In young (1-40 yrs-old and middle-aged (41-80 yrs stands, arthropod biodiversity was not significantly affected by stand type, but slightly increased with diameter at breast height and tree height. Forest characteristics, such as the litter layer, understory and crown diameter, weakly influenced arthropod richness and abundance. Cluster analysis revealed that stand types and trap types differed taxonomically. Principal component analysis showed that stand types were clearly separated by the stand parameters measured. Insect families (Formicidae, Thripidae, Lygaeidae, Dolichopodidae, Luaxanidae, Cicadellidae and Ichneumonidae could potentially be used as indicators of coppice oak conditions. As the coppice oak changes to mature forest, further studies are needed to better assess the

  14. Dynamics of the leaf-litter arthropod fauna following fire in a neotropical woodland savanna.

    Directory of Open Access Journals (Sweden)

    Heraldo L Vasconcelos

    Full Text Available Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover. Although these effects were transitory, there is evidence that the increasingly prevalent fire

  15. Influence of Selective Insecticides and Cropping System on Arthropod Natural Enemies in Soybean

    OpenAIRE

    Whalen, Rebecca Anne

    2016-01-01

    Arthropod natural enemies play a key role in controlling potentially damaging pest populations in agroecosystems. An abundant and diverse natural enemy community is associated with higher yields in a variety of crops. Certain aspects of soybean production can make a field more or less amenable to a robust natural enemy community. For instance, commonly used broad-spectrum insecticides which are highly toxic to most arthropods can decrease natural enemy densities and allow for secondary pest o...

  16. Bison grazing increases arthropod abundance and diversity in a tallgrass prairie.

    Science.gov (United States)

    Moran, Matthew D

    2014-10-01

    How grazing-induced ecosystem changes by ungulates indirectly affect other consumers is a question of great interest. I investigated the effect of grazing by American Bison (Bos bison L.) on an arthropod community in tallgrass prairie. Grazing increased the abundance of arthropods, an increase that was present in both herbivorous and carnivorous assemblages, but not in detritivores. The increase in herbivores and reduction in plant biomass from grazing resulted in an arthropod herbivore load almost three times higher in grazed plots compared with controls. Among herbivores, the sap-feeding insect guild was dramatically more abundant, while chewing herbivores were not affected. Herbivorous and carnivorous arthropod richness was higher in grazed plots, although the response was strongest among herbivores. Arthropod abundance on individual grasses and forbs was significantly higher in grazed areas, while plant type had no effect on abundance, indicating that the change was ecosystem-wide and not simply in response to a reduction in grass biomass from grazing. The response of arthropods to grazing was strongest in the early part of the growing season. Published research shows that ungulate grazing, although decreasing available biomass to other consumers, enhances plant quality by increasing nitrogen level in plants. The arthropod results of this study suggest higher plant quality outweighs the potential negative competitive effects of plant biomass removal, although other activities of bison could not be ruled out as the causative mechanism. Because arthropods are extremely abundant organisms in grasslands and a food source for other consumers, bison may represent valuable management tools for maintaining biodiversity. PMID:25198902

  17. Genetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.)

    OpenAIRE

    Robinson, Kathryn M; Pär K Ingvarsson; Jansson, Stefan; Albrectsen, Benedicte R.

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod ...

  18. Linking membrane physical properties and low temperature tolerance in arthropods.

    Science.gov (United States)

    Waagner, Dorthe; Bouvrais, Hélène; Ipsen, John H; Holmstrup, Martin

    2013-12-01

    Maintenance of membrane fluidity is of crucial importance in ectotherms experiencing thermal changes. This maintenance has in ectotherms most often been indicated using indirect measures of biochemical changes of phospholipid membranes, which is then assumed to modulate the physico-chemical properties of the membrane. Here, we measure bending rigidity characterizing the membrane flexibility of re-constituted membrane vesicles to provide a more direct link between membrane physical characteristics and low temperature tolerance. Bending rigidity of lipid bilayers was measured in vitro using Giant Unilamellar Vesicles formed from phospholipid extracts of the springtail, Folsomia candida. The bending rigidity of these membranes decreased when exposed to 0.4 vol% ethanol (0.23 mM/L). Springtails exposed to ethanol for 24h significantly increased their cold shock tolerance. Thus, by chemically inducing decreased membrane rigidity, we have shown a direct link between the physico-chemical properties of the membranes and the capacity to tolerate low temperature in a chill-susceptible arthropod. PMID:24080490

  19. Arthropod phylogeny based on eight molecular loci and morphology

    Science.gov (United States)

    Giribet, G.; Edgecombe, G. D.; Wheeler, W. C.

    2001-01-01

    The interrelationships of major clades within the Arthropoda remain one of the most contentious issues in systematics, which has traditionally been the domain of morphologists. A growing body of DNA sequences and other types of molecular data has revitalized study of arthropod phylogeny and has inspired new considerations of character evolution. Novel hypotheses such as a crustacean-hexapod affinity were based on analyses of single or few genes and limited taxon sampling, but have received recent support from mitochondrial gene order, and eye and brain ultrastructure and neurogenesis. Here we assess relationships within Arthropoda based on a synthesis of all well sampled molecular loci together with a comprehensive data set of morphological, developmental, ultrastructural and gene-order characters. The molecular data include sequences of three nuclear ribosomal genes, three nuclear protein-coding genes, and two mitochondrial genes (one protein coding, one ribosomal). We devised new optimization procedures and constructed a parallel computer cluster with 256 central processing units to analyse molecular data on a scale not previously possible. The optimal 'total evidence' cladogram supports the crustacean-hexapod clade, recognizes pycnogonids as sister to other euarthropods, and indicates monophyly of Myriapoda and Mandibulata.

  20. [Structure of parasitic arthropod communities in forest small mammals].

    Science.gov (United States)

    Balashov, Iu S

    2004-01-01

    Species composition and structure of ectoparasite arthropod communities were examined all year round six years in the bank vole Clethrionomys glareolus, Ural wood mouse Apodemus uralensis and the common shrew Sorex araneus in forests of the Ilmen'-Volkhov depression. In total, 4500 host samples have been examined and all ectoparasites have been collected. The species composition of ectoparasite community in small mammal species are as follows: the bank vole--29 insect, tick and mite species, the common shrew--23 species, the Ural wood mouse--16 species. In forest biotopes, many temporary ectoparasitic species occur on several host species living in the same habitats under a forest canopy and contacting each other. A parasitic supracommunity in the ecosystem examined has a pool of temporary ectoparasites, which is available for all the community of small mammals. A role of different rodent and shrew species are hosts of insects and ticks changes depending on a density of potential host populations and numerous other environment factors. PMID:15656091

  1. Arthropod-borne infections in travelled dogs in Europe

    Directory of Open Access Journals (Sweden)

    Hamel Dietmar

    2013-01-01

    Full Text Available Pet animal movement is ever increasing within the European Union and in that context canine vectorborne infections gained a considerable importance. Information on these infections in travelled dogs is nevertheless limited. A first prospective study on vector-borne infections was conducted in 106 dogs travelling from Germany to countries in South and South-East Europe. The dogs were screened prior to and consecutively up to three times after travel by haematological (Giemsa-stained buffy coat smears, Knott’s-Test, molecular biological (PCR as well as serological (IFAT, DiroChek®-ELISA methods for arthropod-borne infections. Seven animals were seropositive for antibodies against Babesia canis sspp., Leishmania spp. and/or Ehrlichia canis prior to travel to Italy, Spain, France, Croatia, Greece, or Hungary. In the consecutive screening after return there was no increase in the number of seropositive dogs. None was positive in direct methods. The mean duration of the stay was 17 days and 51% of the dogs were prophylactically treated with ectoparasiticidal formulations. Preliminary data from this study on canine vector-borne infections indicate a low risk for infection during a limited single stay in endemic countries.

  2. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1980-October 31, 1981

    International Nuclear Information System (INIS)

    Progress and current status are reported for research projects concerned with mineral element and nutrient dynamics in soil arthropod food chains. Research is performed within the larger context of terrestrial decomposition, in which soil arthropods may act as regulators of nutrient dynamics during decomposition. Research is measuring rates of nutrient accumulation and excretion by using radioactive tracer analogs of nutrients. This year, emphasis has been placed on field work in which soil arthropod population size and nutrients inputs were varied experimentally. The presence of microarthropods in field microcosms increased the mineralization of N and P in each case, but rates were not correlated with arthropod densities. Experiments recently started are using both arthropod and microfloral inhibitors, in open systems on the forest floor, with the objective of quantifying arthropod enhancement of microbial immobilization of nutrients

  3. A New Arthropod, Guangweicaris Luo, Fu et Hu gen. nov.from the Early Cambrian Guanshan Fauna, Kunming, China

    Institute of Scientific and Technical Information of China (English)

    LUO Huilin; FU Xiaoping; HU Shixue; LI Yong; HOU Shuguang; YOU Ting; PANG Jiyuan; LIU Qi

    2007-01-01

    The Guanshan Fauna is a soft-bodied fauna dominated by arthropods (including trilobites,trilobitoides, Tuzoia, Isoxys, and bradorids) in association with priapulids, brachiopods,anomalocaridids, vetulicoliids, sponges, chancellorids, and echinoderms. This paper reports and describes a new arthropod from the yellowish green mudstone at the lower part of the Wulongqing Formation, Canglangpuan Stage, Lower Cambrian in Kunming, Yunnan, China. The stratigraphic and geographic distribution, classification, fossil preservation, life style of this new arthropod and comparisons with other fossil arthropods are also discussed in details. The discovery and research of the non-mineralized arthropod, Guangweicaris Luo, Fu et Hu gen. nov. from the Guanshan Fauna adds new members to the taxonomic list and provides new information to the evolution of early arthropods.Furthermore, this study would shed new light into the "Cambrian Explosion" and the evolution of early life.

  4. The Diversity and Abundance of Small Arthropods in Onion, Allium cepa, Seed Crops, and their Potential Role in Pollination

    OpenAIRE

    Walker, M.K.; Howlett, B. G.; Wallace, A.R.; Mccallum, J. A.; Teulon, D.A.J.

    2011-01-01

    Onion, Allium cepa L. (Asparagales: Amaryllidaceae), crop fields grown for seed production require arthropod pollination for adequate seed yield. Although many arthropod species visit A. cepa flowers, for most there is little information on their role as pollinators. Small flower visiting arthropods (body width < 3 mm) in particular are rarely assessed. A survey of eight flowering commercial A. cepa seed fields in the North and South Islands of New Zealand using window traps revealed that sma...

  5. Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities.

    Energy Technology Data Exchange (ETDEWEB)

    Orrock, John, L.; Curler, Gregory, R.; Danielson, Brent, J.; Coyle, David. R.

    2011-09-14

    The size, shape, and isolation of habitat patches can affect organism behavior and population dynamics, but little is known about the relative role of shape and connectivity in affecting ecological communities at large spatial scales. Using six sampling sessions from July 2001 until August 2002, we collected 33,685 arthropods throughout seven 12-ha experimental landscapes consisting of clear-cut patches surrounded by a matrix of mature pine forest. Patches were explicitly designed to manipulate connectivity (via habitat corridors) independently of area and edge effects. We found that patch shape, rather than connectivity, affected ground-dwelling arthropod richness and beta diversity (i.e. turnover of genera among patches). Arthropod communities contained fewer genera and exhibited less turnover in high-edge connected and high-edge unconnected patches relative to low-edge unconnected patches of similar area. Connectivity, rather than patch shape, affected the evenness of ground-dwelling arthropod communities; regardless of patch shape, high-edge connected patches had lower evenness than low- or high-edge unconnected patches. Among the most abundant arthropod orders, increased richness in low-edge unconnected patches was largely due to increased richness of Coleoptera, whereas Hymenoptera played an important role in the lower evenness in connected patches and patterns of turnover. These findings suggest that anthropogenic habitat alteration can have distinct effects on ground-dwelling arthropod communities that arise due to changes in shape and connectivity. Moreover, this work suggests that corridors, which are common conservation tools that change both patch shape and connectivity, can have multiple effects on arthropod communities via different mechanisms, and each effect may alter components of community structure.

  6. Phylogeny and life habits of Early Arthropods-Predation in the Early Cambrian Sea

    Institute of Scientific and Technical Information of China (English)

    Andreas MAAS; Dieter WALOSZEK; CHEN Junyuan; Andreas BRAUN; WANG Xiuqiang; HUANG Diying

    2004-01-01

    We investigated two new arthropods from the Maotianshan-Shale fauna of southern China in the course of our research on life strategies, particularly predation, in Early Cambrian marine macrofaunal biota. One form clearly belongs to the so-called "great-appendage" arthropods, animals that were, most likely, active predators catching prey with their first pair of large, specialized frontoventral appendages. Based on this, we hypothesize that the new species and many others, if not all, of the "great-appendage" arthropods were derivatives of the chelicerate stem lineage and not forms having branched off at different nodes along the evolutionary lineage of the Arthropoda. Rather, we consider the "great-appendage" arthropods as belonging to a monophyletic clade, which modified autapomorphically their first pair of appendages (antennae in general arthropod terminology) into raptorial organs for food capture. The second new form resembles another Maotianshan-Shale arthropod, Fuxianhuia protensa, in sharing a head made of only two separate segments, a small segment bearing oval eyes laterally, and another bearing a large tergite, which forms a wide shield freely overhanging the subsequent narrow trunk segments. This segment bears a single pair of rather short anteriorly directed uniramous appendages, considered as the "still" limb-shaped antennae. Particularly the evolutionary status of head and limbs of these two forms suggests that both are representatives of the early part of the stem lineage toward the crown-group of Arthropoda, the Euarthropoda. These forms appear rather unspecialized, but may have been but simple predators. This adds to our hypothesis that predation was a common, if not dominant feeding strategy in the Cambrian, at least for arthropods.

  7. Habitat and species identity, not diversity, predict the extent of refuse consumption by urban arthropods.

    Science.gov (United States)

    Youngsteadt, Elsa; Henderson, Ryanna C; Savage, Amy M; Ernst, Andrew F; Dunn, Robert R; Frank, Steven D

    2015-03-01

    Urban green spaces provide ecosystem services to city residents, but their management is hindered by a poor understanding of their ecology. We examined a novel ecosystem service relevant to urban public health and esthetics: the consumption of littered food waste by arthropods. Theory and data from natural systems suggest that the magnitude and resilience of this service should increase with biological diversity. We measured food removal by presenting known quantities of cookies, potato chips, and hot dogs in street medians (24 sites) and parks (21 sites) in New York City, USA. At the same sites, we assessed ground-arthropod diversity and abiotic conditions, including history of flooding during Hurricane Sandy 7 months prior to the study. Arthropod diversity was greater in parks (on average 11 hexapod families and 4.7 ant species per site), than in medians (nine hexapod families and 2.7 ant species per site). However, counter to our diversity-based prediction, arthropods in medians removed 2-3 times more food per day than did those in parks. We detected no effect of flooding (at 19 sites) on this service. Instead, greater food removal was associated with the presence of the introduced pavement ant (Tetramorium sp. E) and with hotter, drier conditions that may have increased arthropod metabolism. When vertebrates also had access to food, more was removed, indicating that arthropods and vertebrates compete for littered food. We estimate that arthropods alone could remove 4-6.5 kg of food per year in a single street median, reducing its availability to less desirable fauna such as rats. Our results suggest that species identity and habitat may be more relevant than diversity for predicting urban ecosystem services. Even small green spaces such as street medians provide ecosystem services that may complement those of larger habitat patches across the urban landscape.

  8. Reconstructing the phylogeny of 21 completely sequenced arthropod species based on their motor proteins

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2009-04-01

    Full Text Available Abstract Background Motor proteins have extensively been studied in the past and consist of large superfamilies. They are involved in diverse processes like cell division, cellular transport, neuronal transport processes, or muscle contraction, to name a few. Vertebrates contain up to 60 myosins and about the same number of kinesins that are spread over more than a dozen distinct classes. Results Here, we present the comparative genomic analysis of the motor protein repertoire of 21 completely sequenced arthropod species using the owl limpet Lottia gigantea as outgroup. Arthropods contain up to 17 myosins grouped into 13 classes. The myosins are in almost all cases clear paralogs, and thus the evolution of the arthropod myosin inventory is mainly determined by gene losses. Arthropod species contain up to 29 kinesins spread over 13 classes. In contrast to the myosins, the evolution of the arthropod kinesin inventory is not only determined by gene losses but also by many subtaxon-specific and species-specific gene duplications. All arthropods contain each of the subunits of the cytoplasmic dynein/dynactin complex. Except for the dynein light chains and the p150 dynactin subunit they contain single gene copies of the other subunits. Especially the roadblock light chain repertoire is very species-specific. Conclusion All 21 completely sequenced arthropods, including the twelve sequenced Drosophila species, contain a species-specific set of motor proteins. The phylogenetic analysis of all genes as well as the protein repertoire placed Daphnia pulex closest to the root of the Arthropoda. The louse Pediculus humanus corporis is the closest relative to Daphnia followed by the group of the honeybee Apis mellifera and the jewel wasp Nasonia vitripennis. After this group the rust-red flour beetle Tribolium castaneum and the silkworm Bombyx mori diverged very closely from the lineage leading to the Drosophila species.

  9. Abundance of epigaeic arthropods in a Brazilian savanna under different fire frequencies

    Directory of Open Access Journals (Sweden)

    Marcio Uehara-Prado

    2010-10-01

    Full Text Available Fire is a major determinant of structure and dynamics in savannas, and the rapid increase of human activities in this biome has changed the natural burning regime. The effects of fire on the fauna of the cerrado (Brazilian savanna are still poorly understood, and studies comparing sites frequently and infrequently burned are scarce. In this study, the abundance of epigaeic arthropod orders and trophic guilds was assessed in cerrado sites located in the Brazilian Central Plateau that were subjected to three burning frequencies: frequent (HighFi, intermediary (MidFi, and infrequent (LowFi. In general, we found a positive relationship between the abundance of epigaeic arthropods and fire frequency. When arthropods were analyzed by orders, the abundance of Collembola and Orthoptera was lower in the LowFi site, while for Hemiptera, it was higher in the MidFi site. No significant differences were found for Hymenoptera, Coleoptera, and Araneae. The abundance of detritivores and herbivores decreased from HighFi to LowFi, but did not change significantly for omnivores and predators. These results indicate that some arthropod groups may not only be resilient to fire effects, but actually might benefit from fire effects in the cerrado. Characterizing arthropod responses to burning frequency at high taxonomic or functional levels is important for applied studies. Based on the results of the current study, springtails and ants seem to be particularly appropriate focal groups for further exploratory studies on the effects of fire at the species level.

  10. Modification and Application of a Leaf Blower-vac for Field Sampling of Arthropods.

    Science.gov (United States)

    Zou, Yi; van Telgen, Mario D; Chen, Junhui; Xiao, Haijun; de Kraker, Joop; Bianchi, Felix J J A; van der Werf, Wopke

    2016-01-01

    Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m(2) yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries. PMID:27584040

  11. Evaluation of Ground Arthropod Structure in Restoration Area of Talangagung Landfill as Edutourism Attraction, Kepanjen, Malang

    Directory of Open Access Journals (Sweden)

    Dinda Azalia

    2015-09-01

    Full Text Available Aim of this research is to know the composition, community structure and survivality of ground arthropod in restoration area of Talangagung edutourism landfill (TPA Wisata Edukasi Talangagung. Arthopod survey was conducted with four methods, yellow pan trap, pit fall trap, berlesetullgren, and sweep net. The research was done in four different locations with twice repetition. Survey location was devided in three zone, which is zone one with 10 years restoration, zone two with five years restoration, and zone three which not yet restored, and reference site. Abiotic factor which observed in this research such as light intensity, humidity, and air temperature. Analysis of arthropod diversity and community structure in each site was calculated from importance value index (IVI and diversity index (Shannon Wienner Index. The results show that diversity of ground arthropod in zone one, two, three, and reference site was on medium level which each score 1.9, 1.87, 1.71, and 2.08. Community structure with dominant pattern showed with IVI from Acrididae in zone one and zone three with IVI 67.2 % and 53.5 %. Myrmicidae in reference site dominance with IVI 51.4 % and Formicidae in zone one with IVI 48.6 %. Ground arthropod in zone one and reference site had similarity in community structure which showed in same cluster in biplot analysis and zone two and three was in another different cluster. Keywords : Arthropod, diversity, restoration, community structure

  12. Disturbance and recovery of salt marsh arthropod communities following BP Deepwater Horizon oil spill.

    Directory of Open Access Journals (Sweden)

    Brittany D McCall

    Full Text Available Oil spills represent a major environmental threat to coastal wetlands, which provide a variety of critical ecosystem services to humanity. The U.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted intertidal habitats such as salt marsh. Following the BP Deepwater Horizon oil spill, we sampled the terrestrial arthropod community and marine invertebrates found in stands of Spartina alterniflora, the most abundant plant in coastal salt marshes. Sampling occurred in 2010 as oil was washing ashore and a year later in 2011. In 2010, intertidal crabs and terrestrial arthropods (insects and spiders were suppressed by oil exposure even in seemingly unaffected stands of plants; however, Littoraria snails were unaffected. One year later, crab and arthropods had largely recovered. Our work is the first attempt that we know of assessing vulnerability of the salt marsh arthropod community to oil exposure, and it suggests that arthropods are both quite vulnerable to oil exposure and quite resilient, able to recover from exposure within a year if host plants remain healthy.

  13. Tiny individuals attached to a new Silurian arthropod suggest a unique mode of brood care

    Science.gov (United States)

    Briggs, Derek E. G.; Siveter, Derek J.; Siveter, David J.; Sutton, Mark D.

    2016-04-01

    The ˜430-My-old Herefordshire, United Kingdom, Lagerstätte has yielded a diversity of remarkably preserved invertebrates, many of which provide fundamental insights into the evolutionary history and ecology of particular taxa. Here we report a new arthropod with 10 tiny arthropods tethered to its tergites by long individual threads. The head of the host, which is covered by a shield that projects anteriorly, bears a long stout uniramous antenna and a chelate limb followed by two biramous appendages. The trunk comprises 11 segments, all bearing limbs and covered by tergites with long slender lateral spines. A short telson bears long parallel cerci. Our phylogenetic analysis resolves the new arthropod as a stem-group mandibulate. The evidence suggests that the tethered individuals are juveniles and the association represents a complex brooding behavior. Alternative possibilities—that the tethered individuals represent a different epizoic or parasitic arthropod—appear less likely.

  14. A framework for assessment and monitoring of arthropods in a lowland tropical forest.

    Science.gov (United States)

    Finnamore, Albert; Alonso, Alfonso; Santisteban, Jose; Cordova, Saida; Valencia, Gorky; de la Cruz, Alicia; Polo, Roberto

    2002-05-01

    By applying principles of adaptive management, and by using the valuable information that arthropods provide from assessment and monitoring programs, managers can identify and reduce possible impacts on biodiversity in development projects. In 1996, the Smithsonian Institution's Monitoring and Assessment of Biodiversity program worked together with Shell Prospecting and Development Peru to establish an adaptive management program to protect biodiversity in a natural gas exploration project in a Peruvian rainforest. In this paper, we outlined the conceptual steps involved in establishing an assessment and monitoring program for arthropods, including setting objectives, evaluating the results and making decisions. We also present the results of the assessment using some of groups of arthropods, and summarize the steps taken to identify appropriate groups for monitoring. PMID:12125749

  15. Spatial dynamics of understorey insectivorous birds and arthropods in a southeastern Brazilian Atlantic woodlot.

    Science.gov (United States)

    Manhães, M A; Dias, M M

    2011-02-01

    Spatial distribution and spatial relationships in capture rates of understorey insectivorous birds and density of arthropods were investigated in a patch of upper montane rain forest in Minas Gerais state, southeastern Brazil, from January to December 2004. The composition of the arthropod fauna collected was similar to that reported for other tropical forests, with predominance of Araneae, Coleoptera, Hymenoptera and Hemiptera non-Heteroptera. A total of 26 bird species were captured, among which the more common were Dysithamnus mentalis, Conopophaga lineata, Platyrinchus mystaceus, Basileuterus culicivorus and Sclerurus scansor. Variation in the bird capture rates among sampling net lines were not correlated with arthropod density. Rather, individual analyses of some bird species suggest that spatial distribution of understorey insectivorous birds is better explained by habitat type. PMID:21437393

  16. Responsiveness of arthropod herbivores and their natural enemies to modified weed management in corn.

    Science.gov (United States)

    Albajes, Ramon; Lumbierres, Belén; Pons, Xavier

    2009-06-01

    Alteration of weed flora as consequence of the deployment of genetically modified herbicide-tolerant crops may affect higher trophic levels in agrosystems. A 4-yr study is being conducted in Spain to investigate interrelations between weeds and associated arthropods in corn fields. In a first step, the work aimed to detect the most responsive arthropods to weed management changes. To identify the most responsive arthropods, arthropod composition and abundance in herbicide-tolerant corn plots treated twice with glyphosate and untreated plots were compared for 2 yr. Plots were sampled seven times during the season by visual inspection and pitfall and yellow sticky traps to estimate abundance and activity of the main arthropod herbivores, predators, and parasitoids. As intended, the abundance and composition of weed flora was strongly altered by the differential herbicide treatments. Several groups of arthropods responded to the weed changes but in variable directions. Whereas leafhoppers and aphids were more abundant on herbicide-treated plots, the contrary was found for phytophagous thrips. Among predators, Orius sp., spiders, and trombidids were more abundant on treated plots, whereas nabids and carabids were more abundant in untreated plots; the same case was found for carabids and spiders caught in pitfall traps. Among parasitoids, ichneumonids were more abundant in untreated plots and mymarids in treated plots. These results cannot be interpreted in terms of nontarget effects of postemergence treatments with broad-spectrum herbicides; for this, a comparison with conventional weed management practices should be done and this is the current step in the study. PMID:19508806

  17. Isomin: a novel cytoplasmic intermediate filament protein from an arthropod species

    Directory of Open Access Journals (Sweden)

    Lupetti Pietro

    2011-02-01

    Full Text Available Abstract Background The expression of intermediate filaments (IFs is a hallmark feature of metazoan cells. IFs play a central role in cell organization and function, acting mainly as structural stress-absorbing elements. There is growing evidence to suggest that these cytoskeletal elements are also involved in the integration of signalling networks. According to their fundamental functions, IFs show a widespread phylogenetic expression, from simple diblastic animals up to mammals, and their constituent proteins share the same molecular organization in all species so far analysed. Arthropods represent a major exception in this scenario. Only lamins, the nuclear IF proteins, have so far been identified in the model organisms analysed; on this basis, it has been considered that arthropods do not express cytoplasmic IFs. Results Here, we report the first evidence for the expression of a cytoplasmic IF protein in an arthropod - the basal hexapod Isotomurus maculatus. This new protein, we named it isomin, is a component of the intestinal terminal web and shares with IFs typical biochemical properties, molecular features and reassembly capability. Sequence analysis indicates that isomin is mostly related to the Intermediate Filament protein C (IFC subfamily of Caenorhabditis elegans IF proteins, which are molecular constituents of the nematode intestinal terminal web. This finding is coherent with, and provides further support to, the most recent phylogenetic views of arthropod ancestry. Interestingly, the coil 1a domain of isomin appears to have been influenced by a substantial molecular drift and only the aminoterminal part of this domain, containing the so-called helix initiation motif, has been conserved. Conclusions Our results set a new basis for the analysis of IF protein evolution during arthropod phylogeny. In the light of this new information, the statement that the arthropod phylum lacks cytoplasmic IFs is no longer tenable. See commentary

  18. Elevated atmospheric CO2 alters the arthropod community in a forest understory

    Science.gov (United States)

    Hamilton, Jason; Zangerl, Arthur R.; Berenbaum, May R.; Sparks, Jed P.; Elich, Lauren; Eisenstein, Alissa; DeLucia, Evan H.

    2012-08-01

    The objective of this study was to determine the extent to which overall population sizes and community composition of arthropods in a naturally occurring forest understory are altered by elevated CO2. The Free Air Concentration Enrichment (FACE) method was used to fumigate large, replicated plots in the Piedmont region of North Carolina, USA to achieve the CO2 concentration predicted for 2050 (˜580 μl l-1). In addition, the extent to which unrestricted herbivorous arthropods were spatially delimited in their resource acquisition was determined. Stable isotope data for spiders (δ13C and δ15N) were collected in ambient and elevated CO2 plots and analyzed to determine whether their prey species moved among plots. Elevated CO2 had no effect on total arthropod numbers but had a large effect on the composition of the arthropod community. Insects collected in our samples were identified to a level that allowed for an assignment of trophic classification (generally to family). For the groups of insects sensitive to atmospheric gas composition, there was an increase in the numbers of individuals collected in primarily predaceous orders (Araneae and Hymenoptera; from 60% to more than 150%) under elevated CO2 and a decrease in the numbers in primarily herbivorous orders (Lepidoptera and Coleoptera; from -30 to -45%). Isotopic data gave no indication that the treatment plots represented a "boundary" to the movement of insects or that there were distinct and independent insect populations inside and outside the treatment plots. A simple two-ended mixing model estimates 55% of the carbon and nitrogen in spider biomass originated external to the elevated CO2 plots. In addition to changes in insect performance, decreases in herbivorous arthropods and increases in predaceous arthropods may also be factors involved in reduced herbivory under elevated CO2 in this forest.

  19. Feeding and the rhodopsin family G-Protein Coupled Receptors (GPCRs in nematodes and arthropods

    Directory of Open Access Journals (Sweden)

    Joao Carlos dos Reis Cardoso

    2012-12-01

    Full Text Available In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologues of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster, suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologues of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

  20. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods.

    Science.gov (United States)

    Cardoso, João C R; Félix, Rute C; Fonseca, Vera G; Power, Deborah M

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors. PMID:23264768

  1. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473

  2. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  3. Community Composition and Structure of Soil Macro-Arthropods Under Agricultural Land Uses in the Black Soil Region of Jilin Province, China

    Institute of Scientific and Technical Information of China (English)

    WU Dong-hui; ZHANG Bai; CHEN Peng

    2006-01-01

    Soil macro-arthropods in the black soil region in Jilin Province of China were investigated with the emphasis laid on the species richness and abundance in relation to the types of land-use, i.e., farm yard, farm land and Three-North Forest Shelter Belt. Soil macro-arthropods were hand-sorted in the field. A total of 2 357 soil macro-arthropod individuals was captured and fell into 70 families. The results suggested that type of land use affected the species richness and abundance of soil macro-arthropods. Agricultural practices had a strong impact on the soil macro-arthropods community, the conventional cultivations changed the vertical structure of macro-arthropods in the soil profile, and improved the richness and abundance of macro-arthropods in the lower soil layers especially in July. The results also showed that different groups of soil macro-arthropods had various responses to land use changes.

  4. Spatial distribution and internal metal concentrations of terrestrial arthropods in a moderately contaminated lowland floodplain along the Rhine River

    Energy Technology Data Exchange (ETDEWEB)

    Schipper, Aafke M. [Department of Environmental Science, Institute for Wetland and Water Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands)], E-mail: a.schipper@science.ru.nl; Wijnhoven, Sander [Centre for Sustainable Management of Resources, Institute for Science, Innovation and Society, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Netherlands Institute of Ecology, Centre for Estuarine and Marine Ecology, Monitor Taskforce, P.O. Box 140, 4400 AC Yerseke (Netherlands); Leuven, Rob S.E.W.; Ragas, Ad M.J.; Jan Hendriks, A. [Department of Environmental Science, Institute for Wetland and Water Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands)

    2008-01-15

    Soil metal concentrations, inundation characteristics and abundances of 14 arthropod taxa were investigated in a moderately contaminated lowland floodplain along the Rhine River and compared to the hinterland. Internal metal concentrations were determined for the orders of Coleoptera (beetles) and Araneida (spiders) and were related to soil concentrations. The floodplain was characterized by larger arthropod abundance than the hinterland, in spite of recurrent inundations and higher soil metal concentrations. Most arthropod taxa showed increasing abundance with decreasing distance to the river channel and increasing average inundation duration. For Cd, Cu, Pb and Zn, significant relations were found between arthropod concentrations and concentrations in soil. Significant relations were few but positive, indicating that increasing soil concentrations result in increasing body burdens in arthropods. For arthropod-eating vertebrates, these results might imply that larger prey availability in the floodplain coincides with higher metal concentrations in prey, possibly leading to increased exposure to metal contamination. - Recurrent floodplain inundations affect terrestrial arthropod numbers and metal contamination levels.

  5. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima

    NARCIS (Netherlands)

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present

  6. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  7. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    Directory of Open Access Journals (Sweden)

    Julieta Benítez-Malvido

    Full Text Available Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  8. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  9. Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants

    Science.gov (United States)

    This paper provides recommendations on experimental design for early-tier laboratory studies used in the risk assessment process to evaluate potential adverse impacts of arthropod-resistant genetically-engineered plants on non-target arthropods. While we rely heavily on the currently used proteins f...

  10. Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating transgenic crops

    Science.gov (United States)

    Arthropods form a major part of the biodiversity in agricultural landscapes. Many species are valued because they provide ecosystem services, including biological control, pollination, and decomposition, or because they are valued for cultural or economic reasons. Some arthropods reduce crop yield a...

  11. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  12. The response of sward-dwelling arthropod communities to reduced grassland management intensity in pastures

    Directory of Open Access Journals (Sweden)

    Helden Alvin J.

    2015-12-01

    Full Text Available We compared arthropod taxon richness, diversity and community structure of two replicated grassland husbandry experiments to investigate effects of reduced management intensity, as measured by nutrient input levels (390, 224 and 0 kg/ha per year N in one experiment, and 225 and 88 kg/ha per year N in another. Suction sampling was used to collect Araneae, Coleoptera, Hemiptera and Hymenoptera, with Araneae and Coleoptera also sampled with pitfall trapping. Univariate analyses found no significant differences in abundance and species density between treatments. However, with multivariate analysis, there were significant differences in arthropod community structure between treatments in both experiments.

  13. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Science.gov (United States)

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  14. Background internal dose rates of earthworm and arthropod species in the forests of Aomori, Japan

    International Nuclear Information System (INIS)

    In this study, we measured the concentrations of several natural radionuclides in samples of one earthworm species and 11 arthropod species collected from four coniferous forests in Rokkasho, Aomori Prefecture, Japan, and we assessed the background internal radiation dose rate for each species. Dose rates were calculated by using the radionuclide concentrations in the samples and dose conversion coefficients obtained from the literature. The mean internal dose rate in the earthworm species was 0.28 μGy h-1, and the mean internal dose rates in the arthropod species ranged between 0.036 and 0.69 μGy h-1. (author)

  15. [Alpha and beta arthropods diversity from the different environments of Parque Nacional Los Cardones, Salta, Argentina].

    Science.gov (United States)

    Belén Cava, Maria; Antonio Corronca, José; José Echeverría, Alejandro

    2013-12-01

    The essential role of the National Parks is to protect nature, in order to prevent the deterioration and loss of the ecosystem under protection. Very few records about the diversity of arthropods are known from Los Cardones National Park, where three eco-regions are protected: Puna and Monte eco-regions and the High Andean Grassland of the Yungas. Here, we aimed to compare the alpha and beta diversity of arthropods in these eco-regions, and to prove if sites from the same ecoregion, show greater similarity between them in their assemblages, than with sites of the other eco-regions. We also identified arthropod orders with higher species richness, and indicated the families that contribute the most to the registered beta diversity. Three sampling sites were established on each eco-region and the arthropods were sampled using pitfall traps and suction samples. We evaluated the obtained inventory through nonparametric estimators of species richness, and compared diversity among eco-regions through "diversity profiles" and "effective number of species". Beta diversity was assessed by different methods such as the Morisita Index, nonmetric multidimentional scaling analysis, a multiple permutation procedure, and a Similarity Percentage analysis. We recorded 469 spp/morphospecies and recognized three arthropod orders (spiders, dipterans and hymenopterans) that are diverse and abundant in the Park. Besides, the diversity in Los Cardones National Park was found to be high, but it was observed higher in the High Andean Grassland of the Yungas, and lower in the Puna. The inventory obtained was good, reached up to the 81% of the species richness estimated by nonparametric estimators. Each eco-region of the park showed a very particular arthropod community that was tested by a multi-response permutation procedure. The species turnover between eco-regions was high, so that the different environments of the protected area are contributing to the maintenance of the regional

  16. Review of available evidence regarding the vulnerability of off-crop non-target arthropod communities in comparison to in-crop non-target arthropod communities

    OpenAIRE

    Lange, de, E.C.M.; Lahr, J.; Brouwer, J.H.D.; Faber, J. H.

    2012-01-01

    EFSA is revising and updating the Ecotoxicology Guidance Document on Terrestrial Risk Assessment of Pesticides (SANCO/10329/2002). For this purpose an overview of available scientific information on several topics is needed. The aim of the current literature survey was to collect and summarize the published scientific literature on (1) the composition of non-target arthropod species that occur in and outside crops, (2) their vulnerability to pesticides and (3) their potential to recover from ...

  17. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    Science.gov (United States)

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  18. Relationships between dead wood and arthropods in the Southeastern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael, Darragh

    2009-05-01

    The importance of dead wood to maintaining forest diversity is now widely recognized. However, the habitat associations and sensitivities of many species associated with dead wood remain unknown, making it difficult to develop conservation plans for managed forests. The purpose of this research, conducted on the upper coastal plain of South Carolina, was to better understand the relationships between dead wood and arthropods in the southeastern United States. In a comparison of forest types, more beetle species emerged from logs collected in upland pine-dominated stands than in bottomland hardwood forests. This difference was most pronounced for Quercus nigra L., a species of tree uncommon in upland forests. In a comparison of wood postures, more beetle species emerged from logs than from snags, but a number of species appear to be dependent on snags including several canopy specialists. In a study of saproxylic beetle succession, species richness peaked within the first year of death and declined steadily thereafter. However, a number of species appear to be dependent on highly decayed logs, underscoring the importance of protecting wood at all stages of decay. In a study comparing litter-dwelling arthropod abundance at different distances from dead wood, arthropods were more abundant near dead wood than away from it. In another study, grounddwelling arthropods and saproxylic beetles were little affected by large-scale manipulations of dead wood in upland pine-dominated forests, possibly due to the suitability of the forests surrounding the plots.

  19. Equal temperature-size responses of the sexes are widespread within arthropod species

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Horne, Curtis; Atkinson, David

    2015-01-01

    Sexual size dimorphism (SSD) is often affected by environmental conditions, but the effect of temperature on SSD in ectotherms still requires rigorous investigation. We compared the plastic responses of size-at-maturity to temperature between males and females within 85 diverse arthropod species,...

  20. Arthropod-borne flaviviruses and RNA interference : seeking new approaches for antiviral therapy

    NARCIS (Netherlands)

    Diosa-Toro, Mayra; Urcuqui-Inchima, Silvio; Smit, Jolanda M

    2013-01-01

    Flaviviruses are the most prevalent arthropod-borne viruses worldwide, and nearly half of the 70 Flavivirus members identified are human pathogens. Despite the huge clinical impact of flaviviruses, there is no specific human antiviral therapy available to treat infection with any of the flaviviruses

  1. The Hunsrück biota: A unique window into the ecology of Lower Devonian arthropods.

    Science.gov (United States)

    Rust, Jes; Bergmann, Alexandra; Bartels, Christoph; Schoenemann, Brigitte; Sedlmeier, Stephanie; Kühl, Gabriele

    2016-03-01

    The approximately 400-million-year old Hunsrück biota provides a unique window into Devonian marine life. Fossil evidence suggests that this biota was dominated by echinoderms and various classes of arthropods, including Trilobita, stem lineage representatives of Euarthropoda, Chelicerata and Eucrustacea, as well as several crown group Chelicerata and Eucrustacea. The Hunsrück biota's exceptional preservation allows detailed reconstructions and description of key-aspects of its fauna's functional morphologies thereby revealing modes of locomotion, sensory perception, and feeding strategies. Morphological and stratigraphic data are used for a critical interpretation of the likely habitats, mode of life and nutritional characteristics of this diverse fauna. Potential predators include pycnogonids and other chelicerates, as well as the now extinct stem arthropods Schinderhannes bartelsi, Cambronatus brasseli and Wingertshellicus backesi. Mainly the deposit feeding Trilobita, Marrellomorpha and Megacheira, such as Bundenbachiellus giganteus, represents scavengers. Possibly, opportunistic scavenging was also performed by the afore-mentioned predators. Most of the studied arthropods appear to have been adapted to living in relatively well-illuminated conditions within the photic zone. Fossil evidence for associations amongst arthropods and other classes of metazoans is reported. These associations provide evidence of likely community structures.

  2. Natural products from forest resources for use as arthropod and fungal biocides.

    Science.gov (United States)

    Natural products from Pacific Northwest forest resources can offer alternatives to the use of synthetic pesticides in the control of both arthropods of public health concern and forest fungal pathogens. Tree heartwood extracts with high toxicity (low LC50) in preliminary brine shrimp bioassays were...

  3. Pheromone-mediated aggregation in nonsocial arthropods : An evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B; van Baalen, EJA; Dicke, M; Vet, LEM

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms. robust data on costs and benefits of aggregation pheromones a

  4. Pheromone-mediated aggregation in nonsocial arthropods: an evolutionary ecological perspective

    NARCIS (Netherlands)

    Wertheim, B.; Baalen, van E.J.A.; Dicke, M.; Vet, L.E.M.

    2005-01-01

    Although the use of aggregation pheromones has been reported for hundreds of nonsocial arthropod species, the evolutionary ecological aspects of this behavior have received little attention. Despite the elaborate literature on mechanisms, robust data on costs and benefits of aggregation pheromones a

  5. Arthropods, plants, and transmission lines in Arizona: secondary succession in a Sonoran Desert habitat

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.D.; Ditsworth, T.M.; Beley, J.R.

    1981-09-01

    Overall arthropod densities were low at this site, but the arthropod densities on the disturbed areas appeared to be enhanced after several years. No taxa were found to be statistically different in density between control and disturbed plots. Diversity decreased on the disturbed area after construction. Arthropod community similarity (C) was lower after construction, but C values appear to be related to presence or absence of annual herbs and grasses and not to total cover. Except for globe mallow, there were no pioneer plant species on the experimental plot. Effects of powerline construction on the experimental plant community were a brief reduction in total cover and a slight increase in cover of herbs and annual grasses. The 1976 and 1977 samples exhibit comparable cover values of these plants on both experimental and control plots. The dominant arthropod taxa on the experimental area (especially Thysanoptera, Cicadellidae, Coccinellidae, and Melyridae) appear to be responding numerically to the annual herbs and grasses which are becoming established on the plot.

  6. Grazed vegetation mosaics do not maximize arthropod diversity : Evidence from salt marshes

    NARCIS (Netherlands)

    van Klink, Roel; Rickert, Corinna; Vermeulen, Rikjan; Vorst, Oscar; WallisDeVries, Michiel F.; Bakker, Jan P.

    2013-01-01

    Light to moderate grazing in grasslands can create vegetation mosaics of short grazed vegetation and tall ungrazed vegetation. These mosaics have been proposed to maximize plant and animal species richness, yet experimental evidence, especially regarding arthropods is scarce. This study compares abu

  7. Grazed vegetation mosaics do not maximize arthropod diversity: Evidence from salt marshes

    NARCIS (Netherlands)

    Klink, van R.; Rickert, C.; Vermeulen, R.; Vorst, O.; Wallis de Vries, M.F.; Bakker, J.P.

    2013-01-01

    Light to moderate grazing in grasslands can create vegetation mosaics of short grazed vegetation and tall ungrazed vegetation. These mosaics have been proposed to maximize plant and animal species richness, yet experimental evidence, especially regarding arthropods is scarce. This study compares abu

  8. Teaching Students about Biodiversity by Studying the Correlation between Plants & Arthropods

    Science.gov (United States)

    Richardson, Matthew L.; Hari, Janice

    2008-01-01

    On Earth there is a huge diversity of arthropods, many of which are highly adaptive and able to exploit virtually every terrestrial habitat. Because of their prevalence even in urban environments, they make an excellent model system for any life science class. Since plants also exploit virtually every terrestrial habitat, studying the relationship…

  9. Selectivity lists of pesticides to beneficial arthropods for IPM programs in carrot--first results.

    OpenAIRE

    Hautier, L.; Jansen, J.-P.; Mabon, N.; Schiffers, Bruno

    2005-01-01

    In order to improve IPM programs in carrot, 7 fungicides, 12 herbicides and 9 insecticides commonly used in Belgium were tested for their toxicity towards five beneficial arthropods representative of most important natural enemies encountered in carrot: parasitic wasps- Aphidius rhopalosiphi (De Stefani-Perez) (Hym., Aphidiidae), ladybirds - Adalia bipunctata (L.) (Col., Coccinellidae), hoverfly - Episyrphus balteatus (Dipt., Syrphidae), rove beetle - Aleochara bilineata (Col., Staphyllinida...

  10. Evolutionary genomics place the origin of Wolbachia in nematodes, not arthropods

    Science.gov (United States)

    Wolbachia, the most widely studied endosymbiont in arthropods, is a target for biological control of mosquito-borne diseases (malaria and dengue virus), and antibiotic elimination of infectious filarial nematodes. We sequenced and analyzed the genome of a new strain (wPpe) in the plant-parasitic nem...

  11. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    Science.gov (United States)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  12. Vertical T-maze choice assay for arthropod response to odorants.

    Science.gov (United States)

    Stelinski, Lukasz; Tiwari, Siddharth

    2013-01-01

    Given the economic importance of insects and arachnids as pests of agricultural crops, urban environments or as vectors of plant and human diseases, various technologies are being developed as control tools. A subset of these tools focuses on modifying the behavior of arthropods by attraction or repulsion. Therefore, arthropods are often the focus of behavioral investigations. Various tools have been developed to measure arthropod behavior, including wind tunnels, flight mills, servospheres, and various types of olfactometers. The purpose of these tools is to measure insect or arachnid response to visual or more often olfactory cues. The vertical T-maze olfactometer described here measures choices performed by insects in response to attractants or repellents. It is a high throughput assay device that takes advantage of the positive phototaxis (attraction to light) and negative geotaxis (tendency to walk or fly upward) exhibited by many arthropods. The olfactometer consists of a 30 cm glass tube that is divided in half with a Teflon strip forming a T-maze. Each half serves as an arm of the olfactometer enabling the test subjects to make a choice between two potential odor fields in assays involving attractants. In assays involving repellents, lack of normal response to known attractants can also be measured as a third variable. PMID:23439130

  13. Differential Rickettsial Transcription in Bloodfeeding and Non-Bloodfeeding Arthropod Hosts

    Science.gov (United States)

    Verhoeve, Victoria I.; Jirakanwisal, Krit; Utsuki, Tadanobu; Macaluso, Kevin R.

    2016-01-01

    Crucial factors influencing the epidemiology of Rickettsia felis rickettsiosis include pathogenesis and transmission. Detection of R. felis DNA in a number of arthropod species has been reported, with characterized isolates, R. felis strain LSU and strain LSU-Lb, generated from the cat flea, Ctenocephalides felis, and the non-hematophagous booklouse, Liposcelis bostrychophila, respectively. While it is realized that strain influence on host biology varies, the rickettsial response to these distinct host environments remained undefined. To identify a panel of potential rickettsial transmission determinants in the cat flea, the transcriptional profile for these two strains of R. felis were compared in their arthropod hosts using RNAseq. Rickettsial genes with increased transcription in the flea as compared to the booklouse were identified. Genes previously associated with bacterial virulence including LPS biosynthesis, Type IV secretion system, ABC transporters, and a toxin-antitoxin system were selected for further study. Transcription of putative virulence-associated genes was determined in a flea infection bioassay for both strains of R. felis. A host-dependent transcriptional profile during bloodfeeding, specifically, an increased expression of selected transcripts in newly infected cat fleas and flea feces was detected when compared to arthropod cell culture and incubation in vertebrate blood. Together, these studies have identified novel, host-dependent rickettsial factors that likely contribute to successful horizontal transmission by bloodfeeding arthropods. PMID:27662479

  14. THE ROLE OF DEAD WOOD IN MAINTAINING ARTHROPOD DIVERSITY ON THE FOREST FLOOR.

    Energy Technology Data Exchange (ETDEWEB)

    Hanula, James L.; Horn, Scott; Wade, Dale D.

    2006-08-01

    Abstract—Dead wood is a major component of forests and contributes to overall diversity, primarily by supporting insects that feed directly on or in it. Further, a variety of organisms benefit by feeding on those insects. What is not well known is how or whether dead wood influences the composition of the arthropod community that is not solely dependent on it as a food resource, or whether woody debris influences prey available to generalist predators. One group likely to be affected by dead wood is ground-dwelling arthropods. We studied the effect of adding large dead wood to unburned and frequently burned pine stands to determine if dead wood was used more when the litter and understory plant community are removed. We also studied the effect of annual removal of dead wood from large (10-ha) plots over a 5-year period on ground-dwelling arthropods. In related studies, we examined the relationships among an endangered woodpecker that forages for prey on live trees, its prey, and dead wood in the forest. The results of these and other studies show that dead wood can influence the abundance and diversity of the ground-dwelling arthropod community and of prey available to generalist predators not foraging directly on dead trees.

  15. Influence of buffalograss management practices on Western chinch bug and its beneficial arthropods.

    Science.gov (United States)

    Carstens, Jeffrey; Heng-Moss, Tiffany; Baxendale, Frederick; Gaussoin, Roch; Frank, Kevin; Young, Linda

    2007-02-01

    A 2-yr study was conducted to document the influence of selected buffalograss, Buchloë dactyloides (Nuttall) Engelmann, management practices (three mowing heights and five nitrogen levels) on the seasonal abundance of the western chinch bug, Blissus occiduus Barber (Heteroptera: Lygaeidae), and its beneficial arthropods. Vacuum, pitfall, and sticky traps samples were collected every 14 d from the middle of May through October from western chinch bug-resistant ('Prestige') and -susceptible ('378') buffalograss management plots. In total, 27,374 and 108,908 western chinch bugs were collected in vacuum and pitfall traps, respectively. More than 78% of all western chinch bugs were collected from the highly susceptible buffalograss 378. Significantly more bigeyed bugs (Geocoridae: Geocoris spp.) were collected from the 378 buffalograsss management plots than the Prestige plots. In contrast, buffalograss cultivar had little influence on the abundance of other beneficial arthropods collected. Statistically, western chinch bugs were least abundant at the lowest mowing height (2.5 cm) and increased in abundance with increasing fertility. Numerically, however, differences among management levels on western chinch bug abundance were minimal. Numerous beneficial arthropods were collected from buffalograss management plots, including spiders, predatory ants, ground beetles (Carabidae), rove beetles (Staphylinidae), bigeyed bugs, and several species of hymenopterous parasitoids. In general, beneficial arthropods were essentially unaffected by either mowing height or nitrogen level. Scelionid wasps represented 66.3% of the total parasitoids collected. The total number of scelionid wasps collected among the three mowing heights and five nitrogen levels were approximately equal. PMID:17370821

  16. The colonization of land by animals: molecular phylogeny and divergence times among arthropods

    Directory of Open Access Journals (Sweden)

    Lyons-Weiler Maureen

    2004-01-01

    Full Text Available Abstract Background The earliest fossil evidence of terrestrial animal activity is from the Ordovician, ~450 million years ago (Ma. However, there are earlier animal fossils, and most molecular clocks suggest a deep origin of animal phyla in the Precambrian, leaving open the possibility that animals colonized land much earlier than the Ordovician. To further investigate the time of colonization of land by animals, we sequenced two nuclear genes, glyceraldehyde-3-phosphate dehydrogenase and enolase, in representative arthropods and conducted phylogenetic and molecular clock analyses of those and other available DNA and protein sequence data. To assess the robustness of animal molecular clocks, we estimated the deuterostome-arthropod divergence using the arthropod fossil record for calibration and tunicate instead of vertebrate sequences to represent Deuterostomia. Nine nuclear and 15 mitochondrial genes were used in phylogenetic analyses and 61 genes were used in molecular clock analyses. Results Significant support was found for the unconventional pairing of myriapods (millipedes and centipedes with chelicerates (spiders, scorpions, horseshoe crabs, etc. using nuclear and mitochondrial genes. Our estimated time for the divergence of millipedes (Diplopoda and centipedes (Chilopoda was 442 ± 50 Ma, and the divergence of insects and crustaceans was estimated as 666 ± 58 Ma. Our results also agree with previous studies suggesting a deep divergence (~1100 – 900 Ma for arthropods and deuterostomes, considerably predating the Cambrian Explosion seen in the animal fossil record. Conclusions The consistent support for a close relationship between myriapods and chelicerates, using mitochondrial and nuclear genes and different methods of analysis, suggests that this unexpected result is not an artefact of analysis. We propose the name Myriochelata for this group of animals, which includes many that immobilize prey with venom. Our molecular clock

  17. Employing citizen science to study defoliation impacts on arthropod communities on tamarisk

    Science.gov (United States)

    Kruse, Audrey L.

