WorldWideScience

Sample records for arterial wave mechanics

  1. Arterial Stiffness Estimation by Shear Wave Elastography: Validation in Phantoms with Mechanical Testing.

    Science.gov (United States)

    Maksuti, Elira; Widman, Erik; Larsson, David; Urban, Matthew W; Larsson, Matilda; Bjällmark, Anna

    2016-01-01

    Arterial stiffness is an independent risk factor found to correlate with a wide range of cardiovascular diseases. It has been suggested that shear wave elastography (SWE) can be used to quantitatively measure local arterial shear modulus, but an accuracy assessment of the technique for arterial applications has not yet been performed. In this study, the influence of confined geometry on shear modulus estimation, by both group and phase velocity analysis, was assessed, and the accuracy of SWE in comparison with mechanical testing was measured in nine pressurized arterial phantoms. The results indicated that group velocity with an infinite medium assumption estimated shear modulus values incorrectly in comparison with mechanical testing in arterial phantoms (6.7 ± 0.0 kPa from group velocity and 30.5 ± 0.4 kPa from mechanical testing). To the contrary, SWE measurements based on phase velocity analysis (30.6 ± 3.2 kPa) were in good agreement with mechanical testing, with a relative error between the two techniques of 8.8 ± 6.0% in the shear modulus range evaluated (40-100 kPa). SWE by phase velocity analysis was validated to accurately measure stiffness in arterial phantoms. PMID:26454623

  2. Wave Mechanics or Wave Statistical Mechanics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.

  3. Pulse Wave Propagation in the Arterial Tree

    Science.gov (United States)

    van de Vosse, Frans N.; Stergiopulos, Nikos

    2011-01-01

    The beating heart creates blood pressure and flow pulsations that propagate as waves through the arterial tree that are reflected at transitions in arterial geometry and elasticity. Waves carry information about the matter in which they propagate. Therefore, modeling of arterial wave propagation extends our knowledge about the functioning of the cardiovascular system and provides a means to diagnose disorders and predict the outcome of medical interventions. In this review we focus on the physical and mathematical modeling of pulse wave propagation, based on general fluid dynamical principles. In addition we present potential applications in cardiovascular research and clinical practice. Models of short- and long-term adaptation of the arterial system and methods that deal with uncertainties in personalized model parameters and boundary conditions are briefly discussed, as they are believed to be major topics for further study and will boost the significance of arterial pulse wave modeling even more.

  4. Pulse Wave Velocity in the Carotid Artery

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jensen, Julie Brinck; Udesen, Jesper; Holfort, Iben Kraglund; Jensen, Jørgen Arendt

    The pulse wave velocity (PWV) in the carotid artery (CA) has been estimated based on ultrasound data collected by the experimental scanner RASMUS at DTU. Data is collected from one test subject using a frame rate (FR) of 4000 Hz. The influence of FRs is also investigated. The PWV is calculated from...... distension wave forms (DWF) estimated using cross-correlation. The obtained velocities give results in the area between 3-4 m/s, and the deviations between estimated PWV from two beats of a pulse are around 10%. The results indicate that the method presented is applicable for detecting the local PWV...

  5. Estimation of Carotid Artery Pulse Wave Velocity by Doppler Ultrasonography

    OpenAIRE

    Mehdi Maerefat; Manijhe Mokhtari Dizaji; Saeed Rahgozar

    2009-01-01

    Background: Pulse wave velocity (PWV) is widely used for estimating the stiffness of an artery. Various invasive and non-invasive methods have been developed to determine PWV over the years. In the present research, the non-invasive estimation of the PWV of large arteries was used as an index for arterial stiffness. Methods: A dynamic model based on the Navier-Stokes equations coupled to elasticity equations was introduced for the PWV in arteries with elastic walls. This system of equations w...

  6. Mechanical thrombectomy in basilar artery thrombosis

    DEFF Research Database (Denmark)

    Fesl, Gunther; Holtmannspoetter, Markus; Patzig, Maximilian; Mayer, Thomas E; Pfefferkorn, Thomas; Brueckmann, Hartmut; Schulte-Altedorneburg, Gernot

    2014-01-01

    PURPOSE: Multiple endovascular devices have been used for mechanical thrombectomy (MT) in basilar artery occlusion (BAO) for >10 years. Based on a single-center experience during the course of one decade, we present data on safety and efficacy of previous MT devices compared with modern stent ret...

  7. Estimation of Carotid Artery Pulse Wave Velocity by Doppler Ultrasonography

    Directory of Open Access Journals (Sweden)

    Mehdi Maerefat

    2009-06-01

    Full Text Available Background: Pulse wave velocity (PWV is widely used for estimating the stiffness of an artery. Various invasive and non-invasive methods have been developed to determine PWV over the years. In the present research, the non-invasive estimation of the PWV of large arteries was used as an index for arterial stiffness. Methods: A dynamic model based on the Navier-Stokes equations coupled to elasticity equations was introduced for the PWV in arteries with elastic walls. This system of equations was completed by clinical information obtained from the Doppler ultrasound images of the carotid artery of 40 healthy male volunteers. For this purpose, the Doppler ultrasound images were recorded and saved in a computer; and subsequently center-line blood velocity, arterial wall thickness, and arterial radius were measured by offline processing. Results: The results from the analytic solution of the completed equations showed that the mean value of PWV for the group of healthy volunteers was 2.35 m/s when the mean arterial radius was used as the neutral radius and 5.00 m/s when the end-diastole radius was used as the neutral radius. It is noteworthy that the latter value closely complies with that reported by other researchers. Conclusion: By applying this method, a non-invasive clinical and local evaluation of the common carotid artery stiffness via a Doppler ultrasound measurement will be possible.

  8. Analysis of linguistic terms of variables representing the wave of arterial diameter variation in radial arteries using fuzzy entropies

    International Nuclear Information System (INIS)

    In this work we use 53 Arterial Diameter Variation (ADV) waves extracted from radial artery of normotense males, along with the values of variables that represent the ADV wave, obtained by means of multivariate analysis. Then, we specify the linguistic variables and the linguistic terms. The variables are fuzzified using triangular and trapezoidal fuzzy numbers. We analyze the fuzziness of the linguistic terms by applying discrete and continuous fuzzy entropies. Finally, we infer which variable presents the greatest disorder associated to the loss of arterial elasticity in radial artery

  9. Optimization of arterial age prediction models based in pulse wave

    International Nuclear Information System (INIS)

    We propose the detection of early arterial ageing through a prediction model of arterial age based in the coherence assumption between the pulse wave morphology and the patient's chronological age. Whereas we evaluate several methods, a Sugeno fuzzy inference system is selected. Models optimization is approached using hybrid methods: parameter adaptation with Artificial Neural Networks and Genetic Algorithms. Features selection was performed according with their projection on main factors of the Principal Components Analysis. The model performance was tested using the bootstrap error type .632E. The model presented an error smaller than 8.5%. This result encourages including this process as a diagnosis module into the device for pulse analysis that has been developed by the Bioengineering Laboratory staff

  10. Mechanical wave momentum from the first principles

    CERN Document Server

    Slepyan, Leonid I

    2016-01-01

    For steady-state and some other types of mechanical waves of an arbitrary form, intensity and nature, propagating in a free uniform waveguide, we present the following. Relations for the axial momentum as it directly follows from the conservation laws. The mass associated with the wave. The connection between the wave energy and momentum. The structure of a binary wave which possesses a self-equilibrated momentum, in particular, a transverse-longitudinal wave formed upon excitation of flexural waves. Conditions under which longitudinal sinusoidal waves can carry momentum and the physical meaning of the so-called "wave momentum".

  11. The Newtonian form of wave mechanics

    International Nuclear Information System (INIS)

    Following the general principles of both Newton's mechanics and quantum mechanics a new formulation of wave mechanics is proposed. The new basic equations do not contain physical parameters and admit a different interpretation of the Planck constant. (author)

  12. Mechanical properties of porcine intralobar pulmonary arteries.

    Science.gov (United States)

    Ohtaka, H; Hogg, J C; Moreno, R H; Paré, P D; Schellenberg, R R

    1988-04-01

    The isobaric and isovolumetric properties of intrapulmonary arteries were evaluated by placing a highly compliant balloon inside arterial segments. The passive pressure-volume (P-V) curve was obtained by changing volume (0.004 ml/s) and measuring pressure. The isobaric active volume change (delta V) or isovolumetric active pressure change (delta P) generated by submaximal histamine was measured at four different transmural pressures (Ptm's) reached by balloon inflation. The maximal delta P = 11.2 +/- 0.6 cmH2O (mean +/- SE) was achieved at 30.8 +/- 1.2 cmH2O Ptm and maximal delta V = 0.20 +/- 0.02 ml at 16.7 +/- 1.7 cmH2O Ptm. The P-V relationships were similar when volume was increased after either isobaric or isovolumetric contraction. The calculated length-tension (L-T) relationship showed that the active tension curve was relatively flat and that the passive tension at the optimal length was 149 +/- 11% of maximal active tension. These data show that 1) a large elastic component operates in parallel with the smooth muscle in intralobar pulmonary arteries, and 2) the change in resistance associated with vascular expansion of the proximal arteries is independent of the type of contraction that occurs in the more distal arterial segments. PMID:3378988

  13. On the mechanical stability of growing arteries

    KAUST Repository

    Goriely, A.

    2010-04-22

    Arteries are modelled, within the framework of non-linear elasticity, as incompressible two-layer cylindrical structures that are residually stressed through differential growth. These structures are loaded by an axial force, internal pressure and have non-linear, anisotropic, hyperelastic response to stresses. Parameters for this model are directly related to experimental observations. The possible role of axial residual stress in regulating stress in arteries and preventing buckling instabilities is investigated. It is shown that axial residual stress lowers the critical internal pressure leading to buckling and that a reduction of axial loading may lead to a buckling instability which may eventually lead to arterial tortusity. © 2010 The Author. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  14. A parallel sparse algorithm targeting arterial fluid mechanics computations

    Science.gov (United States)

    Manguoglu, Murat; Takizawa, Kenji; Sameh, Ahmed H.; Tezduyar, Tayfun E.

    2011-09-01

    Iterative solution of large sparse nonsymmetric linear equation systems is one of the numerical challenges in arterial fluid-structure interaction computations. This is because the fluid mechanics parts of the fluid + structure block of the equation system that needs to be solved at every nonlinear iteration of each time step corresponds to incompressible flow, the computational domains include slender parts, and accurate wall shear stress calculations require boundary layer mesh refinement near the arterial walls. We propose a hybrid parallel sparse algorithm, domain-decomposing parallel solver (DDPS), to address this challenge. As the test case, we use a fluid mechanics equation system generated by starting with an arterial shape and flow field coming from an FSI computation and performing two time steps of fluid mechanics computation with a prescribed arterial shape change, also coming from the FSI computation. We show how the DDPS algorithm performs in solving the equation system and demonstrate the scalability of the algorithm.

  15. Arterial pulse pressure amplification described by means of a nonlinear wave model: characterization of human aging

    Science.gov (United States)

    Alfonso, M.; Cymberknop, L.; Armentano, R.; Pessana, F.; Wray, S.; Legnani, W.

    2016-04-01

    The representation of blood pressure pulse as a combination of solitons captures many of the phenomena observed during its propagation along the systemic circulation. The aim of this work is to analyze the applicability of a compartmental model for propagation regarding the pressure pulse amplification associated with arterial aging. The model was applied to blood pressure waveforms that were synthesized using solitons, and then validated by waveforms obtained from individuals from differentiated age groups. Morphological changes were verified in the blood pressure waveform as a consequence of the aging process (i.e. due to the increase in arterial stiffness). These changes are the result of both a nonlinear interaction and the phenomena present in the propagation of nonlinear mechanic waves.

  16. Pulsations with reflected boundary waves: a hydrodynamic reverse transport mechanism for perivascular drainage in the brain.

    Science.gov (United States)

    Coloma, M; Schaffer, J D; Carare, R O; Chiarot, P R; Huang, P

    2016-08-01

    Beta-amyloid accumulation within arterial walls in cerebral amyloid angiopathy is associated with the onset of Alzheimer's disease. However, the mechanism of beta-amyloid clearance along peri-arterial pathways in the brain is not well understood. In this study, we investigate a transport mechanism in the arterial basement membrane consisting of forward-propagating waves and their reflections. The arterial basement membrane is modeled as a periodically deforming annulus filled with an incompressible single-phase Newtonian fluid. A reverse flow, which has been suggested in literature as a beta-amyloid clearance pathway, can be induced by the motion of reflected boundary waves along the annular walls. The wave amplitude and the volume of the annular region govern the flow magnitude and may have important implications for an aging brain. Magnitudes of transport obtained from control volume analysis and numerical solutions of the Navier-Stokes equations are presented. PMID:26729476

  17. An Inexpensive Arterial Pressure Wave Sensor and its application in different physiological condition

    CERN Document Server

    Sur, S; Sur, Shantanu

    2005-01-01

    Arterial Blood Pressure wave monitoring is considered to be important in assessment of cardiovascular system. We developed a novel pulse wave detection system using low frequency specific piezoelectric material as pressure wave sensor. The transducer detects the periodic change in the arterial wall diameter produced by pressure wave and the amplified signal after integration represents the pressure wave. The signal before integration is proportional to the rate of change of pressure wave and it not only reproduces the pressure waveform faithfully, but also its sharper nature helps to reliably detect the heart period variability (HPV). We have studied the position-specific (e.g. over carotid or radial artery) nature of change of this pulse wave signal (shape and amplitude) and also the changes at different physiological states.

  18. Mechanical properties of the aortic arterial wall during 24 hours: a preliminary study in conscious sheep

    International Nuclear Information System (INIS)

    Previous experiences in animals showed a different behavior between the variability of pressure, arterial diameter and elasticity when they were registered for a couple of hours. To better understand arterial mechanics variability, we propose to measure simultaneously aortic pressure and diameter during 24 hours in a sheep. For that purpose, we developed a portable prototype device. It allows continuously recording physiological signals throughout the day and storing them in a solid state memory for later analysis. Pulse wave velocity and Peterson modulus were assessed beat-to-beat as arterial stiffness indexes. We identified 53,762 heart beats during 24 hours that were separated into 2 groups: below or above median mean pressure (71 mmHg). Mean diameter, pulse wave velocity and Peterson modulus increased for higher pressure values (p<0.05) whereas heart rate slowed down (p<0.05). Pressure-diameter loops were successfully recreated all along the experience. This new methodology sets the basis for further experiences involving the estimation of 24 hours arterial mechanics variability.

  19. Arterial pulse wave velocity, inflammatory markers, pathological GH and IGF states, cardiovascular and cerebrovascular disease

    OpenAIRE

    Graham, Michael R; Peter Evans; Bruce Davies; Baker, Julien S

    2008-01-01

    Michael R Graham1, Peter Evans2, Bruce Davies1, Julien S Baker11Health and Exercise Science Research Unit, Faculty of Health Sport and Science, University of Glamorgan, Pontypridd, Wales, United Kingdom; 2Royal Gwent Hospital, Newport, Gwent, United KingdomAbstract: Blood pressure (BP) measurements provide information regarding risk factors associated with cardiovascular disease, but only in a specific artery. Arterial stiffness (AS) can be determined by measurement of arterial pulse wave vel...

  20. Pulse-wave timing between the cervical carotid and intracranial arteries by means of wavelet transform

    NARCIS (Netherlands)

    Journee, HL; de Jonge, AB; Hamoen, DJ; Smit, A; van Bruggen, AC; Mooij, JJA; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H

    1997-01-01

    Wavelet Transform (WT) is applied in a method for timing the blood pulse wave between the internal carotid artery: and one of the intracranial arteries. The required accuracy is a few milliseconds. In contrast to the Fourier Transform (FT), WT is an appropriate technique for the detection of non-sta

  1. Blood flow and arterial endothelial dysfunction: Mechanisms and implications

    Science.gov (United States)

    Barakat, Abdul I.

    2013-06-01

    The arterial endothelium exquisitely regulates vascular function, and endothelial dysfunction plays a critical role in the development of atherosclerosis. Atherosclerotic lesions develop preferentially at arterial branches and bifurcations where the blood flow is disturbed. Understanding the basis for this observation requires elucidating the effects of blood flow on the endothelial cell (EC) function. The goal of this review is: (1) to describe our current understanding of the relationships between arterial blood flow and atherosclerosis, (2) to present the wide array of flow-induced biological responses in ECs, and (3) to discuss the mechanisms by which ECs sense, transmit, and transduce flow-derived mechanical forces. We conclude by presenting some future perspectives in the highly interdisciplinary field of EC mechanotransduction.

  2. Arterial pulse wave velocity, inflammatory markers, pathological GH and IGF states, cardiovascular and cerebrovascular disease

    Directory of Open Access Journals (Sweden)

    Michael R Graham

    2008-12-01

    Full Text Available Michael R Graham1, Peter Evans2, Bruce Davies1, Julien S Baker11Health and Exercise Science Research Unit, Faculty of Health Sport and Science, University of Glamorgan, Pontypridd, Wales, United Kingdom; 2Royal Gwent Hospital, Newport, Gwent, United KingdomAbstract: Blood pressure (BP measurements provide information regarding risk factors associated with cardiovascular disease, but only in a specific artery. Arterial stiffness (AS can be determined by measurement of arterial pulse wave velocity (APWV. Separate from any role as a surrogate marker, AS is an important determinant of pulse pressure, left ventricular function and coronary artery perfusion pressure. Proximal elastic arteries and peripheral muscular arteries respond differently to aging and to medication. Endogenous human growth hormone (hGH, secreted by the anterior pituitary, peaks during early adulthood, declining at 14% per decade. Levels of insulin-like growth factor-I (IGF-I are at their peak during late adolescence and decline throughout adulthood, mirror imaging GH. Arterial endothelial dysfunction, an accepted cause of increased APWV in GH deficiency (GHD is reversed by recombinant human (rh GH therapy, favorably influencing the risk for atherogenesis. APWV is a noninvasive method for measuring atherosclerotic and hypertensive vascular changes increases with age and atherosclerosis leading to increased systolic blood pressure and increased left ventricular hypertrophy. Aerobic exercise training increases arterial compliance and reduces systolic blood pressure. Whole body arterial compliance is lowered in strength-trained individuals. Homocysteine and C-reactive protein are two infl ammatory markers directly linked with arterial endothelial dysfunction. Reviews of GH in the somatopause have not been favorable and side effects of treatment have marred its use except in classical GHD. Is it possible that we should be assessing the combined effects of therapy with rhGH and rh

  3. Wave-Particle Duality in Classical Mechanics

    CERN Document Server

    Davydov, Alexander Y

    2012-01-01

    Until recently, wave-particle duality has been thought of as quantum principle without a counterpart in classical physics. This belief was challenged after surprising discovery of "walkers" - droplets that bounce on a vertically vibrating bath of the same fluid and can form wave-particle symbiotic structures with the surface waves they generate. Macroscopic walkers were shown experimentally to exhibit particle and wave properties simultaneously. This paper exposes a new family of objects that can display both particle and wave features all together while strictly obeying laws of the Newtonian mechanics. In contrast to walkers, no constant inflow of energy is required for their existence. These objects behave deterministically provided that all their degrees of freedom are known to an observer. If, however, some degrees of freedom are unknown, observer can describe such objects only probabilistically and they manifest weird features similar to that of quantum particles. We show that such quantum phenomena as p...

  4. Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension

    Science.gov (United States)

    Leopold, Jane A.; Maron, Bradley A.

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that is precipitated by hypertrophic pulmonary vascular remodeling of distal arterioles to increase pulmonary artery pressure and pulmonary vascular resistance in the absence of left heart, lung parenchymal, or thromboembolic disease. Despite available medical therapy, pulmonary artery remodeling and its attendant hemodynamic consequences result in right ventricular dysfunction, failure, and early death. To limit morbidity and mortality, attention has focused on identifying the cellular and molecular mechanisms underlying aberrant pulmonary artery remodeling to identify pathways for intervention. While there is a well-recognized heritable genetic component to PAH, there is also evidence of other genetic perturbations, including pulmonary vascular cell DNA damage, activation of the DNA damage response, and variations in microRNA expression. These findings likely contribute, in part, to dysregulation of proliferation and apoptosis signaling pathways akin to what is observed in cancer; changes in cellular metabolism, metabolic flux, and mitochondrial function; and endothelial-to-mesenchymal transition as key signaling pathways that promote pulmonary vascular remodeling. This review will highlight recent advances in the field with an emphasis on the aforementioned molecular mechanisms as contributors to the pulmonary vascular disease pathophenotype. PMID:27213345

  5. Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Jane A. Leopold

    2016-05-01

    Full Text Available Pulmonary arterial hypertension (PAH is a devastating disease that is precipitated by hypertrophic pulmonary vascular remodeling of distal arterioles to increase pulmonary artery pressure and pulmonary vascular resistance in the absence of left heart, lung parenchymal, or thromboembolic disease. Despite available medical therapy, pulmonary artery remodeling and its attendant hemodynamic consequences result in right ventricular dysfunction, failure, and early death. To limit morbidity and mortality, attention has focused on identifying the cellular and molecular mechanisms underlying aberrant pulmonary artery remodeling to identify pathways for intervention. While there is a well-recognized heritable genetic component to PAH, there is also evidence of other genetic perturbations, including pulmonary vascular cell DNA damage, activation of the DNA damage response, and variations in microRNA expression. These findings likely contribute, in part, to dysregulation of proliferation and apoptosis signaling pathways akin to what is observed in cancer; changes in cellular metabolism, metabolic flux, and mitochondrial function; and endothelial-to-mesenchymal transition as key signaling pathways that promote pulmonary vascular remodeling. This review will highlight recent advances in the field with an emphasis on the aforementioned molecular mechanisms as contributors to the pulmonary vascular disease pathophenotype.

  6. A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound.

    Science.gov (United States)

    Brands, P J; Willigers, J M; Ledoux, L A; Reneman, R S; Hoeks, A P

    1998-11-01

    Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young's modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young's modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility. PMID:10385955

  7. Schroedinger and the wave mechanics

    International Nuclear Information System (INIS)

    In commemoration of the centennial of Schroedinger's birth, in 1987, we show in this paper some aspects of his academic life, and his philosophical and scientific work. Among Schroedinger's innumerable contributions to almost all areas of philosophy and science, we choose here the creation of quantum mechanics (1926), considered one of the pillars of Modern quantum theory, and the importance of his philosophical essay What is life (1944). This publication was responsible for a great in the studies of biology, culminating in the discovery of the DNA molecular structure, in 1953, by Crick and Watson, thanks to the X-rays diffraction technique of the DNA developed by Wilkens. (author)

  8. Mechanics of Cellular Adhesion to Artificial Artery Templates

    OpenAIRE

    Knöner, Gregor; Rolfe, Barbara E.; Campbell, Julie H.; Parkin, Simon J.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2006-01-01

    We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135...

  9. RELATIONS BETWEEN DAIRY FOOD INTAKE AND ARTERIAL STIFFNESS: PULSE WAVE VELOCITY AND PULSE PRESSURE

    OpenAIRE

    Crichton, Georgina E; Elias, Merrrill F.; Dore, Gregory A.; Abhayaratna, Walter P.; Robbins, Michael A.

    2012-01-01

    Modifiable risk factors, such as diet, are becomingly increasingly important in the management of cardiovascular disease, one of the greatest major causes of death and disease burden. Few studies have examined the role of diet as a possible means of reducing arterial stiffness, as measured by pulse wave velocity, an independent predictor of cardiovascular events and all-cause mortality. The aim of this study was to investigate whether dairy food intake is associated with measures of arterial ...

  10. Giant negative T-wave: always coronary artery disease?

    OpenAIRE

    F. Dall’Orto; A. Reverzani; Maselli, F.; G. Gambarati; G. Chesi

    2013-01-01

    CLINICAL CASE We describe a 82 years old patient with giant negative T waves in anterior and inferior leads at electrocardiogram (ECG) after pace-maker (PM) implantation because of total atrioventricular block, and we discuss about different cause of negative T waves at ECG. CONCLUSIONS Particularly, we remark that, after a long period of PM stimulation, a negative T waves at ECG without myocardial ischemia, defined as “electrical memory”, may appear if a spontaneous sinus rhythm occurs. The ...

  11. Plane waves and wave packets in elementary quantum mechanics problems

    International Nuclear Information System (INIS)

    In many quantum mechanics courses, plane waves and wave packets are introduced at the very beginning, and used to solve 'simple' one-dimensional problems with square potentials. The purpose of this article is to clarify and criticise the meaning of commonly used statements such as: 'an esup(ikx) term represents a particle moving in the positive x direction' and/or 'esup(iks) represents the incident beam of particles'. The necessary notions and results are first briefly reviewed. A simple problem (scattering by a one-dimensional square potential step) is then studied in detail in order to exhibit and discuss the difficulties in a concrete situation. The more general relevance of this discussion is finally indicated. (author)

  12. A computational study of pressure wave reflections in the pulmonary arteries.

    Science.gov (United States)

    Qureshi, M Umar; Hill, N A

    2015-12-01

    Experiments using wave intensity analysis suggest that the pulmonary circulation in sheep and dogs is characterized by negative or open-end type wave reflections, that reduce the systolic pressure. Since the pulmonary physiology is similar in most mammals, including humans, we test and verify this hypothesis by using a subject specific one-dimensional model of the human pulmonary circulation and a conventional wave intensity analysis. Using the simulated pressure and velocity, we also analyse the performance of the P-U loop and sum of squares techniques for estimating the local pulse wave velocity in the pulmonary arteries, and then analyse the effects of these methods on linear wave separation in the main pulmonary artery. P-U loops are found to provide much better estimates than the sum of squares technique at proximal locations, but both techniques accumulate progressive error at distal locations away from heart, particularly near junctions. The pulse wave velocity estimated using the sum of squares method also gives rise to an artificial early systolic backward compression wave. Finally, we study the influence of three types of pulmonary hypertension viz. pulmonary arterial hypertension, chronic thromboembolic pulmonary hypertension and pulmonary hypertension associated with hypoxic lung disease. Simulating these conditions by changing the relevant parameters in the model and then applying the wave intensity analysis, we observe that for each group the early systolic backward decompression wave reflected from proximal junctions is maintained, whilst the initial forward compression and the late systolic backward compression waves amplify with increasing pathology and contribute significantly to increases in systolic pressure. PMID:25754476

  13. Accuracy of Arterial Pulse-Wave Velocity Measurement Using MR

    OpenAIRE

    Bolster, Bradley D.; Atalar, Ergin; Hardy, Christopher J.; McVeigh, Elliot R.

    1998-01-01

    The performance of a one-dimensional MR technique for the estimation of pulse-wave velocity in the aorta was evaluated. An expression for the error in this estimate was formulated and verified both by simulation and by experiment. On the basis of this formulation, guidelines for increasing the efficiency of the acquisition were established. The technique was further validated by comparison with pulse-wave velocity measurements made with a pressure catheter. All data were acquired from a latex...

  14. Clinical characteristic of pulse wave velocity and arterial compliance in elderly patients with diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    张红

    2013-01-01

    Objective To explore the clinical characteristics of pulse wave velocity,arterial compliance and cardiovascular risk factors in elderly patients with type 2 diabetes mellitus.Methods A total of 363 patients were selected and divided into 4 groups:diabetic group,diabetic

  15. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: A pilot study

    OpenAIRE

    Patnaik Amar; Yashmaina Sridhar; Reddy Budda; Naidu Madireddy; Rani Pingali

    2005-01-01

    Abstract Background Availability of a range of techniques and devices allow measurement of many variables related to the stiffness of large or medium sized arteries. There is good evidence that, pulse wave velocity is a relatively simple measurement and is a good indicator of changes in arterial properties. The pulse wave velocity calculated from pulse wave recording by other methods like doppler or tonometry is tedious, time-consuming and above all their reproducibility depends on the operat...

  16. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment

    International Nuclear Information System (INIS)

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. (topical review)

  17. Arterial blood pressure measurement and pulse wave analysis--their role in enhancing cardiovascular assessment.

    Science.gov (United States)

    Avolio, Alberto P; Butlin, Mark; Walsh, Andrew

    2010-01-01

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. PMID:19940350

  18. Prediction of arterial blood gas values from arterialized earlobe blood gas values in patients treated with mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Honarmand Azim

    2008-01-01

    Full Text Available Background/Objective: Arterial blood gas (ABG analysis is useful in evaluation of the clinical condition of critically ill patients; however, arterial puncture or insertion of an arterial catheter may sometimes be difficult and cause many complications. Arterialized ear lobe blood samples have been described as adequate to gauge gas exchange in acute and chronically ill pediatric patients. Purpose: This study evaluates whether pH, partial pressure of oxygen (PO 2 , partial pressure of carbon dioxide (PCO 2 , base excess (BE, and bicarbonate (HCO 3 values of arterialized earlobe blood samples could accurately predict their arterial blood gas analogs for adult patients treated by mechanical ventilation in an intensive care unit (ICU. Setting: A prospective descriptive study Methods: Sixty-seven patients who were admitted to ICU and treated with mechanical ventilation were included in this study. Blood samples were drawn simultaneously from the radial artery and arterialized earlobe of each patient. Results: Regression equations and mean percentage-difference equations were derived to predict arterial pH, PCO 2 , PO 2 , BE, and HCO 3 -values from their earlobe analogs. pH, PCO 2 , BE, and HCO 3 all significantly correlated in ABG and earlobe values. In spite of a highly significant correlation, the limits of agreement between the two methods were wide for PO 2 . Regression equations for prediction of pH, PCO 2 , BE, and HCO3- values were: arterial pH (pHa = 1.81+ 0.76 x earlobe pH (pHe [r = 0.791, P < 0.001]; PaCO 2 = 1.224+ 1.058 x earlobePCO 2 (PeCO 2 [r = 0.956, P < 0.001]; arterial BE (BEa = 1.14+ 0.95 x earlobe BE (BEe [r= 0.894, P < 0.001], and arterial HCO 3 - (HCO 3 -a = 1.41+ earlobe HCO 3 (HCO 3 -e [r = 0.874, P < 0.001]. The predicted ABG values from the mean percentage-difference equations were derived as follows: pHa = pHe x 1.001; PaCO 2 = PeCO 2 x 0.33; BEa = BEe x 0.57; and HCO 3 -a = HCO 3 -e x 1.06. Conclusions: Arterialized

  19. Analysis of Arterial Mechanics During Head-Down-Tilt Bed Rest

    Science.gov (United States)

    Elliott, Morgan B.; Martin, David S.; Westby, Christian M.; Stenger, Michael B.; Platts, Steven H.

    2014-01-01

    Carotid, brachial, and tibial arteries reacted differently to HDTBR. Previous studies have not analyzed the mechanical properties of the human brachial or anterior tibial arteries. After slight variations during bed-rest, arterial mechanical properties and IMT returned to pre-bed rest values, with the exception of tibial stiffness and PSE, which continued to be reduced post-bed rest while the DC remained elevated. The tibial artery remodeling was probably due to decreased pressure and volume. Resulting implications for longer duration spaceflight are unclear. Arterial health may be affected by microgravity, as shown by increased thoracic aorta stiffness in other ground based simulations (Aubert).

  20. High resolution wavenumber analysis for investigation of arterial pulse wave propagation

    Science.gov (United States)

    Hasegawa, Hideyuki; Sato, Masakazu; Irie, Takasuke

    2016-07-01

    The propagation of the pulse wave along the artery is relatively fast (several m/s), and a high-temporal resolution is required to measure pulse wave velocity (PWV) in a regional segment of the artery. High-frame-rate ultrasound enables the measurement of the regional PWV. In analyses of wave propagation phenomena, the direction and propagation speed are generally identified in the frequency-wavenumber space using the two-dimensional Fourier transform. However, the wavelength of the pulse wave is very long (1 m at a propagation velocity of 10 m/s and a temporal frequency of 10 Hz) compared with a typical lateral field of view of 40 mm in ultrasound imaging. Therefore, PWV cannot be identified in the frequency-wavenumber space owing to the low resolution of the two-dimensional Fourier transform. In the present study, PWV was visualized in the wavenumber domain using phases of arterial wall acceleration waveforms measured by high-frame-rate ultrasound.

  1. Wave mechanics of the hydrogen atom

    CERN Document Server

    Ogilvie, J F

    2016-01-01

    The hydrogen atom is a system amenable to an exact treatment within Schroedinger's formulation of quantum mechanics according to coordinates in four systems -- spherical polar, paraboloidal, ellipsoidal and spheroconical coordinates; the latter solution is reported for the first time. Applications of these solutions include angular momenta, a quantitative calculation of the absorption spectrum and accurate plots of surfaces of amplitude functions. The shape of an amplitude function, and even the quantum numbers in a particular set to specify such an individual function, depend on the coordinates in a particular chosen system, and are therefore artefacts of that particular coordinate representation within wave mechanics. All discussion of atomic or molecular properties based on such shapes or quantum numbers therefore lacks general significance

  2. Quantum mechanics, matter waves, and moving clocks

    CERN Document Server

    Mueller, Holger

    2013-01-01

    This paper is divided into three parts. In the first (section 1), we demonstrate that all of quantum mechanics can be derived from the fundamental property that the propagation of a matter wave packet is described by the same gravitational and kinematic time dilation that applies to a clock. We will do so in several steps, first deriving the Schroedinger equation for a nonrelativistic particle without spin in a weak gravitational potential, and eventually the Dirac equation in curved space-time describing the propagation of a relativistic particle with spin in strong gravity. In the second part (sections 2-4), we present interesting consequences of the above quantum mechanics: that it is possible to use wave packets as a reference for a clock, to test general relativity, and to realize a mass standard based on a proposed redefinition of the international system of units, wherein the Planck constant would be assigned a fixed value. The clock achieved an absolute accuracy of 4 parts per billion (ppb). The exper...

  3. Serum Uric Acid Level and Diverse Impacts on Regional Arterial Stiffness and Wave Reflection

    Directory of Open Access Journals (Sweden)

    Suyan Bian

    2012-08-01

    Full Text Available Background: Both increased arterial stiffness and hyperuricaemia are associated with elevated cardiovascular risks. Little is known about the relations of serum uric acid (UA level to regional arterial stiffness and wave reflection. The aim of the study was to investigate the gender-specific association of serum UA and indices of arterial function in a community-based investigation in China.Methods: Cross-sectional data from 2374 adults (mean age 58.24 years who underwent routine laboratory tests, regional pulse wave velocity (PWV and pulse wave analysis measurements were analyzed in a gender-specific manner. None of the participants had atherosclerotic cardiovascular disease, chronic renal failure, systemic inflammatory disease, gout, or were under treatment which would affect serum UA level.Results: Men had higher serum UA level than women. Subjects with hyperuricaemia had significantly higher carotid-ankle PWV in both genders (P< 0.05, and the carotid-femoral PWV (PWVc-f was higher in women (P< 0.001 while the augmentation index was marginally lower in men (P = 0.049. Multiple regression analysis showed that serum UA was an independent determinant only for PWVc-f in women (β = 0.104, P = 0.027 when adjusted for atherogenic confounders. No other independent relationship was found between UA level and other surrogates of arterial stiffness.Conclusions: Serum UA levels are associated with alterations in systemic arterial stiffness that differ in men and women. Women might be more susceptible to large vascular damage associated with hyperuricaemia.

  4. Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed.