    The invasive tamarisk tree is widespread across the southwestern landscape of the United States and has been dominant in regulated river reaches, outcompeting native vegetation and impacting trophic webs in riparian ecosystems. The changes in riparian habitat and recreation opportunities along southwestern rivers, like the San Juan River in Utah, led to the implementation of a biocontrol program in the form of the tamarisk leaf beetle (Diorhabda spp.). It is unknown what the long term effects on riparian ecosystems are as a result of the beetles' defoliation of tamarisk each summer. This study sought to identify the current arthropod community composition and abundance over one growing season on the San Juan River between Bluff and Mexican Hat, UT and second, to involve the public in this research through a citizen science component. I found that non-native insects, including the tamarisk leaf beetle, dominated the arboreal arthropod communities within the tamarisk and there are relatively few native arthropods residing in tamarisk throughout the summer season. Foliation levels (the quantity of leaves in the canopy of tamarisk) were inconclusive predictors of arthropod abundances but varied by species and by feeding guild. This may indicate that the defoliation of the tamarisk is not necessarily negatively impacting trophic interactions in tamarisk. I incorporated youth participants on educational river rafting trips to assist in data collection of arthropods from tamarisk trees as a way to educate and bring attention to the issue of invasive species in the Southwest. After completing my own citizen science project and after doing a literature review of other, similar citizen science projects, I found that striving for both rigorous scientific data and quality educational programming is challenging for a small scale project that does not target broad spatial, geographic, or temporal data. Citizen science project developers should clearly identify their objectives

  18. Habitat connectivity shapes urban arthropod communities: the key role of green roofs.

    Science.gov (United States)

    Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M

    2014-04-01

    The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so

  19. Tyrosine Detoxification Is an Essential Trait in the Life History of Blood-Feeding Arthropods.

    Science.gov (United States)

    Sterkel, Marcos; Perdomo, Hugo D; Guizzo, Melina G; Barletta, Ana Beatriz F; Nunes, Rodrigo D; Dias, Felipe A; Sorgine, Marcos H F; Oliveira, Pedro L

    2016-08-22

    Blood-feeding arthropods are vectors of infectious diseases such as dengue, Zika, Chagas disease, and malaria [1], and vector control is essential to limiting disease spread. Because these arthropods ingest very large amounts of blood, a protein-rich meal, huge amounts of amino acids are produced during digestion. Previous work on Rhodnius prolixus, a vector of Chagas disease, showed that, among all amino acids, only tyrosine degradation enzymes were overexpressed in the midgut compared to other tissues [2]. Here we demonstrate that tyrosine detoxification is an essential trait in the life history of blood-sucking arthropods. We found that silencing Rhodnius tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD), the first two enzymes of the phenylalanine/tyrosine degradation pathway, caused the death of insects after a blood meal. This was confirmed by using the HPPD inhibitor mesotrione, which selectively killed hematophagous arthropods but did not affect non-hematophagous insects. In addition, mosquitoes and kissing bugs died after feeding on mice that had previously received a therapeutic effective oral dose (1 mg/kg) of nitisinone, another HPPD inhibitor used in humans for the treatment of tyrosinemia type I [3]. These findings indicate that HPPD (and TAT) can be a target for the selective control of blood-sucking disease vector populations. Because HPPD inhibitors are extensively used as herbicides and in medicine, these compounds may provide an alternative less toxic to humans and more environmentally friendly than the conventional neurotoxic insecticides that are currently used, with the ability to affect only hematophagous arthropods. PMID:27476595

  20. Habitat connectivity shapes urban arthropod communities: the key role of green roofs.

    Science.gov (United States)

    Braaker, S; Ghazoul, J; Obrist, M K; Moretti, M

    2014-04-01

    The installation of green roofs, defined here as rooftops with a shallow soil cover and extensive vegetation, has been proposed as a possible measure to mitigate the loss of green space caused by the steady growth of cities. However, the effectiveness of green roofs in supporting arthropod communities, and the extent to which they facilitate connectivity of these communities within the urban environment is currently largely unknown. We investigated the variation of species community composition (beta diversity) of four arthropod groups with contrasting mobility (Carabidae, Araneae, Curculionidae, and Apidae) on 40 green roofs and 40 extensively managed green sites on the ground in the city of Zurich, Switzerland. With redundancy analysis and variation partitioning, we (1) disentangled the relative importance of local environmental conditions, the surrounding land cover composition, and habitat connectivity on species community composition, (2) searched for specific spatial scales of habitat connectivity for the different arthropod groups, and (3) discussed the ecological and functional value of green roofs in cities. Our study revealed that on green roofs community composition of high-mobility arthropod groups (bees and weevils) were mainly shaped by habitat connectivity, while low-mobility arthropod groups (carabids and spiders) were more influenced by local environmental conditions. A similar but less pronounced pattern was found for ground communities. The high importance of habitat connectivity in shaping high-mobility species community composition indicates that these green roof communities are substantially connected by the frequent exchange of individuals among surrounding green roofs. On the other hand, low-mobility species communities on green roofs are more likely connected to ground sites than to other green roofs. The integration of green roofs in urban spatial planning strategies has great potential to enable higher connectivity among green spaces, so

  1. Impact of Location, Cropping History, Tillage, and Chlorpyrifos on Soil Arthropods in Peanut.

    Science.gov (United States)

    Cardoza, Yasmin J; Drake, Wendy L; Jordan, David L; Schroeder-Moreno, Michelle S; Arellano, Consuelo; Brandenburg, Rick L

    2015-08-01

    Demand for agricultural production systems that are both economically viable and environmentally conscious continues to increase. In recent years, reduced tillage systems, and grass and pasture rotations have been investigated to help maintain or improve soil quality, increase crop yield, and decrease labor requirements for production. However, documentation of the effects of reduced tillage, fescue rotation systems as well as other management practices, including pesticides, on pest damage and soil arthropod activity in peanut production for the Mid-Atlantic US region is still limited. Therefore, this project was implemented to assess impacts of fescue-based rotation systems on pests and other soil organisms when compared with cash crop rotation systems over four locations in eastern North Carolina. In addition, the effects of tillage (strip vs. conventional) and soil chlorpyrifos application on pod damage and soil-dwelling organisms were also evaluated. Soil arthropod populations were assessed by deploying pitfall traps containing 50% ethanol in each of the sampled plots. Results from the present study provide evidence that location significantly impacts pest damage and soil arthropod diversity in peanut fields. Cropping history also influenced arthropod diversity, with higher diversity in fescue compared with cash crop fields. Corn rootworm damage to pods was higher at one of our locations (Rocky Mount) compared with all others. Cropping history (fescue vs. cash crop) did not have an effect on rootworm damage, but increased numbers of hymenopterans, acarina, heteropterans, and collembolans in fescue compared with cash crop fields. Interestingly, there was an overall tendency for higher number of soil arthropods in traps placed in chlorpyrifos-treated plots compared with nontreated controls. PMID:26314040

  2. Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range

    Science.gov (United States)

    Hagar, Joan C.; Li, Judith; Sobota, Janel; Jenkins, Stephanie

    2012-01-01

    Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus are ecologically and economically important. Although a primary goal of management along small headwater streams is the protection of aquatic resources, streamside habitat also is important for many terrestrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of distance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terrestrial arthropod prey did not differ between streamside and upland areas during the bird breeding season. We found that although adult aquatic insects were available for consumption throughout the study period, they represented a relatively small proportion of available prey abundance and biomass and were present in only 1% of the diet samples from only one of the four riparian-associated bird species. Nonetheless, arthropod prey, comprised primarily of insects of terrestrial origin, was more abundant in streamside than upland samples. We conclude that food resources for birds in headwater riparian areas are primarily associated with terrestrial vegetation, and that bird distributions along the gradient from streamside to upland may be related to variation in arthropod prey availability. Because distinct vegetation may distinguish riparian from upland habitats for riparian-associated birds and their terrestrial arthropod prey, we suggest that understory communities be considered when defining management zones for riparian habitat.

  3. From embryo to adult--beyond the conventional periodization of arthropod development.

    Science.gov (United States)

    Minelli, Alessandro; Brena, Carlo; Deflorian, Gianluca; Maruzzo, Diego; Fusco, Giuseppe

    2006-01-01

    The traditional framework for the description of arthropod development takes the molt-to-molt interval as the fundamental unit of periodization, which is similar to the morphological picture of the main body axis as a series of segments. Developmental time is described as the subdivision into a few major stages of one or more instars each, which is similar to the subdivision of the main body axis into regions of one to many segments each. Parallel to recent criticisms to the segment as the fundamental building block of arthropod anatomy, we argue that, while a firm subdivision of development in stages is useful for describing arthropod ontogeny, this is limiting as a starting point for studying its evolution. Evolutionary change affects the association between different developmental processes, some of which are continuous in time whereas others are linked to the molting cycle. Events occurring but once in life (hatching; first achieving sexual maturity) are traditionally used to establish boundaries between major units of arthropod developmental time, but these boundaries are quite labile. The presence of embryonic molts, the 'gray zone' of development accompanying hatching (with the frequent delivery of an immature whose qualification as 'free-embryo' or ordinary postembryonic stage is arbitrary), and the frequent decoupling of growth and molting suggest a different view. Beyond the simple comparison of developmental schedules in terms of heterochrony, the flexible canvas we suggest for the analysis of arthropod development opens new vistas into its evolution. Examples are provided as to the origin of holometaboly and hypermetaboly within the insects. PMID:16670874

  4. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1981-January 31, 1983

    International Nuclear Information System (INIS)

    Progress is reported for research projects on nutrient dynamics during terrestrial decomposition, as influenced by soil arthropods. Radioactive tracers are used as analogs of nutrients, to measure material movement along food chains and dynamics of processes during decomposition. Forest floor systems from which arthropods were excluded, or in which microfloral activity was depressed, trapped incoming nutrients from canopy throughfall at different rates. Faunal stimulation of microfloral activities could not be demonstrated, but drought conditions disturbed the experiment. Turnover measurements for radionuclides in collembolans are also reported, and compared with information on mites and other arthropods

  5. The effects of the identity of shrub species on the distribution and diversity of ground arthropods in a sandy desert ecosystem of northwestern China

    Institute of Scientific and Technical Information of China (English)

    JiLiang Liu; WenZhi Zhao; FengRui Li

    2014-01-01

    Shrub is an important factor on structuring ground arthropod communities in desert ecosystems. In this study, in order to determine how shrubs and their species influence ground arthropod distribution patterns in a sandy desert scrubland dominated by two different shrub species, Calligonum mongolicum and Nitraria sphaerocarpa, the ground arthropods were sampled with pitfall traps during spring, summer and autumn. At the community level, total arthropod abundance was shown to be significantly higher under shrubs than in intershrub bare areas in spring;similar patterns occurred in terms of the richness of arthropod groups in the spring and over three seasons, suggesting season-specific shrub presence effects on arthropod activity. In addition, more arthropods were found under N. sphaerocarpa shrubs than under C. mongolicum shrubs in autumn, suggesting season-specific effects of shrub species of arthropod activity, whereas more arthropods taxa were captured under C. mongolicum than N. sphaerocarpa. At the trophic group level, the abundances of predator and herbivore arthropods were significantly greater under shrubs than in intershrub bare habitats, whereas herbivore arthropods were more abundant under N. sphaerocarpa than C. mongolicum, and an opposite rule was detected for predator arthropods. At the family level, the mean abundances of Carabidae, Curculionidae, Gnaphosidae and Lycosidae were significantly higher in the shrub microhabitats than in the intershrub bare habitat, there was no significant difference between habitats on the mean abundances of Formicidae and Tenebrionidae. The study results suggested that shrub presence and shrub species variation are important determinants of ground arthropod assemblages in this desert ecosystem, but the responses of ar-thropods differed among trophic and taxonomic groups.

  6. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.

    Science.gov (United States)

    Chandran, Rakkiyappan; Williams, Lee; Hung, Albert; Nowlin, Kyle; LaJeunesse, Dennis

    2016-03-01

    The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine

  7. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles.

    Science.gov (United States)

    Chandran, Rakkiyappan; Williams, Lee; Hung, Albert; Nowlin, Kyle; LaJeunesse, Dennis

    2016-03-01

    The cuticles of insects and arthropods have some of the most diverse material properties observed in nature, so much so that it is difficult to imagine that all cutciles are primarily composed of the same two materials: a fibrous chitin network and a matrix composed of cuticle proteins. Various factors contribute to the mechanical and optical properties of an insect or arthropod cuticle including the thickness and composition. In this paper, we also identified another factor that may contribute to the optical, surface, and mechanical properties of a cuticle, i.e. the organization of chitin nanofibers and chitin fiber bundles. Self-assembled chitin nanofibers serve as the foundation for all higher order chitin structures in the cuticles of insects and other arthropods via interactions with structural cuticle proteins. Using a technique that enables the characterization of chitin organization in the cuticle of intact insects and arthropod exoskeletons, we demonstrate a structure/function correlation of chitin organization with larger scale anatomical structures. The chitin scaffolds in cuticles display an extraordinarily diverse set of morphologies that may reflect specific mechanical or physical properties. After removal of the proteinaceous and mineral matrix of a cuticle, we observe using SEM diverse nanoscale and micro scale organization of in-situ chitin in the wing, head, eye, leg, and dorsal and ventral thoracic regions of the periodical cicada Magicicada septendecim and in other insects and arthropods. The organization of chitin also appears to have a significant role in the organization of nanoscale surface structures. While microscale bristles and hairs have long been known to be chitin based materials formed as cellular extensions, we have found a nanostructured layer of chitin in the cuticle of the wing of the dog day annual cicada Tibicen tibicens, which may be the scaffold for the nanocone arrays found on the wing. We also use this process to examine

  8. Arthropods in Natural Communities in Mescal Agave (Agave durangensis Gentry in an Arid Zone

    Directory of Open Access Journals (Sweden)

    Maria P. Gonzalez-Castillo

    2011-01-01

    Full Text Available Problem statement: The arthropods have a very important role in the arid zones due to their interactions with many organism and because they constituted an important element in the structure of the plant community. Nevertheless their importance there are few knowledge about the community of arthropods associated to vegetation in arid zones in the North of Mexico. The present study had the objective of determining the abundance, richness and diversity of arthropods in three localities where there are natural populations of mescal agave in the State of Durango, Mexico. Approach: In order to know the structure community of the arthropods associated to the mescal agave, we perform a sampling schedule during March 2008 to November 2010 by direct collection, using transects in three different localities with the presence of mescal agave. The relative abundance, species richness, Shannon’s diversity index, Pielou’s Index of evenness, Jaccard’s similitude and Simpson’s dominance indexes were determined. Results: A total of 4665 individual arthropods associated to mescal agave corresponding to 39 species were found. El Mezquital had the highest abundance and relative abundance (44.1% with 29 species. The mean species abundance was not significantly different between localities using Turkey’s test. The highest density per unit of area was found in El Mezquital (La Brena had the highest species diversity (1.89, evenness (0.61 and dominance (0.78. At the taxon level, Hymenoptera had the highest number of species represented (14, followed by Coleoptera (9 and hemiptera (5, with the remaining taxons with four, two and one species each. Conclusion: The greatest similitude was observed between La Brena and El Mezquital (46% which shared seven taxons, while the least similitude was observed between El Venado and La Brena (29%. Dominance/diversity curves are presented for each locality. The species Caulotops sp., Acutaspis agavis, Chilorus sp

  9. Mineral cycling in soil and litter arthropod food chains. Progress report, November 1, 1979-October 31, 1980

    International Nuclear Information System (INIS)

    Recent progress and current status are reported for research concerned with mineral element dynamics in soil arthropod food chains. Research is performed within the larger context of terrestrial decomposition systems, in which soil arthropods may act as regulators of nutrient dynamics during decomposition. Research is measuring rates of nutrient accumulation and excretion by using radioactive tracer techniques with radioactive analogs of nutrients. Experimental measurement of radioactive tracer excretion and nutrient element pools are reported for soil microarthropods, using new methods of counting and microprobe elemental analysis. Research on arthropod-fungal relations is utilizing high-efficiency extraction followed by dissection of 13 x 13 cm soil blocks. A two-component excretion model is reported for Cobalt-60 in earthworms (Eisenia foetida), demonstrating that no assimilation of cobalt occurs from the mineral soil fraction but is entirely from organic matter. Collection of data sets on soil arthropod communities and abundances is completed

  10. A study on the effects of golf course organophosphate and carbamate pesticides on endangered, cave-dwelling arthropods Kauai, Hawaii

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Three endemic species, two arthropods and one isopod, are present in the Kauai caves. These species are critical components of the cave ecosystems and are possibly...

  11. Adult carrion arthropod community in a tropical rainforest of Malaysia: analysis on three common forensic entomology animal models.

    Science.gov (United States)

    Azwandi, A; Nina Keterina, H; Owen, L C; Nurizzati, M D; Omar, B

    2013-09-01

    Decomposing carrion provides a temporary microhabitat and food source for a distinct community of organisms. Arthropods constitute a major part of this community and can be utilized to estimate the postmortem interval (PMI) of cadavers during criminal investigations. However, in Malaysia, knowledge of carrion arthropod assemblages and their succession is superficial. Therefore, a study on three types of forensic entomology animal model was conducted from 27 September 2010 to 28 October 2010 in a tropical rainforest at National University of Malaysia, Bangi, Selangor, Malaysia. Over one month collections of arthropods were made on nine animal carcasses: three laboratory rats (Rattus norvegicus, mean weight: 0.508 ± 0.027 kg), three rabbits (Oryctolagus cuniculus, mean weight: 2.538 ± 0.109 kg) and three long tailed macaque (Macaca fascicularis, mean weight: 5.750 ± 0.551 kg). A total of 31,433 arthropods belonging to eight orders and twenty-eight families were collected from all carcasses. Among 2924 of adults flies collected, approximately 19% were calliphorids with Chrysomya megacephala (Fabricius, 1794) being the most abundant. Arthropod taxon richness was lower on rat carcasses compared to that of rabbit and monkey carcasses, and this was more apparent during the first week of decomposition. However, there were no significant differences in Shannon-Weiner index (H'), Simpson dominance index (C) and Pielou's Evenness index (J) between different animal model. The arthropod assemblages associated to animal model were different significantly (p<0.05) while decomposition stage was a significant factor influencing insect assemblages (p<0.05). Analysis on the arthropods succession indicated that some taxa have a clear visitation period while the others, particularly Coleoptera, did not show a clear successional pattern thus require futher insect succession study. Although human bodies were not possible for the succession study, most of the arthropods collected are

  12. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment

    OpenAIRE

    Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J.; Balog, Adalbert

    2014-01-01

    There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt t...

  13. [Climate change influences the incidence of arthropod-borne diseases in the Netherlands].

    Science.gov (United States)

    Rahamat-Langendoen, J C; van Vliet, J A; Reusken, C B E M

    2008-04-12

    Climate change is associated with changes in the occurrence of arthropod-borne diseases. It is difficult to foresee which arthropod-borne diseases will appear in the Netherlands due to climate change. Climate change influences the prevalence of ticks and may lead to a further increase in Lyme disease and an increased risk of the introduction of rickettsioses. With further warming of the climate there is a real possibility of settlement of the mosquito Aedes albopictus and introduction of the sandfly in the Netherlands. Whether this will lead to circulation of micro-organisms transmitted by these vectors (e.g. West Nile virus, Dengue virus, Leishmania) is not clear. Continued vigilance is necessary, even for vector-borne diseases that appear to be less relevant for the Netherlands.

  14. Cysteine-Free Proteins in the Immunobiology of Arthropod-Borne Diseases

    Directory of Open Access Journals (Sweden)

    J. Santiago Mejia

    2010-01-01

    Full Text Available One approach to identify epitopes that could be used in the design of vaccines to control several arthropod-borne diseases simultaneously is to look for common structural features in the secretome of the pathogens that cause them. Using a novel bioinformatics technique, cysteine-abundance and distribution analysis, we found that many different proteins secreted by several arthropod-borne pathogens, including Plasmodium falciparum, Borrelia burgdorferi, and eight species of Proteobacteria, are devoid of cysteine residues. The identification of three cysteine-abundance and distribution patterns in several families of proteins secreted by pathogenic and nonpathogenic Proteobacteria, and not found when the amino acid analyzed was tryptophan, provides evidence of forces restricting the content of cysteine residues in microbial proteins during evolution. We discuss these findings in the context of protein structure and function, antigenicity and immunogenicity, and host-parasite relationships.

  15. Standardization and optimization of arthropod inventories-the case of Iberian spiders

    DEFF Research Database (Denmark)

    Bondoso Cardoso, Pedro Miguel

    2009-01-01

    Conservation of species requires accurate knowledge on their distribution. For most groups this can only be achieved through targeted biodiversity assessment programs that must explicitly incorporate comparability and efficiency in their definition. These require the standardization and...... optimization of sampling protocols, especially for mega-diverse arthropod taxa. This study had two objectives: (1) propose guidelines and statistical methods to improve the standardization and optimization of arthropod inventories, and (2) to propose a standardized and optimized protocol for Iberian spiders...... based on such guidelines and methods. Definition of the protocol has the following four steps. Firstly, the evaluation of the source data to ensure that the protocol is based on close to complete sampling of a number of sites. Secondly, optimizing the effort per collecting method, using an iterative...

  16. Disturbance In Dry Coastal Dunes Promotes Diversity Of Plants And Arthropods

    DEFF Research Database (Denmark)

    Brunbjerg, Ane Kirstine; Jørgensen, Gorm Pilgaard; Nielsen, Kristian Mandsberg;

    2015-01-01

    Naturally disturbed coastal dunes have become strongly reduced during the last century due to the cessation of grazing by domestic herbivores, dune stabilization initiatives, and increasing nitrogen deposition, all promoting encroachment by grasses, shrubs and woody plants. We assessed the effects...... of three disturbance types (burning, trampling and blowouts) on plant and arthropod species richness and composition in dry coastal dunes in Jutland, Denmark. Environmental variables, plant presence–absence and arthropod abundance were measured in 150 1 × 2 m plots along transects in blowouts, burned areas......, trampled paths and their paired controls. We used Nonmetric Multidimensional Scaling (NMDS) ordination to assess differences in species composition of disturbed areas and controls. Ordination scores were used as response variables in Linear Mixed Effect (LME) models to test for the effects of disturbances...

  17. The characterization of new hormonal systems in arthropods with a focus on neuropeptide GPCRs

    DEFF Research Database (Denmark)

    Stafflinger, Elisabeth

    Neuropeptides and their G-protein coupled receptors (GPCRs) occupy a high hierarchical position in the physiology of animals, because they steer important processes such as reproduction, development, and behaviour. Within the last nine years, several genomes have been sequenced providing the basis...... of genome comparisons and analysis. This yields new insights in GPCR evolution and ligand co-evolution, but also uncovers many new hormonal systems. In this thesis, I characterized a group of neuropeptide GPCRs and their ligands in arthropods and investigated GPCR evolution and co-evolution of their ligands...... is an independent signalling system. The work in this thesis describes unknown hormonal systems in arthropods and gives insights into their evolution. Furthermore, it shows that neuropeptide/receptor couples can easily duplicate or disappear during insect evolution....

  18. Background internal dose rates of earthworm and arthropod species in the forests of Aomori, Japan

    International Nuclear Information System (INIS)

    We measured naturally occurring radionuclides in samples from an earthworm species and 11 arthropod species collected in coniferous forests in Rokkasho, Aomori, Japan, to assess background internal radiation dose rates. The rates were calculated from the measured concentrations of the radionuclides and dose coefficients from the literature. The mean internal dose rate of composite earthworm samples was 0.35 μGy h-1, whereas the mean dose rates of the arthropod samples ranged from 36 nGy h-1 to 0.79 μGy h-1. Polonium-210 was the radionuclide with the highest contribution to the internal dose rate for all the species, except the longhorn beetle. (author)

  19. The value of urban vacant land to support arthropod biodiversity and ecosystem services.

    Science.gov (United States)

    Gardiner, Mary M; Burkman, Caitlin E; Prajzner, Scott P

    2013-12-01

    The expansion of urban areas is occurring globally, but not all city neighborhoods are gaining population. Because of economic decline and the recent foreclosure crisis, many U.S. cities are demolishing abandoned residential structures to create parcels of vacant land. In some cities, weak housing markets have, or will likely, recover in the near term, and these parcels will be redeveloped. However, in other cities, large numbers of abandoned parcels have no significant market value and no likelihood of near-term redevelopment. The creation of these vacated green spaces could offer opportunities to preserve declining species, restore ecosystem functions, and support diverse ecosystem services. Arthropods are an important indicator of the ability of urban vacant land to serve multiple functions, from conservation to food production. Across Europe, vacant lands have been found to support a diversity of rare species, and similar examinations of arthropods within this habitat are underway in the United States. In addition, using vacant land as a resource for local food production is growing rapidly worldwide. Arthropods play key roles in the sustainability of food production in cities, and land conversion to farming has been found to influence their community composition and function. A greater focus on quantifying the current ecological value of vacant land and further assessment of how changes in its ecosystem management affect biodiversity and ecosystem processes is clearly needed. Herein, we specifically focus on the role of arthropods in addressing these priorities to advance our ecological understanding of the functional role of vacant land habitats in cities. PMID:24468552

  20. Crystallographic texture of the arthropod cuticle using synchrotron wide angle X-ray diffraction

    OpenAIRE

    Sawalmih, Ali al-

    2007-01-01

    Arthropods, which include the crustaceans (e.g. crabs, lobsters, isopods), insects, arachnids (e.g. spiders, scorpions, ticks, mites), and several lesser groups, account for approximately 80 percent of all known animal species. The outer covering of these animals is referred to as exoskeleton or cuticle, and it covers the entire body of the animal. It has remarkable mechanical properties which provide structural support to the body, armor against loads that are externally imposed by predators...

  1. Ground Arthropod Attacks on Groundnut Arachis hypogaea L in Burkina Faso

    OpenAIRE

    Dicko, IO.; Troaoré, S.; Traoré, D.; Dao, B.

    1999-01-01

    Studies were conducted in five districts of Burkina Faso, West Africa from November to December, 1996. The objectives aimed at establishing spatial distribution and quantifying the level of damages on peanut pods by soil arthropods, termites and millepedes. Twenty seven samples of 100 pods each were taken from farmers' stocks in each district, which made a total of 135 pod samples examined. Damage was determined in each district by counting scarified pods by termites and perforated pods by mi...

  2. Self-referent phenotype matching and its role in female mate choice in arthropods

    Institute of Scientific and Technical Information of China (English)

    Carie B.WEDDLE; John HUNT; Scott K.SAKALUK

    2013-01-01

    A growing body of empirical evidence shows that females of many animal species gain benefits by mating polyandrously,and often prefer to mate with novel males over previous mates.Although a female preference for novel males has been demonstrated for multiple animal taxa,the mechanisms used by females to discriminate between novel and previous mates remain largely unknown.However,recent studies suggest that in decorated crickets Gryllodes sigillatus,females actually imbue males with their own chemical cues,known as cuticular hydrocarbons (CHCs) during mating,and utilize chemosensory self-referencing to recognize recent mates.Here we review evidence that self-referent phenotype matching is a widespread mechanism of recognition in arthropods,and explore how CHCs are used to facilitate mate-choice decisions.There is substantial evidence that CHCs are used as recognition cues to discriminate between species,kin,sexes,mates,individuals,and self and non-self,and are used to facilitate mate-choice decisions in a wide range of arthropod taxa.There is also evidence that CHCs are often transferred between individuals during direct physical contact,including copulation.Chemosensory self-referencing via cuticular hydrocarbons could provide a simple,but reliable mechanism for identifying individuals from previous mating encounters.This mechanism does not require any specialized cognitive abilities because an individual's phenotype is always available for reference.Given the ubiquitous use of CHCs among arthropods,chemosensory self-referencing may be a widespread mechanism used by female arthropods to facilitate female mate-choice decisions and to enhance opportunities for polyandry.

  3. Self-referent phenotype matching and its role in female mate choice in arthropods

    Directory of Open Access Journals (Sweden)

    Carie B. WEDDLE, John HUNT, Scott K. SAKALUK

    2013-04-01

    Full Text Available A growing body of empirical evidence shows that females of many animal species gain benefits by mating polyandrously, and often prefer to mate with novel males over previous mates. Although a female preference for novel males has been demonstrated for multiple animal taxa, the mechanisms used by females to discriminate between novel and previous mates remain largely unknown. However, recent studies suggest that in decorated crickets Gryllodes sigillatus, females actually imbue males with their own chemical cues, known as cuticular hydrocarbons (CHCs during mating, and utilize chemosensory self-referencing to recognize recent mates. Here we review evidence that self-referent phenotype matching is a widespread mechanism of recognition in arthropods, and explore how CHCs are used to facilitate mate-choice decisions. There is substantial evidence that CHCs are used as recognition cues to discriminate between species, kin, sexes, mates, individuals, and self and non-self, and are used to facilitate mate-choice decisions in a wide range of arthropod taxa. There is also evidence that CHCs are often transferred between individuals during direct physical contact, including copulation. Chemosensory self-referencing via cuticular hydrocarbons could provide a simple, but reliable mechanism for identifying individuals from previous mating encounters. This mechanism does not require any specialized cognitive abilities because an individual’s phenotype is always available for reference. Given the ubiquitous use of CHCs among arthropods, chemosensory self-referencing may be a widespread mechanism used by female arthropods to facilitate female mate-choice decisions and to enhance opportunities for polyandry [Current Zoology 59 (2: 239-248, 2013].

  4. Spatial variation of arthropod communities in virgin and managed sites in the Kibale Forest, western Uganda.

    OpenAIRE

    Nummelin, M.; Zilihona, I.J.E.

    2004-01-01

    http://www.elsevier.com/locate/issn/03781127 The structure of arthropod communities in the forest floor vegetation in four differently managed forest sites (virgin forest, lightly selectively logged, heavily selectively logged, and exotic Pinus caribaea plantation) in Kibale Forest National Park, western Uganda, was studied by sweep net between March and May 1985 and July 1995. For the analysis three (or four) 800 sweeps samples were collected from each habitat. In the samples eig...

  5. Diversity of the arthropod fauna in organically grown garlic intercropped with fodder radish.

    OpenAIRE

    Silva, André Wagner Barata; Haro, Marcelo Mendes; Silveira, Luís Cláudio Paterno

    2012-01-01

    The cultivation of garlic faces several problems, which include pest attack, and the diversification of habitat through intercropping with attractive plants comes up as a method to pest management. The objective of this research was to verify the effect of the association of garlic with fodder radish on richness, abundance and diversity of arthropods under organic production system in Lavras, MG, Brazil. The treatments were composed of garlic in monoculture and garlic in association with fodd...

  6. Arthropod visual predators in the early pelagic ecosystem: evidence from the Burgess Shale and Chengjiang biotas

    OpenAIRE

    Vannier, J; García-Bellido, D.C.; Hu, S.-X.; Chen, A.-L.

    2009-01-01

    Exceptional fossil specimens with preserved soft parts from the Maotianshan Shale (ca 520 Myr ago) and the Burgess Shale (505 Myr ago) biotas indicate that the worldwide distributed bivalved arthropod Isoxys was probably a non-benthic visual predator. New lines of evidence come from the functional morphology of its powerful prehensile frontal appendages that, combined with large spherical eyes, are thought to have played a key role in the recognition and capture of swimming or epibenthic prey...

  7. A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The evolutionary success of arthropods, the most abundant and diverse animal group, is mainly based on their segmented body and jointed appendages, features that had evolved most likely already before the Cambrian. The first arthropod-like animals, the lobopodians from the Early Cambrian, were unsclerotized and worm-like, and they had unjointed tubular legs. Here we describe the first three-dimensionally preserved Cambrian lobopodian. The material presented of Orstenotubulus evamuellerae gen. et sp. nov. is the smallest and youngest of a lobopodian known. O. evamuellerae shows strikingly detailed similarities to Recent tardigrades and/or onychophorans in its cellular-structured cuticle and the telescopic spines. It also shows similarities to other, longer known lobopodians, but which are ten times as large as the new form. These similarities include the finely annulated body and legs, which is characteristic also for Recent onychophorans, and paired humps continuing into spines situated dorsally to the leg insertions, a feature lacking in the extant forms. The morphology of O. evamuellerae not only elucidates our knowledge about lobopodians, but also aids in a clearer picture of the early evolution of arthropods. An example is the single ventral gonopore between a limb pair of O. evamuellerae, which indicates that a single gonopore, as developed in onychophorans, tardigrades, pentastomids, myriapods and insects, might represent the plesiomorphic state for Arthropoda, while the paired state in chelicerates and crustaceans was convergently achieved. Concerning life habits, the lateral orientation of the limbs and their anchoring spines of the new lobopodian imply that early arthropods were crawlers rather than walkers.

  8. [Diversity and stability of arthropod community in peach orchard under effects of ground cover vegetation].

    Science.gov (United States)

    Jiang, Jie-xian; Wan, Nian-feng; Ji, Xiang-yun; Dan, Jia-gui

    2011-09-01

    A comparative study was conducted on the arthropod community in peach orchards with and without ground cover vegetation. In the orchard with ground cover vegetation, the individuals of beneficial, neutral, and phytophagous arthropods were 1.48, 1.84 and 0.64 times of those in the orchard without ground cover vegetation, respectively, but the total number of arthropods had no significant difference with that in the orchard without ground cover vegetation. The species richness, Shannon's diversity, and Pielou's evenness index of the arthropods in the orchard with ground cover vegetation were 83.733 +/- 4.932, 4.966 +/- 0.110, and 0.795 +/- 0.014, respectively, being significantly higher than those in the orchard without ground cover vegetation, whereas the Berger-Parker's dominance index was 0.135 +/- 0.012, being significantly lower than that (0.184 +/- 0.018) in the orchard without ground cover vegetation. There were no significant differences in the stability indices S/N and Sd/Sp between the two orchards, but the Nn/Np, Nd/Np, and Sn/Sp in the orchard with ground cover vegetation were 0.883 +/- 0.123. 1714 +/- 0.683, and 0.781 +/- 0.040, respectively, being significantly higher than those in the orchard without ground cover vegetation. Pearson's correlation analysis indicated that in the orchard with ground cover vegetation, the Shannon's diversity index was significantly negatively correlated with Nd/Np, Sd/Sp, and S/N but had no significant correlations with Nn/Np and Sn/Sp, whereas in the orchard without ground cover vegetation, the diversity index was significantly positively correlated with Nn/Np and Nd/Np and had no significant correlations with Sd/Sp, Sn/Sp, and S/N.

  9. Trophic structure of arthropods in Starling nests matter to blood parasites and thereby to nestling development

    OpenAIRE

    Wolfs, Peter H. J.; Lesna, Izabela K.; Sabelis, Maurice W.; Komdeur, Jan; Bairlein, F.

    2012-01-01

    Nestling development and long-term survival in many bird species depend on factors such as parental feeding, time of breeding and environmental conditions. However, little research has been carried out on the effect of ectoparasites on nestling development, and no research on the impact of the trophic structure of arthropods inhabiting the nest (combined effects of ectoparasitic mites and predatory mites feeding on ectoparasites). We assess nestling development of European Starlings (Sturnus ...

  10. New euthycarcinoids and an enigmatic arthropod from the British coal measures

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, H.M.; Almond, J.E. [Univrsity of Maryland, College Park, MD (USA). Dept. Entomology

    2001-07-01

    Two new species of euthycarcinoids (Arthropoda), Kottixerxes anglicus sp. nov. and Smithixerxes pustulosus sp. nov., are described from the Coal Measures of Westhoughton, Lancashire and Coseley, West Midlands (Westphalian A and B respectively). Both genera are previously known from Mazon Creek, USA (Westphalian D). An additional, enigmatic arthropod with possible euthycarcinoid affinities, Arthrogyrinus platyurus gen. et sp. nov., is described from Coseley. Hypotheses concerning the phylogenetic position of euthycarcinoids are critically reviewed.

  11. Effects of Timing of Grazing on Arthropod Communities in Semi-Natural Grasslands

    OpenAIRE

    Lenoir, Lisette; Lennartsson, Tommy

    2010-01-01

    Arthropod communities were investigated in two Swedish semi-natural grasslands, each subject to two types of grazing regime: conventional grazing from May to September (continuous grazing) and traditional late management from mid-July (late grazing). Pitfall traps were used to investigate abundance of carabids, spiders, and ants over the grazing season. Ant abundance was also measured by mapping nest density during three successive years. Small spiders, carabids and ants (Myrmica spp.) were m...

  12. Arthropods of Steel Creek, Buffalo National River, Arkansas. III. Heteroptera (Insecta: Hemiptera)

    OpenAIRE

    Skvarla, Michael Joseph; Fisher, Danielle M.; Dowling, Ashley P.G.

    2016-01-01

    Abstract Background This is the third in a series of papers detailing the terrestrial arthropods collected during an intensive survey of a site near Steel Creek campground along the Buffalo National River in Arkansas. The survey was conducted over a period of eight and a half months using twelve trap types – Malaise traps, canopy traps (upper and lower collector), Lindgren multifunnel traps (black, green, and purple), pan traps (blue, purple, red, white, and yellow), and pitfall traps – and B...

  13. Terrestrial arthropods of Steel Creek, Buffalo National River, Arkansas. II. Sawflies (Insecta: Hymenoptera: " Symphyta ")

    OpenAIRE

    Skvarla, Michael Joseph; Smith, David R.; Fisher, Danielle M.; Dowling, Ashley P.G.

    2016-01-01

    Abstract Background This is the second in a series of papers detailing the terrestrial arthropods collected during an intensive survey of a site near Steel Creek campground along the Buffalo National River in Arkansas. The survey was conducted over a period of eight and a half months using twelve trap types – Malaise traps, canopy traps (upper and lower collector), Lindgren multifunnel traps (black, green, and purple), pan traps (blue, purple, red, white, and yellow), and pitfall traps – and ...

  14. The effects of land-use change on arthropod richness and abundance on Santa Maria Island (Azores)

    DEFF Research Database (Denmark)

    Meijer, Seline S.; Whittaker, Robert J.; Borges, P. A. V.

    2011-01-01

    We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness and abunda......We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness......), native, or introduced. The native forest had the highest values for species richness of Azorean endemics, SIEs and natives; and also had highest values of Azorean endemic diversity (Fisher’s alpha). In contrast, the intensive pasture had the lowest values for endemic and native species richness...... and diversity, but the highest values of total arthropod abundance and introduced species richness and diversity. Arthropod community composition was significantly different between the four habitat types. In the semi-natural pasture, the number of SIE species decreased with increasing distance from the native...

  15. Arthropod but not bird predation in ethiopian homegardens is higher in tree-poor than in tree-rich landscapes.

    Directory of Open Access Journals (Sweden)

    Debissa Lemessa

    Full Text Available Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7-9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests.

  16. Arthropod but not bird predation in ethiopian homegardens is higher in tree-poor than in tree-rich landscapes.

    Science.gov (United States)

    Lemessa, Debissa; Hambäck, Peter A; Hylander, Kristoffer

    2015-01-01

    Bird and arthropod predation is often associated with natural pest control in agricultural landscapes, but the rates of predation may vary with the amount of tree cover or other environmental factors. We examined bird and arthropod predation in three tree-rich and three tree-poor landscapes across southwestern Ethiopia. Within each landscape we selected three tree-rich and three tree-poor homegardens in which we recorded the number of tree species and tree stems within 100 × 100 m surrounding the central house. To estimate predation rates, we attached plasticine caterpillars on leaves of two coffee and two avocado shrubs in each homegarden, and recorded the number of attacked caterpillars for 7-9 consecutive weeks. The overall mean daily predation rate was 1.45% for birds and 1.60% for arthropods. The rates of arthropod predation varied among landscapes and were higher in tree-poor landscapes. There was no such difference for birds. Within landscapes, predation rates from birds and arthropods did not vary between tree-rich and tree-poor homegardens in either tree-rich or tree-poor landscapes. The most surprising result was the lack of response by birds to tree cover at either spatial scale. Our results suggest that in tree-poor landscapes there are still enough non-crop habitats to support predatory arthropods and birds to deliver strong top-down effect on crop pests. PMID:25961306

  17. A novel approach to the measurement of surfactant parameters in arthropod digestive juices.

    Science.gov (United States)

    Romih, Tea; Kogej, Ksenija; Drobne, Damjana

    2016-05-01

    In arthropods, the determination of two important parameters of digestive juices, i.e. the total surfactant concentration and the critical micelle concentration (CMC), is challenging due to small sample volumes and low surfactant concentrations. In this work, we report a successful implementation of potentiometric titrations using the surfactant ion-selective electrode (SISE) and the pyrene fluorescence method (PFM) for the determination of the total surfactant concentration and CMC in the digestive juice of terrestrial isopod crustaceans Porcellio scaber. Pooled digestive juice extracts of four (SISE) or two (PFM) animals were used per measurement run. In both cases, digestive juice extracts in 100μL of deionized water were sufficient for one measurement run. The total surfactant concentration of P. scaber digestive juice was determined to be 9.2±3.5mM and the CMC was approximately 90μM. Our work presents an important improvement towards easy CMC determination in small volume samples in comparison with the commonly used stalagmometric technique, where much larger sample volumes are usually needed. To date, the total surfactant concentration was not measured in the digestive juices of arthropods other than Homarus vulgaris, Astacus leptodactylus and Cancer pagurus, for which complex separation and analytical techniques were required. Our results obtained by SISE and PFM therefore present the first successful quantification of surfactants and their CMC in small volumes of arthropod digestive juice without prior separation or purification techniques. PMID:26969560

  18. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  19. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment

    Science.gov (United States)

    Chikoski, Jennifer M.; Ferguson, Steven H.; Meyer, Lense

    2006-09-01

    We investigated the effect of water addition and season on soil arthropod abundance and soil characteristics (%C, %N, C:N, moisture, pH). The experimental design consisted of 24 groups of five boxes distributed within a small aspen stand in Saskatchewan, Canada. The boxes depressed the soil to create a habitat with suitable microclimate for soil arthropods, and by overturning boxes we counted soil arthropods during weekly surveys from April to September 1999. Soil samples were collected at two-month intervals and water was added once per week to half of the plots. Of the eleven recognizable taxonomic units identified, only mites (Acari) and springtails (Collembola) responded to water addition by increasing abundance, whereas ants decreased in abundance with water addition. During summer, springtail numbers increased with water addition, whereas pH was a stronger determinant of mite abundance. In autumn, springtails were positively correlated with water and negatively correlated with mites, whereas mite abundance was negatively correlated with increasing C:N ratio, positively correlated to water addition, and negatively correlated with springtail abundance. Although both mite and springtail numbers decreased in autumn with a decrease in soil moisture, mites became more abundant than springtails suggesting a predator-prey (mite-springtail) relationship. Water had a significant effect on both springtails and mites in summer and autumn supporting the assertion that prairie soil communities are water limited.

  20. Effect of brushwood transposition on the leaf litter arthropod fauna in a cerrado area

    Directory of Open Access Journals (Sweden)

    Paula Cristina Benetton Vergílio

    2013-10-01

    Full Text Available The results of ecological restoration techniques can be monitored through biological indicators of soil quality such as the leaf litter arthropod fauna. This study aimed to determine the immediate effect of brushwood transposition transferred from an area of native vegetation to a disturbed area, on the leaf litter arthropod fauna in a degraded cerrado area. The arthropod fauna of four areas was compared: a degraded area with signal grass, two experimental brushwood transposition areas, with and without castor oil plants, and an area of native cerrado. In total, 7,660 individuals belonging to 23 taxa were sampled. Acari and Collembola were the most abundant taxa in all studied areas, followed by Coleoptera, Diptera, Hemiptera, Hymenoptera, and Symphyla. The brushwood transposition area without castor oil plants had the lowest abundance and dominance and the highest diversity of all areas, providing evidence of changes in the soil community. Conversely, the results showed that the presence of castor oil plants hampered early succession, negatively affecting ecological restoration in this area.

  1. Francisella-Arthropod vector interaction and its role in patho-adaptation to infect mammals

    Directory of Open Access Journals (Sweden)

    Yousef eAbu Kwaik

    2011-02-01

    Full Text Available Francisella tularensis is a Gram-negative, intracellular, zoonotic bacterium, and is the causative agent of tularemia in a broad host range. Arthropods such as ticks, mosquitoes, and flies maintain F. tularensis in nature by transmitting the bacteria among small mammals. While the tick is largely believed to be a biological vector of F. tularensis, transmission by mosquitoes and flies is largely believed to be mechanical on the mouthpart through interrupted feedings. However, the mechanism of infection of the vectors by F. tularensis is not well understood. Since F. tularensis has not been localized in the salivary gland of the primary human biting ticks, it is thought that bacterial transmission by ticks is through mechanical inoculation of tick feces containing F. tularensis into the skin wound. D. melanogaster is an established arthropod-vector model of tularemia, where F. tularensis infects hemocytes, and is found in hemolymph, as seen in ticks. In addition, phagosome biogenesis and robust intracellular proliferation of F. tularensis in arthropod-derived cells are similar to that in mammalian macrophages. Furthermore, bacterial factors required for infectivity of mammals are often required for infectivity of the fly by F. tularensis. Several host factors that contribute to F. tularensis intracellular pathogenesis in D. melanogaster have been identified, and F. tularensis targets some of the evolutionarily conserved eukaryotic processes to enable intracellular survival and proliferation in evolutionarily distant hosts

  2. Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus californicus: Occurrence, characteristics and temperature dependence

    Directory of Open Access Journals (Sweden)

    John R.B. Lighton

    2002-11-01

    Full Text Available The discontinuous gas exchange cycle of the pseudoscorpion Garypus californicus, mean mass 5.9 mg, is rudimentary and is characterized by bursts of CO2 at frequencies ranging from 3.6 mHz at 15 °C to 13.3 mHz at 35 °C. The mean volume of CO2 emitted per burst is 3.6 µl g-1 at 25 °C, about a tenth of the amount emitted by tracheate arthropods with a well developed discontinuous gas exchange cycle. Interburst CO2 emission is high and increases with temperature, reaching near 45% of total CO2 production rate at 35 °C. No fluttering spiracle phase is evident. The metabolic rate of G. californicus at 25 °C (8.4 µW is typical of other arthropods. We infer from the high rate of interburst CO2 emission in G. californicus that trans-spiracular O2 partial pressure gradients are small and that spiracular conductance is correspondingly high, which may lead to high rates of respiratory water loss relative to arthropods with more stringent spiracular control and higher CO2 buffering capacity. The typical moist, hypogeal environments and small body sizes of pseudoscorpions correlate well with their respiratory physiology

  3. Short communication. Incidence of the OLIPE mass-trapping on olive non-target arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Porcel, M.; Ruano, F.; Sanllorente, O.; Caballero, J. A.; Campos, M.

    2009-07-01

    Due to the widespread of mass-trapping systems for Bactrocera oleae (Gmelin) (Diptera: Tephritidae) control in organic olive cropping, an assessment of the impact on arthropods of the olive agroecosystem was undertaken for the OLIPE trap type. The sampling was carried out in Los Pedroches valley (Cordoba, southern Spain) in three different organic orchard sites. Six OLIPE traps baited with diammonium phosphate were collected from each site (18 in total) from July to November 2002 every 15 days on average. Additionally, in the latest sampling dates, half the traps were reinforced with pheromone to assess its impact on non-target arthropods. From an average of 43.0 catches per trap (cpt) of non-target arthropods during the whole sampling period, the highest number of captures corresponds to the Order Diptera (that represents a 68.5%), followed distantly by the family Formicidae (12.9%) and the Order Lepidoptera (10.4%). Besides the impact on ant populations, other beneficial groups were recorded such as parasitoids (Other Hymenoptera: 2.6%) and predators (Araneae: 1.0%; Neuroptera s.l.: 0.4%). Concerning the temporal distribution of catches, total captures peaked on July and had a slight increase at the beginning of autumn. No significant differences were observed between traps with and without pheromone. The results evidence that a considerable amount of non-specific captures could be prevented by improving the temporal planning of the mass-trapping system. (Author) 25 refs.

  4. Dating the arthropod tree based on large-scale transcriptome data.

    Science.gov (United States)

    Rehm, Peter; Borner, Janus; Meusemann, Karen; von Reumont, Björn M; Simon, Sabrina; Hadrys, Heike; Misof, Bernhard; Burmester, Thorsten

    2011-12-01

    Molecular sequences do not only allow the reconstruction of phylogenetic relationships among species, but also provide information on the approximate divergence times. Whereas the fossil record dates the origin of most multicellular animal phyla during the Cambrian explosion less than 540 million years ago(mya), molecular clock calculations usually suggest much older dates. Here we used a large multiple sequence alignment derived from Expressed Sequence Tags and genomes comprising 129genes (37,476 amino acid positions) and 117 taxa, including 101 arthropods. We obtained consistent divergence time estimates applying relaxed Bayesian clock models with different priors and multiple calibration points. While the influence of substitution rates, missing data, and model priors were negligible, the clock model had significant effect. A log-normal autocorrelated model was selected on basis of cross-validation. We calculated that arthropods emerged ~600 mya. Onychophorans (velvet worms) and euarthropods split ~590 mya, Pancrustacea and Myriochelata ~560 mya, Myriapoda and Chelicerata ~555 mya, and 'Crustacea' and Hexapoda ~510 mya. Endopterygote insects appeared ~390 mya. These dates are considerably younger than most previous molecular clock estimates and in better agreement with the fossil record. Nevertheless, a Precambrian origin of arthropods and other metazoan phyla is still supported. Our results also demonstrate the applicability of large datasets of random nuclear sequences for approximating the timing of multicellular animal evolution. PMID:21945788

  5. Extended studies on the diversity of arthropod-pathogenic fungi in Austria and Poland

    Directory of Open Access Journals (Sweden)

    Cezary Tkaczyk

    2013-12-01

    Full Text Available Results of studies on diversity of arthropod-pathogenic fungi in selected habitats in Austria and Poland carried out in the years 2006-2007 and 2009-2010 are discussed. In total 47 species of entomopathogenic fungi were found as pathogens of different arthropods in Austria. Twenty six entomophthoralean species from different insects and one species from mites were identified and 16 of them are recorded as new to Austria. From among 21 species of anamorphic Hypocreales (Ascomycota affecting arthropods in Austria, 13 species so far have not been known from this country. In total 51 species of fungi affecting different arthropods in Poland were recorded, among them 28 species of Entomophthorales and 23 anamorphic Hypocreales (Ascomycota were separated. The most frequent species of the entomopathogenic fungi both in agricultural and afforested areas in Austria were the common and usually worldwide distributed cordycipitaceous anamorphs Beauveria bassiana, Isaria fumosorosea and in areas of this study less numerous I. farinosa. The most frequent pathogens occurring in mite communities on plants and in wood infested by insects were Hirsutella species. Several entomophthoralean species developed epizootics that caused high reduction in host populations of different arthropods in both countries. Especially interesting is the first record of mycoses (up to 60% mortality, caused by Zoophthora spp. on Phyllobius beetles in a mixed forest near Białowieża. During our joint research, we found the first time in Poland and Europe, the presence of the fungus Furia cf. shandongensis on earwigs and Hirsutella entomophila on Ips typographus adults in forest habitats. From the feeding sites of the latter bark beetle and other subcortical species in oak bark (mostly Dryocoetes villosus and D. alni in black alder over a dozen of various Lecanicillium strains - including few of the features not allowing to classify them to any of so far known species – were

  6. Seasonal abundance of soil arthropods in relation to meteorological and edaphic factors in the agroecosystems of Faisalabad, Punjab, Pakistan

    Science.gov (United States)

    Shakir, Muhammad Mussadiq; Ahmed, Sohail

    2015-05-01

    Soil arthropods are an important component of agroecosystems, contributing significantly to their biodiversity and functioning. However, seasonal patterns, population dynamics, and significant roles of these soil arthropods in improvement of soil structures and functions are influenced by many factors. The objective of the current study was to investigate soil arthropod abundance in relation to a blend of meteorological and edaphic factors and to find out the difference in abundance among various crops (sugarcane, cotton, wheat, alfalfa fodder, and citrus orchards). The arthropod sampling was done by pitfall traps and Tullgren extractions on fortnightly intervals. Soil temperature and relative humidity were noted on the field sites while analysis for soil pH, organic matter, and soil moisture contents were done in the laboratory. The rainfall data was obtained from an observatory. Results showed that significant differences were found in soil arthropod abundance across different sampling months and crops. Out of total 13,673 soil arthropods sampled, 38 % belonged to Collembola, followed by 15 % Hymenoptera, 15 % Acarina, 11 % Myriapods, 6 % Coleoptera, 5 % Orthoptera, and 5 % Araneae. Mean abundance per sample was highest in summer months as compared to winter. Overall abundance per sample was significantly different between all crops ( p < 0.05). Cluster analysis revealed four categories of soil arthropods according to abundance, i.e., highly abundant (Collembola, Acarina, Myripoda, Hymenoptera), moderately abundant (Orthoptera, Aranae, Coleoptera), least abundant (Dermaptera, Hemiptera, Diptera), and rare (Blattaria, Isoptera, Diplura, Lepidoptera). Soil temperature and soil organic matter showed significant positive correlation with abundance, while relative humidity was significantly negatively correlated. Soil moisture and soil pH showed no significant correlations while no correlation was found with total rainfall. PCA analysis revealed that soil surface

  7. Effect of some environmental factors on arthropod communities in bat guano

    Directory of Open Access Journals (Sweden)

    Watanasit, S.

    2002-01-01

    Full Text Available Data are presented on the taxonomic composition of arthropod fauna found in bat guano in 6 limestone caves of southern Thailand, collected by Berlese's funnel type trap. There were 2 sampling periods; the first from 29 April to 7 May 1996 and the second from 1 to 4 August 1996. Combined samples of bat guano comprised 4,430 individuals of 32 families of the following : 13 orders (2 classes ; Arachnida and Hexapoda Araneae, Acari, Pseudoscorpiones, Collembola, Blattaria, Hemiptera, Thysanoptera, Psocoptera, Neuroptera, Diptera, Coleoptera, Lepidoptera and Hymenoptera. The relationships between arthropods and physical factors such as cave temperature, relative humi-dity of the cave, moisture in guano, pH of guano, total nitrogen in guano and organic matters in guano were explored. The results showed that the number of individuals of Leptonetidae (P<0.05, Araneae (P<0.05 and Psocoptera (P<0.05 positively correlated with total nitrogen in guano but numbers of Blattellidae (P<0.05 and Blattaria (P<0.05 negatively correlated with total nitrogen in guano. The total numbers of families of arthropods (P<0.05 and the number of individuals of Leptonetidae (P<0.05, Sphaeropsocidae (P<0.05, Liposcelidae (P<0.05, Alleculidae (P<0.01, Chironomidae (P<0.05, Formicidae (P<0.05, Araneae (P<0.05, Psocoptera (P<0.01 and Hymenoptera (P<0.05 positively correlated with organic matters in guano. None of all arthropods correlated with cave temperature, relative humidity of the cave, moisture in guano and pH of guano. Study on the effect of type of bat guano (insectivore or frugivore bat guano and the light factor (light or dark zone on arthropods showed that type of bat guano has an effect on total numbers of families (P<0.05 and the number of individuals of Leptonetidae (P<0.01, Laelapidae (P<0.05, Blattellidae (P<0.05, Sphaeropsocidae (P<0.01, Liposcelidae (P<0.05, Dermestidae (P<0.01, Staphylinidae (P<0.01, Tineidae (P<0.05, Araneae (P<0.01, Blattaria (P<0

  8. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    Directory of Open Access Journals (Sweden)

    Juliana M Silveira

    Full Text Available Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae. In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.

  9. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    Science.gov (United States)

    Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-01-01

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance. PMID:20877720

  10. The influence of weather conditions on the activity of high-arctic arthropods inferred from long-term observations

    Directory of Open Access Journals (Sweden)

    Høye Toke T

    2008-05-01

    Full Text Available Abstract Background Climate change is particularly pronounced in the High Arctic and a better understanding of the repercussions on ecological processes like herbivory, predation and pollination is needed. Arthropods play an important role in the high-arctic ecosystem and this role is determined by their density and activity. However, density and activity may be sensitive to separate components of climate. Earlier emergence due to advanced timing of snowmelt following climate change may expose adult arthropods to unchanged temperatures but higher levels of radiation. The capture rate of arthropods in passive open traps like pitfall trap integrates density and activity and, therefore, serves as a proxy of the magnitude of such arthropod-related ecological processes. We used arthropod pitfall trapping data and weather data from 10 seasons in high-arctic Greenland to identify climatic effects on the activity pattern of nine arthropod taxa. Results We were able to statistically separate the variation in capture rates into a non-linear component of capture date (density and a linear component of weather (activity. The non-linear proxy of density always accounted for more of the variation than the linear component of weather. After accounting for the seasonal phenological development, the most important weather variable influencing the capture rate of flying arthropods was temperature, while surface-dwelling species were principally influenced by solar radiation. Conclusion Consistent with previous findings, air temperature best explained variation in the activity level of flying insects. An advancement of the phenology in this group due to earlier snowmelt will make individuals appear earlier in the season, but parallel temperature increases could mean that individuals are exposed to similar temperatures. Hence, the effect of climatic changes on the activity pattern in this group may be unchanged. In contrast, we found that solar radiation is a

  11. Secondary succession of arthropods and plants in the Arizona Sonoran Desert in response to transmission line construction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.D.; Beley, J.R.; Ditsworth, T.M.; Butt, S.M.

    1983-03-01

    At a site about 16 km south of Black Canyon City, Arizona, density of arthropods on an undisturbed plot after an access road was built for powerline construction was much greater than on a disturbed plot. Mites, springtails, leafhoppers, scale insects, ants and thrips were signficantly reduced on the disturbed area. Our results indicate that restoration of numbers of arthropods on the disturbed area is dependent on the total plant cover on the plot, apparently regardless of the composition of the plant species involved. It is obvious in this area that the plant communities will remain dissimilar, with the pioneering herbaceous plants on the disturbed plot dominating. Cosntruction of a powerline apparently has had little impact on the structure of the arthropod community on the disturbed area, as proportions of three trophic categories of arthropods have not been radically altered. The results of this study, when compared to other studies in the Sonoran Desert and in desert grasslands disturbed by powerline construction, indicate that lengthy secondary succession does occur in the Sonoran Desert. Early arthropod invaders were found to be mainly herbivores, with few parasites or predators, and an equilibrium was eventually reached between colonizers and space requirements.

  12. Breeding Westland petrels as providers of detrital carbon and nitrogen for soil arthropods : a stable isotope study

    International Nuclear Information System (INIS)

    Seabirds deposit large quantities of marine detritus on land, but little is known of the soil arthropods processing this material. Burrow-nesting seabirds concentrate their activities within their burrows, so we tested the hypothesis that burrow arthropod fauna is more marine-like in its isotopic enrichment (13C/12C, 15N/14N); expressed as δ13C and δ15N) than the arthropods on the adjacent forest floor. Results from a Westland petrel (Procellaria westlandica) colony on the South Island of New Zealand did not support the hypothesis. Instead, δ15N was universally marine (13-22 per mil). While δ13C separated into two clusters, the distribution was not according to arthropod provenance. Most taxa had a terrestrial δ13C; only two taxa (a leiodid beetle and the mesostigmatic mite Ayersacarus woodi) incorporated marine C. The leiodid beetle occurs both in burrows and on the forest floor; beetles from both habitats had a marine δ13C. Ayersacarus woodi is found only in burrows. We conclude that, in this system, marine and terrestrial detrital C is processed separately, and that marine detrital C enters the terrestrial ecosystem through a very few arthropod taxa. (author). 33 refs., 1 fig.

  13. Richness, diversity, and similarity of arthropod prey consumed by a community of Hawaiian forest birds.

    Science.gov (United States)

    Banko, Paul C.; Peck, Robert W.; Brinck, Kevin W.; Leonard, David L.

    2015-01-01

    We evaluated the diet richness, diversity, and similarity of a community of seven endemic and two introduced passerine birds by analyzing the composition of arthropod prey in fecal samples collected during 1994–1998 at Hakalau Forest National Wildlife Refuge, Hawai‘i Island. Most prey fragments were identified to order, but we also distinguished among morpho-species of Lepidoptera based on the shape of larval (caterpillar) mandibles for higher resolution of this important prey type. Diets were compared among feeding specialists, generalists, and “intermediate” species and among introduced and three endangered Hawaiian honeycreeper (Fringillidae) species. Lepidoptera (moths), especially the larval (caterpillar) stage, comprised the greatest proportion of prey in samples of all bird species except for the introduced Japanese white-eye (Zosterops japonicus; JAWE). Araneae (spiders) was the most abundant order in JAWE samples and the second most abundant order for most other species. The two specialist honeycreepers ranked lowest in the richness and diversity of arthropod orders, but only the ‘akiapōlā‘au (Hemignathus munroi, AKIP) was significantly lower than the three generalist or intermediate honeycreeper species. The diversity of arthropod orders was significantly lower for the three endangered honeycreeper species compared to the two introduced species. No significant differences were observed among the five honeycreepers with respect to the arthropod orders they consumed. The use of arthropod orders taken by endangered honeycreepers and introduced species was significantly different in all paired comparisons except for JAWE and ‘ākepa (Loxops coccineus; AKEP). In terms of richness and diversity of caterpillar morpho-species in the diet, only the specialist, AKEP, was significantly lower than all three generalist and intermediate species. Both AKEP and AKIP consumed a significantly different diet of caterpillar morpho-species compared to at least

  14. Diversity and distribution of arthropods in native forests of the Azores archipelago

    Directory of Open Access Journals (Sweden)

    Borges, P.A.V.

    2008-01-01

    Full Text Available Since 1999, our knowledge of arthropods in native forests of the Azores has improved greatly. Under the BALA project (Biodiversity of Arthropods of Laurisilva of the Azores, an extensive standardised sampling protocol was employed in most of the native forest cover of the Archipelago. Additionally, in 2003 and 2004, more intensive sampling was carried out in several fragments, resulting in nearly a doubling of the number of samples collected. A total of 6,770 samples from 100 sites distributed amongst 18 fragments of seven islands have been collected, resulting in almost 140,000 specimens having been caught. Overall, 452 arthropod species belonging to Araneae, Opilionida, Pseudoscorpionida, Myriapoda and Insecta (excluding Diptera and Hymenoptera were recorded. Altogether, Coleoptera, Hemiptera, Araneae and Lepidoptera comprised the major proportion of the total diversity (84% and total abundance (78% found. Endemic species comprised almost half of the individuals sampled. Most of the taxonomic, colonization, and trophic groups analysed showed a significantly left unimodal distribution of species occurrences, with almost all islands, fragments or sites having exclusive species. Araneae was the only group to show a strong bimodal distribution. Only a third of the species was common to both the canopy and soil, the remaining being equally exclusive to each stratum. Canopy and soil strata showed a strongly distinct species composition, the composition being more similar within the same stratum regardless of the location, than within samples from both strata at the same location. Possible reasons for these findings are explored. The procedures applied in the sampling protocol are also discussed.

  15. The origin of herbivory on land: Initial patterns of plant tissue consumption by arthropods

    Institute of Scientific and Technical Information of China (English)

    CONRAD LABANDEIRA

    2007-01-01

    The early fossil record of terrestrial arthropod herbivory consists of two pulses.The first pulse was concentrated during the latest Silurian to Early Devonian (417 to 403 Ma),and consists of the earliest evidence for consumption of sporangia and stems (and limited fungivore borings). Herbivorization of most of these tissues was rapid, representing 0 to 20 million-year (m.y.) lags from the earliest occurrences of these organs in the fossil record to their initial consumption (Phase 1). For approximately the next 75 m.y., there was a second,more histologically varied origination and expansion of roots, leaves, wood and seeds,whose earliest evidence for herbivorization occurred from the Middle-Late Mississippian boundary to the Middle Pennsylvanian (327 to 309 Ma). The appearance of this second herbivory pulse during the later Paleozoic (Phase 2) is accompanied by major lags of 98 to 54 m.y. between times of appearance of each of the four organ and tissue types and their subsequent herbivory. Both pulses provide a context for three emerging questions. First is an explanation for the contrast between the near instantaneous consumption of plant tissues during Phase 1, versus the exceptionally long lags between the earliest occurrences of plant tissues and their subsequent herbivorization during Phase 2. Second is the identity of arthropod herbivores for both phases. Third is the cause behind the overwhelming targeting of seed-fern plant hosts during Phase 2. Regardless of the answers to these questions, the trace fossil record of plant-arthropod associations provides primary ecological data that remain unaddressed by the body-fossil record alone.

  16. Soil arthropod fauna from natural ecosites and reclaimed oil sands soils in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Battigelli, J.P.; Leskiw, L.A. [Paragon Soil and Environmental Consulting Inc., Edmonton, AB (Canada)

    2006-07-01

    An understanding of soil invertebrates may facilitate current reclamation activities in the oil sands region of Alberta. This paper presented the results of a study investigating the density, diversity, and structure of soil arthropod assemblages in natural habitats and reclaimed sites. The purpose of the study was to establish a baseline inventory of soil arthropod assemblages in order to enable long-term monitoring of soil arthropod recolonization in disturbed sites. Nine natural ecosites were sampled for the study, including peat mix over secondary material over tailing sand; direct placement over tailing sand; peat mix over secondary over overburden; direct placement over overburden; peat mix over tailing sand; and peat mix over overburden. Samples were collected from previously established long-term soil and vegetation treatment plots in both natural ecosites and reclaimed soil sites located near Fort McMurray, Alberta. Results showed that densities of mesofauna were significantly higher in samples collected from natural ecosites. Acari and Collembola represented approximately 97 to 98 per cent of the fauna collected. It was also noted that the overall structure of the soil mesofauna community differed between natural soils and reclaimed soils. A significant reduction in the abundance of oribatid mites was observed in soils that had been reclaimed for over 34 years. Changes in the soil mesofauna community structure suggested that reclaimed soils continue to represent disturbed ecosites, as was indicated by higher proportions of prostigmatid mites and some collembolan families. Differences in community structure may influence soil ecosystem functions, including decomposition rates; nutrient recycling; soil structure; and fungal and bacterial biomass. It was concluded that further research is needed to examine oribatid mites and collembolan species diversity and community structure in reclaimed soils. 18 refs., 6 figs.

  17. ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species.

    Science.gov (United States)

    Zeng, Victor; Extavour, Cassandra G

    2012-01-01

    The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental

  18. Some topological properties of arthropod food webs in paddy fields of South China

    Directory of Open Access Journals (Sweden)

    LiQin Jiang

    2015-09-01

    Full Text Available To explore the topological properties of paddy arthropod food webs is of significance for understanding natural equilibrium of rice pests. In present study, we used Pajek software to analyze the topological properties of four full arthropod food webs in South China. The results showed that predators were significantly abundant than preys, and the proportion of predators to preys (3.07 was significantly higher than previously reported by Cohen in 1977 (1.33. In the food webs, the number of top species was the largest, accounted for about 50% of the total. The number of intermediate-intermediate links was far greater than the other three links. The average degree of paddy arthropod food webs is 6.0, 6.04, 5.74 and 7.75, respectively. Average degree and link density did not change significantly with the change of the number of species, but the connectance reduced significantly. In the paddy ecosystems, the increase of species diversity does not lead to an increase proportionally to the links among species. The link density and connectance of food webs of early season rice field were less than that from late season rice field. Cycles of all food webs cycles were 0. The maximum chain length of the basal species was 3, and the largest chain length of the top species was typically 2 or 3. Neutral insects were found to play a very important role in the paddy ecosystem. Nilaparvata lugens and Sogatella furcifera were found to be the dominant species of rice pests. Pardosa pseudoannulata, Tetragnatha maxillosa, Pirata subparaticus, Arctosa stigmosa and Clubiona corrugate were identified as the important predatory species that may effectively control the pest population. The keystone species calculated from keystone index and network analysis are analogous, indicating either keystone index or network analysis can be used in the analysis of keystone species.

  19. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests.

    Science.gov (United States)

    Moretti, Marco; Duelli, Peter; Obrist, Martin K

    2006-08-01

    Changes in ecosystem functions following disturbances are of central concern in ecology and a challenge for ecologists is to understand the factors that affect the resilience of community structures and ecosystem functions. In many forest ecosystems, one such important natural disturbance is fire. The aim of this study was to understand the variation of resilience in six functional groups of invertebrates in response to different fire frequencies in southern Switzerland. We measured resilience by analysing arthropod species composition, abundance and diversity in plots where the elapsed time after single or repeated fires, as determined by dendrochronology, varied. We compared data from these plots with data from plots that had not burned recently and defined high resilience as the rapid recovery of the species composition to that prior to fire. Pooling all functional groups showed that they were more resilient to single fires than to repeated events, recovering 6-14 years after a single fire, but only 17-24 years after the last of several fires. Flying zoophagous and phytophagous arthropods were the most resilient groups. Pollinophagous and epigaeic zoophagous species showed intermediate resilience, while ground-litter saprophagous and saproxylophagous arthropods clearly displayed the lowest resilience to fire. Their species composition 17-24 years post-burn still differed markedly from that of the unburned control plots. Depending on the fire history of a forest plot, we found significant differences in the dominance hierarchy among invertebrate species. Any attempt to imitate natural disturbances, such as fire, through forest management must take into account the recovery times of biodiversity, including functional group composition, to ensure the conservation of multiple taxa and ecosystem functions in a sustainable manner. PMID:16804704

  20. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests.

    Science.gov (United States)

    Moretti, Marco; Duelli, Peter; Obrist, Martin K

    2006-08-01

    Changes in ecosystem functions following disturbances are of central concern in ecology and a challenge for ecologists is to understand the factors that affect the resilience of community structures and ecosystem functions. In many forest ecosystems, one such important natural disturbance is fire. The aim of this study was to understand the variation of resilience in six functional groups of invertebrates in response to different fire frequencies in southern Switzerland. We measured resilience by analysing arthropod species composition, abundance and diversity in plots where the elapsed time after single or repeated fires, as determined by dendrochronology, varied. We compared data from these plots with data from plots that had not burned recently and defined high resilience as the rapid recovery of the species composition to that prior to fire. Pooling all functional groups showed that they were more resilient to single fires than to repeated events, recovering 6-14 years after a single fire, but only 17-24 years after the last of several fires. Flying zoophagous and phytophagous arthropods were the most resilient groups. Pollinophagous and epigaeic zoophagous species showed intermediate resilience, while ground-litter saprophagous and saproxylophagous arthropods clearly displayed the lowest resilience to fire. Their species composition 17-24 years post-burn still differed markedly from that of the unburned control plots. Depending on the fire history of a forest plot, we found significant differences in the dominance hierarchy among invertebrate species. Any attempt to imitate natural disturbances, such as fire, through forest management must take into account the recovery times of biodiversity, including functional group composition, to ensure the conservation of multiple taxa and ecosystem functions in a sustainable manner.

  1. Seasonal occurrence of key arthropod pests and associated natural enemies in Alabama Satsuma citrus.

    Science.gov (United States)

    Fadamiro, Henry Y; Xiao, Yingfang; Hargroder, Terry; Nesbitt, Monte; Umeh, Vincent; Childers, Carl C

    2008-04-01

    Six Alabama Satsuma mandarin orchards (four conventionally sprayed and two unsprayed) were surveyed during 2005 and 2006 to determine the population dynamics of arthropod pests and their natural enemies. Twenty-eight arthropod pest species were encountered; the major foliage pests were citrus whitefly, Dialeurodes citri (Ashmead); purple scale, Lepidosaphes beckii (Newman); Glover scale, L. gloveri (Packard); and citrus red mite, Panonychus citri (McGregor). Two distinct population peaks were recorded for citrus whitefly at most locations. The most important direct sources of citrus whitefly mortality were parasitism by Encarsia lahorensis (Howard) and infection by the pathogenic fungus, Aschersonia aleyrodis Webber. In general, all stages of both scale insects (purple scale and Glover scale) were present in the orchards year-round, indicative of overlapping generations; however, the highest densities were recorded during the early season. Citrus whitefly, purple scale, and Glover scale were more abundant on leaves collected from the interior of the tree canopy than in the exterior canopy. Citrus red mite densities were highest in the spring, with populations declining at the start of the summer, and were more abundant in the exterior canopy than in the interior canopy. The most important natural enemies of citrus red mite were predatory mites belonging to several families, of which Typhlodromalus peregrinus Muma (Phytoseiidae) was the predominant species. Major differences were recorded in the relative abundance of different arthropod pest species in the orchards: citrus whitefly, purple scale, and Glover scale predominated in the unsprayed orchards, whereas citrus red mite infestations were more severe in the sprayed orchards. The results are discussed in relation to the possible effect of orchard management practices on abundance of the major pests. PMID:18419929

  2. Haematophagous arthropod saliva and host defense system: a tale of tear and blood

    Directory of Open Access Journals (Sweden)

    Andrade Bruno B.

    2005-01-01

    Full Text Available The saliva from blood-feeding arthropod vectors is enriched with molecules that display diverse functions that mediate a successful blood meal. They function not only as weapons against host's haemostatic, inflammatory and immune responses but also as important tools to pathogen establishment. Parasites, virus and bacteria taking advantage of vectors' armament have adapted to facilitate their entry in the host. Today, many salivary molecules have been identified and characterized as new targets to the development of future vaccines. Here we focus on current information on vector's saliva and the molecules responsible to modify host's hemostasis and immune response, also regarding their role in disease transmission.

  3. Discontinuous gas exchange in a tracheate arthropod, the pseudoscorpion Garypus californicus: Occurrence, characteristics and temperature dependence.

    OpenAIRE

    Lighton, John R. B.; Barbara Joos

    2002-01-01

    The discontinuous gas exchange cycle of the pseudoscorpion Garypus californicus, mean mass 5.9 mg, is rudimentary and is characterized by bursts of CO2 at frequencies ranging from 3.6 mHz at 15 °C to 13.3 mHz at 35 °C. The mean volume of CO2 emitted per burst is 3.6 µl g-1 at 25 °C, about a tenth of the amount emitted by tracheate arthropods with a well developed discontinuous gas exchange cycle. Interburst CO2 emission is high and increases with temperature, reaching near 45% of total CO2 pr...

  4. High spatial variation in terrestrial arthropod species diversity and composition near the Greenland ice cap

    DEFF Research Database (Denmark)

    Hansen, Rikke Reisner; Hansen, Oskar Liset Pryds; Bowden, Joseph James;

    2016-01-01

    . The empirical basis for this assumption, however, is weak. We examine the degree of spatial variation in species diversity and assemblage structure among five habitat types at two sites of similar abiotic conditions and plant species composition in southwest Greenland, using standardized field collection...... conclude that Arctic arthropod species assemblages vary substantially over short distances due to local soil characteristics, while regional variation in the species pool is likely influenced by geographic barriers, i.e., inland ice sheet, glaciers, mountains and large water bodies. In order to predict...

  5. Effect of commercially available plant-derived essential oil products on arthropod pests.

    Science.gov (United States)

    Cloyd, Raymond A; Galle, Cindy L; Keith, Stephen R; Kalscheur, Nanette A; Kemp, Kenneth E

    2009-08-01

    Plant-derived essential oil products, in general, are considered minimum-risk pesticides and are exempt from Environmental Protection Agency registration under section 25(b) of the Federal Insecticide Fungicide and Rodenticide Act. However, many of the plant-derived essential products available to consumers (homeowners) have not been judiciously evaluated for both efficacy and plant safety. In fact, numerous plant-derived essential oil products labeled for control of arthropod pests have not been subject to rigorous evaluation, and there is minimal scientific information or supporting data associated with efficacy against arthropod pests. We conducted a series of greenhouse experiments to determine the efficacy and phytotoxicity of an array of plant-derived essential oil products available to consumers on arthropod pests including the citrus mealybug, Planococcus citri (Risso); western flower thrips, Frankliniella occidentalis (Pergande); twospotted spider mite, Tetranychus urticae Koch; sweetpotato whitefly B-biotype, Bemisia tabaci (Gennadius); and green peach aphid, Myzus persicae (Sulzer). Although the products Flower Pharm (cottonseed, cinnamon, and rosemary oil) and Indoor Pharm (soybean, rosemary, and lavender oil) provided > 90% mortality of citrus mealybug, they were also the most phytotoxic to the coleus, Solenostemon scutellarioides (L.) Codd, plants. Both GC-Mite (cottonseed, clove, and garlic oil) and Bugzyme (citric acid) were most effective against the twospotted spider mite (> or = 90% mortality). However, SMC (canola, coriander oil, and triethanolamine), neem (clarified hydrophobic extract of neem oil), and Bug Assassin (eugenol, sodium lauryl sulfate, peppermint, and citronella oil) provided > 80% mortality. Monterey Garden Insect Spray, which contained 0.5% spinosad, was most effective against western flower thrips with 100% mortality. All the other products evaluated failed to provide sufficient control of western flower thrips with or = 4.5 of

  6. Lights, camera and action: vertebrate skin sets the stage for immune cell interaction with arthropod-vectored pathogens

    Directory of Open Access Journals (Sweden)

    Shu Zhen eChong

    2013-09-01

    Full Text Available Despite increasing studies targeted at host-pathogen interactions, vector-borne diseases remain one of the largest economic health burdens worldwide. Such diseases are vectored by hematophagous arthropods that deposit pathogens into the vertebrate host’s skin during a blood meal. These pathogens spend a substantial amount of time in the skin that allows for interaction with cutaneous immune cells, suggesting a window of opportunity for development of vaccine strategies. In particular, the recent availability of intravital imaging approaches has provided further insights into immune cell behavior in living tissues. Here, we discuss how such intravital imaging studies have contributed to our knowledge of cutaneous immune cell behavior and specifically, towards pathogen and tissue trauma from the arthropod bite. We also suggest future imaging approaches that may aid in better understanding of the complex interplay between arthropod-vectored pathogens and cutaneous immunity that could lead to improved therapeutic strategies.

  7. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    Science.gov (United States)

    Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S. T.; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C.; Alonso, Claudio R.; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C. J.; Blankenburg, Kerstin P.; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K.; Du Pasquier, Louis; Duncan, Elizabeth J.; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D.; Extavour, Cassandra G.; Francisco, Liezl; Gabaldón, Toni; Gillis, William J.; Goodwin-Horn, Elizabeth A.; Green, Jack E.; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J. P.; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H. L.; Hunn, Julia P.; Hunnekuhl, Vera S.; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N.; Jiggins, Francis M.; Jones, Tamsin E.; Kaiser, Tobias S.; Kalra, Divya; Kenny, Nathan J.; Korchina, Viktoriya; Kovar, Christie L.; Kraus, F. Bernhard; Lapraz, François; Lee, Sandra L.; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N.; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J.; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H.; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C.; Robertson, Helen E.; Robertson, Hugh M.; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E.; Schurko, Andrew M.; Siggens, Kenneth W.; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J.; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M.; Willis, Judith H.; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M.; Worley, Kim C.; Gibbs, Richard A.; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  8. Secondary succession of arthropods and plants in the Arizona Sonoran Desert in response to transmission-line construction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.D.; Beley, J.R.; Ditsworth, T.M.; Butt, S.M.

    1983-03-01

    At a site about 16 km south of Black Canyon City, Arizona, density of arthropods on an undisturbed plot after an access road was built for powerline construction was much greater than on a disturbed plot. Mites, springtails, leafhoppers, scale insects, ants and thrips were significantly reduced on the disturbed area. Diversity increased on the disturbed plot after construction, but density decreased. A slight increase in similarity (H', Clambda) of the arthropod communities of the two plots appears to be related to the modest increase in cover on the disturbed area. Globe-mallow, goosefoot and a four-o'clock were pioneer species and occurred only on the disturbed area. There was a significant reduction in cover of all plant species on the disturbed plot after construction, but there was a steady increase of annual forbs at the end of the study. The results indicate that restoration of numbers of arthropods on the disturbed area is dependent on the total plant cover on the plot, apparently regardless of the composition of the plant species involved. It is obvious in this area that the plant communities will remain dissimilar, with the pioneering herbaceous plants on the disturbed plot dominating. Construction of a powerline apparently has had little impact on the structure of the arthropod community on the disturbed area, as proportions of three trophic categories of arthropods have not been radically altered. The results of this study, when compared to other studies in the Sonoran Desert and in desert grasslands disturbed by powerline construction, indicate that lengthy secondary succession does occur in the Sonoran Desert. Early arthropod invaders were found to be mainly herbivores, with few parasites or predators, and an equilibrium was eventually reached between colonizers and space requirements. 35 references, 3 figures, 3 tables

  9. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Directory of Open Access Journals (Sweden)

    Ariel D Chipman

    2014-11-01

    Full Text Available Myriapods (e.g., centipedes and millipedes display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations

  10. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    Science.gov (United States)

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  11. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Science.gov (United States)

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-11-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  12. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima

    DEFF Research Database (Denmark)

    Chipman, Ariel D.; Ferrier, David E.K.; Brena, Carlo;

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We pres...

  13. Scientific Opinion addressing the state of the science on risk assessment of plant protection products for non-target arthropods

    DEFF Research Database (Denmark)

    EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues); Topping, Christopher John

    2015-01-01

    Following a request from the European Food Safety Authority, the Panel on Plant Protection Products and their Residues developed an opinion on the science to support the development of a risk assessment scheme of plant protection products for non-target arthropods. The current risk assessment...... dynamics, conducting a landscape-level risk assessment is suggested. A new risk assessment scheme is suggested which integrates modelling approaches. The main exposure routes for non-target arthropods are identified and proposals are made on how to integrate them in the risk assessment. The appropriateness...

  14. Sloth biology: an update on their physiological ecology, behavior and role as vectors of arthropods and arboviruses

    Directory of Open Access Journals (Sweden)

    Gilmore D.P.

    2001-01-01

    Full Text Available This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.

  15. Mineral cycling in soil and litter arthropod food chains. Annual progress report, February 1, 1983-January 31, 1984

    International Nuclear Information System (INIS)

    This annual report describes progress in research on the influence of soil fauna on the general process of terrestrial decomposition. The major goal is to investigate the regulation of decomposition by soil arthropods. Methods have included radioactive tracer measurements of food chain dynamics, rates of nutrient or mineral element flow during decomposition, and simulation modeling. This year's report describes significant progress in defining the influence of soil arthropods in stimulating microbial immobilization of nutrients. Preliminary efforts to define the importance of the soil-litter macroarthropods are also reported

  16. Diurnal temperature variations affect development of a herbivorous arthropod pest and its predators.

    Science.gov (United States)

    Vangansbeke, Dominiek; Audenaert, Joachim; Nguyen, Duc Tung; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick

    2015-01-01

    The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen's inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C) on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen's inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes. PMID:25874697

  17. The effects of heavy metal contamination on the soil arthropod community of a shooting range

    Energy Technology Data Exchange (ETDEWEB)

    Migliorini, Massimo; Pigino, Gaia; Bianchi, Nicola; Bernini, Fabio; Leonzio, Claudio

    2004-05-01

    Soils in clay pigeon shooting ranges can be seriously contaminated by heavy metals. The pellets contained in ammunition are composed of Pb, Sb, Ni, Zn, Mn and Cu. The total concentrations of these metals in soils, and the effects of their increasing levels on the arthropod community were investigated at seven sampling sites in a clay pigeon shooting range and compared with two controls. Research revealed that the spatial distribution of Pb and Sb contamination in the shot-fall area was strongly correlated with the flight path of the pellets. Ordination obtained through Redundance Analysis showed that Collembola, Protura and Diplura were positively correlated with major detected contaminants (Pb, Sb), while Symphyla showed a negative correlation with these pollutants. Determination of the soluble lead fraction in soil, and of its bioaccumulation in the saprophagous Armadillidium sordidum (Isopoda) and the predator Ocypus olens (Coleoptera), showed that a significant portion of metallic Pb from spent pellets is bioavailable in the soil and can be bioaccumulated by edaphic organisms, entering the soil trophic network, but without biomagnification. - Significant relationships were found between lead accumulation in soil from a shooting range and inhabiting arthropod communities.

  18. Sensitivity of soil arthropods for toxicants on the basis of body concentrations and exposure concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Crommentuijn, T. [National Inst. of Public Health and Environmental Protection, Bilthoven (Netherlands). Toxicology Advisory Centre; Doodeman, C.J.A.M.; Pol, J.J.C. van der; Doornekamp, A.; Gestel, C.A.M. van [Vrije Univ., Amsterdam (Netherlands). Dept. of Ecology and Ecotoxicology

    1995-12-31

    Environmental quality objectives are normally derived on the basis of laboratory experiments in which exposure concentrations are related to effects. Exposure concentrations however cannot always linearly related to effects. The accumulation pattern of a species will determine how much of the toxicant will be taken up and eliminated through different routes. For soil arthropods different accumulation patterns exist based on the physiological and anatomical design of the species. This was demonstrated by studying the time-dependent toxicity of cadmium for six soil arthropods, with differing uptake-elimination kinetics. Two different accumulation patterns could be discerned. Taxonomically related species appeared to have comparable accumulation patterns, but lethal body concentrations differed. For the springtail species Folsomia candida it was also possible to compare uptake and effects of cadmium through two different routes of uptake. Individuals were exposed through soil and through the food. The main route of uptake for this species seemed to be through the soil. The concentrations at which sublethal and lethal effects occurred were comparable when based on the basis of body concentrations but not when based on the basis of exposure concentrations in the food and in the soil. A comparison of species-sensitivities on the basis of body concentrations and exposure concentrations is made. The consequences of the use of an exposure and body concentration approach for deriving environmental quality objectives for soil will be discussed.

  19. An Ancient Transkingdom Horizontal Transfer of Penelope-Like Retroelements from Arthropods to Conifers.

    Science.gov (United States)

    Lin, Xuan; Faridi, Nurul; Casola, Claudio

    2016-01-01

    Comparative genomics analyses empowered by the wealth of sequenced genomes have revealed numerous instances of horizontal DNA transfers between distantly related species. In eukaryotes, repetitive DNA sequences known as transposable elements (TEs) are especially prone to move across species boundaries. Such horizontal transposon transfers, or HTTs, are relatively common within major eukaryotic kingdoms, including animals, plants, and fungi, while rarely occurring across these kingdoms. Here, we describe the first case of HTT from animals to plants, involving TEs known as Penelope-like elements, or PLEs, a group of retrotransposons closely related to eukaryotic telomerases. Using a combination of in situ hybridization on chromosomes, polymerase chain reaction experiments, and computational analyses we show that the predominant PLE lineage, EN(+)PLEs, is highly diversified in loblolly pine and other conifers, but appears to be absent in other gymnosperms. Phylogenetic analyses of both protein and DNA sequences reveal that conifers EN(+)PLEs, or Dryads, form a monophyletic group clustering within a clade of primarily arthropod elements. Additionally, no EN(+)PLEs were detected in 1,928 genome assemblies from 1,029 nonmetazoan and nonconifer genomes from 14 major eukaryotic lineages. These findings indicate that Dryads emerged following an ancient horizontal transfer of EN(+)PLEs from arthropods to a common ancestor of conifers approximately 340 Ma. This represents one of the oldest known interspecific transmissions of TEs, and the most conspicuous case of DNA transfer between animals and plants. PMID:27190138

  20. A Survey on Residential Areas Infestation to House Pests (Arthropods in Kashan

    Directory of Open Access Journals (Sweden)

    Rouhullah Dehghani

    2013-12-01

    Full Text Available Background: Due to importance of arthropods as urban pest, such Health and Nutritional, Textile, Structural, Storage pest and role of them in human being, this study was done to show determine of houses infestation status to urban pest (Arthropods city of Kashan in 2010. Materials and Methods: A Descriptive-analytical study has been done on houses The houses were selected by cluster random and Urban pests of them, by use of hand lens were identified. The results were analyzed using abundance tables and SPSS-11.5 software and statistic tests χP2P and fisher exact3T. Results: The results of study have shown that prevalence of urban pest, Health pest 99.6%, Nutritional pest 32.6%, textile and structural pest 37.4% were seen3T.3T Out of total houses, 98% mosquitoes, 96.4% ant, 92.6% fly, 78% cockroaches species, 56.8% spider, 37.6% termite, 34.6% storage pests, 12% clothes moth, 8.2% scorpion species, 3.6% bug, 3.2% tick and 2.6% millipede were identified. Conclusion: The prevalence of infestation urban pest is high. Mosquitoes, ant, fly and cockroach were seen more the other. So methods control training, houses protection and solid and water waste management is being suggested.

  1. Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology.

    Science.gov (United States)

    Bordon, Karla C F; Wiezel, Gisele A; Amorim, Fernanda G; Arantes, Eliane C

    2015-01-01

    Hyaluronidases are enzymes that mainly degrade hyaluronan, the major glycosaminoglycan of the interstitial matrix. They are involved in several pathological and physiological activities including fertilization, wound healing, embryogenesis, angiogenesis, diffusion of toxins and drugs, metastasis, pneumonia, sepsis, bacteremia, meningitis, inflammation and allergy, among others. Hyaluronidases are widely distributed in nature and the enzymes from mammalian spermatozoa, lysosomes and animal venoms belong to the subclass EC 3.2.1.35. To date, only five three-dimensional structures for arthropod venom hyaluronidases (Apis mellifera and Vespula vulgaris) were determined. Additionally, there are four molecular models for hyaluronidases from Mesobuthus martensii, Polybia paulista and Tityus serrulatus venoms. These enzymes are employed as adjuvants to increase the absorption and dispersion of other drugs and have been used in various off-label clinical conditions to reduce tissue edema. Moreover, a PEGylated form of a recombinant human hyaluronidase is currently under clinical trials for the treatment of metastatic pancreatic cancer. This review focuses on the arthropod venom hyaluronidases and provides an overview of their biochemical properties, role in the envenoming, structure/activity relationship, and potential medical and biotechnological applications. PMID:26500679

  2. Arthropod prey of Wilson's Warblers in the understory of Douglas-fir forests

    Science.gov (United States)

    Hagar, J.C.; Dugger, K.M.; Starkey, E.E.

    2007-01-01

    Availability of food resources is an important factor in avian habitat selection. Food resources for terrestrial birds often are closely related to vegetation structure and composition. Identification of plant species important in supporting food resources may facilitate vegetation management to achieve objectives for providing bird habitat. We used fecal analysis to describe the diet of adult Wilson's Warblers (Wilsonia pusilla) that foraged in the understory of Douglas-fir (Pseudotsuga menziesii) forests in western Oregon during the breeding season. We sampled arthropods at the same sites where diet data were collected, and compared abundance and biomass of prey among seven common shrub species. Wilson's Warblers ate more caterpillars (Lepidoptera larvae), flies (Diptera), beetles (Coleoptera), and Homoptera than expected based on availability. Deciduous shrubs supported higher abundances of arthropod taxa and size classes used as prey by Wilson's Warblers than did evergreen shrubs. The development and maintenance of deciduous understory vegetation in conifer forests of the Pacific Northwest may be fundamental for conservation of food webs that support breeding Wilson's Warblers and other shrub-associated, insectivorous songbirds.

  3. Diurnal temperature variations affect development of a herbivorous arthropod pest and its predators.

    Directory of Open Access Journals (Sweden)

    Dominiek Vangansbeke

    Full Text Available The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen's inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae. We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen's inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes.

  4. Multiple sources of isotopic variation in a terrestrial arthropod community: challenges for disentangling food webs.

    Science.gov (United States)

    Daugherty, Matthew P; Briggs, Cheryl J

    2007-08-01

    Documenting trophic links in a food web has traditionally required complex exclusion experiments coupled with extraordinarily labor-intensive direct observations of predator foraging. Newer techniques such as stable isotope analysis (SIA) may facilitate relatively quick and accurate assessments of consumer feeding behavior. Ratios of N and C isotopes are thought to be useful for determining species' trophic position (e.g., 1 degrees consumer, 2 degrees consumer, or omnivore) and their original carbon source (e.g., C3 or C4 plants; terrestrial or marine nutrients). Thus far, however, applications of stable isotopes to terrestrial arthropod food webs have suggested that high taxon-specific variation may undermine the effectiveness of this method. We applied stable isotope analysis to a pear orchard food web, in which biological control of a dominant pest, pear psylla (Cacopsylla pyricola), involves primarily generalist arthropod predators with a high frequency of omnivory. We found multiple sources of isotopic variation in this food web, including differences among plant tissues; time, stage, and taxon-specific differences among herbivores (despite similar feeding modes); and high taxon-specific variation among predators (with no clear evidence of omnivory). Collectively, these multiple sources of isotopic variation blur our view of the structure of this food web. Idiosyncrasies in consumer trophic shifts make ad hoc application of SIA to even moderately complex food webs intractable. SIA may not be a generally applicable "quick and dirty" method for delineating terrestrial food web structure-not without calibration of specific consumer food trophic shifts. PMID:17716468

  5. Arthropod borne diseases in Italy: from a neglected matter to an emerging health problem

    Directory of Open Access Journals (Sweden)

    Roberto Romi

    2010-12-01

    Full Text Available In medical entomology, "Arthropod Borne Diseases", or "Vector Borne Diseases" (VBD are intended as a group of human and animal infections caused by different pathogen organisms (protozoa, helminthes, bacteria and viruses transmitted by the bite of a bloodsucking insect or arachnid. It is commonly known that the infectious diseases transmitted by Arthropods are mainly affecting tropical and subtropical countries, nevertheless some of them were or are still common also in the northern hemisphere, where they are usually maintained under control. VBD still represent some of the most important public health problems in the endemic areas but are becoming source of concern for developed countries too. Since the last decades of the past century, a number of VBD has been spreading geographically, being recorded for the first time in areas outside their original range. This phenomenon is strictly related to the peculiar epidemiological characteristics of these diseases, that are considered the most susceptible to climatic, environmental and socioeconomic changes. This article is a short overview of the VBD endemic and emerging in Italy. The possibility that some exotic vectors and/or pathogens could be introduced and become established in Italy is also discussed.

  6. Nickel levels in arthropods associated with Ni hyperaccumulator plants from an ultramafic site in New Caledonia

    Institute of Scientific and Technical Information of China (English)

    ROBERT S. BOYD; MICHAEL A. WALL; TANGUY JAFFR(E)

    2006-01-01

    Arthropods (mainly insects) were collected from a forest site that contained at least six species of Ni hyperaccumulators. Whole body Ni analysis was performed for 12 arthropod taxa, two of which were studied at different life cycle stages. We found two Nitolerant insects. The pentatomid heteropteran Utana viridipuncta, feeding on fruits of the Ni hyperaccumulator Hybanthus austrocaledonicus, contained a mean of 2 600μg Ni/g in nymphs and 750μg Ni/g in adults. The tephritid fly Bactrocera psidii, feeding on pulp of Sebertia acuminata fruits that contained 6 900μg Ni/g, contained 420μg Ni/g as larvae that had evacuated their guts and significantly less (65μg Ni/g) as adults. European honeybees (Apis mellifera) visiting flowers of the Ni hyperaccumulator H. austrocaledonicus contained significantly more Ni (8-fold more) than those collected from flowers of Myodocarpus fraxinifolius, a non-hyperaccumulator. Our results show that some insects feed on Ni hyperaccumulator plants and that their feeding mobilizes Ni into local food webs.

  7. Arthropod and filarioid parasites associated with wild rodents in the northeast marshes of Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Marcela Lareschi

    2003-07-01

    Full Text Available During 1995, 16 species of arthropods and 2 species of filarioids, totaling 1 287 specimens were collected from 64 wild rodents captured in the Hudson Natural Reserve, Buenos Aires, Argentina. Infestation parameters and indexes were analyzed. Host specific richness was S = 6, diversity H = 1.48, and relative density RDI = 40%. High values of parasite species richness and diversity were found on Oligoryzomys delticola (S = 9; H = 1.40, Oxymycterus rufus (S = 9; H = 1.37, and Oligoryzomys flavescens (S = 9; H = 1.28, followed by Scapteromys aquaticus (S = 6; H = 0.17, and Akodon azarae (S = 4; H = 1.20. Deltamys kempi was infested only by Androlaelaps rotundus. O. delticola and O. flavescens showed the highest similarity index (O = 74.19%, followed by O. flavescens with S. aquaticus, as a result of historical processes and shared microhabitats. Considering arthropods-filarioids associations, significant affinity was observed in Litomosoides bonaerensis with Hoplopleura travassosi, Laelaps paulistanensis, and Gigantolaelaps wolffsohni.

  8. Arthropod vaccines.

    Science.gov (United States)

    Lee, R; Opdebeeck, J P

    1999-03-01

    Antigens located in the midgut of the tick are hidden from the host's immune system. Egg production of ticks can be reduced when ticks are fed on animals vaccinated with midgut antigens of the tick, and a subunit vaccine formulated with the recombinant antigen Bm86 is now available that can reduce the number of ticks infesting cattle grazing on pasture. Midgut antigens used in vaccines against insects that transmit pathogenic organisms to humans have not been as effective in reducing insect fecundity and an alternative approach may be necessary. Transmission-blocking vaccines directed at interfering with the vector-pathogen interaction could result in loss of vector competence and block the spread of disease-causing organisms. PMID:10198800

  9. Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment.

    Science.gov (United States)

    Szénási, Ágnes; Pálinkás, Zoltán; Zalai, Mihály; Schmitz, Oswald J; Balog, Adalbert

    2014-01-01

    There is concern that genetically modified (GM) plants may have adverse affects on the arthropod biodiversity comprising agricultural landscapes. The present study report on a two year field experimental test of whether four different genotypic lines, some are novel with no previous field tests, of GM maize hybrids alter the structure of arthropod food webs that they harbour, relative to non-GM maize (control) that is widely used in agriculture. The different GM genotypes produced either Bt toxins, conferred glyphosate tolerance or a combination of the two traits. Quantitative food web analysis, based on short-term assessment assigning a total of 243,896 arthropod individuals collected from the treatments to their positions in food webs, revealed that complex and stable food webs persisted in each maize treatment. Moreover, food web structure remained relatively unchanged by the GM-genotype. The results suggest that at least in short-term period these particular GM maize genotypes will not have adverse effects on arthropod biota of agricultural landscapes.

  10. Arthropod Pests and Predators Associated With Bittersweet Nightshade, a Noncrop Host of the Potato Psyllid (Hemiptera: Triozidae).

    Science.gov (United States)

    Castillo Carrillo, C I; Fu, Z; Jensen, A S; Snyder, W E

    2016-08-01

    Bittersweet nightshade (Solanum dulcamara L.) is a key noncrop host of the potato psyllid (Bactericera cockerelli Šulc), proposed to be a source of the psyllids that colonize potato (Solanum tuberosum L.) fields in the northwestern United States. Here, we describe the broader community of arthropod potato pests, and also predatory arthropods, found in bittersweet nightshade patches. Over 2 yr, we sampled arthropods in patches of this weed spanning the potato-growing region of eastern Washington State. The potato psyllid was the most abundant potato pest that we found, with reproduction of these herbivores recorded throughout much of the growing season where this was measured. Aphid, beetle, and thrips pests of potato also were collected on bittersweet nightshade. In addition to these herbivores, we found a diverse community of >40 predatory arthropod taxa. Spiders, primarily in the Families Dictynidae and Philodromidae, made up 70% of all generalist predator individuals collected. Other generalist predators included multiple species of predatory mites, bugs, and beetles. The coccinellid beetle Stethorus punctillum (Weise) was observed eating psyllid eggs, while the parasitoid wasp Tamarixia triozae (Burks) was observed parasitizing potato psyllid nymphs. Overall, our survey verified the role of bittersweet nightshade as a potato psyllid host, while suggesting that other potato pests also use these plants. At the same time, we found that bittersweet nightshade patches were associated with species-rich communities of natural enemies. Additional work is needed to directly demonstrate movement of pests, and perhaps also predators, from bittersweet nightshade to potato fields. PMID:27357162

  11. Effects of the emerald ash borer invasion on the community composition of arthropods associated with ash tree boles

    Science.gov (United States)

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire is an invasive non-native wood-boring beetle that has killed hundreds of millions of ash trees (Fraxinus spp.) in North America, and threatens to extirpate the ecological services provided by the genus. Identifying the arthropod community assoc...

  12. The siren song of a sticky plant: Columbines provision mutualist arthropods by attracting and killing passerby insects.

    Science.gov (United States)

    LoPresti, E F; Pearse, I S; Charles, G K

    2015-11-01

    Many plants provide predatory arthropods with food or shelter. Glandular trichomes entrap insects and may provision predators with insect carrion, though it has not been clear whether this putative benefit functions with natural amounts of carrion, whether plants actively attract insect "tourists," and how common this provisioning system is. We tested the hypothesis that a sticky columbine (Aquilegia eximia: Ranunculaceae) attracts passerby arthropods (a siren song leading them to their demise); that these entrapped arthropods increased predators on the plant; and that these predators reduced damage to the plant. Sticky traps baited with columbine peduncles entrapped more arthropod carrion than unbaited control traps. Predator abundance correlated positively with carrion abundance observationally, and experimental removal of carrion reduced predator numbers. Experimental removal of carrion also increased damage to reproductive structures, likely due to reductions in predator numbers. This indirect defense may be common; we compiled a list of insect-trapping sticky plants that includes over 110 genera in 49 families, suggesting a widespread convergence of this trait, even in non-carnivorous plants. The ubiquity of this trait combined with these experiments suggest that carrion entrapment should be viewed as a common and active process mediated by the plant for indirect defense.

  13. Potential and limitations of X-Ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey.

    Science.gov (United States)

    Sombke, Andy; Lipke, Elisabeth; Michalik, Peter; Uhl, Gabriele; Harzsch, Steffen

    2015-06-01

    Classical histology or immunohistochemistry combined with fluorescence or confocal laser scanning microscopy are common techniques in arthropod neuroanatomy, and these methods often require time-consuming and difficult dissections and sample preparations. Moreover, these methods are prone to artifacts due to compression and distortion of tissues, which often result in information loss and especially affect the spatial relationships of the examined parts of the nervous system in their natural anatomical context. Noninvasive approaches such as X-ray micro-computed tomography (micro-CT) can overcome such limitations and have been shown to be a valuable tool for understanding and visualizing internal anatomy and structural complexity. Nevertheless, knowledge about the potential of this method for analyzing the anatomy and organization of nervous systems, especially of taxa with smaller body size (e.g., many arthropods), is limited. This study set out to analyze the brains of selected arthropods with micro-CT, and to compare these results with available histological and immunohistochemical data. Specifically, we explored the influence of different sample preparation procedures. Our study shows that micro-CT is highly suitable for analyzing arthropod neuroarchitecture in situ and allows specific neuropils to be distinguished within the brain to extract quantitative data such as neuropil volumes. Moreover, data acquisition is considerably faster compared with many classical histological techniques. Thus, we conclude that micro-CT is highly suitable for targeting neuroanatomy, as it reduces the risk of artifacts and is faster than classical techniques. PMID:25728683

  14. The siren song of a sticky plant: Columbines provision mutualist arthropods by attracting and killing passerby insects.

    Science.gov (United States)

    LoPresti, E F; Pearse, I S; Charles, G K

    2015-11-01

    Many plants provide predatory arthropods with food or shelter. Glandular trichomes entrap insects and may provision predators with insect carrion, though it has not been clear whether this putative benefit functions with natural amounts of carrion, whether plants actively attract insect "tourists," and how common this provisioning system is. We tested the hypothesis that a sticky columbine (Aquilegia eximia: Ranunculaceae) attracts passerby arthropods (a siren song leading them to their demise); that these entrapped arthropods increased predators on the plant; and that these predators reduced damage to the plant. Sticky traps baited with columbine peduncles entrapped more arthropod carrion than unbaited control traps. Predator abundance correlated positively with carrion abundance observationally, and experimental removal of carrion reduced predator numbers. Experimental removal of carrion also increased damage to reproductive structures, likely due to reductions in predator numbers. This indirect defense may be common; we compiled a list of insect-trapping sticky plants that includes over 110 genera in 49 families, suggesting a widespread convergence of this trait, even in non-carnivorous plants. The ubiquity of this trait combined with these experiments suggest that carrion entrapment should be viewed as a common and active process mediated by the plant for indirect defense. PMID:27070006

  15. Confirmation of Romer's Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization.

    Science.gov (United States)

    Ward, Peter; Labandeira, Conrad; Laurin, Michel; Berner, Robert A

    2006-11-01

    The first terrestrialization of species that evolved from previously aquatic taxa was a seminal event in evolutionary history. For vertebrates, one of the most important terrestrialized groups, this event was interrupted by a time interval known as Romer's Gap, for which, until recently, few fossils were known. Here, we argue that geochronologic range data of terrestrial arthropods show a pattern similar to that of vertebrates. Thus, Romer's Gap is real, occupied an interval from 360 million years before present (MYBP) to 345 MYBP, and occurred when environmental conditions were unfavorable for air-breathing, terrestrial animals. These model results suggest that atmospheric oxygen levels were the major driver of successful terrestrialization, and a low-oxygen interval accounts for Romer's Gap. Results also show that terrestrialization among members of arthropod and vertebrate clades occurred in two distinct phases. The first phase was a 65-million-year (My) interval from 425 to 360 MYBP, representing an earlier, prolonged event of complete arthropod terrestrialization of smaller-sized forms (425-385 MYBP) and a subsequent, modest, and briefer event of incipient terrestrialization of larger-sized, aquatic vertebrates (385-360 MYBP). The second phase began at 345 MYBP, characterized by numerous new terrestrial species emerging in both major clades. The first and second terrestrialization phases bracket Romer's Gap, which represents a depauperate spectrum of major arthropod and vertebrate taxa before a major Late Paleozoic colonization of terrestrial habitats.

  16. Population bulk segregant mapping uncovers resistance mutations and the mode of action of a chitin synthesis inhibitor in arthropods

    NARCIS (Netherlands)

    T. Van Leeuwen; P. Demaeght; E.J. Osborne; W. Dermauw; S. Gohlke; R. Nauen; M. Grbić; L. Tirry; H. Merzendorfer; R.M. Clark

    2012-01-01

    Because of its importance to the arthropod exoskeleton, chitin biogenesis is an attractive target for pest control. This point is demonstrated by the economically important benzoylurea compounds that are in wide use as highly specific agents to control insect populations. Nevertheless, the target si

  17. Epidemic situation of arthropod-borne infectious diseases%虫媒传染病流行现状

    Institute of Scientific and Technical Information of China (English)

    李文刚; 赵敏

    2011-01-01

    Arthropod-borne infectious diseases have increasingly threatened human health, and they have approximately accounted for three fourth of emerging infectious diseases in recent years. Environmental change and natural disasters may exacerbate the prevalence of arthropod-borne infectious diseases. Controlling and eliminating insect vectors are important preventive measures. This review focuses on the category, epidemic trends, prevention and control measures of arthropod-borne infectious diseases and the prevalence of emerging arthropod-borne infectious diseases in China.%虫媒传染病对人类社会的危害性逐渐增加,近年新发的传染病有3/4属于虫媒传染病.环境改变和自然灾害可加剧虫媒传染病的流行,其防治重点为控制或消除传播媒介.本文就目前虫媒传染病的种类、流行趋势、防治及我国近年新发虫媒传染病情况做一阐述.