    Science.gov (United States)

    Alastruey, Jordi

    2011-03-15

    A local estimation of pulse wave speed c, an important predictor of cardiovascular events, can be obtained at arterial locations where simultaneous measurements of blood pressure (P) and velocity (U), arterial diameter (D) and U, flow rate (Q) and cross-sectional area (A), or P and D are available, using the PU-loop, sum-of-squares (∑(2)), lnDU-loop, QA-loop or new D(2)P-loop methods. Here, these methods were applied to estimate c from numerically generated P, U, D, Q and A waveforms using a visco-elastic one-dimensional model of the 55 larger human systemic arteries in normal conditions. Theoretical c were calculated from the parameters of the model. Estimates of c given by the loop methods were closer to theoretical values and more uniform within each arterial segment than those obtained using the ∑(2). The smaller differences between estimates and theoretical values were obtained using the D(2)P-loop method, with root-mean-square errors (RMSE) smaller than 0.18 ms(-1), followed by averaging the two c given by the PU- and lnDU-loops (RMSE elastic effects were small and nearby junctions were well-matched for forward-travelling waves. The ∑(2) performed better at proximal locations. PMID:21211799

  5. Effects of Trimetazidine on T Wave Alternans in Stable Coronary Artery Disease

    OpenAIRE

    Yaman, Mehmet; Arslan, Uğur; Hasan Ali GÜMRÜKÇÜOĞLU; Şahin, Musa; Şimşek, Hakkı; Akdağ, Serkan

    2016-01-01

    Background and Objectives Studies reveal that the microvolt T wave alternans (MTWA) test has a high negative predictive value for arrhythmic mortality among patients with ischemic or non-ischemic cardiomyopathy. In this study, we investigate the effects of trimetazidine treatment on MTWA and several echocardiographic parameters in patients with stable coronary artery disease. Subjects and Methods One hundred patients (23 females, mean age 55.6±9.2 years) with stable ischemic heart disease wer...

  6. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population

    OpenAIRE

    Willum-Hansen, Tine; Staessen, Jan A.; Torp-Pedersen, Christian; Rasmussen, Susanne; Thijs, Lutgarde; Ibsen, Hans; Jeppesen, Jørgen

    2006-01-01

    BACKGROUND: Few population studies addressed the prognostic significance of aortic pulse wave velocity (APWV) above and beyond other cardiovascular risk factors. METHODS AND RESULTS: We studied a sex- and age-stratified random sample of 1678 Danes aged 40 to 70 years. We used Cox regression to investigate the prognostic value of APWV, office pulse pressure (PP), and 24-hour ambulatory PP while adjusting for mean arterial pressure (MAP) and other covariates. Over a median follow-up of 9.4 year...

  7. Correlation of Arterial Stiffness and Bone Mineral Density by Measuring Brachial-Ankle Pulse Wave Velocity in Healthy Korean Women

    OpenAIRE

    Kim, Nam-Lee; Suh, Heuy-Sun

    2015-01-01

    Background An association between arterial stiffness and osteoporosis has previously been reported. Therefore, we investigated the relationship between arterial stiffness, measured by brachial-ankle pulse wave velocity, and bone mineral density in a sample of healthy women undergoing routine medical checkup. Methods We retrospectively reviewed the medical charts of 135 women who had visited the Health Promotion Center (between May 2009 and December 2012). Brachial-ankle pulse wave velocity wa...

  8. PUVB-mediated prevention of luminal narrowing after arterial wall injury: modulation of mechanical arterial properties as a putative mechanism of action

    Science.gov (United States)

    Perree, Jop; Kerindongo, Raphaela P.; van Leeuwen, Ton G. J. M.

    2001-10-01

    In a previous study we have found that the photodynamic modality PUVB (8-methoxy-Psoralen + UVB) reduces luminal narrowing after arterial endovascular injury. We hypothesized that PUVB may modulate the arterial mechanical properties and tested this hypothesis by measuring the stress as a function of the strain in segments of carotid artery. Furthermore, we have investigated the potential for PUVB-induced cross-linking of extracellular matrix proteins by gel electrophoresis. It was found that both techniques were suitable for testing our hypotheses as evidenced by a statistically significant difference for the positive control. However, no differences between A) control, B) sensitizer only, C) light only and D) PUVB-treated samples could be found with respect to macro- and micro-mechanical properties. Therefore, the hypothesis that PUVB mediates its luminal narrowing reduction effect by directly changing the arterial mechanical properties should be rejected.

  9. Oxygen-sensing by arterial chemoreceptors: Mechanisms and medical translation.

    Science.gov (United States)

    López-Barneo, José; Ortega-Sáenz, Patricia; González-Rodríguez, Patricia; Fernández-Agüera, M Carmen; Macías, David; Pardal, Ricardo; Gao, Lin

    2016-01-01

    Acute O2 sensing is necessary for the activation of cardiorespiratory reflexes (hyperventilation and sympathetic activation), which permit the survival of individuals under hypoxic environments (e.g. high altitude) or medical conditions presenting with reduced capacity for gas exchange between the lung alveoli and the blood. Changes in blood O2 tension are detected by the arterial chemoreceptors, in particular the carotid body (CB), which act in concert with the adrenal medulla (AM) to facilitate rapid adaptations to hypoxia. The field of arterial chemoreception has undergone a considerable expansion in recent years, with many of the fundamental observations made at the molecular and cellular levels serving to improve our understanding of the pathogenesis of numerous medical disorders, and even to propose advances in the treatment strategies. In this review, after a short historical preface, we describe the current model of chemosensory transduction based on the modulation of membrane K(+) channels by O2 in specialized chemoreceptor cells. Recent progress in elucidating the molecular mechanisms underlying the modulation of ion channels by O2 tension, which involves mitochondrial complex I, is also discussed. The discovery in the last few years of a specific population of neural crest-derived stem cells in the CB explains the reversible growth of this organ, an intriguing and unusual property of this type of neuronal tissue that contributes to acclimatization under chronic hypoxia. The essential homeostatic role of the CB-AM axis is clearly evident in newly generated mouse models that reach adulthood, albeit with CB and AM atrophy. These animals exhibit a marked intolerance to even mild hypoxia. CB inhibition or over-activation can have important medical consequences. Respiratory depression by general anesthetics or by opioid use is a common clinical condition that frequently causes death in susceptible individuals. An exaggerated sympathetic outflow due to over

  10. R and T Wave Amplitude as a Parameter to Detect Coronary Artery Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyun Kyoon; Yu, Kwon Kyu; Kim, Jin Mok; Kim, In Seon; Kang, Chan Seok; Park, Yong Ki [Korea Research Instituteof Standards and Science, Daejeon (Korea, Republic of)

    2008-10-15

    Multi-channel magnetocardiography (MCG) has been proposed to detect ischemic heart disease because its sensitivity is quite high comparing with other conventional diagnostic tools. Especially, current map and magnetic field map of MCG provide crucial information on whether myocardiac muscles maintain the normal conduction pathway. In addition, MCG parameters derived from repolarization are useful to detect coronary artery disease. Recently, there was a study reporting that R- and T- wave amplitude are highly correlated with ischemic heart disease. In this study, we studied R- and T-wave amplitude and their ratio as well as MCG parameters. MCG data from 20 young, 20 age-matched controls, and 20 myocardial infarction (MI) patients were analyzed. As a result, MCG parameters showed significant change in MI patients comparing to those of controls. R- and T-wave amplitude of MI patients showed a feature of severe ischemic heart disease even though it was difficult to find consistent values. Further study is needed to reveal the relations between small T-wave amplitude and coronary artery disease.

  11. Pulse wave analysis in a 180-degree curved artery model: Implications under physiological and non-physiological inflows

    Science.gov (United States)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  12. Validity and reproducibility of arterial pulse wave velocity measurement using new device with oscillometric technique: A pilot study

    Directory of Open Access Journals (Sweden)

    Patnaik Amar

    2005-08-01

    Full Text Available Abstract Background Availability of a range of techniques and devices allow measurement of many variables related to the stiffness of large or medium sized arteries. There is good evidence that, pulse wave velocity is a relatively simple measurement and is a good indicator of changes in arterial properties. The pulse wave velocity calculated from pulse wave recording by other methods like doppler or tonometry is tedious, time-consuming and above all their reproducibility depends on the operator skills. It requires intensive resource involvement. For epidemiological studies these methods are not suitable. The aim of our study was to clinically evaluate the validity and reproducibility of a new automatic device for measurement of pulse wave velocity that can be used in such studies. Methods In 44 subjects including normal healthy control and patients with coronary artery disease, heart brachial, heart ankle, brachial ankle and carotid femoral pulse wave velocities were recorded by using a new oscillometric device. Lead I and II electrocardiogram and pressure curves were simultaneously recorded. Two observers recorded the pulse wave velocity for validation and one observer recorded the velocity on two occasions for reproducibility. Results and Discussion Pulse wave velocity and arterial stiffness index were recorded in 24 control and 20 coronary artery disease patients. All the velocities were significantly high in coronary artery disease patients. There was highly significant correlation between the values noted by the two observers with low standard deviation. The Pearson's correlation coefficient for various velocities ranged from (r = 0.88–0.90 with (p Conclusion The new device "PeriScope" based on oscillometric technique has been found to be a simple, non-invasive and reproducible device for the assessment of pulse wave velocity and can be used to determine arterial stiffness in large population based studies.

  13. Percutaneous mechanical atherectomy for treatment of peripheral arterial occlusive disease

    International Nuclear Information System (INIS)

    Peripheral arterial occlusive disease (PAOD) is still an extremely important politico-economic disease. Diverse treatment procedures exist but the pillars of therapy are changes in lifestyle, such as nicotine abstinence and walking exercise as well as drug therapy. Further therapy options are considered after conventional procedures have been exhausted. These further options consist of improvement of the blood supply by surgical or minimally invasive procedures. The latter therapy options include balloon dilatation and stenting as the most widely used techniques. More recent techniques also used are cryoplasty, laser angioplasty, drug-coated stents or balloons as well as brachytherapy or atherectomy, whereby this list makes no claims to completeness. The multitude of different treatment methods emphatically underlines the fact that no resounding success can be achieved with one single method. The long-term results of both balloon dilatation and stenting techniques show a need for improvement, which elicited the search for additional methods for the treatment of PAOD. Atherectomy represents such an alternative method for treatment of PAOD. Basically, the term atherectomy means the removal of atheroma tissue. For percutaneous atherectomy, in contrast to surgical procedures, it is not necessary to create surgically access to the vessel but accomplishes the atherectomy by means of dedicated systems via a minimally invasive access. There are two basic forms of mechanical atherectomy: directional and rotational systems. (orig.)

  14. Dynamic respiratory mechanics and exertional dyspnoea in pulmonary arterial hypertension.

    Science.gov (United States)

    Laveneziana, Pierantonio; Garcia, Gilles; Joureau, Barbara; Nicolas-Jilwan, Fadia; Brahimi, Toufik; Laviolette, Louis; Sitbon, Olivier; Simonneau, Gérald; Humbert, Marc; Similowski, Thomas

    2013-03-01

    Patients with pulmonary arterial hypertension (PAH) may exhibit reduced expiratory flows at low lung volumes, which could promote exercise-induced dynamic hyperinflation (DH). This study aimed to examine the impact of a potential exercise-related DH on the intensity of dyspnoea in patients with PAH undergoing symptom-limited incremental cardiopulmonary cycle exercise testing (CPET). 25 young (aged mean±sd 38±12 yrs) nonsmoking PAH patients with no evidence of spirometric obstruction and 10 age-matched nonsmoking healthy subjects performed CPET to the limit of tolerance. Ventilatory pattern, operating lung volumes (derived from inspiratory capacity (IC) measurements) and dyspnoea intensity (Borg scale) were assessed throughout CPET. IC decreased (i.e. DH) progressively throughout CPET in PAH patients (average 0.15 L), whereas it increased in all the healthy subjects (0.45 L). Among PAH patients, 15 (60%) exhibited a decrease in IC throughout exercise (average 0.50 L), whereas in the remaining 10 (40%) patients IC increased (average 0.36 L). Dyspnoea intensity and ventilation were greater in PAH patients than in controls at any stage of CPET, whereas inspiratory reserve volume was lower. We conclude that DH-induced mechanical constraints and excessive ventilatory demand occurred in these young nonsmoking PAH patients with no spirometric obstruction and was associated with exertional dyspnoea. PMID:22790921

  15. Competing wave-breaking mechanisms in quadratic media.

    Science.gov (United States)

    Conforti, M; Baronio, F; Trillo, S

    2013-05-15

    We show that second-harmonic generation in the regime of weak dispersion/diffraction can exhibit a coexistence of wave breaking mechanisms, such that a gradient catastrophe yielding a dispersive shock wave competes with modulational instability, leading to the generation of wavetrains with incommensurate frequencies and eventually to the destruction of the shock wave-train. PMID:23938898

  16. Estimation of local pulse wave velocity using arterial diameter waveforms: Experimental validation in sheep

    International Nuclear Information System (INIS)

    Increased arterial stiffness is associated with an increased risk of cardiovascular events. Estimation of arterial stiffness using local pulse wave velocity (PWV) promises to be very useful for noninvasive diagnosis of arteriosclerosis. In this work we estimated in an instrumented sheep, the local aortic pulse wave velocity using two sonomicrometry diameter sensors (separated 7.5 cm) according to the transit time method (PWVTT) with a sampling rate of 4 KHz. We simultaneously measured aortic pressure in order to determine from pressure-diameter loops (PWVPDLoop), the true local aortic pulse wave velocity. A pneumatic cuff occluder was implanted in the aorta in order to compare both methods under a wide range of pressure levels. Mean pressure values ranged from 47 to 101 mmHg and mean proximal diameter values from 12.5. to 15.2 mm. There were no significant differences between PWVTT and PWVPDLoop values (451±43 vs. 447±48 cm/s, p = ns, paired t-test). Both methods correlated significantly (R = 0.81, p<0.05). The mean difference between both methods was only 4±29 cm/s, whereas the range of the limits of agreement (mean ± 2 standard deviation) was -61 to +53 cm/s, showing no trend. In conclusion, the diameter waveforms transit time method was found to allow an accurate and precise estimation of the local aortic PWV.

  17. Evaluation of arterial propagation velocity based on the automated analysis of the Pulse Wave Shape

    International Nuclear Information System (INIS)

    This paper proposes the automatic estimation of the arterial propagation velocity from the pulse wave raw records measured in the region of the radial artery. A fully automatic process is proposed to select and analyze typical pulse cycles from the raw data. An adaptive neuro-fuzzy inference system, together with a heuristic search is used to find a functional approximation of the pulse wave. The estimation of the propagation velocity is carried out via the analysis of the functional approximation obtained with the fuzzy model. The analysis of the pulse wave records with the proposed methodology showed small differences compared with the method used so far, based on a strong interaction with the user. To evaluate the proposed methodology, we estimated the propagation velocity in a population of healthy men from a wide range of ages. It has been found in these studies that propagation velocity increases linearly with age and it presents a considerable dispersion of values in healthy individuals. We conclude that this process could be used to evaluate indirectly the propagation velocity of the aorta, which is related to physiological age in healthy individuals and with the expectation of life in cardiovascular patients.

  18. Ocean wave imaging mechanism by imaging radar

    Institute of Scientific and Technical Information of China (English)

    何宜军

    2000-01-01

    Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.

  19. Effects of different PEEP levels on respiratory mechanics and oxygenation after coronary artery bypass grafting

    OpenAIRE

    Daniel Lago Borges; Vinícius José da Silva Nina; Marina de Albuquerque Gonçalves Costa; Thiago Eduardo Pereira Baldez; Natália Pereira dos Santos; Ilka Mendes Lima; Eduardo Durans Figuerêdo; Josimary Lima da Silva Lula

    2013-01-01

    OBJECTIVE: To compare the effects of different levels of positive end-expiratory pressure on respiratory mechanics and oxygenation indexes in the immediate postoperative period of coronary artery bypass grafting. METHODS: Randomized clinical trial in which 136 patients underwent coronary artery bypass grafting between January 2011 and March 2012 were divided into three groups and admitted to mechanical ventilation with different positive end-expiratory pressure levels: Group A, 5 cmH2O (n=44)...

  20. Pedagogical models of surface mechanical wave propagation in various materials

    International Nuclear Information System (INIS)

    We report on a teaching approach oriented to the understanding of some relevant concepts of wave propagation in solids. It is based on simple experiments involving the propagation of shock mechanical waves in solid slabs of various materials. Methods similar to the generation and propagation of seismic waves are adopted. Educational seismometers, interfaced with computers, are used to detect and visualize the shock waves and to analyse their propagation properties. A qualitative discussion of the results concerning the propagation and the attenuation of the waves allows us to draw basic conclusions about the response of the matter to solicitation impacts and their propagation

  1. Numerical simulation and mechanism analysis of freak waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A numerical wave model based on the modified fourth-order nonlinear Schroe dinger equation (mNLSE) in deep water was developed to simulate the formation of freak waves and a standard split-step, pseudo-spectral method was used to solve the equation. The validation of the model is firstly verified, then the simulation of freak waves was performed by changing sideband conditions, and the variation of wave energy was also analyzed in the evolution. The results indicate that Benjamin-Feir instability (sideband instability) is an important mechanism for freak wave formation.

  2. A Distinguishing Arterial Pulse Waves Approach by Using Image Processing and Feature Extraction Technique.

    Science.gov (United States)

    Chen, Hsing-Chung; Kuo, Shyi-Shiun; Sun, Shen-Ching; Chang, Chia-Hui

    2016-10-01

    Traditional Chinese Medicine (TCM) is based on five main types of diagnoses methods consisting of inspection, auscultation, olfaction, inquiry, and palpation. The most important one is palpation also called pulse diagnosis which is to measure wrist artery pulse by doctor's fingers for detecting patient's health state. In this paper, it is carried out by using a specialized pulse measuring instrument to classify one's pulse type. The measured pulse waves (MPWs) were segmented into the arterial pulse wave curve (APWC) by image proposing method. The slopes and periods among four specific points on the APWC were taken to be the pulse features. Three algorithms are proposed in this paper, which could extract these features from the APWCs and compared their differences between each of them to the average feature matrix, individually. These results show that the method proposed in this study is superior and more accurate than the previous studies. The proposed method could significantly save doctors a large amount of time, increase accuracy and decrease data volume. PMID:27562483

  3. Photodynamic therapy of arteries: preservation of mechanical integrity

    Science.gov (United States)

    Grant, William E.; Hopper, Colin; Buonaccorsi, Giovanni A.; Speight, Paul M.; MacRobert, Alexander J.; Fan, Kathleen F.; Bown, Stephen G.

    1995-03-01

    Photodynamic therapy (PDT) of tumors, as a primary treatment or as an adjunctive intra- operative therapy, may expose major vascular structures to injury. PDT has also been proposed to prevent neointimal hyperplasia following angioplasty of stenotic arteries. This study aimed to determine the effect of PDT on the normal rabbit carotid artery, and to determine whether this injury resulted in weakening of the vessel wall. PDT of the carotid arteries of NZW rabbits, using either disulphonated aluminum phthalocyanine or 5- aminolaevulinic acid induced protoporphyrin IX as photosensitizers, was performed using a light dose of 100 J/cm2. Histological examination of the carotids treated with both drugs demonstrated full thickness loss of cellularity 3 days following photodynamic therapy. Treated vessels all remained patent and no inflammatory infiltrate was observed. Elastin van Gieson staining showed preservation of inner and medial elastic laminae and medial and adventitial collagen. Further rabbits were similarly treated with PDT to 1 cm segments of both common carotids and sacrificed at 3, 7, and 21 days. The carotids were exposed and control and treated segments subjected to intraluminal hydrostatic distension until the vessels ruptured. No reduction in the pressure required to rupture the vessels was evident in treated vessels compared with controls. It is concluded that in spite of full thickness cell death, PDT treated arteries are not at risk of thrombotic occlusion or hemorrhage.

  4. The Molecular Genetics and Cellular Mechanisms Underlying Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Rajiv D. Machado

    2012-01-01

    Full Text Available Pulmonary arterial hypertension (PAH is an incurable disorder clinically characterised by a sustained elevation of mean arterial pressure in the absence of systemic involvement. As the adult circulation is a low pressure, low resistance system, PAH represents a reversal to a foetal state. The small pulmonary arteries of patients exhibit luminal occlusion resultant from the uncontrolled growth of endothelial and smooth muscle cells. This vascular remodelling is comprised of hallmark defects, most notably the plexiform lesion. PAH may be familial in nature but the majority of patients present with spontaneous disease or PAH associated with other complications. In this paper, the molecular genetic basis of the disorder is discussed in detail ranging from the original identification of the major genetic contributant to PAH and moving on to current next-generation technologies that have led to the rapid identification of additional genetic risk factors. The impact of identified mutations on the cell is examined, particularly, the determination of pathways disrupted in disease and critical to pulmonary vascular maintenance. Finally, the application of research in this area to the design and development of novel treatment options for patients is addressed along with the future directions PAH research is progressing towards.

  5. On quantum mechanical phase-space wave functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim J.

    1994-01-01

    An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...

  6. Adaptive mechanisms of arterial and venous coronary bypass grafts to an increase in flow demand

    OpenAIRE

    Gurné, Olivier; Chenu, Patrick; Buche, Michel; Louagie, Yves; Eucher, Philippe; Marchandise, Baudouin; Rombaut, E; Blommaert, Dominique; Schroeder, Erwin

    1999-01-01

    OBJECTIVE—To compare the mechanisms by which arterial and venous grafts increase their flow during pacing induced tachycardia, early and later after coronary bypass surgery.
DESIGN—43 grafts (13 epigastric artery, 15 mammary artery, 15 saphenous vein) evaluated early (9 (3) days (mean (SD)) after bypass surgery were compared with 41 other grafts (15 epigastric, 11 mammary, 15 saphenous vein) evaluated later after surgery (mean 23 months, range 6 to 168 months) by quantitative angiography and ...

  7. Ultrasonic guided wave mechanics for composite material structural health monitoring

    Science.gov (United States)

    Gao, Huidong

    The ultrasonic guided wave based method is very promising for structural health monitoring of aging and modern aircraft. An understanding of wave mechanics becomes very critical for exploring the potential of this technology. However, the guided wave mechanics in complex structures, especially composite materials, are very challenging due to the nature of multi-layer, anisotropic, and viscoelastic behavior. The purpose of this thesis is to overcome the challenges and potentially take advantage of the complex wave mechanics for advanced sensor design and signal analysis. Guided wave mechanics is studied in three aspects, namely wave propagation, excitation, and damage sensing. A 16 layer quasi-isotropic composite with a [(0/45/90/-45)s]2 lay up sequence is used in our study. First, a hybrid semi-analytical finite element (SAFE) and global matrix method (GMM) is used to simulate guided wave propagation in composites. Fast and accurate simulation is achieved by using SAFE for dispersion curve generation and GMM for wave structure calculation. Secondly, the normal mode expansion (NME) technique is used for the first time to study the wave excitation characteristics in laminated composites. A clear and simple definition of wave excitability is put forward as a result of NME analysis. Source influence for guided wave excitation is plotted as amplitude on a frequency and phase velocity spectrum. This spectrum also provides a guideline for transducer design in guided wave excitation. The ultrasonic guided wave excitation characteristics in viscoelastic media are also studied for the first time using a modified normal mode expansion technique. Thirdly, a simple physically based feature is developed to estimate the guided wave sensitivity to damage in composites. Finally, a fuzzy logic decision program is developed to perform mode selection through a quantitative evaluation of the wave propagation, excitation and sensitivity features. Numerical simulation algorithms are

  8. Regulatory mechanism of endothelin receptor B in the cerebral arteries after focal cerebral ischemia

    DEFF Research Database (Denmark)

    Grell, Anne-Sofie; Thigarajah, Rushani; Edvinsson, Lars;

    2014-01-01

    BACKGROUND AND PURPOSE: Increased expression of endothelin receptor type B (ETBR), a vasoactive receptor, has recently been implied in the reduced cerebral blood flow and exacerbated neuronal damage after ischemia-reperfusion (I/R). The study explores the regulatory mechanisms of ETBR to identify...... drug targets to restore normal cerebral artery contractile function as part of successful neuroprotective therapy. METHODS: We have employed in vitro methods on human and rat cerebral arteries to study the regulatory mechanisms and the efficacy of target selective inhibitor, Mithramycin A (MitA), to...... arteries. RESULTS: Increased expression of specificity protein (Sp1) was observed in human and rat cerebral arteries after organ culture, strongly correlating with the ETBR upregulation. Similar observations were made in MCAO rats. Treatment with MitA, a Sp1 specific inhibitor, significantly downregulated...

  9. Probing the Core-Collapse Supernova Mechanism with Gravitational Waves

    CERN Document Server

    Ott, C D

    2009-01-01

    The mechanism of core-collapse supernova explosions must draw on the energy provided by gravitational collapse and transfer the necessary fraction to the kinetic and internal energy of the ejecta. Despite many decades of concerted theoretical effort, the detailed mechanism of core-collapse supernova explosions is still unknown, but indications are strong that multi-D processes lie at its heart. This opens up the possibility of probing the supernova mechanism with gravitational waves, carrying direct dynamical information from the supernova engine deep inside a dying massive star. I present a concise overview of the physics and primary multi-D dynamics in neutrino-driven, magnetorotational, and acoustically-driven core-collapse supernova explosion scenarios. Discussing and contrasting estimates for the gravitational-wave emission characteristics of these mechanisms, I argue that their gravitational-wave signatures are clearly distinct and that the observation (or non-observation) of gravitational waves from a ...

  10. J Wave Syndromes: Molecular and Cellular Mechanisms

    OpenAIRE

    Antzelevitch, Charles

    2013-01-01

    An early repolarization (ER) pattern in the ECG, consisting of J point elevation, distinct J wave with or without ST segment elevation or slurring of the terminal part of the QRS, was long considered a benign electrocardiographic manifestation. Experimental studies a dozen years ago suggested that an ER is not always benign, but may be associated with malignant arrhythmias. Validation of this hypothesis derives from recent case-control and population-based studies showing that an ER pattern i...

  11. Celestial Mechanics, Conformal Structures, and Gravitational Waves

    OpenAIRE

    Duval, C.; Gibbons, G.; Horvathy, P.

    2005-01-01

    The equations of motion for $N$ non-relativistic particles attracting according to Newton's law are shown to correspond to the equations for null geodesics in a $(3N+2)$-dimensional Lorentzian, Ricci-flat, spacetime with a covariantly constant null vector. Such a spacetime admits a Bargmann structure and corresponds physically to a generalized pp-wave. Bargmann electromagnetism in five dimensions comprises the two Galilean electro-magnetic theories (Le Bellac and L\\'evy-Leblond). At the quant...

  12. Arterial distensibility as a possible compensatory mechanism in chronic aortic regurgitation

    Directory of Open Access Journals (Sweden)

    Kopel Liliane

    2001-01-01

    Full Text Available OBJECTIVE: To evaluate elastic properties of conduit arteries in asymptomatic patients who have severe chronic aortic regurgitation. METHODS: Twelve healthy volunteers aged 30±1 years (control group and 14 asymptomatic patients with severe aortic regurgitation aged 29±2 years and left ventricular ejection fraction of 0.61±0.02 (radioisotope ventriculography were studied. High-resolution ultrasonography was performed to measure the systolic and diastolic diameters of the common carotid artery. Simultaneous measurement of blood pressure enabled the calculation of arterial compliance and distensibility. RESULTS: No differences were observed between patients with aortic regurgitation and the control group concerning age, sex, body surface, and mean blood pressure. Pulse pressure was significantly higher in the aortic regurgitation group compared with that in the control group (78±3 versus 48±1mmHg, P<0.01. Arterial compliance and distensibility were significantly greater in the aortic regurgitation group compared with that in the control group (11.0±0.8 versus 8.1±0.7 10-10 N-1 m4, P=0.01 e and 39.3±2.6 versus 31.1±2.0 10-6 N-1 m², P=0.02, respectively. CONCLUSION: Patients with chronic aortic regurgitation have increased arterial distensibility. Greater vascular compliance, to lessen the impact of systolic volume ejected into conduit arteries, represents a compensatory mechanism in left ventricular and arterial system coupling.

  13. S-nitrosothiols dilate the mesenteric artery more potently than the femoral artery by a cGMP and L-type calcium channel-dependent mechanism.

    Science.gov (United States)

    Liu, Taiming; Schroeder, Hobe J; Zhang, Meijuan; Wilson, Sean M; Terry, Michael H; Longo, Lawrence D; Power, Gordon G; Blood, Arlin B

    2016-08-31

    S-nitrosothiols (SNOs) are metabolites of NO with potent vasodilatory activity. Our previous studies in sheep indicated that intra-arterially infused SNOs dilate the mesenteric vasculature more than the femoral vasculature. We hypothesized that the mesenteric artery is more responsive to SNO-mediated vasodilation, and investigated various steps along the NO/cGMP pathway to determine the mechanism for this difference. In anesthetized adult sheep, we monitored the conductance of mesenteric and femoral arteries during infusion of S-nitroso-l-cysteine (L-cysNO), and found mesenteric vascular conductance increased (137 ± 3%) significantly more than femoral conductance (26 ± 25%). Similar results were found in wire myography studies of isolated sheep mesenteric and femoral arteries. Vasodilation by SNOs was attenuated in both vessel types by the presence of ODQ (sGC inhibitor), and both YC-1 (sGC agonist) and 8-Br-cGMP (cGMP analog) mediated more potent relaxation in mesenteric arteries than femoral arteries. The vasodilatory difference between mesenteric and femoral arteries was eliminated by antagonists of either protein kinase G or L-type Ca(2+) channels. Western immunoblots showed a larger L-type Ca(2+)/sGC abundance ratio in mesenteric arteries than in femoral arteries. Fetal sheep mesenteric arteries were more responsive to SNOs than adult mesenteric arteries, and had a greater L-Ca(2+)/sGC ratio (p = 0.047 and r = -0.906 for correlation between Emax and L-Ca(2+)/sGC). These results suggest that mesenteric arteries, especially those in fetus, are more responsive to SNO-mediated vasodilation than femoral arteries due to a greater role of the L-type calcium channel in the NO/cGMP pathway. PMID:27235767

  14. Neutron optical tests of nonlinear wave mechanics

    International Nuclear Information System (INIS)

    The free-space propagation of matter waves is analysed with a view to placing an upper limit on the strength of possible non-linear terms in the Schrodinger equation. Such additional terms of the form psiF(/psi/2) were introduced by Bialynicki-Birula and Mycielski in order to counteract the spreading of wave packets, thereby allowing solutions which behave macroscopically like classical particles. For the particularly interesting case of a logarithmic nonlinearity, of the form F=-b ln/psi/2 it is found that the free-space propagation of slow neutrons places a very stringent upper limit on the magnitude of b. Precise measurements of Fresnel diffraction with slow neutrons do not give any evidence for nonlinear effects and allows the deduction of an upper limit for b-15 eV about 3 orders of magnitude smaller than the lower bound proposed by the above authors, making such nonlinearities extremely unlikely in the real world

  15. The mobility analog for modeling the intra-arterial pressure wave parameters.

    Science.gov (United States)

    Ferris, C D; Stinnett, H O

    1995-01-01

    To assist in the identification of physical/physiological parameters obtained from in vivo rat aortic artery dynamic pressure data, the natural (mobility) mechanical circuit model was constructed. The direct electrical analog of the model thus obtained was then analyzed using SPICE. The experimental data were obtained using a Multifunction Pressure Generator (MPG), appropriate pressure probes, and a high-speed video camera. Two 486 computers were used for system control and data recording and computation. Transfer functions in rational form of the ratio of the MPG input pressure (Pi) to the intra-arterial pressure (Po) were then generated in the s-domain. The mechanical circuit described by these rational functions was then constructed and transformed into its equivalent electrical model for analysis. On this basis, physiological pressures are represented by electrical currents, and volume flow rates by electrical voltages. The results obtained through steady-state (Bode plot) and transient analysis of the model developed suggest a compartmental model that explains the experimental observations. The mobility model is an improvement over previous models in that the mass element is referred to a single frame of reference, which agrees with the physical property that mass is a one-terminal device. PMID:7654985

  16. Mechanism of an acoustic wave impact on steel during solidification

    OpenAIRE

    K. Nowacki; P. Musiał; T. Lis

    2013-01-01

    Acoustic steel processing in an ingot mould may be the final stage in the process of quality improvement of a steel ingot. The impact of radiation and cavitation pressure as well as the phenomena related to the acoustic wave being emitted and delivered to liquid steel affect various aspects including the internal structure fragmentation, rigidity or density of steel. The article provides an analysis of the mechanism of impact of physical phenomena caused by an acoustic wave affecting the qual...

  17. Performance of a Wave Energy Converter with Mechanical Energy Smoothing

    OpenAIRE

    Josefsson, Andreas; Berghuvud, Ansel; Ahlin, Kjell; Broman, Göran

    2011-01-01

    A wave energy converter which uses a power balancing mechanism for turning intermittent and irregular wave motion input to smoothed continuous electrical power output is studied by combined scale-model testing and numerical simulation. The studied concept consists of a moored floating device together with a moving mass which is used to store instantaneous incoming power and deliver a controllable load to an electric generator over a unidirectional rotating shaft. A mathematical model describi...

  18. Millimeter wave detection of nuclear radiation: An alternative detection mechanism

    International Nuclear Information System (INIS)

    We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam.

  19. Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets

    Science.gov (United States)

    Kienzler, D.; Flühmann, C.; Negnevitsky, V.; Lo, H.-Y.; Marinelli, M.; Nadlinger, D.; Home, J. P.

    2016-04-01

    We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for Δ α =15.6 , corresponding to a distance of 240 nm between the two superposed wave packets.

  20. Wind-wave amplification mechanisms: possible models for steep wave events in finite depth

    Directory of Open Access Journals (Sweden)

    P. Montalvo

    2013-11-01

    Full Text Available We extend the Miles mechanism of wind-wave generation to finite depth. A β-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of β is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the β-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrödinger equation is derived and the Akhmediev, Peregrine and Kuznetsov–Ma breather solutions for weak wind inputs in finite depth h are obtained.

  1. A wave equation interpolating between classical and quantum mechanics

    Science.gov (United States)

    Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.

    2015-10-01

    We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.

  2. Probing the Core-Collapse Supernova Mechanism with Gravitational Waves

    OpenAIRE

    Ott, C D

    2009-01-01

    The mechanism of core-collapse supernova explosions must draw on the energy provided by gravitational collapse and transfer the necessary fraction to the kinetic and internal energy of the ejecta. Despite many decades of concerted theoretical effort, the detailed mechanism of core-collapse supernova explosions is still unknown, but indications are strong that multi-D processes lie at its heart. This opens up the possibility of probing the supernova mechanism with gravitational waves, carrying...

  3. A mechanical argument for the differential performance of coronary artery grafts.

    Science.gov (United States)

    Prim, David A; Zhou, Boran; Hartstone-Rose, Adam; Uline, Mark J; Shazly, Tarek; Eberth, John F

    2016-02-01

    Coronary artery bypass grafting (CABG) acutely disturbs the homeostatic state of the transplanted vessel making retention of graft patency dependent on chronic remodeling processes. The time course and extent to which remodeling restores vessel homeostasis will depend, in part, on the nature and magnitude of the mechanical disturbances induced upon transplantation. In this investigation, biaxial mechanical testing and histology were performed on the porcine left anterior descending artery (LAD) and analogs of common autografts, including the internal thoracic artery (ITA), radial artery (RA), great saphenous vein (GSV) and lateral saphenous vein (LSV). Experimental data were used to quantify the parameters of a structure-based constitutive model enabling prediction of the acute vessel mechanical response pre-transplantation and under coronary loading conditions. A novel metric Ξ was developed to quantify mechanical differences between each graft vessel in situ and the LAD in situ, while a second metric Ω compares the graft vessels in situ to their state under coronary loading. The relative values of these metrics among candidate autograft sources are consistent with vessel-specific variations in CABG clinical success rates with the ITA as the superior and GSV the inferior graft choices based on mechanical performance. This approach can be used to evaluate other candidate tissues for grafting or to aid in the development of synthetic and tissue engineered alternatives. PMID:26437296

  4. Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement

    Science.gov (United States)

    Manguoglu, Murat; Takizawa, Kenji; Sameh, Ahmed H.; Tezduyar, Tayfun E.