  18. Mineral cycling in soil and litter arthropod food chains. Three-year progress report, November 1, 1980-January 31, 1984

    International Nuclear Information System (INIS)

    This report summarizes our analysis of trophic dynamics in soil fauna including their impact on the decomposition process, investigation of relationships between soil fauna and microflora, development and testing of models describing these processes, and documentation of rates of movement of nutrients along soil arthropod food chains

  19. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Science.gov (United States)

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod

  20. Mormon Cricket Control in Utah's West Desert - Evaluation of Impacts of the Pesticide Diflubenzuron on Nontarget Arthropod Communities

    Science.gov (United States)

    Graham, Tim B.; Brasher, Anne M.D.; Close, Rebecca N.

    2008-01-01

    Grasshopper and Mormon cricket (Orthoptera) populations periodically build to extremely high numbers and can cause significant economic damage in rangelands and agricultural fields of the Great Plains and Intermountain West. A variety of insecticides have been applied to control population outbreaks, with recent efforts directed at minimizing impacts to nontarget fauna in treated ecosystems. A relatively new insecticide for control of Orthoptera is diflubenzuron, which acts to inhibit chitin production, ultimately causing death during the molt following ingestion of the insecticide. All arthropods, including insects, mites, and crustaceans, use chitin to build their exoskeletons and will die if they are unable to produce it during the next molt. Diflubenzuron is not taxon specific - it affects all arthropods that ingest it, except adult insects, which do not molt. Consequently, application of this pesticide has the potential to significantly reduce not only target populations but all terrestrial and aquatic arthropods within treatment zones. Some research has been done in the Great Plains on the impact of diflubenzuron on nontarget arthropods in the context of grasshopper-control programs, but no work has been done in the Great Basin in Mormon cricket-control areas. This study was instigated in anticipation of the need for extensive control of Orthoptera outbreaks in Utah's west desert during 2005, and it was designed to sample terrestrial and aquatic arthropod communities in both treated and untreated zones. Three areas were sampled: Grouse Creek, Ibapah, and Vernon. High mortality of Mormon cricket eggs in the wet, cool spring of 2005 restricted the need to control Mormon crickets to Grouse Creek. Diflubenzuron was applied (aerial reduced agent-area treatment) in May 2005. Terrestrial and aquatic arthropod communities were sampled before and after application of diflubenzuron in the Grouse Creek area of northwestern Utah in May and June of 2005. In July 2005, U

  1. Is evenness altered by fire in natural assemblages of soil arthropods?

    Science.gov (United States)

    Pitzalis, Monica; Bologna, Marco A.; Luiselli, Luca

    2013-05-01

    We studied evenness and species richness in two assemblages of soil arthropods at six contiguous study plots in Mediterranean ecosystems of central Italy, three of these plots being burnt and three unburnt. We analysed these aspects of community structure by diversity-dominance diagrams comparisons made through analysis of covariance on respective slopes and ordinate intercepts. We observed consistent patterns in both Collembola and Oniscidea assemblages, either in burnt and unburnt plots. Evenness did not change among study plots and across habitats, either before or after fire, whereas species' composition was significantly altered by fire. Results from our study implied that evenness and species diversity are clearly affected in a different and independent way by fire. Hence, it is not acceptable to focus on only the evenness when looking at the effects of controlled fires for environmental management reasons.

  2. Impact of invasive Rosa rugosa on the arthropod fauna of Danish yellow dunes

    DEFF Research Database (Denmark)

    Pernille, Elleriis; Pedersen, Morten Lauge; Toft, Søren

    2015-01-01

    monospecific shrubbery rich in large flowers. We predicted faunal responses according to the changes in resource availability and environmental conditions promoted by this particular invasive plant: increased populations of flower-visiting insects and species of the phytophagous and detritivorous guilds......We compared the arthropod fauna of Rosa rugosa patches to the adjacent native yellow dune vegetation by pitfall trapping in the National Park Thy at the Danish North Sea coast. R. rugosa changes the vegetation from a dune grassland (dominated by Ammophila arenaria) poor in flowering plants to a low...... and diversity and increased dominance in the rose patches, due to reductions among xerotherm species. The results indicate that considerable faunistic impoverishment of thermophilic dune specialist species can be expected in the future if R. rugosa is allowed to continue its invasion across the dune habitat....

  3. Arthropod colonization of land--linking molecules and fossils in oribatid mites (Acari, Oribatida).

    Science.gov (United States)

    Schaefer, Ina; Norton, Roy A; Scheu, Stefan; Maraun, Mark

    2010-10-01

    Terrestrial fossils that document the early colonization of land are scarce for >100 my after the Cambrian explosion. This raises the question whether life on land did not exist or just did not fossilize. With a molecular dating technique, we analyzed the origin of terrestrial chelicerate microarthropods (Acari, Oribatida) which have a fossil record since the Middle Devonian that is exceptional among soil animals. Our results suggest that oribatid mites originated in the Precambrian (571+/-37 mya) and that the radiation of basal groups coincides with the gap in the terrestrial fossil record between the Cambrian explosion and the earliest fossilized records of continental ecosystems. Further, they suggest that the colonization of land started via the interstitial, approximately 150 my earlier than the oldest fossils of terrestrial ecosystems. Overall, the results imply that omnivorous and detritivorous arthropods formed a major component in early terrestrial food webs, thereby facilitating the invasion of terrestrial habitats by later colonizers of higher trophic levels. PMID:20420932

  4. Uncovering Trophic Interactions in Arthropod Predators through DNA Shotgun-Sequencing of Gut Contents.

    Science.gov (United States)

    Paula, Débora P; Linard, Benjamin; Crampton-Platt, Alex; Srivathsan, Amrita; Timmermans, Martijn J T N; Sujii, Edison R; Pires, Carmen S S; Souza, Lucas M; Andow, David A; Vogler, Alfried P

    2016-01-01

    Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus), but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks. PMID:27622637

  5. Silicon: Potential to Promote Direct and Indirect Effects on Plant Defense Against Arthropod Pests in Agriculture.

    Science.gov (United States)

    Reynolds, Olivia L; Padula, Matthew P; Zeng, Rensen; Gurr, Geoff M

    2016-01-01

    Silicon has generally not been considered essential for plant growth, although it is well recognized that many plants, particularly Poaceae, have substantial plant tissue concentrations of this element. Recently, however, the International Plant Nutrition Institute [IPNI] (2015), Georgia, USA has listed it as a "beneficial substance". This reflects that numerous studies have now established that silicon may alleviate both biotic and abiotic stress. This paper explores the existing knowledge and recent advances in elucidating the role of silicon in plant defense against biotic stress, particularly against arthropod pests in agriculture and attraction of beneficial insects. Silicon confers resistance to herbivores via two described mechanisms: physical and biochemical/molecular. Until recently, studies have mainly centered on two trophic levels; the herbivore and plant. However, several studies now describe tri-trophic effects involving silicon that operate by attracting predators or parasitoids to plants under herbivore attack. Indeed, it has been demonstrated that silicon-treated, arthropod-attacked plants display increased attractiveness to natural enemies, an effect that was reflected in elevated biological control in the field. The reported relationships between soluble silicon and the jasmonic acid (JA) defense pathway, and JA and herbivore-induced plant volatiles (HIPVs) suggest that soluble silicon may enhance the production of HIPVs. Further, it is feasible that silicon uptake may affect protein expression (or modify proteins structurally) so that they can produce additional, or modify, the HIPV profile of plants. Ultimately, understanding silicon under plant ecological, physiological, biochemical, and molecular contexts will assist in fully elucidating the mechanisms behind silicon and plant response to biotic stress at both the bi- and tri-trophic levels. PMID:27379104

  6. The challenge of developing and utilizing transgenic arthropods in the Caribbean

    International Nuclear Information System (INIS)

    To date transgenic arthropods are not being utilized within the Caribbean to control agricultural pests. Bio-control in the region is largely focused on the control of the Pink mealybug since infestations of this pest in any region can result in restrictions being placed on the export of fresh produce into non-infected countries. Other pests controlled by use of conventional bio-control agents include citrus blackfly, citrus leafminer, sugarcane stemborer, coffee berry borer and coconut whitefly. Control of these economic pests is of great importance as crops such as sugarcane, coffee and citrus are major foreign exchange earners in some countries. Applications for the importation, movement and release of these organisms are done through the Pesticide Control Board of the Ministry of Agriculture. Generally guidelines of the FAO code of conduct for the import and release of bio-control agents are used. It is almost inevitable that with the need to increase productivity in the agri-food sector, combined with the need to reduce negative impacts of agri-chemical use, regional research and development efforts will be focused on developing cost effective means of controlling pests common to the region. Such research and development efforts must combine conventional control with genetic engineering methods. Several countries in the Caribbean region are currently examining their regulatory mechanisms to address the trans-boundary movement and environmental release of genetically modified organisms specifically for agricultural purposes. Although most attention has been focused on crop and food regulations some attention will be placed on developing regulations for the use of transgenic arthropods used to control common economic pests. (author)

  7. Efficacy of Controlled Atmosphere Treatments to Manage Arthropod Pests of Dry-Cured Hams.

    Science.gov (United States)

    Hasan, Md Mahbub; Aikins, Michael J; Schilling, Wes; Phillips, Thomas W

    2016-01-01

    Research here explored the use of controlled atmospheres (CA) for managing arthropod pests that infest dry-cured hams. Experiments were conducted with low oxygen (O₂) achieved with low pressure under a vacuum, high carbon dioxide (CO₂), and ozone (O₃). Results showed that both low O₂ and high CO₂ levels required exposures up to 144 h to kill 100% of all stages of red-legged ham beetle, Necrobia rufipes (De Geer) (Coleoptera: Cleridae) and ham mite Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) at 23 °C. In addition, both low O₂ and high CO₂ had no significant mortality against the ham beetle and ham mites at short exposures ranging from 12 to 48 h. Ham beetles were more tolerant than ham mites to an atmosphere of 75.1% CO₂ and low pressure of 25 mm Hg, which imposed an atmosphere estimated at 0.9% O₂. Both low O₂ and high CO₂ trials indicated that the egg stages of both species were more tolerant than other stages tested, but N. rufipes eggs and pupae were more susceptible than larvae and adults to high concentration ozone treatments. The results indicate that O₃ has potential to control ham beetles and ham mites, particularly at ≈166 ppm in just a 24 h exposure period, but O₃ is known from other work to have poor penetration ability, thus it may be more difficult to apply effectively than low O₂ or high CO₂. would be. CA treatment for arthropod pests of dry-cured hams show promise as components of integrated pest management programs after methyl bromide is no longer available for use. PMID:27598209

  8. Sensitivity and tolerance of Riparian arthropod communities to altered water resources along a drying river.

    Directory of Open Access Journals (Sweden)

    Kevin E McCluney

    Full Text Available BACKGROUND: Rivers around the world are drying with increasing frequency, but little is known about effects on terrestrial animal communities. Previous research along the San Pedro River in southeastern AZ, USA, suggests that changes in the availability of water resources associated with river drying lead to changes in predator abundance, community composition, diversity, and abundance of particular taxa of arthropods, but these observations have not yet been tested manipulatively. METHODS AND RESULTS: In this study, we constructed artificial pools in the stream bed adjacent to a drying section of the San Pedro River and maintained them as the river dried. We compared pitfall trapped arthropods near artificial pools to adjacent control sites where surface waters temporarily dried. Assemblage composition changed differentially at multiple taxonomic levels, resulting in different assemblages at pools than at control sites, with multiple taxa and richness of carabid beetle genera increasing at pools but not at controls that dried. On the other hand, predator biomass, particularly wolf spiders, and diversity of orders and families were consistently higher at control sites that dried. These results suggest an important role for colonization dynamics of pools, as well as the ability of certain taxa, particularly burrowing wolf spiders, to withstand periods of temporary drying. CONCLUSIONS: Overall, we found some agreement between this manipulative study of water resources and a previous analysis of river drying that showed shifts in composition, changes in diversity, and declines in abundance of certain taxa (e.g. carabid beetles. However, colonization dynamics of pools, as well as compensatory strategies of predatory wolf spiders seem to have led to patterns that do not match previous research, with control sites maintaining high diversity, despite drying. Tolerance of river drying by some species may allow persistence of substantial diversity in the

  9. Effect of a botanical acaricide on Ixodes scapularis (Acari: Ixodidae) and nontarget arthropods.

    Science.gov (United States)

    Elias, Susan P; Lubelczyk, Charles B; Rand, Peter W; Staples, Joseph K; St Amand, Theodore W; Stubbs, Constance S; Lacombe, Eleanor H; Smith, Leticia B; Smith, Robert P

    2013-01-01

    We tested the effectiveness of the rosemary oil-based insecticide, Eco-Exempt IC2, to control all stages of Ixodes scapularis (Say) in southern Maine. We selected plots in oak-pine forest where I. scapularis is endemic and recorded the abundance of ticks and nontarget arthropods before and after applications of IC2, bifenthrin (a synthetic pyrethroid), and water (reference treatment). Licensed applicators applied high-pressure spray treatments during the summer nymphal and fall adult seasonal peaks. Both acaricides sprayed during the summer nymphal season reduced nymphal I. scapularis/hour to zero. IC2 was as effective as bifenthrin in controlling nymphs through the rest of the nymphal season and also controlled adult ticks 9 mo postspray compared with 16 mo for bifenthrin, and both acaricides reduced larvae through 14 mo postspray. Both acaricides sprayed during the fall adult season reduced adult I. scapularis/hour to zero; IC2 controlled adult ticks 6 mo postspray compared with 1 yr for bifenthrin. Both fall-applied acaricides controlled nymphs 9 mo postspray and reduced larvae up to 10 mo postspray. Impacts on some nontarget arthropods was assessed. Colleoptera, Hymenoptera, and Collembola declined 1 wk postspray in acaricide-treated plots, and in IC2 plots all numbers rebounded by 20 d postspray. For bees and other flower-visiting insects there were no detectable reductions in nests produced, number emerged from nests, or number of foraging visits to flowering plants in IC2 or bifenthrin plots. IC2 was phytotoxic to the leafy portions of select understory plants that appeared to recover by the next growing season. PMID:23427661

  10. Modern optics in exceptionally preserved eyes of Early Cambrian arthropods from Australia

    Science.gov (United States)

    Lee, Michael S. Y.; Jago, James B.; García-Bellido, Diego C.; Edgecombe, Gregory D.; Gehling, James G.; Paterson, John R.

    2011-06-01

    Despite the status of the eye as an ``organ of extreme perfection'', theory suggests that complex eyes can evolve very rapidly. The fossil record has, until now, been inadequate in providing insight into the early evolution of eyes during the initial radiation of many animal groups known as the Cambrian explosion. This is surprising because Cambrian Burgess-Shale-type deposits are replete with exquisitely preserved animals, especially arthropods, that possess eyes. However, with the exception of biomineralized trilobite eyes, virtually nothing is known about the details of their optical design. Here we report exceptionally preserved fossil eyes from the Early Cambrian (~515 million years ago) Emu Bay Shale of South Australia, revealing that some of the earliest arthropods possessed highly advanced compound eyes, each with over 3,000 large ommatidial lenses and a specialized `bright zone'. These are the oldest non-biomineralized eyes known in such detail, with preservation quality exceeding that found in the Burgess Shale and Chengjiang deposits. Non-biomineralized eyes of similar complexity are otherwise unknown until about 85 million years later. The arrangement and size of the lenses indicate that these eyes belonged to an active predator that was capable of seeing in low light. The eyes are more complex than those known from contemporaneous trilobites and are as advanced as those of many living forms. They provide further evidence that the Cambrian explosion involved rapid innovation in fine-scale anatomy as well as gross morphology, and are consistent with the concept that the development of advanced vision helped to drive this great evolutionary event.

  11. The use of syndromic surveillance to monitor the incidence of arthropod bites requiring healthcare in England, 2000-2013: a retrospective ecological study.

    Science.gov (United States)

    Newitt, S; Elliot, A J; Morbey, R; Durnall, H; Pietzsch, M E; Medlock, J M; Leach, S; Smith, G E

    2016-08-01

    Climate change experts predict the number of nuisance-biting arthropods in England will increase but there is currently no known surveillance system in place to monitor or assess the public health impact of arthropod bites. This retrospective ecological study utilized arthropod bites requiring healthcare from five national real-time syndromic surveillance systems monitoring general practitioner (GP) consultations (in-hours and out-of-hours), emergency department (ED) attendances and telephone calls to remote advice services to determine baseline incidence in England between 2000 and 2013 and to assess the association between arthropod bites and temperature. During summer months (weeks 20-40) we estimated that arthropod bites contribute a weekly median of ~4000 GP consultations, 750 calls to remote advice services, 700 ED and 1300 GP out-of-hours attendances. In all systems, incidence was highest during summer months compared to the rest of the year. Arthropod bites were positively associated with temperature with incidence rate ratios (IRRs) that ranged between systems from 1·03 [95% confidence interval (CI) 1·01-1·06] to 1·14 (95% CI 1·11-1·16). Using syndromic surveillance systems we have established and described baseline incidence of arthropod bites and this can now be monitored routinely in real time to assess the impact of extreme weather events and climate change. PMID:27068133

  12. Arthropod Distribution and Habitat, Published in 2010, 1:24000 (1in=2000ft) scale, GaDNR/Wildlife Resources Division.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Arthropod Distribution and Habitat dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Field Observation information as of 2010....

  13. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies

    OpenAIRE

    Zeeshan Ahmed; Saman Zeeshan; Pauline Fleischmann; Wolfgang Rössler; Thomas Dandekar

    2015-01-01

    Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cat...

  14. Adaptations and Predispositions of Different Middle European Arthropod Taxa (Collembola, Araneae, Chilopoda, Diplopoda) to Flooding and Drought Conditions.

    Science.gov (United States)

    Marx, Michael Thomas; Guhmann, Patrick; Decker, Peter

    2012-01-01

    Floodplain forests and wetlands are amongst the most diverse and species rich habitats on earth. Arthropods are a key group for the high diversity pattern of these landscapes, due to the fact that the change between flooding and drought causes in different life cycles and in a variety of adaptations in the different taxa. The floodplain forests and wetlands of Central Amazonia are well investigated and over the last 50 years many adaptations of several hexapod, myriapod and arachnid orders were described. In contrast to Amazonia the Middle European floodplains were less investigated concerning the adaptations of arthropods to flood and drought conditions. This review summarizes the adaptations and predispositions of springtails, web spiders, millipedes and centipedes to the changeable flood and drought conditions of Middle European floodplain forests and wetlands. Furthermore the impact of regional climate change predictions like increasing aperiodic summer floods and the decrease of typical winter and spring floods are discussed in this article. PMID:26487164

  15. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species

    DEFF Research Database (Denmark)

    Horne, C.R.; Hirst, Andrew G.; Atkinson, D.

    2015-01-01

    of these gradients to date, and find that their direction and magnitude co-vary among 12 arthropod orders (r2 = 0.72). Body size in aquatic species generally reduces with both warming and decreasing latitude, whereas terrestrial species have much reduced and even opposite gradients. These patterns support...... the prediction that oxygen limitation is a major controlling factor in water, but not in air. Furthermore, voltinism explains much of the variation in T-S and L-S patterns in terrestrial but not aquatic species. While body size decreases with warming and with decreasing latitude in multivoltine terrestrial...... arthropods, size increases on average in univoltine species, consistent with predictions from size vs. season-length trade-offs...

  16. Adaptations and Predispositions of Different Middle European Arthropod Taxa (Collembola, Araneae, Chilopoda, Diplopoda to Flooding and Drought Conditions

    Directory of Open Access Journals (Sweden)

    Patrick Guhmann

    2012-10-01

    Full Text Available Floodplain forests and wetlands are amongst the most diverse and species rich habitats on earth. Arthropods are a key group for the high diversity pattern of these landscapes, due to the fact that the change between flooding and drought causes in different life cycles and in a variety of adaptations in the different taxa. The floodplain forests and wetlands of Central Amazonia are well investigated and over the last 50 years many adaptations of several hexapod, myriapod and arachnid orders were described. In contrast to Amazonia the Middle European floodplains were less investigated concerning the adaptations of arthropods to flood and drought conditions. This review summarizes the adaptations and predispositions of springtails, web spiders, millipedes and centipedes to the changeable flood and drought conditions of Middle European floodplain forests and wetlands. Furthermore the impact of regional climate change predictions like increasing aperiodic summer floods and the decrease of typical winter and spring floods are discussed in this article.

  17. Evolutionary origin and genomic organisation of runt-domain containing genes in arthropods

    Directory of Open Access Journals (Sweden)

    Smith James M

    2008-11-01

    Full Text Available Abstract Background Gene clusters, such as the Hox gene cluster, are known to have critical roles in development. In eukaryotes gene clusters arise primarily by tandem gene duplication and divergence. Genes within a cluster are often co-regulated, providing selective pressure to maintain the genome organisation, and this co-regulation can result in temporal or spatial co-linearity of gene expression. It has been previously noted that in Drosophila melanogaster, three of the four runt-domain (RD containing genes are found in a relatively tight cluster on chromosome 1, raising the possibility of a putative functional RD gene cluster in D. melanogaster. Results To investigate the possibility of such a gene cluster, orthologues of the Drosophila melanogaster RD genes were identified in several endopterygotan insects, two exopterygotan insects and two non-insect arthropods. In all insect species four RD genes were identified and orthology was assigned to the Drosophila sequences by phylogenetic analyses. Although four RD genes were found in the crustacean D. pulex, orthology could not be assigned to the insect sequences, indicating independent gene duplications from a single ancestor following the split of the hexapod lineage from the crustacean lineage. In insects, two chromosomal arrangements of these genes was observed; the first a semi-dispersed cluster, such as in Drosophila, where lozenge is separated from the core cluster of three RD genes often by megabases of DNA. The second arrangement was a tight cluster of the four RD genes, such as in Apis mellifera. This genomic organisation, particularly of the three core RD genes, raises the possibility of shared regulatory elements. In situ hybridisation of embryonic expression of the four RD genes in Drosophila melanogaster and the honeybee A. mellifera shows no evidence for either spatial or temporal co-linearity of expression during embryogenesis. Conclusion All fully sequenced insect genomes

  18. Mechanical implications of the arthropod exoskeleton microstructures and the mechanical behavior of the bioinspired composites

    Science.gov (United States)

    Cheng, Liang

    Many biological materials possess complicated hierarchical and multiscale structures, after millions of years of evolution. Most of them also demonstrate outstanding mechanical properties, along with multi-functionality. Arthropod is the most widely distributed and the largest phylum of animals in the planet. Their exoskeletons are well-known for excellent mechanical performance and versatility, and consequently emerge among the best sources to study and uncover the mystery of nature in devising its own material systems. This work first investigated the microstructures of the exoskeletons from selected arthropods, including Homarus Americanus, Callinectes sapidus and Popillia japonica, which exhibit highly complex but interesting hierarchical structures. Exoskeletons are chitin-protein based material systems organized into horizontally well-defined multi-region and multi-layer patterns, with elaborate structures interweaving in the vertical direction. Using SEM (Scanning Electron Microscope) and TEM (Transmission Electron Microscope), the characteristic and distinctive structural features of the exoskeletons were revealed for all the species investigated. In particular, distinct patterns (e.g., stacking sequence of multiple layers) were identified in each region of exoskeletons studied. For example, the "helicoidal structure" is characterized by a stacking sequence in which layers are continuously and unidirectionally rotating a small angle with respect to their adjacent layers. Important mechanical implications of those unique structural features were subsequently evaluated and compared using mechanics-based modeling and analysis, as well as numerical simulation. After the structure-property-function relationship of the investigated biomaterial systems was established, attempts were made to reveal and extract the design strategies employed by nature in designing its own materials and structures. One of the most predominant structural patterns observed in the

  19. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    L LaReesa Wolfenbarger

    Full Text Available BACKGROUND: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt. We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. METHODOLOGY/PRINCIPAL FINDINGS: We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control. CONCLUSIONS/SIGNIFICANCE: Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will

  20. An aglaspidid arthropod from the Upper Ordovician of Morocco with remarks on the affinities and limitations of Aglaspidida

    OpenAIRE

    Roy, P

    2006-01-01

    A new aglaspidid arthropod, Chlupacaris dubia gen. et sp. nov., is described from the Pusgillian (lower Ashgill, Upper Ordovician) Upper Tiouririne Formation near Erfoud, southeastern Morocco. Although disarticulated, careful documenting of the tergites allows a reconstruction of the exoskeleton to be made. Although somewhat trilobite-like in appearance, the lack of facial sutures, a well-defined axis with articulating half-rings and a pygidium clearly prove Chlupacaris gen. nov. is not a tri...

  1. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    Science.gov (United States)

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions. PMID:27158113

  2. The Cultivation of Bt Corn Producing Cry1Ac Toxins Does Not Adversely Affect Non-Target Arthropods

    OpenAIRE

    Yanyan Guo; Yanjie Feng; Yang Ge; Guillaume Tetreau; Xiaowen Chen; Xuehui Dong; Wangpeng Shi

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure o...

  3. Factors Affecting the Abundance of Leaf-Litter Arthropods in Unburned and Thrice-Burned Seasonally-Dry Amazonian Forests

    OpenAIRE

    Silveira, Juliana M.; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-01-01

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 16...

  4. Low cost venom extractor based on Arduino(®) board for electrical venom extraction from arthropods and other small animals.

    Science.gov (United States)

    Besson, Thomas; Debayle, Delphine; Diochot, Sylvie; Salinas, Miguel; Lingueglia, Eric

    2016-08-01

    Extracting venom from small species is usually challenging. We describe here an affordable and versatile electrical venom extractor based on the Arduino(®) Mega 2560 Board, which is designed to extract venom from arthropods and other small animals. The device includes fine tuning of stimulation time and voltage. It was used to collect venom without apparent deleterious effects, and characterized for the first time the venom of Zoropsis spinimana, a common spider in French Mediterranean regions.

  5. Assessing the comparative risk of plant protection products to honey bees, non-target arthropods and non-Apis bees

    OpenAIRE

    Miles, Mark J.; Alix, Anne

    2012-01-01

    Background: In the European Union the placing of pesticides on the market requires as a prerequisite that a risk assessment demonstrates low risks to human health and the environment, among which includes pollinators. Currently risks are evaluated for honey bees and for non-target arthropods (NTA) of cultivated ecosystems. The actual protection of pollinators other than the honey bees, as for example for non-Apis bees, in relation to these risk assessments has recently been questioned and req...

  6. The effects of flooding disturbance on the distribution and behaviour of riparian arthropods along a lowland gravel river

    OpenAIRE

    Lambeets, Kevin

    2009-01-01

    This Ph.D.-thesis aimed to address which environmental factors influence the assemblage structure of mobile, riparian arthropods along spatially structured river banks of a rain-fed, lowland gravel river, the Common Meuse. As riverine ecosystems are basically non-equilibrium, dynamic ecosystems, mainly flow regimes and flood pulse characteristics are expected to shape both the distribution and behaviour of its inhabitants. The river banks along the Common Meuse are (in)frequently disturbed by...

  7. Entrapment Bias of Arthropods in Miocene Amber Revealed by Trapping Experiments in a Tropical Forest in Chiapas, Mexico

    OpenAIRE

    Solórzano Kraemer, Mónica M.; Kraemer, Atahualpa S.; Stebner, Frauke; Bickel, Daniel J.; Rust, Jes

    2015-01-01

    All entomological traps have a capturing bias, and amber, viewed as a trap, is no exception. Thus the fauna trapped in amber does not represent the total existing fauna of the former amber forest, rather the fauna living in and around the resin producing tree. In this paper we compare arthropods from a forest very similar to the reconstruction of the Miocene Mexican amber forest, and determine the bias of different trapping methods, including amber. We also show, using cluster analyses, measu...

  8. Spatial and temporal distribution of litter arthropods in different vegetation covers of Porto Santo Island (Madeira Archipelago, Portugal)

    OpenAIRE

    Antunes, S. C.; Pereira, R.; Sousa, J.P.; Santos, M.C.; F. Gonçalves

    2008-01-01

    The main objective of this study is to assess the soil diversity and temporal and spatial distribution of litter macro-arthropods, captured with pitfall traps, on different vegetation covers from Porto Santo Island (Portugal) with different soil physical and chemical characteristics. The PCA clearly separated sampling areas geographically more exposed to winds and solar radiation, from the others that were not. In this analysis, seasons seemed to have no influence on this distribution. Non-ex...

  9. Behaviour of filariae: morphological and anatomical signatures of their life style within the arthropod and vertebrate hosts

    OpenAIRE

    Bain, Odile; Babayan, Simon

    2003-01-01

    This paper attempts to pinpoint the most original morphological anatomical features of the biology of filariae per se and those which are or could be important for triggering regulatory processes in the arthropod vector and uncontrolled pathogenic processes in the vertebrate hosts. The following stages are considered: the motile egg or newly-hatched larva, the microfilaria, in the lymphatic or blood vessels of its vertebrate host; the larva, its migrations and its intrasyncitial development i...

  10. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico.

    Directory of Open Access Journals (Sweden)

    Mónica M Solórzano Kraemer

    Full Text Available All entomological traps have a capturing bias, and amber, viewed as a trap, is no exception. Thus the fauna trapped in amber does not represent the total existing fauna of the former amber forest, rather the fauna living in and around the resin producing tree. In this paper we compare arthropods from a forest very similar to the reconstruction of the Miocene Mexican amber forest, and determine the bias of different trapping methods, including amber. We also show, using cluster analyses, measurements of the trapped arthropods, and guild distribution, that the amber trap is a complex entomological trap not comparable with a single artificial trap. At the order level, the most similar trap to amber is the sticky trap. However, in the case of Diptera, at the family level, the Malaise trap is also very similar to amber. Amber captured a higher diversity of arthropods than each of the artificial traps, based on our study of Mexican amber from the Middle Miocene, a time of climate optimum, where temperature and humidity were probably higher than in modern Central America. We conclude that the size bias is qualitatively independent of the kind of trap for non-extreme values. We suggest that frequent specimens in amber were not necessarily the most frequent arthropods in the former amber forest. Selected taxa with higher numbers of specimens appear in amber because of their ecology and behavior, usually closely related with a tree-inhabiting life. Finally, changes of diversity from the Middle Miocene to Recent time in Central and South America can be analyzed by comparing the rich amber faunas from Mexico and the Dominican Republic with the fauna trapped using sticky and Malaise traps in Central America.

  11. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    OpenAIRE

    Julieta Benítez-Malvido; Wesley Dáttilo; Ana Paola Martínez-Falcón; César Durán-Barrón; Jorge Valenzuela**; Sara López; Rafael Lombera

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological ...

  12. The seasonal variation of arthropods living on forest soil at different altitudes in fir (Abies nordmanniana subsp. bornmulleriana ecosystem in Bolu-Aladağ

    Directory of Open Access Journals (Sweden)

    Ahmet Duyar

    2016-07-01

    Full Text Available In the forest ecosystems, soil arthropods (Arthropoda, as primary and secondary consumers, have a significant role in litter decay and decomposition processes. The abundance, diversity and community structure of arthropods in soil ecosystem; give rapid response to change of site characteristics. The current study was aimed to determine of seasonal variation of soil arthropods on forest floor at different altitudes in Uludağ Fir (Abies nordmanniana subsp. bornmulleriana Mattf. ecosystem which is an important forest tree species in Turkey. The study was conducted in pure fir stands at 1200-1600 m altitudes (4 elevation gradients in Aladağ, Bolu. The sampling was carried out for each winter, spring, summer and autumn seasons. The samples were collected from forest floor by pitfall traps. Variations of abundance and diversity of arthropods were evaluated according to seasons and altitudes. The distributions in trophic levels and biological diversity of arthropods were also determined. During the study, the maximum abundance of arthropods was 7576 individuals/m² in summer among seasons, and was 7854 individuals/m² at 1200 m altitude. Shannon-Wiener Index (H′ and Species Richness (S′ values were detected in the pitfall traps (H′= 2.22; S′= 22.

  13. A rare lobopod with well-preserved eyes from Chengjiang Lagerst(a)tte and its implications for origin of arthropods

    Institute of Scientific and Technical Information of China (English)

    LIU Jianni; SHU Degan; HAN Jian; ZHANG Zhifei

    2004-01-01

    The origin of arthropods has long been one of the most hotly-debated subjects. Arthropods used to be thought closely related with annelids, but the two groups are now believed to be separated into two major realms within Protostomia on the basis of new molecular data. Although it is generally held by paleontologists that arthropods should be rooted in the early lobopods--a kind of worm-like creature with non-segmented legs, no intermediate forms have been found to bridge them. Here we report an organism with a mixture of characters, including features characteristic of arthropods (e.g., primary cephalization with paired eyes,paired antennae, and preliminary tagmosis) and of lobopods (e.g., worm-like body design, the dorsal spines, and non-segmented limbs or lobe-like legs). The discovery of the rare transitional form may throw new light on the origin of arthropods and suggests that the most primitive arthropods began with paired uniramous legs and the biramous ones evolved later.

  14. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were 1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants.

  15. Uptake of Cadmium, Copper, Lead, and Zinc from Sediments by an Aquatic Macrophyte and by Terrestrial Arthropods in a Freshwater Wetland Ecosystem.

    Science.gov (United States)

    Kim, Heung-Tae; Kim, Jae Geun

    2016-08-01

    The objective of this study was to investigate trace-metal [cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn)] biotransference and biomagnification in terrestrial biota at different trophic levels (primary producer-top predator) of a wetland ecosystem. We investigated whether metal concentrations in the sediment are reflected in terrestrial arthropods and aquatic plants. We sampled the floating-leaved plant Trapa japonica; its species-specific primary consumer, the leaf beetle Galerucella nipponensis; and two predatory arthropods (the water strider Gerris sp. and the wolf spider Arctosa sp.) from three wetlands with different sedimentary metal concentrations. The δ(13)C and δ(15)N signatures in the trophic link between the plants and the leaf beetles supported the specificity of their feeding relationship. The stable isotope signatures indicate that the leaf beetle could be an important link in the trophic transfer of the metals. Transference factors (TFs) were 1 for all biota, and the concentrations were positively correlated with the trophic levels. Thus, there may be Cu and Zn biomagnification in the arthropods. We noted TF 1 among the arthropods. Therefore, Cd is probably not biomagnified between T. japonica and G. nipponensis, but it might be biomagnified in the arthropods. The metal burden in terrestrial arthropods may also be influenced by uptake from the sediment by aquatic plants. PMID:27306449

  16. Arthropods associated with pig carrion in two vegetation profiles of Cerrado in the State of Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Thiago Augusto Rosa

    2011-09-01

    Full Text Available Forensic Entomology research has been concentrated in only a few localities of the "Cerrado" vegetation, the Brazilian Savannah. The present study had, as its objective, an examination of the diversity of arthropod fauna associated with the carcasses of Sus scrofa (Linnaeus in this biome. The study was conducted during the dry and humid periods in two Cerrado vegetation profiles of the State of Minas Gerais. The decaying process was slower and greater quantities of arthropods were collected during the dry period. Insects represented 99% of 161,116 arthropods collected. The majority of these were Diptera (80.2% and Coleoptera (8.8%. The entomofauna belong to 85 families and at least 212 species. Diptera were represented by 31 families and at least 132 species. Sarcophagidae (Diptera and Scarabaeidae (Coleoptera were the richest groups. Oxysarcodexia (Sarcophagidae presented the largest number of attracted species, however none of these species bred in the carcasses. The Coleoptera collected belong to at least 50 species of 21 families. Among these species, Dermestes maculatus and Necrobia rufipes were observed breeding in the carcasses. This study showed species with potential importance for estimating the postmortem interval (PMI, indicative of seasonal and environmental type located.

  17. Different acute toxicity of fipronil baits on invasive Linepithema humile supercolonies and some non-target ground arthropods.

    Science.gov (United States)

    Hayasaka, Daisuke; Kuwayama, Naoki; Takeo, Azuma; Ishida, Takanobu; Mano, Hiroyuki; Inoue, Maki N; Nagai, Takashi; Sánchez-Bayo, Francisco; Goka, Koichi; Sawahata, Takuo

    2015-08-01

    Fipronil is one of the most effective insecticides to control the invasive ant Linepithema humile, but its effectiveness has been assessed without considering the genetic differences among L. humile supercolonies. We hypothesized that the susceptibility of the ant to fipronil might differ among supercolonies. If so, dosage and concentration of fipronil may need to be adjusted for effective eradication of each supercolony. The relative sensitivities of four L. humile supercolonies established in Hyogo (Japan) to fipronil baits were examined based on their acute toxicity (48-h LC(50)). Toxicities of fipronil to seven ground arthropods, including four native ant species, one native isopoda, and two cockroaches were also determined and compared to that of L. humile supercolonies using species sensitivity distributions. Marked differences in susceptibility of fipronil were apparent among the supercolonies (P non-target species (330-2327 μg L(-1)) were in the same range as that of L. humile, and SSDs between the two species groups were not significantly different (t = -1.389, P = 0.180), suggesting that fipronil's insecticidal activity is practically the same for L. humile as for non-target arthropods. Therefore, if the invasive ant is to be controlled using fipronil, this would also affect the local arthropod biodiversity. Only the 'Japanese main supercolony' can be controlled with appropriate bait dosages of fipronil that would have little impact on the other species.

  18. Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: conservation of major features among arthropod classes

    Science.gov (United States)

    Staton, J. L.; Daehler, L. L.; Brown, W. M.; Jacobs, D. K. (Principal Investigator)

    1997-01-01

    Numerous complete mitochondrial DNA sequences have been determined for species within two arthropod groups, insects and crustaceans, but there are none for a third, the chelicerates. Most mitochondrial gene arrangements reported for crustaceans and insect species are identical or nearly identical to that of Drosophila yakuba. Sequences across 36 of the gene boundaries in the mitochondrial DNA (mtDNA) of a representative chelicerate. Limulus polyphemus L., also reveal an arrangement like that of Drosophila yakuba. Only the position of the tRNA(LEU)(UUR) gene differs; in Limulus it is between the genes for tRNA(LEU)(CUN) and ND1. This positioning is also found in onychophorans, mollusks, and annelids, but not in insects and crustaceans, and indicates that tRNA(LEU)(CUN)-tRNA(LEU)(UUR)-ND1 was the ancestral gene arrangement for these groups, as suggested earlier. There are no differences in the relative arrangements of protein-coding and ribosomal RNA genes between Limulus and Drosophila, and none have been observed within arthropods. The high degree of similarity of mitochondrial gene arrangements within arthropods is striking, since some taxa last shared a common ancestor before the Cambrian, and contrasts with the extensive mtDNA rearrangements occasionally observed within some other metazoan phyla (e.g., mollusks and nematodes).

  19. Differences in arthropod communities between island and inland Masson pine forests infested by pine wilt disease in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    WU Hai-wei; LUO You-qing; SHI Juan; YAN Xiao-su; CHEN Wei-ping; JIANG Ping

    2008-01-01

    The invasion of Bursaphelenchus xylophilus (pine wood nematode, PWN) carried by Monochamus alternatus predominately attacks Masson pine (Pinus massoniana) forests and causes great economic losses in China. In this study, we assessed whether the effect of the invasion of PWN is different between island and inland forests. Arthropods were sampled in Fuyang (inland) and Zhoushan (island) counties in Zhejiang Province with sweep netting and light traps at four plots. During two field periods (May to June 2004 and September to October 2005) a total of 21,916 insects, representing 384 species belonging to 99 families and 15 orders,were collected in the sample plots from the island, whereas, from the inland forest a total of 29,262 insects, representing 308 species belonging to 96 families and 13 orders, were found. A hierarchical cluster analysis (HCA) and one-way ANOVA, based on the composition of different arthropod guilds, were performed. The results showed that there was no significant difference in the composition of arthropod communities at the family level between inland and island. But these two habitats had a significant effect on the composition of species, individuals, sub-communities and energy class levels. Statistically, the composition of the two orders, Lepidoptera and Diptera, in the two habitats were significantly different.

  20. Biological control of phytophagous arthropods in the physic nut tree Jatropha curcas L. in Brazil

    Directory of Open Access Journals (Sweden)

    Flávio Lemes Fernandes

    2014-11-01

    Full Text Available Jatropha curcas has a high biofuel oil content, which could replace polluting fuels, and has great potential for large scale monoculture cultivation in the conventional system. We explored the occurrence, spatial distribution and the functional response of the main phytophagous species of this plant and their natural enemies to explore the potential for conservative biological control. We began sampling phytophagous species and predators when J. curcas plants were six months old. The most common species of phytophagous insects were nymphs and adults of Empoasca kraemeri, followed by Frankliniella schultzei and Myzus persicae. Among the predators, Ricoseius loxocheles, Iphiseioides zuluagai, Araneidae, larvae and adults of Psyllobora vigintimaculata and Anthicus sp. were the most frequently encountered. The most common parasitoids were the families Encyrtidae and Braconidae. The highest densities of E. kraemeri and F. schultzei on the edges of the J. curcas crop follow spatial patterns similar to those of their natural enemies I. zuluagai and Anthicus sp. These arthropods can be considered efficient predators of immature stages of E. kraemeri and F. schultzei on J. curcas.

  1. Survey of arthropod assemblages responding to live yeasts in an organic apple orchard

    Directory of Open Access Journals (Sweden)

    Stefanos S Andreadis

    2015-10-01

    Full Text Available Associations between yeasts and insect herbivores are widespread, and these inter-kingdom interactions play a crucial role in yeast and insect ecology and evolution. We report a survey of insect attraction to live yeast from a community ecology perspective. In the summer of 2013 we screened live yeast cultures of Metschnikowia pulcherrima, M. andauensis, M. hawaiiensis, M. lopburiensis, and Cryptococcus tephrensis in an organic apple orchard. More than 3,000 arthropods from 3 classes, 15 orders, and 93 species were trapped; ca. 79% of the trapped specimens were dipterans, of which 43% were hoverflies (Syrphidae, followed by Sarcophagidae, Phoridae, Lauxaniidae, Cecidomyidae, Drosophilidae, and Chironomidae. Traps baited with M. pulcherrima, M. andauensis, and C. tephrensis captured typically 2.4 times more specimens than control traps; traps baited with M. pulcherrima, M. hawaiiensis, M. andauensis, M. lopburiensis and C. tephrensis were more species-rich than unbaited control traps. We conclude that traps baited with live yeasts of the genera Metschnikowia and Cryprococcus are effective attractants and therefore of potential value for pest control. Yeast-based monitoring or attract-and-kill techniques could target pest insects or enhance the assemblage of beneficial insects. Manipulation of insect behavior through live yeast cultures should be further explored for the development of novel plant protection techniques.

  2. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    Directory of Open Access Journals (Sweden)

    Satya Kalluri

    2007-10-01

    Full Text Available Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

  3. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.

    Science.gov (United States)

    Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha

    2007-10-26

    Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed.

  4. Diversity of energy fluxes and interactions between arthropod communities: from soil to cave

    Science.gov (United States)

    Gers, Charles

    1998-06-01

    The vertical distribution of a species may directly indicate the stage of organic matter decomposition in which it takes part. Observations have so far been limited to superficial layers, but studies on the continuum from the litter to underground biotopes, through the recently discovered superficial underground compartment, open new perspectives in the analyses of matter and energy fluxes. Sampling at different levels, from leaf litter to caves, using pitfall traps and sunken tubes, has revealed the existence of exchanges of organic matter and Arthropoda between different layers. The importation of energy from soil to cave follows two routes: passive and active. For the passive route, I measured dissolved substances in water at five levels. For the active route, I evaluated the migrations of insects and other invertebrates (downwards as well as upwards). For the analysis of arthropod communities, using the notion of functional groups, I showed the existence of links between two components, hypogean species, and endogean-epigean species, defining an ecotone along the vertical gradient 'soil to cave'. The superficial underground compartment is not isolated, but is rather a whole food web with epigean and endogean organisms penetrating and interlinking with another web of hypogean origin.

  5. A gene catalogue for post-diapause development of an anhydrobiotic arthropod Artemia franciscana

    Directory of Open Access Journals (Sweden)

    Yu Jun

    2009-01-01

    Full Text Available Abstract Background Diapause is a reversible state of developmental suspension and found among diverse taxa, from plants to animals, including marsupials and some other mammals. Although previous work has accumulated ample data, the molecular mechanism underlying diapause and reactivation from it remain elusive. Results Using Artemia franciscana, a model organism to study the development of post-diapause embryos in Arthropod, we sequenced random clones up to a total of 28,039 ESTs from four cDNA libraries made from dehydrated cysts and three time points after rehydration/reactivation, which were assembled into 8,018 unigene clusters. We identified 324 differentially-expressed genes (DEGs, P Conclusion We found that the first 5-hour period after rehydration is most important for embryonic reactivation of Artemia. As the total number of expressed genes increases significantly, the majority of DEGs were also identified in this period, including a group of water-deficient-induced genes. A group of genes with similar functions have been described in plant seeds; for instance, one of the novel LEA members shares ~70% amino-acid identity with an Arabidopsis EM (embryonic abundant protein, the closest animal relative to plant LEA families identified thus far. Our findings also suggested that not only nutrition, but also mRNAs are produced and stored during cyst formation to support rapid development after reactivation.

  6. Impact of Grassland Reseeding, Herbicide Spraying and Ploughing on Diversity and Abundance of Soil Arthropods.

    Science.gov (United States)

    Liu, Wei; Zhang, Junling; Norris, Stuart L; Murray, Philip J

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: (1) before chemical herbicide spray; (2) after spray but before ploughing; (3) after ploughing but before reseeding; and (4) after 1 year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida) and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favored those predators with a larger body size and individual weight. After 1 year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating. PMID:27555863

  7. [Arthropod-borne parasites of dogs, especially Leishmania, in the Kosovo and Albania].

    Science.gov (United States)

    Lazri, Tune; Duscher, Georg; Edelhofer, Renate; Bytyci, Burim; Gjino, Paskal; Joachim, Anja

    2008-01-01

    Currently no information is available regarding canine arthropod-borne parasites in Albania and the Kosovo, especially the zoonotic protozoan Leishmania infantum. Presumably autochtonous cases of human leishmaniosis have been described for some areas (Kosovo: Ferizaj, Gjakovo, Pec, Malisevo; Albania: Tirana, Durres, Elbasan, Shkodra, Vlore). In order to investigate the infection status of dogs of different origin sera from 272 animals (151 from Albania - Tirana, Kamza and Durres; 121 from the Kosovo - Gjakovo, Ferizaj and Prishtina) were obtained. Corresponding blood samples were available from 36 Albanian stray dogs. Antibody titres were determined by Indirect Immunofluorescence Test against L. infantum and Babesia canis. Antigens of Dirofilaria immitis were determined using the DiroCheck-Test. Blood samples were tested for L. infantum, B. canis, Hepatozoon canis, D. immitis and Dirofilaria repens by polymerase chain reaction (PCR). Specific antibodies against Babesia were found in 7.3% of the animals, against Leishmania in 3.3% and 7.0% were positive for D. immitis antigen. DNA of Babesia, Leishmania or D. repens was detected in 11.1%, respectively. H. canis was found in 52.8% of the blood samples. D. immitis DNA was not detected. Since the Babesia- and Leishmania-PCR-positive animals were all serologically negative it can be assumed that infections were acquired only recently. All Leishmania-positive animals were stray dogs. These animals contribute to the maintenance of Leishmania transmission in endemic areas, and a control of the canine stray population should be considered. PMID:19066774

  8. Winter annual cover crop has only minor effects on major corn arthropod pests.

    Science.gov (United States)

    Davis, Holly N; Currie, Randall S; Klocke, Norman L; Buschman, Lawrent L

    2010-04-01

    We studied the effects of downy brome, Bromus tectorum L., winter cover crop on several corn, Zea mays L., pests in the summer crop after the cover crop. An experiment was conducted that consisted of two trials with two levels of irrigation, two levels of weed control, and two levels of downy brome. Corn was grown three consecutive years after the downy brome grown during the winter. Banks grass mites, Oligonychus pratensis (Banks), twospotted spider mites, Tetranychus urticae Koch, and predatory mites from the genus Neoseiulus were present in downy brome at the beginning of the growing season. They moved into corn, but their numbers did not differ significantly across the treatments. Larval western corn rootworm, Diabrotica virgifera virgifera LeConte, feeding on corn roots was evaluated the second and third years of corn, production. Irrigation and herbicide treatments had no significant effects on rootworm injury levels. In one trial, rootworm injury ratings were significantly greater in treatments with a history of high versus low brome, but this effect was not significant in the other trial. Rootworm injury seemed to be similar across plots with different surface soil moistures. This suggests that the use of a winter cover crop such as downy brome will not have a major negative impact the arthropods studied.

  9. Land use intensification effects in soil arthropod community of an entisol in Pernambuco State, Brazil.

    Science.gov (United States)

    Siqueira, G M; Silva, E F F; Paz-Ferreiro, J

    2014-01-01

    The interactions between soil invertebrates and land use and management are fundamental for soil quality assessment but remain largely unaddressed. The aim of this study was to evaluate the changes in soil arthropod community of an entisol brought about by different land use systems under semiarid climate in Pernambuco State, Brazil. The soil invertebrate community was sampled using pitfall traps from areas with eight vegetation types by the end of the austral winter. The land uses studied were native thorn forest plus seven agricultural fields planted with elephant grass, apple guava, passion fruit, carrot, maize, tomato, and green pepper. Native vegetation was considered as a reference, whereas the agricultural fields showed a range of soil use intensities. The abundance of organisms, the total and average richness, Shannon's diversity index, and the Pielou uniformity index were determined, and all of these were affected by several crop and soil management practices such as residue cover, weed control, and pesticide application. Our study found differences in community assemblages and composition under different land use systems, but no single taxa could be used as indicator of soil use intensity.

  10. Land Use Intensification Effects in Soil Arthropod Community of an Entisol in Pernambuco State, Brazil

    Directory of Open Access Journals (Sweden)

    G. M. Siqueira

    2014-01-01

    Full Text Available The interactions between soil invertebrates and land use and management are fundamental for soil quality assessment but remain largely unaddressed. The aim of this study was to evaluate the changes in soil arthropod community of an entisol brought about by different land use systems under semiarid climate in Pernambuco State, Brazil. The soil invertebrate community was sampled using pitfall traps from areas with eight vegetation types by the end of the austral winter. The land uses studied were native thorn forest plus seven agricultural fields planted with elephant grass, apple guava, passion fruit, carrot, maize, tomato, and green pepper. Native vegetation was considered as a reference, whereas the agricultural fields showed a range of soil use intensities. The abundance of organisms, the total and average richness, Shannon’s diversity index, and the Pielou uniformity index were determined, and all of these were affected by several crop and soil management practices such as residue cover, weed control, and pesticide application. Our study found differences in community assemblages and composition under different land use systems, but no single taxa could be used as indicator of soil use intensity.

  11. Terrestrial arthropods from tree canopies in the Pantanal of Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Marinêz Isaac Marques

    2006-06-01

    Full Text Available Terrestrial arthropods from tree canopies in the Pantanal of Mato Grosso, Brazil. This study represents a contribution to the knowledge of the diversity of arthropods associated to the canopy of Vochysia divergens Pohl (Vochysiaceae. Three trees individuals were sampled during two seasonal periods in this region: a by spraying one tree canopy during high water (February; b by fogging two tree canopies during low water (September/October. The 15,744 arthropods (183.2±38.9 individuals/m² obtained from all three trees (86 m² represented 20 taxonomic orders, 87.1% were Insecta, and 12.9% Arachnida. The dominant groups were Hymenoptera (48.5%; 88.9 individuals/m², mostly Formicidae (44.5%; 81.4 individuals/m², followed by Coleoptera (14.0%; 25.5 individuals/m² and Araneae (10.2%; 19.5 individuals/m², together representing 62.5% of the total catch. Fourteen (70% of all orders occurred on three trees. Dermaptera, Isoptera, Neuroptera, Odonata, Plecoptera and Trichoptera were collected from only one tree. Of the total, 2,197 adult Coleoptera collected (25.5±11.3 individuals/m², 99% were assigned to 32 families and 256 morphospecies. Nitidulidae (17.9% of the total catch; 4.6 individuals/m², Anobiidae (16.7%; 4.3 individuals/m², Curculionidae (13.2%; 3.4 individuals/m² and Meloidae (11.4%; 2.9 individuals/m² dominated. The communitiy of adult Coleoptera on V. divergens indicated a dominance of herbivores (37.8% of the total catch, 127 spp. and predators (35.2%, 82 spp., followed by saprophages (16.2%, 32 spp. and fungivores (10.8%, 15 spp.. The influence of the flood pulse on the community of arboreal arthropods in V. divergens is indicated by the seasonal variation in evaluated groups, causing changes in their structure and composition.Artrópodes terrestres associados a copas de árvores no Pantanal de Mato Grosso, Brasil. Este estudo representa uma contribuição ao conhecimento da diversidade de artrópodes associados à copa de Vochysia

  12. Kinetics of avoidance of simulated solar uv radiation by two arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Barcelo, J.A.; Calkins, J.