    2009-10-01

    Computation of incompressible flows in arterial fluid mechanics, especially because it involves fluid-structure interaction, poses significant numerical challenges. Iterative solution of the fluid mechanics part of the equation systems involved is one of those challenges, and we address that in this paper, with the added complication of having boundary layer mesh refinement with thin layers of elements near the arterial wall. As test case, we use matrix data from stabilized finite element computation of a bifurcating middle cerebral artery segment with aneurysm. It is well known that solving linear systems that arise in incompressible flow computations consume most of the time required by such simulations. For solving these large sparse nonsymmetric systems, we present effective preconditioning techniques appropriate for different stages of the computation over a cardiac cycle.

  5. Waves and Oscillations A Prelude to Quantum Mechanics

    CERN Document Server

    Smith, Walter Fox

    2010-01-01

    Waves and oscillations permeate virtually every field of current physics research, are central to chemistry, and are essential to much of engineering. Furthermore, the concepts and mathematical techniques used for serious study of waves and oscillations form the foundation for quantum mechanics. Once they have mastered these ideas in a classical context, students will be ready to focus on the challenging concepts of quantum mechanics when they encounter them, rather than struggling with techniques. This lively textbook gives a thorough grounding in complex exponentials and the key aspects of d

  6. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele Bellesi

    2014-10-01

    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  7. Morphologic,mechanical and functional sonographic parameters of arteries in autosomal dominant polycystic kidney disease

    Institute of Scientific and Technical Information of China (English)

    戎殳

    2006-01-01

    Objective To investigate whether the risk factors of cardiovascular disease exist in early stage of ADPKD patients with normal renal function. Methods Morphologic , mechanical and functional sonographic parameters of arteries were examined by high-frequency ultrasonography in 32 hypertensive and 28 normotensive ADPKD patients with preserved renal function, 25 patients with es-

  8. Stem villous arteries from the placentas of heavy smokers: functional and mechanical properties

    DEFF Research Database (Denmark)

    Clausen, Helle Vibeke; Jorgensen, J C; Ottesen, B

    1999-01-01

    OBJECTIVE: The aim of the study was to compare the mechanical and functional properties of isolated small stem villous arteries from the placentas of women who smoked heavily (>/=15 cigarettes/d) during pregnancy with those from the placentas of nonsmokers. STUDY DESIGN: Isolated stem villous...

  9. Rogue waves and their generating mechanisms in different physical contexts

    Energy Technology Data Exchange (ETDEWEB)

    Onorato, M. [Dipartimento di Fisica Generale, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); INFN, Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Residori, S., E-mail: Stefania.Residori@inln.cnrs.fr [INLN, Université de Nice Sophia-Antipolis, CNRS, 1361 route des Lucioles, 06560 Valbonne (France); Bortolozzo, U. [INLN, Université de Nice Sophia-Antipolis, CNRS, 1361 route des Lucioles, 06560 Valbonne (France); Montina, A. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 Canada (Canada); Arecchi, F.T. [Dipartimento di Fisica, Università di Firenze (Italy); CNR-INO, largo E. Fermi 6, 50125 Firenze (Italy)

    2013-07-10

    Rogue waves is the name given by oceanographers to isolated large amplitude waves, that occur more frequently than expected for normal, Gaussian distributed, statistical events. Rogue waves are ubiquitous in nature and appear in a variety of different contexts. Besides water waves, they have been recently reported in liquid Helium, in nonlinear optics, microwave cavities, etc. The first part of the review is dedicated to rogue waves in the oceans and to their laboratory counterpart with experiments performed in water basins. Most of the work and interpretation of the experimental results will be based on the nonlinear Schrödinger equation, an universal model, that rules the dynamics of weakly nonlinear, narrow band surface gravity waves. Then, we present examples of rogue waves occurring in different physical contexts and we discuss the related anomalous statistics of the wave amplitude, which deviates from the Gaussian behavior that were expected for random waves. The third part of the review is dedicated to optical rogue waves, with examples taken from the supercontinuum generation in photonic crystal fibers, laser fiber systems and two-dimensional spatiotemporal systems. In particular, the extreme waves observed in a two-dimensional spatially extended optical cavity allow us to introduce a description based on two essential conditions for the generation of rogue waves: nonlinear coupling and nonlocal coupling. The first requirement is needed in order to introduce an elementary size, such as that of the solitons or breathers, whereas the second requirement implies inhomogeneity, a mechanism needed to produce the events of mutual collisions and mutual amplification between the elementary solitons or wavepackets. The concepts of “granularity” and “inhomogeneity” as joint generators of optical rogue waves are introduced on the basis of a linear experiment. By extending these concepts to other systems, rogue waves can be classified as phenomena occurring in

  10. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.

  11. A Traveling Wave based Communication Mechanism for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yoshiaki Taniguchi

    2007-09-01

    Full Text Available In this paper, we propose and evaluate a selforganizing communication mechanism for wireless sensor networks where a large number of sensor nodes are deployed. To accomplish application-oriented periodic communication without any centralized controls, we adopt traveling wave phenomena of a pulse-coupled oscillator model by regarding sensor nodes as oscillators and emission of radio signals as firing. We first investigate conditions of a phase-response curve to attain wave-formed firing patterns regardless of the initial phase of oscillators. We adopt the derived phase-response curve to accomplish the desired form of message propagation through local and mutual interactions among neighboring sensor nodes. Through simulation experiments, we confirm that our mechanism delivers sensor information to / from a designated node in a more energyefficient manner than other method, although it takes time to generate a traveling wave.

  12. Mechanism of shock wave merging in a laser jet engine

    International Nuclear Information System (INIS)

    A new approach based on the mechanism of the merging of shock waves generated by an optical pulsating discharge (OPD) is considered for developing laser jet engines (LJE). It is proposed to use high-power repetitively pulsed laser radiation of small duration (150-250 ns), energy 20-200 J, and a pulse repetition rate of up to 100 kHz for producing an OPD. The formation of an OPD with the help of an array of reflectors allows a manifold increase in the efficiency of laser radiation used for developing an LJE and prevents severe shock loading of the engine, excludes thermal action of laser plasma on the reflector, and decreases the shielding of laser radiation by plasma. Possible values of the LJE thrust are estimated under conditions of the proposed mechanism of merging of shock waves into a quasistationary high-pressure wave. (laser applications and other topics in quantum electronics)

  13. A discrete mesoscopic particle model of the mechanics of a multi-constituent arterial wall.

    Science.gov (United States)

    Witthoft, Alexandra; Yazdani, Alireza; Peng, Zhangli; Bellini, Chiara; Humphrey, Jay D; Karniadakis, George Em

    2016-01-01

    Blood vessels have unique properties that allow them to function together within a complex, self-regulating network. The contractile capacity of the wall combined with complex mechanical properties of the extracellular matrix enables vessels to adapt to changes in haemodynamic loading. Homogenized phenomenological and multi-constituent, structurally motivated continuum models have successfully captured these mechanical properties, but truly describing intricate microstructural details of the arterial wall may require a discrete framework. Such an approach would facilitate modelling interactions between or the separation of layers of the wall and would offer the advantage of seamless integration with discrete models of complex blood flow. We present a discrete particle model of a multi-constituent, nonlinearly elastic, anisotropic arterial wall, which we develop using the dissipative particle dynamics method. Mimicking basic features of the microstructure of the arterial wall, the model comprises an elastin matrix having isotropic nonlinear elastic properties plus anisotropic fibre reinforcement that represents the stiffer collagen fibres of the wall. These collagen fibres are distributed evenly and are oriented in four directions, symmetric to the vessel axis. Experimental results from biaxial mechanical tests of an artery are used for model validation, and a delamination test is simulated to demonstrate the new capabilities of the model. PMID:26790998

  14. Stent-assisted mechanical recanalization for symptomatic subacute or chronic middle cerebral artery occlusion

    Science.gov (United States)

    Guo, Dong; Ma, Ji; Li, Teng-Fei; Zhu, Ming; Han, Xin-Wei; Shui, Shao-Feng

    2015-01-01

    To assess the feasibility and short-term effects of treating patients with subacute or chronic middle cerebral artery (M1) occlusion by stent-assisted mechanical recanalization. Six patients with cerebral arteries occlusion underwent surgery. Six cerebral arteries occlusion in 5 patients were successfully recanalized. On postoperative day 1, four patients’ symptoms were relieved and two patients’ symptoms were exacerbated, of which one was significantly improved after 3 days, the other one’s symptoms were recovered to preoperative levels in 2 weeks. No patients died after surgery. No stroke or transient ischemic attack occurred. The average follow-up of was 4.2 months, no worsening of condition, recurrence or death occurred. The results indicate that for patients with subacute or chronic middle cerebral artery (M1) occlusion, mechanical recanalization was technically feasible under the premise of strict case screening. Mechanical recanalization is able to improve ischemic symptoms and promote dysfunction restoration. But its long-term effect remains to be evaluated by further large samples, long-term follow-up studies. PMID:26885148

  15. Arterial Injury and Endothelial Repair: Rapid Recovery of Function after Mechanical Injury in Healthy Volunteers

    Directory of Open Access Journals (Sweden)

    Lindsey Tilling

    2014-01-01

    Full Text Available Objective. Previous studies suggest a protracted course of recovery after mechanical endothelial injury; confounders may include degree of injury and concomitant endothelial dysfunction. We sought to define the time course of endothelial function recovery using flow-mediated dilation (FMD, after ischaemia-reperfusion (IR and mechanical injury in patients and healthy volunteers. The contribution of circulating CD133+/CD34+/VEGFR2+ “endothelial progenitor” (EPC or repair cells to endothelial repair was also examined. Methods. 28 healthy volunteers aged 18–35 years underwent transient forearm ischaemia induced by cuff inflation around the proximal biceps and radial artery mechanical injury induced by inserting a wire through a cannula. A more severe mechanical injury was induced using an arterial sheath and catheter inserted into the radial artery of 18 patients undergoing angiography. Results. IR and mechanical injury produced immediate impairment of FMD (from 6.5 ± 1.2% to 2.9 ± 2.2% and from 7.4 ± 2.3% to 1.5 ± 1.6% for IR and injury, resp., each P<0.001 but recovered within 6 hours and 2 days, respectively. FMD took up to 4 months to recover in patients. Circulating EPC did not change significantly during the injury/recovery period in all subjects. Conclusions. Recovery of endothelial function after IR and mechanical injury is rapid and not associated with a change in circulating EPC.

  16. Thermal Mechanisms of Millimeter Wave Stimulation of Excitable Cells

    OpenAIRE

    Shapiro, Mikhail G.; Priest, Michael F.; Siegel, Peter H.; Bezanilla, Francisco

    2013-01-01

    Interactions between millimeter waves (MMWs) and biological systems have received increasing attention due to the growing use of MMW radiation in technologies ranging from experimental medical devices to telecommunications and airport security. Studies have shown that MMW exposure alters cellular function, especially in neurons and muscles. However, the biophysical mechanisms underlying such effects are still poorly understood. Due to the high aqueous absorbance of MMW, thermal mechanisms are...

  17. Gravity induced corrections to quantum mechanical wave functions

    International Nuclear Information System (INIS)

    We perform a semiclassical expansion in the Wheeler-DeWitt equation, in powers of the gravitational constant. We then show that quantum gravitational fluctuations can provide a correction to the wave-functions which are solutions of the Schroedinger equation for matter. This also implies a correction to the expectation values of quantum mechanical observables. (author). 6 refs

  18. A possible mechanism of current in medium under electromagnetic wave

    Institute of Scientific and Technical Information of China (English)

    Zhang Tao

    2006-01-01

    In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understanding the interaction between medium and electromagnetic wave.

  19. Neutron spin precession and test of linearity of wave mechanics

    International Nuclear Information System (INIS)

    A new experimental approach consisting in the search for a dependence of the Larmor precession of a neutron on the direction of the polarization vector is proposed to test the linearity of wave mechanics. The sensitivity of the experiment suggested is approximately four orders of magnitude higher than that achieved presently. 5 refs

  20. A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves

    OpenAIRE

    Courtney, Amy; Courtney, Michael

    2008-01-01

    The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating b...

  1. On the pre-metric foundations of wave mechanics I: massless waves

    CERN Document Server

    Delphenich, D H

    2009-01-01

    The mechanics of wave motion in a medium are founded in conservation laws for the physical quantities that the waves carry, combined with the constitutive laws of the medium, and define Lorentzian structures only in degenerate cases of the dispersion laws that follow from the field equations. It is suggested that the transition from wave motion to point motion is best factored into an intermediate step of extended matter motion, which then makes the dimension-codimension duality of waves and trajectories a natural consequence of the bicharacteristic (geodesic) foliation associated with the dispersion law. This process is illustrated in the conventional case of quadratic dispersion, as well as quartic ones, which include the Heisenberg-Euler dispersion law. It is suggested that the contributions to geodesic motion from the non-quadratic nature of a dispersion law might represent another source of quantum fluctuations about classical extremals, in addition to the diffraction effects that are left out by the geo...

  2. Plasma and radio waves from Neptune: Source mechanisms and propagation

    Science.gov (United States)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  3. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University. The prerequisites for the course are the course in fluid dynamics also given on the 7th semester and some basic mathematical and physical...... knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the following five lectures: 1. Definitions. Governing equations and boundary conditions. Derivation of velocity potential for linear waves. Dispersion relationship. 2. Particle...

  4. Mechanics, waves and thermodynamics an example-based approach

    CERN Document Server

    Jain, Sudhir Ranjan

    2016-01-01

    The principles of classical physics, though superseded in specific fields by such theories as quantum mechanics and general relativity, are still of great importance in a broad range of applications. The book presents fundamental concepts of classical physics in a coherent and logical manner. It discusses important topics including the mechanics of a single particle, kinetic theory, oscillations and waves. Topics including the kinetic theory of gases, thermodynamics and statistical mechanics are discussed, which are normally not present in the books on classical physics. The fundamental concepts of energy, momentum, mass and entropy are explained with examples. Discussion on concepts of thermodynamics is presented along with the simplified explanation on Caratheodory's axioms. It covers chapters on wave motion and statistical physics, useful for the graduate students. Each concept is supported with real-life applications on several concepts including impulse and collision, Bernoulli's equation, and friction.

  5. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation

    OpenAIRE

    Seung-Chan Kim; Soo-Chul Lim

    2015-01-01

    Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0–20.0 kHz) so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commerci...

  6. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls.

    Science.gov (United States)

    Stylianopoulos, Triantafyllos; Barocas, Victor H

    2007-08-01

    Passive elastic behavior of arterial wall remains difficult to model. Although phenomenological and structural models exist, the question of how the three-dimensional network structure of the collagen in the artery determines its mechanical properties is still open. A model is presented that incorporates a collagen network as well as the noncollagenous material that comprise the artery. The collagen architecture is represented as a network of interconnected fibers, and a neo-Hookean constitutive equation is used to describe the contribution of the noncollagenous matrix. The model is multiscale in that volume-averaging theory is applied to the collagen network, and it is structural in that parameters of the microstructure of the collagen network were considered instead of a macroscopic constitutive law. The computational results provided a good fit to published experimental data for decellularized porcine carotid arteries. The model predicted increased circumferential compliance for increased axial stretch, consistent with previously published reports, and a relatively small sensitivity to open angle. Even at large extensions, the model predicted that the noncollagenous matrix would be in compression, preventing collapse of the collagen network. The incorporation of fiber-fiber interactions led to an accurate model of artery wall behavior with relatively few parameters. The counterintuitive result that the noncollagenous component is in compression during extension and inflation of the tissue suggests that the collagen is important even at small strains, with the noncollagenous components supporting the network, but not resisting the load directly. More accurate representation of the microstructure of the artery wall is needed to explore this issue further. PMID:17655483

  7. Cerebral Arterial Air Embolism Associated with Mechanical Ventilation and Deep Tracheal Aspiration

    Directory of Open Access Journals (Sweden)

    S. Gursoy

    2012-01-01

    Full Text Available Arterial air embolism associated with pulmonary barotrauma has been considered a rare but a well-known complication of mechanical ventilation. A 65-year-old man, who had subarachnoid hemorrhage with Glasgow coma scale of 8, was admitted to intensive care unit and ventilated with the help of mechanical ventilator. Due to the excessive secretions, deep tracheal aspirations were made frequently. GCS decreased from 8–10 to 4-5, and the patient was reevaluated with cranial CT scan. In CT scan, air embolism was detected in the cerebral arteries. The patient deteriorated and spontaneous respiratory activity lost just after the CT investigation. Thirty minutes later cardiac arrest appeared. Despite the resuscitation, the patient died. We suggest that pneumonia and frequent tracheal aspirations are predisposing factors for cerebral vascular air embolism.

  8. Safety and efficacy of mechanical thrombectomy with the Solitaire device in large artery occlusion

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim

    2012-01-01

    Full Text Available Background and Purpose: Intravenous tissue plasminogen activator (TPA has limited efficacy in proximal large vessel occlusions. This study was to assess the safety and efficacy of mechanical thrombectomy with a retrievable Solitaire stent in acute large artery occlusions . Materials and Methods: This is a single center study enrolling patients treated with Solitaire-assisted thrombectomy between November 2010 and March 2011. Inclusion criteria were severe stroke of National Institutes of Health Stroke Scale (NIHSS score ≥10, treatment initiation within 6 hours from onset, and an angiographically verified occlusion of proximal middle cerebral artery (MCA or internal carotid artery (ICA. The primary outcome was recanalization defined as Thrombolysis in Cerebral Infarct (TICI reperfusion grade 2b/3. Secondary outcomes were good functional outcome at 3 months (modified Rankin Scale [mRS] ≤2, early substantial neurological improvement (NIHSS score improvement ≥8 at 24 hours, and symptomatic hemorrhagic transformation (SHT. Results: Ten patients were consecutively enrolled: Age: 72.4 ΁ 5.7 years; female: 70%; baseline median NIHSS score: 19.5; and ICA occlusion in 50% and M1 portion of MCA occlusion in 50%. Six patients received intravenous TPA before intra-arterial treatment, and five patients were treated with adjuvant intra-arterial urokinase. Successful recanalization was achieved in 7 (70% patients. Four (40% patients had a good functional outcome at 3 months, and three (30% patients had an early substantial neurological improvement. SHT occurred in two patients (20%, and 3-month mortality rate was 30%. There was no procedure-related complication. Conclusions: Mechanical thrombectomy with the Solitaire device can effectively recanalize proximal large vessel occlusions, and potentially improves clinical outcome.

  9. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  10. Uncertainty quantification of inflow boundary condition and proximal arterial stiffness coupled effect on pulse wave propagation in a vascular network

    CERN Document Server

    Brault, A; Lucor, D

    2016-01-01

    SUMMARY This work aims at quantifying the effect of inherent uncertainties from cardiac output on the sensitivity of a human compliant arterial network response based on stochastic simulations of a reduced-order pulse wave propagation model. A simple pulsatile output form is utilized to reproduce the most relevant cardiac features with a minimum number of parameters associated with left ventricle dynamics. Another source of critical uncertainty is the spatial heterogeneity of the aortic compliance which plays a key role in the propagation and damping of pulse waves generated at each cardiac cycle. A continuous representation of the aortic stiffness in the form of a generic random field of prescribed spatial correlation is then considered. Resorting to a stochastic sparse pseudospectral method, we investigate the spatial sensitivity of the pulse pressure and waves reflection magnitude with respect to the different model uncertainties. Results indicate that uncertainties related to the shape and magnitude of th...

  11. Transplant renal artery stenosis secondary to mechanical compression from polycystic kidney disease: A case report

    OpenAIRE

    Lee, Linda; Gunaratnam, Lakshman; Sener, Alp

    2013-01-01

    Transplant renal artery stenosis (TRAS) is a potentially treatable cause of allograft dysfunction, hypertension and graft loss. The mainstay of treatment includes angioplasty and endovascular stenting, although observation and surgery are at times indicated. We present an unusual case of TRAS secondary to mechanical compression from a patient’s enlarged native polycystic kidneys. This was treated with bilateral native nephrectomy and evidence of TRAS improved both clinically and radiographica...

  12. Effects of different PEEP levels on respiratory mechanics and oxygenation after coronary artery bypass grafting

    Directory of Open Access Journals (Sweden)

    Daniel Lago Borges

    2013-09-01

    Full Text Available OBJECTIVE: To compare the effects of different levels of positive end-expiratory pressure on respiratory mechanics and oxygenation indexes in the immediate postoperative period of coronary artery bypass grafting. METHODS: Randomized clinical trial in which 136 patients underwent coronary artery bypass grafting between January 2011 and March 2012 were divided into three groups and admitted to mechanical ventilation with different positive end-expiratory pressure levels: Group A, 5 cmH2O (n=44, Group B, 8 cmH2O (n=47 and Group C, 10 cmH2O (n=45. Data about respiratory mechanics were obtained from mechanical ventilator monitor and oxygenation indexes from arterial blood gas samples, collected twenty minutes after intensive care unit admission. Patients with chronic obstructive pulmonary disease and patients submitted to off-pump, emergency or combined operations were not included. For statistical analysis, we used Kruskal-Wallis, G and Chi-square tests, considering results significant when P<0.05. RESULTS: Groups were homogeneous in terms of demographic, clinical and surgical variables. Patients ventilated with positive end-expiratory pressure of 10 cmH2O (Group C had best compliance (P=0.04 and airway resistance values, this, however, without statistical significance. They also had best oxygenation indexes, with statistical difference in all analyzed variables, and lower frequency of hypoxemia (P=0.03. CONCLUSION: Higher levels of positive end-expiratory pressure in immediate postoperative period of coronary artery bypass grafting improved pulmonary compliance values and increased oxygenation indexes, resulting in lower frequency of hypoxemia.

  13. Carotid artery disease: Novel pathophysiological mechanisms identified by gene-expression profiling of peripheral blood

    OpenAIRE

    Rossi L, Lapini I, Magi A, Pratesi G, Lavitrano M, Biasi GM, Pulli R, Pratesi C, Abbate R, Giusti B

    2010-01-01

    The pathogenesis of carotid artery stenosis (CAS) as well as the mechanisms underlying the different localisation of the atherosclerotic lesions remains poorly understood. We used microarray technology to identify novel systemic mediators that could contribute to CAS pathogenesis. Moreover, we compared gene-expression profile of CAS with that of patients affected by abdominal aortic aneurysm (AAA), previously published by our group. METHODS AND RESULTS: By global gene-expression profil...

  14. Safety and efficacy of mechanical thrombectomy with the Solitaire device in large artery occlusion

    OpenAIRE

    Ji Eun Kim; Ah-Ro Kim; Young Min Paek; Yong-Jin Cho; Byung-Hoon Lee; Keun-Sik Hong

    2012-01-01

    Background and Purpose: Intravenous tissue plasminogen activator (TPA) has limited efficacy in proximal large vessel occlusions. This study was to assess the safety and efficacy of mechanical thrombectomy with a retrievable Solitaire stent in acute large artery occlusions . Materials and Methods: This is a single center study enrolling patients treated with Solitaire-assisted thrombectomy between November 2010 and March 2011. Inclusion criteria were severe stroke of National Institutes of Hea...

  15. [Stent-assisted mechanical removal of tromboembolism after embolization of middle cerebral artery aneurysm].

    Science.gov (United States)

    Poncyljusz, Wojciech; Falkowski, Aleksander; Rać, Monika; Sagan, Leszek; Kojder, Ireneusz

    2012-01-01

    Thrombotic occlusion of the middle cerebral artery's branch occurred just after embolization of a nonruptured cerebral aneurysm. Bail-out stent-assisted mechanical thrombectomy of the clot was performed. DSA revealed normal vessel patency at the end of the procedure. There were no adverse events related to this thrombectomy, and the patient recovered from the embolization with minor neurologic deficit. There was no neurologic deficit after 90 days follow-up. PMID:23276015

  16. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation.

    Science.gov (United States)

    Kim, Seung-Chan; Lim, Soo-Chul

    2015-01-01

    Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0-20.0 kHz) so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commercial surface transducer, which is originally developed as a bone-conduction actuator, for mechanical signal generation. At the receiver side, a piezoelement was adopted for picking up the transferred mechanical signals. Experimental results have shown that the proposed system can successfully transfer data using mechanical waves. We also validate dual-frequency actuations under which high-frequency signals (18.0-20.0 kHz) are generated along with low-frequency (up to 250 Hz) haptic vibrations. The proposed method has advantages in terms of security in that it does not reveal the signals outside the body, meaning that it is not possible for attackers to eavesdrop on the signals. To further illustrate the possible application spaces, we conclude with explorations of the proposed approach. PMID:26343674

  17. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation

    Directory of Open Access Journals (Sweden)

    Seung-Chan Kim

    2015-08-01

    Full Text Available Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0–20.0 kHz so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commercial surface transducer, which is originally developed as a bone-conduction actuator, for mechanical signal generation. At the receiver side, a piezoelement was adopted for picking up the transferred mechanical signals. Experimental results have shown that the proposed system can successfully transfer data using mechanical waves. We also validate dual-frequency actuations under which high-frequency signals (18.0–20.0 kHz are generated along with low-frequency (up to 250 Hz haptic vibrations. The proposed method has advantages in terms of security in that it does not reveal the signals outside the body, meaning that it is not possible for attackers to eavesdrop on the signals. To further illustrate the possible application spaces, we conclude with explorations of the proposed approach.

  18. Cosmic Tsunamis in Modified Gravity: Scalar waves disrupting screening mechanisms

    CERN Document Server

    Hagala, R; Mota, D F

    2016-01-01

    Extending General Relativity by adding extra degrees of freedom is a popular approach to explain the accelerated expansion of the universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test General Relativity in a wide range of scales. The viability of a given modified theory of gravity therefore strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of the screening mechanisms, thereby spoiling the viability of modified gravity theories. Specifically, we show that the waves produced can increase the amplitude of the fifth force and the Parametrized Post Newtonian parameters by several orders of magnitude.

  19. Lifelong Cyclic Mechanical Strain Promotes Large Elastic Artery Stiffening: Increased Pulse Pressure and Old Age-Related Organ Failure.

    Science.gov (United States)

    Thorin-Trescases, Nathalie; Thorin, Eric

    2016-05-01

    The arterial wall is under a huge mechanical constraint imposed by the cardiac cycle that is bound to generate damage with time. Each heartbeat indeed imposes a pulsatile pressure that generates a vascular stretch. Lifetime accumulation of pulsatile stretches will eventually induce fatigue of the elastic large arterial walls, such as aortic and carotid artery walls, promoting their stiffening that will gradually perturb the normal blood flow and local pressure within the organs, and lead to organ failure. The augmented pulse pressure induced by arterial stiffening favours left ventricular hypertrophy because of the repeated extra work against stiff high-pressure arteries, and tissue damage as a result of excessive pulsatile pressure transmitted into the microcirculation, especially in low resistance/high-flow organs such as the brain and kidneys. Vascular aging is therefore characterized by the stiffening of large elastic arteries leading to a gradual increase in pulse pressure with age. In this review we focus on the effect of age-related stiffening of large elastic arteries. We report the clinical evidence linking arterial stiffness and organ failure and discuss the molecular pathways that are activated by the increase of mechanical stress in the wall. We also discuss the possible interventions that could limit arterial stiffening with age, such as regular aerobic exercise training, and some pharmacological approaches. PMID:26961664

  20. Flow-Induced Changes in Dimensions and Mechanical Properties of Rabbit Common Carotid Arteries

    Science.gov (United States)

    Matsumoto, Takeo; Okumura, Eijiro; Shirono, Takahiro; Sho, Eiketsu; Masuda, Hirotake; Sato, Masaaki

    Flow-induced changes in dimensions and mechanical properties of blood vessel wall were studied in the rabbit left common carotid arteries connected directly to the left external jugular vein via an arteriovenous fistula (AVF) to increase its blood flow by >10-fold for 4 weeks. Contralateral artery was used as control. We found significant increase not only in diameter, but also in thickness and length of unloaded artery exposed to increased flow, indicating the increase in wall volume. The increase in diameter and thickness but not in longitudinal length correlated significantly with the volumetric increase of the wall. Pressure-imposed test showed that the wall became less distensible in response to flow increase. Fluid shear stress estimated for physiological condition was significantly higher in AVF side than control, indicating that 10-fold increase in flow was not compensated in 4 weeks. Circumferential strain in a physiological pressure range was significantly lower in AVF side, while hoop stress was similar in both sides. These results may indicate that circumferential stress but not strain is maintained constant, and longitudinal change is not regulated in flow-imposed arteries.

  1. Changes in pulmonary arterial wall mechanical properties and lumenal architecture with induced vascular remodeling

    Science.gov (United States)

    Molthen, Robert C.; Heinrich, Amy E.; Haworth, Steven T.; Dawson, Christopher A.

    2004-04-01

    To explore and quantify pulmonary arterial remodeling we used various methods including micro-CT, high-resolution 3-dimensional x-ray imaging, to examine the structure and function of intact pulmonary vessels in isolated rat lungs. The rat is commonly used as an animal model for studies of pulmonary hypertension (PH) and the accompanying vascular remodeling, where vascular remodeling has been defined primarily by changes in the vessel wall composition in response to hypertension inducing stimuli such as chronic hypoxic exposure (CHE) or monocrotaline (MCT) injection. Little information has been provided as to how such changes affect the vessel wall mechanical properties or the lumenal architecture of the pulmonary arterial system that actually account for the hemodynamic consequences of the remodeling. In addition, although the link between primary forms of pulmonary hypertension and inherited genetics is well established, the role that genetic coding plays in hemodynamics and vascular remodeling is not. Therefore, we are utilizing Fawn-Hooded (FH), Sprague-Dawley (SD) and Brown Norway (BN)rat strains along with unique imaging methods to parameterize both vessel distensibility and lumenal morphometry using a principal pulmonary arterial pathway analysis based on self-consistency. We have found for the hypoxia model, in addition to decreased body weight, increased hematocrit, increased right ventricular hypertrophy, the distensibility of the pulmonary arteries is shown to decrease significantly in the presence of remodeling.

  2. Noninvasive pulse wave analysis for the determination of central artery stiffness

    DEFF Research Database (Denmark)

    Wittrock, Marc; Scholze, Alexandra; Compton, Friederike; Schaefer, Juergen-Heiner; Zidek, Walter; Tepel, Martin

    2009-01-01

    Central artery stiffness predicts cardiovascular structural damage and clinical outcome. It is controversial whether central artery stiffness can be determined by noninvasive measurements. We compared noninvasive determination of central artery stiffness obtained from applanation tonometry of the...... peripheral radial artery waveform with invasive measurements of the ratio of pulse-pressure-to-stroke-volume. A total of 112 invasive measurements of the ratio of pulse-pressure-to-stroke-volume and noninvasive determinations of central artery stiffness were performed in 49 patients on the intensive care...... unit. In 13 out of 112 attempts of noninvasive measurements (12%) radial pulse could not be obtained using applanation tonometry because of cardiac arrhythmia or radial pulse could not be detected. These 13 failing noninvasive measurements were attempted in 7 patients. In the remaining cases we found a...

  3. Conventional Quantum Mechanics Without Wave Function and Density Matrix

    OpenAIRE

    Man'ko, Vladimir I.

    1999-01-01

    The tomographic invertable map of the Wigner function onto the positive probability distribution function is studied. Alternatives to the Schr\\"odinger evolution equation and to the energy level equation written for the positive probability distribution are discussed. Instead of the transition probability amplitude (Feynman path integral) a transition probability is introduced. A new formulation of the conventional quantum mechanics (without wave function and density matrix) based on the ``pr...

  4. Acceleration mechanisms flares, magnetic reconnection and shock waves

    International Nuclear Information System (INIS)

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  5. Mechanisms of elastic wave generation in solids by ion impact

    International Nuclear Information System (INIS)

    This study is directed at understanding the mechanisms of acoustic signal generation by modulated beams of energetic ions as a function of ion energy. Interaction of ions with solids initiates a range of processes including sputtering, ion implantation, ionization, both internal and external, as well as thermal deposition in the solid. Accumulated internal stress also occurs by generation of dislocations resulting from, inelastic nuclear scattering of the incident ion beam. With respect to elastic wave generation, two potential mechanisms are thermoelastic induced stress and momentum transfer. The latter process includes contributions of momentum transfer from the incident beam and from ions ejected via sputtering. Other aspects of the generation process include the potential for shock wave generation since the mean particle velocity for a wide range of ion energies exceeds the velocity of sound in solids. This study seeks to distinguish the contribution of these mechanisms by studying the signature, angular distribution and energy dependence of the elastic wave response in the time domain and to use this information to understand technologically important processes such as implantation and sputtering

  6. Causal wave mechanics and the advent of complexity; 5, quantum field mechanics

    CERN Document Server

    Kirilyuk, A P

    1995-01-01

    The physical consequences of the analysis performed in parts I-IV are summarised within a tentative scheme of the complete quantum (wave) mechanics called quantum field mechanics and complementing the original de Broglie ideas by the dynamic complexity concept. It includes the obtained formally complete description at the level of the "average" wave function of Schr\\"odinger type showing dynamically chaotic behaviour, and in particular, causal quantum indeterminacy and wave reduction. This level is only an approximation, though rather perfect and usually acceptable, to a lower, and the last, level containing the unreduced, essentially nonlinear de Broglie double solution. The latter describes the state of a nonlinear material field and includes the unstable soliton-like high-intensity "hump" moving chaotically within the embedding smooth wave. The involvement of chaos, understood within the same concept of the fundamental dynamic uncertainty, provides, at this lower level, "hidden thermodynamics" of de Brogli...

  7. Abdominal obesity vs general obesity for identifying arterial stiffness, subclinical atherosclerosis and wave reflection in healthy, diabetics and hypertensive

    Directory of Open Access Journals (Sweden)

    Recio-Rodriguez Jose I

    2012-02-01

    Full Text Available Abstract Background Our aim was to analyze the relationship between abdominal obesity and general obesity, with subclinical atherosclerosis, arterial stiffness and wave reflection in healthy, diabetics and hypertensive subjects. Methods A cross-sectional descriptive study was made of 305 individuals (diabetics 32.8%, hypertensive subjects 37.0% and healthy individuals 30.2%. Measurements: Body mass index (BMI, waist circumference (WC, body fat percentage (BFP and waist/height ratio (WHtR. Arterial stiffness was assessed according to pulse wave velocity (PWV, intima-media thickness of the common carotid artery (C-IMT, augmentation index (central and peripheral, ankle-brachial index (ABI, and central and peripheral pulse pressure. Results WC and WHtR showed a positive correlation to PWV and C-IMT in the studied groups. After adjusting for age, gender, high sensitivity c-reactive protein, serum glucose and the presence of diabetes, hypertension, smoking, dyslipidemia, antidiabetic drugs, lipid-lowering drugs, and atherosclerotic plaques, it was seen that for every 0.1 point increase in WHtR, and for every cm increase in WC, the PWV increased 0.041 and 0.029 m/sec, and C-IMT increased 0.001 mm and 0.001 mm, respectively. Conclusions The measures of abdominal obesity (WHtR and WC correlates better than BMI and BFP with arterial stiffness evaluated by PWV, and with subclinical atherosclerosis evaluated by C-IMT, independently of the presence of diabetes or hypertension. Trial Registration Clinical Trials.gov Identifier: NCT01325064

  8. Cerebral Arterial Air Embolism Associated with Mechanical Ventilation and Deep Tracheal Aspiration

    OpenAIRE

    Gursoy, S.; Duger, C.; Kaygusuz, K.; Ozdemir Kol, I.; Gurelik, B.; Mimaroglu, C.

    2012-01-01

    Arterial air embolism associated with pulmonary barotrauma has been considered a rare but a well-known complication of mechanical ventilation. A 65-year-old man, who had subarachnoid hemorrhage with Glasgow coma scale of 8, was admitted to intensive care unit and ventilated with the help of mechanical ventilator. Due to the excessive secretions, deep tracheal aspirations were made frequently. GCS decreased from 8–10 to 4-5, and the patient was reevaluated with cranial CT scan. In CT scan, air...

  9. Lifetime risk factors and arterial pulse wave velocity in adulthood: the cardiovascular risk in young Finns study.

    Science.gov (United States)

    Aatola, Heikki; Hutri-Kähönen, Nina; Juonala, Markus; Viikari, Jorma S A; Hulkkonen, Janne; Laitinen, Tomi; Taittonen, Leena; Lehtimäki, Terho; Raitakari, Olli T; Kähönen, Mika

    2010-03-01

    Limited and partly controversial data are available regarding the relationship of arterial pulse wave velocity and childhood cardiovascular risk factors. We studied how risk factors identified in childhood and adulthood predict pulse wave velocity assessed in adulthood. The study cohort consisted of 1691 white adults aged 30 to 45 years who had risk factor data available since childhood. Pulse wave velocity was assessed noninvasively by whole-body impedance cardiography. The number of conventional childhood and adulthood risk factors (extreme quintiles for low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, body mass index, and smoking) was directly associated with pulse wave velocity in adulthood (P=0.005 and P<0.0001, respectively). In multivariable regression analysis, independent predictors of pulse wave velocity were sex (P<0.0001), age (P<0.0001), childhood systolic blood pressure (P=0.002) and glucose (P=0.02), and adulthood systolic blood pressure (P<0.0001), insulin (P=0.0009), and triglycerides (P=0.003). Reduction in the number of risk factors (P<0.0001) and a favorable change in obesity status (P=0.0002) from childhood to adulthood were associated with lower pulse wave velocity in adulthood. Conventional risk factors in childhood and adulthood predict pulse wave velocity in adulthood. Favorable changes in risk factor and obesity status from childhood to adulthood are associated with lower pulse wave velocity in adulthood. These results support efforts for a reduction of conventional risk factors both in childhood and adulthood in the primary prevention of atherosclerosis. PMID:20083727

  10. Peripheral artery disease in patients with diabetes:Epidemiology, mechanisms, and outcomes

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Peripheral artery disease (PAD) is the atherosclerosisof lower extremity arteries and is also associated withatherothrombosis of other vascular beds, includingthe cardiovascular and cerebrovascular systems. Thepresence of diabetes mellitus greatly increases therisk of PAD, as well as accelerates its course, makingthese patients more susceptible to ischemic eventsand impaired functional status compared to patientswithout diabetes. To minimize these cardiovascularrisks it is critical to understand the pathophysiology ofatherosclerosis in diabetic patients. This, in turn, canoffer insights into the therapeutic avenues available forthese patients. This article provides an overview of theepidemiology of PAD in diabetic patients, followed by ananalysis of the mechanisms by which altered metabolismin diabetes promotes atherosclerosis and plaqueinstability. Outcomes of PAD in diabetic patients are alsodiscussed, with a focus on diabetic ulcers and criticallimb ischemia.

  11. Effects and mechanisms of action of sildenafil citrate in human chorionic arteries.

    LENUS (Irish Health Repository)

    Maharaj, Chrisen H

    2009-01-01

    OBJECTIVES: Sildenafil citrate, a specific phosphodiesterase-5 inhibitor, is increasingly used for pulmonary hypertension in pregnancy. Sildenafil is also emerging as a potential candidate for the treatment of intra-uterine growth retardation and for premature labor. Its effects in the feto-placental circulation are not known. Our objectives were to determine whether phosphodiesterase-5 is present in the human feto-placental circulation, and to characterize the effects and mechanisms of action of sildenafil citrate in this circulation. STUDY DESIGN: Ex vivo human chorionic plate arterial rings were used in all experiments. The presence of phosphodiesterase-5 in the feto-placental circulation was determined by western blotting and immunohistochemical staining. In a subsequent series of pharmacologic studies, the effects of sildenafil citrate in pre-constricted chorionic plate arterial rings were determined. Additional studies examined the role of cGMP and nitric oxide in mediating the effects of sildenafil. RESULTS: Phosphodiesterase-5 mRNA and protein was demonstrated in human chorionic plate arteries. Immunohistochemistry demonstrated phosphodiesterase-5 within the arterial muscle layer. Sildenafil citrate produced dose dependent vasodilatation at concentrations at and greater than 10 nM. Both the direct cGMP inhibitor methylene blue and the cGMP-dependent protein kinase inhibitor Rp-8-Br-PET-cGMPS significantly attenuated the vasodilation produced by sildenafil citrate. Inhibition of NO production with L-NAME did not attenuate the vasodilator effects of sildenafil. In contrast, sildenafil citrate significantly enhanced the vasodilation produced by the NO donor sodium nitroprusside. CONCLUSION: Phosphodiesterase-5 is present in the feto-placental circulation. Sildenafil citrate vasodilates the feto-placental circulation via a cGMP dependent mechanism involving increased responsiveness to NO.

  12. Occurrence of extreme waves in three-dimensional mechanically generated wave fields propagating over an oblique current

    Directory of Open Access Journals (Sweden)

    A. Toffoli

    2011-03-01

    Full Text Available Laboratory experiments were performed to study the dynamics of three- dimensional mechanically generated waves propagating over an oblique current in partial opposition. The flow velocity varied along the mean wave direction of propagation with an increasing trend between the wave-maker and the centre of the tank. Tests with regular wave packets traversing the area of positive current gradient showed that the concurrent increase of wave steepness triggered modulational instability on otherwise stable wave trains and hence induced the development of very large amplitude waves. In random directional wave fields, the presence of the oblique current resulted in a weak reinforcement of wave instability with a subsequent increase of the probability of occurrence of extreme events. This seems to partially compensate the suppression of strongly non-Gaussian properties due to directional energy distribution.

  13. SHEAR WAVE ELASTOGRAPHY OF THE ARTERIAL WALL – WHERE WE ARE TODAY

    OpenAIRE

    Widman, Erik; Maksuti, Elira; Larsson, Matilda; Bjällmark, Anna; Nordenfur, Tim; Caidahl, Kenneth; D’hooge, Jan

    2013-01-01

    1.  Introduction Shear Wave Elastography (SWE) is a recently developed noninvasive method for elastography assessment using ultrasound. The technique consists of sending an acoustic radiation force (pushing sequence) into the tissue that in turn generates an orthogonal low frequency propagating shear wave. The shear wave propagation is measured real time by high speed B-mode imaging. From the B-mode images, the shear wave is tracked via normalized cross-correlation and the speed is calculate...

  14. Biocorrosion rate and mechanism of metallic magnesium in model arterial environments

    Science.gov (United States)

    Bowen, Patrick K.

    A new paradigm in biomedical engineering calls for biologically active implants that are absorbed by the body over time. One popular application for this concept is in the engineering of endovascular stents that are delivered concurrently with balloon angioplasty. These devices enable the injured vessels to remain patent during healing, but are not needed for more than a few months after the procedure. Early studies of iron- and magnesium-based stents have concluded that magnesium is a potentially suitable base material for such a device; alloys can achieve acceptable mechanical properties and do not seem to harm the artery during degradation. Research done up to the onset of research contained in this dissertation, for the most part, failed to define realistic physiological corrosion mechanisms, and failed to correlate degradation rates between in vitro and in vivo environments. Six previously published works form the basis of this dissertation. The topics of these papers include (1) a method by which tensile testing may be applied to evaluate biomaterial degradation; (2) a suite of approaches that can be used to screen candidate absorbable magnesium biomaterials; (3) in vivo-in vitro environmental correlations based on mechanical behavior; (4) a similar correlation on the basis of penetration rate; (5) a mid-to-late stage physiological corrosion mechanism for magnesium in an arterial environment; and (6) the identification of corrosion products in degradable magnesium using transmission electron microscopy.

  15. Mean flow generation mechanism by inertial waves and normal modes

    Science.gov (United States)

    Will, Andreas; Ghasemi, Abouzar

    2016-04-01

    The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2

  16. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    Science.gov (United States)

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.

    2016-04-01

    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  17. The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries

    International Nuclear Information System (INIS)

    The main components responsible for the mechanical behavior of the arterial wall are collagen, elastin, and smooth muscle cells (SMCs) in the medial layer. We determined the structural and mechanical changes in porcine carotid arteries after administration of Triton® X-100, elastase, and collagenase using the inflation–deflation test. The arteries were intraluminarly pressurized from 0 to 200 mmHg, and the outer diameter of the artery was measured. The pressure–strain elastic modulus was determined based on the pressure/diameter ratio. The intima–media thickness, wall thickness, thickness of the tunica adventitia layer, and the area fractions of SMCs, elastin, and collagen within the arterial wall (AA(SMC/elastin/collagen, wall)) were measured using stereological methods. The relative changes in the relevant components of the treated samples were as follows: the decrease in AA(SMC, wall) after administration of Triton® X-100 was 11% ± 7%, the decrease in AA(elastin, wall) after administration of elastase was 40% ± 22%, and the decrease in AA(collagen, wall) after the application of collagenase was 51% ± 22%. The Triton® X-100 treatment led to a decrease in the SMC content that was associated with enlargement of the arterial wall (outer diameter) for pressures up to 120 mmHg, and with mechanical stiffening of the arterial wall at higher pressures. Elastase led to a decrease in the elastin content that was associated with enlargement of the arterial wall, but not with stiffening or softening. Collagenase led to a decrease in collagen content that was associated with a change in the stiffness of the arterial wall, although the exact contribution of mechanical loading and the duration of treatment (enlargement) could not be quantified. (paper)

  18. THE EFFECT OF REGULAR EXERCISE TRAINING DURING PREGNANCY ON POSTPARTUM BRACHIAL-ANKLE PULSE WAVE VELOCITY, A MEASURE OF ARTERIAL STIFFNESS

    OpenAIRE

    Ikuno Kawabata; Akihito Nakai; Atsuko Sekiguchi; Yuko Inoue; Toshiyuki Takeshita

    2012-01-01

    The aim of our study was to use brachial-ankle pulse wave velocity (baPWV) measurements to noninvasively assess the effect of exercise training on arterial stiffness in normal pregnant women. Arterial stiffness was assessed at the beginning of the early second trimester of pregnancy and 1 month after delivery in 17 women with normal singleton pregnancies who exercised regularly throughout pregnancy: 81 matched controls were used for comparison. No significant differences were observed in baPW...

  19. Mechanical design of the TripleWave debris filter

    International Nuclear Information System (INIS)

    This paper presents the design of the TripleWave debris filter. The function of the debris filter is to reduce the amount of debris that can enter the active fuel region and thereby reduce the risk for damage of the fuel cladding by fretting. The design is aimed at catching long and thin debris as this has proved to constitute the largest fretting risk. The trapping efficiency tests demonstrate that the TripleWave debris filter reduces the risk for harmful debris to enter the fuel assembly significantly compared with the current filter design. Fuel assemblies equipped with the TripleWave filter are thermal hydraulic compatible with assemblies equipped with current filter design even with large amounts of debris trapped in the filter. A full-scale endurance test showed no signs of wear between the components in the lower part of the test assembly. The design is robust and redundant, it is subjected to very small stresses and a very well known and proven material is used and reactor operation without mechanical problems can be expected. (author)

  20. Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals

    Science.gov (United States)

    Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu

    2016-08-01

    We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal.

  1. A mechanical wave system to show waveforms similar to quantum mechanical wavefunctions in a potential

    International Nuclear Information System (INIS)

    Interviews with students suggest that even though they understand the formalism and the formal nature of quantum theory, they still often desire a mental picture of what the equations describe and some tangible experience with the wavefunctions. Here we discuss a mechanical wave system capable of reproducing correctly a mechanical equivalent of a quantum system in a potential, and the resulting waveforms in principle of any form. We have successfully reproduced the finite potential well, the potential barrier and the parabolic potential. We believe that these mechanical waveforms can provide a valuable experience base for introductory students to start from. We aim to show that mechanical systems that are described with the same mathematics as quantum mechanical, indeed behave in the same way. We believe that even if treated purely as a wave phenomenon, the system provides much insight into wave mechanics. This can be especially useful for physics teachers and others who often need to resort to concepts and experience rather than mathematics when explaining physical phenomena. (paper)

  2. Mechanical Recanalization of Cerebral Artery Embolic Occlusion Using a Self-Expanding Stent: Experimental Analysis in Canine Model

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Kim, Snag Joon; Lee, Deok Hee; Suh, Dae Chul [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2011-07-15

    To evaluate the feasibility of a self-expanding stent for acute embolic occlusion, and recanalization mechanism by histologic examination. Five mongrel dogs were used as study subjects. Each vertebral artery was occluded, and a self-expanding stent was used for recanalization. We evaluated the technical success rate for the placement of the stent to the targeted vessel, the recanalization rate, and residual stenosis. We obtained two specimens of the stented vertebral arteries for histologic evaluation. One dog died of an unknown cause during the induction of anesthesia. In two dogs, only one side of the vertebral artery was used, whereas both vertebral arteries were used in the remaining dogs. A total of six vertebral arteries were successfully occluded. The technical success rate for stenting without complication was 66.7%. The immediate recanalization rate after stenting was 100%. The residual stenosis was 35.6 {+-} 18.6%. On microscopic examination, the stent concentrically displaced the clot and the clot was captured between the stent mesh and arterial wall. Self-expanding stents were effective in revascularizing the cerebrovascular embolic occlusion. The self-expanding stent seemed to achieve recanalization by pushing the clot to the arterial wall and capturing the clot between the stent mesh and arterial wall.

  3. A comparative study of the effect of coronary atherosclerosis and age on aortic and pulmonary arterial pulse wave velocity

    International Nuclear Information System (INIS)

    The effect of coronary artery disease (CAD) and age on aortic (AO-PWV) and pulmonary arterial pulse wave velocity (PA-PWV) was studied. Aortic and pulmonary arterial pressure were measured at two sites (ascending and abdominal aorta, and the main pulmonary trunk and one of its principle branches, respectively) using a catheter-tip micromanometer in 24 patients divided in two groups. Control group (n=12) consisted of patients with normal coronaries, while the CAD group (n=12) consisted of patients with coronary artery disease estimated by coronary angiography. The interval between these two sites was determined by measuring the withdrawal distance of the microtip-catheter. AO-PWV was significantly higher (p<0.02) in the CAD group (12.0±4.1 m/sec) than in the control group (8.2±2.7 m/sec). There was no significant difference between the two groups in PA-PWV. AO-PWV was significantly (r=0.731, p<0.01) increased with age in the control group, while no significant correlation between the two was observed in the CAD group. There was no significant correlation between PA-PWV and age in control group. The results of this study indicate that only coronary atherosclerosis and age have significant predictive value regarding AO-PWV, but there was no significant correlation with PA-PWV for any of these parameters. The PA-PWV invasively measured in the 12 control subjects in this study was 2.3±0.7 m/sec, which is very close to values reported in the recent literatures using MRI. (author)

  4. Consistency of students’ conceptions of wave propagation: Findings from a conceptual survey in mechanical waves

    Directory of Open Access Journals (Sweden)

    Chernchok Soankwan

    2011-07-01

    Full Text Available We recently developed a multiple-choice conceptual survey in mechanical waves. The development, evaluation, and demonstration of the use of the survey were reported elsewhere [ A. Tongchai et al. Int. J. Sci. Educ. 31 2437 (2009]. We administered the survey to 902 students from seven different groups ranging from high school to second year university. As an outcome of that analysis we were able to identify several conceptual models which the students seemed to be using when answering the questions in the survey. In this paper we attempt to investigate the strength with which the students were committed to these conceptual models, as evidenced by the consistency with which they answered the questions. For this purpose we focus on the patterns of student responses to questions in one particular subtopic, wave propagation. This study has three main purposes: (1 to investigate the consistency of student conceptions, (2 to explore the relative usefulness of different analysis techniques, and (3 to determine what extra information a study of consistency can give about student understanding of basic concepts. We used two techniques: first, categorizing and counting, which is widely used in the science education community, and second, model analysis, recently introduced into physics education research. The manner in which categorizing and counting is used is very diverse while model analysis has been employed only in prescriptive ways. Research studies have reported that students often use their conceptual models inconsistently when solving a series of questions that test the same idea. Our results support their conclusions. Moreover, our findings suggest that students who have had more experiences in physics learning seem to use the scientifically accepted models more consistently. Further, the two analysis techniques have different advantages and disadvantages. Our findings show that model analysis can be used in more diverse ways, provides

  5. Effects of simulated microgravity on circadian rhythm of caudal arterial pressure and heart rate in rats and their underlying mechanism

    OpenAIRE

    Chen, Li; Zhang, Bin; Yang, Lu; Xie, Man-Jiang

    2016-01-01

    Objective  To explore the effects of simulated microgravity on the circadian rhythm of rats' caudal arterial pressure and heart rate, and their underlying mechanism. Methods  Eighteen male SD rats (aged 8 weeks) were randomly assigned to control (CON) and tail suspension (SUS) group (9 each). Rats with tail suspension for 28 days were adopted as the animal model to simulate microgravity. Caudal arterial pressure and heart rate of rats were measured every 3 hours. The circadian difference of a...

  6. Mechanical Waves Conceptual Survey: Its Modification and Conversion to a Standard Multiple-Choice Test

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2016-01-01

    In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of…

  7. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.

    Science.gov (United States)

    Saito, Masashi; Ikenaga, Yuki; Matsukawa, Mami; Watanabe, Yoshiaki; Asada, Takaaki; Lagrée, Pierre-Yves

    2011-12-01

    Pulse wave evaluation is an effective method for arteriosclerosis screening. In a previous study, we verified that pulse waveforms change markedly due to arterial stiffness. However, a pulse wave consists of two components, the incident wave and multireflected waves. Clarification of the complicated propagation of these waves is necessary to gain an understanding of the nature of pulse waves in vivo. In this study, we built a one-dimensional theoretical model of a pressure wave propagating in a flexible tube. To evaluate the applicability of the model, we compared theoretical estimations with measured data obtained from basic tube models and a simple arterial model. We constructed different viscoelastic tube set-ups: two straight tubes; one tube connected to two tubes of different elasticity; a single bifurcation tube; and a simple arterial network with four bifurcations. Soft polyurethane tubes were used and the configuration was based on a realistic human arterial network. The tensile modulus of the material was similar to the elasticity of arteries. A pulsatile flow with ejection time 0.3 s was applied using a controlled pump. Inner pressure waves and flow velocity were then measured using a pressure sensor and an ultrasonic diagnostic system. We formulated a 1D model derived from the Navier-Stokes equations and a continuity equation to characterize pressure propagation in flexible tubes. The theoretical model includes nonlinearity and attenuation terms due to the tube wall, and flow viscosity derived from a steady Hagen-Poiseuille profile. Under the same configuration as for experiments, the governing equations were computed using the MacCormack scheme. The theoretical pressure waves for each case showed a good fit to the experimental waves. The square sum of residuals (difference between theoretical and experimental wave-forms) for each case was <10.0%. A possible explanation for the increase in the square sum of residuals is the approximation error for flow

  8. Epigenetic mechanisms in pulmonary arterial hypertension: the need for global perspectives

    Directory of Open Access Journals (Sweden)

    Prakash Chelladurai

    2016-06-01

    Full Text Available Pulmonary arterial hypertension (PAH is a severe and progressive disease, characterised by high pulmonary artery pressure that usually culminates in right heart failure. Recent findings of alterations in the DNA methylation state of superoxide dismutase 2 and granulysin gene loci; histone H1 levels; aberrant expression levels of histone deacetylases and bromodomain-containing protein 4; and dysregulated microRNA networks together suggest the involvement of epigenetics in PAH pathogenesis. Thus, PAH pathogenesis evidently involves the interplay of a predisposed genetic background, epigenetic state and injurious events. Profiling the genome-wide alterations in the epigenetic mechanisms, such as DNA methylation or histone modification pattern in PAH vascular cells, may explain the great variability in susceptibility and disease severity that is frequently associated with pronounced remodelling and worse clinical outcome. Moreover, the influence of genetic predisposition and the acquisition of epigenetic alterations in response to environmental cues in PAH progression and establishment has largely been unexplored on a genome-wide scale. In order to gain insights into the molecular mechanisms leading to the development of PAH and to design novel therapeutic strategies, high-throughput approaches have to be adopted to facilitate systematic identification of the disease-specific networks using next-generation sequencing technologies, the application of these technologies in PAH has been relatively trivial to date.

  9. Treatment of mechanically-induced vasospasm of the carotid artery in a primate using intra-arterial verapamil: a technical case report

    Directory of Open Access Journals (Sweden)

    Meyers Philip

    2004-07-01

    Full Text Available Abstract Background Despite improvements in the safety and efficacy of endovascular procedures, considerable morbidity may still be attributed to vasospasm. Vasospasm has proven amenable to pharmacological intervention such as nitrates, intravenous calcium channel blockers (CCBs, and intra-arterial papaverine, particularly in small vessels. However, few studies have focused on medium to large vessel spasm. Here we report the use of an intra-arterial CCB, verapamil, to treat flow-limiting mechanically-induced spasm of the common carotid artery (CCA in a primate. We believe this to be the first such report of its kind. Case presentation As part of a study assessing the placement feasibility and safety of a catheter capable of delivering intra-arterial cerebroprotective therapy, a female 16 kg baboon prophylaxed with intravenous nitroglycerin underwent transfemoral CCA catheterization with a metallic 6-Fr catheter without signs of acute spasm. The protocol dictated that the catheter remain in the CCA for 12 hours. Upon completion of the protocol, arteriography revealed a marked decrease in CCA size (mean cross-sectional area reduction = 31.6 ± 1.9% localized along the catheter length. Intra-arterial verapamil (2 mg/2cc was injected and arteriography was performed 10 minutes later. Image analysis at 6 points along the CCA revealed a 21.0 ± 1.7% mean increase in vessel diameter along the length of the catheter corresponding to a 46.7 ± 4.0% mean increase in cross-sectional area. Mean systemic blood pressure did not deviate more than 10 mm Hg during the procedure. Conclusions Intraluminal CCBs like verapamil may constitute an effective endovascular treatment for mechanically-induced vasospasm in medium to large-sized vessels such as the CCA.

  10. Arterial Wall Properties and Womersley Flow in Fabry Disease

    Directory of Open Access Journals (Sweden)

    Dimitriadis Emilios

    2002-01-01

    Full Text Available Abstract Background Fabry disease is an X-linked recessive lysosomal storage disease resulting in the cellular accumulation of globotriaosylceramide particularly globotriaosylceramide. The disease is characterized by a dilated vasculopathy with arterial ectasia in muscular arteries and arterioles. Previous venous plethysomographic studies suggest enhanced endothelium-dependent vasodilation in Fabry disease indicating a functional abnormality of resistance vessels. Methods We examined the mechanical properties of the radial artery in Fabry disease, a typical fibro-muscular artery. Eight control subjects and seven patients with Fabry disease had a right brachial arterial line placed allowing real time recording of intra-arterial blood pressure. Real time B-mode ultrasound recordings of the right radial artery were obtained simultaneously allowing calculation of the vessel wall internal and external diameter, the incremental Young's modulus and arterial wall thickness. By simultaneously measurement of the distal index finger-pulse oximetry the pulse wave speed was calculated. From the wave speed and the internal radial artery diameter the volume flow was calculated by Womersley analysis following truncation of the late diastolic phase. Results No significant difference was found between Fabry patients and controls for internal or external arterial diameters, the incremental Young's modulus, the arterial wall thickness, the pulse wave speed and the basal radial artery blood flow. Further, no significant difference was found for the radial artery blood flow in response to intra-arterial acetylcholine or sodium nitroprusside. Both drugs however, elevated the mean arterial flow. Conclusions The current study suggests that no structural or mechanical abnormality exists in the vessel wall of fibro-muscular arteries in Fabry disease. This may indicate that a functional abnormality downstream to the conductance vessels is the dominant feature in

  11. New and Improved T-wave Morphology Parameters to Differentiate Healthy Individuals from those with Cardiomyopathy and Coronary Artery Disease

    Science.gov (United States)

    Greco, E. C.; Schlegel, T. T.; Arenare, B.; DePalma, J. L.; Starc, V.; Rahman, M. A.; Delgado, R.

    2007-01-01

    We investigated the ability of several known as well as new ECG repolarization parameters to differentiate healthy individuals from patients with obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. The following multiple parameters of T-wave morphology (TWM) were derived via signal averaging and singular value decomposition (SVD, which yields 8 eigenvalues, rho(sub 1) greater than rho(sub 2)...greater than rho(sub 8) and studied for their retrospective accuracy in detecting underlying disease: 1) Principal component analysis ratio of the T wave (T-PCA) = 100*rho(sub 2)/rho(sub 1); 2) Relative T-wave residuum (rTWR) = 100* SIGMA (rho(sub 4)(sup 2) +...+ rho(sub 8)(sup 2)); 3) Modified complexity ratio of the T wave (T-mCR) = 100*SIGMA(rho(sub 3)(sup 2) +...+rho(sb 8) (sup 2)); and 4) Normalized 3-dimensional volume of the T wave (nTV) = 100*(rho(sub 2)*rho(sub 3)/rho(sub 1)(sup 2). All TWM parameters significantly differentiated CAD from controls (p less than 0.0001), and also CM from controls (p less than 0.0001). Retrospective areas under the ROC curve were 0.77, 0.81, 0.82, and 0.83 (CAD vs. controls) and 0.93, 0.89, 0.95 and 0.96 (CM vs. controls) for T-PCA, rTWR, T-mCR and nTV respectively. The newer TWM parameters (T-mCR and nTV) thus outperformed the more established parameters (T-PCA and rTWR), presumably by putting a greater emphasis on the third T-wave eigenvalue, which in most healthy subjects has little energy compared to the first two eigenvalues. Subsequent prospective analyses have also yielded similar results, such that we conclude that diagnostic differentiation of pathology from non-pathology may be especially aided by detecting

  12. Elastodynamic metasurface: Depolarization of mechanical waves and time effects

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, Claude, E-mail: claude.boutin@entpe.fr [Ecole Nationale des Travaux Publics de l' Etat, Université de Lyon, LGCB, UMR CNRS 5513, Vaulx-en-Velin (France); Schwan, Logan [Acoustics Research Center, University of Salford, Newton Building, Salford M5 4WT (United Kingdom); Dietz, Matthew S. [Department of Civil Engineering, University of Bristol, Queen' s Building, Bristol BS8 1TR (United Kingdom)

    2015-02-14

    We report the concept of microstructured surfaces with inner resonance in the field of elastodynamics, so-called elastodynamic metasurfaces. Such metasurfaces allow for wavefield manipulation of mechanical waves by tuning the boundary conditions at specific frequencies. In particular, they can be used to depolarize elastic waves without introducing heterogeneities in the medium itself; the physical means to do so in homogeneous elastic media used to remain, surprisingly, an open question while depolarization is commonplace in electromagnetism. The principle relies on the anisotropic behaviour of a subwavelength array of resonators: Their subwavelength configuration confines the Bragg interferences scattered by resonators into a boundary layer. The effective behaviour of the resonating array is expressed with homogenization as an unconventional impedance, the frequency-dependence, and anisotropy of which lead to depolarization and time effects. The concept of the elastodynamic metasurface is tested experimentally and results bear testament to its efficacy and robustness. Elastodynamic metasurfaces are easily realized and analytically predictable, opening new possibilities in tomography techniques, ultrasonics, geophysics, vibration control, materials and structure design.

  13. The foundations of Density Functional Theory and Wave Quantum Mechanics

    International Nuclear Information System (INIS)

    We analyse the notion of Density Functional Theory from the definition of a density of action over spacetime. We derive a theory to obtain the energy as a function of particle density, which contains the standard Density Functional Theory (DFT) and enlarges it by considering in one functional both the density of particles and the energy density per particle. The formulation presents a mathematical structure where the particle density is a factor of the energy per particle. The starting point is the definition of a global action density K(x) from which, by successive projections, the density Kj for a given type j of particles is projected. This density is then factorized into gauge dependent factors, which are shown to generate known relations and structures of quantum mechanics. Within DFT the minimization of the energy density functional, with respect to changes in the density, contains as a consequence two terms: the first corresponds to the standard density functional theory for non-interacting particles, and the second to the optimization of the kinetic and the interparticle interaction energy, terms that go beyond the standard DFT. We show explicitly the relation of the present approach to standard Wave Quantum Mechanics and show explicitly the reasons within space-time-action of several basic postulates of Quantum Mechanics. (Author)

  14. The use of Solitaire AB stent in mechanical thrombectomy for acute cerebral artery occlusion: the initial experience in 31 cases

    International Nuclear Information System (INIS)

    Objective: To evaluate the safety and effectiveness of Solitaire AB stent in performing mechanical thrombectomy for acute cerebral artery occlusion. Methods: During the period from May 2010 to May 2011, arterial embolectomy by using Solitaire AB stent was carried out in 31 patients with acute cerebral artery occlusion. The obstructed arteries included internal carotid artery (ICA, n=6), middle cerebral artery (MCA, n=12), basal artery (BA, n=9), MCA plus BA (n=1) and distal segment of ICA plus MCA (n=3). The immediate effect after the treatment and the occurrence of postoperative bleeding were retrospectively analyzed. Modified Rankin scale (MRS) scores at 90 days after the treatment were determined. Results: Successful recanalization was obtained in MCA and BA. Recanalization of ICA was seen in 6 cases. Residual luminal stenosis after recanalization was found in 12 cases and stent implantation had to be employed. Postoperative intracranial hemorrhage occurred in 4 patients (12.9%), and death occurred in 8 patients (25.8%). In five of the eight fatal cases the responsible artery was the ICA, while in the other three fatal cases the responsible artery was the BA. The time from the onset of the symptoms to recanalization was over 8 hours in 8 patients, amongst them death occurred in two who suffered from ICA occlusion. During the follow-up period lasting 90 days, 15 patients (48.4%) had a good MRS scores (< 2) at the time of discharge. Conclusion: The results of this study suggest that the Solitaire AB device can get high recanalization rate and good clinical outcome in patients with MCA and BA occlusion, although Solitaire AB stent thrombectomy for IAC occlusion is not satisfactory as its revascularization rate is lower and its mortality is higher. (authors)

  15. Mechanical thrombectomy with the Solitaire AB device in large intracerebral artery occlusions

    International Nuclear Information System (INIS)

    Mechanical thrombectomy has the potential to revolutionise the treatment of acute stroke. The Solitaire AB device is used for clot retrieval with unprecedented revascularisation rates being reported. Our aim is to report our experiences of the safety and efficacy of the Solitaire AB device in acute ischaemic stroke. A retrospective dual-centre study of 21 patients with acute ischaemic stroke who underwent mechanical thrombectomy with the Solitaire AB device between 1 October 2010 and 1 December 2011 was carried out. Using clinical data recovered from patients' case notes, we identified time intervals from groin puncture to recanalisation, revascularisation rates, procedural complications and neurological status before and after treatment (using the National Institutes of Health Stroke Scale (NIHSS) and modified Rankin scale (mRS) respectively). Successful revascularisation, defined as Thrombosis in Cerebral Ischemia Grade 2 or 3, was achieved in 81% of cases. The mean NIHSS score at presentation was 18.5. The mean number of passes required to achieve recanalisation was 1.95 and the median duration of the procedure from groin puncture to recanalisation was 65min. Procedural events included distal emboli (n=2), arterial dissection (n=1) and arterial perforation (n=1).There were three cases of asymptomatic intracranial haemorrhage. Forty-eight per cent of patients achieved a good functional outcome at 3 months (mRS score ≤2). The mortality rate at 3 months was 19% (n=4). There was no procedure-related mortality. Mechanical thrombectomy with the Solitaire AB device is safe and achieves high rates of revascularisation in acute stroke with good clinical outcomes.

  16. Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad.

    Science.gov (United States)

    Brennan, Jennifer; Karl, Jeannie; Capel, Blanche

    2002-04-15

    Although the primitive vasculature is identical in XX and XY genital ridges until 11.5 days postcoitum (dpc), by 12.5 dpc the XY gonad develops a distinct vasculature. This male-specific vasculature, which includes the development of a large coelomic vessel, develops coincident with expression of Sry and formation of testis cords. We show that similar levels of proliferation and vasculogenesis expand the primary vasculature in XX and XY gonads. However, soon after Sry expression begins, the XY gonad recruits a large number of endothelial cells from the adjacent mesonephros, a mechanism totally absent in XX gonads. These migrating cells do not contribute to venous or lymphatic development. Instead, these cells contribute to the arterial system, as indicated by expression of ephrinB2 and by elements of the Notch signaling pathway. This newly formed arterial system establishes a new pattern of blood flow in the XY gonad, which we speculate may have an important role in export of testosterone to masculinize the XY embryo. PMID:11944948

  17. Comparative studies on the mechanisms of action of four polysaccharides on arterial restenosis.

    Science.gov (United States)

    Deux, Jean-François; Meddahi-Pellé, Anne; Bree, Françoise; Bataille, Isabelle; Michel, Jean-Baptiste; Letourneur, Didier

    2009-01-01

    Percutaneous coronary interventions play a major role in the management of patients affected by coronary artery diseases. However, their efficiency is impaired by restenosis, defined as a reduction of the vessel lumen, occurring a few months after the procedure. A low-molecular-weight fraction of fucoidan, a vegetal heparin-like sulphated polysaccharide, was recently shown to greatly reduce in-stent restenosis after angioplasty in rabbits. To better understand the in vivo anti-restenotic effects of this polymer, we used fractions of fucoidan and compared to heparin and dextran of different sizes. We carried out in vitro growth inhibition experiments on vascular smooth muscle cells, performed an in vivo pharmacokinetic study, and locally delivered fluorescently-labeled polysaccharides in rabbit iliac arteries after angioplasty with a non-occlusive catheter. The results indicated that (i) preparation of well-characterized fractions from natural fucoidan is compulsory for in vitro and in vivo studies, (ii) antiproliferative activity of sulphated polysaccharides on cultured smooth muscle cells is not a major predictive factor for the reduction of restenosis in vivo and (iii) pharmacokinetic parameters and binding of low-molecular-weight fucoidan on angioplasty-induced injured vascular walls are important local and general factors controlling its mechanisms of action. PMID:19323884

  18. Depression and Coronary Artery Disease: The Association, Mechanisms, and Therapeutic Implications

    OpenAIRE

    Khawaja, Imran Shuja; Westermeyer, Joseph J.; Gajwani, Prashant; Feinstein, Robert E.

    2009-01-01

    We performed a comprehensive review of the literature to determine whether or not a relationship between depression and coronary artery disease exists. Our literature search supports the following: Depression and coronary artery disease have a bidirectional relationship, i.e., coronary artery disease can cause depression and depression is an independent risk factor for coronary artery disease and its complications; depression may contribute to sudden cardiac death and increase all causes of c...

  19. Picometer stable scan mechanism for gravitational wave detection in space

    Science.gov (United States)

    Rijnveld, N.; Pijnenburg, J. A. C. M.

    2010-07-01

    Detection and observation of gravitational waves requires extremely accurate displacement measurement in the frequency range 0.03 mHz to 1 Hz. The Laser Interferometer Space Antenna (LISA) mission will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. Due to orbit evolution and time delay in the interferometer arms, the direction of transmitted light changes. To solve this problem, a picometer stable Point-Ahead Angle Mechanism (PAAM) was designed, realized and successfully tested. The PAAM concept is based on a rotatable mirror. The critical requirements are the contribution to the optical path length (less than 1.4 pm / rt Hz) and the angular jitter (less than 8 nrad / rt Hz). Extreme dimensional stability is achieved by manufacturing a monolithical Haberland hinge mechanism out of Ti6Al4V, through high precision wire erosion. Extreme thermal stability is realized by placing the thermal center on the surface of the mirror. Because of piezo actuator noise and leakage, the PAAM has to be controlled in closed-loop. To meet the requirements in the low frequencies, an active target capacitance-to-digital converter is used. Interferometric measurements with a triangular resonant cavity in vacuum proved that the PAAM meets the requirements.