    1980-12-01

    There is an increasing likelihood that the solar uv-B radiation (lambda = 280-320 nm) reaching the earth's surface will increase due to depletion of the stratospheric ozone layer. It is recognized that many organisms are insufficiently resistant to solar uv-B to withstand full summer sunlight and thus mechanisms which facilitate avoidance of solar uv-B exposure may have significance for the survival of sensitive species. There are many alternative pathways which would lead to avoidance of solar uv-B. We have investigated the dynamics of biological reactions to simulated solar uv-B radiation in two small arthropods, the two-spotted spider mite Tetranychus urticae Koch and the aquatic copepod Cyclops serrulatus. Observations of positioning and rate of movement were made; a mathematical formalism was developed which assisted in interpretation of the observations. Our observations suggest that, although avoidance would mitigate increased solar uv-B effects, even organisms which specifically reduce their uv-B exposure would encounter additional stress if ozone depletion does occur.

  13. Importance of mosquito “quasispecies” in selecting an epidemic arthropod-borne virus

    Science.gov (United States)

    Vazeille, Marie; Zouache, Karima; Vega-Rúa, Anubis; Thiberge, Jean-Michel; Caro, Valérie; Yébakima, André; Mousson, Laurence; Piorkowski, Géraldine; Dauga, Catherine; Vaney, Marie-Christine; Manni, Mosè; Gasperi, Giuliano; de Lamballerie, Xavier; Failloux, Anna-Bella

    2016-01-01

    Most arthropod-borne viruses (arboviruses), perpetuated by alternation between a vertebrate host and an insect vector, are likely to emerge through minor genetic changes enabling the virus to adapt to new hosts. In the past decade, chikungunya virus (CHIKV; Alphavirus, Togaviridae) has emerged on La Réunion Island following the selection of a unique substitution in the CHIKV E1 envelope glycoprotein (E1-A226V) of an East-Central-South African (ECSA) genotype conferring a higher transmission rate by the mosquito Aedes albopictus. Assumed to have occurred independently on at least four separate occasions, this evolutionary convergence was suspected to be responsible for CHIKV worldwide expansion. However, assumptions on CHIKV emergence were mainly based on viral genetic changes and the role of the mosquito population quasispecies remained unexplored. Here we show that the nature of the vector population is pivotal in selecting the epidemic CHIKV. We demonstrate using microsatellites mosquito genotyping that Ae. albopictus populations are genetically differentiated, contributing to explain their differential ability to select the E1-226V mutation. Aedes albopictus, newly introduced in Congo coinciding with the first CHIKV outbreak, was not able to select the substitution E1-A226V nor to preferentially transmit a CHIKV clone harboring the E1-226V as did Ae. albopictus from La Réunion. PMID:27383735

  14. Seasonal drivers of the epidemiology of arthropod-borne viruses in Australia.

    Directory of Open Access Journals (Sweden)

    Jemma L Geoghegan

    2014-11-01

    Full Text Available Arthropod-borne viruses are a major cause of emerging disease with significant public health and economic impacts. However, the factors that determine their activity and seasonality are not well understood. In Australia, a network of sentinel cattle herds is used to monitor the distribution of several such viruses and to define virus-free regions. Herein, we utilize these serological data to describe the seasonality, and its drivers, of three economically important animal arboviruses: bluetongue virus, Akabane virus and bovine ephemeral fever virus. Through epidemiological time-series analyses of sero-surveillance data of 180 sentinel herds between 2004-2012, we compared seasonal parameters across latitudes, ranging from the tropical north (-10°S to the more temperate south (-40°S. This analysis revealed marked differences in seasonality between distinct geographic regions and climates: seasonality was most pronounced in southern regions and gradually decreased as latitude decreased toward the Equator. Further, we show that both the timing of epidemics and the average number of seroconversions have a strong geographical component, which likely reflect patterns of vector abundance through co-varying climatic factors, especially temperature and rainfall. Notably, despite their differences in biology, including insect vector species, all three viruses exhibited very similar seasonality. By revealing the factors that shape spatial and temporal distributions, our study provides a more complete understanding of arbovirus seasonality that will enable better risk predictions.

  15. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer's Gap

    Science.gov (United States)

    Smithson, Timothy R.; Wood, Stanley P.; Marshall, John E. A.; Clack, Jennifer A.

    2012-03-01

    Devonian tetrapods (limbed vertebrates), known from an increasingly large number of localities, have been shown to be mainly aquatic with many primitive features. In contrast, the post-Devonian record is marked by an Early Mississippian temporal gap ranging from the earliest Carboniferous (Tournaisian and early Viséan) to the mid-Viséan. By the mid-Viséan, tetrapods had become effectively terrestrial as attested by the presence of stem amniotes, developed an essentially modern aspect, and given rise to the crown group. Up to now, only two localities have yielded tetrapod specimens from the Tournaisian stage: one in Scotland with a single articulated skeleton and one in Nova Scotia with isolated bones, many of uncertain identity. We announce a series of discoveries of Tournaisian-age localities in Scotland that have yielded a wealth of new tetrapod and arthropod fossils. These include both terrestrial and aquatic forms and new taxa. We conclude that the gap in the fossil record has been an artifact of collection failure.

  16. Effects of timing of grazing on arthropod communities in semi-natural grasslands.

    Science.gov (United States)

    Lenoir, Lisette; Lennartsson, Tommy

    2010-01-01

    Arthropod communities were investigated in two Swedish semi-natural grasslands, each subject to two types of grazing regime: conventional grazing from May to September (continuous grazing) and traditional late management from mid-July (late grazing). Pitfall traps were used to investigate abundance of carabids, spiders, and ants over the grazing season. Ant abundance was also measured by mapping nest density during three successive years. Small spiders, carabids and ants (Myrmica spp.) were more abundant in continuous grazing than in late grazing while larger spiders, carabids, and ants (Formica spp.) were more abundant in late grazing. The overall abundance of carabids was higher in continuous grazing in the early summer but higher in late grazing in the late summer. The switch of preference from continuous to late grazing coincided with the time for larvae hibernating species replacing adult hibernating. We discuss possible explanations for the observed responses in terms of effects of grazing season on a number of habitat variables for example temperature, food resources, structure of vegetation, litter layer, competition, and disturbance. PMID:20569138

  17. Arthropods Biodiversity in Agricultural Landscapes: Effects of Land Use and Anthropization

    Directory of Open Access Journals (Sweden)

    Marilena Leis

    2007-06-01

    Full Text Available The greatest proportion of Po river plain is occupied by arable lands. Negative effects of modern intensive agriculture on biodiversity can derive from various phenomena operating at different spatial scales, from local to regional ones. If agricultural fields are subjected to periodical disturbances by farming practices, also landscape structure can influence community structure in the fields providing refugial areas or alternative trophic resources. In the same way in perennial habitats, such as strips and meadows, community structure and composition may be linked to both local factors and surrounding land use, that can influence organism persistence and dispersal mechanisms. We studied some natural and anthropized habitats in a wide agricultural area in the province of Ferrara (conventional annual and perennial fields, herbaceous strips, hedgerows and meadows to investigate relationships between arthropod community structure and both local impact factors (habitat type, management and surronding landscape structure and use. Results from uni and multivariate analysis showed a great influence on trophic and taxonomic structure of habitat type and quality.A less complex landscape had only slightly influence on trophic structure, leading to higher abundance and richness of generalist taxa. In conclusion we emphasize the importance of maintaining high-quality habitats to enhance arthopod diversity in agricultural landscapes.

  18. Intraspecific differences in plant chemotype determine the structure of arthropod food webs.

    Science.gov (United States)

    Bálint, János; Zytynska, Sharon E; Salamon, Rozália Veronika; Mehrparvar, Mohsen; Weisser, Wolfgang W; Schmitz, Oswald J; Benedek, Klára; Balog, Adalbert

    2016-03-01

    It is becoming increasingly appreciated that the structure and functioning of ecological food webs are controlled by the nature and level of plant chemicals. It is hypothesized that intraspecific variation in plant chemical resistance, in which individuals of a host-plant population exhibit genetic differences in their chemical contents (called 'plant chemotypes'), may be an important determinant of variation in food web structure and functioning. We evaluated this hypothesis using field assessments and plant chemical assays in the tansy plant Tanacetum vulgare L. (Asteraceae). We examined food webs in which chemotypes of tansy plants are the resource for two specialized aphids, their predators and mutualistic ants. The density of the ant-tended aphid Metopeurum fuscoviride was significantly higher on particular chemotypes (borneol) than others. Clear chemotype preferences between predators were also detected. Aphid specialist seven-spotted ladybird beetles (Coccinella septempunctata) were more often found on camphor plants, while significantly higher numbers of the polyphagous nursery web spider (Pisaura mirabilis) were observed on borneol plants. The analysis of plant chemotype effects on the arthropod community clearly demonstrates a range of possible outcomes between plant-aphid-predator networks. The findings help to offer a deeper insight into how one important factor--plant chemical content--influences which species coexist within a food web on a particular host plant and the nature of their trophic linkages. PMID:26581421

  19. Postfire succession of saproxylic arthropods, with emphasis on coleoptera, in the north boreal forest of Quebec.

    Science.gov (United States)

    Boulanger, Yan; Sirois, Luc

    2007-02-01

    Saproxylic succession in fire-killed black spruce [Picea mariana (Mill.) B.S.P.] coarse woody debris (CWD) in northern Quebec is estimated in this study using a 29-yr postfire chronosequence. Sampling was performed using both trunk-window traps and rearing from snag and log sections. A total of 37,312 arthropods (>220 taxa) were collected from both sampling methods. Two distinct colonization waves were identified. The onset of initial colonization occurs the year of the fire, whereas the second colonization phase begins only once debris falls to the ground. The initial colonization step is influenced by fire-associated species including subcortical predators, xylophages, and ascomycetes feeders. Abundance of most early colonizer species decline with time since fire with the disappearance of subcortical habitat. No noticeable species turnover occurred in snags thereafter. Lack of succession in snags is related to very low decomposition rates for postfire CWD because this substrate is unsuitable for species associated with highly decayed wood. Snag falling triggers fungal growth and concomitant saproxylic succession toward micro- and saprophagous species and increases accessibility for soil-dwelling organisms. Because the position of woody debris greatly influences overall physical properties of dead wood, the fall of burned CWD plays a major role in saproxylic community shift after fire. PMID:17349126

  20. Relationship of coarse woody debris to arthropod Availability for Red-Cockaded Woodpeckers and other bark-foraging birds on loblolly pine boles.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Scott; Hanula, James, L.

    2008-04-01

    Abstract This study determined if short-term removal of coarse woody debris would reduce prey available to red-cockaded woodpeckers (Picoides borealis Vieillot) and other bark-foraging birds at the Savannah River Site in Aiken and Barnwell counties, SC. All coarse woody debris was removed from four 9-ha plots of mature loblolly pine (Pinus taeda L.) in 1997 and again in 1998. We sampled arthropods in coarse woody debris removal and control stands using crawl traps that captured arthropods crawling up tree boles, burlap bands wrapped around trees, and cardboard panels placed on the ground. We captured 27 orders and 172 families of arthropods in crawl traps whereas 20 arthropod orders were observed under burlap bands and cardboard panels. The most abundant insects collected from crawl traps were aphids (Homoptera: Aphididae) and ants (Hymenoptera: Forrnicidae). The greatest biomass was in the wood cockroaches (Blattaria: Blattellidae), caterpillars (Lepidoptera) in the Family Noctuidae, and adult weevils (Coleoptera: Curculionidae). The most common group observed underneath cardboard panels was lsoptera (termites), and the most common taxon under burlap bands was wood cockroaches. Overall, arthropod abundance and biomass captured in crawl traps was similar in control and removal plots. In contrast, we observed more arthropods under burlap bands (mean & SE; 3,021.5 k 348.6, P= 0.03) and cardboard panels (3,537.25 k 432.4, P= 0.04) in plots with coarse woody debris compared with burlap bands (2325 + 171.3) and cardboard panels (2439.75 + 288.9) in plots where coarse woody debris was removed. Regression analyses showed that abundance beneath cardboard panels was positively correlated with abundance beneath burlap bands demonstrating the link between abundance on the ground with that on trees. Our results demonstrate that short-term removal of coarse woody debris from pine forests reduced overall arthropod availability to bark-foraging birds.

  1. The Influence of Urbanization on Arthropod Diversity%城镇化对节肢动物多样性影响的研究进展

    Institute of Scientific and Technical Information of China (English)

    李巧

    2015-01-01

    城镇化是世界范围内导致物种多样性丧失的主要驱动力之一. 从栖息地现状、 节肢动物多样性、 节肢动物的作用等3个方面综述了城市节肢动物栖息地的功能及保护现状, 城镇化对节肢动物多样性的影响, 以及节肢动物群落具有的指示城镇化进程对生物多样性的影响的作用; 指出了当前城市景观生物多样性研究中忽视居民区和商业区的小型绿地节肢动物群落调查的问题, 提出了加强城市内不同生境对节肢动物群落及其多样性影响机制研究的建议.%Urbanization is the main driver of species diversity loss in the worldwide .After reviewing the habitats status, arthropod diversity, and arthropod function, this paper summarized the habitat function and conservation situation of urban arthropod, the effect of urbanization on arthropod diversity, and the indication role of arthropod community indicating the impact of urbanization process on biodiversity .The ignorance of arthropod diversity sur-vey in urban landscape planning of residential areas and downtown area was pointed out, and suggestions on strengthening research in the impact mechanism of different habitats on arthropod community and diversity in urban area were proposed .

  2. Genomic diversification in strains of Rickettsia felis Isolated from different arthropods.

    Science.gov (United States)

    Gillespie, Joseph J; Driscoll, Timothy P; Verhoeve, Victoria I; Utsuki, Tadanobu; Husseneder, Claudia; Chouljenko, Vladimir N; Azad, Abdu F; Macaluso, Kevin R

    2015-01-01

    Rickettsia felis (Alphaproteobacteria: Rickettsiales) is the causative agent of an emerging flea-borne rickettsiosis with worldwide occurrence. Originally described from the cat flea, Ctenocephalides felis, recent reports have identified R. felis from other flea species, as well as other insects and ticks. This diverse host range for R. felis may indicate an underlying genetic variability associated with host-specific strains. Accordingly, to determine a potential genetic basis for host specialization, we sequenced the genome of R. felis str. LSU-Lb, which is an obligate mutualist of the parthenogenic booklouse Liposcelis bostrychophila (Insecta: Psocoptera). We also sequenced the genome of R. felis str. LSU, the second genome sequence for cat flea-associated strains (cf. R. felis str. URRWXCal2), which are presumably facultative parasites of fleas. Phylogenomics analysis revealed R. felis str. LSU-Lb diverged from the flea-associated strains. Unexpectedly, R. felis str. LSU was found to be divergent from R. felis str. URRWXCal2, despite sharing similar hosts. Although all three R. felis genomes contain the pRF plasmid, R. felis str. LSU-Lb carries an additional unique plasmid, pLbaR (plasmid of L. bostrychophila associated Rickettsia), nearly half of which encodes a unique 23-gene integrative conjugative element. Remarkably, pLbaR also encodes a repeats-in-toxin-like type I secretion system and associated toxin, heretofore unknown from other Rickettsiales genomes, which likely originated from lateral gene transfer with another obligate intracellular parasite of arthropods, Cardinium (Bacteroidetes). Collectively, our study reveals unexpected genomic diversity across three R. felis strains and identifies several diversifying factors that differentiate facultative parasites of fleas from obligate mutualists of booklice. PMID:25477419

  3. Irradiation as a quarantine treatment of agricultural commodities against arthropod pests

    International Nuclear Information System (INIS)

    The purpose of quarantine treatments is to eliminate, as far as possible, the risks of introduction or establishment of exotic pests in countries or regions where they do not already occur. Treatments may be applied to host commodities traded commercially or carried by travellers. Ionizing radiation is very effective when used as a quarantine treatment to disinfest fresh, dried or processed fruits, grains and other plant materials. It is highly effective in killing or inactivating arthropod pests, leaves no residues, and at the low doses required it can be used on most commodities without affecting the quality. The most important single pest group of quarantine importance internationally is arguably fruit flies in fresh fruits and vegetables. More than thirty species of fruit flies are recognized as serious quarantine pests. Dose-mortality studies with irradiation have shown that doses of 75-150 Gy prevent adult emergence. At two Task Force Meetings on Irradiation as a Quarantine Treatment convened by the International Consultative Group on Food Irradiation, a generic dose of 150 Gy was recommended against any fruit, based on extensive research data for these pests. Most fruits are relatively unaffected by quarantine disinfestation treatments of 100-300 Gy but some, for example avocado, appear to be intolerant. Other pests of quarantine importance for which irradiation is an appropriate disinfestation treatment include certain moths (Lepidoptera), beetles (Coleoptera), bugs (Homoptera), flies (Diptera), thrips (Thysanoptera) and mites (Acarina). The Task Force Group also recommended that a generic treatment of 300 Gy, based on the inability to perpetuate the species, would be appropriate for any pest other than fruit fly. This was derived from extensive research on the codling moth, Cydia pomonella (L.), and the mango seed weevil, Sternochaetus mangiferae (Fabricius), with supporting results on eleven other pests from six orders. (author). 54 refs, 2 tabs

  4. Cover cropping alters the diet of arthropods in a banana plantation: a metabarcoding approach.

    Directory of Open Access Journals (Sweden)

    Gregory Mollot

    Full Text Available Plant diversification using cover crops may promote natural regulation of agricultural pests by supporting alternative prey that enable the increase of arthropod predator densities. However, the changes in the specific composition of predator diet induced by cover cropping are poorly understood. Here, we hypothesized that the cover crop can significantly alter the diet of predators in agroecosystems. The cover crop Brachiaria decumbens is increasingly used in banana plantations to control weeds and improve physical soil properties. In this paper, we used a DNA metabarcoding approach for the molecular analysis of the gut contents of predators (based on mini-COI to identify 1 the DNA sequences of their prey, 2 the predators of Cosmopolites sordidus (a major pest of banana crops, and 3 the difference in the specific composition of predator diets between a bare soil plot (BSP and a cover cropped plot (CCP in a banana plantation. The earwig Euborellia caraibea, the carpenter ant Camponotus sexguttatus, and the fire ant Solenopsis geminata were found to contain C. sordidus DNA at frequencies ranging from 1 to 7%. While the frequencies of predators positive for C. sordidus DNA did not significantly differ between BSP and CCP, the frequency at which E. caraibea was positive for Diptera was 26% in BSP and 80% in CCP; the frequency at which C. sexguttatus was positive for Jalysus spinosus was 14% in BSP and 0% in CCP; and the frequency at which S. geminata was positive for Polytus mellerborgi was 21% in BSP and 3% in CCP. E. caraibea, C. sexguttatus and S. geminata were identified as possible biological agents for the regulation of C. sordidus. The detection of the diet changes of these predators when a cover crop is planted indicates the possible negative effects on pest regulation if predators switch to forage on alternative prey.

  5. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

  6. Tomato spotted wilt virus benefits a non-vector arthropod, Tetranychus urticae, by modulating different plant responses in tomato.

    Directory of Open Access Journals (Sweden)

    Punya Nachappa

    Full Text Available The interaction between plant viruses and non-vector arthropod herbivores is poorly understood. However, there is accumulating evidence that plant viruses can impact fitness of non-vector herbivores. In this study, we used oligonucleotide microarrays, phytohormone, and total free amino acid analyses to characterize the molecular mechanisms underlying the interaction between Tomato spotted wilt virus (TSWV and a non-vector arthropod, twospotted spider mite (Tetranychusurticae, on tomato plants, Solanumlycopersicum. Twospotted spider mites showed increased preference for and fecundity on TSWV-infected plants compared to mock-inoculated plants. Transcriptome profiles of TSWV-infected plants indicated significant up-regulation of salicylic acid (SA-related genes, but no apparent down-regulation of jasmonic acid (JA-related genes which could potentially confer induced resistance against TSM. This suggests that there was no antagonistic crosstalk between the signaling pathways to influence the interaction between TSWV and spider mites. In fact, SA- and JA-related genes were up-regulated when plants were challenged with both TSWV and the herbivore. TSWV infection resulted in down-regulation of cell wall-related genes and photosynthesis-associated genes, which may contribute to host plant susceptibility. There was a three-fold increase in total free amino acid content in virus-infected plants compared to mock-inoculated plants. Total free amino acid content is critical for arthropod nutrition and may, in part, explain the apparent positive indirect effect of TSWV on spider mites. Taken together, these data suggest that the mechanism(s of increased host suitability of TSWV-infected plants to non-vector herbivores is complex and likely involves several plant biochemical processes.

  7. The complete mitochondrial genome of the sea spider Achelia bituberculata (Pycnogonida, Ammotheidae: arthropod ground pattern of gene arrangement

    Directory of Open Access Journals (Sweden)

    Lee Yong-Seok

    2007-10-01

    Full Text Available Abstract Background The phylogenetic position of pycnogonids is a long-standing and controversial issue in arthropod phylogeny. This controversy has recently been rekindled by differences in the conclusions based on neuroanatomical data concerning the chelifore and the patterns of Hox expression. The mitochondrial genome of a sea spider, Nymphon gracile (Pycnogonida, Nymphonidae, was recently reported in an attempt to address this issue. However, N. gracile appears to be a long-branch taxon on the phylogenetic tree and exhibits a number of peculiar features, such as 10 tRNA translocations and even an inversion of several protein-coding genes. Sequences of other pycnogonid mitochondrial genomes are needed if the position of pycnogonids is to be elucidated on this basis. Results The complete mitochondrial genome (15,474 bp of a sea spider (Achelia bituberculata belonging to the family Ammotheidae, which combines a number of anatomical features considered plesiomorphic with respect to other pycnogonids, was sequenced and characterized. The genome organization shows the features typical of most metazoan animal genomes (37 tightly-packed genes. The overall gene arrangement is completely identical to the arthropod ground pattern, with one exception: the position of the trnQ gene between the rrnS gene and the control region. Maximum likelihood and Bayesian inference trees inferred from the amino acid sequences of mitochondrial protein-coding genes consistently indicate that the pycnogonids (A. bituberculata and N. gracile may be closely related to the clade of Acari and Araneae. Conclusion The complete mitochondrial genome sequence of A. bituberculata (Family Ammotheidae and the previously-reported partial sequence of Endeis spinosa show the gene arrangement patterns typical of arthropods (Limulus-like, but they differ markedly from that of N. gracile. Phylogenetic analyses based on mitochondrial protein-coding genes showed that Pycnogonida may be

  8. [Effects of management level on community characteristics of arthropod and on population numbers of target insect pest and its natural enemies in graperies].

    Science.gov (United States)

    Li, Changgen; Zou, Yunding; Bi, Shoudong; Wu, Houchang; Chen, Xiangyang; Li, Fen; Zhou, Xiazhi; Lin, Xuefei

    2005-12-01

    In this paper, an investigation on the grape tree and ground vegetation was conducted in two graperies with intensive and extensive management, aimed to study the effects of different management level on the community characteristics of arthropod, and the population numbers of target pest Halticinae chalybca (Illiger) and its natural enemies Erigonidium gram inicolum and Tetragnathidae. The results showed that between the two graperies, the individual number, concentration value, evenness, and Hill diversity index of arthropod community had no significant difference, but its species number and abundance was significantly different (P number of arthropod on the grape trees in intensive management grapery was not significantly different from that in extensive management grapery, while on the ground vegetation, it was significantly different (P numbers of H. chalybca and its natural enemies on the trees and ground vegetations of the two graperies.

  9. Effects of land-use intensity on arthropod species abundance distributions in grasslands.

    Science.gov (United States)

    Simons, Nadja K; Gossner, Martin M; Lewinsohn, Thomas M; Lange, Markus; Türke, Manfred; Weisser, Wolfgang W

    2015-01-01

    As a rule, communities consist of few abundant and many rare species, which is reflected in the characteristic shape of species abundance distributions (SADs). The processes that shape these SADs have been a longstanding problem for ecological research. Although many studies found strong negative effects of increasing land-use intensity on diversity, few reports consider land-use effects on SADs. Arthropods (insects and spiders) were sampled on 142 grassland plots in three regions in Germany, which were managed with different modes (mowing, fertilization and/or grazing) and intensities of land use. We analysed the effect of land use on three parameters characterizing the shape of SADs: abundance decay rate (the steepness of the rank abundance curve, represented by the niche-preemption model parameter), dominance (Berger-Parker dominance) and rarity (Fisher's alpha). Furthermore, we tested the core-satellite hypothesis by comparing the species' rank within the SAD to their distribution over the land-use gradient. When data on Araneae, Cicadina, Coleoptera, Heteroptera and Orthoptera were combined, abundance decay rate increased with combined land-use intensity (including all modes). Among the single land-use modes, increasing fertilization and grazing intensity increased the decay rate of all taxa, while increasing mowing frequency significantly affected the decay rate only in interaction with fertilization. Results of single taxa differed in their details, but all significant interaction effects included fertilization intensity. Dominance generally increased with increasing fertilization and rarity decreased with increasing grazing or mowing intensity, despite small differences among taxa and regions. The majority of species found on <10% of the plots per region were generally rare (<10 individuals), which is in accordance with the core-satellite hypothesis. We found significant differences in the rarity and dominance of species between plots of low and high

  10. 热带次生林火烧前后土壤节肢动物群落组成和分布特征的变化%Change on the Comosition and Distribution of Soil Arthropod Community before and afier Burning in the Secondary Forest of Xishuangbanna

    Institute of Scientific and Technical Information of China (English)

    杨效东; 唐勇; 唐建纬

    2001-01-01

    The effects of controlled burning of slash-and-burn agriculture on soil arthropod community of a 7-year tropical secondary forest in Xishuangbanna were studied.The results showed that groups of soil arthropod decreased 28.57%,and individuals of soil arthropod reduced 72.7% after burning.The composition of soil arthropod communities changed as well.The proportion of individuals of Acari,Collembola,Protura in the 0~15cm soil layer and Hymenoptera (ant) in burned leftover increased,and became dominant groups of soil arthropod communities after firing.The vertical structure of soil arthropod communities in secondary forest was disordered.There were much more groups and individuals of soil arthropod in soil bottom than those in soil surface after fire.The diversity of soil arthropod communities decreased after fire.

  11. Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants.

    Science.gov (United States)

    Romeis, Jörg; Meissle, Michael; Alvarez-Alfageme, Fernando; Bigler, Franz; Bohan, David A; Devos, Yann; Malone, Louise A; Pons, Xavier; Rauschen, Stefan

    2014-12-01

    Worldwide, plants obtained through genetic modification are subject to a risk analysis and regulatory approval before they can enter the market. An area of concern addressed in environmental risk assessments is the potential of genetically modified (GM) plants to adversely affect non-target arthropods and the valued ecosystem services they provide. Environmental risk assessments are conducted case-by-case for each GM plant taking into account the plant species, its trait(s), the receiving environments into which the GM plant is to be released and its intended uses, and the combination of these characteristics. To facilitate the non-target risk assessment of GM plants, information on arthropods found in relevant agro-ecosystems in Europe has been compiled in a publicly available database of bio-ecological information during a project commissioned by the European Food Safety Authority (EFSA). Using different hypothetical GM maize case studies, we demonstrate how the information contained in the database can assist in identifying valued species that may be at risk and in selecting suitable species for laboratory testing, higher-tier studies, as well as post-market environmental monitoring. PMID:24633599

  12. The tortoise or the hare? Impacts of within-host dynamics on transmission success of arthropod-borne viruses.

    Science.gov (United States)

    Althouse, Benjamin M; Hanley, Kathryn A

    2015-08-19

    Arthropod-borne viruses (arboviruses) are maintained in a cycle of alternating transmission between vertebrate hosts and arthropod vectors. Arboviruses possess RNA genomes capable of rapid diversification and adaptation, and the between-host trade-offs inherent to host alternation impose well-documented constraints on arbovirus evolution. Here, we investigate the less well-studied within-host trade-offs that shape arbovirus replication dynamics and transmission. Arboviruses generally establish lifelong infection in vectors but transient infection of variable magnitude (i.e. peak virus concentration) and duration in vertebrate hosts. In the majority of experimental infections of vertebrate hosts, both the magnitude and duration of arbovirus replication depended upon the dose of virus administered, with increasing dose resulting in greater magnitude but shorter duration of viraemia. This pattern suggests that the vertebrate immune response imposes a trade-off between the height and breadth of the virus replication curve. To investigate the impact of this trade-off on transmission, we used a simple modelling approach to contrast the effect of 'tortoise' (low magnitude, long duration viraemia) and 'hare' (high magnitude, short duration viraemia) arbovirus replication strategies on transmission. This model revealed that, counter to previous theory, arboviruses that adopt a tortoise strategy have higher rates of persistence in both host and vector populations.

  13. Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants.

    Science.gov (United States)

    Romeis, Jörg; Meissle, Michael; Alvarez-Alfageme, Fernando; Bigler, Franz; Bohan, David A; Devos, Yann; Malone, Louise A; Pons, Xavier; Rauschen, Stefan

    2014-12-01

    Worldwide, plants obtained through genetic modification are subject to a risk analysis and regulatory approval before they can enter the market. An area of concern addressed in environmental risk assessments is the potential of genetically modified (GM) plants to adversely affect non-target arthropods and the valued ecosystem services they provide. Environmental risk assessments are conducted case-by-case for each GM plant taking into account the plant species, its trait(s), the receiving environments into which the GM plant is to be released and its intended uses, and the combination of these characteristics. To facilitate the non-target risk assessment of GM plants, information on arthropods found in relevant agro-ecosystems in Europe has been compiled in a publicly available database of bio-ecological information during a project commissioned by the European Food Safety Authority (EFSA). Using different hypothetical GM maize case studies, we demonstrate how the information contained in the database can assist in identifying valued species that may be at risk and in selecting suitable species for laboratory testing, higher-tier studies, as well as post-market environmental monitoring.

  14. Impact of insect-resistant transgenic rice on target insect pests and non-target arthropods in China

    Institute of Scientific and Technical Information of China (English)

    MAO CHEN; JIAN-ZHOU ZHAO; GONG-YIN YE; QIANG FU; ANTHONY M.SHELTON

    2006-01-01

    Progress on the research and development of insect-resistant transgenic rice,especially expressing insecticidal proteins from Bacillus thuringiensis (Bt),in China has been rapid in recent years. A number of insect-resistant transgenic rice lines/varieties have passed restricted and enlarged field testing,and several have been approved for productive testing since 2002 in China,although none was approved for commercial use until 2006.Extensive laboratory and field trials have been conducted for evaluation of the efficiency of transgenic rice on target lepidoteran pests and potential ecological risks on non-target arthropods. The efficacy of a number of transgenic rice lines currently tested in China was excellent for control of the major target insect pests,the rice stem borers (Chilo suppressalis,Scirpophaga incertulas,Sesamia inferens) and leaffolder (Cnaphalocrocis medinalis),and was better than most insecticides extensively used by millions of farmers at present in China.No significantly negative or unintended effects of transgenic rice on non-target arthropods were found compared with non-transgenic rice. In contrast,most of the current insecticides used for the control of rice stem borers and leaffolders proved harmful to natural enemies,and some insecticides may directly induce resurgence of rice planthoppers. Studies for developing a proactive insect resistance management of transgenic rice in the future are discussed to ensure the sustainable use of transgenic rice.

  15. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Science.gov (United States)

    Guo, Yanyan; Feng, Yanjie; Ge, Yang; Tetreau, Guillaume; Chen, Xiaowen; Dong, Xuehui; Shi, Wangpeng

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  16. The role of wrack deposits for supralittoral arthropods: An example using Atlantic sandy beaches of Brazil and Spain

    Science.gov (United States)

    Ruiz-Delgado, Mª Carmen; Vieira, Jenyffer Vierheller; Veloso, Valéria Gomes; Reyes-Martínez, Mª José; Sallorenzo, Ilana Azevedo; Borzone, Carlos Alberto; Sánchez-Moyano, Juan Emilio; García García, Francisco José

    2014-01-01

    Wrack deposits, as accumulated detritus, are a common feature on beaches worldwide and significantly contribute to the shaping of supralittoral arthropod communities. The composition and relative age of upper-shore deposits influence the structure and taxonomic composition of invertebrate assemblages. Moreover, these influences may vary geographically, depending on the locally prevailing climatic and hydrodynamic conditions. The amount and composition of wrack deposits as well as community attributes (total density, species richness and diversity) were determined on sandy beaches in three distinct geographical regions: South (Paraná) and Southeast (Rio de Janeiro) of Brazil and SW Spain. These parameters were compared between upper and lower wrack bands on each beach and between beaches in each region. Wrack deposits were composed of mangrove propagules in the Paraná region, by macrophytes, dead invertebrates and macroalgae in Rio de Janeiro region and by seagrass and macroalgae in the SW Spain region. In all regions, the total amount of stranded wrack differed between beaches, but the amount accumulated between bands (i.e upper and lower band) was similar between beaches. Wrack bands shaped the density of common taxa (Talitridae, Tenebrionidae, and Staphylinidae), with consequences for community structures. This result could be due to their preference for specific microhabitats and food sources, which might differ according to the relative age of the wrack deposits. The results suggest that, independent of wrack composition, the distribution of wrack deposits in bands and their relative ages seems to play a role on the structure of supralittoral arthropod assemblages.

  17. Methodological considerations in discriminating olive-orchard management type using olive-canopy arthropod fauna at the level of order

    Directory of Open Access Journals (Sweden)

    Carlos Jerez-Valle

    2015-12-01

    Full Text Available The cultivation of the olive tree (Olea europaea L. has great importance in the entire Mediterranean basin, so that the implementation of organic practices in their management directly affects the sustainability of the agricultural system. Bioindication with arthropods can help to detect the different agricultural practices. In this work, we analyse the most appropriate methodology for discriminating between management using arthropods at the taxonomic level of order, with the novelty of taking into account the weather conditions to select the sampling dates. Between 12 and 15 sampling stations (depending on the year were selected from olive orchards belonging to organic, conventional non-tillage, and strict conventional management, being sampled by beating the canopy fortnightly in the spring-summer period of 2007, 2008 and 2009. Organic management was more abundant and richer than the rest for the three years. Most groups with significant differences in terms of relative abundance were more abundant in organic orchard, except Neuroptera. Finally, different discriminant methods were evaluated (Linear Discriminant Analysis, Multiple Discriminant Analysis, and Support Vector Machine with several different data sets. The discriminant analysis with interannual variability reached 97.9% accuracy in differentiating between organic and non-organic management using the LDA method, considering the taxa with significant differences from the abundance, excluding pests, and using samples with more uniform and stable weather patterns (late summer.

  18. Allatostatins C, double C and triple C, the result of a local gene triplication in an ancestral arthropod.

    Science.gov (United States)

    Veenstra, Jan A

    2016-05-01

    Allatostatin C is the arthropod homolog of vertebrate somatostatin. The gene went through a local gene triplification leading to the existence of three genes coding such peptides, allatostatins C, CC and CCC. All three genes are still present in several chelicerates, such as the horseshoe crab Limulus polyphemus, several spiders and the scorpion Mesobuthus martensii, the myriapod Strigamia maritima, as well as at least two insect species, Locusta migratoria and Athalia rosae, a sawfly. All three peptides have well conserved primary structures and peptides can easily be classified as either allatostatin C, CC or CCC. In most insect species only two of the genes have been preserved. In many species, these are CC and CCC, but in Diptera, Lepidoptera and Coleoptera it are allatostatins C and CC that are still present. In some arthropod species two or even all three genes can still be found closely associated in the genome and are present on the same scaffold showing that a local amplification was at the origin of these genes. PMID:27102937

  19. Simulating small-scale climate change effects-lessons from a short-term field manipulation experiment on grassland arthropods.

    Science.gov (United States)

    Buchholz, Sascha; Rolfsmeyer, Dorothee; Schirmel, Jens

    2013-10-01

    Climate change is expected to cause major consequences on biodiversity. Understanding species-specific reactions, such as species shifts, species declines, and changes in population dynamics is a key issue to quantify large-scale impacts of climate change on biotic communities. As it is often impossible or at least impracticable to conduct large-scale experiments on biotic responses to climate change, studies at a smaller scale may be a useful alternative. In our study, we therefore tested responses of grassland arthropods (carabid beetles, spiders, grasshoppers) to simulated climate change in terms of species activity densities and diversity. We conducted a controlled field experiment by changing water and microclimatic conditions at a small scale (16 m(2) ). Roof constructions were used to increase drought-like conditions, whereas water supply was enhanced by irrigation. In all, 2 038 carabid beetles (36 species), 4 893 spiders (65 species), and 303 Orthoptera (4 species) were caught using pitfall traps from May to August, 2010. During our experiment, we created an artificial small-scale climate change; and statistics revealed that these changes had short-term effects on the total number of individuals and Simpson diversity of the studied arthropod groups. Moreover, our results showed that certain species might react very quickly to climate change in terms of activity densities, which in turn might influence diversity due to shifts in abundance patterns. Finally, we devised methodological improvements that may further enhance the validity of future studies. PMID:23956202

  20. Assessment of Potential Risks of Dietary RNAi to a Soil Micro-arthropod, Sinella curviseta Brook (Collembola: Entomobryidae).

    Science.gov (United States)

    Pan, Huipeng; Xu, Linghua; Noland, Jeffrey E; Li, Hu; Siegfried, Blair D; Zhou, Xuguo

    2016-01-01

    RNAi-based genetically engineered (GE) crops for the management of insect pests are likely to be commercialized by the end of this decade. Without a workable framework for conducting the ecological risk assessment (ERA) and a standardized ERA protocol, however, the utility of RNAi transgenic crops in pest management remains uncertain. The overall goal of this study is to assess the risks of RNAi-based GE crops on a non-target soil micro-arthropod, Sinella curviseta, which could be exposed to plant-protected dsRNAs deposited in crop residues. Based on the preliminary research, we hypothesized that insecticidal dsRNAs targeting at the western corn rootworm, Diabrotica virgifera virgifera, a billion-dollar insect pest, has no adverse impacts on S. curviseta, a soil decomposer. Following a tiered approach, we tested this risk hypothesis using a well-designed dietary RNAi toxicity assay. To create the worst-case scenario, the full-length cDNA of v-ATPase subunit A from S. curviseta were cloned and a 400 bp fragment representing the highest sequence similarity between target pest and non-target arthropods was selected as the template to synthesize insecticidal dsRNAs. Specifically, 10-days-old S. curviseta larvae were subjected to artificial diets containing v-ATPase A dsRNAs from both D. v. virgifera (dsDVV) and S. curviseta (dsSC), respectively, a dsRNA control, β-glucuronidase, from plant (dsGUS), and a vehicle control, H2O. The endpoint measurements included gene expression profiles, survival, and life history traits, such as developmental time, fecundity, hatching rate, and body length. Although, S. curviseta larvae developed significantly faster under the treatments of dsDVV and dsSC than the vehicle control, the combined results from both temporal RNAi effect study and dietary RNAi toxicity assay support the risk hypothesis, suggesting that the impacts of ingested arthropod-active dsRNAs on this representative soil decomposer are negligible. PMID:27471512

  1. Assessment of potential risks of dietary RNAi to a soil micro-arthropod, Sinella curviseta Brook (Collembola: Entomobryidae

    Directory of Open Access Journals (Sweden)

    Huipeng Pan

    2016-07-01

    Full Text Available RNAi-based genetically engineered (GE crops for the management of insect pests are likely to be commercialized by the end of this decade. Without a workable framework for conducting the ecological risk assessment (ERA and a standardized ERA protocol, however, the utility of RNAi transgenic crops in pest management remains uncertain. The overall goal of this study is to assess the risks of RNAi-based GE crops on a non-target soil micro-arthropod, Sinella curviseta, which could be exposed to plant-protected dsRNAs deposited in crop residues. Based on the preliminary research, we hypothesized that insecticidal dsRNAs targeting at the western corn rootworm, Diabrotica virgifera virgifera, a billion-dollar insect pest, has no adverse impacts on S. curviseta, a soil decomposer. Following a tiered approach, we tested this risk hypothesis using a well-designed dietary RNAi toxicity assay. To create the worst-case scenario, the full-length cDNA of v-ATPase subunit A from S. curviseta were cloned and a 400 bp fragment representing the highest sequence similarity between target pest and non-target arthropods was selected as the template to synthesize insecticidal dsRNAs. Specifically, 10-day old S. curviseta larvae were subjected to artificial diets containing v-ATPase A dsRNAs from both D. v. virgifera (dsDVV and S. curviseta (dsSC, respectively, a dsRNA control, β-glucuronidase, from plant (dsGUS, and a vehicle control, H2O. The endpoint measurements included gene expression profiles, survival, and life history traits, such as developmental time, fecundity, hatching rate, and body length. Although S. curviseta larvae developed significantly faster under the treatments of dsDVV and dsSC than the vehicle control, the combined results from both temporal RNAi effect study and dietary RNAi toxicity assay support the risk hypothesis, suggesting that the impacts of ingested arthropod-active dsRNAs on this representative soil decomposer are negligible.

  2. Assessment of Potential Risks of Dietary RNAi to a Soil Micro-arthropod, Sinella curviseta Brook (Collembola: Entomobryidae)

    Science.gov (United States)

    Pan, Huipeng; Xu, Linghua; Noland, Jeffrey E.; Li, Hu; Siegfried, Blair D.; Zhou, Xuguo

    2016-01-01

    RNAi-based genetically engineered (GE) crops for the management of insect pests are likely to be commercialized by the end of this decade. Without a workable framework for conducting the ecological risk assessment (ERA) and a standardized ERA protocol, however, the utility of RNAi transgenic crops in pest management remains uncertain. The overall goal of this study is to assess the risks of RNAi-based GE crops on a non-target soil micro-arthropod, Sinella curviseta, which could be exposed to plant-protected dsRNAs deposited in crop residues. Based on the preliminary research, we hypothesized that insecticidal dsRNAs targeting at the western corn rootworm, Diabrotica virgifera virgifera, a billion-dollar insect pest, has no adverse impacts on S. curviseta, a soil decomposer. Following a tiered approach, we tested this risk hypothesis using a well-designed dietary RNAi toxicity assay. To create the worst-case scenario, the full-length cDNA of v-ATPase subunit A from S. curviseta were cloned and a 400 bp fragment representing the highest sequence similarity between target pest and non-target arthropods was selected as the template to synthesize insecticidal dsRNAs. Specifically, 10-days-old S. curviseta larvae were subjected to artificial diets containing v-ATPase A dsRNAs from both D. v. virgifera (dsDVV) and S. curviseta (dsSC), respectively, a dsRNA control, β-glucuronidase, from plant (dsGUS), and a vehicle control, H2O. The endpoint measurements included gene expression profiles, survival, and life history traits, such as developmental time, fecundity, hatching rate, and body length. Although, S. curviseta larvae developed significantly faster under the treatments of dsDVV and dsSC than the vehicle control, the combined results from both temporal RNAi effect study and dietary RNAi toxicity assay support the risk hypothesis, suggesting that the impacts of ingested arthropod-active dsRNAs on this representative soil decomposer are negligible. PMID:27471512

  3. Two strains of Pseudomonas fluorscens bacteria differentially affect survivorship of waxworm (Galleria mellonella) larvae exposed to an arthropod fungal pathogen, Beauveria bassiana

    Science.gov (United States)

    Two strains of Pseudomonas fluorescens were found contaminating a biopesticide used in a previous study against Varroa destructor infestations in honey bee hives. In the aforementioned study the biopesticide, a formulation of the arthropod pathogen Beauveria bassiana, failed to have any impact on t...

  4. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: insights into function and evolution of digestion in an ancient arthropod

    NARCIS (Netherlands)

    Fuzita, F.J.; Pinkse, M.W.H.; Patane, J.S.L.; Juliano, M.A.; Verhaert, P.D.E.M.; Lopes, A.R.

    2015-01-01

    Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challe

  5. Biochemical, Transcriptomic and Proteomic Analyses of Digestion in the Scorpion Tityus serrulatus: Insights into Function and Evolution of Digestion in an Ancient Arthropod

    NARCIS (Netherlands)

    Fuzita, F.J.; Pinkse, M.W.H.; Patane, J.S.L.; Juliano, M.A.; Verhaert, P.D.E.M.; Lopes, A.R.

    2015-01-01

    Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challe

  6. Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change.

    Directory of Open Access Journals (Sweden)

    Wallace M Meyer

    Full Text Available The few studies that have addressed past effects of climate change on species distributions have mostly focused on plants due to the rarity of historical faunal baselines. However, hyperdiverse groups like Arthropoda are vital to monitor in order to understand climate change impacts on biodiversity. This is the first investigation of ground-dwelling arthropod (GDA assemblages along the full elevation gradient of a mountain range in the Madrean Sky Island Region, establishing a baseline for monitoring future changes in GDA biodiversity. To determine how GDA assemblages relate to elevation, season, abiotic variables, and corresponding biomes, GDA were collected for two weeks in both spring (May and summer (September 2011 in the Santa Catalina Mountains, Arizona, using pitfall traps at 66 sites in six distinct upland (non-riparian/non-wet canyon biomes. Four arthropod taxa: (1 beetles (Coleoptera, (2 spiders (Araneae, (3 grasshoppers and crickets (Orthoptera, and (4 millipedes and centipedes (Myriapoda were assessed together and separately to determine if there are similar patterns across taxonomic groups. We collected 335 species of GDA: 192/3793 (species/specimens Coleoptera, 102/1329 Araneae, 25/523 Orthoptera, and 16/697 Myriapoda. GDA assemblages differed among all biomes and between seasons. Fifty-three percent (178 species and 76% (254 species of all GDA species were found in only one biome and during only one season, respectively. While composition of arthropod assemblages is tied to biome and season, individual groups do not show fully concordant patterns. Seventeen percent of the GDA species occurred only in the two highest-elevation biomes (Pine and Mixed Conifer Forests. Because these high elevation biomes are most threatened by climate change and they harbor a large percentage of unique arthropod species (11-25% depending on taxon, significant loss in arthropod diversity is likely in the Santa Catalina Mountains and other isolated

  7. Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change.

    Science.gov (United States)

    Meyer, Wallace M; Eble, Jeffrey A; Franklin, Kimberly; McManus, Reilly B; Brantley, Sandra L; Henkel, Jeff; Marek, Paul E; Hall, W Eugene; Olson, Carl A; McInroy, Ryan; Bernal Loaiza, Emmanuel M; Brusca, Richard C; Moore, Wendy

    2015-01-01

    The few studies that have addressed past effects of climate change on species distributions have mostly focused on plants due to the rarity of historical faunal baselines. However, hyperdiverse groups like Arthropoda are vital to monitor in order to understand climate change impacts on biodiversity. This is the first investigation of ground-dwelling arthropod (GDA) assemblages along the full elevation gradient of a mountain range in the Madrean Sky Island Region, establishing a baseline for monitoring future changes in GDA biodiversity. To determine how GDA assemblages relate to elevation, season, abiotic variables, and corresponding biomes, GDA were collected for two weeks in both spring (May) and summer (September) 2011 in the Santa Catalina Mountains, Arizona, using pitfall traps at 66 sites in six distinct upland (non-riparian/non-wet canyon) biomes. Four arthropod taxa: (1) beetles (Coleoptera), (2) spiders (Araneae), (3) grasshoppers and crickets (Orthoptera), and (4) millipedes and centipedes (Myriapoda) were assessed together and separately to determine if there are similar patterns across taxonomic groups. We collected 335 species of GDA: 192/3793 (species/specimens) Coleoptera, 102/1329 Araneae, 25/523 Orthoptera, and 16/697 Myriapoda. GDA assemblages differed among all biomes and between seasons. Fifty-three percent (178 species) and 76% (254 species) of all GDA species were found in only one biome and during only one season, respectively. While composition of arthropod assemblages is tied to biome and season, individual groups do not show fully concordant patterns. Seventeen percent of the GDA species occurred only in the two highest-elevation biomes (Pine and Mixed Conifer Forests). Because these high elevation biomes are most threatened by climate change and they harbor a large percentage of unique arthropod species (11-25% depending on taxon), significant loss in arthropod diversity is likely in the Santa Catalina Mountains and other isolated

  8. ArthropodaCyc: a CycADS powered collection of BioCyc databases to analyse and compare metabolism of arthropods.

    Science.gov (United States)

    Baa-Puyoulet, Patrice; Parisot, Nicolas; Febvay, Gérard; Huerta-Cepas, Jaime; Vellozo, Augusto F; Gabaldón, Toni; Calevro, Federica; Charles, Hubert; Colella, Stefano

    2016-01-01

    Arthropods interact with humans at different levels with highly beneficial roles (e.g. as pollinators), as well as with a negative impact for example as vectors of human or animal diseases, or as agricultural pests. Several arthropod genomes are available at present and many others will be sequenced in the near future in the context of the i5K initiative, offering opportunities for reconstructing, modelling and comparing their metabolic networks. In-depth analysis of these genomic data through metabolism reconstruction is expected to contribute to a better understanding of the biology of arthropods, thereby allowing the development of new strategies to control harmful species. In this context, we present here ArthropodaCyc, a dedicated BioCyc collection of databases using the Cyc annotation database system (CycADS), allowing researchers to perform reliable metabolism comparisons of fully sequenced arthropods genomes. Since the annotation quality is a key factor when performing such global genome comparisons, all proteins from the genomes included in the ArthropodaCyc database were re-annotated using several annotation tools and orthology information. All functional/domain annotation results and their sources were integrated in the databases for user access. Currently, ArthropodaCyc offers a centralized repository of metabolic pathways, protein sequence domains, Gene Ontology annotations as well as evolutionary information for 28 arthropod species. Such database collection allows metabolism analysis both with integrated tools and through extraction of data in formats suitable for systems biology studies.Database URL: http://arthropodacyc.cycadsys.org/. PMID:27242037

  9. Reduced-risk pest management programs for eastern U.S. peach orchards: effects on arthropod predators, parasitoids, and select pests.

    Science.gov (United States)

    Biddinger, David J; Leslie, Timothy W; Joshi, Neelendra K

    2014-06-01

    We developed new integrated pest management programs for eastern U.S. peaches with minimal use of organophosphates. From 2002-2005, we assessed the ecological impacts of these reduced-risk programs versus grower standard conventional programs that still relied primarily on the use of organophosphorous and carbamate insecticides. Using a split-plot design replicated at four commercial Pennsylvania peach orchards, we quantified pesticide rates, environmental impact, and arthropod community response. We used Environmental Impact Quotient (EIQ) analysis based on the growers' pesticide records from each orchard to calculate seasonal cumulative EIQ field ratings for all years. Ecological effects of the reduced-risk and conventional program were also measured as the abundance and diversity of nontarget arthropod predators, parasitoids, and selected pest taxa. Pesticide inputs and EIQ values were substantially lower in reduced-risk programs compared with conventional spray programs. Arthropod arrays differed significantly between pest management programs: most beneficial predator and parasitoid taxa were positively associated with the reduced-risk program and negatively associated with the standard grower program. Regardless of the pest management program, we observed significant differences in species arrays in the peach tree canopy compared with the ground cover of the orchards, but the arthropod community did not differ among the field sites or based on distance from the edge of the orchard. We conclude that reduced-risk programs not only provide control comparable with that of conventional programs, but they also reduce negative environmental effects while conserving key arthropod biological control agents within eastern U.S. peach orchards.

  10. Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change.

    Science.gov (United States)

    Meyer, Wallace M; Eble, Jeffrey A; Franklin, Kimberly; McManus, Reilly B; Brantley, Sandra L; Henkel, Jeff; Marek, Paul E; Hall, W Eugene; Olson, Carl A; McInroy, Ryan; Bernal Loaiza, Emmanuel M; Brusca, Richard C; Moore, Wendy

    2015-01-01

    The few studies that have addressed past effects of climate change on species distributions have mostly focused on plants due to the rarity of historical faunal baselines. However, hyperdiverse groups like Arthropoda are vital to monitor in order to understand climate change impacts on biodiversity. This is the first investigation of ground-dwelling arthropod (GDA) assemblages along the full elevation gradient of a mountain range in the Madrean Sky Island Region, establishing a baseline for monitoring future changes in GDA biodiversity. To determine how GDA assemblages relate to elevation, season, abiotic variables, and corresponding biomes, GDA were collected for two weeks in both spring (May) and summer (September) 2011 in the Santa Catalina Mountains, Arizona, using pitfall traps at 66 sites in six distinct upland (non-riparian/non-wet canyon) biomes. Four arthropod taxa: (1) beetles (Coleoptera), (2) spiders (Araneae), (3) grasshoppers and crickets (Orthoptera), and (4) millipedes and centipedes (Myriapoda) were assessed together and separately to determine if there are similar patterns across taxonomic groups. We collected 335 species of GDA: 192/3793 (species/specimens) Coleoptera, 102/1329 Araneae, 25/523 Orthoptera, and 16/697 Myriapoda. GDA assemblages differed among all biomes and between seasons. Fifty-three percent (178 species) and 76% (254 species) of all GDA species were found in only one biome and during only one season, respectively. While composition of arthropod assemblages is tied to biome and season, individual groups do not show fully concordant patterns. Seventeen percent of the GDA species occurred only in the two highest-elevation biomes (Pine and Mixed Conifer Forests). Because these high elevation biomes are most threatened by climate change and they harbor a large percentage of unique arthropod species (11-25% depending on taxon), significant loss in arthropod diversity is likely in the Santa Catalina Mountains and other isolated

  11. Notes on the origin of inertinite macerals in coal: Evidence for fungal and arthropod transformations of degraded macerals

    Science.gov (United States)

    Hower, J.C.; O'Keefe, J. M. K.; Eble, C.F.; Raymond, A.; Valentim, B.; Volk, T.J.; Richardson, A.R.; Satterwhite, A.B.; Hatch, R.S.; Stucker, J.D.; Watt, M.A.