  20. Fractional calculus with applications in mechanics wave propagation, impact and variational principles

    CERN Document Server

    Atanackovic, Teodor M; Stankovic, Bogoljub; Zorica, Du?an

    2014-01-01

    The books Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes and Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles contain various applications of fractional calculus to the fields of classical mechanics. Namely, the books study problems in fields such as viscoelasticity of fractional order, lateral vibrations of a rod of fractional order type, lateral vibrations of a rod positioned on fractional order viscoelastic foundations, diffusion-wave phenomena, heat conduction, wave propagation, forced oscillati

  1. On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere

    Directory of Open Access Journals (Sweden)

    I. P. Chunchuzov

    2009-11-01

    Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.

  2. Langmuir waves in magnetic holes: source mechanism and consequences

    International Nuclear Information System (INIS)

    Plasma wave observations from the Ulysses spacecraft indicate that electrostatic waves at frequencies approximately equal to the electron plasma frequency fpe are commonly found in magnetic holes. Magnetic holes are short-duration reductions in the amplitude of the interplanetary magnetic field. A model of the electron dynamics in a magnetic hole suggests that the waves are generated by electron beams of thermal energies, formed by adiabatic focusing of the electrons. These waves, presumed to be Langmuir mode, will have extremely short wavelengths, of the order of 100-1000 m. Such waves, observed in the solar wind, would be significantly Doppler shifted, which can be measured by the plasma wave receiver. The prevalence of waves in magnetic holes suggests that the magnetic structures are not stable and can provide constraints on their formation and evolution

  3. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    Energy Technology Data Exchange (ETDEWEB)

    Betskii, O.V.

    1994-07-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  4. Characterization of Heat Waves in the Sahel and associated mechanisms

    Science.gov (United States)

    Oueslati, Boutheina; Pohl, Benjamin; Moron, Vincent; Rome, Sandra

    2016-04-01

    Large efforts are made to investigate the heat waves (HW) in developed countries because of their devastating impacts on society, economy and environment. This interest increased after the intense event over Europe during summer 2003. However, HWs are still understudied over developing countries. This is particularly true in West Africa, and especially in the Sahel, where temperatures recurrently reach critical values, such as during the 2010 HW event. Understanding the Sahelian HWs and associated health risks constitute the main objective of ACASIS, a 4-year project funded by the French Agence Nationale de la Recherche. Our work contributes to this project and aims at characterizing the Sahelian HWs and understanding the mechanisms associated with such extreme events. There is no universal definition of a HW event, since it is highly dependent on the sector (human health, agriculture, transport...) and region of interest. In our case, a HW is defined when the heat index of the day and of the night exceeds the 90th percentile for at least 3 consecutive days (Rome et al. 2016, in preparation). This index combines temperature and relative humidity in order to determine the human-perceived equivalent temperature (definition adapted from Steadman, 1979). Intrinsic properties of Sahelian HW are analyzed from the Global Summary of the Day (GSOD) synoptic observations and ERA-interim reanalyses over 1979-2014 during boreal spring seasons (April-May-June), the warmest period of the year in the Central Sahel. ERA-interim captures well the observed interannual variability and seasonal cycle at the regional scale, as well as the 1979-2014 increasing linear trend of springtime HW occurrences in the Sahel. Reanalyses, however, overestimate the duration, spatial extent of HW, and underestimate their intensity. For both GSOD and ERA-interim, we show that, over the last three decades, Sahelian HWs tend to become more frequent, last longer, cover larger areas and reach higher

  5. Early Rehabilitation Therapy Is Beneficial for Patients With Prolonged Mechanical Ventilation After Coronary Artery Bypass Surgery.

    Science.gov (United States)

    Dong, Zehua; Yu, Bangxu; Zhang, Quanfang; Pei, Haitao; Xing, Jinyan; Fang, Wei; Sun, Yunbo; Song, Zhen

    2016-01-01

    We investigated the effects of early rehabilitation therapy on prolonged mechanically ventilated patients after coronary artery bypass surgery (CABG).A total of 106 patients who underwent CABG between June 2012 and May 2015 were enrolled and randomly assigned into an early rehabilitation group (53 cases) and a control group (53 cases). The rehabilitation therapy consisted of 6 steps including head up, transferring from supination to sitting, sitting on the edge of bed, sitting in a chair, transferring from sitting to standing, and walking along a bed. The patients received rehabilitation therapy in the intensive care unit (ICU) after CABG in the early rehabilitation group. The control group patients received rehabilitation therapy after leaving the ICU.The results showed that the early rehabilitation therapy could significantly decrease the duration of mechanical ventilation (early rehabilitation group: 8.1 ± 3.3 days; control group: 13.9 ± 4.1 days, P rehabilitation group: 22.0 ± 3.8 days; control group: 29.1 ± 4.6 days, P ICU stay (early rehabilitation group: 11.7 ± 3.2 days; control group: 18.3 ± 4.2 days, P rehabilitation group were larger than that in the control group after 7 days of rehabilitation therapy (logrank test: P rehabilitation therapy in patients requiring prolonged mechanical ventilation after CABG. PMID:26973269

  6. Pair density wave superconducting states and statistical mechanics of dimers

    Science.gov (United States)

    Soto Garrido, Rodrigo Andres

    The following thesis is divided in two main parts. Chapters 2, 3 and 4 are devoted to the study of the so called pair-density-wave (PDW) superconducting state and some of its connections to electronic liquid crystal (ELC) phases, its topological aspects in a one dimensional model and its appearance in a quasi-one dimensional system. On the other hand, chapter 5 is focused on the investigation of the classical statistical mechanics properties of dimers, in particular, the dimer model on the Aztec diamond graph and its relation with the octahedron equation. In chapter 2 we present a theory of superconducting states where the Cooper pairs have a nonzero center-of-mass momentum, inhomogeneous superconducting states known as a pair-density-waves (PDWs) states. We show that in a system of spin-1/2 fermions in two dimensions in an electronic nematic spin-triplet phase where rotational symmetry is broken in both real and spin space PDW phases arise naturally in a theory that can be analysed using controlled approximations. We show that several superfluid phases that may arise in this phase can be treated within a controlled BCS mean field theory, with the strength of the spin-triplet nematic order parameter playing the role of the small parameter of this theory. We find that in a spin-triplet nematic phase, in addition to a triplet p-wave and spin-singlet d-wave (or s depending on the nematic phase) uniform superconducting states, it is also possible to have a d-wave (or s) PDW superconductor. The PDW phases found here can be either unidirectional, bidirectional, or tridirectional depending on the spin-triplet nematic phase and which superconducting channel is dominant. In addition, a triple-helix state is found in a particular channel. We show that these PDW phases are present in the weak-coupling limit, in contrast to the usual Fulde-Ferrell-Larkin-Ovchinnikov phases, which require strong coupling physics in addition to a large magnetic field (and often both). In chapter

  7. A review of nondestructive testing approaches using mechanical and electromagnetic waves

    Science.gov (United States)

    Lau, Denvid; Qiu, Qiwen

    2016-04-01

    Mechanical and electromagnetic waves are commonly used in nondestructive testing (NDT) techniques for evaluating the materials and structures in civil engineering industry, due to their good examination of defects inside the matter. However, the individual use of mechanical wave or electromagnetic wave in NDT methods sometimes does not fulfill the satisfactory detection in practice because of the operational inconvenience and low sensitivity. It has been demonstrated that the combination of using both types of waves can achieve a better performance for NDT application and would be the future direction for defect detection, as the advantages of each physical wave are picked out whereas the weaknesses are mitigated. This paper discusses the fundamental mechanisms and the current applications of using mechanical and electromagnetic waves for defect detection, with the goal of providing the physical knowledge and the perspectives of developing the NDT applications with these two types of waves. Typical mechanical-wave-based NDT methods such as acoustic emission, ultrasonic technique, and impact-echo method are reviewed. In addition, NDT methods using electromagnetic wave, which include optical fiber sensing technique, laser speckle interferometry and laser reflection technique are discussed. Advantages and disadvantages of these methods are outlined. In particular, we focus on a recent NDT method called acoustic-laser technique, which utilizes both the mechanical and electromagnetic waves. The basic principles and some important experimental data recorded by the acoustic-laser technique are described and its future development in the field of defect detection in civil infrastructure is presented.

  8. The scenario of a single freak wave appearance in deep water – dispersive focusing mechanism framework

    Directory of Open Access Journals (Sweden)

    E. Pelinovsky

    2011-01-01

    Full Text Available One of the possible mechanisms of the emergence of freak waves in deep water, based on the dispersive focusing of unidirectional wave packets is analysed. This mechanism is associated with the frequency dispersion of water waves and manifested in the interference of many spectral components, moving with different velocities. Formation of a single freak wave in a random wind wave field is considered in the frame of linear theory. The characteristic lifetime of an abnormal wave in the framework of this mechanism for typical conditions is approximately two minutes, thus, a rapid effect is difficult to predict and prepare for. A rogue wave quickly changes its shape from a high ridge to a deep depression.

  9. Techniques of cardiac output measurement during liver transplantation: arterial pulse wave versus thermodilution

    DEFF Research Database (Denmark)

    Nissen, P.; Lieshout, J.J. van; Novovic, S.;

    2009-01-01

    In this study, we compared continuous cardiac output (CO) obtained from the femoral arterial pressure by simulation of an aortic input impedance model [model-simulated cardiac output (MCO)] to thermodilution cardiac output (TDCO) determined by bolus injection during liver transplantation. Both...... variables were measured in 39 adult patients (13 females) every 10th minute during liver transplant surgery. Paired measurements were compared during the 4 phases of surgery-dissection, anhepatic phase, early reperfusion (the first 15 minutes after reperfusion), and late reperfusion (15-60 minutes after......, and the mutual correlation coefficient was 0.812 (P < 0.001). This study indicates that during liver transplantation surgery, MCO reflects TDCO throughout the operation. Thus, for CO, this less invasive method appears to provide a reliable uninterrupted measurement during orthotopic liver...

  10. Wave propagation in nanostructures nonlocal continuum mechanics formulations

    CERN Document Server

    Gopalakrishnan, Srinivasan

    2013-01-01

    Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...

  11. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    OpenAIRE

    Michele Bellesi; Garcia-Molina, Gary N.

    2014-01-01

    Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals ...

  12. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements

    OpenAIRE

    Alastruey, Jordi; Khir, Ashraf W.; Matthys, Koen S.; Segers, Patrick; Sherwin, Spencer J.; Verdonck, Pascal R.; Parker, Kim H.; Peiro, Joaquim

    2011-01-01

    The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped...

  13. Formation mechanism of steep wave front in magnetized plasmas

    International Nuclear Information System (INIS)

    Bifurcation from a streamer to a solitary drift wave is obtained in three dimensional simulation of resistive drift waves in cylindrical plasmas. The solitary drift wave is observed in the regime where the collisional transport is important as well as fluctuation induced transport. The solitary drift wave forms a steep wave front in the azimuthal direction. The phase of higher harmonic modes are locked to that of the fundamental mode, so that the steep wave front is sustained for a long time compared to the typical time scale of the drift wave oscillation. The phase entrainment between the fundamental and second harmonic modes is studied, and the azimuthal structure of the stationary solution is found to be characterized by a parameter which is determined by the deviation of the fluctuations from the Boltzmann relation. There are two solutions of the azimuthal structures, which have steep wave front facing forward and backward in the wave propagation direction, respectively. The selection criterion of these solutions is derived theoretically from the stability of the phase entrainment. The simulation result and experimental observations are found to be consistent with the theoretical prediction

  14. The Associations of Coping Mechanism with Arterial Stiffness in Hwa-Byung Patients

    OpenAIRE

    Lee, Yu Jin; Baek, Kyung Won; Yun, Kyu Wol; Lim, Wonshin; Lim, Weonjeong

    2009-01-01

    Objective The goal of this study is to assess the relationship between stress coping mechanisms and the risk of atherosclerosis in patients with Hwa-Byung. Methods The Korean version of the Ways of Coping Checklist (WOCC) was administered to 50 patients with Hwa-Byung (49.1±10.1 years, 6 males). Brachial-ankle pulse wave velocity (baPWV) and serum cholesterol level were assessed in all participants. Results After controlling for age, sex, diagnosis of hypertension, Body Mass Index (BMI), and ...

  15. Vascular-Leukocyte Interactions : Mechanisms of Human Decidual Spiral Artery Remodeling in Vitro

    OpenAIRE

    Hazan, Aleah D.; Smith, Samantha D.; Jones, Rebecca L; Whittle, Wendy; Lye, Stephen J.; Dunk, Caroline E.

    2010-01-01

    Transformation of uterine spiral arteries is critical for healthy human pregnancy. We recently proposed a role for maternal leukocytes in decidual spiral artery remodeling and suggested that matrix metalloprotease (MMP) activity contributed to the destruction of the arterial wall. In the current study we used our first trimester placental-decidual co-culture (PDC) model to define the temporal relationship and test the mechanistic aspects of this process. PDC experiments were assessed by image...

  16. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    Science.gov (United States)

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  17. Analysis of Arterial Mechanics During Head-down Tilt Bed Rest

    Science.gov (United States)

    Elliot, Morgan; Martin, David S.; Westby, Christian M.; Stenger, Michael B.; Platts, Steve

    2014-01-01

    Arterial health may be affected by microgravity or ground based analogs of spaceflight, as shown by an increase in thoracic aorta stiffness1. Head-down tilt bed rest (HDTBR) is often used as a ground-based simulation of spaceflight because it induces physiological changes similar to those that occur in space2, 3. This abstract details an analysis of arterial stiffness (a subclinical measure of atherosclerosis), the distensibility coefficient (DC), and the pressure-strain elastic modulus (PSE) of the arterial walls during HDTBR. This project may help determine how spaceflight differentially affects arterial function in the upper vs. lower body.

  18. Diagnostic Value of Electrocardiographic T Wave Inversion in Lead aVL in Diagnosing Coronary Artery Disease in Patients with Chronic Stable Angina

    Directory of Open Access Journals (Sweden)

    Hatem L. Farhan

    2010-04-01

    Full Text Available Objectives: The clinical value of T wave inversion in lead aVL in diagnosing coronary artery disease (CAD remains unclear. This study aims to investigate the correlation between aVL T wave inversion and CAD in patients with chronic stable angina.Methods: Electrocardiograms (ECGs of 257 consecutive patients undergoing coronary angiography were analyzed. All patients had chronic stable angina. All patients with secondary T wave inversion had been excluded (66 patients. The remaining 191 patients constituted the study population. Detailed ECG interpretation and coronary angiographic findings were conducted by experienced cardiologists.Results: T wave inversion in aVL was identified in 89 ECGs (46.8% with definite ischemic Q-ST-T changes in different leads in 97 ECGs (50.8%. Stand alone aVL T wave inversion was found in 27 ECGs (14.1% while ischemic changes in other leads with normal aVL were identified in 36 ECGs (18.8%. The incidence of CAD was 86.3%. Single, two- and multi-vessel CAD were found in 38.8%, 28.5% and 32.7% of cases respectively. The prevalence of left main, left anterior descending, left circumflex and right coronary arteries were 4.7%, 61.2%, 29.3% and 44.5%, respectively. T wave inversion in aVL was found to be the only ECG variable significantly predicting mid segment left anterior descending artery (LAD lesions (Odds Ratio 2.93, 95% Confidence Interval 1.59-5.37, p=0.001.Conclusion: This study provides new information relating to T wave inversion in lead aVL to mid segment LAD lesions. Implication of this simple finding may help in bedside diagnosis of CAD typically mid LAD lesions. However, further studies are needed to corroborate this finding.

  19. Is the Spreading of Quantum Mechanical Wave Packets Indeed Inevitable?

    OpenAIRE

    Mayer, István

    2012-01-01

    It is demonstrated that -- contrary to the common belief -- it is possible to construct solutions of the non-relativistic Schr\\"odinger equation of a free particle, that do not exhibit dispersion. However, it seems that no normalizable wave packets can be built up by their use, so the spreading of the wave packets is indeed inevitable.

  20. Cocaine mediated apoptosis of vascular cells as a mechanism for carotid artery dissection leading to ischemic stroke.

    Science.gov (United States)

    Dabbouseh, Noura M; Ardelt, Agnieszka

    2011-08-01

    In arterial dissection, blood may enter the arterial wall through an intimal tear, splitting the arterial wall and activating the coagulation cascade at the site of endothelial damage. Dissection of extracranial and intracranial vessels may lead to ischemic stroke through thromboembolic or hemodynamic mechanisms. Major blunt trauma or rapid acceleration-deceleration may cause dissection, but in patients with inherent arterial wall weakness, dissection can occur spontaneously or as a result of minor neck movement. Cocaine use has been associated with dissection of the aortic arch and coronary and renal arteries through cocaine-mediated hypertension. Recent preclinical studies have suggested, however, that cocaine may cause apoptosis of cells in the vascular wall. In this article, we postulate that cocaine may cause apoptosis of vascular endothelial and/or smooth muscle cells, thus weakening the vascular wall and resulting in a dissection-prone state. We review the literature and propose a biological basis for vasculopathy, vascular dissection, and ischemic stroke in the setting of cocaine use. Further research studies on vascular cells, as well as focused analysis of human pathological material, will be important in providing evidence for or against our hypotheses. PMID:21546166

  1. Combination of Rare Right Arterial Variation with Anomalous Origins of the Vertebral Artery, Aberrant Subclavian Artery and Persistent Trigeminal Artery

    Science.gov (United States)

    Ishihara, H.; San Millán Ruíz, D.; Abdo, G.; Asakura, F.; Yilmaz, H.; Lovblad, K.O.; Rüfenacht, D.A.

    2011-01-01

    Summary A 32-year-old woman hospitalized for subarachnoid hemorrhage showed rare arterial variation on the right side with anomalous origins of the vertebral artery, aberrant subclavian artery and persistent trigeminal artery. Angiography showed the right vertebral artery to originate from the right common carotid artery, the right subclavian artery to arise separately from the descending aorta, and persistent trigeminal artery on the right side. The possible embryonic mechanism of this previously unreported variant combination is discussed. PMID:22005696

  2. Effect of force-induced mechanical stress at the coronary artery bifurcation stenting: Relation to in-stent restenosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheng-Hung [Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan (China); Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan (China); Jhong, Guan-Heng [Graduate Institute of Medical Mechatronics, Chang Gung University, Tao-Yuan, Taiwan (China); Hsu, Ming-Yi; Wang, Chao-Jan [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan (China); Liu, Shih-Jung, E-mail: shihjung@mail.cgu.edu.tw [Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan (China); Hung, Kuo-Chun [Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan (China)

    2014-05-28

    The deployment of metallic stents during percutaneous coronary intervention has become common in the treatment of coronary bifurcation lesions. However, restenosis occurs mostly at the bifurcation area even in present era of drug-eluting stents. To achieve adequate deployment, physicians may unintentionally apply force to the strut of the stents through balloon, guiding catheters, or other devices. This force may deform the struts and impose excessive mechanical stresses on the arterial vessels, resulting in detrimental outcomes. This study investigated the relationship between the distribution of stress in a stent and bifurcation angle using finite element analysis. The unintentionally applied force following stent implantation was measured using a force sensor that was made in the laboratory. Geometrical information on the coronary arteries of 11 subjects was extracted from contrast-enhanced computed tomography scan data. The numerical results reveal that the application of force by physicians generated significantly higher mechanical stresses in the arterial bifurcation than in the proximal and distal parts of the stent (post hoc P < 0.01). The maximal stress on the vessels was significantly higher at bifurcation angle <70° than at angle ≧70° (P < 0.05). The maximal stress on the vessels was negatively correlated with bifurcation angle (P < 0.01). Stresses at the bifurcation ostium may cause arterial wall injury and restenosis, especially at small bifurcation angles. These finding highlight the effect of force-induced mechanical stress at coronary artery bifurcation stenting, and potential mechanisms of in-stent restenosis, along with their relationship with bifurcation angle.

  3. Investigating EMIC Waves as a Precipitation Mechanism for Relativistic Electrons

    Science.gov (United States)

    Li, Z.; Millan, R. M.; Woodger, L. A.

    2012-12-01

    Evidence has indicated that EMIC waves may be one of the major causes of relativistic electron precipitation (REP). We solved the pitch-angle diffusion equation for the scattering of relativistic electrons by EMIC waves, and generated flux-energy spectra of the precipitating electrons. After being converted into Bremsstrahlung X-ray counts, these spectra can be directly compared with previous (e.g. MAXIS, MINIS, BARREL test campaigns) and future (e.g. BARREL) balloon spectra measurements to determine if EMIC waves are the causes of the REP events. Parameter studies have also been conducted to investigate the influence of various geomagnetic parameters and environmental conditions on the REP spectra.

  4. A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves

    CERN Document Server

    Courtney, Amy; 10.1016/j.mehy.2008.08.015

    2008-01-01

    The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. ...

  5. Mechanism and patterns of cervical spine fractures-dislocations in vertebral artery injury

    Directory of Open Access Journals (Sweden)

    Pankaj Gupta

    2012-01-01

    Full Text Available Purpose: To identify the fracture patterns and mechanism of injury, based on subaxial cervical spine injury classification system (SLIC, on non-contrast computed tomography (NCCT of cervical spine predictive of vertebral artery injury (VAI. Patients and Methods: We retrospectively analyzed cervical spine magnetic resonance imaging (MRI of 320 patients who were admitted with cervical spine injury in our level I regional trauma center over a period of two years (April 2010 to April 2012. Diagnosis of VAI was based on hyperintensity replacing the flow void on a T2-weighted axial image. NCCT images of the selected 43 patients with MRI diagnosis of VAI were then assessed for the pattern of injury. The cervical spinal injuries were classified into those involving the C1 and C2 and subaxial spine. For the latter, SLIC was used. Results: A total of 47 VAI were analyzed in 43 patients. Only one patient with VAI on MRI had no detectable abnormality on NCCT. C1 and C2 injuries were found in one and six patients respectively. In subaxial injuries, the most common mechanism of injury was distraction (37.5% with facet dislocation with or without fracture representing the most common pattern of injury (55%. C5 was the single most common affected vertebral level. Extension to foramen transversarium was present in 20 (42.5% cases. Conclusion: CT represents a robust screening tool for patients with VAI. VAI should be suspected in patients with facet dislocation with or without fractures, foramina transversarium fractures and C1-C3 fractures, especially type III odontoid fractures and distraction mechanism of injury.

  6. A young pregnant woman with spontaneous carotid artery dissection––unknown mechanisms

    OpenAIRE

    Mohammed, Ishaq; Aaland, Maria; Khan, Nasrin; Crossley, Ian

    2014-01-01

    Spontaneous carotid artery dissection in pregnancy has not been reported before. We present a case of a 31-year-old Caucasian woman who was 11 weeks pregnant and presented with neck pain, headache, vomiting and left side Horner's syndrome. Subsequent investigations with MR angiography confirmed spontaneous left internal carotid artery dissection.

  7. Physical mechanism behind zonal-flow generation in drift-wave turbulence.

    Science.gov (United States)

    Manz, P; Ramisch, M; Stroth, U

    2009-10-16

    The energetic interaction between drift-wave turbulence and zonal flows is studied experimentally in two-dimensional wave number space. The kinetic energy is found to be transferred nonlocally from the drift waves to the zonal flow. This confirms the theoretical prediction that the parametric-modulational instability is the driving mechanism of zonal flows. The physical mechanism of this nonlocal energetic interaction between and zonal flows and turbulent drift-wave eddies in relation to the suppression of turbulent transport is discussed. PMID:19905704

  8. Plasma levels of the arterial wall protein fibulin-1 are associated with carotid-femoral pulse wave velocity

    DEFF Research Database (Denmark)

    Laugesen, Esben; Høyem, Pernille; Christiansen, Jens Sandahl;

    2013-01-01

    The arterial system in diabetic patients is characterized by generalized non-atherosclerotic alterations in the vascular extracellular matrix causing increased arterial stiffness compared with subjects without diabetes. The underlying pathophysiology remains elusive. The elastin-associated extrac......The arterial system in diabetic patients is characterized by generalized non-atherosclerotic alterations in the vascular extracellular matrix causing increased arterial stiffness compared with subjects without diabetes. The underlying pathophysiology remains elusive. The elastin...... stiffness. Whether plasma fibulin-1 is associated with arterial stiffness at earlier phases of type 2 diabetes has not been determined....

  9. Molecular mechanisms of hypoxia-inducible factor-induced pulmonary arterial smooth muscle cell alterations in pulmonary hypertension.

    Science.gov (United States)

    Veith, Christine; Schermuly, Ralph T; Brandes, Ralf P; Weissmann, Norbert

    2016-03-01

    Oxygen (O2) is essential for the viability and function of most metazoan organisms and thus is closely monitored at both the organismal and the cellular levels. However, alveoli often encounter decreased O2 levels (hypoxia), leading to activation of physiological or pathophysiological responses in the pulmonary arteries. Such changes are achieved by activation of transcription factors. The hypoxia-inducible factors (HIFs) are the most prominent hypoxia-regulated transcription factors in this regard. HIFs bind to hypoxia-response elements (HREs) in the promoter region of target genes, whose expression and translation allows the organism, amongst other factors, to cope with decreased environmental O2 partial pressure (pO2). However, prolonged HIF activation can contribute to major structural alterations, especially in the lung, resulting in the development of pulmonary hypertension (PH). PH is characterized by a rise in pulmonary arterial pressure associated with pulmonary arterial remodelling, concomitant with a reduced intravascular lumen area. Patients with PH develop right heart hypertrophy and eventually die from right heart failure. Thus, understanding the molecular mechanisms of HIF regulation in PH is critical for the identification of novel therapeutic strategies. This review addresses the relationship of hypoxia and the HIF system with pulmonary arterial dysfunction in PH. We particularly focus on the cellular and molecular mechanisms underlying the HIF-driven pathophysiological processes. PMID:26228924

  10. Diagnostic Ultrasound High Mechanical Index Impulses Restore Microvascular Flow in Peripheral Arterial Thromboembolism.

    Science.gov (United States)

    Porter, Thomas R; Radio, Stanley; Lof, John; Everbach, Carr; Powers, Jeffry E; Vignon, Francois; Shi, William T; Xie, Feng

    2016-07-01

    We sought to explore mechanistically how intermittent high-mechanical-index (MI) diagnostic ultrasound impulses restore microvascular flow. Thrombotic microvascular obstruction was created in the rat hindlimb muscle of 36 rats. A diagnostic transducer confirmed occlusion with low-MI imaging during an intravenous microbubble infusion. This same transducer was used to intermittently apply ultrasound with an MI that produced stable or inertial cavitation (IC) for 10 min through a tissue-mimicking phantom. A nitric oxide inhibitor, L-Nω-nitroarginine methyl ester (L-NAME), was pre-administered to six rats. Plateau microvascular contrast intensity quantified skeletal microvascular blood volume, and postmortem staining was used to detect perivascular hemorrhage. Intermittent IC impulses produced the greatest recovery of microvascular blood volume (p < 0.0001, analysis of variance). Nitric oxide inhibition did not affect the skeletal microvascular blood volume improvement, but did result in more perivascular hemorrhage. IC inducing pulses from a diagnostic transducer can reverse microvascular obstruction after acute arterial thromboembolism. Nitric oxide may prevent unwanted bio-effects of these IC pulses. PMID:27083977

  11. The effects of shock wave and quasi-traveling wave in the mechanical impact test

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is well-known that the numerical value is always larger than the measured value,amounting to many times,if we calculate the stress of the specimen in the impulse test using the NASTRAN and ANSYS (N-A) software.We believe that the impact induces shock wave or quasi-traveling wave in the specimen,which can qualitatively explain the discrepancy of the two values.In order to verify it,the Lax-Friedrichs (L-F) scheme is taken to simulate the transmission of shock wave and quasi-traveling wave in solid.Numerical results show that the action area of the stress wave is small and the action time is very short,so the resulting stress and actual work are not big.In addition,the distribution of the impact values obtained by the numerical simulation is in accordance with the trend of the measured impact values.

  12. The realization of the wave function collapse in the linguistic interpretation of quantum mechanics

    CERN Document Server

    Ishikawa, Shiro

    2015-01-01

    Recently I proposed the linguistic interpretation of quantum mechanics, which is characterized as the linguistic turn of the Copenhagen interpretation of quantum mechanics. This turn from physics to language does not only extend quantum theory to classical theory but also yield the quantum mechanical world view. Although the wave function collapse is prohibited in the linguistic interpretation, in this paper I show that the phenomenon like wave function collapse can be realized in the linguistic interpretation. And furthermore, I propose the justification of the von Neumann-L\\"uders projection postulate. After all, I conclude that the wave function collapse should not be adopted in the Copenhagen interpretation.

  13. Maxwellian theory of gravitational waves and their mechanical properties

    International Nuclear Information System (INIS)

    We present a theory in Maxwellian form for gravitational waves in a flat background. This requires us to identify the gravitational analogues of the electric and magnetic fields for light. An important novelty, however, is that our analogues are not vector fields but rather rank-two tensor fields; in place of a three-component vector at each point in space, as in electromagnetism, our fields are three by three symmetric matrices at each point. The resulting Maxwell-like equations lead directly to a Poynting theorem for the local energy density associated with a gravitational wave and to associated local properties including densities of momentum and angular momentum. (paper)

  14. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter; Burcharth, Hans F.

    knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the first four lectures of the course: • Definitions. Governing equations and boundary conditions. • Derivation of velocity potential for linear waves. Dispersion relationship...... bølgehydraulik, AaU (2004) • Ib A.Svendsen and Ivar G.Jonsson: Hydrodynamics of Coastal Regions, Den private ingeniørfond, DtU.(1989). • Leo H. Holthuijsen: Waves in ocean and coastal waters, Cambridge University Press (2007)....

  15. Epigenetic mechanisms in pulmonary arterial hypertension: the need for global perspectives

    OpenAIRE

    Prakash Chelladurai; Werner Seeger; Soni Savai Pullamsetti

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease, characterised by high pulmonary artery pressure that usually culminates in right heart failure. Recent findings of alterations in the DNA methylation state of superoxide dismutase 2 and granulysin gene loci; histone H1 levels; aberrant expression levels of histone deacetylases and bromodomain-containing protein 4; and dysregulated microRNA networks together suggest the involvement of epigenetics in PAH pathogenesis. Th...

  16. Ultrasonic Estimation of Mechanical Properties of Pulmonary Arterial Wall Under Normoxic and Hypoxic Conditions

    Science.gov (United States)

    Waters, Kendall R.; Mukdadi, Osama M.

    2005-04-01

    Secondary pediatric pulmonary hypertension is a disease that could benefit from improved ultrasonic diagnostic techniques. We perform high-frequency in vitro ultrasound measurements (25 MHz to 100 MHz) on fresh and fixed pulmonary arterial walls excised from normoxic and hypoxic Long-Evans rat models. Estimates of the elastic stiffness coefficients are determined from measurements of the speed of sound. Preliminary results indicate that hypoxia leads to up to increase of 20 % in stiffening of the pulmonary arterial wall.

  17. The effect of wall mechanical properties on patency of arterial grafts.

    OpenAIRE

    Kidson, I. G.

    1983-01-01

    Normal arteries have properties which match the low output impedance of the heart to the high peripheral impedance. These properties can be assessed in terms of compliance (% diameter change per unit pressure change) as well as by other haemodynamic parameters. Experiments were designed using vein, Dacron and expanded polytetrafluoroethylene (PTFE) in a low flow canine femoral artery bypass model. No graft group achieved perfect patency. At twelve weeks 80% of vein grafts, 30% of Dacron graft...

  18. Regional and teleseismic shear-wave radiation feature of underground nuclear explosions and its implications for shear-wave excitation mechanisms

    Science.gov (United States)

    Hong, T.-K.

    2009-04-01

    Understanding the shear-wave excitation mechanism is a key issue for effective seismic monitoring of underground nuclear explosions (UNEs). We often observe strong shear waves from UNEs, which causes difficulty in prompt discrimination of nuclear explosions from natural earthquakes. Various mechanisms have been proposed to explain the shear-wave excitation from the UNEs. Consensus on dominant mechanism of shear-wave excitation has not been made. To constrain the shear-wave excitation mechanism, we examine the consistency in shear-wave radiation pattern using a source-array slowness-wavenumber (F-K) analysis, which allows us to check the time-invariant feature in the shear waves. We examine regional and teleseismic waveforms for the UNEs of the Balapan test site and Nevada test site along with the Indian and North Korean UNEs. We observe consistent radiation pattern in both regional and teleseismic shear waves. The observed radiation pattern suggests that the shear waves were not excited azimuthally-isotropic. Shear waves observed in teleseismic distances are far weak compared to those in regional distances, which implies that shear waves are excited stronger at high takeoff angles. Also, spectra of shear waves display significantly low overshoot feature that is different from those of P phases. The time-invariant anisotropic radiation pattern, strong excitation in high takeoff angle and low overshoot feature allow us to constrain the shear-wave excitation mechanism.

  19. Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse

    OpenAIRE

    Choon Hwai Yap; Xiaoqin Liu; Kerem Pekkan

    2014-01-01

    Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse Choon Hwai Yap1, Xiaoqin Liu2, Kerem Pekkan3* 1 Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore, 2 Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America, 3 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh...

  20. Characterization of the vessel geometry, flow mechanics and wall shear stress in the great arteries of wildtype prenetal mouse

    OpenAIRE

    Pekkan, Kerem; Yap, C.H.; Liu, X.

    2014-01-01

    Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse Choon Hwai Yap1, Xiaoqin Liu2, Kerem Pekkan3* 1 Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore, 2 Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America, 3 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh...

  1. Mechanical Recanalization of Subacute Vessel Occlusion in Peripheral Arterial Disease with a Directional Atherectomy Catheter

    International Nuclear Information System (INIS)

    Purpose: To retrospectively examine the technical feasibility and safety of directional atherectomy for treatment of subacute infrainguinal arterial vessel occlusions. Methods: Five patients (one woman, four men, age range 51–81 years) with peripheral arterial disease who experienced sudden worsening of their peripheral arterial disease–related symptoms during the last 2–6 weeks underwent digital subtraction angiography, which revealed vessel occlusion in native popliteal artery (n = 4) and in-stent occlusion of the superficial femoral artery (n = 1). Subsequently, all patients were treated by atherectomy with the SilverHawk (ev3 Endovascular, USA) device. Results: The mean diameter of treated vessels was 5.1 ± 1.0 mm. The length of the occlusion ranged 2–14 cm. The primary technical success rate was 100%. One patient experienced a reocclusion during hospitalization due to heparin-induced thrombocytopenia. There were no further periprocedural complications, in particular no peripheral embolizations, until hospital discharge or during the follow-up period of 1 year. Conclusion: The recanalization of infrainguinal arterial vessel occlusions by atherectomy with the SilverHawk device is technically feasible and safe. In our limited retrospective study, it was associated with a high technical success rate and a low procedure-related complication rate.

  2. Homotopic mapping solitary traveling wave solutions for the disturbed BKK mechanism physical model

    International Nuclear Information System (INIS)

    Using the trial equation method, a Broer—Kau—Kupershmidt (BKK) mechanism physical model is obtained, and the exact and approximate solitary traveling wave solutions are found. As an example, it is pointed out that the solitary traveling wave approximate solutions have better accurate degree by using the homotopic mapping theory. (general)

  3. Increased pulse wave velocity and augmentation index after isometric handgrip exercise in patients with coronary artery disease

    OpenAIRE

    Moon, Shin-Hang; Moon, Jae-Cheol; Heo, Da-Hee; Lim, Young-Hyup; Choi, Joon-Hyouk; Kim, Song-Yi; Kim, Ki-Seok; Joo, Seung-Jae

    2015-01-01

    Background Arterial stiffness of patients with coronary artery disease (CAD), which is expected to be increased due to a generalized atherosclerotic process of human body, may be more evident after the acute increase of blood pressure (BP) or peripheral vascular resistance. Isometric handgrip exercise is a simple and easily applicable method to achieve this goal. We investigated the changes of hemodynamic parameters and arterial stiffness indexes after handgrip exercise in patients with CAD. ...

  4. Mechanisms behind the relaxing effect of furosemide on the isolated rabbit ear artery

    International Nuclear Information System (INIS)

    The effect of furosemide on isometric contration and 86Rb uptake were studied in the isolated rabbit central ear artery (CEA). A concentration-dependent relaxing effect of furosemide (0.06 mM-1.0 mM) was found in vessel segments with intact endothelium. The maximal relaxation was 28.6±3.9% (10). The effect was not diminished in segments deprived of endothelium, and removal of endothelium itself caused no change of the force development to electrical field stimualtion. The relaxing effect was time-dependent and stimulation-dependent and was not significantly affected by membrane depolarization induced by increasing external [K+] from 10 to 120 mM. The 86Rb uptake was inhibited by both furosemide and ouabain (8.0±0.5(8) and 5.3±0.5(8) versus 12.8±0.9(16) nmol (K+)x mm-1x(10 min.)-1 in the furosemide (1.0 mM), ouabain (1.0 mM) and control groups, respectively) without interaction between the two drugs. The 86Rb uptake was not further inhibited by increasing the furosemide concentration from 0.12 mM to 1.0 mM. Our results suggest: firstly, the direct relaxing effect of furosemide on isolated vessel segments in endothelium-independent and secondly, the inhibition of the Na+-K+-Cl- cotransport and a possible consequent hyperpolarization of the membrane is unlikely to be the sole mechanism responsible for the vasorelaxant effect of furosemide. The demonstrated direct effect on vascular tone may be of clinical importance in situations with very high plasma concentrations of the drug or very low concentrations of serum albumin. (aluthor)

  5. On the classical limit of Bohmian mechanics for Hagedorn wave packets

    CERN Document Server

    Dürr, Detlef

    2010-01-01

    We consider the classical limit of quantum mechanics in terms of Bohmian trajectories. For wave packets as defined by Hagedorn we show that the Bohmian trajectories converge to Newtonian trajectories in probability.

  6. Identifying coronary artery disease in men with type 2 diabetes: osteoprotegerin, pulse wave velocity, and other biomarkers of cardiovascular risk.

    LENUS (Irish Health Repository)

    Davenport, Colin

    2012-02-01

    OBJECTIVES: In patients with type 2 diabetes, high serum levels of osteoprotegerin (OPG) have been associated with a greater risk of cardiovascular events. However, it remains unclear how well OPG performs when compared with traditional biomarkers of cardiovascular risk such as high-sensitivity C-reactive protein (hsCRP). Furthermore, OPG levels are also high in the presence of diabetes-related microvascular disease, and it is unclear whether OPG can distinguish microvascular disease from large-vessel atherosclerosis. The first aim of this study was to compare OPG levels against other biomarkers of cardiovascular risk in the identification of patients with documented multivessel coronary artery disease (CAD). The second aim was to compare OPG levels in patients with microvascular complications (microalbuminuria) against those with established CAD. METHODS: Three groups of male patients with type 2 diabetes were recruited: patients without microvascular complications or large-vessel atherosclerosis (n = 24), patients with microalbuminuria only (n = 23), and patients with microalbuminuria and documented multivessel CAD (n = 25). OPG, hsCRP, interleukin 6, urate, and pulse wave velocity were measured. RESULTS: Serum OPG levels were significantly higher in patients with a combination of microalbuminuria and CAD than in those with microalbuminuria alone. There were no significant differences in any of the other biomarkers between the groups. CONCLUSION: OPG was found to be superior to the other biomarkers studied in identifying patients with documented CAD. The presence of CAD was a greater determinant of serum OPG levels than microalbuminuria in our population. These findings support the use of OPG as a biomarker of cardiovascular risk.

  7. Characterization of Wave Dispersion in Viscoelastic Cellular Assemblies by Doublet Mechanics

    Institute of Scientific and Technical Information of China (English)

    JIN Yan-Fang; XIONG Chun-Yang; FANG Jing; FERRARI Mauro

    2009-01-01

    Using the Voigt model, we analyze wave propagation in viscoelastic granular media with a monatomic lattice, planar simple cubic package and cubical-tetrahedral assembly within the context of doublet mechanics. Microstrains of elongation between the doublet particles are considered in the models. Wave dispersive relations are derived from dynamic equations of the particles involved in the media, and phase velocities and attenuations of the dispersive waves are obtained for the different assemblies. Variations in these dispersion characteristics are analyzed with the changes of cell interval, modulus, and wave frequency. The relations between micro-constants and macro-parameters are presented under the condition of non-scale continuity of the media.

  8. Study on the formation mechanism of shock wave in process of coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    SUN Dong-ling; MIAO Fa-tian; LIANG Yun-pei

    2009-01-01

    According to the research results of motion parameters of coal-gas flow, ana-lyzed the formation mechanism of shock waves at different states of coal-gas flow in the process of coal and gas outburst, and briefly described the two possible cases of outburst shock wave formation and their formation conditions in the process of coal and gas out-burst, and then pointed out that a high degree of under-expanded coal-gas flow was the main reason for the formation of a highly destructive shock wave. The research results improved the shock wave theory in coal and gas outburst.

  9. Diffraction and interference of single de Broglie-wavelets. Deterministic wave mechanics

    International Nuclear Information System (INIS)

    Wavelets are localized nonspreading solutions of massless wave equations which move like massive quantum particles. They form a bridge between classical mechanics of point particles and wave functions of probabilistic quantum mechanics, both of which can be obtained by limiting processes. Here we develop a theory of the propagation of wavelets in the presence of boundaries and derive interference phenomena of quantum theory from the behavior of single events with ''hidden parameters''. (author). 8 refs, 1 fig

  10. Imaging mechanical shear waves induced by piezoelectric ceramics in magnetic resonance elastography

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Magnetic Resonance Elastography (MRE) is a noninvasive technique to measure elasticity of tissues in vivo. In this paper, a mechanical shear wave MR imaging system experiment is set for MRE. A novel actuator is proposed to generate mechanical shear waves propagating inside a gel phantom. The actuator is made of piezoelectric ceramics, and fixed on a plexiglass bracket. Both of the gel phantom and the actuator are put into a head coil inside the MR scanner's bore. The actuator works synchronously with an MR imaging sequence running on the MR scanner. The sequence is modified from a FLASH sequence into a motion-sensitizing phase- contrast sequence for shear wave MR imaging. Shear wave images are presented, and these effects on the shear wave MR imaging system, including the stiffness of phantoms, the frequency of the actuator, the parameters of the motion-sensitizing gradient, and the oscillation of the patient bed, are discussed.

  11. Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations

    DEFF Research Database (Denmark)

    Liang, Z.; Willatzen, Morten; Christensen, Johan

    2015-01-01

    dimensions can be generated, and we demonstrate this numerically for structures with millimeter and centimeter dimensions in the kilohertz to megahertz range. Analytical predictions agree entirely with full wave simulations showing how elastodynamics can mimic quantum-mechanical condensed-matter phenomena.......We propose hitherto unexplored and fully analytical insights into laminate elastic materials in a true condensed-matter-physics spirit. Pure mechanical surface waves that decay as evanescent waves from the interface are discussed, and we demonstrate how these designer Scholte waves are controlled...... by the geometry as opposed to the material alone. The linear surface wave dispersion is modulated by the crystal filling fraction such that the degree of confinement can be engineered without relying on narrow-band resonances but on effective stiffness moduli. In the same context, we provide a...

  12. PERIPHERAL VENO-ARTERIAL ECMO AS MECHANICAL CIRCULATORY SUPPORT BEFORE HEART TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    E. A. Spirina

    2013-01-01

    Full Text Available Aim of our clinical study was evaluation own initial experience of high-urgency ortotopic heart transplantation (OHT in recipients, who were bridged on peripheral Vena-Arterial Extracorporeal Membrane Oxygenation (VA ECMO. Materials and methods. In this study was included 17 patients (14/3 M/F, age 16–66 (40.1 ± 4.2 yrs who underwent OHT while on peripheral ECMO support. In all cases we used peripheral surgical can- nulation technique via femoral vessels – arterial cannula 15–19 Fr, venous cannula – 21–25 Fr, arterial cannula or vascular catheter 8–10 Fr for anterograde leg’s perfusion. Results. Duration Vena-Arterial Extracorporeal Membrane Oxygenation before OHT was 81 ± 17 h. VA ECMO support was blood flow 4.8 ± 0.6 l/min or 2.63 ± 0/04 l/min/m2, gas flow 4.8 ± 0.6 l/min, FiO2 0.86 ± 0.07. Vena-Arterial Extracorporeal Membrane Oxygenation support was continued in “protective mode” (blood flow 1.9 ± 0.2 l/min 4.3 ± 0.5 days after OHT. Thirteen pa- tients (76.4% were weaned from VA ECMO successfully and survived to be discharged. ICU and hospital LOS after orthotopic heart transplantation was respectively 6.7 ± 0.8 and 32.3 ± 4.6 days in group of survived patients. The reasons of a lethal outcome (n = 4, 23.5% were sepsis and multiorgan failure (n = 3, sudden cardiac arrest (n = 1. Conclusion. Vena-Arterial Extracorporeal Membrane Oxygenation is a favorable short-term method of circulatory support in patients who needed in high-urgency heart transplantation. 

  13. Mechanisms Underlying the Endothelium-dependent Vasodilatory Effect of an Aqueous Extract of Elaeis Guineensis Jacq. (Arecaceae) in Porcine Coronary Artery Rings

    OpenAIRE

    Ndiaye, Mamadou; Anselm, Eric; Séne, Madièye; Diatta, Williams; Dièye, Amadou Moctar; Faye, Babacar; Schini-Kerth, Valérie B.

    2009-01-01

    This study was undertaken to investigate the vasodilatory effect of an aqueous extract of Elaeis guineensis Jacq (EGE) in the porcine coronary artery and elicit its possible mechanism(s) of action. Vascular effects of crude extract of dried and powdered leaves of Elaeis guineensis were evaluated on isolated coronary arteries on organ chambers. Determination of eNOS expression and the phosphorylation level of eNOS were determined by Western blot analysis. In the presence of indomethacin, EGE c...

  14. PERIPHERAL VENO-ARTERIAL ECMO AS MECHANICAL CIRCULATORY SUPPORT BEFORE HEART TRANSPLANTATION

    OpenAIRE

    E. A. Spirina; R. S. Saitgareev; D. V. Shumakov; V. M. Zakharevitch; V. V. Slobodyannik; M. G. Minina; V. V. Pchelnikov; O. A. Eremeeva; P. G. Lavrenov

    2013-01-01

    Aim of our clinical study was evaluation own initial experience of high-urgency ortotopic heart transplantation (OHT) in recipients, who were bridged on peripheral Vena-Arterial Extracorporeal Membrane Oxygenation (VA ECMO). Materials and methods. In this study was included 17 patients (14/3 M/F, age 16–66 (40.1 ± 4.2 yrs)) who underwent OHT while on peripheral ECMO support. In all cases we used peripheral surgical can- nulation technique via femoral vessels – arterial cannula 15–19 Fr, venou...

  15. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    resonators storing mechanical energy. These resonators are evanescently coupled by the surface. The dispersion diagram is presented and shows very low group velocities as the wave vector approaches the limit of the first Brillouin zone. ©2009 American Institute of Physics......It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... the finite element method to model surface acoustic waves generated by high aspect ratio electrodes. A periodic model is proposed including a perfectly matched layer to simulate radiation conditions away from the sources, from which the modal distributions are found. The ratio of the mechanical energy...

  16. Calculating rock mechanics parameters based on the inversion of Rayleigh wave dispersion curves

    International Nuclear Information System (INIS)

    In geotechnical engineering rock mechanics parameters are the important values which characterize rock mechanics property. In this paper, 2D Fourier transform is used to extract high signal-to-noise ratio dispersion curves, damped least square method is applied to inversely derive the S-wave velocity automatically so as to calculate rock mechanics parameters. Data of Rayleigh wave exploration in Erlian Basin of Inner Mongolia is used as an example to obtain profiles of dynamic rock mechanics parameters. It was found that the maximum exploration depth can reach 120 m provided that the acquisition and processing parameters are reasonable. Compared with other rock mechanics parameters testing technique, the characteristics of Rayleigh wave exploration are fast, efficient, economical and nondestructive. (authors)

  17. Bicovariant differential calculus on quantum groups and wave mechanics

    International Nuclear Information System (INIS)

    The bicovariant differential calculus on quantum groups defined by Woronowicz and later worked out explicitly by Carow-Watamura et al. and Jurco for the real quantum groups SUq(N) and SOq(N) through a systematic construction of the bicovariant bimodules of these quantum groups, is reviewed for SUq(2) and SOq(N). The resulting vector fields build representations of the quantized universal enveloping algebras acting as covariant differential operators on the quantum groups and their associated quantum spaces. As an application, a free particle stationary wave equation on quantum space is formulated and solved in terms of a complete set of energy eigenfunctions. (author) 15 refs

  18. Cajaninstilbene acid relaxes rat renal arteries: roles of Ca2+ antagonism and protein kinase C-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Zhang

    Full Text Available Cajaninstilbene acid (CSA is a major active component present in the leaves of Cajanus cajan (L. Millsp. The present study explores the underlying cellular mechanisms for CSA-induced relaxation in rat renal arteries. Vascular reactivity was examined in arterial rings that were suspended in a Multi Myograph System and the expression of signaling proteins was assessed by Western blotting method. CSA (0.1-10 µM produced relaxations in rings pre-contracted by phenylephrine, serotonin, 9, 11-dideoxy-9α, 11α-epoxymethanoprostaglandin F(2α (U46619, and 60 mM KCl. CSA-induced relaxations did not show difference between genders and were unaffected by endothelium denudation, nor by treatment with N(G-nitro-L-arginine methyl ester, indomethacin, ICI-182780, tetraethylammonium ion, BaCl(2, glibenclamide, 4-aminopyridine or propranolol. CSA reduced contraction induced by CaCl(2 (0.01-5 mM in Ca(2+-free 60 mM KCl solution and by 30 nM (--Bay K8644 in 15 mM KCl solution. CSA inhibited 60 mM KCl-induced Ca(2+ influx in smooth muscle of renal arteries. In addition, CSA inhibited contraction evoked by phorbol 12-myristate 13-acetate (PMA, protein kinase C agonist in Ca(2+-free Krebs solution. Moreover, CSA reduced the U46619- and PMA-induced phosphorylation of myosin light chain (MLC at Ser19 and myosin phosphatase target subunit 1 (MYPT1 at Thr853 which was associated with vasoconstriction. CSA also lowered the phosphorylation of protein kinase C (PKCδ at Thr505. In summary, the present results suggest that CSA relaxes renal arteries in vitro via multiple cellular mechanisms involving partial inhibition of calcium entry via nifedipine-sensitive calcium channels, protein kinase C and Rho kinase.

  19. Whistler wave-induced ionospheric plasma turbulence: Source mechanisms and remote sensing

    Science.gov (United States)

    Pradipta, R.; Rooker, L. A.; Whitehurst, L. N.; Lee, M. C.; Ross, L. M.; Sulzer, M. P.; Gonzalez, S.; Tepley, C.; Aponte, N.; See, B. Z.; Hu, K. P.

    2013-10-01

    We report a series of experiments conducted at Arecibo Observatory in the past, aimed at the investigation of 40.75 kHz whistler wave interactions with ionospheric plasmas and the inner radiation belts at L=1.35. The whistler waves are launched from a Naval transmitter (code-named NAU) operating in Aguadilla, Puerto Rico at the frequency and power of 40.75 kHz and 100 kW, respectively. Arecibo radar, CADI, and optical instruments were used to monitor the background ionospheric conditions and detect the induced ionospheric plasma effects. Four-wave interaction processes produced by whistler waves in the ionosphere can excite lower hybrid waves, which can accelerate ionospheric electrons. Furthermore, whistler waves propagating into the magnetosphere can trigger precipitation of energetic electrons from the radiation belts. Radar and optical measurements can distinguish wave-wave and wave-particle interaction processes occurring at different altitudes. Electron acceleration by different mechanisms can be verified from the radar measurements of plasma lines. To facilitate the coupling of NAU-launched 40.75 kHz whistler waves into the ionosphere, we can rely on naturally occurring spread F irregularities to serve as ionospheric ducts. We can also use HF wave-created ducts/artificial waveguides, as demonstrated in our earlier Arecibo experiments and recent Gakona experiments at HAARP. The newly constructed Arecibo HF heater will be employed in our future experiments, which can extend the study of whistler wave interactions with the ionosphere and the magnetosphere/radiation belts as well as the whistler wave conjugate propagation between Arecibo and Puerto Madryn, Argentina.

  20. Neuroprotective mechanisms of puerarin in middle cerebral artery occlusion-induced brain infarction in rats

    Directory of Open Access Journals (Sweden)

    Chang Yi

    2009-01-01

    Full Text Available Abstract Puerarin, a major isoflavonoid derived from the Chinese medical herb Radix puerariae (kudzu root, has been reported to be useful in the treatment of various cardiovascular diseases. In the present study, we examined the detailed mechanisms underlying the inhibitory effects of puerarin on inflammatory and apoptotic responses induced by middle cerebral artery occlusion (MCAO in rats. Treatment of puerarin (25 and 50 mg/kg; intraperitoneally 10 min before MCAO dose-dependently attenuated focal cerebral ischemia in rats. Administration of puerarin at 50 mg/kg, showed marked reduction in infarct size compared with that of control rats. MCAO-induced focal cerebral ischemia was associated with increases in hypoxia-inducible factor-1α (HIF-1α, inducible nitric oxide synthase (iNOS, and active caspase-3 protein expressions as well as the mRNA expression of tumor necrosis factor-α (TNF-α in ischemic regions. These expressions were markedly inhibited by the treatment of puerarin (50 mg/kg. In addition, puerarin (10~50 μM concentration-dependently inhibited respiratory bursts in human neutrophils stimulated by formyl-Met-Leu-Phe. On the other hand, puerarin (20~500 μM did not significantly inhibit the thiobarbituric acid-reactive substance reaction in rat brain homogenates. An electron spin resonance (ESR method was conducted on the scavenging activity of puerarin on the free radicals formed. Puerarin (200 and 500 μM did not reduce the ESR signal intensity of hydroxyl radical formation. In conclusion, we demonstrate that puerarin is a potent neuroprotective agent on MCAO-induced focal cerebral ischemia in vivo. This effect may be mediated, at least in part, by the inhibition of both HIF-1α and TNF-α activation, followed by the inhibition of inflammatory responses (i.e., iNOS expression, apoptosis formation (active caspase-3, and neutrophil activation, resulting in a reduction in the infarct volume in ischemia-reperfusion brain injury. Thus

  1. Mechanical Values Transformer on the Surface Acoustic Waves

    OpenAIRE

    V. O. Piddubnyi; V. V. Piddubnyi

    2008-01-01

    Calculation of parameters of the membrane type mechanical values transformer into the frequency electric signal is rewired. The article deals with the issues of deformational and heat sensitivity. Results of research are shown.

  2. Anomalous viscous retardation of a mechanical wave at percolation threshold

    OpenAIRE

    Roux, S; Hansen, A.

    1988-01-01

    We study the mean transit time needed for a mechanical shock to propagate through a random depleted lattice of freely-rotating elastic springs in a viscous medium at the central-force percolation threshold. This problem is the exact mechanical counterpart of anomalous diffusion. We show that the mean transit time for a pulse to cross a lattice of size L, scales as ∝ L2+θ' through a transfer-matrix analysis.

  3. Decreases in electrocardiographic R-wave amplitude and QT interval predict myocardial ischemic infarction in Rhesus monkeys with left anterior descending artery ligation.

    Directory of Open Access Journals (Sweden)

    Xiaorong Sun

    Full Text Available Clinical studies have demonstrated the predictive values of changes in electrocardiographic (ECG parameters for the preexisting myocardial ischemic infarction. However, a simple and early predictor for the subsequent development of myocardial infarction during the ischemic phase is of significant value for the identification of ischemic patients at high risk. The present study was undertaken by using non-human primate model of myocardial ischemic infarction to fulfill this gap. Twenty male Rhesus monkeys at age of 2-3 years old were subjected to left anterior descending artery ligation. This ligation was performed at varying position along the artery so that it produced varying sizes of myocardial infarction at the late stage. The ECG recording was undertaken before the surgical procedure, at 2 h after the ligation, and 8 weeks after the surgery for each animal. The correlation of the changes in the ECG waves in the early or the late stage with the myocardial infarction size was analyzed. The R wave depression and the QT shortening in the early ischemic stage were found to have an inverse correlation with the myocardial infarction size. At the late stage, the R wave depression, the QT prolongation, the QRS score, and the ST segment elevation were all closely correlated with the developed infarction size. The poor R wave progression was identified at both the early ischemic and the late infarction stages. Therefore, the present study using non-human primate model of myocardial ischemic infarction identified the decreases in the R wave and the QT interval as early predictors of myocardial infarction. Validation of these parameters in clinical studies would greatly help identifying patients with myocardial ischemia at high risk for the subsequent development of myocardial infarction.

  4. Advances in one-dimensional wave mechanics. Towards a unified classical view

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhuangqi [Shanghai Jiao Tong Univ., (China). Dept. of Physics and Astronomy; Yin, Cheng [Hohai Univ., Changzhou, Jiangsu (China). College of IoT Engineering

    2014-06-01

    Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.

  5. Advances in one-dimensional wave mechanics. Towards a unified classical view

    International Nuclear Information System (INIS)

    Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.

  6. Noninvasive Monitoring of Arterial Viscoelastic Indices Using a Foil-type Pressure Sensor

    Science.gov (United States)

    Maruyama, Hiromi; Hirano, Harutoyo; Kutluk, Abdugheni; Tsuji, Toshio; Fukuda, Osamu; Ueno, Naohiro; Ukawa, Teiji; Nakamura, Ryuji; Saeki, Noboru; Kawamoto, Masashi; Yoshizumi, Masao

    This paper proposes a noninvasive method for estimating the dynamic characteristics of arterial walls using pulse waves measured in various parts of the body by a foil-type pressure sensor. The sensor not only has high sensitivity and flexibility but also features the ability to continuously measure the alternating-current component of pulse waves. These capabilities make it suitable for estimating the dynamic characteristics of arterial walls. In this paper, a foil-type pressure sensor was employed to measure pulse waves based on the tonometry approach, and a method of estimating changes in arterial viscoelastic indices was proposed based on the measured pulse waves and photoplethysmograms. In order to accurately measure blood pressure, first, we examined suitable mechanical forces to the sensor, and found that values of 5-25[N] yielded the best performance. We then estimated the arterial viscoelastic indices of a radial artery and a dorsal pedis artery when mechanical pain stimuli were applied to the subjects. The results suggested that the estimated indices can be used to quantitatively assess vascular response caused by sympathicotonia. We thus concluded that the proposed method enabled noninvasive measurement of pulse waves in the dorsal pedis artery and estimation of arterial viscoelastic indices.

  7. l-Citrulline supplementation attenuates blood pressure, wave reflection and arterial stiffness responses to metaboreflex and cold stress in overweight men.

    Science.gov (United States)

    Figueroa, Arturo; Alvarez-Alvarado, Stacey; Jaime, Salvador J; Kalfon, Roy

    2016-07-01

    Combined isometric exercise or metaboreflex activation (post-exercise muscle ischaemia (PEMI)) and cold pressor test (CPT) increase cardiac afterload, which may lead to adverse cardiovascular events. l-Citrulline supplementation (l-CIT) reduces systemic arterial stiffness (brachial-ankle pulse wave velocity (baPWV)) at rest and aortic haemodynamic responses to CPT. The aim of this study was to determine the effect of l-CIT on aortic haemodynamic and baPWV responses to PEMI+CPT. In all, sixteen healthy, overweight/obese males (age 24 (sem 6) years; BMI 29·3 (sem 4·0) kg/m2) were randomly assigned to placebo or l-CIT (6 g/d) for 14 d in a cross-over design. Brachial and aortic systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP), aortic augmented pressure (AP), augmentation index (AIx), baPWV, reflection timing (Tr) and heart rate (HR) were evaluated at rest and during isometric handgrip exercise (IHG), PEMI and PEMI+CPT at baseline and after 14 d. No significant effects were evident after l-CIT at rest. l-CIT attenuated the increases in aortic SBP and wave reflection (AP and AIx) during IHG, aortic DBP, MAP and AIx during PEMI, and aortic SBP, DBP, MAP, AP, AIx and baPWV during PEMI+CPT compared with placebo. HR and Tr were unaffected by l-CIT in all conditions. Our findings demonstrate that l-CIT attenuates aortic blood pressure and wave reflection responses to exercise-related metabolites. Moreover, l-CIT attenuates the exaggerated arterial stiffness response to combined metaboreflex activation and cold exposure, suggesting a protective effect against increased cardiac afterload during physical stress. PMID:27160957

  8. Efficiency of a gyroscopic device for conversion of mechanical wave energy to electrical energy

    DEFF Research Database (Denmark)

    Carlsen, Martin; Darula, Radoslav; Gravesen, Jens;

    2011-01-01

    We consider a recently proposed gyroscopic device for conversion of mechanical ocean wave energy to electrical energy. Two models of the device derived from standard engineering mechanics from the literature are analysed, and a model is derived from analytical mechanics considerations. From these...... models, estimates of the power production, eciency, forces and moments are made. We nd that it is possible to extract a signicant amount of energy from an ocean wave using the described device. Further studies are required for a full treatment of the device....

  9. Focusing of N-waves: A Possible Mechanism for Amplified Run-up

    Science.gov (United States)

    Kanoglu, Utku; Titov, Vasily; Aydın, Baran; Moore, Christopher; Stefanakis, Themistoklis; Synolakis, Costas

    2013-04-01

    The initial free-surface displacement generated by a submarine earthquake has a dipolar nature, which is computed analytically by Okada's solution [1] and is finite crested. The resulting leading long wave has an N-wave shape as noted by Tadepalli & Synolakis [2, 3]. Here, we present a simple analytical solution of the linear shallow-water wave equations over a constant depth to study the propagation of a finite strip source. We show the existence of focusing points of dipolar initial displacements, i.e. points where wave amplification may be observed, due to the directional focusing of three waves, namely a positive wave from the center of elevation part and two positive waves from the sides of depression. N-wave focusing is not restricted to linear non-dispersive wave theory, but can also be observed using nonlinear shallow-water wave theory and dispersive theory. The location of the focusing point depends on the strip length. The focusing mechanism is an inherent property of the initial waveform and thus is not caused by bathymetric lenses, which can have a significant combined effect on the evolution of earthquake-generated tsunamis. Using the 1998 Papua New Guinea, 2006 Java and 2011 Japan tsunamis as examples, we discuss the geophysical implications of the focusing and how this can be related to abnormal high run-up values observed during these events, which were insufficiently explained so far. [1] Okada, Y. 1985 Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 75, 1135-1154. [2] Tadepalli, S. & Synolakis, C. E. 1994 The run-up of N-waves on sloping beaches. Proc. R. Soc. Lond. A 445, 99-112. [3] Tadepalli, S. & Synolakis, C. E. 1996 Model for the leading waves of tsunamis. Phys. Rev. Lett. 77, 2141-2144.

  10. Interference and interaction in Schroedinger's wave mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Treder, H.J.; von Borzeszkowski, H.H.

    1988-01-01

    Reminiscing on the fact that E. Schroedinger was rooted in the same physical tradition as M. Planck and A. Einstein, some aspects of his attitude to quantum mechanics are discussed. In particular, it is demonstrated that the quantum-mechanical paradoxes assumed by Einstein and Schroedinger should not exist, but that otherwise the epistemological problem of physical reality raised in this context by Einstein and Schroedinger is fundamental for our understanding of quantum theory. The nonexistence of such paradoxes just shows that quantum-mechanical effects are due to interference and not to interaction. This line of argument leads consequently to quantum field theories with second quantization, and accordingly quantum theory based both on Planck's constant h and on Democritus's atomism.

  11. Interference and interaction in Schrödinger's wave mechanics

    Science.gov (United States)

    Treder, Hans-Jürgen; von Borzeszkowski, Horst-Heino

    1988-01-01

    Reminiscing on the fact that E. Schrödinger was rooted in the same physical tradition as M. Planck and A. Einstein, some aspects of his attitude to quantum mechanics are discussed. In particular, it is demonstrated that the quantum-mechanical paradoxes assumed by Einstein and Schrödinger should not exist, but that otherwise the epistemological problem of physical reality raised in this context by Einstein and Schrödinger is fundamental for our understanding of quantum theory. The nonexistence of such paradoxes just shows that quantum-mechanical effects are due to interference and not to interaction. This line of argument leads consequently to quantum field theories with second quantization, and accordingly quantum theory based both on Planck's constant h and on Democritus's atomism.

  12. Linear mechanism of surface gravity wave generation in horizontally sheared flow

    International Nuclear Information System (INIS)

    An analysis is presented of a linear mechanism of surface gravity wave generation in a horizontally sheared flow in a fluid layer with free boundary. A free-surface flow of this type is found to be algebraically unstable. The development of instability leads to the formation of surface gravity waves whose amplitude grows with time according to a power law. Flow stability is analyzed by using a nonmodal approach in which the behavior of a spatial Fourier harmonic of a disturbance is considered in a semi-Lagrangian frame of reference moving with the flow. Shear-flow disturbances are divided into two classes (wave and vortex disturbances) depending on the value of potential vorticity. It is shown that vortex disturbances decay with time while the energy of wave disturbances increases indefinitely. Transformation of vortex disturbances into wave ones under strong shear is described.

  13. Wave-optics description of self-healing mechanism in Bessel beams

    CERN Document Server

    Aiello, Andrea

    2014-01-01

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  14. Teaching the common aspects in mechanical, electromagnetic and quantum waves at interfaces and waveguides

    International Nuclear Information System (INIS)

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and an elementary connection of results for a plane interface to experiments in graphene where the Klein paradox could be tested. The paper is intended for undergraduate level, and a basic knowledge of waves, relativity and quantum physics is required. Its educational purpose is to provide an integrated discussion of waves in order to fit the teaching to the requirement of a shorter sequence of university physics courses.

  15. Mechanisms Involved in Thromboxane A2-induced Vasoconstriction of Rat Intracavernous Small Penile Arteries

    DEFF Research Database (Denmark)

    Grann, Martin; Comerma Steffensen, Simon Gabriel; Arcanjo, Daniel Dias Rufino;

    2015-01-01

    Diabetes is associated with erectile dysfunction and with hypercontractility in erectile tissue and this is in part ascribed to increased formation of thromboxane. Rho kinase (ROCK) is a key regulator of calcium sensitization and contraction in vascular smooth muscle. This study investigated the...... role of calcium and ROCK in contraction evoked by activation of the thromboxane receptors. Rat intracavernous penile arteries were mounted for isometric tension and intracellular calcium ([Ca2+]i) recording and corpus cavernosum for measurements of MYPT1 phosphorylation. In penile arteries, U46619 by...... activation of thromboxane receptors concentration-dependently increased calcium and contraction. U46619-induced calcium influx was blocked by nifedipine, a blocker of L-type calcium channels, and by 2-aminoethoxydiphenyl borate, a blocker of transient receptor potential (TRP) channels. Inhibitors of ROCK, Y...

  16. Mechanism of nicotine-induced relaxation in the porcine basilar artery

    DEFF Research Database (Denmark)

    Zhang, W; Edvinsson, L; Lee, T J

    1998-01-01

    The present experiment was designed to examine possible influence of adrenergic nerves on nicotine-induced neurogenic vasodilation in porcine basilar arteries denuded of endothelium. Nicotine and transmural nerve stimulation (TNS) induced relaxation of basilar arteries. Tetrodotoxin (TTX) abolished...... the relaxation elicited by TNS, but only partially blocked that induced by nicotine. Relaxation induced by both nicotine and TNS was abolished by N-nitro-L-arginine. The N-nitro-L-arginine inhibition of both TNS- and nicotine-induced relaxation was reversed by L-arginine but not by D......-arginine. Hexamethonium abolished the relaxation induced by nicotine, but did not affect that elicited by TNS. Relaxation induced by nicotine was diminished by guanethidine, which did not affect the relaxation induced by TNS, suggesting that guanethidine blockade of nicotine-induced relaxation is not due to its local...

  17. Mechanisms for phase distortion in a traveling wave tube

    International Nuclear Information System (INIS)

    We present a view of the physics of phase distortion in a traveling wave tube (TWT) based on unique insights afforded by the MUSE models of a TWT [ J. Woehlbier, J. Booske, and I. Dobson, IEEE Trans. Plasma Sci. 30, 1063 (2002) ]. The conclusion, supported by analytic theory and simulations, is that prior to gain compression phase distortion is due to harmonic frequencies in the electron beam and the resulting 'intermodulation' frequency at the fundamental, and not the often cited 'slowing down of electrons in the electron beam'. We draw these conclusions based on MUSE simulations that allow explicit control of electron beam frequency content, an analytic solution to the S-MUSE model [ J. Woehlbier, J. Booske, and I. Dobson, IEEE Trans. Plasma Sci. 30, 1063 (2002) ] that reveals that phase distortion is due to the fact that the fundamental frequency is an intermodulation product of itself, and large signal LATTE [ J. Woehlbier, J. Booske, and I. Dobson, IEEE Trans. Plasma Sci. 30, 1063 (2002) ] simulations that are modified to remove the effect of the slowing down of electrons in the electron beam. As applications of the theory we compare S-MUSE simulations to an amplitude phase model using the analytic phase transfer curve, we study dependence of phase distortion on circuit dispersion and electron beam parameters at the second harmonic with large signal LATTE simulations for narrow and wide band TWT designs, and we consider the phase distortion theory in the context of TWT linearization

  18. Significance of Microcirculation Abnormalities as Counter-hypotension Mechanism in Essential Arterial Hypertension

    OpenAIRE

    Vl V Shkarin; М.V. Lozhakova

    2011-01-01

    The aim of the investigation is to study the contribution of microcirculation abnormalities to “escape effect” development in drug antihypertensive therapy in patients with essential arterial hypertension (AH). Materials and Methods. There were examined 107 patients with essential AH of the I–II severity degree (49 males, 58 females; their mean age being 48.9±9.9 years). In all patients before and after 8 weeks of drug antihypertensive therapy there was carried out ambulatory blood pressu...

  19. New mechanisms of pulmonary arterial hypertension: role of Ca2+ signaling

    OpenAIRE

    Kuhr, Frank K.; Smith, Kimberly A; Song, Michael Y.; Levitan, Irena; Yuan, Jason X-J

    2012-01-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease that usually culminates in right heart failure and death if left untreated. Although there have been substantial improvements in our understanding and significant advances in the management of this disease, there is a grim prognosis for patients in the advanced stages of PAH. A major cause of PAH is increased pulmonary vascular resistance, which results from sustained vasoconstriction, excessive pulmonary vascular remod...