    2011-01-01

    The role of fungus in the formation of coal macerals, both as a primary contributor in the form of a fungus fossil/maceral funginite, and in their role in degrading wood, thus producing degraded maceral forms, has been established. Fungus, in the course of breaking down the lignin and cellulose in wood, make the wood more digestible for grazers, such as arthropods. In turn, the remnants of the digested wood and anything else eaten but not completely digested are excreted and can be preserved intact; eaten by other fauna with a repeat of the cycle; or colonized by bacteria and/or coprophilous fungi with or without subsequent preservation. Ultimately, the coprolites can be preserved as a form of macrinite. ?? 2011 Elsevier B.V.

  12. Disentangling Vector-Borne Transmission Networks: A Universal DNA Barcoding Method to Identify Vertebrate Hosts from Arthropod Bloodmeals

    DEFF Research Database (Denmark)

    Alcaide, Miguel; Rico, Ciro; Ruiz, Santiago;

    2009-01-01

    Emerging infectious diseases represent a challenge for global economies and public health. About one fourth of the last pandemics have been originated by the spread of vector-borne pathogens. In this sense, the advent of modern molecular techniques has enhanced our capabilities to understand vector......-host interactions and disease ecology. However, host identification protocols have poorly profited of international DNA barcoding initiatives and/or have focused exclusively on a limited array of vector species. Therefore, ascertaining the potential afforded by DNA barcoding tools in other vector-host systems...... of human and veterinary importance would represent a major advance in tracking pathogen life cycles and hosts. Here, we show the applicability of a novel and efficient molecular method for the identification of the vertebrate host’s DNA contained in the midgut of blood-feeding arthropods. To this end, we...

  13. Demodex castoris sp. nov. (Acari: Demodecidae) parasitizing Castor fiber (Rodentia), and other parasitic arthropods associated with Castor spp.

    Science.gov (United States)

    Izdebska, Joanna N; Fryderyk, Sławomira; Rolbiecki, Leszek

    2016-02-11

    A new species of demodecid mite, Demodex castoris sp. nov. (Acari: Prostigmata: Demodecidae), is described based on adult stages from the skin of the nasal region of the Eurasian beaver Castor fiber Linnaeus, 1758, collected in Poland. This is the first detection of a representative demodecid mite in rodents of the suborder Castorimorpha and also represents the first detection of a skin mite in Eurasian beavers. The new species is a small skin mite (average 173 µm in length) characterized by sexual dimorphism related to body proportions. D. castoris sp. nov. was observed in 4 out of 6 beavers examined (66.6%), with a mean intensity of 10.8 and an intensity range of 2-23 ind. host(-1). This paper also contains a checklist of parasitic arthropods known from Castor spp. PMID:26865230

  14. Arthropod-borne pathogens circulating in free-roaming domestic cats in a zoo environment in Brazil.

    Science.gov (United States)

    André, Marcos Rogério; Baccarim Denardi, Nathani Cristina; Marques de Sousa, Keyla Carstens; Gonçalves, Luiz Ricardo; Henrique, Paloma Canedo; Grosse Rossi Ontivero, Claudia Regina; Lima Gonzalez, Irys Hany; Cabral Nery, Carolina Vaz; Fernandes Chagas, Carolina Romeiro; Monticelli, Cauê; Alexandre de Santis, Ana Cláudia Gabriela; Machado, Rosangela Zacarias

    2014-09-01

    Recently, tick and flea-borne pathogens have been detected in wild carnivores maintained in captivity in Brazilian zoos. Since free-roaming cats are frequently found in Brazilian zoos, they could act as reservoirs for arthropod-borne pathogens, which could be transmitted to endangered wild carnivores maintained in captivity in these institutions. On the other hand, stray cats in zoos may play a role as sentinels to pathogens that circulate among wild animals in captivity. The present work aimed to detect the presence of Anaplasmataceae agents, hemoplasmas, Bartonella species, piroplasmas, and Hepatozoon sp. DNA in blood samples of 37 free-roaming cats in a Brazilian zoo. Three (8%) cats were positive for Anaplasma spp. closed related to Anaplasma phagocytophilum; 12 (32%) cats were positive for hemoplasmas [two (5%) for Mycoplasma haemofelis, five (13.5%) for Candidatus Mycoplasma haemominutum, and five (13.5%) for Candidatus Mycoplasma turicensis]; 11 (30%) were positive for Bartonella spp., six (16%) were positive Babesia vogeli and one (3%) for Theileria sp. Coinfection with multiple arthropod-borne agentes was observed in sampled cats. None of sampled cats were positive for Ehrlichia spp., Cytauxzoon spp., or Hepatozoon spp. in PCR. This is the first molecular detection of Babesia vogeli and Theileria sp. in domestic cats in Brazil. The control of the population of free-roaming cats in these conservation institutions is much needed aiming to prevent the potential transmission to endangered wild animals maintained in captivity, such as wild neotropical wild felids, as well as to human beings visiting zoos. PMID:24889035

  15. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests.

    Science.gov (United States)

    Furlong, Michael J

    2015-02-01

    The importance of natural enemies as the foundation of integrated pest management (IPM) is widely accepted, but few studies conduct the manipulative field experiments necessary to directly quantify their impact on pest populations in this context. This is particularly true for predators. Studying arthropod predator-prey interactions is inherently difficult: prey items are often completely consumed, individual predator-prey interactions are ephemeral (rendering their detection difficult) and the typically fluid or soft-bodied meals cannot be easily identified visually within predator guts. Serological techniques have long been used in arthropod predator gut-contents analysis, and current enzyme linked immunosorbent assays (ELISA) are highly specific and sensitive. Recently, polymerase chain reaction (PCR) methods for gut-contents analysis have developed rapidly and they now dominate the diagnostic methods used for gut-contents analysis in field-based research. This work has identified trophic linkages within food webs, determined predator diet breadth and preference, demonstrated the importance of cannibalism and intraguild predation within and between certain taxa, and confirmed the benefits (predator persistence) and potential disadvantages (reduced feeding on pest species) of the availability of alternative nonpest prey. Despite considerable efforts to calibrate gut-contents assays, these methods remain qualitative. Available techniques for predator gut-contents analysis can provide rapid, accurate, cost-effective identification of predation events. As such, they perfectly compliment the ecological methods developed to directly assess predator impacts on prey populations but which are imperfect at identifying the key predators. These diagnostic methods for gut-contents analysis are underexploited in agricultural research and they are almost never applied in unison with the critical field experiments to measure predator impact. This paper stresses the need for a

  16. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Science.gov (United States)

    Guo, Yanyan; Feng, Yanjie; Ge, Yang; Tetreau, Guillaume; Chen, Xiaowen; Dong, Xuehui; Shi, Wangpeng

    2014-01-01

    Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt) provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée), and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs) is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs. PMID:25437213

  17. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée, and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  18. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    Directory of Open Access Journals (Sweden)

    Zdeňka Svobodová

    Full Text Available Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize, confers resistance to corn rootworms (Diabrotica spp. and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G and two non-Bt reference hybrids (KIPOUS and PR38N86. Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (P<0.05. Multivariate analysis showed that the abundance and diversity of plant dwelling insects was similar in maize with the same genetic background, for both Bt (MON88017 and non-Bt (DK315 untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability.

  19. An arthropod cis-regulatory element functioning in sensory organ precursor development dates back to the Cambrian

    Directory of Open Access Journals (Sweden)

    Simpson Pat

    2010-09-01

    Full Text Available Abstract Background An increasing number of publications demonstrate conservation of function of cis-regulatory elements without sequence similarity. In invertebrates such functional conservation has only been shown for closely related species. Here we demonstrate the existence of an ancient arthropod regulatory element that functions during the selection of neural precursors. The activity of genes of the achaete-scute (ac-sc family endows cells with neural potential. An essential, conserved characteristic of proneural genes is their ability to restrict their own activity to single or a small number of progenitor cells from their initially broad domains of expression. This is achieved through a process called lateral inhibition. A regulatory element, the sensory organ precursor enhancer (SOPE, is required for this process. First identified in Drosophila, the SOPE contains discrete binding sites for four regulatory factors. The SOPE of the Drosophila asense gene is situated in the 5' UTR. Results Through a manual comparison of consensus binding site sequences we have been able to identify a SOPE in UTR sequences of asense-like genes in species belonging to all four arthropod groups (Crustacea, Myriapoda, Chelicerata and Insecta. The SOPEs of the spider Cupiennius salei and the insect Tribolium castaneum are shown to be functional in transgenic Drosophila. This would place the origin of this regulatory sequence as far back as the last common ancestor of the Arthropoda, that is, in the Cambrian, 550 million years ago. Conclusions The SOPE is not detectable by inter-specific sequence comparison, raising the possibility that other ancient regulatory modules in invertebrates might have escaped detection.

  20. Plant and arthropod community sensitivity to rainfall manipulation but not nitrogen enrichment in a successional grassland ecosystem.

    Science.gov (United States)

    Lee, Mark A; Manning, Pete; Walker, Catherine S; Power, Sally A

    2014-12-01

    Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15% winter rainfall and -30% summer rainfall) or ambient climate, achieving +15% winter rainfall and -39% summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha(-1) year(-1)) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands. PMID:25224801

  1. Risk Assessment of Genetically Engineered Maize Resistant to Diabrotica spp.: Influence on Above-Ground Arthropods in the Czech Republic.

    Science.gov (United States)

    Svobodová, Zdeňka; Skoková Habuštová, Oxana; Hutchison, William D; Hussein, Hany M; Sehnal, František

    2015-01-01

    Transgenic maize MON88017, expressing the Cry3Bb1 toxin from Bacillus thuringiensis (Bt maize), confers resistance to corn rootworms (Diabrotica spp.) and provides tolerance to the herbicide glyphosate. However, prior to commercialization, substantial assessment of potential effects on non-target organisms within agroecosystems is required. The MON88017 event was therefore evaluated under field conditions in Southern Bohemia in 2009-2011, to detect possible impacts on the above-ground arthropod species. The study compared MON88017, its near-isogenic non-Bt hybrid DK315 (treated or not treated with the soil insecticide Dursban 10G) and two non-Bt reference hybrids (KIPOUS and PR38N86). Each hybrid was grown on five 0.5 ha plots distributed in a 14-ha field with a Latin square design. Semiquantitative ELISA was used to verify Cry3Bb1 toxin levels in the Bt maize. The species spectrum of non-target invertebrates changed during seasons and was affected by weather conditions. The thrips Frankliniella occidentalis was the most abundant species in all three successive years. The next most common species were aphids Rhopalosiphum padi and Metopolophium dirhodum. Frequently observed predators included Orius spp. and several species within the Coccinellidae. Throughout the three-year study, analysis of variance indicated some significant differences (Pinsects was similar in maize with the same genetic background, for both Bt (MON88017) and non-Bt (DK315) untreated or insecticide treated. KIPOUS and PR38N86 showed some differences in species abundance relative to the Bt maize and its near-isogenic hybrid. However, the effect of management regime on arthropod community was insignificant and accounted only for a negligible portion of the variability. PMID:26083254

  2. Arthropods in trophic-cenosis structure of collared flycatcher consortium in conditions of forest ecosystems of North-Eastern Ukraine

    Directory of Open Access Journals (Sweden)

    A. B. Chaplygina

    2015-03-01

    Full Text Available The study is based on taxonomic and quantitative analysis of feed ration of nestlings and structure of nidikolas of collared flycatcher (Ficedula albicollis (Temminck, 1815. Ecological features and consortium relations of flycatchers and their specific feeding behavior were analyzed. Materials were collected in May – July 2009–2014 on the transformed territories of North-Eastern Ukraine. Functioning of trophic structure of biogeocenosis with the participation of flycatcher as a heterotrophic core of big autotrophic group was studied. Spatial and trophic relations of flycatcher with the woody vegetation and insect-phytophages (leaf beetles, leafhoppers, and barbels have been described. In the feed ration of flycatcher nestlings the prevalence is given to representatives of Hexapoda (83%, including Lepidoptera (16 families, 24%, Hymenoptera (12 families, 23% and Coleoptera (40 families, 15%. We characterize trophic groups of arthropods in the consortium of flycatchers: phytophages (33%, zoophages (45%, parasites, bloodsuckers, saprophages (16%, necrophages (4%, coprophages, keratophages. Fauna of arthropods of collared flycatcher nests was analyzed. Nests of birds as a heterotrophic consortium is the habitat of invertebrates with 293 taxons belonging to the Hexapoda, Arachnida, Malacostraca and Myriaroda, sometimes Mollusca. In the trophic structure of the population of flycatcher the representatives of Hexapoda dominate (278 species, where the first place is given to zoophages (127 species, 45%, including parasites (Culicidae, Tabanidae, Mallophaga, Hippoboscidae, Aphaniptera. The second are phytophages (78 species, 28%, the third – decomposers (75 species, 27%, and the last presenting detritivores (48 species, 18% and necrophages (27 species, 10%. Constant ectoparasitic species of flycatchers are Ricinus sp. (Mallophaga, Ornithomyia avicularia L. (Diptera, Protocalliphora azurea chrysorrhea Mg. (Diptera, Ceratophyllus sp. (Aphaniptera

  3. Arthropod Distribution and Habitat, Aquatic Invasive Species (AIS) animal distribution in Wisconsin - Rusty Crayfish, Published in 2009, 1:24000 (1in=2000ft) scale, Wisconsin DNR Bureau of Watershed Management.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Arthropod Distribution and Habitat dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Field Observation information as of 2009....

  4. Arthropod Distribution and Habitat, Aquatic Invasive Species (AIS) animal distribution in Wisconsin - Spiny/fishhook water flea, Published in 2009, 1:24000 (1in=2000ft) scale, Wisconsin DNR Bureau of Watershed Management.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Arthropod Distribution and Habitat dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Field Observation information as of 2009....

  5. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies [v2; ref status: indexed, http://f1000r.es/59a

    OpenAIRE

    Zeeshan Ahmed; Saman Zeeshan; Pauline Fleischmann; Wolfgang Rössler; Thomas Dandekar

    2015-01-01

    Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cat...

  6. Parasitic arthropods of some wild rodents from Juréia-Itatins Ecological Station, State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Bossi David Eduardo Paolinetti

    2002-01-01

    Full Text Available A study of the associations between three species of rodents in the Atlantic forest and their parasitic arthropods was undertaken at the Juréia-Itatins Ecological Station, located in the State of São Paulo, Southeastern Brazil, from March 1989 to February 1990. Individuals of three species, Oryzomys russatus, Proechimys iheringi and Nectomys squamipes were captured and examined for ectoparasites. Eleven species of parasitic arthropods were found, including four species of insects and seven of Acari. Parasitism intensity, phenology, and rainfall were positively correlated with the abundance of the ectoparasites and their hosts. The most abundant host was O. russatus (Muridae: Sigmodontinae, and the most common parasite on it was the laelapid mite Gigantolaelaps oudemansi. The cuterebrid Metacuterebra apicalis caused myiasis in O. russatus. A mutualistic association between the staphylinid beetle Amblyopinus sp. and its host P. iheringi (Echimyidae was observed. The few N. squamipes captured had small numbers of ectoparasites.

  7. A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response.

    Directory of Open Access Journals (Sweden)

    Vasanthi Avadhanula

    2009-09-01

    Full Text Available Alphaviruses are RNA viruses transmitted between vertebrate hosts by arthropod vectors, primarily mosquitoes. How arthropods counteract alphaviruses or viruses per se is not very well understood. Drosophila melanogaster is a powerful model system for studying innate immunity against bacterial and fungal infections. In this study we report the use of a novel system to analyze replication of Sindbis virus (type species of the alphavirus genus RNA following expression of a Sindbis virus replicon RNA from the fly genome. We demonstrate deficits in the immune deficiency (Imd pathway enhance viral replication while mutations in the Toll pathway fail to affect replication. Similar results were observed with intrathoracic injections of whole virus and confirmed in cultured mosquito cells. These findings show that the Imd pathway mediates an antiviral response to Sindbis virus replication. To our knowledge, this is the first demonstration of an antiviral role for the Imd pathway in insects.

  8. Advances and Perspectives of the use of the entomopathogenic fungi beauveria bassiana and metarhizium anisopliae for the control of arthropod pests in poultry production

    Directory of Open Access Journals (Sweden)

    DGP Oliveira

    2014-03-01

    Full Text Available Global poultry production is plagued by a wide variety of arthropods. The problems associated with their chemical control have led to an increasing search for control alternatives, and entomopathogenic fungi seem to be a promising strategy. Despite the large number of insects and mites considered as important pests in animal production, studies on the use of entomopathogenic fungi for their control are still scarce compared with agricultural pests, particularly in Brazil. This article reviews some damages and control aspects of the main arthropod pests that affect Brazilian poultry production, including house flies, lesser mealworms, and feather mites, by the use of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Studies published in the last 20 years were reviewed, and the main problems and limitations of that pest-control strategy are discussed.

  9. Behaviour of filariae: morphological and anatomical signatures of their life style within the arthropod and vertebrate hosts.

    Science.gov (United States)

    Bain, Odile; Babayan, Simon

    2003-12-15

    This paper attempts to pinpoint the most original morphological anatomical features of the biology of filariae per se and those which are or could be important for triggering regulatory processes in the arthropod vector and uncontrolled pathogenic processes in the vertebrate hosts. The following stages are considered: the motile egg or newly-hatched larva, the microfilaria, in the lymphatic or blood vessels of its vertebrate host; the larva, its migrations and its intrasyncitial development in the hematophagous arthropod subverted as vector; its transfer to the vertebrate host, migratory properties through the lymphatic system, maturation, mating and, finally, egg laying in the tissues they reach. This synthesis is based on parasite morphological features and their functional interpretation, histological features in the different niches the filariae reach, and on quantitative analyses of filarial development at its different phases, as well as on the rare and valuable observations of living parasites in situ. Data have been drawn from various species of Onchocercidae from amphibians, reptiles, birds and mammals. These comparative analyses have revealed the major constraints to which the filariae, including those parasitizing humans, have been subjected during their evolution from their ancestors, the oviparous and heteroxenic spirurids. Emphasis is placed on mechanical events: resistance of the microfilariae to the currents in the blood or lymph vessels, regulatory processes induced in the vector mesenteron by the movements of the ingested microfilariae, transient disruption by the microfilarial cephalic hook of the vectors' tissues and cell membranes during microfilarial translocation, attachment of males to females during mating by means of 'non-slip' systems, etc. Like other nematodes, filariae are equipped with sensory organs and a locomotor system, composed of the muscles and of the original osmoregulatory-excretory cell. Any change in one of these elements

  10. N-P Co-Limitation of Primary Production and Response of Arthropods to N and P in Early Primary Succession on Mount St. Helens Volcano

    Science.gov (United States)

    Bishop, John G.; O'Hara, Niamh B.; Titus, Jonathan H.; Apple, Jennifer L.; Gill, Richard A.; Wynn, Louise

    2010-01-01

    Background The effect of low nutrient availability on plant-consumer interactions during early succession is poorly understood. The low productivity and complexity of primary successional communities are expected to limit diversity and abundance of arthropods, but few studies have examined arthropod responses to enhanced nutrient supply in this context. We investigated the effects of nitrogen (N) and phosphorus (P) addition on plant productivity and arthropod abundance on 24-yr-old soils at Mount St. Helens volcano. Methodology/Principal Findings We measured the relative abundance of eight arthropod orders and five families in plots that received N, P, or no nutrients for 3–5 years. We also measured plant % cover, leaf %N, and plant diversity. Vegetation responded rapidly to N addition but showed a lagged response to P that, combined with evidence of increased N fixation, suggested P-limitation to N availability. After 3 yrs of fertilization, orthopterans (primarily Anabrus simplex (Tettigoniidae) and Melanoplus spp (Acrididae)) showed a striking attraction to P addition plots, while no other taxa responded to fertilization. After 5 yrs of fertilization, orthopteran density in the same plots increased 80%–130% with P addition and 40% with N. Using structural equation modeling, we show that in year 3 orthopteran abundance was associated with a P-mediated increase in plant cover (or correlated increases in resource quality), whereas in year 5 orthopteran density was not related to cover, diversity or plant %N, but rather to unmeasured effects of P, such as its influence on other aspects of resource quality. Conclusions/Significance The marked surprising response to P by orthopterans, combined with a previous observation of P-limitation in lepidopteran herbivores at these sites, suggests that P-mediated effects of food quantity or quality are critical to insect herbivores in this N-P co-limited primary successional system. Our results also support a previous

  11. Macrophage migration inhibitory factor (MIF) family in arthropods: Cloning and expression analysis of two MIF and one D-dopachrome tautomerase (DDT) homologues in mud crabs, Scylla paramamosain.

    Science.gov (United States)

    Huang, Wen-Shu; Duan, Li-Peng; Huang, Bei; Wang, Ke-Jian; Zhang, Cai-Liang; Jia, Qin-Qin; Nie, Pin; Wang, Tiehui

    2016-03-01

    The macrophage migration inhibitory factor (MIF) family, consisting of MIF and D-dopachrome tautomerase (DDT) in vertebrates, is evolutionarily ancient and has been found across Kingdoms including vertebrates, invertebrates, plants and bacteria. The mammalian MIF family are chemokines at the top of the inflammatory cascade in combating infections. They also possess enzymatic activities, e.g. DDT catalysis results in the production of 5,6-dihydroxyindole (DHI), a precursor of eumelanin. MIF-like genes are widely distributed, but DDT-like genes have only been described in vertebrates and a nematode. In this report, we cloned a DDT-like gene, for the first time in arthropods, and a second MIF in mud crab. The mud crab MIF family have a three exon/two intron structure as seen in vertebrates. The identification of a DDT-like gene in mud crab and other arthropods suggests that the separation of MIF and DDT preceded the divergence of protostomes and deuterostomes. The MIF family is differentially expressed in tissues of adults and during embryonic development and early life. The high level expression of the MIF family in immune tissues, such as intestine and hepatopancreas, suggests an important role in mud crab innate immunity. Mud crab DDT is highly expressed in early embryos, in megalops and crablets and this coincides with the requirement for melanisation in egg chorion tanning and cuticular hardening in arthropods, suggesting a potential novel role of DDT in melanogenesis via its tautomerase activity to produce DHI in mud crab. The clarification of the presence of both MIF and DDT in this report paves the way for further investigation of their functional roles in immunity and in melanogenesis in mud crab and other arthropods. PMID:26826424

  12. Structural determination of the carbohydrate chains from arthropod and mollusc hemocyanin by means of 500-MHz 1H-NMR spectroscopy

    International Nuclear Information System (INIS)

    In this thesis carbohydrate structures of hemocyanins of arthropods and molluscs are studied. Hemocyanins are high-molecular-mass, copper-containing oxygen-transport proteins. The function of these carbohydrate chains are yet still unknown. It is not probable that they play a role in the oxygen-binding processes. They are rather thought to have a function in the build-up of the hemocyanin molecules. 286 refs.; 30 figs.; 25 tabs

  13. Cats are not small dogs: is there an immunological explanation for why cats are less affected by arthropod-borne disease than dogs?

    Science.gov (United States)

    Day, Michael J

    2016-09-20

    It is widely recognized that cats appear to be less frequently affected by arthropod-borne infectious diseases than dogs and share fewer zoonotic pathogens with man. This impression is supported by the relative lack of scientific publications related to feline vector-borne infections. This review explores the possible reasons for the difference between the two most common small companion animal species, including the hypothesis that cats might have a genetically-determined immunological resistance to arthropod vectors or the microparasites they transmit. A number of simple possibilities might account for the lower prevalence of these diseases in cats, including factors related to the lifestyle and behaviour of the cat, lesser spend on preventative healthcare for cats and reduced opportunities for research funding for these animals. The dog and cat have substantially similar immune system components, but differences in immune function might in part account for the markedly distinct prevalence and clinicopathological appearance of autoimmune, allergic, idiopathic inflammatory, immunodeficiency, neoplastic and infectious diseases in the two species. Cats have greater genetic diversity than dogs with much lower linkage disequilibrium in feline compared with canine breed groups. Immune function is intrinsically related to the nature of the intestinal microbiome and subtle differences between the canine and feline microbial populations might also impact on immune function and disease resistance. The reasons for the apparent lesser susceptibility of cats to arthropod-borne infectious diseases are likely to be complex, but warrant further investigation.

  14. Short- and medium-term effects of experimental nitrogen fertilization on arthropods associated with Calluna vulgaris heathlands in north-west Spain

    International Nuclear Information System (INIS)

    We studied the short- and medium-term effects of experimental nitrogen fertilization (3 and 15 months after the treatment) on the arthropods of Calluna vulgaris heathlands in NW Spain. Three heathland sites were selected with two permanent plots per site: control and fertilized. Ammonium nitrate fertilizer (56 kg N ha-1 yr-1) was applied monthly and insects were caught using pitfall traps. We found mainly species-level responses to nitrogen addition. Seven species (e.g. Lochmaea suturalis) showed a consistent trend (benefited or harmed) in both periods and were proposed as possible reliable indicators of the effects of nitrogen deposition in these ecosystems. We also found variable arthropod trophic-group responses: (a) herbivores (leaf beetles, true bugs) increased in abundance on a short-term scale; (b) predators (carabid beetles, true bugs) showed opposite and less clear responses in both periods. Further long-term studies are needed to determine the mechanisms underlying the observed arthropod responses. - We observed consistent species-level and variable trophic-group responses to nitrogen addition in one of the southern-most locations for Calluna vulgaris heathlands within Europe

  15. Cats are not small dogs: is there an immunological explanation for why cats are less affected by arthropod-borne disease than dogs?

    Science.gov (United States)

    Day, Michael J

    2016-01-01

    It is widely recognized that cats appear to be less frequently affected by arthropod-borne infectious diseases than dogs and share fewer zoonotic pathogens with man. This impression is supported by the relative lack of scientific publications related to feline vector-borne infections. This review explores the possible reasons for the difference between the two most common small companion animal species, including the hypothesis that cats might have a genetically-determined immunological resistance to arthropod vectors or the microparasites they transmit. A number of simple possibilities might account for the lower prevalence of these diseases in cats, including factors related to the lifestyle and behaviour of the cat, lesser spend on preventative healthcare for cats and reduced opportunities for research funding for these animals. The dog and cat have substantially similar immune system components, but differences in immune function might in part account for the markedly distinct prevalence and clinicopathological appearance of autoimmune, allergic, idiopathic inflammatory, immunodeficiency, neoplastic and infectious diseases in the two species. Cats have greater genetic diversity than dogs with much lower linkage disequilibrium in feline compared with canine breed groups. Immune function is intrinsically related to the nature of the intestinal microbiome and subtle differences between the canine and feline microbial populations might also impact on immune function and disease resistance. The reasons for the apparent lesser susceptibility of cats to arthropod-borne infectious diseases are likely to be complex, but warrant further investigation. PMID:27646278

  16. Effectiveness of GAEC cross-compliance Standard 4.2c for biodiversity conservation in set-asides, part II (ground-dwelling Arthropods and Vertebrates

    Directory of Open Access Journals (Sweden)

    Marta Biaggini

    2016-02-01

    Full Text Available The MO.NA.CO. project has been set up to evaluate the effectiveness of some GAECs (Good Agricultural and Environmental Conditions through the institution of a monitoring network throughout the Italian territory. The present work deals with the evaluation of the Standard 4.2c, concerning biomass and biodiversity in set-asides, in relation to fauna conservation. Monitoring was performed in three areas, using the following indicators: ground-dwelling Arthropods identified at the order level, Coleoptera identified at the family level and Lacertids. Our results seem to indicate that a mild management of set-asides, consisting in mowing once a year (mid July in the examined areas, may enhance faunal diversity, above all Arthropod diversity. After mowing, the set-asides managed following Standard 4.2, hosted higher levels of Arthropod diversity and a more balanced faunistic composition in comparison to unmoved set-asides and arable lands. On the contrary, we did not find significant effects of mowing on lizard abundance. We also discussed some measures to mitigate the negative direct effects of mechanical mowing on fauna. 

  17. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies.

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas

    2014-01-01

    Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database. PMID:25977753

  18. Lyme borreliosis in southern United Kingdom and a case for a new syndrome, chronic arthropod-borne neuropathy.

    Science.gov (United States)

    Dryden, M S; Saeed, K; Ogborn, S; Swales, P

    2015-02-01

    This series of serologically confirmed Lyme disease is the largest reported in the UK and represents 508 patients who presented to one hospital in the South of England between 1992 and 2012. The mean rate of borreliosis throughout this period was 9·8/100,000 population, much higher than the reported national rate of 1·7/100,000. The actual rate increased each year until 2009 when it levelled off. Patients clinically presented with rash (71%), neurological symptoms (16%, of whom half had VII cranial nerve palsies), arthropathy (8%), pyrexia (5%), cardiac abnormalities (1%) or other manifestations (chronic Lyme disease. These patients have a different disease from Lyme disease and therefore an alternative name, chronic arthropod-borne neuropathy (CAN), and case definition for this condition is proposed. We suggest that this chronic condition needs to be distinguished from Lyme disease, as calling the chronic illness 'Lyme disease' causes confusion to patients and physicians. We recommend research initiatives to investigate the aetiology, diagnosis and therapy of CAN.

  19. Populational survey of arthropods on transgenic common bean expressing the rep gene from Bean golden mosaic virus.

    Science.gov (United States)

    Pinheiro, Patrícia V; Quintela, Eliane D; Junqueira, Ana Maria R; Aragão, Francisco J L; Faria, Josias C

    2014-01-01

    Genetically modified (GM) crops is considered the fastest adopted crop technology in the history of modern agriculture. However, possible undesirable and unintended effects must be considered during the research steps toward development of a commercial product. In this report we evaluated effects of a common bean virus resistant line on arthropod populations, considered as non-target organisms. This GM bean line (named M1/4) was modified for resistance against Bean golden mosaic virus (BGMV) by expressing a mutated REP protein, which is essential for virus replication. Biosafety studies were performed for a period of three years under field conditions. The abundance of some species was significantly higher in specific treatments in a particular year, but not consistently different in other years. A regular pattern was not observed in the distribution of insects between genetically modified and conventional treatments. Data analyses showed that minor differences observed can be attributed to random variation and were not consistent enough to conclude that the treatments were different. Therefore the present study indicates that the relative abundance of species are similar in transgenic and non-transgenic fields. PMID:24922280

  20. Distribution and abundance of arthropod species in pasture communities of three Azorean islands (Santa Maria, Terceira and Pico

    Directory of Open Access Journals (Sweden)

    Borges, P.A.V.

    2008-01-01

    Full Text Available This work provides evidence that the "hollow curve" is a consistent pattern in the range size distribution of taxonomic and ecological groups of arthropod pasture dwelling species. Many of the inconsistent results relating range size to herbivores diet breadth are probably due to historical constraints in the colonization of the islands and particular characteristics of the habitats studied (e.g. types of resources available. The positive relationship between range size and abundance may be explained by the "resource usage model". However, the slope of the regression line relating distribution to abundance was similar for different groups which suggests there is no difference in the way that the species’ local abundance scales with distribution in the four assemblages of species studied and that there is a close relationship between the trophic groups studied. This suggests that the “resource availability model” could be the explanation for the distribution and abundance of pasture spider and insect species. More work needs to be conducted in order to evaluate the relationship between diet breadth, habitat specialization and range size in the islands.

  1. In search for a common denominator for the diverse functions of arthropod corazonin: a role in the physiology of stress?

    Science.gov (United States)

    Boerjan, Bart; Verleyen, Peter; Huybrechts, Jurgen; Schoofs, Liliane; De Loof, Arnold

    2010-04-01

    Corazonin (Crz) is an 11 amino acid C-terminally amidated neuropeptide that has been identified in most arthropods examined with the notable exception of beetles and an aphid. The Crz-receptor shares sequence similarity to the GnRH-AKH receptor family thus suggesting an ancestral function related to the control of reproduction and metabolism. In 1989, Crz was purified and identified as a potent cardioaccelerating agent in cockroaches (hence the Crz name based on "corazon", the Spanish word for "heart"). Since the initial assignment as a cardioacceleratory peptide, additional functions have been discovered, ranging from pigment migration in the integument of crustaceans and in the eye of locusts, melanization of the locust cuticle, ecdysis initiation and in various aspects of gregarization in locusts. The high degree of structural conservation of Crz, its well-conserved (immuno)-localization, mainly in specific neurosecretory cells in the pars lateralis, and its many functions, suggest that Crz is vital. Yet, Crz-deficient insects develop normally. Upon reexamining all known effects of Crz, a hypothesis was developed that the evolutionary ancient function of Crz may have been "to prepare animals for coping with the environmental stressors of the day". This function would then complement the role of pigment-dispersing factor (PDF), the prime hormonal effector of the clock, which is thought "to set a coping mechanism for the night".

  2. Inflorescences of the Bromeliad Vriesea friburgensis as Nest Sites and Food Resources for Ants and Other Arthropods in Brazil

    Directory of Open Access Journals (Sweden)

    Volker S. Schmid

    2014-01-01

    Full Text Available For the first time, the usage of bromeliad inflorescences as nesting sites for ants and other arthropods was studied. Frequencies of occurrence of nests were recorded from hollow stems of dried infructescences of the bromeliad Vriesea friburgensis on Santa Catarina Island, southern Brazil. Three habitat types were studied: miconietum and two types of restinga, one with low (restinga-low and one with high vegetation cover (restinga-high. Additionally, flower visitation by ants was examined in restinga-low. Out of 619 infructescences, 33% contained nests. Ants were the most frequent occupants (82–96% of nests, followed by termites (3–18% and bees (0–0.6%. Species accumulation curves and diversity indices indicate that the diversity of stem-occupying ant species is highest in restinga-low (eight species observed, 18 predicted and lowest in restinga-high (four observed and predicted. Highest similarity of compositions of infructescence-inhabiting ant species was recorded between miconietum and restinga-high, lowest between restinga-low and restinga-high. Similarity between compositions of inflorescence-visiting and infructescence-inhabiting species in restinga-low was even higher (compared with the cases described in the previous sentence although 50% of the involved species were present in only one of the samples. Altogether, our results indicate that inflorescences are important resources for ants and other nest-building insects from flowering season to past-fruiting season.

  3. Tier-1 assays for assessing the toxicity of insecticidal proteins produced by genetically engineered plants to non-target arthropods.

    Science.gov (United States)

    Li, Yun-He; Romeis, Jörg; Wu, Kong-Ming; Peng, Yu-Fa

    2014-04-01

    In assessing an insect-resistant genetically engineered (IRGE) crop before its commercialization, researchers normally use so-called "Tier-1 assays" as the initial step to determine the effects of the crop on non-target organisms. In these tests, the insecticidal proteins (IPs) produced by the IRGEs are added to the diets of test organisms in the laboratory. Test organisms in such assays can be directly exposed to much higher concentrations of the test IPs than they would encounter in the field. The results of Tier-1 assays are thus more conservative than those generated in studies in which the organisms are exposed to the IPs by feeding on IRGE plant tissue or in the case of predators or parasites, by feeding on invertebrate prey or hosts that have fed on IRGE plant tissue. In this report, we consider three important factors that must be considered in Tier-1 assays: (i) methods for delivery of the IP to the test organisms; (ii) the need for and selection of compounds used as positive controls; and (iii) methods for monitoring the concentration, stability and bioactivity of the IP during the assay. We also analyze the existing data from Tier-1 assays regarding the toxicity of Bt Cry proteins to non-target arthropod species. The data indicate that the widely used Bt proteins have no direct toxicity to non-target organisms.

  4. Field trials to evaluate the effects of transgenic cry1Ie maize on the community characteristics of arthropod natural enemies.

    Science.gov (United States)

    Guo, Jingfei; He, Kanglai; Hellmich, Richard L; Bai, Shuxiong; Zhang, Tiantao; Liu, Yunjun; Ahmed, Tofael; Wang, Zhenying

    2016-02-26

    Possible non-target effect of transgenic cry1Ie maize exerts on natural enemy community biodiversity in the field is unresolved. In the present study, a 2-yr comparison of transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) on natural enemy community biodiversity were compared with whole plant inspections, pitfall traps and suction sampler. Natural enemy diversity indices (Shannon-Wiener', Simpson's and Pielou's index) and abundance suggested there were no significant differences between the two types of maize. The only exceptions were the Pielou's index for whole plant inspections in 2013 and abundance for pitfall traps in 2012, which were significantly higher in Bt maize than those of non-Bt maize. The main species of natural enemies were identical in Bt and non-Bt maize plots for each method and the three methods combined. For whole plant inspections, Bt maize had no time-dependent effect on the entire arthropod natural enemy community, and also no effect on community dissimilarities between Bt and non-Bt maize plots. These results suggested that despite the presence of a relatively minor difference in natural enemy communities between Bt and non-Bt maize, transgenic cry1Ie maize had little, if any, effect on natural enemy community biodiversity.

  5. Molecular survey on the presence of zoonotic arthropod-borne pathogens in wild red deer (Cervus elaphus).

    Science.gov (United States)

    Ebani, Valentina Virginia; Rocchigiani, Guido; Bertelloni, Fabrizio; Nardoni, Simona; Leoni, Alessandro; Nicoloso, Sandro; Mancianti, Francesca

    2016-08-01

    To estimate the prevalence of some zoonotic tick-borne pathogens in red deer (Cervus elaphus) living in Italian areas with high risk of arthropod exposure, blood samples from 60 red deer were tested by PCR for A. phagocytophilum, Borrelia burgdorferi s.l., Coxiella burnetii, Francisella tularensis, and piroplasms. Thirty-four (56.67%) animals resulted positive for one or more pathogens. In particular, 24 (40%) red deer were positive for A. phagocytophilum, 16 (26.67%) for Babesia divergens, 6 (10%) for C. burnetii, 2 (3.33%) for B. burgdorferi s.l. No positive reaction was observed for F. tularensis. Thirteen (21.67%) animals resulted co-infected by two or three pathogens. Red deer is confirmed as competent reservoir of A. phagocytophilum and B. divergens, but not of B. burgdorferi. This is the first report of C. burnetii-positive red deer in central Italy. Hunters may be at risk of infection both through infected ticks and during the infected cervids carcasses dressing. PMID:27477510

  6. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: prospects for enhanced use in agriculture.

    Science.gov (United States)

    Lu, Zhong-Xian; Zhu, Ping-Yang; Gurr, Geoff M; Zheng, Xu-Song; Read, Donna M Y; Heong, Kong-Luen; Yang, Ya-Jun; Xu, Hong-Xing

    2014-02-01

    Reduction of noncrop habitats, intensive use of pesticides and high levels of disturbance associated with intensive crop production simplify the farming landscape and bring about a sharp decline of biodiversity. This, in turn, weakens the biological control ecosystem service provided by arthropod natural enemies. Strategic use of flowering plants to enhance plant biodiversity in a well-targeted manner can provide natural enemies with food sources and shelter to improve biological control and reduce dependence on chemical pesticides. This article reviews the nutritional value of various types of plant-derived food for natural enemies, possible adverse effects on pest management, and the practical application of flowering plants in orchards, vegetables and field crops, agricultural systems where most research has taken place. Prospects for more effective use of flowering plants to maximize biological control of insect pests in agroecosystem are good but depend up on selection of optimal plant species based on information on the ecological mechanisms by which natural enemies are selectively favored over pest species.

  7. Prenuptial perfume: Alloanointing in the social rituals of the crested auklet ( Aethia cristatella) and the transfer of arthropod deterrents

    Science.gov (United States)

    Douglas, Hector D.

    2008-01-01

    Alloanointing, the transfer of chemicals between conspecifics, is known among mammals, but hitherto, the behavior has not been documented for birds. The crested auklet ( Aethia cristatella), a colonial seabird of Alaskan and Siberian waters, alloanoints during courtship with fragrant aldehydes that are released from specialized wick-like feathers located in the interscapular region. Crested auklets solicit anointment at the colony, and prospective mates rub bill, breast, head, and neck over wick feathers of their partners. This distributes aldehydes over the head, neck, and face where the birds cannot self-preen. The resulting chemical concentrations are sufficient to deter ectoparasites. Auklets that emit more odorant can transfer more defensive chemicals to mates and are thus more sexually attractive. Behavioral studies showed that crested auklets are attracted to their scent. Wild birds searched for dispensers that emitted their scent and rubbed their bills on the dispensers and engaged in vigorous anointment behaviors. In captive experiments, naïve crested auklets responded more strongly to synthetic auklet scent than controls, and the greatest behavioral response occurred during early courtship. This study extends scientific knowledge regarding functions of alloanointing. Alloanointing had previously been attributed to scent marking and individual recognition in vertebrates. Alloanointing is described here in the context of an adaptive social cue — the transfer of arthropod deterrents between prospective mates.

  8. Impact of habitat diversification on arthropod communities: A study in the fields of Chinese cabbage, Brassica chinensis

    Institute of Scientific and Technical Information of China (English)

    HONG-JIAO CAI; ZHI-SHENG LI; MIN-SHENG YOU

    2007-01-01

    Field trials were carried out from June to August in 2004 at Wuyishan (Wuyi Mountains), Fujian province, China, to determine the effects of habitat diversification on arthropod communities. Two Chinese cabbage, Brassica chinensis, field 1 (Fl) and field 2 (F2) surrounded by diverse vegetable cultivars were selected, while a monoculture of Chinese cabbage served as the control field (CK). The results showed that: (i) when comparing insect abundance of each order between different habitats, significantly higher numbers of lepidopterous insects (39.76% from the each order) and lower densities of Hymenoptera (19.82%) were found in CK than in F1 and F2; (ii) compared with CK, F1 and F2 had a lower percentage of species richness and an abundance of herbivorous insects, but increased richness, abundance and biodiversity of predatory insects; (iii) no differences were observed in neutral insects' guild between different fields; and (iv) the dominant species for each guild depends on the habitat types and sampling dates. This study suggests that intercropping could conceivably be used in these habitats to increase the population of natural predators, thus achieving desirable and ecologically friendly results in vegetable fields.

  9. Parasites of South African wildlife. VIII. Helminth and arthropod parasites of warthogs, Phacochoerus aethiopicus, in the eastern Transvaal.

    Science.gov (United States)

    Boomker, J; Horak, I G; Booyse, D G; Meyer, S

    1991-09-01

    Helminth and arthropod parasites were collected from 41 warthogs, Phacochoerus aethiopicus, in the Hoedspruit Nature Reserve, eastern Transvaal. This reserve consists of a military base, which is a restricted area and is surrounded by a reserve, which is open to the public. Eleven nematode species, 1 or 2 cestode species and the larvae of 2 cestode species were recovered from the animals in the reserve, and 8 nematode species and 1 or 2 cestode species were recovered from those in the military base. Oesophagostomum spp. were generally most abundant in warthogs in the reserve during the cooler months of the year, while Probstmayria vivipara also occurred in peak numbers during the cooler months, with an additional peak in October and November 1988 in warthogs in the reserve and the base, respectively. No pattern of seasonal abundance could be determined for the other helminth species. The warthogs also harboured 8 ixodid and 1 argasid tick species, 3 flea species and 1 louse species. Adult and immature Haematopinus phacochoeri were most numerous during August and September, and the largest numbers of adult Rhipicephalus simus were present from December to April. PMID:1923382

  10. Diversity of the Arthropod edaphic fauna in preserved and managed with pasture areas in Teresina-Piauí-Brazil.

    Science.gov (United States)

    Luz, R A; Fontes, L S; Cardoso, S R S; Lima, E F B

    2013-08-01

    The soil fauna plays an important function over the processes of organic matter decomposition, nutrient cycling, ground aeration and fertility. Thus, studies on the composition and structure of such communities are important, considering moreover the lack of information in different regions of Brazil and mainly related to the state of Piauí. This study aimed to evaluate the density and diversity of the soil arthropod fauna in a Cerrado area in preservation conditions and in a pasture area. Both are situated in the city of Teresina, capital of the state of Piauí. Pitfall traps were used for sampling. Five stations with four traps were placed in each area. The traps were constituted by a 500 mL plastic cup containing a preserving solution made with 70% alcohol and 40% formalin. The traps were weekly changed by occasion of the collections. Eight samples were performed in the period between March and April 2007. The results were evaluated using the following variables: number of orders, number of families, total of species and total number of individuals. Evaluation of the Diversity Index and Similarity Coefficient were also performed. As result, the variables and diversity indices were slightly higher in the preserved area. However, the similarity coefficient showed only 10% similarity between both areas. PMID:24212687

  11. An assessment of arthropod prey resources at Nakula Natural Area Reserve, a potential site of reintroduction for Kiwikiu (Pseudonestor xanthophrys) and Maui `Alauahio (Parareomyza montana).

    Science.gov (United States)

    Banko, Paul C.; Peck, Robert W.; Cappadonna, Justin; Steele, Claire; Leonard, David L.; Mounce, Hanna L.; Becker, Dusti; Swinnerton, Kirsty

    2015-01-01

    Hawaiian forest birds have declined dramatically since humans arrived in the archipelago. Birds from all foraging guilds have been affected but insectivorous species are currently at greatest risk of extinction. On the island of Maui, populations and ranges of the insectivorous kiwikiu (Maui parrotbill; Pseudonestor xanthophrys) and Maui ‘alauahio (Maui creeper; Paroreomyza montana) have declined significantly from historic levels primarily due to habitat loss, predation,disease, and food web disruption, leading to federal listings of endangered species and species of concern, respectively. Recovery plans for these birds include reestablishment of populations in parts of their former range. Nakula Natural Area Reserve on the leeward side of HaleakalāVolcano has been targeted for release of wild-caught or captive-bred individuals. The mesic, montane koa-‘ōhi‘a (Acacia koa-Metrosideros polymorpha) forest at Nakula has been heavily impacted through grazing by feral ungulates, but recent management actions to exclude these animals are promoting forest recovery. The objective of this study was to assess the arthropod prey base at Nakula in preparation for reintroductions of kiwikiu and Maui ‘alauahio. To accomplish that goal, we compared arthropod abundances at Nakula to those at Hanawi Natural Area Reserve and Waikamoi Preserve, areas where kiwikiu and Maui ‘alauahio are currently found. We also identified diets of kiwikiu and Maui ‘alauahio from fecal samples to better understand and evaluate the prey base at Nakula. Assessment methods included clipping branch tips to sample arthropods within the foliage of koa and ‘ōhi‘a, using traps to quantify arthropods on koa and ‘ōhi‘a bark surfaces, counting exit holes to quantify abundances of beetles (Coleoptera) within dead branches of koa, and measuring the density of arthropods within the stems of ‘ākala (Rubus hawaiiensis). The diet of kiwikiu was dominated by caterpillars (Lepidoptera larvae

  12. Study on the Comparison of Arthropod Communities in Three Kinds of Cruciferous Vegetable Fields at High Mountainous Area%高山地区3种十字花科蔬菜田节肢动物群落比较研究

    Institute of Scientific and Technical Information of China (English)

    王香萍; 李传仁; 王福莲

    2008-01-01

    [Objective]This research aimed to compare arthropod communities in different cruciferons vegetable fields at high mountainous area and provide guidance for pest control.[Method]The main arthropod species in 3 kinds of cruciferous vegetable fields at high mountainous area were investigated,the composition of arthropod community in different vegetable fields were analyzed.[Result]The main arthropod species in cruciferous vegetables fields at high mountainous area were similar,but had different quantity compositions.The richness was the highest in radish field.[Conclusion]Crop species had great influence on biological community;we should focus on the main pests in the process of pest control.

  13. Foraging range of arthropods with veterinary interest: New insights for Afrotropical Culicoides biting midges (Diptera: Ceratopogonidae) using the ring method.

    Science.gov (United States)

    Bakhoum, M T; Fall, M; Seck, M T; Gardès, L; Fall, A G; Diop, M; Mall, I; Balenghien, T; Baldet, T; Gimonneau, G; Garros, C; Bouyer, J

    2016-05-01

    The identification of blood meal source of arthropod vector species contributes to the understanding of host-vector-pathogen interactions. The aim of the current work was to identify blood meal source in Culicoides biting midge species, biological vectors of internationally important arboviruses of livestock and equids, using a new ecological approach. We examined the correlation between blood meal source identified in engorged Culicoides females collected in a suction light trap and the available vertebrate hosts along four rings (200, 500, 1000 and 2000 m) centered at the trap site and described the foraging range of the three main vector species of veterinary interest present in the study area, Culicoides imicola, Culicoides kingi and Culicoides oxystoma. The study was performed in four sites localized in the Niayes region of Senegal (West Africa) where recent outbreaks of African horse sickness occurred. Blood meal source identification was carried out by species-specific multiplex PCRs with genomic DNA extracted from the abdomen of engorged females collected during nine night collections for twenty-six collections. The four most abundant hosts present in the studied area (horse, cattle, goat and sheep) were surveyed in each ring zone. The blood meal source varied according to Culicoides species and host availability in each site. C. oxystoma and C. imicola females mainly fed on horses readily available at 200 m maximum from the trap location whereas females of C. kingi fed mainly on cattle, at variable distances from the traps (200 to 2000 m). C. oxystoma may also feed on other vertebrates. We discuss the results in relation with the transmission of Culicoides-borne arboviruses and the species dispersion capacities. PMID:26826391

  14. Sources of signal in 62 protein-coding nuclear genes for higher-level phylogenetics of arthropods.

    Directory of Open Access Journals (Sweden)

    Jerome C Regier

    Full Text Available BACKGROUND: This study aims to investigate the strength of various sources of phylogenetic information that led to recent seemingly robust conclusions about higher-level arthropod phylogeny and to assess the role of excluding or downweighting synonymous change for arriving at those conclusions. METHODOLOGY/PRINCIPAL FINDINGS: The current study analyzes DNA sequences from 68 gene segments of 62 distinct protein-coding nuclear genes for 80 species. Gene segments analyzed individually support numerous nodes recovered in combined-gene analyses, but few of the higher-level nodes of greatest current interest. However, neither is there support for conflicting alternatives to these higher-level nodes. Gene segments with higher rates of nonsynonymous change tend to be more informative overall, but those with lower rates tend to provide stronger support for deeper nodes. Higher-level nodes with bootstrap values in the 80% - 99% range for the complete data matrix are markedly more sensitive to substantial drops in their bootstrap percentages after character subsampling than those with 100% bootstrap, suggesting that these nodes are likely not to have been strongly supported with many fewer data than in the full matrix. Data set partitioning of total data by (mostly synonymous and (mostly nonsynonymous change improves overall node support, but the result remains much inferior to analysis of (unpartitioned nonsynonymous change alone. Clusters of genes with similar nonsynonymous rate properties (e.g., faster vs. slower show some distinct patterns of node support but few conflicts. Synonymous change is shown to contribute little, if any, phylogenetic signal to the support of higher-level nodes, but it does contribute nonphylogenetic signal, probably through its underlying heterogeneous nucleotide composition. Analysis of seemingly conservative indels does not prove useful. CONCLUSIONS: Generating a robust molecular higher-level phylogeny of Arthropoda is

  15. Novel identification of Dermacentor variabilis Arp2/3 complex and its role in rickettsial infection of the arthropod vector.

    Directory of Open Access Journals (Sweden)

    Natthida Petchampai

    Full Text Available Tick-borne spotted fever group (SFG Rickettsia species must be able to infect both vertebrate and arthropod host cells. The host actin-related protein 2/3 (Arp2/3 complex is important in the invasion process and actin-based motility for several intracellular bacteria, including SFG Rickettsia in Drosophila and mammalian cells. To investigate the role of the tick Arp2/3 complex in tick-Rickettsia interactions, open reading frames of all subunits of the protein including Arp2, Arp3, ARPC1, ARPC2, ARPC3, ARPC4, and ARPC5 were identified from Dermacentor variabilis. Amino acid sequence analysis showed variation (ranging from 25-88% in percent identity compared to the corresponding subunits of the complex from Drosophila melanogaster, Mus musculus, Homo sapiens, and Saccharomyces cerevisiae. Potential ATP binding sites were identified in D. variabilis (Dv Arp2 and Arp3 subunits as well as five putative WD (Trp-Asp motifs which were observed in DvARPC1. Transcriptional profiles of all subunits of the DvArp2/3 complex revealed greater mRNA expression in both Rickettsia-infected and -uninfected ovary compared to midgut and salivary glands. In response to R. montanensis infection of the tick ovary, the mRNA level of only DvARPC4 was significantly upregulated compared to uninfected tissues. Arp2/3 complex inhibition bioassays resulted in a decrease in the ability of R. montanensis to invade tick tissues with a significant difference in the tick ovary, indicating a role for the Arp2/3 complex in rickettsial invasion of tick cells. Characterization of tick-derived molecules associated with rickettsial infection is imperative in order to better comprehend the ecology of tick-borne rickettsial diseases.

  16. Effect of plant nitrogen and water status on the foraging behavior and fitness of an omnivorous arthropod.

    Science.gov (United States)

    Han, Peng; Dong, Yongcheng; Lavoir, Anne-Violette; Adamowicz, Stéphane; Bearez, Philippe; Wajnberg, Eric; Desneux, Nicolas

    2015-12-01

    Omnivorous arthropods make dietary choices according to the environment in which they forage, mainly availability/quality of plant and/or prey resources. Such decisions and their subsequent impacts on life-history traits may be affected by the availability of nutrients and water to plants, that is, through bottom-up forces. By setting up arenas for feeding behavior observation as well as glasshouse cages for plant preference assessment, we studied effects of the presence of prey (Lepidoptera eggs) and nitrogen/water availability to host tomato plants on the foraging behavior and life-history traits in the omnivorous predator Macrolophus pygmaeus (Heteroptera: Miridae). In the absence of prey, the predator fed equally on the plants treated with various levels of nitrogen and water. In the presence of prey, however, the feeding rate on plants decreased when the plant received low water input. The feeding rate on prey was positively correlated with feeding rate on plants; that is, prey feeding increased with plant feeding when the plants received high water input. Moreover, plants receiving high water input attracted more M. pygmaeus adults compared with those receiving low water input. For M. pygmaeus fitness, the presence of prey enhanced its fertility and longevity, but the longevity decreased when plants received low compared with high water input. In conclusion, the omnivorous predator may be obliged to feed on plants to obtain water, and plant water status may be a limiting factor for the foraging behavior and fitness of the omnivorous predator. PMID:27069598

  17. DIRS retroelements in arthropods: identification of the recently active TcDirs1 element in the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Goodwin, T J D; Poulter, R T M; Lorenzen, M D; Beeman, R W

    2004-08-01

    Members of the DIRS family of retrotransposons differ from most other known retrotransposons in that they encode a tyrosine recombinase (YR), a type of enzyme frequently involved in site-specific recombination. This enzyme is believed to insert the extrachromosomal DNA intermediate of DIRS element retrotransposition into the host genome. DIRS elements have been found in plants, a slime mold, fungi, and a variety of animals including vertebrates, echinoderms and nematodes. They have a somewhat patchy distribution, however, apparently being absent from a number of model organisms such as Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster. In this report we describe the first DIRS retroelement to be identified in an arthropod. This element, TcDirs1, was found in the red flour beetle Tribolium castaneum (Coleoptera). It is generally similar in sequence and structure to several previously described members of the DIRS group: it is bordered by inverted terminal repeats and it has a similar set of protein-coding domains (Gag, reverse transcriptase/ribonuclease H, and the YR), although these are arranged in a novel fashion. TcDirs1 elements exhibit several features indicative of recent activity, such as intact coding regions, a high level of sequence similarity between distinct elements and polymorphic insertion sites. Given their presence in an experimentally tractable host, these potentially active elements might serve as useful models for the study of DIRS element retrotransposition. An element closely related to TcDirs1 was also detected in sequences from a second arthropod, the honey bee Apis mellifera (Hymenoptera), suggesting that these retrotransposons are long-term residents of arthropod genomes. PMID:15221458

  18. 不同类型茶园节肢动物群落结构研究%Research on Structure of Arthropod Community in Different Tea Gardens

    Institute of Scientific and Technical Information of China (English)

    玉香甩; 冉隆繤; 刘关所; 浦恩达; 李慧; 孙雪梅; 刘本英; 陈剑锋

    2016-01-01

    A three -year investigation on the structure of arthropod community was carried out in three different tea gardens,i.e.pure tea garden,camphor tree -tea and mango tree -tea intercropping gardens. The analysis was conducted from aspects of richness,evenness,dominance index,stability coefficient (Ss /Si ) and variation coefficient (ds /dm ).The results indicated that the diversity indexes of arthropod communities in tea gardens intercropped with camphor and mango tree were higher,and they possessed better richness,diver-sity and evenness.It showed that the restrictive interactions among different species in arthropod communities in intercropping tea gardens were stronger than those in pure tea garden,and the structures were better.%连续三年分别对樟-茶间作茶园、芒果-茶间作茶园和纯茶园中节肢动物群落结构进行系统调查,并从丰富度、均匀度、优势度指数、稳定性系数值 Ss /Si 和变异系数 ds /dm 等方面进行了分析。结果表明:樟-茶间作茶园和芒果-茶间作茶园中节肢动物群落的多样性指数较高,具有更大的丰富度、更丰富的多样性和更高的均匀性,表明樟与茶间作、芒果与茶间作后茶园节肢动物群落内各物种间制约关系强于纯茶园,结构更趋合理。

  19. Efeito de milho Bt sobre a entomofauna não alvo Side-effect of maize Bt on non-target arthropods

    Directory of Open Access Journals (Sweden)

    Filomena Martins

    2008-12-01

    Full Text Available Com o objectivo de verificar o impacte de milho Bt na fauna auxiliar de artrópodes, cultivaram-se, durante três anos (2002-2004, duas variedades de milho geneticamente modificadas (Compa CB e Elgina e as suas isogénicas (Dracma e Cecília. Os ensaios foram realizados no Núcleo de Ensaios e de Controlo do Escaroupim, no Ribatejo. As amostragens de artrópodes auxiliares foram realizadas quinzenalmente, durante o ciclo vegetativo da cultura, em quatro talhões, usando o método de aspiração. Não se encontraram diferenças na fauna auxiliar existente, entre as cultivares Bt e as suas isogénicas. Os artrópodes auxiliares mais abundantes, em qualquer dos anos e cultivares, foram os antocorídeos. Os himenópteros foram o segundo grupo mais representado, seguido das aranhas.In order to study the impact of transgenic maize on beneficial arthropods, two varieties of maize Bt (Compa CB and Elgina and the normal ones (Dracma and Cecília were sown. The trials were carried out, in Escaroupim, Ribatejo, from 2002 to 2004. The surveys were done by using a cordless hand vacuum machine, every 15 days, during the growing season. The results showed no significant differences between arthropods caught in maize Bt and the normal one. The beneficials with the highest numbers caught during the three years were Anthocoridae, Hymenoptera and Aranea were the first, second and third most representative groups of beneficial arthropods during the three years.

  20. Effect of heavy metals from soils amended with bio solids and sowed with forages on the abundance and biodiversity of edaphic arthropods

    International Nuclear Information System (INIS)

    There are many studies about positive effects of bio solids application to ameliorate grain and forage production. However it is necessary to know more about the effects of this by-product on edaphic biota. Therefore the goal of this study was to know the effects of heavy metals from bio solids if the wastewater treatment plant of Aguascalientes city (Mexico) on adaphic arthropods in soils sowed with lucerne and corn amended with bio solids at 200 (low), 400 middle) and 800 (high) ton/ha wet weight. (Author)

  1. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA.

    Science.gov (United States)

    Ahmad, Aqeel; Negri, Ignacio; Oliveira, Wladecir; Brown, Christopher; Asiimwe, Peter; Sammons, Bernard; Horak, Michael; Jiang, Changjian; Carson, David

    2016-02-01

    As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual

  2. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA.

    Science.gov (United States)

    Ahmad, Aqeel; Negri, Ignacio; Oliveira, Wladecir; Brown, Christopher; Asiimwe, Peter; Sammons, Bernard; Horak, Michael; Jiang, Changjian; Carson, David

    2016-02-01

    As part of an environmental risk assessment, the potential impact of genetically modified (GM) maize MON 87411 on non-target arthropods (NTAs) was evaluated in the field. MON 87411 confers resistance to corn rootworm (CRW; Diabrotica spp.) by expressing an insecticidal double-stranded RNA (dsRNA) transcript and the Cry3Bb1 protein and tolerance to the herbicide glyphosate by producing the CP4 EPSPS protein. Field trials were conducted at 14 sites providing high geographic and environmental diversity within maize production areas from three geographic regions including the U.S., Argentina, and Brazil. MON 87411, the conventional control, and four commercial conventional reference hybrids were evaluated for NTA abundance and damage. Twenty arthropod taxa met minimum abundance criteria for valid statistical analysis. Nine of these taxa occurred in at least two of the three regions and in at least four sites across regions. These nine taxa included: aphid, predatory earwig, lacewing, ladybird beetle, leafhopper, minute pirate bug, parasitic wasp, sap beetle, and spider. In addition to wide regional distribution, these taxa encompass the ecological functions of herbivores, predators and parasitoids in maize agro-ecosystems. Thus, the nine arthropods may serve as representative taxa of maize agro-ecosystems, and thereby support that analysis of relevant data generated in one region can be transportable for the risk assessment of the same or similar GM crop products in another region. Across the 20 taxa analyzed, no statistically significant differences in abundance were detected between MON 87411 and the conventional control for 123 of the 128 individual-site comparisons (96.1%). For the nine widely distributed taxa, no statistically significant differences in abundance were detected between MON 87411 and the conventional control. Furthermore, no statistically significant differences were detected between MON 87411 and the conventional control for 53 out of 56 individual

  3. Effect of heavy metals from soils amended with bio solids and sowed with forages on the abundance and biodiversity of edaphic arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Pardave, L.; Flores-Tena, F. J.; Hernandez-Sanchez, A. J.

    2009-07-01

    There are many studies about positive effects of bio solids application to ameliorate grain and forage production. However it is necessary to know more about the effects of this by-product on edaphic biota. Therefore the goal of this study was to know the effects of heavy metals from bio solids if the wastewater treatment plant of Aguascalientes city (Mexico) on adaphic arthropods in soils sowed with lucerne and corn amended with bio solids at 200 (low), 400 middle) and 800 (high) ton/ha wet weight. (Author)

  4. 猕猴桃园节肢动物群落结构及其动态研究%Structure and dynamics of arthropod communities in kiwifruit orchards

    Institute of Scientific and Technical Information of China (English)

    杜超; 伏召辉; 赵惠燕

    2011-01-01

    【目的】探讨猕猴桃园节肢动物群落特征、结构组成及动态规律,为猕猴桃园害虫防治提供依据。【方法】在猕猴桃种植面积较大、产量较高的周至、眉县2县,选择树龄分别为3,9和14年生的人工栽植猕猴桃园及秦岭山区野生园为调查对象,系统调查园内节肢动物群落的种类和数量,测定群落的丰富度、多样性及均匀度等指标,并用Matlab7.1平均距离法进行系统聚类分析,用SPSS16.0进行主分量分析,研究园内节肢动物群落的变化规律。【结果】猕猴桃园节肢动物群落分属3纲,15目,74科,约有90种。野生猕猴桃园节肢动物群落最稳定,栽植园群落稳定性9年生园〉14年生园〉3年生园。野生猕猴桃园及3个人工栽植园之间,节肢动物群落的多样性、均匀度和优势度差异均显著。野生猕猴桃园节肢动物群落多样性、均匀度、优势度的动态变化较人工栽植园平稳;3个人工栽植园群落多样性和均匀度在7月份出现低谷,优势度在7月份出现高峰。聚类结果表明,9年生园节肢动物群落与14年生园首先聚为一类,再与3年生园聚为一类,最后与野生园聚为一类。随着树龄的增长,主导节肢动物群落的最主要因子由捕食性类群逐渐转变为植食性类群。野生猕猴桃节肢动物群落数量的高峰出现在6月份,且以天敌亚群落为主;栽植园群落高峰期出现在7月份,且以害虫亚群落为主。【结论】3个人工栽植猕猴桃园内节肢动物群落消长动态起伏较大。在5月份14年生园中叶蝉数量较多,7月份各栽植园中的山楂叶螨数量较多,8-9月份9和14年生园中小薪甲发生量较大,应适时进行有针对性的防治。%【Objective】 Study on the characteristics,structures and dynamics of arthropod communities in kiwifruit orchards was done to provide evidence for pest control in kiwifruit orchards.【Method】 In Zhouzhi and Meixian

  5. Un gisement sparnacien exceptionnel à plantes, arthropodes et vertébrés (Éocène basal, MP7): Le Quesnoy (Oise, France)

    Science.gov (United States)

    Nel, André; de Plöeg, Gaël; Dejax, Jean; Dutheil, Didier; de Franceschi, Dario; Gheerbrant, Emmanuel; Godinot, Marc; Hervet, Sophie; Menier, Jean-Jacques; Augé, Marc; Bignot, Gérard; Cavagnetto, Carla; Duffaud, Sylvain; Gaudant, Jean; Hua, Stéphane; Jpssang, Akino; de Lapparent de Broin, France; Pozzi, Jean-Pierre; Paicheler, Jean-Claude; Beuchet, Françoise; Rage, Jean-Claude

    1999-08-01

    A new fossil locality is reported from the argiles à lignite du Soisonnais (Early Ypresian, MP7) of the Oise region (France). After the preliminary survey of the flora and the vertebrate and arthropod faunas, we propose a reconstruction of a fluvio-lacustrine palaeoenvironment with a forest, under a warm and wet seasonal climate. This site is outstanding because of the richness, diversity and the state of preservation of the fossils. The present discovery opens a unique window on terrestrial life during the Earliest Eocene.

  6. Status and risk assessment of the use of transgenic arthropods in plant protection. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    New developments in the modern biotechnology have opened up the possibility of introducing genes into the germline of many insect species, including those of agricultural importance. This technology offers the potential to improve current pest control strategies that incorporate the Sterile Insect Technique (SIT). Potential improvements include the development of strains that (1) produce only male insects for sterilization and release and (2) carry a marker that distinguishes them from wild insects. There are many institutions involved in the development of transgenic insect technology both for studies on basic gene regulation and for the creation of transgenic strains for use in a wide range of insect control programmes. It has been realized that the release into the environment of transgenic insects will not be an easy process considering the current public sensitivities in this area. The fact that insects are mobile and that once released cannot be recalled creates much concern. If fertile transgenic insects were to be released in any type of control programme, then the transgene would enter the wild population through mating. This strategy is fraught with, as yet, unknown risks and it is inconceivable that regulatory approval will be given for such a release in the near future. However, when transgenic strains are integrated into a sterile insect release then the concerns about transmission of the transgene to the wild population disappear as the matings between the released and the wild insects are sterile. This scenario is likely to be the first type of transgenic release. Insects that are currently released in SIT programmes experience no significant regulatory problems, but this will not be the case if the insects that are released are transgenic, even if they are sterile. The meeting Status and Risk Assessment of the Use of Transgenic Arthropods in Plant Protection held in FAO Headquarters, Rome, in April 2002 was the first effort to bring together

  7. High throughput nano-liter RT-qPCR to classify soil contamination using a soil arthropod

    Directory of Open Access Journals (Sweden)

    van Straalen Nico M

    2011-03-01

    Full Text Available Abstract Background To incorporate genomics data into environmental assessments a mechanistic perspective of interactions between chemicals and induced biological processes needs to be developed. Since chemical compounds with structural similarity often induce comparable biological responses in exposed animals, gene expression signatures can serve as a starting point for the assessment of chemicals and their toxicity, but only when relevant and stable gene panels are available. To design such a panel, we isolated differentially expressed gene fragments from the soil arthropod Folsomia candida, a species often used for ecotoxicological testing. Animals were exposed to two chemically distinct compounds, being a metal (cadmium and a polycyclic aromatic hydrocarbon (phenanthrene. We investigated the affected molecular responses resulting from either treatment and developed and validated 44 qPCR assays for their responses using a high throughput nano-liter RT-qPCR platform for the analysis of the samples. Results Suppressive subtractive hybridization (SSH was used to retrieve stress-related gene fragments. SSH libraries revealed pathways involved in mitochondrial dysfunction and protein degradation for cadmium and biotransformation for phenanthrene to be overrepresented. Amongst a small cluster of SSH-derived cadmium responsive markers were an inflammatory response protein and an endo-glucanase. Conversely, cytochrome P450 family 6 or 9 was specifically induced by phenanthrene. Differential expressions of these candidate biomarkers were also highly significant in the independently generated test sample set. Toxicity levels in different training samples were not reflected by any of the markers' intensity of expressions. Though, a model based on partial least squares differential analysis (PLS-DA (with RMSEPs between 9 and 22% and R2s between 0.82 and 0.97 using gene expressions of 25 important qPCR assays correctly predicted the nature of exposures of

  8. The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation.

    Science.gov (United States)

    Wardhaugh, Carl W

    2014-11-01

    Arguably the majority of species on Earth utilise tropical rainforest canopies, and much progress has been made in describing arboreal assemblages, especially for arthropods. The most commonly described patterns for tropical rainforest insect communities are host specificity, spatial specialisation (predominantly vertical stratification), and temporal changes in abundance (seasonality and circadian rhythms). Here I review the recurrent results with respect to each of these patterns and discuss the evolutionary selective forces that have generated them in an attempt to unite these patterns in a holistic evolutionary framework. I propose that species can be quantified along a generalist-specialist scale not only with respect to host specificity, but also other spatial and temporal distribution patterns, where specialisation is a function of the extent of activity across space and time for particular species. When all of these distribution patterns are viewed through the paradigm of specialisation, hypotheses that have been proposed to explain the evolution of host specificity can also be applied to explain the generation and maintenance of other spatial and temporal distribution patterns. The main driver for most spatial and temporal distribution patterns is resource availability. Generally, the distribution of insects follows that of the resources they exploit, which are spatially stratified and vary temporally in availability. Physiological adaptations are primarily important for host specificity, where nutritional and chemical variation among host plants in particular, but also certain prey species and fungi, influence host range. Physiological tolerances of abiotic conditions are also important for explaining the spatial and temporal distributions of some insect species, especially in drier forest environments where desiccation is an ever-present threat. However, it is likely that for most species in moist tropical rainforests, abiotic conditions are valuable

  9. The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart: a novel gene arrangement among arthropods

    Directory of Open Access Journals (Sweden)

    Vanholme Bartel

    2009-03-01

    Full Text Available Abstract Background The apparent scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks. This subclass encompasses over 48,000 species and forms the largest group within the Arachnida. Although mitochondrial genomes are widely utilised for phylogenetic and population genetic studies, only 20 mitochondrial genomes of Acari have been determined, of which only one belongs to the diverse order of the Sarcoptiformes. In this study, we describe the mitochondrial genome of the European house dust mite Dermatophagoides pteronyssinus, the most important member of this largely neglected group. Results The mitochondrial genome of D. pteronyssinus is a circular DNA molecule of 14,203 bp. It contains the complete set of 37 genes (13 protein coding genes, 2 rRNA genes and 22 tRNA genes, usually present in metazoan mitochondrial genomes. The mitochondrial gene order differs considerably from that of other Acari mitochondrial genomes. Compared to the mitochondrial genome of Limulus polyphemus, considered as the ancestral arthropod pattern, only 11 of the 38 gene boundaries are conserved. The majority strand has a 72.6% AT-content but a GC-skew of 0.194. This skew is the reverse of that normally observed for typical animal mitochondrial genomes. A microsatellite was detected in a large non-coding region (286 bp, which probably functions as the control region. Almost all tRNA genes lack a T-arm, provoking the formation of canonical cloverleaf tRNA-structures, and both rRNA genes are considerably reduced in size. Finally, the genomic sequence was used to perform a phylogenetic study. Both maximum likelihood and Bayesian inference analysis clustered D. pteronyssinus with Steganacarus magnus, forming a sistergroup of the Trombidiformes. Conclusion Although the mitochondrial genome of D. pteronyssinus shares different features with previously characterised Acari mitochondrial genomes, it is unique in many ways. Gene

  10. 珠海荔枝园节肢动物群落动态及其主要益害虫相关性研究%DYNAMICS OF ARTHROPOD COMMUNITY IN LITCHI ORCHARD HABITATS IN ZHUHAI

    Institute of Scientific and Technical Information of China (English)

    马飞飞; 李文芬; 汪波; 颜亨梅

    2012-01-01

    于2010—2011年系统调查了珠海凤凰山区荔枝园内节肢动物群落,分析了群落的结构组成、时空动态及主要益害虫相互作用关系,结果如下:1)共采集到节肢动物2个纲、16个目、48个科、79个种,其中害虫35种,捕食性节肢动物29种,中性昆虫9种,寄生性节肢动物6种.荔枝园节肢动物群落较丰富,益害虫优势种明显.2)随着温度变化,群落总体及个各类群的物种在5—11月份丰富度最大.3)害虫优势种为荔枝蝽(Tessaratoma papillosa)与荔枝瘿螨(Aceria litchii).其主要天敌为锥腹肖蛸(Tetragnatha maxillosa)、草间小黑蛛(Erigonidium graminicolum)和异色瓢虫(Leis axyridis).%Arthropod community in lychee orchard was analyzed in terms of community composition and dynamics, main pests and their natural enemies. A total of 2 classes, 16 orders, 48 families, 79 kinds of arthropods were collected, including 35 pest species, 29 predatory arthropods, and 9 neutral predators. Arthropods were abundant in lychee orchards, dominant species were obvious. Dynamic changes in lychee arthropod community structure were observed, the arthropod community being the richer from May to November. The major harmful insect pecies were Tessaratoma papillosa and Aceria litchii, their natural enemies were Tetragnatha maxillosa , Erigonidium graminicolum and Leis axyridis.

  11. Co-occurrence analyses show that non-random community structure is disrupted by fire in two groups of soil arthropods (Isopoda Oniscidea and Collembola)

    Science.gov (United States)

    Pitzalis, Monica; Luiselli, Luca; Bologna, Marco A.

    2010-01-01

    In this paper, we tested the hypothesis that natural catastrophes may destroy non-random community structure in natural assemblages of organisms. As a study system, we selected fire as the catastrophic event, and two groups of soil arthropods (Collembola and Isopoda Oniscidea) as target organisms. By co-occurrence analyses and Monte Carlo simulations of niche overlap analysis (C-score, with fixed-equiprobable model; RA2 and RA3 algorithms) we evaluated whether the community structure of these two groups were random/non-random at three unburnt sites and at three neighbour burnt sites that were devastated by a large-scale fire in summer 2000. Both taxa experienced a remarkable reduction in the number of species sampled in burnt versus unburnt sites, but the difference among sites was not statistically significant for Oniscidea. We determined that community structure was clearly non-random at the unburnt sites for both Collembola (according to RA3 algorithm) and Isopoda Oniscidea (according to co-occurrence analysis) and that, as predicted by theory, the catastrophic event did deeply alter the community structure by removing the non-random organization of the species interactions. We also observed a shift from segregation to aggregation/randomness in soil arthropods communities affected by fire, a pattern that was similar to that observed in natural communities of organisms perturbed by the introduction of alien species, thus indicating that this pattern may be generalizable when alteration of communities may occur.

  12. First record of arthropods associated with Greigia juareziana (Bromeliaceae Primer registro de artrópodos asociados a Greigia juareziana (Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Fernando Hernández-Baz

    2011-09-01

    Full Text Available Here we present the first known records for Mexico and the Neotropics of arthropods associated with the terrestrial bromeliad Greigia juareziana. The site locality for the collection of the host species is the southeast portion of the San Martín Tuxtla volcano in the state of Veracruz, Mexico. Four species of arthropods were detected within the leaf axils and infloresences of the bromeliad, 3 of which were insects Anasa bellator, Proxis punctulatus and Apion sp. belonging to the Orders of Hemiptera and Coleoptera. The remaining species was identified only to family (Myriapoda: Chilopoda: Lithobidae.Presentamos los primeros registros conocidos para México y los neotrópicos de los artrópodos asociados con la bromelia terrestre Greigia juareziana. La localidad para la recolección de esta especie es la parte sureste del volcán San Martín Tuxtla, en el estado de Veracruz, México. Se detectaron 4 especies de artrópodos dentro de las axilas de las hojas e inflorescencias de la bromelia, 3 de los cuales fueron insectos Anasa bellator, Proxies punctulatus y Apion sp., pertenecientes a los órdenes Hemiptera y Coleoptera. La especie restante fue identificada sólo hasta familia (Myriapoda: Chilopoda: Lithobidae.

  13. Time-invariant differences between plant individuals in interactions with arthropods correlate with intraspecific variation in plant phenology, morphology and floral scent.

    Science.gov (United States)

    Kuppler, Jonas; Höfers, Maren K; Wiesmann, Lisa; Junker, Robert R

    2016-06-01

    The basic units of ecological and evolutionary processes are individuals. Network studies aiming to infer mechanisms from complex systems, however, usually focus on interactions between species, not individuals. Accordingly, the structure and underlying mechanisms of individual-based interaction networks remain largely unknown. In a common garden, we recorded all interactions on flowers and leaves of 97 Sinapis arvensis individuals from seedling stage to fruit set and related interindividual differences in interactions to the plant individuals' phenotypes. The plant individuals significantly differed in their quantitative and qualitative interactions with arthropods on flowers and leaves. These differences remained stable over the entire season and thus were time-invariant. Variation in interacting arthropod communities could be explained by a pronounced intraspecific variability in flowering phenology, morphology and flower scent, and translated into variation in reproductive success. Interestingly, plant individuals with a similar composition of flower visitors were also visited by a similar assemblage of interaction partners at leaves. Our results show that the nonuniformity of plant species has pronounced effects in community ecology, potentially with implications for the persistence of communities and populations, and their ability to withstand environmental fluctuations. PMID:26840542

  14. An arthropod sphinx

    Institute of Scientific and Technical Information of China (English)

    XIAO Shuhai

    2004-01-01

    @@ The Sphinx is an enigmatic monster in Greek mythology that had the body of a lion, wings of a bird, and head and bust of a woman. As the myth goes, the Sphinx guarded the gate to Thebes and would kill anyone unable to answer her riddle. The Sphinx riddle was eventually correctly solved by Oedipus who later became the king of Thebes.

  15. Dynamics and Composition of Dominant Guilds and the Biodiversity of Arthropod Community in Spring Zea mays%玉米地节肢动物群落优势功能集团的组成与演替

    Institute of Scientific and Technical Information of China (English)

    丁伟; 赵志模; 王进军; 朱文柄

    2002-01-01

    Systematic investigation and analysis of arthropod in spring Z. Mays in the suburbs of Chongqing was carried out during 1998-1999.The component structure and biodiversity of the arthropod community were studied according to the species,guilds and nutrient classes.The results indicated that there are 320 species of arthropod in spring Z. Mays in the suburbs of Chongqing City.Among this,43.8% is pests,48.4% is natural enemies and 7.8% is other neutral insects.All of the arthropod was divided into 4 nutrient classes,7 guilds,and 22 groups,which include plant-eating groups,natural enemy groups and others.These groups directly or indirectly depend on corns and make up an integrated food chain.Every natural class has its dominant species and key species.But these species change with the growth of corns.In this paper,the function of the dominant species,dominant groups and guilds in the integrated pest management was analyzed.The relationship between abundance, bio-diversity and key species was also analyzed.It is indicated that key species play an important role in pest control.

  16. Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of 'partially' processed pseudogene

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2008-02-01

    Full Text Available Abstract Background Alternative splicing of mutually exclusive exons is an important mechanism for increasing protein diversity in eukaryotes. The insect Mhc (myosin heavy chain gene produces all different muscle myosins as a result of alternative splicing in contrast to most other organisms of the Metazoa lineage, that have a family of muscle genes with each gene coding for a protein specialized for a functional niche. Results The muscle myosin heavy chain genes of 22 species of the Arthropoda ranging from the waterflea to wasp and Drosophila have been annotated. The analysis of the gene structures allowed the reconstruction of an ancient muscle myosin heavy chain gene and showed that during evolution of the arthropods introns have mainly been lost in these genes although intron gain might have happened in a few cases. Surprisingly, the genome of Aedes aegypti contains another and that of Culex pipiens quinquefasciatus two further muscle myosin heavy chain genes, called Mhc3 and Mhc4, that contain only one variant of the corresponding alternative exons of the Mhc1 gene. Mhc3 transcription in Aedes aegypti is documented by EST data. Mhc3 and Mhc4 inserted in the Aedes and Culex genomes either by gene duplication followed by the loss of all but one variant of the alternative exons, or by incorporation of a transcript of which all other variants have been spliced out retaining the exon-intron structure. The second and more likely possibility represents a new type of a 'partially' processed pseudogene. Conclusion Based on the comparative genomic analysis of the alternatively spliced arthropod muscle myosin heavy chain genes we propose that the splicing process operates sequentially on the transcript. The process consists of the splicing of the mutually exclusive exons until one exon out of the cluster remains while retaining surrounding intronic sequence. In a second step splicing of introns takes place. A related mechanism could be responsible for

  17. Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT; a key enzyme for physiological and behavioral switch in arthropods

    Directory of Open Access Journals (Sweden)

    Susumu eHiragaki

    2015-04-01

    Full Text Available The evolution of N-acetyltransfeases (NATs seems complex. Vertebrate arylalkylamine N-acetyltransferase (aaNAT has been extensively studied since it Leads to the synthesis of melatonin, a multifunctional neurohormone prevalent in photoreceptor cells, and is known as as a chemical token of the night. Melatonin also serves as a scavenger for reactive oxygen species. This is also true with invertebrates. NAT therefore has distinct functional implications in circadian function, as timezymes (aaNAT, and also xenobiotic reactions (arylamine NAT or simply NAT. NATs belong to a broader enzyme group, the GCN5-related N-acetyltransferase superfamily. Due to low sequence homology and a seemingly fast rate of structural differentiation, the nomenclature for NATs can be confusing. The advent of bioinformatics, however, has helped to classify this group of enzymes; vertebrates have two distinct subgroups, the timezyme type and the xenobiotic type, which has a wider substrate range including imidazolamine, pharmacological drugs, environmental toxicants and even histone. Insect aaNAT (iaaNAT form their own clade in the phylogeny, distinct from vertebrate aaNATs. Arthropods are unique, since the phylum has exoskeleton in which quinones derived from N-acetylated monoamines function in coupling chitin and arthropodins. Monoamine oxidase (MAO activity is limited in insects, but NAT-mediated degradation prevails. However, unexpectedly iaaNAT occurs not only among arthropods but also among basal deuterostomia, and is therefore more apomorphic. Our analyses illustrate that iaaNATs has unique physiological roles but at the same time it plays a role in a timezyme function, at least in photoperiodism. Photoperiodism has been considered as a function of circadian system but the detailed molecular mechanism is not well understood. We propose a molecular hypothesis for photoperiodism in Antheraea pernyi based on the transcription regulation of NAT interlocked by the

  18. New functions of arthropod bursicon: inducing deposition and thickening of new cuticle and hemocyte granulation in the blue crab, Callinectes sapidus.

    Directory of Open Access Journals (Sweden)

    J Sook Chung

    Full Text Available Arthropod growth requires molt-associated changes in softness and stiffness of the cuticle that protects from desiccation, infection and injury. Cuticle hardening in insects depends on the blood-borne hormone, bursicon (Burs, although it has never been determined in hemolymph. Whilst also having Burs, decapod crustaceans reiterate molting many more times during their longer life span and are encased in a calcified exoskeleton, which after molting undergoes similar initial cuticle hardening processes as in insects. We investigated the role of homologous crustacean Burs in cuticular changes and growth in the blue crab, Callinectes sapidus. We found dramatic increases in size and number of Burs cells during development in paired thoracic ganglion complex (TGC neurons with pericardial organs (POs as neurohemal release sites. A skewed expression of Burs β/Burs α mRNA in TGC corresponds to protein contents of identified Burs β homodimer and Burs heterodimer in POs. In hemolymph, Burs is consistently present at ∼21 pM throughout the molt cycle, showing a peak of ∼89 pM at ecdysis. Since initial cuticle hardness determines the degree of molt-associated somatic increment (MSI, we applied recombinant Burs in vitro to cuticle explants of late premolt or early ecdysis. Burs stimulates cuticle thickening and granulation of hemocytes. These findings demonstrate novel cuticle-associated functions of Burs during molting, while the unambiguous and constant presence of Burs in cells and hemolymph throughout the molt cycle and life stages may implicate further functions of its homo- and heterodimer hormone isoforms in immunoprotective defense systems of arthropods.

  19. Arthropod Distribution and Habitat, Commercial Lobster Fishing Areas of Narragansett Bay; These areas are considered a general, non species specific, reference for lobster fishing areas in Narragansett Bay., Published in 2001, 1:63360 (1in=1mile) scale, State of Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Arthropod Distribution and Habitat dataset, published at 1:63360 (1in=1mile) scale, was produced all or in part from Hardcopy Maps information as of 2001. It...

  20. Arthropod Distribution and Habitat, Lobster Captures (allcaught); This point data set represents most, if not all, of the lobsters captured and recaptured during the University of Rhode Island, Department of Fisheries, Animal, and Veterinary Science Department tag and release study., Published in 2001, 1:9600 (1in=800ft) scale, State of Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Arthropod Distribution and Habitat dataset, published at 1:9600 (1in=800ft) scale, was produced all or in part from Hardcopy Maps information as of 2001. It is...

  1. Arthropod Distribution and Habitat, Lobster Captures (allcaught); This point data set represents most, if not all, of the lobsters captured and recaptured during the University of Rhode Island, Department of Fisheries, Animal, and Veterinary Science Department tag and release study. Rhode I, Published in 2001, 1:4800 (1in=400ft) scale, State of Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Arthropod Distribution and Habitat dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Hardcopy Maps information as of 2001. It is...

  2. Arthropod Distribution and Habitat, Lobster Migration (lobsterln); Lines were created from capture and recapture locations as an approximation of lobster migration in Narragansett Bay., Published in 2001, 1:24000 (1in=2000ft) scale, State of Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Arthropod Distribution and Habitat dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Hardcopy Maps information as of 2001. It...

  3. Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae: evidence for a prominent central olfactory pathway?

    Directory of Open Access Journals (Sweden)

    Krieger Jakob

    2010-09-01

    Full Text Available Abstract Background Several lineages within the Crustacea conquered land independently during evolution, thereby requiring physiological adaptations for a semi-terrestrial or even a fully terrestrial lifestyle. Birgus latro Linnaeus, 1767, the giant robber crab or coconut crab (Anomura, Coenobitidae, is the largest land-living arthropod and inhabits Indo-Pacific islands such as Christmas Island. B. latro has served as a model in numerous studies of physiological aspects related to the conquest of land by crustaceans. From an olfactory point of view, a transition from sea to land means that molecules need to be detected in gas phase instead of in water solution. Previous studies have provided physiological evidence that terrestrial hermit crabs (Coenobitidae such as B. latro have a sensitive and well differentiated sense of smell. Here we analyze the brain, in particular the olfactory processing areas of B. latro, by morphological analysis followed by 3 D reconstruction and immunocytochemical studies of synaptic proteins and a neuropeptide. Results The primary and secondary olfactory centers dominate the brain of B. latro and together account for ca. 40% of the neuropil volume in its brain. The paired olfactory neuropils are tripartite and composed of more than 1,000 columnar olfactory glomeruli, which are radially arranged around the periphery of the olfactory neuropils. The glomeruli are innervated ca. 90,000 local interneurons and ca. 160,000 projection neurons per side. The secondary olfactory centers, the paired hemiellipsoid neuropils, are targeted by the axons of these olfactory projection neurons. The projection neuron axonal branches make contact to ca. 250.000 interneurons (per side associated with the hemiellipsoid neuropils. The hemiellipsoid body neuropil is organized into parallel neuropil lamellae, a design that is quite unusual for decapod crustaceans. The architecture of the optic neuropils and areas associated with antenna two

  4. Bud phenology and growth are subject to divergent selection across a latitudinal gradient in Populus angustifolia and impact adaptation across the distributional range and associated arthropods.

    Science.gov (United States)

    Evans, Luke M; Kaluthota, Sobadini; Pearce, David W; Allan, Gerard J; Floate, Kevin; Rood, Stewart B; Whitham, Thomas G

    2016-07-01

    Temperate forest tree species that span large geographical areas and climatic gradients often have high levels of genetic variation. Such species are ideal for testing how neutral demographic factors and climate-driven selection structure genetic variation within species, and how this genetic variation can affect ecological communities. Here, we quantified genetic variation in vegetative phenology and growth traits in narrowleaf cottonwood, Populus angustifolia, using three common gardens planted with genotypes originating from source populations spanning the species' range along the Rocky Mountains of North America (ca. 1700 km). We present three main findings. First, we found strong evidence of divergent selection (Q ST > F ST) on fall phenology (bud set) with adaptive consequences for frost avoidance. We also found evidence for selection on bud flush duration, tree height, and basal diameter, resulting in population differentiation. Second, we found strong associations with climate variables that were strongly correlated with latitude of origin. More strongly differentiated traits also showed stronger climate correlations, which emphasizes the role that climate has played in divergent selection throughout the range. We found population × garden interaction effects; for some traits, this accounted for more of the variance than either factor alone. Tree height was influenced by the difference in climate of the source and garden locations and declined with increasing transfer distance. Third, growth traits were correlated with dependent arthropod community diversity metrics. Synthesis. Overall, we conclude that climate has influenced genetic variation and structure in phenology and growth traits and leads to local adaptation in P. angustifolia, which can then impact dependent arthropod species. Importantly, relocation of genotypes far northward or southward often resulted in poor growth, likely due to a phenological mismatch with photoperiod, the proximate

  5. Effects of Pest Resistance of Corn Varieties on Arthropod Community in Corn Fields%玉米品种抗虫性对玉米田节肢动物群落的影响

    Institute of Scientific and Technical Information of China (English)

    邵正飞; 缪勇; 王云

    2011-01-01

    Three corn varieties with different levels of pest resistance were selected to study the effects of pest resistance of corn varieties on arthropod community in corn rields. The research results showed that pest resistance of corn varieties had no evident effects on the species richness but had obvious effects on the evenness and diversity of arthropod community in corn fields. The evenness and diversity of arthropod community and the ratio of natural enemies to pests in the fields of corn variety with relatively high level of pest resistance were higher than those in the fields of corn variety with relatively low level of pest resistance. These results indicated that the pest resistance of corn varieties was helpful to increase the stability of arthropod community and the natural control effect of natural enemies on insect pests in corn fields.%选择3个不同抗虫性的玉米品种,研究了玉米品种抗虫性对玉米田节肢动物群落的影响.结果表明,玉米品种抗虫性对玉米田节肢动物群落的物种丰富度无明显影响,但对均匀度和多样性有明显影响,玉米品种抗虫性越高,节肢动物群落的均匀度和多样性越高.抗虫性较高的玉米品种田间益害比明显高于抗虫性较低的玉米品种.说明玉米品种抗虫性有助于提高玉米田节肢动物群落的稳定性和天敌对害虫的自然控制作用.

  6. Do chimpanzees (Pan troglodytes schweinfurthii) exhibit sleep related behaviors that minimize exposure to parasitic arthropods? A preliminary report on the possible anti-vector function of chimpanzee sleeping platforms.

    Science.gov (United States)

    Samson, David R; Muehlenbein, Michael P; Hunt, Kevin D

    2013-01-01

    Great apes spend half of their lives in a nightly "nest" or sleeping platform (SP), a complex object created by modifying foliage, which functions as a stable substrate on which to sleep. Of the several purported functions of SPs, one hypothesis is that they protect against parasitic infection. Here we investigate the role of SP site choice in avoiding molestation by arthropods. This study presents preliminary data on the insect-repellent properties of preferred sleeping tree species Cynometra alexandri. Insect traps were deployed in gallery forest habitats in which chimpanzees typically "nest." We compared traps placed adjacent to SPs artificially manufactured with C. alexandri trees to an open area within the same habitat. Multiple measures of arthropod counts indicate that simulated C. alexandri SP sites have fewer arthropods than similar non-SP sites. Volatile compounds secreted by C. alexandri foliage are hypothesized to repel annoying arthropods and/or mask chimpanzee olfactory signals. Of the total insects captured (n = 6,318), n = 145 were mosquitoes. Of the total mosquitoes captured, n = 47 were identified as Anopheles (female, n = 12). The prominent malarial vector Anopheles gambiae was identified among the captured mosquito sample. These results suggest that the presence of broken branches of the tree species C. alexandri reduce the amount of insects a chimpanzee is exposed to throughout a night's sleep. This great ape behavioral and socio-technological adaptation may have evolved, in part, to increase quality of sleep as well as decrease exposure to vectors of disease. PMID:23011513

  7. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies [v2; ref status: indexed, http://f1000r.es/59a

    Directory of Open Access Journals (Sweden)

    Zeeshan Ahmed

    2015-04-01

    Full Text Available Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and Azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database.

  8. Attachment of non-culturable toxigenic Vibrio cholerae O1 and non-O1 and Aeromonas spp. to the aquatic arthropod Gerris spinolae and plants in the River Ganga, Varanasi.

    Science.gov (United States)

    Shukla, B N; Singh, D V; Sanyal, S C

    1995-10-01

    Non-cultivable, pathogenic O1 and non-O1 Vibrio cholerae and Aeromonas spp. were resuscitated from aquatic arthropods and plant homogenate respectively, by rabbit ileal loop (RIL) assay. These organisms adhered to the aquatic arthropod Gerris spinolae and various species of phytoplankton in the River Ganga, but failed to grow after direct inoculation on artificial media except for only 10 homogenates of the arthropod. The number of non-O1 V. cholerae and Aeromonas recovered on direct inoculation of G. spinolae homogenates were in the order of 10(5)-10(6) whereas those of the Ganga water were 10(2)-10(3) ml-1. A total of 119 strains of O1 and non-O1 V. cholerae and Aeromonas spp. (69 isolates from G. spinolae and 50 from aquatic plants) were recovered from the loop contents. The results indicate that production of the enzyme chitinase by O1 and non-O1 V. cholerae and Aeromonas spp. might facilitate their adsorption and multiplication on different species of zoo- and phyto-plankton. Most of the isolates were enterotoxic, haemolytic and resistant to different antibiotics. This study suggests that species of zoo- and phyto-planktons, until now not reported to be associated with O1 and non-O1 V. cholerae, may act as reservoirs of these organisms as well as different species of Aeromonas in a fresh-water riverine ecosystem.

  9. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies [v3; ref status: indexed, http://f1000r.es/5dm

    Directory of Open Access Journals (Sweden)

    Zeeshan Ahmed

    2015-05-01

    Full Text Available Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database.

  10. Molecular and biochemical characterizations of a novel arthropod endo-beta-1,3-glucanase from the Antarctic springtail, Cryptopygus antarcticus, horizontally acquired from bacteria.

    Science.gov (United States)

    Song, Jung Min; Nam, Kiwoong; Sun, Young-Uk; Kang, Mee Hye; Kim, Choong-Gon; Kwon, Suk-Tae; Lee, Jehee; Lee, Youn-Ho

    2010-04-01

    Collembolan species have been known to have beta-1,3-glucanase activity and yet the genes coding such enzymes have not been demonstrated. We report here a novel arthropod endo-beta-1,3-glucanase gene CaLam from the Antarctic springtail, Cryptopygus antarcticus. The open reading frame consists of 813bp encoding 270 amino acids with a putative signal peptide and a typical motif of glycosyl hydrolase family 16 (GHF16), E-I-D-I-T-E. The recombinant protein expressed in E. coli shows the hydrolytic activity toward laminarin (K(m) approximately 9.98mg/mL) with an optimal temperature 50 degrees C and an optimal pH 6.0. CaLam digests laminarin and laminarioligosaccharides except laminaribiose as an endo-beta-1,3-glucanase, releasing glucose, laminaribiose and laminaritriose as the major products. Analyses of molecular phylogeny of CaLam and its protein structure reveal that CaLam is closely related with bacterial beta-1,3-glucanases more than with the eukaryotic homologues. Even so, the genomic structure of the CaLam gene consisting of six exons interspersed with approximately 57 to 63bp introns confirms that it is endogenous in the genome of the Antarctic springtail. These results suggest that CaLam should have been transferred from bacteria to the lineage of the Collembolan species by horizontal gene transfer. PMID:20079869

  11. Community diversity of mosquitoes and their microbes across different habitats endemic for West Nile Virus and other arthropod-borne diseases

    Science.gov (United States)

    Liu, R.; Bennett, S. N.; Thongsripong, P.; Chandler, J. S.

    2013-12-01

    Mosquitoes have long been vectors for disease, and humans, birds, and other vertebrates have served their role as hosts in the transmission cycle of arthropod-borne viruses. In California, there are several mosquito species that act as vectors, transmitting such disease agents as Western equine and St. Louis encephalitis viruses, filarial nematodes, Plasmodium (which causes malaria), and West Nile virus (WNV). Last year (2012-2013), California had over 450 reported cases of West Nile Virus in humans (http://westnile.ca.gov/). To begin to understand mosquitoes and their role in the bay area as vectors of diseases, including West Nile Virus, we trapped mosquitoes from various sites and examined their microbiomes, including bacteria, fungi, viruses, and eukaryotes. Study sites were in Marin, San Mateo, and San Francisco counties, in areas that represented, respectively, rural, suburban, and urban habitats. The mosquitoes were identified through morphological characteristics, and verified molecularly by sequencing of the cytochrome oxidase I (COI) gene extracted from a leg. Most mosquitoes were collected from San Mateo and Mill Valley and were identified as Culiseta incidens. Data from traditional culture-based and next-generation 454 sequencing methods applied to mosquito whole bodies, representing their microbiomes, will be discussed, to determine how mosquito and microbial diversity varies across sites sampled in the San Francisco Bay area.

  12. Laboratory assessment of the impacts of transgenic Bt rice on the ecological fitness of the soil non-target arthropod, Folsomia candida (Collembola: Isotomidae).

    Science.gov (United States)

    Yuan, Yiyang; Xiao, Nengwen; Krogh, Paul Henning; Chen, Fajun; Ge, Feng

    2013-08-01

    Transgenic rice expressing Bacillus thuringiensis (Bt) endotoxins (Bt rice) for pest control is considered an important solution to food security in China. However, tests for potential effects on non-target soil organisms are required for environmental risk assessment. The soil collembolan Folsomia candida L. (Collembola: Isotomidae) is a potential non-target arthropod that is often used as a biological indicator in bio-safety assessments of transgenic crops. In the present study, the roots, stems, and leaves of Bt rice were exposed to F. candida under laboratory conditions, with survival, reproduction and growth of the collembolan as ecological fitness parameters. Significant differences in ecological fitness were found among the different treatments, including differences in the plant parts and varieties of non-Bt rice, presumably as the result of three factors: gene modification, plant parts and rice varieties. The fitness of F. candida was less affected by the different diets than by the exposure to the same materials mixed with soil. Our results clearly showed that there was no negative effect of different Bt rice varieties on the fitness of F. candida through either diet or soil exposure.

  13. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part II: Helminths and arthropods.

    Science.gov (United States)

    Otranto, Domenico; Cantacessi, Cinzia; Dantas-Torres, Filipe; Brianti, Emanuele; Pfeffer, Martin; Genchi, Claudio; Guberti, Vittorio; Capelli, Gioia; Deplazes, Peter

    2015-09-30

    Over the last few decades, ecological factors, combined with everchanging landscapes mainly linked to human activities (e.g. encroachment and tourism) have contributed to modifications in the transmission of parasitic diseases from domestic to wildlife carnivores and vice versa. In the first of this two-part review article, we have provided an account of diseases caused by protozoan parasites characterised by a two-way transmission route between domestic and wild carnivore species. In this second and final part, we focus our attention on parasitic diseases caused by helminth and arthropod parasites shared between domestic and wild canids and felids in Europe. While a complete understanding of the biology, ecology and epidemiology of these parasites is particularly challenging to achieve, especially given the complexity of the environments in which these diseases perpetuate, advancements in current knowledge of transmission routes is crucial to provide policy-makers with clear indications on strategies to reduce the impact of these diseases on changing ecosystems. PMID:26049678

  14. Development of genetic system to inactivate a Borrelia turicatae surface protein selectively produced within the salivary glands of the arthropod vector.

    Directory of Open Access Journals (Sweden)

    Job E Lopez

    Full Text Available BACKGROUND: Borrelia turicatae, an agent of tick-borne relapsing fever, is an example of a pathogen that can adapt to disparate conditions found when colonizing the mammalian host and arthropod vector. However, little is known about the genetic factors necessary during the tick-mammalian infectious cycle, therefore we developed a genetic system to transform this species of spirochete. We also identified a plasmid gene that was up-regulated in vitro when B. turicatae was grown in conditions mimicking the tick environment. This 40 kilodalton protein was predicted to be surface localized and designated the Borrelia repeat protein A (brpA due to the redundancy of the amino acid motif Gln-Gly-Asn-Val-Glu. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative reverse-transcriptase polymerase chain reaction using RNA from B. turicatae infected ticks and mice indicated differential regulation of brpA during the tick-mammalian infectious cycle. The surface localization was determined, and production of the protein within the salivary glands of the tick was demonstrated. We then applied a novel genetic system for B. turicatae to inactivate brpA and examined the role of the gene product for vector colonization and the ability to establish murine infection. CONCLUSIONS/SIGNIFICANCE: These results demonstrate the complexity of protein production in a population of spirochetes within the tick. Additionally, the development of a genetic system is important for future studies to evaluate the requirement of specific B. turicatae genes for vector colonization and transmission.

  15. Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation.

    Science.gov (United States)

    Cakir, Meric; Makineci, Ender

    2013-11-01

    In order to assess the effects of conversion of natural stands into plantations, soil invertebrate micro- and macroarthropod communities were evaluated for their abundance and richness in a sessile oak (SO; Quercus petraea L.) stand and adjacent Austrian pine (AP; Pinus nigra Arnold) plantation. Sites were sampled four times a year in 3-month intervals from May 2009 to February 2010. Humus characteristics such as total mass; carbon, lignin, and cellulose contents; and C/N ratio were significantly different between SO and AP. Statistically significant differences were detected on soil pH, carbon and nitrogen contents, and electrical conductivity between the two sites. The number of microarthropods was higher in AP than in the SO site. The annual mean abundance values of microarthropods in a square meter were 67,763 in AP and 50,542 in SO, and the annual mean abundance values of macroarthropods were 921 m(-2) in AP and 427 m(-2) in SO. Among the soil microarthropods, Acari and Collembola were the dominant groups. Shannon's diversity index was more affected by evenness than species number despite the species diversity (H') of soil arthropods being generally higher in the SO stand. The abundance of microarthropods showed clear seasonal trends depending upon the humidity of the soil.

  16. 锥栗林节肢动物群落的结构与多样性%Structure and diversity of arthropod community in Castanea henryi forest

    Institute of Scientific and Technical Information of China (English)

    叶世森; 赵士熙; 施丹阳; 黄金聪; 胡凤玉

    2012-01-01

    Based on a systematic investigation at 20 representative sampling sites in the Castanea henryi forest in Jian'ou, Fujian for 1 year, the results showed that there were 209 spicies of arthropod belonging to 2 classes, 17 orders, 100 families, thereinto, 176 species were collected from the canopy of forest belonging to 94 families, and 177 species from the underlayer of forest belonging to 89 families. The number of orders, families, species were similar between the canopy groups and the underlayer groups, but the distribution characteristics of individuals number, the dominant concentration of all the orders, the diversity of the groups, the structure characteristics of all the function groups were different obviously. The individuals number of Homoptera and Asterolecaniidae were the largest in the canopy, but the individuals number of Diptera and Tipulidae were the largest in the underlayer. The species diversity of the spider groups was the highest in the canopy, but the species diversity of the phytophagous groups was the highest in the underlayer. The species diversity, evenness, species richness of the underlayer arthropod groups were higher than the canopy, but the dominant concentration was lower.%通过对福建建瓯市20块锥栗林试验标准地节肢动物群落la的系统调查,结果表明,在锥栗林中共采集到节肢动物209种,它们分别隶属于2纲17目100科,其中林冠层有94科176种,下木层有89科177种.林冠层与下木层节肢动物类群的目、科、物种的数量较相近,但个体数量分布特征、各目优势集中性、类群多样性、各功能集团结构特征有明显差异.林冠层类群以同翅目、链蚧科的个体数为最多,下木层类群以双翅目、大蚊科的个体数为最多.从各功能集团的物种多样性指数来看,林冠层以蜘蛛类集团为最高,下木层以植食性集团为最高.下木层类群的物种多样性、均匀度和物种丰富度比林冠层类群高,优势集中性则比林冠层类群低.

  17. Diversidade e distribuição espacial de artrópodes associados ao solo em agroecossistemas Diversity and spatial distribution of ground arthropods in agroecosystems

    Directory of Open Access Journals (Sweden)

    Francisco Jorge Cividanes

    2009-01-01

    Full Text Available O conhecimento da diversidade e distribuição de artrópodes associados ao solo contribui para o desenvolvimento de sistemas agrícolas sustentáveis. O presente estudo foi realizado em Jaboticabal (SP, durante o período de fevereiro a abril de 2004. O objetivo foi analisar a comunidade de Carabidae, Staphylinidae, Formicidae e Araneae através de índices faunísticos e determinar a distribuição espacial e a interação interespecífica de espécies predominantes em soja (Glycine max (L. Merr., milho (Zea mays L. e seringueira (Hevea brasiliensis Muell. Arg.. Os artrópodes foram amostrados com armadilhas de solo distribuídas a cada 10 m em dois transectos de 210 m de comprimento, que atravessaram o seringal e avançaram 60 m no interior das culturas. A fauna foi caracterizada pelos índices de diversidade de Shannon-Wiener, de equitabilidade e de similaridade de Morisita. As diferenças entre a ocorrência das espécies predominantes nos hábitats foram determinadas por análise de variância e a interação interespecífica por correlação de Pearson. A soja e o milho cultivados em sistema de plantio direto propiciaram comunidades de carabídeos, formigas e aranhas mais bem estruturadas que o seringal. Entre as 88 espécies capturadas, 20 espécies foram predominantes cuja distribuição espacial mostrou que Odontocheila nodicornis (Dejean, Glenus chrysis Gravenhorst, Castianeira sp. e oito espécies de formigas foram mais abundantes no seringal em comparação às culturas de soja e do milho. A abundância dos carabídeos Calosoma granulatum Perty e O. nodicornis diminuiu conforme aumentou a densidade dos formicídeos Pheidole sp.1 e Odontomachus chelifer Latreille respectivamente.The knowledge of the diversity and distribution of ground arthropods contributes for the development of sustainable agricultural systems. This work was carried out at the Paulista State University, Jaboticabal campus, State of São Paulo, Brazil, during the

  18. Mountain refugia play a role in soil arthropod speciation on Madagascar: a case study of the endemic giant fire-millipede genus Aphistogoniulus.