  20. Translational value of mechanical and vasomotor properties of mouse isolated mesenteric resistance-sized arteries

    DEFF Research Database (Denmark)

    Outzen, Emilie Middelbo; Zaki, Marina; Abdolalizadeh, Bahareh; Nielsen, Anette Sams; Boonen, Harrie C.M.; Sheykhzade, Majid

    2015-01-01

    , by surveying the literature, we aimed to evaluate the overall translatability of observed pharmacological vasomotor responses of mouse MRA to those obtained in rat MRA as well as corresponding and different arteries in terms of vessel size and species origin. Our results showed that the optimal....... Additionally, in terms of translational value, our study suggests that mouse MRA can be applied as a useful model for studying vascular reactivity....

  1. Mechanical identification of layer-specific properties of mouse carotid arteries using 3D-DIC and a hyperelastic anisotropic constitutive model

    CERN Document Server

    Badel, Pierre; Lessner, Susan; Sutton, Michael A; 10.1080/10255842.2011.586945

    2012-01-01

    The role of mechanics is known to be of primary order in many arterial diseases; however, determining mechanical properties of arteries remains a challenge. This paper discusses the identifiability of the passive mechanical properties of a mouse carotid artery, taking into account the orientation of collagen fibres in the medial and adventitial layers. On the basis of 3D digital image correlation measurements of the surface strain during an inflation/extension test, an inverse identification method is set up. It involves a 3D finite element mechanical model of the mechanical test and an optimisation algorithm. A two-layer constitutive model derived from the Holzapfel model is used, with five and then seven parameters. The five-parameter model is successfully identified providing layer-specific fibre angles. The seven-parameter model is over parameterised, yet it is shown that additional data from a simple tension test make the identification of refined layer-specific data reliable.

  2. Sequential modulation of cardiac autonomic control induced by cardiopulmonary and arterial baroreflex mechanisms

    Science.gov (United States)

    Furlan, R.; Jacob, G.; Palazzolo, L.; Rimoldi, A.; Diedrich, A.; Harris, P. A.; Porta, A.; Malliani, A.; Mosqueda-Garcia, R.; Robertson, D.

    2001-01-01

    BACKGROUND: Nonhypotensive lower body negative pressure (LBNP) induces a reflex increase in forearm vascular resistance and muscle sympathetic neural discharge without affecting mean heart rate. We tested the hypothesis that a reflex change of the autonomic modulation of heartbeat might arise during low intensity LBNP without changes of mean heart rate. METHODS AND RESULTS: Ten healthy volunteers underwent plasma catecholamine evaluation and a continuous recording of ECG, finger blood pressure, respiratory activity, and central venous pressure (CVP) during increasing levels of LBNP up to -40 mm Hg. Spectrum and cross-spectrum analyses assessed the changes in the spontaneous variability of R-R interval, respiration, systolic arterial pressure (SAP), and CVP and in the gain (alpha(LF)) of arterial baroreflex control of heart rate. Baroreceptor sensitivity was also evaluated by the SAP/R-R spontaneous sequences technique. LBNP began decreasing significantly: CVP at -10, R-R interval at -20, SAP at -40, and the indexes alpha(LF) and baroreceptor sensitivity at -30 and -20 mm Hg, compared with baseline conditions. Plasma norepinephrine increased significantly at -20 mm Hg. The normalized low-frequency component of R-R variability (LF(R-R)) progressively increased and was significantly higher than in the control condition at -15 mm Hg. CONCLUSIONS: Nonhypotensive LBNP elicits a reflex increase of cardiac sympathetic modulation, as evaluated by LF(R-R), which precedes the changes in the hemodynamics and in the indexes of arterial baroreflex control.

  3. Dynamics of a mechanical frequency up-converted device for wave energy harvesting

    Science.gov (United States)

    Lin, Zheng; Zhang, Yongliang

    2016-04-01

    This paper proposes a novel mechanical impact-driven frequency up-converted device for wave energy harvesting, which could bridge a gap between waves of frequency 0.03-1 Hz and electrical generators of operation frequency hundreds hertz. The device mainly consists of a cylindrical buoy, beams and teeth. A mathematical model for the dynamics of such a device is presented, which incorporates the fluid-structure interaction between the wave and the buoy, and the structural interactions between the beams and the teeth. The momentum balance method and the coefficient of restitution are employed, which give rise to piecewise nonlinear equations governing the motions of the buoy and the beams. Experimental tests carried out in a wave flume validate the model and prove the effectiveness of frequency up-converted method in wave energy harvesting. The characteristics of frequency up-converted transformation from buoy motion to beams oscillation for wave energy harvesting are probed, and the effects of beam Young's modulus, beam number, wave period and wave height on strain power of the beams are explored.

  4. A wave-mechanical model of incoherent neutron scattering II. Role of the momentum transfer

    CERN Document Server

    Frauenfelder, Hans; Fenimore, Paul W

    2015-01-01

    We recently introduced a wave-mechanical model for quasi-elastic neutron scattering (QENS) in proteins. We call the model ELM for "Energy Landscape Model". We postulate that the spectrum of the scattered neutrons consists of lines of natural width shifted from the center by fluctuations. ELM is based on two facts: Neutrons are wave packets; proteins have low-lying substates that form the free-energy landscape (FEL). Experiments suggest that the wave packets are a few hundred micrometers long. The interaction between the neutron and a proton in the protein takes place during the transit of the wave packet. The wave packet exerts the force $F(t) = dQ(t)/dt$ on the protein moiety, a part of the protein surrounding the struck proton. $Q(t)$ is the wave vector (momentum) transferred by the neutron wave packet to the proton during the transit. The ensuing energy is stored in the energy landscape and returned to the neutron as the wave packet exits. Kinetic energy thus is changed into potential energy and back. The ...

  5. Wave Mechanics of a Two Wire Atomic Beamsplitter

    OpenAIRE

    Bortolotti, Daniele C. E.; Bohn, John L.

    2003-01-01

    We consider the problem of an atomic beam propagating quantum mechanically through an atom beam splitter. Casting the problem in an adiabatic representation (in the spirit of the Born-Oppenheimer approximation in molecular physics) sheds light on explicit effects due to non-adiabatic passage of the atoms through the splitter region. We are thus able to probe the fully three dimensional structure of the beam splitter, gathering quantitative information about mode-mixing, splitting ratios,and r...

  6. Wave Mechanics of a Two Wire Atomic Beamsplitter

    CERN Document Server

    Bortolotti, D C E; Bortolotti, Daniele C. E.; Bohn, John L.

    2004-01-01

    We consider the problem of an atomic beam propagating quantum mechanically through an atom beam splitter. Casting the problem in an adiabatic representation (in the spirit of the Born-Oppenheimer approximation in molecular physics) sheds light on explicit effects due to non-adiabatic passage of the atoms through the splitter region. We are thus able to probe the fully three dimensional structure of the beam splitter, gathering quantitative information about mode-mixing, splitting ratios,and reflection and transmission probabilities.

  7. Wave mechanics of a two-wire atomic beam splitter

    International Nuclear Information System (INIS)

    We consider the problem of an atomic beam propagating quantum mechanically through an atom beam splitter. Casting the problem in an adiabatic representation (in the spirit of the Born-Oppenheimer approximation in molecular physics) sheds light on explicit effects due to nonadiabatic passage of the atoms through the splitter region. We are thus able to probe the fully three-dimensional structure of the beam splitter, gathering quantitative information about mode mixing, splitting ratios, and reflection and transmission probabilities

  8. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2015-09-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  9. Mathematical modeling of calcium waves induced by mechanical stimulation in keratinocytes.

    Directory of Open Access Journals (Sweden)

    Yasuaki Kobayashi

    Full Text Available Recent studies have shown that the behavior of calcium in the epidermis is closely related to the conditions of the skin, especially the differentiation of the epidermal keratinocytes and the permeability barrier function, and therefore a correct understanding of the calcium dynamics is important in explaining epidermal homeostasis. Here we report on experimental observations of in vitro calcium waves in keratinocytes induced by mechanical stimulation, and present a mathematical model that can describe the experimentally observed wave behavior that includes finite-range wave propagation and a ring-shaped pattern. A mechanism of the ring formation hypothesized by our model may be related to similar calcium propagation patterns observed during the wound healing process in the epidermis. We discuss a possible extension of our model that may serve as a tool for investigating the mechanisms of various skin diseases.

  10. Surface-Wave Focal Mechanism of the 23 July 2002 Yellow-Sea Earthquake Event

    Science.gov (United States)

    Nguyen, B. V.; Hsu, V.

    2002-12-01

    The Yellow-Sea earthquake event of 23 July 2002 was reported by the USGS as follows: mb=4.7, Origin Time=12:48:08.23, Latitude = 35.563N, Longitude = 122.183E. In this study, we will present the focal mechanism of this event. Corrected Love-wave and Rayleigh-wave amplitude data from six CDSN stations and INCN station were used in the search for focal mechanism employing the technique of Nguyen and Herrmann (1992, SRL). Eigenfunctions were computed from the average crustal model that was obtained by inversion from surface-wave group velocities of these stations. Surface-wave attenuation coefficients were obtained using the technique of Tsai and Aki (1969). The result for surface-wave focal mechanism is much less as a strike-slip source than a more strike-slip one of the 4.8-mb Yellow-Sea 03 November 1992, as reported by Nguyen (1994 AGU Spring Meeting). The focal mechanism of this event has a nodal plane with dip= 65 deg., slip = 140 deg., and rake = 10 deg. The seismic moment obtained is 1.9E+23 dyne-cm. The source depth is 9 km.

  11. Electro-thermo-mechanical model for bulk acoustic wave resonators.

    Science.gov (United States)

    Rocas, Eduard; Collado, Carlos; Mateu, Jordi; Orloff, Nathan D; Aigner, Robert; Booth, James C

    2013-11-01

    We present the electro-thermo-mechanical constitutive relations, expanded up to the third order, for a BAW resonator. The relations obtained are implemented into a circuit model, which is validated with extensive linear and nonlinear measurements. The mathematical analysis, along with the modeling, allows us to identify the dominant terms, which are the material temperature derivatives and two intrinsic nonlinear terms, and explain, for the first time, all observable effects in a BAW resonator by use of a unified physical description. Moreover, the terms that are responsible for the second-harmonic generation and the frequency shift with dc voltage are shown to be the same. PMID:24158294

  12. Changes in the structure-function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves

    OpenAIRE

    Lammers, Steven R.; Kao, Phil H.; Qi, H. Jerry; Hunter, Kendall; Lanning, Craig; Albietz, Joseph; Hofmeister, Stephen; Mecham, Robert; Stenmark, Kurt R.; Shandas, Robin

    2008-01-01

    Extracellular matrix remodeling has been proposed as one mechanism by which proximal pulmonary arteries stiffen during pulmonary arterial hypertension (PAH). Although some attention has been paid to the role of collagen and metallomatrix proteins in affecting vascular stiffness, much less work has been performed on changes in elastin structure-function relationships in PAH. Such work is warranted, given the importance of elastin as the structural protein primarily responsible for the passive ...

  13. Probing wave function collapse models with a classically driven mechanical oscillator

    Science.gov (United States)

    Ho, Melvyn; Lafont, Ambroise; Sangouard, Nicolas; Sekatski, Pavel

    2016-03-01

    We show that the interaction of a pulsed laser light with a mechanical oscillator through the radiation pressure results in an opto-mechanical entangled state in which the photon number is correlated with the oscillator position. Interestingly, the mechanical oscillator can be delocalized over a large range of positions when driven by an intense laser light. This provides a simple yet sensitive method to probe hypothetical post-quantum theories including an explicit wave function collapse model, like the Diosi & Penrose model. We propose an entanglement witness to reveal the quantum nature of this opto-mechanical state as well as an optical technique to record the decoherence of the mechanical oscillator. We also report on a detailed feasibility study giving the experimental challenges that need to be overcome in order to confirm or rule out predictions from explicit wave function collapse models.

  14. Perioperative risk factors for prolonged mechanical ventilation and tracheostomy in women undergoing coronary artery bypass graft with cardiopulmonary bypass

    Directory of Open Access Journals (Sweden)

    Zahra S Faritous

    2011-01-01

    Full Text Available Background: Prolonged mechanical ventilation is an important recognized complication occurring during cardiovascular surgery procedures. This study was done to assess the perioperative risk factors related to postoperative pulmonary complications and tracheostomy in women undergoing coronary artery bypass graft with cardiopulmonary bypass. Methods: It was a retrospective study on 5,497 patients, including 31 patients with prolonged ventilatory support and 5,466 patients without it; from the latter group, 350 patients with normal condition (extubated in 6-8 hours without any complication were selected randomly. Possible perioperative risk factors were compared between the two groups using a binary logistic regression model. Results: Among the 5,497 women undergoing coronary artery bypass graft (CABG, 31 women needed prolonged mechanical ventilation (PMV, and 15 underwent tracheostomy. After logistic regression, 7 factors were determined as being independent perioperative risk factors for PMV. Discussion: Age ≥70 years old, left ventricular ejection fraction (LVEF ≤30%, preexisting respiratory or renal disease, emergency or re-do operation and use of preoperative inotropic agents are the main risk factors determined in this study on women undergoing CABG.

  15. Towards MIGO, the Matter-wave Interferometric Gravitational-wave Observatory, and the Intersection of Quantum Mechanics with General Relativity

    CERN Document Server

    Chiao, R Y; Chiao, Raymond Y.; Speliotopoulos, Achilles D.

    2003-01-01

    A dynamical, non-Euclidean spacetime geometry in general relativity theory implies the possibility of gravitational radiation. Here we explore novel methods of detecting such radiation from astrophysical sources by means of matter-wave interferometers (MIGOs), using atomic beams emanating from supersonic atomic sources that are further cooled and collimated by means of optical molasses. While the sensitivities of such MIGOs compare favorably with LIGO and LISA, the sizes of MIGOs can be orders of magnitude smaller, and their bandwidths wider. Using a pedagogical approach, we place this problem into the broader context of problems at the intersection of quantum mechanics with general relativity.

  16. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  17. Mechanism of Energy Transfers to Smaller Scales Within the Rotational Internal Wave Field

    International Nuclear Information System (INIS)

    We discuss the effect of the earth rotation on the two-triad interaction and the oceanic energy distribution processes that occur between five coupled internal gravity waves. The system we study is a two-triad test wave system consisting of an initial wave of the tidal M2 frequency interacting with four recipient waves forming two resonant triads. It is shown that the general mechanism of an arbitrarily large number of internal wave interactions can be described by a three classes of interactions which we call the sum, middle and difference interaction classes. The four latitude singularities are distinguished for the particular case of five interacting waves and all three classes of resonant interactions are studied separately at those critical values. It is shown that the sum and difference interaction classes represent the latitude-inferior and latitude-predominant classes respectively. The phenomenon of coalescence of the middle and difference interaction classes is observed along latitude 48.25o N. It shown that at this value of latitude, the coalescence phenomenon provides the analogy between rotating and reflecting internal waves from slopes.

  18. Mechanical optimization of superconducting cavities in continuous wave operation

    Science.gov (United States)

    Posen, Sam; Liepe, Matthias

    2012-02-01

    Several planned accelerator facilities call for hundreds of elliptical cavities operating cw with low effective beam loading, and therefore require cavities that have been mechanically optimized to operate at high QL by minimizing df/dp, the sensitivity to microphonics detuning from fluctuations in helium pressure. Without such an optimization, the facilities would suffer either power costs driven up by millions of dollars or an extremely high per-cavity trip rate. ANSYS simulations used to predict df/dp are presented as well as a model that illustrates factors that contribute to this parameter in elliptical cavities. For the Cornell Energy Recovery Linac (ERL) main linac cavity, df/dp is found to range from 2.5 to 17.4Hz/mbar, depending on the radius of the stiffening rings, with minimal df/dp for very small or very large radii. For the Cornell ERL injector cavity, simulations predict a df/dp of 124Hz/mbar, which fits well within the range of measurements performed with the injector cryomodule. Several methods for reducing df/dp are proposed, including decreasing the diameter of the tuner bellows and increasing the stiffness of the enddishes and the tuner. Using measurements from a Tesla Test Facility cavity as the baseline, if both of these measures were implemented and the stiffening rings were optimized, simulations indicate that df/dp would be reduced from ˜30Hz/mbar to just 2.9Hz/mbar, and the power required to maintain the accelerating field would be reduced by an order of magnitude. Finally, other consequences of optimizing the stiffening ring radius are investigated. It is found that stiffening rings larger than 70% of the iris-equator distance make the cavity impossible to tune. Small rings, on the other hand, leave the cavity susceptible to plastic deformation during handling and have lower frequency mechanical resonances, which is undesirable for active compensation of microphonics. Additional simulations of Lorentz force detuning are discussed, and

  19. Monitoring general corrosion of rebar embedded in mortar using high-frequency guided mechanical waves

    Science.gov (United States)

    Ervin, Benjamin L.; Bernhard, Jennifer T.; Kuchma, Daniel A.; Reis, Henrique

    2007-04-01

    High-frequency guided mechanical waves were used to ultrasonically monitor reinforced mortar specimens undergoing accelerated general corrosion damage. Waves were invoked, using both single-cycle and high-cycle tonebursts, at frequencies where the attenuation is at a local minimum. Results show that the high-frequency waves were sensitive to irregularities in the reinforcing rebar profile caused by corrosion. The sensitivity is thought to be due to scattering, reflections, and mode conversion at the irregularities. Certain frequencies show promise for being insensitive to the surrounding mortar, ingress of water, presence of additional rebar, stirrups, and rust product accumulation. This lack of sensitivity allows for changes in guided wave behavior from bar profile deterioration to be isolated from the effects of other surrounding interfaces.

  20. Combination of rare right arterial variation with anomalous origins of the vertebral artery, aberrant subclavian artery and persistent trigeminal artery. A case report.

    Science.gov (United States)

    Ishihara, H; San Millán Ruíz, D; Abdo, G; Asakura, F; Yilmaz, H; Lovblad, K O; Rüfenacht, D A

    2011-09-01

    A 32-year-old woman hospitalized for subarachnoid hemorrhage showed rare arterial variation on the right side with anomalous origins of the vertebral artery, aberrant subclavian artery and persistent trigeminal artery. Angiography showed the right vertebral artery to originate from the right common carotid artery, the right subclavian artery to arise separately from the descending aorta, and persistent trigeminal artery on the right side. The possible embryonic mechanism of this previously unreported variant combination is discussed. PMID:22005696

  1. Mechanism of glucose-6-phosphate dehydrogenase-mediated regulation of coronary artery contractility.

    Science.gov (United States)

    Ata, Hirotaka; Rawat, Dhwajbhadur K; Lincoln, Thomas; Gupte, Sachin A

    2011-06-01

    We previously identified glucose-6-phosphate dehydrogenase (G6PD) as a regulator of vascular smooth muscle contraction. In this study, we tested our hypothesis that G6PD activated by KCl via a phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-protein kinase C (PKC) pathway increases vascular smooth muscle contraction and that inhibition of G6PD relaxes smooth muscle by decreasing intracellular Ca(2+) ([Ca(2+)](i)) and Ca(2+) sensitivity to the myofilament. Here we show that G6PD is activated by membrane depolarization via PKC and PTEN pathway and that G6PD inhibition decreases intracellular free calcium ([Ca(2+)](i)) in vascular smooth muscle cells and thus arterial contractility. In bovine coronary artery (CA), KCl (30 mmol/l) increased PKC activity and doubled G6PD V(max) without affecting K(m). KCl-induced PKC and G6PD activation was inhibited by bisperoxo(pyridine-2-carboxyl)oxovanadate (Bpv; 10 μmol/l), a PTEN inhibitor, which also inhibited (P PET-cGMPs (100 nmol/l) diminished 6AN-evoked VASP phosphorylation (P PET-cGMPs increased 6AN-induced relaxation. These findings suggest G6PD inhibition relaxes CA by decreasing Ca(2+) influx, increasing Ca(2+) sequestration, and inhibiting Rho kinase but not by increasing Ca(2+) extrusion or activating PKG. PMID:21398595

  2. Effects of simulated microgravity on circadian rhythm of caudal arterial pressure and heart rate in rats and their underlying mechanism

    Directory of Open Access Journals (Sweden)

    Li CHEN

    2016-04-01

    Full Text Available Objective  To explore the effects of simulated microgravity on the circadian rhythm of rats' caudal arterial pressure and heart rate, and their underlying mechanism. Methods  Eighteen male SD rats (aged 8 weeks were randomly assigned to control (CON and tail suspension (SUS group (9 each. Rats with tail suspension for 28 days were adopted as the animal model to simulate microgravity. Caudal arterial pressure and heart rate of rats were measured every 3 hours. The circadian difference of abdominal aorta contraction was measured by aortic ring test. Western blotting was performed to determine and compare the protein expression level of clock genes such as Per2 (Period2, Bmal1 (Aryl hydrocarbon receptor nuclear translocatorlike and dbp (D element binding protein in suprachiasmatic nucleus (SCN and abdominal aorta of rats in CON and SUS group at different time points. Results  Compared with CON group, the caudal arterial pressure, both systolic and diastolic pressure, decreased significantly and the diurnal variability disappeared, meanwhile the heart rate increased obviously and also the diurnal variability disappeared in rats of SUS group. Compared with CON group, the contraction reactivity of abdominal aorta decreased with disappearence of the diurnal variability, and also the clock genes expression in SCN and abdominal aorta showed no diurnal variability in rats of SUS group. Conclusion  Simulated microgravity may lead to circadian rhythm disorders in rats' cardiovascular system, which may be associated with the changes of the clock genes expression. DOI: 10.11855/j.issn.0577-7402.2016.04.06

  3. Tunneling time distribution by means of Nelson’s quantum mechanics and wave-particle duality

    Indian Academy of Sciences (India)

    Koh'Ichiro Hara; Ichiro Ohba

    2002-08-01

    We construct a tunneling time distribution by means of Nelson’s quantum mechanics and investigate statistical properties of the tunneling time distribution. As a result, we find that the relationship between the average and the variance of the tunneling time shows ‘wave-particle duality’.

  4. Apocrypha of standard scattering theory (SST) and quantum mechanics of the de Broglie wave packet

    International Nuclear Information System (INIS)

    It is shown that the Standard Scattering Theory (SST) does not correspond to the principles of Standard Quantum Mechanics (SQM). A more consistent theory is formulated. Some new results are obtained. Reflection and transmission of the de Broglie wave packet by thin layers of matter is considered

  5. Formulation of wave mechanics without the Planck constant (h/2π)

    International Nuclear Information System (INIS)

    Quantum mechanics can be formulated without the parameters (h/2π), m and e as a pure ''wave theory'' in terms of the frequencies alone. This is more directly related to experiments where one measures frequency differences rather than energies. Different quantum systems are then characterized by an intrinsic proper frequency ω0. (author). 3 refs

  6. A Mechanism of the Effect of Non-uniform Current on the Spectrum of Short Wind Waves

    Institute of Scientific and Technical Information of China (English)

    ZHENG Guizhen; SHENG Lifang; CONG Peixiu

    2004-01-01

    A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of short wind waves through modulating the surface drift, and hence enhances or weakens wave breaking. Some modification is proposed to the source term, which represents the spectral rate of wave energy dissipation due to wave breaking so that the source term can incorporate this mechanism. In order to illustrate whether this mechanism is significant, a real case is studied, in which the wind waves propagate on a tidal current flowing over the sea bottom covered with sand waves. Finally, the effect of the new mechanism on the equilibrium spectrum of small scale gravity waves is discussed. Numerical estimates suggest that, for water depths less than 50 m and wavelengths less than 1 m, this current field may result in distinct spatial variations of the wave breaking criteria, the spectral rate of wave energy dissipation and the equilibrium spectrum of short gravity waves.

  7. Relationship between resistant hypertension and arterial stiffness assessed by brachial-ankle pulse wave velocity in the older patient

    Directory of Open Access Journals (Sweden)

    Chung CM

    2014-09-01

    Full Text Available Chang-Min Chung,1,2 Hui-Wen Cheng,2 Jung-Jung Chang,2 Yu-Sheng Lin,2 Ju-Feng Hsiao,2 Shih-Tai Chang,1 Jen-Te Hsu2,31School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 2Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, 3Department of Medicine, College of Medicine, Chang Gung University, Taoyuan County, TaiwanBackground: Resistant hypertension (RH is a common clinical condition associated with increased cardiovascular mortality and morbidity in older patients. Several factors and conditions interfering with blood pressure (BP control, such as excess sodium intake, obesity, diabetes, older age, kidney disease, and certain identifiable causes of hypertension are common in patients resistant to antihypertensive treatment. Arterial stiffness, measured by brachial-ankle pulse wave velocity (baPWV, is increasingly recognized as an important prognostic index and potential therapeutic target in hypertensive patients. The aim of this study was to determine whether there is an association between RH and arterial stiffness. Methods: This study included 1,620 patients aged ≥65 years who were referred or self-referred to the outpatient hypertension unit located at a single cardiovascular center. They were separated into normotensive, controlled BP, and resistant hypertension groups. Home BP, blood laboratory parameters, echocardiographic studies and baPWV all were measured. Results: The likelihood of diabetes mellitus was significantly greater in the RH group than in the group with controlled BP (odds ratio 2.114, 95% confidence interval [CI] 1.194–3.744, P=0.010. Systolic BP was correlated in the RH group significantly more than in the group with controlled BP (odds ratio 1.032, 95% CI 1.012–1.053, P=0.001. baPWV (odds ratio 1.084, 95% CI 1.016–1.156, P=0.015 was significantly correlated with the presence of RH. The other factors were negatively correlated with the existence of RH.Conclusion: In

  8. PEEP-ZEEP technique: cardiorespiratory repercussions in mechanically ventilated patients submitted to a coronary artery bypass graft surgery

    Directory of Open Access Journals (Sweden)

    Auler José

    2011-09-01

    Full Text Available Abstract Background The PEEP-ZEEP technique is previously described as a lung inflation through a positive pressure enhancement at the end of expiration (PEEP, followed by rapid lung deflation with an abrupt reduction in the PEEP to 0 cmH2O (ZEEP, associated to a manual bilateral thoracic compression. Aim To analyze PEEP-ZEEP technique's repercussions on the cardio-respiratory system in immediate postoperative artery graft bypass patients. Methods 15 patients submitted to a coronary artery bypass graft surgery (CABG were enrolled prospectively, before, 10 minutes and 30 minutes after the technique. Patients were curarized, intubated, and mechanically ventilated. To perform PEEP-ZEEP technique, saline solution was instilled into their orotracheal tube than the patient was reconnected to the ventilator. Afterwards, the PEEP was increased to 15 cmH2O throughout 5 ventilatory cycles and than the PEEP was rapidly reduced to 0 cmH2O along with manual bilateral thoracic compression. At the end of the procedure, tracheal suction was accomplished. Results The inspiratory peak and plateau pressures increased during the procedure (p Conclusion The PEEP-ZEEP technique seems to be safe, without alterations on hemodynamic variables, produces elevated expiratory flow and seems to be an alternative technique for the removal of bronchial secretions in patients submitted to a CABG.

  9. Arterial tree asymmetry reduces cerebral pulsatility.

    Science.gov (United States)

    Vrselja, Zvonimir; Brkic, Hrvoje; Curic, Goran

    2015-11-01

    With each heartbeat, pressure wave (PW) propagates from aorta toward periphery. In cerebral circulation, at the level of circle of Willis (CW), four arteries and four PWs converge. Since the interference is an elemental property of the wave, PWs interfere at the level of CW. We hypothesize that the asymmetry of brain-supplying arteries (that join to form CW) creates phase difference between the four PWs that interfere at the level of CW and reduce downstream cerebral pulsatility. To best of our knowledge, the data about the sequence of PWs' arrival into the cerebral circulation is lacking. Evident imperfect bilateral symmetry of the vessels results with different path length of brain-supplying arteries, hence, PWs should arrive into the head at different times. The probabilistic calculation shows that asynchronous arrival is more probable than synchronous. The importance of PWs for the cerebral circulation is highlighted by the observation that barotrauma protection mechanisms are more influenced by the crest of PW (pulse pressure) than by the mean arterial pressure. In addition, an increased arterial pulsatility is associated with several brain pathologies. We created simple computational models of four converging arteries and found that asynchronous arrival of the PWs results with lower maximum pressure, slower rate of pressure amplification and lower downstream pulsatility. In analogy, the asynchronous arrival of the pressure waves into the cerebral circulation should decrease blood flow pulsatility and lower transmission of kinetic energy on arterial wall. We conclude that asynchronous arrival of PWs into the cerebral circulation influences cerebral hemodynamics and represents a physiological necessity. PMID:26277658

  10. Measurement of mechanical properties of homogeneous tissue with ultrasonically induced shear waves

    Science.gov (United States)

    Greenleaf, James F.; Chen, Shigao

    2007-03-01

    Fundamental mechanical properties of tissue are altered by many diseases. Regional and systemic diseases can cause changes in tissue properties. Liver stiffness is caused by cirrhosis and fibrosis. Vascular wall stiffness and tone are altered by smoking, diabetes and other diseases. Measurement of tissue mechanical properties has historically been done with palpation. However palpation is subjective, relative, and not quantitative or reproducible. Elastography in which strain is measured due to stress application gives a qualitative estimate of Young's modulus at low frequency. We have developed a method that takes advantage of the fact that the wave equation is local and shear wave propagation depends only on storage and loss moduli in addition to density, which does not vary much in soft tissues. Our method is called shearwave dispersion ultrasonic velocity measurement (SDUV). The method uses ultrasonic radiation force to produce repeated motion in tissue that induces shear waves to propagate. The shear wave propagation speed is measured with pulse echo ultrasound as a function of frequency of the shear wave. The resulting velocity dispersion curve is fit with a Voight model to determine the elastic and viscous moduli of the tissue. Results indicate accurate and precise measurements are possible using this "noninvasive biopsy" method. Measurements in beef along and across the fibers are consistent with the literature values.

  11. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    Science.gov (United States)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2016-05-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealized two-dimensional model of a proto-stellar disc, characterized in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius r0. The fluid in basic state is prescribed to rotate with a Keplerian profile $\\Omega_k(r)\\sim r^{-3/2}$ modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabilizer irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non- Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density, in addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect . Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.

  12. Mechanical waves conceptual survey: Its modification and conversion to a standard multiple-choice test

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2016-06-01

    In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of several test questions that had some problems in their original design, (ii) standardization of the number of options for each question to five, (iii) conversion of the two-tier questions to multiple-choice questions, and (iv) modification of some questions to make them independent of others. To obtain a final version of the test, we administered both the original and modified versions several times to students at a large private university in Mexico. These students were completing a course that covers the topics tested by the survey. The final modified version of the test was administered to 234 students. In this study we present the modifications for each question, and discuss the reasons behind them. We also analyze the results obtained by the final modified version and offer a comparison between the original and modified versions. In the Supplemental Material we present the final modified version of the test. It can be used by teachers and researchers to assess students' understanding of, and learning about, mechanical waves.

  13. Delocalization of mechanical waves in the ladder chain of DNA with correlated disorder

    Science.gov (United States)

    Farzadian, O.; Niry, M. D.

    2016-05-01

    Localization-delocalization transition of mechanical vibrations in a ladder chain with correlated disorder is studied analytically and numerically. An exact analytical analysis is carried out for the delocalization properties of the waves in the ladder chain. This analysis predicts resonance frequencies at which the waves can propagate in the entire chain like DNA. Our analytical results in prediction of extended modes are confirmed by numerical simulations using the transfer matrix method. Finally we consider the entropy of disorder as a control parameter for localization-delocalization transition in chain with correlated disorder.

  14. Study on the propagation mechanism of evanescent waves in one-dimensional periodic photonic crystal

    International Nuclear Information System (INIS)

    Based on the evanescent waves theory, the formation condition and propagation mechanism of evanescent waves in one-dimensional periodic photonic crystal are studied. When the incident light travels through the periodic photonic crystal at a certain angle, the optical resonance will occur in the optically denser medium, and a unique photonic local feature will occur in photonic bandgap. Furthermore, the influences on transmission performance by the photonic crystal parameters are discussed respectively. The simulation results show that the structure mentioned above can achieve the performance of high transmission and high Q value, which can provide theoretical references for photonic crystal multi-channel filters

  15. Study on the propagation mechanism of evanescent waves in one-dimensional periodic photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: chenying@ysu.edu.cn [Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shi, Jia; Liu, Teng; Dong, Jing [Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhu, Qiguang; Chen, Weidong [Key Laboratory of Special Fiber and Fiber Sensor of Hebei Province, School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2015-10-02

    Based on the evanescent waves theory, the formation condition and propagation mechanism of evanescent waves in one-dimensional periodic photonic crystal are studied. When the incident light travels through the periodic photonic crystal at a certain angle, the optical resonance will occur in the optically denser medium, and a unique photonic local feature will occur in photonic bandgap. Furthermore, the influences on transmission performance by the photonic crystal parameters are discussed respectively. The simulation results show that the structure mentioned above can achieve the performance of high transmission and high Q value, which can provide theoretical references for photonic crystal multi-channel filters.

  16. Endothelin-1 and endothelin-2 initiate and maintain contractile responses by different mechanisms in rat mesenteric and cerebral arteries

    DEFF Research Database (Denmark)

    Compeer, M. G.; Janssen, G. M. J.; De Mey, J. G. R.

    2013-01-01

    by stimulation of soluble GC, AC or K+-channels and by an inhibitor of receptor-operated ion channels. However, each of these reduced maintenance of ET-1 effects and relaxed ET-1-induced contractions in MRA. A calcium channel antagonist did not alter sensitivity, maximum and maintenance of ET-1......Background and PurposeEndothelin (ET)-1 and ET-2 cause potent long-lasting vasoconstrictions by tight binding to smooth muscle ETA receptors. We tested the hypotheses that different mechanisms mediate initiation and maintenance of arterial contractile responses to ET-1 and ET-2 and that this...... effects, but relaxed ET-1-induced contractions in MRA. A PLC inhibitor prevented contractile responses to ET-1 and ET-2 in MRA and BA, and relaxed ET-1- and ET-2-induced responses in MRA and ET-1 effects in BA. A Rho-kinase inhibitor did not modify sensitivity, maximum and maintenance of responses to both...

  17. Pharmacological characterization of the mechanisms involved in the vasorelaxation induced by progesterone and 17β-estradiol on isolated canine basilar and internal carotid arteries.

    Science.gov (United States)

    Ramírez-Rosas, Martha B; Cobos-Puc, Luis E; Sánchez-López, Araceli; Gutiérrez-Lara, Erika J; Centurión, David

    2014-11-01

    Progesterone and 17β-estradiol induce vasorelaxation through non-genomic mechanisms in several isolated blood vessels; however, no study has systematically evaluated the mechanisms involved in the relaxation induced by 17β-estradiol and progesterone in the canine basilar and internal carotid arteries that play a key role in cerebral circulation. Thus, relaxant effects of progesterone and 17β-estradiol on KCl- and/or PGF2α-pre-contracted arterial rings were investigated in absence or presence of several antagonists/inhibitors/blockers; the effect on the contractile responses to CaCl2 was also determined. In both arteries progesterone (5.6-180 μM) and 17β-estradiol (1.8-180 μM): (1) produced concentration-dependent relaxations of KCl- or PGF2α-pre-contracted arterial rings; (2) the relaxations were unaffected by actinomycin D (10 μM), cycloheximide (10 μM), SQ 22,536 (100 μM) or ODQ (30 μM), potassium channel blockers and ICI 182,780 (only for 17β-estradiol). In the basilar artery the vasorelaxation induced by 17β-estradiol was slightly blocked by tetraethylammonium (10mM) and glibenclamide (KATP; 10 μM). In both arteries, progesterone (10-100 μM), 17β-estradiol (3.1-31 μM) and nifedipine (0.01-1 μM) produced a concentration-dependent blockade of the contraction to CaCl2 (10 μM-10mM). These results suggest that progesterone and 17β-estradiol produced relaxation in the basilar and internal carotid arteries by blockade of L-type voltage dependent Ca(2+) channel but not by genomic mechanisms or production of cAMP/cGMP. Potassium channels did not play a role in the relaxation to progesterone in both arteries or in the effect of 17β-estradiol in the internal carotid artery; meanwhile KATP channels play a minor role on the effect of 17β-estradiol in the basilar artery. PMID:25072792

  18. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T.; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006), 10.1103/PhysRevLett.97.154101] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  19. Arterial Catheterization

    Science.gov (United States)

    ... version AMERICAN THORACIC SOCIETY Patient Information Series Arterial Catheterization An arterial catheter is a thin, hollow tube ... PHYSICIANS: AND COPY Why Do I Need Arterial Catheterization? Common reasons an arterial catheterization is done include: ■ ...