    Science.gov (United States)

    Wesener, Thomas; Raupach, Michael J; Decker, Peter

    2011-01-01

    To elucidate the speciation mechanisms prevalent within hotspots of biodiversity, and the evolutionary processes behind the rise of their species-rich and endemic biota, we investigated the phylogeny of the giant fire-millipede genus Aphistogoniulus Silvestri, 1897, a Malagasy endemic. This study is the first comprehensive (molecular and morphological) phylogenetic study focusing on millipede (class Diplopoda) speciation on Madagascar. The morphological analysis is based on 35 morphological characters and incorporates ten described as well as two newly described species (A. rubrodorsalisn. sp. and A. jeekelin. sp.) of Aphistogoniulus. The molecular analysis is based on both mitochondrial (COI and 16S), and nuclear genes (complete 18S rDNA), together comprised of 3031 base pairs, which were successfully sequenced for 31 individual specimens and eight species of Aphistogoniulus. In addition to the null-model (speciation by distance), two diversification models, mountain refugia and ecotone shift, were discovered to play a role in the speciation of soil arthropods on Madagascar. Mountain refugia were important in the speciation of the A. cowani clade, with three species occurring in the Andringitra and Ranomafana Mountains in the southeast (A. cowani), the Ambohijanahary and Ambohitantely Mountains in the mid-west (A. sanguineus), and the Marojejy Mountain in the northeast (A. rubrodorsalisn. sp.). An ecotone shift from the eastern rainforest to the unique subarid spiny forest of Mahavelo was discovered in the A. vampyrus-A. aridus species-pair. In the monophyletic A. diabolicus clade, evidence for divergent evolution of sexual morphology was detected: species with greatly enlarged gonopods are sister-taxa to species with normal sized gonopods. Among the large-bodied Spirobolida genera of Madagascar, Colossobolus and Sanguinobolus were found to be close sister-genera to Aphistogoniulus. Forest destruction has caused forest corridors between populations to disappear

  19. Mountain refugia play a role in soil arthropod speciation on Madagascar: a case study of the endemic giant fire-millipede genus Aphistogoniulus.

    Directory of Open Access Journals (Sweden)

    Thomas Wesener

    Full Text Available To elucidate the speciation mechanisms prevalent within hotspots of biodiversity, and the evolutionary processes behind the rise of their species-rich and endemic biota, we investigated the phylogeny of the giant fire-millipede genus Aphistogoniulus Silvestri, 1897, a Malagasy endemic. This study is the first comprehensive (molecular and morphological phylogenetic study focusing on millipede (class Diplopoda speciation on Madagascar. The morphological analysis is based on 35 morphological characters and incorporates ten described as well as two newly described species (A. rubrodorsalisn. sp. and A. jeekelin. sp. of Aphistogoniulus. The molecular analysis is based on both mitochondrial (COI and 16S, and nuclear genes (complete 18S rDNA, together comprised of 3031 base pairs, which were successfully sequenced for 31 individual specimens and eight species of Aphistogoniulus. In addition to the null-model (speciation by distance, two diversification models, mountain refugia and ecotone shift, were discovered to play a role in the speciation of soil arthropods on Madagascar. Mountain refugia were important in the speciation of the A. cowani clade, with three species occurring in the Andringitra and Ranomafana Mountains in the southeast (A. cowani, the Ambohijanahary and Ambohitantely Mountains in the mid-west (A. sanguineus, and the Marojejy Mountain in the northeast (A. rubrodorsalisn. sp.. An ecotone shift from the eastern rainforest to the unique subarid spiny forest of Mahavelo was discovered in the A. vampyrus-A. aridus species-pair. In the monophyletic A. diabolicus clade, evidence for divergent evolution of sexual morphology was detected: species with greatly enlarged gonopods are sister-taxa to species with normal sized gonopods. Among the large-bodied Spirobolida genera of Madagascar, Colossobolus and Sanguinobolus were found to be close sister-genera to Aphistogoniulus. Forest destruction has caused forest corridors between populations to

  20. Modulation of voltage-gated Na+ and K+ channels by pumiliotoxin 251D: a "joint venture" alkaloid from arthropods and amphibians.

    Science.gov (United States)

    Vandendriessche, Thomas; Abdel-Mottaleb, Yousra; Maertens, Chantal; Cuypers, Eva; Sudau, Alexander; Nubbemeyer, Udo; Mebs, Dietrich; Tytgat, Jan

    2008-03-01

    Certain amphibians provide themselves with a chemical defense by accumulating lipophilic alkaloids into skin glands from dietary arthropods. Examples of such alkaloids are pumiliotoxins (PTXs). In general, PTXs are known as positive modulators of voltage-gated sodium channels (VGSCs). Unlike other PTXs, PTX 251D does not share this characteristic. However, mice and insect studies showed that PTX 251D is highly toxic and to date the basis of its toxicity remains unknown. In this work, we searched for the possible target of PTX 251D. The toxin was therefore made synthetically and tested on four VGSCs (mammalian rNa(v)1.2/beta(1), rNa(v)1.4/beta(1), hNa(v)1.5/beta(1) and insect Para/tipE) and five voltage-gated potassium channels (VGPCs) (mammalian rK(v)1.1-1.2, hK(v)1.3, hK(v)11.1 (hERG) and insect Shaker IR) expressed heterologously in Xenopus laevis oocytes, using the two-electrode voltage clamp technique. PTX 251D not only inhibited the Na(+) influx through the mammalian VGSCs but also affected the steady-state activation and inactivation. Interestingly, in the insect ortholog, the inactivation process was dramatically affected. Additionally, PTX 251D inhibited the K(+) efflux through all five tested VGPCs and slowed down the deactivation kinetics of the mammalian VGPCs. hK(v)1.3 was the most sensitive channel, with an IC(50) value 10.8+/-0.5 microM. To the best of our knowledge this is the first report of a PTX affecting VGPCs.

  1. Artrópodos presentes en nidos de cotorra Myiopsitta monachus monachus (Aves: Psittacidae Arthropods in Monk Parakeet nests (Aves: Psittacidae

    Directory of Open Access Journals (Sweden)

    Rosana Aramburú

    2009-06-01

    Full Text Available El objetivo de este trabajo es comunicar una lista de la artropodofauna que se encuentra en los nidos de cotorra (Myiopsitta monachus monachus en distintas localidades de la provincia de Buenos Aires, Argentina. Se colectó un nido y 43 camas de material vegetal fresco que las cotorras depositan en las cámaras de cría. Se extrajeron los artrópodos, que se identificaron bajo lupa binocular y se caracterizaron por su nicho trófico. Se encontraron especies de la clase Arachnida (Acarina, Pseudoescorpionida y Araneae, principalmente depredadoras y hematófagas; mientras que dentro de la clase Insecta se encontraron especies hematófagas, depredadoras, detritívoras, fitófagas, nectarívoras, y xilófagas. Los órdenes más representados fueron Diptera (8 familias y Coleoptera (12 familias. El resto de las especies pertenecieron a los órdenes Collembola, Psocoptera, Hymenoptera, Phthiraptera, Hemiptera y Lepidoptera.The objective of this work is to communicate a list of artropodofauna which is in Monk Parakeet (Myiopsitta monachus monachus nests at several localities in Buenos Aires province. One nest and 43 beds of fresh green material that the Monk Parakeets deposited in the breeding chamber were collected. Arthropods were extracted, identified under binocular microscope, and characterized by their diets. Species were found whitin class Arachnida (Acarina, Pseudoescorpionida and Araneae, mainly predators and hematophagous. Within class Insecta, were found blood-sucking species, predators, detritivores, phytophagous, nectarivorous, and xilophagous, among others. The orders most represented were Diptera (8 families and Coleoptera (12 families. The rest of the species belonged to the orders Collembola, Psocoptera, Hymenoptera, Phthiraptera, Hemiptera and Lepidoptera.

  2. Full-genome characterisation of Orungo, Lebombo and Changuinola viruses provides evidence for co-evolution of orbiviruses with their arthropod vectors.

    Directory of Open Access Journals (Sweden)

    Fauziah Mohd Jaafar

    Full Text Available The complete genomes of Orungo virus (ORUV, Lebombo virus (LEBV and Changuinola virus (CGLV were sequenced, confirming that they each encode 11 distinct proteins (VP1-VP7 and NS1-NS4. Phylogenetic analyses of cell-attachment protein 'outer-capsid protein 1' (OC1, show that orbiviruses fall into three large groups, identified as: VP2(OC1, in which OC1 is the 2nd largest protein, including the Culicoides transmitted orbiviruses; VP3(OC1, which includes the mosquito transmitted orbiviruses; and VP4(OC1 which includes the tick transmitted viruses. Differences in the size of OC1 between these groups, places the T2 'subcore-shell protein' as the third largest protein 'VP3(T2' in the first of these groups, but the second largest protein 'VP3(T2' in the other two groups. ORUV, LEBV and CGLV all group with the Culicoides-borne VP2(OC1/VP3(T2 viruses. The G+C content of the ORUV, LEBV and CGLV genomes is also similar to that of the Culicoides-borne, rather than the mosquito-borne, or tick borne orbiviruses. These data suggest that ORUV and LEBV are Culicoides- rather than mosquito-borne. Multiple isolations of CGLV from sand flies suggest that they are its primary vector. OC1 of the insect-borne orbiviruses is approximately twice the size of the equivalent protein of the tick borne viruses. Together with internal sequence similarities, this suggests its origin by duplication (concatermerisation of a smaller OC1 from an ancestral tick-borne orbivirus. Phylogenetic comparisons showing linear relationships between the dates of evolutionary-separation of their vector species, and genetic-distances between tick-, mosquito- or Culicoides-borne virus-groups, provide evidence for co-evolution of the orbiviruses with their arthropod vectors.

  3. The Bartonella quintana Extracytoplasmic Function Sigma Factor RpoE Has a Role in Bacterial Adaptation to the Arthropod Vector Environment

    Science.gov (United States)

    Abromaitis, Stephanie

    2013-01-01

    Bartonella quintana is a vector-borne bacterial pathogen that causes fatal disease in humans. During the infectious cycle, B. quintana transitions from the hemin-restricted human bloodstream to the hemin-rich body louse vector. Because extracytoplasmic function (ECF) sigma factors often regulate adaptation to environmental changes, we hypothesized that a previously unstudied B. quintana ECF sigma factor, RpoE, is involved in the transition from the human host to the body louse vector. The genomic context of B. quintana rpoE identified it as a member of the ECF15 family of sigma factors found only in alphaproteobacteria. ECF15 sigma factors are believed to be the master regulators of the general stress response in alphaproteobacteria. In this study, we examined the B. quintana RpoE response to two stressors that are encountered in the body louse vector environment, a decreased temperature and an increased hemin concentration. We determined that the expression of rpoE is significantly upregulated at the body louse (28°C) versus the human host (37°C) temperature. rpoE expression also was upregulated when B. quintana was exposed to high hemin concentrations. In vitro and in vivo analyses demonstrated that RpoE function is regulated by a mechanism involving the anti-sigma factor NepR and the response regulator PhyR. The ΔrpoE ΔnepR mutant strain of B. quintana established that RpoE-mediated transcription is important in mediating the tolerance of B. quintana to high hemin concentrations. We present the first analysis of an ECF15 sigma factor in a vector-borne human pathogen and conclude that RpoE has a role in the adaptation of B. quintana to the hemin-rich arthropod vector environment. PMID:23564167

  4. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: insights into function and evolution of digestion in an ancient arthropod.

    Directory of Open Access Journals (Sweden)

    Felipe J Fuzita

    Full Text Available Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challenge. Understanding the physiology of scorpions can not only lead to evolutionary insights but also is a crucial step in the development of control strategies. However, the digestive process in scorpions has been scarcely studied. In this work, we describe the combinatory use of next generation sequencing, proteomic analysis and biochemical assays in order to investigate the digestive process in the yellow scorpion Tityus serrulatus, mainly focusing in the initial protein digestion. The transcriptome generated database allowed the quantitative identification by mass spectrometry of different enzymes and proteins involved in digestion. All the results suggested that cysteine cathepsins play an important role in protein digestion. Two digestive cysteine cathepsins were isolated and characterized presenting acidic characteristics (pH optima and stability, zymogen conversion to the mature form after acidic activation and a cross-class inhibition by pepstatin. A more elucidative picture of the molecular mechanism of digestion in a scorpion was proposed based on our results from Tityus serrulatus. The midgut and midgut glands (MMG are composed by secretory and digestive cells. In fasting animals, the secretory granules are ready for the next predation event, containing enzymes needed for alkaline extra-oral digestion which will compose the digestive fluid, such as trypsins, astacins and chitinase. The digestive vacuoles are filled with an acidic proteolytic cocktail to the intracellular digestion composed by cathepsins L, B, F, D and legumain. Other proteins as lipases, carbohydrases, ctenitoxins and a chitolectin with a perithrophin domain were also

  5. DIVERSITY AND ABUNDANCE OF PREDACEOUS ARTHROPODS ASSOCIATED WITH DIFFERENT COTTON CULTIVARS DIVERSIDADE E ABUNDÂNCIA DE ARTRÓPODES PREDADORES ASSOCIADOS A DIFERENTES CULTIVARES DE ALGODOEIRO

    Directory of Open Access Journals (Sweden)

    Francisco Jorge Cividanes

    2010-10-01

    Full Text Available

    With the objective of studying the abundance and diversity of predaceous arthropods associated with cotton crop, and analyze the influence of meteorological factors, interactions between natural enemies and population dynamics of coccinellids associated with their principal prey, the aphid Aphis gossypii, an experiment was carried out in the region of Ipameri, Goiás State, Brazil, at the Universidade Estadual de Goiás campus. The experimental design was randomized blocks, with five treatments, consisting of the DeltaOPAL, FMX 966, FMX 993, FMX 910, and NuOPAL cultivars, in four replications. Among the arthropods sampled in the cotton crop, the coccinellids and spiders were the most abundant ones in the cultivars evaluated. Spiders occurred throughout the cotton cycle, while the coccinellids population increased gradually until 55 DAE, showing a population peak at 34 DAE, coinciding with the population peak of aphids (Aphis gossypii. Among the coccinellids observed in the cultivars under study, Scymnus spp. was the most abundant in cotton. The pentatomid and forficulid occurred from 99 to 128 days after the emergence of cotton, which corresponds to the highest density of target pest insects. It was not found influence of meteorological factors or negative interactions among predaceous arthropods.

    KEY-WORDS: Gossypium hirsutum; natural enemies, coccinellids.

    内蒙古东部过渡带大型土壤节肢动物多样性调查%Community Structure and Diversity of Soil Macro-arthropod in the Forest-steppe Ecotone

    Institute of Scientific and Technical Information of China (English)

    朱新玉; 高宝嘉; 胡云川

    2012-01-01

    利用样带法对河北北部,内蒙古东部林牧过渡带不同生境中大型土壤节肢动物群落进行调查,研究过渡带大型土壤节肢动物群落结构及多样性变化.共获得大型土壤节肢动物2 134只,隶属6纲18目,其中优势类群为膜翅目和蜘蛛目,常见类群为同翅目、鳞翅目、鞘翅目成虫、鞘翅目幼虫、双翅目幼虫、石蜈蚣目和地蜈蚣目,其余类群为稀有类群.大型土壤节肢动物在3个地带中的森林带的种类最高(17类),且对土壤环境响应敏感的稀有类群数最多的出现在植被丰富、土壤疏松和枯枝落叶层厚度最高的森林带(8类),初步认为这些稀有类群对指示土壤肥力质量变化具有巨大潜力.在土壤动物群落多样性研究中,DG指数比Shannon-Wiener多样性指数(H′)更能体现土壤动物群落多样性.群落聚类及排序结果显示,9种不同生境的大型土壤节肢动物群落可以分为3大类:森林类、森林-草甸类和草甸-草原类,同时土壤pH值对土壤节肢动物的类群数影响较大,而土壤温度对土壤节肢动物的个体数影响较大.%To understand the composition and structure of soil macro-arthropod community and diversity of soil macro-arthropod community, soil macro-arthropods were investigated in the forest-steppe ecotone in northern Hebei Province. A total of 2 134 individuals of soil macro-arthropods were collected, which belonged to 6 classes, 18 orders. The dominant orders were Hymenoptera and Araneae, Homoptera, Lepidoptera, Coleoptera, Coleoptera larva, Diptera larva, Lithobiomorpha and Geophilomorpha were common orders, and others were rare orders. The highest groups of soil arthropod were in the forest zone, and the increased abundance of rare groups in the forest zone with the richer vegetation, higher arthropod abundance and more substantial litter depth, could be interpreted as a reaction to the suitable soil environment. And these rare groups were sensitive to

  6. Impact of insecticides on non-target arthropods in watermelon cropImpacto de inseticidas em artrópodes não-alvo associados à cultura da melancia

    Directory of Open Access Journals (Sweden)

    Cíntia Ribeiro Souza

    2012-10-01

    Full Text Available Watermelon Citrullus lunatus (Thunberg, Matsumura & Nakai is an ecosystem having a variety of arthropods, each one playing a specific role. Although some of them are considered pest to crops, some others are responsible for soil aeration, nutrient release and predation of pest species and are, therefore, considered beneficial to crops. The intensive farming practiced for watermelon cultivation in Brazil is based on the use of tiamethoxam and deltamethrin, which may not only kill target but also nontarget organisms such as beneficial arthropods. Research data regarding the influence of insecticides on arthropods in watermelon cropping is scarce. This study aimed to evaluate the effect of the insecticides deltamethrin and thiamethoxam on soil surface and watermelon canopy arthropod community. The study was carried out in the State of Tocantins, Brazil. Although the application of thiamethoxam and deltamethrin was efficient in controlling populations of Aphis gossypii (Glover, as we expected, they negatively affected non-target arthropods such as detritivores insects in the canopy and soil surface. Ecological implications of the impact of such pesticides on beneficial arthropod species are discussed.A cultura da melancia Citrullus lunatus (Thunberg, Matsumura & Nakai abriga uma grande diversidade de artrópodes, cada um desempenhando um papel específico. Apesar de alguns desses artrópodes serem considerados pragas, outros são responsáveis pela aeração do solo, liberação de nutrientes e predação das espécies-praga, sendo, dessa forma, considerados benéficos às culturas. A agricultura intensiva praticada no Brasil para o cultivo da melancia é baseada no uso dos inseticidas como tiamethoxam e deltametrina, que pode não só matar as pragas, mas também organismos não-alvo. Pesquisas relacionadas à influência de inseticidas sobre artrópodes benéficos na cultura da melancia são escassas. Este estudo foi realizado com o objetivo de

  7. In search for a compromise between biodiversity conservation and human health protection in restoration of fly ash deposits: effect of anti-dust treatments on five groups of arthropods.

    Science.gov (United States)

    Tropek, Robert; Cerna, Ilona; Straka, Jakub; Kocarek, Petr; Malenovsky, Igor; Tichanek, Filip; Sebek, Pavel

    2016-07-01

    Recently, fly ash deposits have been revealed as a secondary refuge of critically endangered arthropods specialised on aeolian sands in Central Europe. Simultaneously, these anthropogenic habitats are well known for their negative impact on human health and the surrounding environment. The overwhelming majority of these risks are caused by wind erosion, the substantial decreasing of which is thus necessary. But, any effects of anti-dust treatments on endangered arthropods have never been studied. We surveyed communities of five arthropod groups (wild bees and wasps, leafhoppers, spiders, hoverflies and orthopteroid insects) colonising three fly ash deposits in the western Czech Republic. We focused on two different anti-dust treatments (~70 and 100 % cover of fly ash by barren soil) and their comparison with a control of bare fly ash. Altogether, we recorded 495 species, including 132 nationally threatened species (eight of them were considered to be extinct in the country) and/or 30 species strictly specialised to drift sands. Bees and wasps and leafhoppers contained the overwhelming majority of species of the highest conservation interest; a few other important records were also in spiders and orthopteroids. Total soil cover depleted the unique environment of fly ash and thus destroyed the high conservation potential of the deposits. On the other hand, partial coverage (with ~30 % of bare fly ash) still offered habitats for many of the most threatened species, as we showed by both regression and multivariate analyses, with a decrease of wind erosion. This topic still needs much more research interest, but we consider mosaic-like preservation of smaller spots of fly ash as one of the possible compromises between biodiversity and human health. PMID:25847441

  8. In search for a compromise between biodiversity conservation and human health protection in restoration of fly ash deposits: effect of anti-dust treatments on five groups of arthropods.

    Science.gov (United States)

    Tropek, Robert; Cerna, Ilona; Straka, Jakub; Kocarek, Petr; Malenovsky, Igor; Tichanek, Filip; Sebek, Pavel

    2016-07-01

    Recently, fly ash deposits have been revealed as a secondary refuge of critically endangered arthropods specialised on aeolian sands in Central Europe. Simultaneously, these anthropogenic habitats are well known for their negative impact on human health and the surrounding environment. The overwhelming majority of these risks are caused by wind erosion, the substantial decreasing of which is thus necessary. But, any effects of anti-dust treatments on endangered arthropods have never been studied. We surveyed communities of five arthropod groups (wild bees and wasps, leafhoppers, spiders, hoverflies and orthopteroid insects) colonising three fly ash deposits in the western Czech Republic. We focused on two different anti-dust treatments (~70 and 100 % cover of fly ash by barren soil) and their comparison with a control of bare fly ash. Altogether, we recorded 495 species, including 132 nationally threatened species (eight of them were considered to be extinct in the country) and/or 30 species strictly specialised to drift sands. Bees and wasps and leafhoppers contained the overwhelming majority of species of the highest conservation interest; a few other important records were also in spiders and orthopteroids. Total soil cover depleted the unique environment of fly ash and thus destroyed the high conservation potential of the deposits. On the other hand, partial coverage (with ~30 % of bare fly ash) still offered habitats for many of the most threatened species, as we showed by both regression and multivariate analyses, with a decrease of wind erosion. This topic still needs much more research interest, but we consider mosaic-like preservation of smaller spots of fly ash as one of the possible compromises between biodiversity and human health.

  9. 闽南番石榴树冠节肢动物群落的结构和动态%The Structure and Dynamic of Arthropod Communities of Guava Orchards in South Fujian

    Institute of Scientific and Technical Information of China (English)

    吴梅香; 傅建炜; 占志雄; 李建宇; 张莉; 邱良妙; 刘长明

    2011-01-01

    2006年8月至2007年8月对惠安番石榴园树冠节肢动物群落结构特征及群落特征的时序动态进行了研究.结果表明,树冠节肢动物共采集到2纲、16目、100科总计218种,其中害虫116种、天敌61种、中性昆虫41种.害虫优势种为桔小实蝇Bactrocera dorsalis(Hendel)和棉蚜Aphis gossypii Glover,天敌优势种为细纹猫蛛Oxyopes macilentus L.Koch和大草蛉Chrysopa septempunctata Wesmael.节肢动物群落的物种丰富度、个体丰盛度、多样性指数、均匀度指数和优势集中性指数等特征随季节的更替发生波动.%The arthropod community structure and dynamics of guava orchards were studied in Huian County,Fujian Province from August 2006 to August 2007. The results showed that 218 arthropod species of tree crown were recorded, which belonged to 100 families of 16 orders in Insecta and Arachnoidea. Of them, 116 species of pests, 61 species of natural enemies and 41 species of neutral insects were included. The dominant pests were Bactrocera dorsalis and Aphis gossypii, and the dominant natural enemies were Oxyopes macilentas and Chrysopa septempunctata The richness, individual, diversity, evenness and dominant concentration of arthropod community index fluctuated with the change of season.

  10. New Concept of Biological Control:Bio-control Plants Used for Management of Arthropod Pests%害虫生物防治新概念--生物防治植物及创新研究

    Institute of Scientific and Technical Information of China (English)

    肖英方; 毛润乾; 万方浩

    2013-01-01

      在现代农业,特别是有机农业的害虫防治系统中,除有益生物(主要指节肢动物)在害虫防治中发挥关键作用外,一些植物本身也发挥了重要的作用。这些植物包括抗虫植物、诱集植物、拒避植物、杀虫植物、载体植物、养虫植物以及显花(虫媒)植物等,它们是害虫生物防治的重要组成部分,并在害虫生物防治中起着越来越重要的作用。本文根据目前国内外的研究情况,提出一个害虫生物防治植物或简称生防植物(bio-control plant)新概念,并对不同生物防治植物应用及作用机理进行阐述,分析不同生物防治植物未来的发展前景和面临的挑战。%The modern organic agriculture has increasingly become a hot topic worldwide. In general, organic agriculture is complied with organic standards set by national governments and international organizations. The rule does not involve modern synthetic inputs such as synthetic pesticides and chemical fertilizers. With the growing emphasis on the environment and the food safety, the discovery and development of effective biological control approaches, especially in botanically based techniques, such as botanically derived pesticides to manage arthropod pest populations is facing a new challenge. This review is intended to discuss bio-control plants and provide insights of these plants used for potential biological control of arthropod pests in the field of crop protection. As all known, all crops or plants are always attacked by their enemies, i.e. arthropod pests. In most cases, the plant species or diversities within crop ecosystem provide an excellent opportunities for manage pests in organic agricultural production. Under certain circumstances, these crops or plants can rely on their own defense strategies, such as plant physiological and biochemical merits, against arthropod pest population. These plant defense strategies are playing key role in

  11. Composition and Structure of the Arthropod Community in the Mango Field%芒果园地面节肢动物群落的组成与结构

    Institute of Scientific and Technical Information of China (English)

    李建宇; 董铁生; 傅建炜; 游泳; 张莉; 占志雄

    2012-01-01

    对福建省惠安县芒果园节肢动物群落进行系统调查,结果表明:芒果园地面的节肢动物有2纲,17目,80科,203种,其中植食性昆虫106种(占群落总物种数的52.22%),捕食性与寄生性昆虫31种(占15.27%),腐生性昆虫14种(占6.90%),蜘蛛52种(占25.62%).植食性昆虫优势种为红脊长蝽Tropidothorax elegans Distant和电光叶蝉Recilia dorsalis (Motschlsky);寄生性昆虫优势种为红蚂蚁Tetramorium guineense Fabricius和瓢虫啮小蜂Tetrastichus coccinellae Kurju-mov;腐生性昆虫优势种为蝇科Musicdae;蜘蛛优势种为金蝉蛛Phintella sp.1.%The composition and structure of arthropod community in mango field were investigated in this study, and the characterization of arthropod was also described. They will enrich the theoretical foundation for ecological of pests in mango orchard. The composition and diversity of arthropod communities in mango orchards were investigated in Hui an country, Fujian Province, China in this study. The results showed that all the collected arthropod individuals belong to 2 classes, 17 orders, 80 families and 203 species. Among them, 106 species were herbivores (52. 22%), 31 species were predators and parasitoids (15. 27%), 14 species were detritivores (6. 90%) and 52 species were spiders (25. 62%). The main dominant herbivores were Tropidothorax elegans Distant and Recilia dorsalis (Motschlsky) , and the main dominant predators and parasitoids were Tetrastichus coccinellae Kurju-mov and Tetramorium guineense Fabricius, and the main dominant detritivores was Musicdae, and the main dominant spiders was Phintella sp. 1.

  12. Comparative studies on arthropod community structure characteristics between ecological rice paddies and conventional rice paddies%生态稻田及常规稻田节肢动物群落结构特征的比较研究

    Institute of Scientific and Technical Information of China (English)

    王凯学; 张清泉; 陈丽丽; 李国刚; 梁载林; 张雪丽; 刘建文

    2013-01-01

    用吸虫器、黄板诱捕、黄盆诱捕和扫网4种采样法,对双季稻区生态稻田及常规稻田两类生境稻田中的节肢动物群落结构特征进行了比较研究.结果表明:早稻和晚稻整个生育期,生态稻田中节肢动物天敌的物种数显著高于常规稻田.稻田生境多样性有利于促进稻田节肢动物天敌群落的建立,生境越复杂,植被多样性越高,物种种类就越多.%The community structure of arthropods both in ecological rice paddies and conventional rice paddies in double cropping paddy field areas was studied with the suction sampler,yellow board trap,yellow basin trap and sweeping methods.The results showed that there were significantly greater species richness in ecological rice paddy fields than in conventional rice paddy fields.More complex ecological habitat,more variety vegetation and more species are beneficial to promote the community structure of arthropods.

  13. 保靖黄金茶产地茶园节肢动物多样性调查%Investigation of Arthropod Diversity in Tea Garden Producing “Bao Jing” Golden Tea

    Institute of Scientific and Technical Information of China (English)

    黄安平; 周凌云

    2011-01-01

    对保靖黄金茶产地10个代表性茶园的节肢动物多样件进行了调查,茶园节肢动物隶属昆虫纲和蛛形纲,昆虫纲以同翅目昆虫数量较多.其中,叶蝉科(Cicadellidae)、广翅蜡蝉科(Rieaniidae)、蛾蜡蝉科(Flatidae)昆虫为优势类群.天敌优势类群为蛛形纲蜘蛛.植物多样性较大的样地多样性指数、均匀度指数、丰富度指数、优势度指数均明显高于其他样地.%Diversity of arthropod in 10 representational tea gardens which producing “Bao Jing” golden tea were investigated. The arthropod in tea garden belongs to Insecta and Arachnida. The homopteran is the most abundant insect in Insecta, in which, Cicadellidae, Ricaniidae and Flatidae were the preponderant populations. Spiders from Arachnida are the main natural enemy of insect pest. The diversity index, evenness index, species richness index and dominance index of plots with larger plant diversity were significantly higher than others.

  14. 皖南山区茶园节肢动物群落多样性调查%Investigation of Diversity of Arthropod Community in Tea Garden in Southern Anhui

    Institute of Scientific and Technical Information of China (English)

    闫冲冲; 陈向阳; 张持浩; 张守伟; 冯敏; 刘蕊; 董勤

    2009-01-01

    The community diversity of arthropod in tea garden of southern Anhui from April to May, 2008 and 2009 was investigated and analyzed respectively. The results showed that the tendency of community diversity indices (D, H', J, H, DMC)of arthropod in tea garden were changed as follows: low→high→low. However, the inhibitory effect of predatory sub-community on phytophagous sub-community was significantly decreased in the late May, while should make pest forecasting and controlling to provide scientific method for tea farmers to control the pest in tea garden.%在2008年和2009年4、5月份对皖南山区茶同节肢动物群落多样性进行了调查分析.结果表明:茶园节肢动物群落多样性指数D、H'、J、H、DMC随时间变化趋势都是"低一高一低".然而,在5月下旬,捕食性亚群落对植食性亚群落的抑制作用大大降低,这一时期应该做好害虫测报和防治的准备,为茶农防治茶园害虫提供科学方法.

  15. 猕猴桃园节肢动物群落演替的突变模型研究及稳定性分析%Studies on catastrophe model and stability for arthropod community succession in kiwifruit orchards

    Institute of Scientific and Technical Information of China (English)

    李建峰; 赵惠燕; 杜超; 孟庆祥; Piyaratne MKDK

    2012-01-01

    【目的】分析猕猴桃从野生到大面积栽培过程中节肢动物群落的演变过程。【方法】采用时空替代方案,调查了陕西周至和眉县不同栽植年限猕猴桃园的节肢动物群落种类和数量,计算出多样性指数(H′)、丰富度指数(MD)、均匀度指数(J)和害虫与天敌数量比例,建立了猕猴桃园节肢动物群落椭圆突变模型,并对群落稳定性进行分析。【结果】3年生和9年生的猕猴桃园节肢动物群落害虫亚群落处于不稳定区域,发生了突变;14年生和野生的猕猴桃园节肢动物群落相对稳定,处于稳定安全区,没有发生突变;说明随着猕猴桃从野生到栽培年限的增加,群落稳定性增强。3年生园和9年生园在发生突变之前控制变量w的值由w≥0变为w<0,验证了控制变量是稳定性判定的重要指标。【结论】害虫亚群落的稳定性程度是影响虫害暴发的关键因素,亚群落指标对控制变量作用均衡的系统是比较稳定的系统,不宜发生突变造成危害。%【Objective】The study was to analyze the process of arthropod community succession and stability.【Method】The elliptic umbilic catastrophe model is developed based on diversity index,richness index,evenness index and the ratio of pests and natural enemies of arthropod community in kiwifruit orchards,which include 3-year,9-year,14-year and wild kiwifruit orchard.【Result】The results show that pests of arthropod community are instable in 3-and 9-year kiwifruit orchard,and pests of arthropod community are stable in 14-year and wild kiwifruit orchard.It reflects that the longer kiwifruit orchard is planted,the more stable the arthropod community is,which is an important index on judging stability or instability.【Conclusion】From the principal component analysis,we know that the stability level is a key factor in forecasting damage by insects and system,which is influenced by the

  16. Bt水稻田重要非靶标节肢动物权露于Cry2Aa蛋白的程度分析%Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields

    Institute of Scientific and Technical Information of China (English)

    张青玲; 李云河; 华红霞; 杨长举; 武红巾; 彭于发

    2013-01-01

    根据风险=危险×机露的原理,在实验室条件下评价转基因作物对非靶标节肢动物影响时,所选择的代表性非靶标生物通常是在农田系统中较高地关露于转基因外源杀虫蛋白的节肢动物种.为了弄清Bt稻田主要节肢动物暴露于Cry蛋白的程度,选择合适的非靶标节肢动物,用于转基因抗虫水稻的风险评价,本文采用酶联免疫技术检测了水稻不同生长期从转cry2Aa基因水稻田采集的不同节肢动物体内Cry2Aa蛋白的含量.结果表明:不同节肢动物种体内的Cry蛋白含量差异显著.一些节肢动物体内不合Cry蛋白,而一些节肢动物体内含有较高的Cry蛋白;相对于花期后采集的节肢动物,在Bt水稻花期采集的节肢动物,特别是捕食性节肢动物体内的Cry蛋白含量较高;寄生性节肢动物体内未检测到Cry蛋白.这为在实验室条件下评价转基因水稻对农田非靶标节肢动物的影响奠定了基础.%Based on the principle of "risk =hazard x exposure",the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem.In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields,and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops,the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages.The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species.Some species did not contain Cry2Aa protein,while some species contained larger amounts of Cry2Aa protein

  17. Gall inducing arthropods from a seasonally dry tropical forest in Serra do Cipó, Brazil Artrópodes indutores de galhas em Floresta Sazonal Tropical Seca da Serra do Cipó, Brasil

    Directory of Open Access Journals (Sweden)

    Marcel Serra Coelho

    2009-01-01

    Full Text Available Highly diverse forms of galling arthropods can be identified in much of southeastern Brazil's vegetation. Three fragments of a Seasonally Dry Tropical Forest (SDTF located in the southern range of the Espinhaço Mountains were selected for study in the first survey of galling organisms in such tropical vegetation. Investigators found 92 distinct gall morphotypes on several organs of 51 host plant species of 19 families. Cecidomyiidae (Diptera was the most prolific gall-inducing species, responsible for the largest proportion of galls (77% observed. Leaves were the most frequently galled plant organ (63%, while the most common gall morphotype was of a spherical shape (30%. The two plant species, Baccharis dracunculifolia (Asteraceae and Celtis brasiliensis (Cannabaceae, presented the highest number of gall morphtypes, displaying an average of 5 gall morphotypes each. This is the first study of gall-inducing arthropods and their host plant species ever undertaken in a Brazilian SDTF ecosystem. Given the intense human pressure on SDTFs, the high richness of galling arthropods, and implied floral host diversity found in this study indicates the need for an increased effort to catalogue the corresponding flora and fauna, observe their intricate associations and further understand the implications of such rich diversity in these stressed and vulnerable ecosystems.Artrópodes indutores de galhas são muito ricos em espécies nas formações vegetais no sudeste do Brasil. Três fragmentos de Floresta Sazonal Tropical Seca (FSTS foram selecionados nas montanhas do sudeste da cadeia do Espinhaço para a primeira pesquisa de organismos indutores de galhas nesse tipo de vegetação. Encontramos 92 morfotipos distintos de galhas em vários órgãos de 51 espécies de plantas hospedeiras pertencentes à 19 famílias. A maioria das galhas (77% foi induzida pela família Cecidomyiidae (Diptera. A folha foi o órgão mais atacado (63%, enquanto o morfotipo mais

  18. Studies on Diversity of Arthropod Community in Orchards of Apricot-wheat Intercropping System%不同树龄杏麦间作园节肢动物群落多样性研究

    Institute of Scientific and Technical Information of China (English)

    张滋林; 赵莉; 范毅; 张鲁豫; 贾晓江

    2011-01-01

    The series dynamics were systematically studied to reveal the composition structure and species diversity of arthropods community in different aged apricot orchard under apricot-wheat intercropping system. The survey uncovered that 189 species in 61 families from 13 orders were obtained from young apricot orchards intercropped with wheat,and 192 species in 59 families from 13 orders of old apricot orchards intercropped with wheat,and 120 species in 46 families from 12 orders of old apricot orchards intercropped without wheat. Homoptera insects were the dominant herbivorous groups. There are more arthropod species in old apricot orchards than young apricot orchards intercropped with wheat. The result showed that species diversity related to the phenological period of the apricots and were affected by the intercropping plants and environment coditions. The related correlations between different subunit systems were analyzed with Jaccard similarity indexes and cluster methodology. The result showed that apricot orchards intercropped with wheat can increase the arthropod species and improve the stability of the apricot system.%为揭示在杏麦间作模式下不同树龄杏园节肢动物群落的组成结构及多样性时序动态,调查发现在幼龄的杏麦间作园有节肢动物13目61科189种,老龄杏麦间作园有节肢动物13目59科192种,老龄不间作杏园有节肢动物12目46科120种,同翅目昆虫为优势种,是主要的植食性类群,间作小麦的老龄杏园比幼龄杏园聚集着较为丰富的物种.杏园节肢动物群落的物种多样性与杏树的物候期有关,并受间作物和环境条件的影响,用Jaccard 相似性系数和系统聚类法分析了各亚系统之间的相关关系,结果表明杏园间作小麦可以增加杏园节肢动物的物种数和提高系统的稳定性.

  19. 枣与农作物间作系统节肢动物时序动态%Temporal Dynamics of Arthropod Communities in Orchard-Crop Intercropping Systems

    Institute of Scientific and Technical Information of China (English)

    阿地力·沙塔尔; 李宏; 李兰; 程晓甜

    2012-01-01

    A systematic survey on arthropods was carried out in jujube-crop intercropping systems in Aksu region of southern Xinjiang. The temporal dynamics of arthropod communities were studied by the methodology of plant population ecology research. Results showed that the seasonal dynamics of evenness and diversity of arthropod communities in the jujube-crop intercropping systems were basically consistent, both fluctuating up and down, and they reached the maximum in June and then remained stable. Among three types of jujube yards, the diversity index and evenness index of the jujube-wheat intercropping system were the highest, followed by jujube-cotton intercropping system and single jujube yard, while the dominant concentration index was in vice versa. The highest diversity index and evenness index were both found in the jujube-wheat intercropping system; therefore, jujube-wheat intercropping system can effectively control the pest occurrence by improving management level.%主要针对南疆阿克苏地区枣树与农作物间作系统节肢动物开展系统的调查,以群落生态学方法研究枣园节肢动物的时序动态.结果表明:枣园与农作物间作系统节肢动物群落均匀度的季节动态与多样性季节动态呈现基本一致的趋势,多样性时高时低,均匀度也有相应的高低变化,在6月份达到最大并保持稳定.3种类型枣园中,多样性指数与均匀性指数均值大小排序是枣+小麦间作>枣+棉花间作>单一枣园,而优势集中性指数反之.3种类型枣园中枣和小麦间作系统多样性指数和均匀性指数均值最大.可见,在枣和小麦间作系统中通过提高管理水平可有效控制害虫的发生.

  1. Efeito da solarização e da adubação sobre artrópodes em solo cultivado com alface Solarization, organic and chemical fertilization combined effects on arthropods community in soil cultivated with lettuce

    Directory of Open Access Journals (Sweden)

    Marlene G da Silva

    2009-12-01

    Full Text Available Avaliou-se o efeito da solarização e da adubação química e orgânica na comunidade de artrópodes de solo na cultura da alface, cv. Verônica. Foram conduzidos dois experimentos, em blocos ao acaso, um com solarização e o outro sem solarização, em casa de vegetação, ambos com cinco tratamentos: adubação orgânica; nitrogênio na forma amoniacal (NH4; adubação com NPK; adubação orgânica + NPK; testemunha (sem adubação. No experimento solarizado, o solo foi coberto durante 132 dias com plástico transparente. Os artrópodes foram coletados por meio de armadilhas tipo alçapão em três épocas (antes da implantação do experimento, após a solarização e após a colheita. Foram utilizados índices faunísticos e de diversidade em cada experimento, tratamento e épocas. Os principais grupos coletados foram: Collembola (82,8%, Acari (7,1%, Hymenoptera (6,1% Coleoptera (1,3% e outros (2,7%. A classe Collembola foi a mais abundante, mesmo na colheita, quando a subordem Acari aumentou substancialmente. As espécies de Collembola predominantes foram: Proisotoma tenella (Reuter (34,3%; Seira atrolutea (Arlé (29%; Folsomides centralis (Denis (7,2%; Isotomurus sp. 161 (2,4% e Sminthurides sp. 98 (1,6%. Observou-se que a diversidade e abundância da comunidade de artrópodes não foi influenciada pela solarização ou adubação.To evaluate the effect of solarization, chemical and organic fertilization on soil arthropods community in lettuce, two blocks plots trials were carried out in Brasília, Brazil. One research was conducted with solarization and the other without solarization in a soil cultivated with lettuce, cv Veronica, under protected cultivation. Each trial consisted of five fertilization treatments: T1= organic fertilization; T2= amoniacal nitrogen (ammonium sulphate; T3= chemical fertilization; T4= organic and chemical fertilization; T5= control (without fertilization. In the solarized trial, the soil was covered for 132

  2. Diversity and stability of arthropod community in peach orchard under effects of ground cover vegetation%桃园生草对桃树节肢动物群落多样性与稳定性的影响

    Institute of Scientific and Technical Information of China (English)

    蒋杰贤; 万年峰; 季香云; 淡家贵

    2011-01-01

    A comparative study was conducted on the arthropod community in peach orchards with and without ground cover vegetation. In the orchard with ground cover vegetation, the individuals of beneficial, neutral, and phytophagous arthropods were 1. 48, 1. 84 and 0. 64 times of those in the orchard without ground cover vegetation, respectively, but the total number of arthropods had no significant difference with that in the orchard without ground cover vegetation. The species richness, Shannon' s diversity, and Pielou' s evenness index of the arthropods in the orchard with ground cov-er vegetation were 83. 733±4. 932, 4. 966±0. 110, and 0. 795±0. 014, respectively, being signifi-cantly higher than those in the orchard without ground cover vegetation, whereas the Berger-Parker' s dominance index was 0. 135±0. 012, being significantly lower than that (0. 184±0. 018) in the orchard without ground cover vegetation. There were no significant differences in the stability indices S/N and Sd/Sp between the two orchards, but the Nn/Np, Nd/Np, and Sn/Sp in the orchard with ground cover vegetation were 0. 883±0. 123. 1714±0. 683, and 0. 781 ±0. 040, respectively, being significantly higher than those in the orchard without ground cover vegetation. Pearson' s cor-relation analysis indicated that in the orchard with ground cover vegetation, the Shannon' s diversity index was significantly negatively correlated with Nd/Np, Sd/Sp, and S/N but had no significant correlations with Nn/Np and Sn/Sp, whereas in the orchard without ground cover vegetation, the di-versity index was significantly positively correlated with Nn/Np and Nd/Np and had no significant correlations with Sd/Sp ,Sn/Sp, and S/N.%对种植白三叶草的桃园(生草桃园)和非生草桃园的桃树节肢动物群落进行分析比较.结果表明:生草桃园桃树天敌、中性类群和植食类群数量分别是非生草桃园的1.48、1.84和0.64倍,而节肢动物群落个体总数无显著差异;与非

  3. The preliminary report on Vespa mandarinia and other arthropods in its cave%金环胡蜂及其洞穴内其他节肢动物研究初报

    Institute of Scientific and Technical Information of China (English)

    黄少康

    2001-01-01

    A nest of Vespa mandarinia was found in a underground cave at mountainous area in southernFujian. The structure of its cave and nest was described. The colony consisted of 102 adults with 57 femalesand 45 males. Length of adults was measured, that of 7 female adults was the longest (4.6 cm in average).In the bottom of the cave, five kinds of arthropods were found, most of them were larvae of Syrphidae, thesecond was larvae of Carabidae, the rest were larva of Pyralidae and adults of Chelisochidae and Scolopendra,termites were also found in the cave. All of these arthropods were probably commensals of Vespamandarinia.%报道了闽南山区金环胡蜂巢的营巢小生境、营巢洞穴以及蜂巢的结构.蜂群由102只成虫组成,其中雌蜂57只,雄蜂45只.测量了成蜂体长。其中7只雌蜂的体长最长(平均4.6 cm).在洞穴底部发现5种节肢动物。其中4种为昆虫,最多的是一种食蚜蝇科幼虫,其次是一种步甲科幼虫,此外还有螟蛾科幼虫、垫跗螋科的成虫和蜈蚣,洞穴内还有白蚁.这些虫子很可能均是金环胡蜂洞穴内的共栖物.

  4. Diversity and temporal dynamics of a litchi orchard arthropod community in Guangzhou%广州荔枝园节肢动物群落多样性及时空动态

    Institute of Scientific and Technical Information of China (English)

    孟翔; 欧阳革成; 刘慧; 黄寿山; 郭明昉

    2015-01-01

    Objectives] To provide a theoretical basis for forecasting and scientific biological control of major litchi orchard pests. [Methods] The structure and dynamics of the arthropod community in a litchi orchard in Conghua, Guangzhou was investigated in the field from 2012 to 2013. [Results] 3 542 arthropod specimens, belonging to 15 orders, 113 families and 204 species, were recorded. The main taxa were Hymenoptera, Homoptera and Araneae. Herbivorous species were predominant. Different micro-environments within the orchard could have a different community composition; the index of arthropod community diversity was higher in the canopy than in the herb layer but arthropod abundance in the canopy was lower than in the herb layer. There were two obvious peaks in species abundance with the main peak occurring between April and June. Herbivorous insects significantly increased during the green fruit and ripening periods. Seasonal variation in community composition was also relatively obvious in the canopy and herb layer. The dominant pest species were Tessaratoma papillosa, Cletus punctiger, Conopomorpha sinensis, Eriophyes litchii and Thalassodes proquadraria, and the dominant natural enemies were Leucauge magnifica, Oxyopes sertatus, Chrysopa carnea, Menochilus sexmaculataand Propylea japonica. [Conclusion] Litchi orchards have high arthropod species diversity. The number and occurrence of dominant pests and their predatory natural enemies are closely related to the growth and development of litchi fruit.%【目的】调查研究荔枝园节肢动物群落多样性及时空动态,为荔枝园主要害虫的预测预报和以天敌为主的科学防治提供理论依据。【方法】2012―2013年以广州市从化区黄围村的荔枝园为样地进行节肢动物群落系统调查及多样性动态规律分析。【结果】调查共获得节肢动物标本3542号,分属于15目113科204种。其中,以膜翅目、同翅目和蜘蛛目为主要类群。在营

  5. Banker Plant System: a New Approach for Biological Control of Arthropod Pests%害虫生物防治新技术——载体植物系统

    Institute of Scientific and Technical Information of China (English)

    肖英方; 毛润乾; 沈国清; Lance S.Osbome

    2012-01-01

    建立一个自我维持并可有效降低害虫种群水平的系统是害虫生物防治长期追求的理想目标。载体植物系统(banker plant system)又称开放式天敌饲养系统,是近年来开发出的一种集保护利用本地天敌、人工繁殖释放天敌以及异地引进天敌等传统技术特点为一体的新型生物防治技术。载体植物(banker plants)、替代食物(alternative foods)和有益生物(beneficial)是该系统的三个基本要素。本文对载体植物和载体植物系统概念、特点以及近年来国际上的研究进展进行了综述,并结合自身的研究实践,举例介绍载体植物系统的应用,以推动国内外对载体植物系统的研究和应用。%Banker plant system(BPS) is a new concept for biological control of arthropod pests.It consists of three key elements: a banker plant,a highly specific alternative host or prey,and one or more natural enemies(predator or parasitoid).The ideal banker plant should be a non-crop plant that provides resources(alternative prey or nutrient) to sustain natural enemies of arthropod pest.The natural enemies should be specific to the alternative prey and the pest,and are able to disperse to a long distance to attack the pest.The banker plant system uniquely combines the advantages of both augmentative and conservation biological controls in greenhouse or field,it has been shown to be an effective,simple,reliable approach for control of arthropod pests.The use of banker plant system will not require the repeated release of natural enemies and also reduce the cost for purchasing commercial available biocontrol agents.The review is intended to summarize the history,development and potential application of banker plant systems.In our study,the goal is to develop long-term pest suppression of silver-leaf whitefly and two-spotted spider mite in vegetable crops,especially in greenhouse vegetables.Current,these pests have seriously

  6. 不同修剪模式对有机茶园节肢动物群落多样性的影响%Effects of Pruning on Biodiversity of Arthropod Communities at Organic Tea Plantations

    Institute of Scientific and Technical Information of China (English)

    王友平; 李儒海; 毛迎新; 谭荣荣; 陈勋; 王红娟; 饶辉福; 丁坤明

    2015-01-01

    对夏季轻修剪、深修剪和不修剪的有机茶园中节肢动物群落进行了调查。结果表明,与不修剪相比,轻修剪1、2个月后对茶树害虫和天敌均产生了显著影响,深修剪的影响更大。修剪1个月后,轻修剪和深修剪茶树上假眼小绿叶蝉、茶尺蠖、茶橙瘿螨和蜘蛛的数量显著下降;修剪2个月后,轻修剪和深修剪茶树上假眼小绿叶蝉的数量显著增加,说明两种修剪方式均可推迟假眼小绿叶蝉虫口高峰出现的时间,深修剪还可有效避过茶橙瘿螨的危害。修剪3、4个月后,轻修剪、深修剪和不修剪茶树上节肢动物群落多样性指数和益害比差异不显著。轻修剪对有机茶园吸汁性害虫的持续控制效果可达1个月,深修剪的控制效果更好,但是需要统筹考虑防虫、养蓄天敌和后续茶叶的生产,要慎重选择。%Effect of plant pruning on the biodiversity of arthropod communities at organic tea plantations were investigated in the summer. Tea plants were subjected to light, deep or no pruning for observation in changes on the biodiversity at the plantations. The results indicated that one or two months after alight pruning, both pests and natural enemies were significantly affected. The effect was even greater when a deep pruning was applied. A month after a deep pruning, the number of arthropods including Empoasca vitis, Ectropis obliqua, Acaphyllatheaeand spiders were significantly reduced as compared with that without pruning. However, one month later, the Empoasca vitiscounts began to increase. Both light and deep pruning delayed the initial peak on the small green leafhopper count, and the deep pruning completely avoided the damage caused by the tea pink mites. In 3 or 4 months, no significant difference in arthropod community diversity index, nor the ratio of natural enemy/pest biomass, was observed among the treatments. Light pruning could put the leaf-sucker population

  7. The community composition and temporal dynamic of canopy arthropods on Citrus in Nanchang, Jiangxi Province%江西南昌柑橘冠层节肢动物群落组成及时序动态研究

    Institute of Scientific and Technical Information of China (English)

    李小珍; 王建国; 肖海军; 刘伟; 鲍涵涵; 廖琪

    2013-01-01

    采用叶面观察和诱捕相结合的方法调查了江西南昌柑橘冠层节肢动物群落.共调查到节肢动物数量144037头,分属25种.其中,高密度种类有2种即柑橘全爪螨和矢尖蚧;常见种类有13种,包括桔小实蝇、柑橘花蕾蛆、柑橘木虱和中华草蛉等;其它为低密度种类.在群落结构指数的变化过程中,分别于5月下旬和9月下旬出现Shannon-Wiener多样性指数极大值和Simpson优势度指数极小值.对高密度种类和部分常见种类的种群动态进行了分析,表明柑橘全爪螨在5月下旬至6月上旬发生严重,矢尖蚧则于7~8月发生严重;柑橘花蕾蛆幼虫和柑橘木虱发生动态相似,均仅于柑橘春梢阶段出现最高密度;桔小实蝇成虫则在9月下旬出现密度高峰;中华草蛉的发生动态与其主要捕食对象一柑橘全爪螨的相似.研究结果初步明确南昌柑橘冠层节肢动物的重要成分及重要类群的时序动态,为该地区柑橘重要害虫的防治与控制,天敌昆