  20. Effects of Breath Training Pattern "End-Inspiratory Pause" on Respiratory Mechanics and Arterial Blood Gas of Patients with COPD

    Institute of Scientific and Technical Information of China (English)

    梁永杰; 蔡映云

    2002-01-01

    Objective:In order to explore the mechanism of Chinese traditional breath training, theeffects of end-inspiratory pause breathing (EIPB) on the respiratory mechanics and arterial blood gas werestudied in patients with chronic obstructive pulmonary disease (COPD). Methods: Ten patients in steadystage participating in the study had a breath training of regulating the respiration rhythm as to having apause between the deep and slow inspiration and the slow expiration. Effect of the training was observed byvisual feedback from the screen of the respiratory inductive plethysmograph. The dynamic change of par-tial pressure of oxygen saturation in blood (SpO2) was recorded with sphygmo-oximeter, the pulmonarymechanics and EIPB were determined with spirometer, and the data of arterial blood gases in tranquilizedbreathing and EIPB were analysed. Results: After EIPB training, SpO2 increased progressively, PaO2 in-creased and PaCO2 decreased, and the PaO2 increment was greater than the PaCO2 decrement. Further-more, the tidal volume increased and the frequency of respiration decreased significantly, both inspirationtime and expiration time were prolonged. There was no significant change in both mean inspiration flowrate (VT/Ti) and expiration flow rate (VT/Te). The baselines in spirogram during EIPB training had noraise. Conclusion: EIPB could decrease the ratio of the dead space and tidal volume (VD/VT), cause in-crease of PaO2 more than the decrease of PaCO2, suggesting that this training could improve both the func-tion of ventilation and gaseous exchange in the lung. EIPB training might be a breathing training patternfor rehabilitation of patients with COPD.

  1. Mechanics and composition of middle cerebral arteries from simulated microgravity rats with and without 1-h/d -Gx gravitation.

    Directory of Open Access Journals (Sweden)

    Jiu-Hua Cheng

    Full Text Available BACKGROUND: To elucidate further from the biomechanical aspect whether microgravity-induced cerebral vascular mal-adaptation might be a contributing factor to postflight orthostatic intolerance and the underlying mechanism accounting for the potential effectiveness of intermittent artificial gravity (IAG in preventing this adverse effect. METHODOLOGY/PRINCIPAL FINDINGS: Middle cerebral arteries (MCAs were isolated from 28-day SUS (tail-suspended, head-down tilt rats to simulate microgravity effect, S+D (SUS plus 1-h/d -Gx gravitation by normal standing to simulate IAG, and CON (control rats. Vascular myogenic reactivity and circumferential stress-strain and axial force-pressure relationships and overall stiffness were examined using pressure arteriography and calculated. Acellular matrix components were quantified by electron microscopy. The results demonstrate that myogenic reactivity is susceptible to previous pressure-induced, serial constrictions. During the first-run of pressure increments, active MCAs from SUS rats can strongly stiffen their wall and maintain the vessels at very low strains, which can be prevented by the simulated IAG countermeasure. The strains are 0.03 and 0.14 respectively for SUS and S+D, while circumferential stress being kept at 0.5 (106 dyn/cm2. During the second-run pressure steps, both the myogenic reactivity and active stiffness of the three groups declined. The distensibility of passive MCAs from S+D is significantly higher than CON and SUS, which may help to attenuate the vasodilatation impairment at low levels of pressure. Collagen and elastin percentages were increased and decreased, respectively, in MCAs from SUS and S+D as compared with CON; however, elastin was higher in S+D than SUS rats. CONCLUSIONS: Susceptibility to previous myogenic constrictions seems to be a self-limiting protective mechanism in cerebral small resistance arteries to prevent undue cerebral vasoconstriction during orthostasis at 1-G

  2. Non-invasive one-point carotid wave intensity in a large group of healthy subjects: A ventricular-arterial coupling parameter.

    Science.gov (United States)

    Vriz, Olga; Zito, Concetta; di Bello, Vitantonio; La Carrubba, Salvatore; Driussi, Caterina; Carerj, Scipione; Bossone, Eduardo; Antonini-Canterin, Francesco

    2016-03-01

    The analysis of wave intensity (WI) evaluates the working condition of the heart interacting with the arterial system. WI in normal subjects has two peaks, the first (W 1) reflects left ventricle (LV) contractile performance, the second (W 2) is related to the ability of the LV to actively stop aortic blood flow. The aim of the study was to investigate the reference values of W 1 and W 2 in a group of apparently healthy subjects through a radiofrequency-based system. 680 subjects (388 men mean age 43.0 ± 17.4 years, range 16-92; 292 women mean age 44.8 ± 17.7 years, range 16-86) were enrolled and underwent physical examination, blood pressure (BP) and heart rate (HR) measurements and comprehensive transthoracic echocardiogram was performed. Measurement of local WI was obtained at the level of the left common carotid artery before the bifurcation, using a high definition echo-tracking system. W 1 was (12.37 ± 6.89) × 10(3) and (9.76 ± 4.8) × 10(3) mmHg m/s(3), p 60) and stratified by gender. After adjustment for height, systolic BP and HR, W 1 decreased with age (p measure of diastolic function, predicted W 2. Inter and intra-observer variability and feasibility of WI analysis were satisfactory. We reported the values and their clinical correlations of the two peaks (W 1 and W 2) of WI, a non-invasive hemodynamic index for assessing ventricular-arterial coupling in a large group of apparently healthy subjects. PMID:25520218

  3. Is There an Association Between Carotid-Femoral Pulse Wave Velocity and Coronary Heart Disease in Patients with Coronary Artery Disease: A Pilot Study

    Science.gov (United States)

    Katsiki, Niki; Kollari, Erietta; Dardas, Sotirios; Dardas, Petros; Haidich, Anna-Bettina; Athyros, Vasilios G.; Karagiannis, Asterios

    2016-01-01

    Arterial stiffness has been shown to predict cardiovascular morbidity and mortality. Carotid-femoral pulse wave velocity (cfPWV) is regarded the gold standard marker of arterial stiffness. In previous studies, cfPWV was associated with the presence of coronary heart disease (CHD). However, with regard to CHD severity as assessed by the Syntax Score, only brachial-ankle PWV was reported to correlate with Syntax Score; no data exist for cfPWV. In this pilot study, we evaluated the possible associations between cfPWV, CHD and Syntax Score in 62 consecutive pa-tients (49 males; mean age: 64±12years) with chest pain undergoing scheduled coronary angiography. cfPWV was signifi-cantly higher in CHD patients than in non-CHD individuals (10 vs. 8.4 m/s; p = 0.003). No significant association was found between cfPWV and CHD severity as assessed by Syntax Score. A cut-off point of 12.3 m/s was considered as diagnostic for abnormally increased cfPWV (specificity: 97%; sensitivity: 12%; positive likelihood ratio: 3.558). Further research is needed to establish the relationship between cfPWV and Syntax Score. PMID:27347222

  4. Qualitative Experimental Evidences for the thermal Wave Mechanisms of temperature Oscillations in Living Tissues

    Institute of Scientific and Technical Information of China (English)

    JingLiu; XingguoSun; 等

    1996-01-01

    To make it possible for the thermal wave theory on temperature oscillation (TO)effects in living tissues to be founded on the substantial experimental basis,a series of typical decisive experiments in vivo as well as in artificially simulating costructions were carred out.COnclusions obtained including some other scholars animal experimental results all greatly support the thermal wave viewpoint qualitatively,A few experimental facts used not to be easily understood from the classical viewpoint are also well reinterpreted.The revealing on the thermal wave mechanisms of TO in living tissues is a brand new discovery and deep insight into this important thermophysiological phenomenon,It may possibly promote new investigations on the corresponding topics in the field of bioheat transfer science.

  5. Irreversible Evolution of a Wave Packet in The Rigged Hilbert Space Quantum Mechanics

    CERN Document Server

    Marcucci, Giulia

    2016-01-01

    It is well known that a state with complex energy cannot be the eigenstate of a self-adjoint operator, like the Hamiltonian. Resonances, i.e. states with exponentially decaying observables, are not vectors belonging to the conventional Hilbert space. One can describe these resonances in an unusual mathematical formalism, based on the so-called Rigged Hilbert Space (RHS). In the RHS, the states with complex energy are denoted as Gamow Vectors (GV), and they model decay processes. We study GV of the Reversed Harmonic Oscillator (RHO), and we analytically and numerically investigate the unstable evolution of wave packets. We introduce the background function to study initial data not composed only by a summation of GV and we analyse different wave packets belonging to specific function spaces. Our work furnishes support to the idea that irreversible wave propagations can be investigated by means of Rigged Hilbert Space Quantum Mechanics and provides insights for the experimental investigation of irreversible dyn...

  6. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H H; Sun, C T [School of Aeronautics and Astronautics, Purdue University, W Lafayette, IN 47907 (United States)], E-mail: sun@purdue.edu

    2009-01-15

    The wave attenuation and energy transfer mechanisms of a metamaterial having a negative effective mass density are studied. The metamaterial considered is represented by a lattice system consisting of mass-in-mass units. The attenuation of wave amplitude for frequencies in the stop band is studied from the energy transfer point of view. It is found that most of the work done by the external force on the lattice system is stored by the internal mass if the forcing frequency is close to the local resonance frequency. However, the energy stored in the internal mass is only temporary; it is taken out by the external force in the form of negative work in a cyclic manner. This behavior is utilized to design metamaterials for preventing stress waves from passing them.

  7. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density

    International Nuclear Information System (INIS)

    The wave attenuation and energy transfer mechanisms of a metamaterial having a negative effective mass density are studied. The metamaterial considered is represented by a lattice system consisting of mass-in-mass units. The attenuation of wave amplitude for frequencies in the stop band is studied from the energy transfer point of view. It is found that most of the work done by the external force on the lattice system is stored by the internal mass if the forcing frequency is close to the local resonance frequency. However, the energy stored in the internal mass is only temporary; it is taken out by the external force in the form of negative work in a cyclic manner. This behavior is utilized to design metamaterials for preventing stress waves from passing them.

  8. Significance of Microcirculation Abnormalities as Counter-Hypotension Mechanism in Essential Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Shkarin Vl.V.

    2011-12-01

    Full Text Available The aim of the investigation is to study the contribution of microcirculation abnormalities to “escape effect” development in drug antihypertensive therapy in patients with essential arterial hypertension (AH. Materials and Methods. There were examined 107 patients with essential AH of the I–II severity degree (49 males, 58 females; their mean age being 48.9±9.9 years. In all patients before and after 8 weeks of drug antihypertensive therapy there was carried out ambulatory blood pressure monitoring, values of central and peripheral circulatory dynamics were determined, and the state of microcirculatory bed was assessed. The patients were divided into three groups by cluster analysis based on initial data and hypotension therapy results. Results. Against the background of 8 weeks’ drug hypotension therapy in two groups there was achieved sufficient and stable effect, there were observed normalization of central, peripheral circulatory dynamics and circulation. In the third group the result of hypotension therapy was considered as unsatisfactory, there was reveled no improvement of microcirculatory bed state. Conclusion. Microcirculatory abnormalities appears as counter-hypotension factor leading to “escape effect” development in drug hypotension therapy.

  9. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries

    Science.gov (United States)

    Prieto, Dolores; Simonsen, Ulf; Hernández, Medardo; García-Sacristán, Albino

    1998-01-01

    Penile small arteries (effective internal lumen diameter of 300–600 μm) were isolated from the horse corpus cavernosum and mounted in microvascular myographs in order to investigate the mechanisms underlying the endothelium-dependent relaxations to acetylcholine (ACh) and bradykinin (BK).In arteries preconstricted with the thromboxane analogue U46619 (3–30 nM), ACh and BK elicited concentration-dependent relaxations, pD2 and maximal responses being 7.71±0.09 and 91±1% (n=23), and 8.80±0.07 and 89±2% (n=24) for ACh and BK, respectively. These relaxations were abolished by mechanical endothelial cell removal, attenuated by the nitric oxide (NO) synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG, 100 μM) and unchanged by indomethacin (3 μM). However, raising extracellular K+ to concentrations of 20–30 mM significantly inhibited the ACh and BK relaxant responses to 63±4% (P<0.01, n=7) and to 59±4% (P<0.01, n=6), respectively. ACh- and BK-elicited relaxations were abolished in arteries preconstricted with K+ in the presence of 100 μM L-NOARG.In contrast to the inhibitor of ATP-sensitive K+ channels, the blockers of Ca2+-activated K+ (KCa) channels, charybdotoxin (30 nM) and apamin (0.3 μM), each induced slight but significant rightward shifts of the relaxations to ACh and BK without affecting the maximal responses. Combination of charybdotoxin and apamin did not cause further inhibition of the relaxations compared to either toxin alone. In the presence of L-NOARG (100 μM), combined application of the two toxins resulted in the most effective inhibition of the relaxations to both ACh and BK. Thus, pD2 and maximal responses for ACh and BK were 7.65±0.08 and 98±1%, and 9.17±0.09 and 100±0%, respectively, in controls, and 5.87±0.09 (P<0.05, n=6) and 38±11% (P<0.05, n=6), and 8.09±0.14 (P<0.01, n=6) and 98±1% (n=6), respectively, after combined application of charybdotoxin plus apamin and L-NOARG.The selective inhibitor of

  10. Preliminary experience on early mechanical recanalization of middle cerebral artery for acute ischemic stroke and literature review

    International Nuclear Information System (INIS)

    Objective: To evaluate the feasibility,efficacy and complication of early middle cerebral artery (MCA) mechanical recanalization (MER) for treatment of acute ischemic stroke. Methods: Seven cases undergone MER of MCA for the treatment of acute cerebral infarct were retrospectively reviewed and analyzed, including the etiology, mechanism, Qureshi grading scale, location and size of infarcts, NIHSS score of pre and post procedure, endovascular technique and complications. Referring to the literature, the indications of MCA recanalization were further identified. Results: A total of 7 cases with mean age of 48 yrs were reviewed, which included 3 cases of atherosclerotic thrombosis and 4 embolic cases with pre NIHSS score ranging from 3 to 22. Mechanical recanalization succeeded in 6 cases, but 2 cases of cardiogenic embolism died of intracranial hemorrhage postoperatively. Favorable clinical outcomes were achieved in 4 cases whereas 1 deteriorated. Overall complications seemed to be consistent with literatures reviewed. Conclusions: Early MER of MCA may benefit to a certain subset of acute ischemia stroke patients, however, embolic cases, elder patients and those with severe neurologic deficits are often accompanied by higher complications and unfavorable outcome. (authors)

  11. Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the

  12. Material response mechanisms are needed to obtain highly accurate experimental shock wave data

    Science.gov (United States)

    Forbes, Jerry

    2015-06-01

    The field of shock wave compression of matter has provided a simple set of equations relating thermodynamic and kinematic parameters that describe the conservation of mass, momentum and energy across a steady shock wave with one-dimensional flow. Well-known condensed matter shock wave experimental results will be reviewed to see whether the assumptions required for deriving these simple R-H equations are met. Note that the material compression model is not required for deriving the 1-D conservation flow equations across a steady shock front. However, this statement is misleading from a practical experimental viewpoint since obtaining small systematic errors in shock wave measured parameters requires the material compression and release mechanisms to be known. A brief review will be presented on systematic errors in shock wave data from common experimental techniques for fluids, elastic-plastic solids, materials with negative volume phase transitions, glass and ceramic materials, and high explosives. Issues related to time scales of experiments and quasi-steady flow will also be presented.

  13. Hydrodynamic instabilities and transverse waves in propagation mechanism of gaseous detonations

    Science.gov (United States)

    Mahmoudi, Y.; Mazaheri, K.; Parvar, S.

    2013-10-01

    The present study examines the role of transverse waves and hydrodynamic instabilities mainly, Richtmyer-Meshkov instability (RMI) and Kelvin-Helmholtz instability (KHI) in detonation structure using two-dimensional high-resolution numerical simulations of Euler equations. To compare the numerical results with those of experiments, Navier-Stokes simulations are also performed by utilizing the effect of diffusion in highly irregular detonations. Results for both moderate and low activation energy mixtures reveal that upon collision of two triple points a pair of forward and backward facing jets is formed. As the jets spread, they undergo Richtmyer-Meshkov instability. The drastic growth of the forward jet found to have profound role in re-acceleration of the detonation wave at the end of a detonation cell cycle. For irregular detonations, the transverse waves found to have substantial role in propagation mechanism of such detonations. In regular detonations, the lead shock ignites all the gases passing through it, hence, the transverse waves and hydrodynamic instabilities do not play crucial role in propagation mechanism of such regular detonations. In comparison with previous numerical simulations present simulation using single-step kinetics shows a distinct keystone-shaped region at the end of the detonation cell.

  14. Diffusion modeling of ATP signaling suggests a partially regenerative mechanism underlies astrocyte intercellular calcium waves

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available Network signaling through astrocyte syncytiums putatively contribute to the regulation of a number of both physiological and pathophysiological processes in the mammalian central nervous system. As such, an understanding of the underlying mechanisms is critical to determining any roles played by signaling through astrocyte networks. Astrocyte signaling is primarily mediated by the propagation of intercellular calcium waves in the sense that paracrine signaling results in measurable intracellular calcium transients. Although the molecular mechanisms are relatively well known, there is conflicting data regarding the mechanism by which the signal propagates through the network. Experimentally there is evidence for both a point source signaling model in which adenosine triphosphate (ATP is released by an initially activated astrocyte only, and a regenerative signaling model in which downstream astrocytes release ATP. We modeled both conditions as a simple lumped parameter phenomenological diffusion model and show that the only possible mechanism that can accurately reproduce experimentally measured results is a dual signaling mechanism that incorporates elements of both proposed signaling models. Specifically, we were able to accurately simulate experimentally measured in vitro intercellular calcium wave dynamics by assuming a point source signaling model with a downstream regenerative component. These results suggest that seemingly conflicting data in the literature are actually complimentary, and represents a highly efficient and robustly engineered signaling mechanism.

  15. Automatic Generation of Individual Finite-Element Models for Computational Fluid Dynamics and Computational Structure Mechanics Simulations in the Arteries

    Science.gov (United States)

    Hazer, D.; Schmidt, E.; Unterhinninghofen, R.; Richter, G. M.; Dillmann, R.

    2009-08-01

    Abnormal hemodynamics and biomechanics of blood flow and vessel wall conditions in the arteries may result in severe cardiovascular diseases. Cardiovascular diseases result from complex flow pattern and fatigue of the vessel wall and are prevalent causes leading to high mortality each year. Computational Fluid Dynamics (CFD), Computational Structure Mechanics (CSM) and Fluid Structure Interaction (FSI) have become efficient tools in modeling the individual hemodynamics and biomechanics as well as their interaction in the human arteries. The computations allow non-invasively simulating patient-specific physical parameters of the blood flow and the vessel wall needed for an efficient minimally invasive treatment. The numerical simulations are based on the Finite Element Method (FEM) and require exact and individual mesh models to be provided. In the present study, we developed a numerical tool to automatically generate complex patient-specific Finite Element (FE) mesh models from image-based geometries of healthy and diseased vessels. The mesh generation is optimized based on the integration of mesh control functions for curvature, boundary layers and mesh distribution inside the computational domain. The needed mesh parameters are acquired from a computational grid analysis which ensures mesh-independent and stable simulations. Further, the generated models include appropriate FE sets necessary for the definition of individual boundary conditions, required to solve the system of nonlinear partial differential equations governed by the fluid and solid domains. Based on the results, we have performed computational blood flow and vessel wall simulations in patient-specific aortic models providing a physical insight into the pathological vessel parameters. Automatic mesh generation with individual awareness in terms of geometry and conditions is a prerequisite for performing fast, accurate and realistic FEM-based computations of hemodynamics and biomechanics in the

  16. Dispersion Analysis of Wave Propagation in Cubic-Tetrahedral Assembly by Doublet Mechanics

    Institute of Scientific and Technical Information of China (English)

    JIN Yan-Fang; ZHANG Jue; FANG Jing; Mauro Ferra

    2004-01-01

    @@ Based on elongation and shear microstrains between the doublet particles, we present the dynamic scaling equations of plane wave propagation in a cubic-tetrahedral assembly (lattice type H4) in accordance with the formalism of doublet mechanics (DM). The relations between the micro-moduli of DM constitutions and the macroparameters of the Cosserat continuum model are obtained by a mapping process and a non-scale approximation of the DM model.

  17. Secondary instability in drift wave turbulence as a mechanism for avalanche and zonal flow formation

    International Nuclear Information System (INIS)

    We report on recent developments in the theory of secondary instability in drift-ITG turbulence. Specifically, we explore secondary instability as a mechanism for avalanche formation. A theory of radially extended streamer cell formation and self-regulation is presented. Aspects of streamer structure and dynamics are used to estimate the variance of the drift-wave induced flux. The relation between streamer cell structures and the avalanche concept is discussed, as are the implications of our results for transport modeling. (author)

  18. Diffusion Modeling of ATP Signaling Suggests a Partially Regenerative Mechanism Underlies Astrocyte Intercellular Calcium Waves

    OpenAIRE

    MacDonald, Christopher L.; Yu, Diana; Buibas, Marius; Silva, Gabriel A.

    2008-01-01

    Network signaling through astrocyte syncytiums putatively contribute to the regulation of a number of both physiological and pathophysiological processes in the mammalian central nervous system. As such, an understanding of the underlying mechanisms is critical to determining any roles played by signaling through astrocyte networks. Astrocyte signaling is primarily mediated by the propagation of intercellular calcium waves (ICW) in the sense that paracrine signaling results in measurable intr...

  19. Effects and mechanisms of gastrointestinal electrical stimulation on slow waves: a systematic canine study

    OpenAIRE

    Sun, Yan; Song, Geng-Qing; Yin, Jieyun; Lei, Yong; Chen, Jiande D.Z.

    2009-01-01

    The aims of this study were to determine optimal pacing parameters of electrical stimulation on different gut segments and to investigate effects and possible mechanisms of gastrointestinal electrical stimulation on gut slow waves. Twelve female hound-mix dogs were used in this study. A total of six pairs of electrodes were implanted on the stomach, duodenum, and ascending colon. Bilateral truncal vagotomy was performed in six of the dogs. One experiment was designed to study the effects of t...

  20. Actuating Mechanism and Design of a Cylindrical Traveling Wave Ultrasonic Motor Using Cantilever Type Composite Transducer

    OpenAIRE

    Yingxiang Liu; Weishan Chen; Junkao Liu; Shengjun Shi

    2010-01-01

    BACKGROUND: Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the ...

  1. Development of a shock wave adhesion test for composite bonds by laser pulsed and mechanical impacts

    Science.gov (United States)

    Ecault, Romain; Boustie, Michel; Touchard, Fabienne; Arrigoni, Michel; Berthe, Laurent; CNRS Collaboration

    2013-06-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bond without any mechanical contact. The resulting damage has been quantified using different method such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test since it has often fixed parameters. That is why mechanical impacts bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the tensile stresses generated by the shock wave propagation were moved toward the composite/bond interface. The observations made prove that the optimization of the technique is possible. The key parameters for the development of a bonding test using shock wave have been identified.

  2. Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios

    Science.gov (United States)

    Julian, B.R.; Foulger, G.R.

    1996-01-01

    The amplitudes of radiated seismic waves contain far more information about earthquake source mechanisms than do first-motion polarities, but amplitudes are severely distorted by the effects of heterogeneity in the Earth. This distortion can be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic phases, rather than simple amplitudes, but existing methods for inverting amplitude ratios are severely nonlinear and require computationally intensive searching methods to ensure that solutions are globally optimal. Searching methods are particularly costly if general (moment tensor) mechanisms are allowed. Efficient linear-programming methods, which do not suffer from these problems, have previously been applied to inverting polarities and wave amplitudes. We extend these methods to amplitude ratios, in which formulation on inequality constraint for an amplitude ratio takes the same mathematical form as a polarity observation. Three-component digital data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unusually well distributed on the focal sphere, cannot distinguish between diverse mechanisms, including a double couple. Amplitude ratios, on the other hand, clearly rule out the double-couple solution and require a large explosive isotropic component.

  3. The Mechanical Analysis and Experimental Study of Shock Wave Effect of Electrical Discharge under Water In Filth Cleaning

    Institute of Scientific and Technical Information of China (English)

    Deng Qilin; Zhang Lei; Zhou Jinjin

    2004-01-01

    Filth adhering to metal pipes can be cleaned by shock wave generated by electrical discharge under water. The mechanism of shock wave effect of electrical discharge under water on filth cleaning is analyzed by building a mechanical model. A metal pipe coated with cement to simulate real filth is cleaned by using electrical discharge under water. The experimental results confirm the mechanical analysis and also show the technology of electrical discharge under water is an very effective method for filth cleaning.

  4. Wave-particle duality and Bohr's complementarity principle in quantum mechanics

    International Nuclear Information System (INIS)

    Interest on Bohr's complementarity principle has recently been revived particularly because of several thought experiments and some actually performed experiments to test the validity of mutual exclusiveness of wave and particle properties. A critical review of the situation is undertaken and it is pointed out that the problem with mutual exclusiveness arises because of some vagueness in the conventional formulation. An attempt is made to remove this vagueness by connecting the origin of mutual exclusiveness to some principles of quantum mechanics. Accordingly, it becomes obvious that to contradict complementarity principle without contradicting quantum mechanics would be impossible. Some of the recent experiments are critically analysed. (author). 31 refs., 3 ills

  5. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    Full Text Available BACKGROUND: Ultrasonic motors (USM are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. CONCLUSIONS: The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  6. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  7. Research of the elastic waves generated by a pulse laser. Excitation mechanism of elastic waves and application to nondestructive testing; Pulse laser de reikishita danseiha ni kansuru kenkyu. Danseiha reiki no mechanism to hihakai kensa eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). College of Science and Engineering

    1994-07-20

    A bulk wave is generated when a pulse laser is irradiated to the material, and the characteristics of a Young`s modulus and Poisson`s ratio can be nondestructively estimated from the bulk wave. The generation mechanism of laser ultrasonic waves must be first clarified for such application. In this paper, fundamental research was conducted to study the generation mechanism of the elastic waves excited by a Q-switched Nd-YAG laser, and the generation method and characteristics of Rayleigh waves. The following result was obtained. A bulk wave is generated by the disk-like adiabatic expansion near the surface if the laser power is small when a spot-shape pulse laser was irradiated. A bulk wave is generated by the thin disk-like adiabatic expansion beneath the surface due to the thermal diffusion in the depth direction of a base material when the laser power becomes large. Moreover, a bulk wave is generated by the impact force due to abrasion and plasma when the power becomes still larger. The information on the bulk wave characteristics and Rayleigh wave was also obtained. 25 refs., 15 figs., 1 tab.

  8. Effects of Mechanical Properties and Atherosclerotic Artery Size on Biomechanical Plaque Disruption - Mouse versus Human

    OpenAIRE

    Riou, Laurent M.; Broisat, Alexis; Ghezzi, Catherine; Finet, Gérard; Rioufol, Gilles; Gharib, Ahmed M.; Pettigrew, Roderic I.; Ohayon, Jacques

    2014-01-01

    Mouse models of atherosclerosis are extensively being used to study the mechanisms of atherosclerotic plaque development and the results are frequently extrapolated to humans. However, major differences have been described between murine and human atherosclerotic lesions and the determination of similarities and differences between these species has been largely addressed recently. This study takes over and extends previous studies performed by our group and related to the biomechanical chara...

  9. Effects and mechanisms of action of sildenafil citrate in human chorionic arteries

    OpenAIRE

    Lynch Tadhg; O'Toole Daniel; Maharaj Chrisen H; Carney John; Jarman James; Higgins Brendan D; Morrison John J; Laffey John G

    2009-01-01

    Abstract Objectives Sildenafil citrate, a specific phosphodiesterase-5 inhibitor, is increasingly used for pulmonary hypertension in pregnancy. Sildenafil is also emerging as a potential candidate for the treatment of intra-uterine growth retardation and for premature labor. Its effects in the feto-placental circulation are not known. Our objectives were to determine whether phosphodiesterase-5 is present in the human feto-placental circulation, and to characterize the effects and mechanisms ...

  10. On the Quantum Mechanical Wave Function as a Link Between Cognition and the Physical World A Role for Psychology

    CERN Document Server

    Snyder, D

    2002-01-01

    A straightforward explanation of fundamental tenets of quantum mechanics concerning the wave function results in the thesis that the quantum mechanical wave function is a link between human cognition and the physical world. The reticence on the part of physicists to adopt this thesis is discussed. A comparison is made to the behaviorists' consideration of mind, and the historical roots of how the problem concerning the quantum mechanical wave function arose are discussed. The basis for an empirical demonstration that the wave function is a link between human cognition and the physical world is provided through developing an experiment using methodology from psychology and physics. Based on research in psychology and physics that relied on this methodology, it is likely that Einstein, Podolsky, and Rosen's theoretical result that mutually exclusive wave functions can simultaneously apply to the same concrete physical circumstances can be implemented on an empirical level.

  11. Wave

    OpenAIRE

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for t...

  12. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  13. Development of a shock wave adhesion test for composite bonds by pulsed laser and mechanical impacts

    Science.gov (United States)

    Ecault, R.; Boustie, M.; Touchard, F.; Arrigoni, M.; Berthe, L.

    2014-05-01

    Evaluating the bonding quality of composite material is becoming one of the main challenges faced by aeronautic industries. This work aims to the development of a technique using shock wave, which would enable to quantify the bonding mechanical quality. Laser shock experiments were carried out. This technique enables high tensile stress generation in the thickness of composite bonds. The resulting damage has been quantified using different methods such as confocal microscopy, ultrasound and cross section observation. The discrimination between a correct bond and a weak bond was possible thanks to these experiments. Nevertheless, laser sources are not well adapted for optimization of such a test because of often fixed settings. That is why mechanical impacts on bonded composites were also performed in this work. By changing the thickness of aluminum projectiles, the generated tensile stresses by the shock wave propagation were moved toward the composite/bond interface. The made observations prove that the technique optimization is possible. The key parameters for the development of a bonding test using shock waves have been identified.

  14. A mechanism of wave drag reduction in the thermal energy deposition experiments

    International Nuclear Information System (INIS)

    Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressure and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches

  15. Causal wave mechanics and the advent of complexity; 1, dynamic multivaluedness

    CERN Document Server

    Kirilyuk, A P

    1995-01-01

    Two major deviations from causality in the existing formulation of quantum mechanics, related respectively to quantum chaos and indeterminate wave reduction, are interpreted within the same universal analysis of complexity of dynamical system behaviour. The analysis involves a new paradigm for the formal description of such behaviour, the principle of dynamic multivaluedness, and the ensuing physical concept of the fundamental dynamic uncertainty. The presentation is divided into five parts. The first three parts deal with deterministic randomness in Hamiltonian quantum systems as the basic case of dynamical chaos. In the last two parts a causal solution to the problem of quantum indeterminacy and wave reduction is proposed. Part I introduces the method of the effective dynamical functions as a generalisation of the optical potential formalism. The method provides a reformulation of the Schr\\"odinger equation revealing the multivaluedness of the effective Hamiltonian, i. e. its natural splitting into many bra...

  16. [Analysis of the Mechanism of a Three-Wave Epidemic Influenza A Virus Cvcle].

    Science.gov (United States)

    Kolesin, I D; Zhitkova, E M

    2015-01-01

    A three-wave epidemic cycle caused by a new serotype agent is simulated. The mechanism of stepwise recession in a stratum of the susceptible persons is examined. A group of asymptomatic infected individuals as well as an antigen activity index, which regulates the intensity of input streams into the groups of infected patients, are introduced into the model. Morbidity rate is additionally regulated by the virulence. The model is identified according to the observations of the three-wave passage of Hong-Kong serotype (H3N2). On the basis of the simulation results it is shown that a leading role in upgrading the virulence capacity of the agent and in replenishment of the morbid group is assigned to the asymptomatic infected individuals. PMID:26349219

  17. Asymptotic continuum wave functions for two-center problem of quantum mechanics

    International Nuclear Information System (INIS)

    Asymptotic (large-r) solutions are constructed for the continuum state of the electron moving in the field of two fixed Coulomb centres. A 3C-type solution is derived for a two-center problem of quantum mechanics. When calculating approximately, the terms of order O(1/(kr)2) in Schroedinger equation and the 3C-type solution are modified. The essential feature of the modified solution is that the wave function describing the electronic motion relatively to one of the Coulomb center, also depends on the Sommerfeld parameter of another center. In the point dipole approximation, the asymptotic wave functions are obtained for slow electron scattering. It is shown that in the particular case Z1+Z2=0 this function differs from the Redmond asymptotic by a product rs, where Re{s}≥-0.5

  18. On the propagation mechanism of a detonation wave in a round tube with orifice plates

    Science.gov (United States)

    Ciccarelli, G.; Cross, M.

    2016-06-01

    This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.

  19. Neutron interferometry lessons in experimental quantum mechanics, wave-particle duality, and entanglement

    CERN Document Server

    Rauch, Helmut

    2015-01-01

    The quantum interference of de Broglie matter waves is probably one of the most startling and fundamental aspects of quantum mechanics. It continues to tax our imaginations and leads us to new experimental windows on nature. Quantum interference phenomena are vividly displayed in the wide assembly of neutron interferometry experiments, which have been carried out since the first demonstration of a perfect silicon crystal interferometer in 1974. Since the neutron experiences all four fundamental forces of nature (strong, weak, electromagnetic, and gravitational), interferometry with neutrons provides a fertile testing ground for theory and precision measurements. Many Gedanken experiments of quantum mechanics have become real due to neutron interferometry. Quantum mechanics is a part of physics where experiment and theory are inseparably intertwined. This general theme permeates the second edition of this book. It discusses more than 40 neutron interferometry experiments along with their theoretical motivation...

  20. On the interaction of wind and steep gravity wave groups using Miles' and Jeffreys' mechanisms

    Directory of Open Access Journals (Sweden)

    J. Touboul

    2008-12-01

    Full Text Available The interaction of wind and water wave groups is investigated theoretically and numerically. A steep wave train is generated by means of dispersive focusing, using both the linear theory and fully nonlinear equations. The linear theory is based on the Schrödinger equation while the nonlinear approach is developed numerically within the framework of the potential theory. The interaction between the chirped wave packet and wind is described by the Miles' mechanism. The differences between both approaches are discussed, and the influence of nonlinearity is emphasized. Furthermore, a different mechanism is considered, described by the modified Jeffreys' sheltering theory. From comparison between the two mechanisms, it is found that the persistence of the steep wave group depends on the physical model used, and is significantly increased when we use the latter mechanism.

  1. Arterial stick

    Science.gov (United States)

    ... the main arteries in the forearm (radial and ulnar arteries). The procedure is done as follows: The ... Arteries also have thicker walls and have more nerves. When the needle is inserted, there may be ...

  2. Characterization of mechanical behavior of a porcine pulmonary artery strip using a randomized uniaxial stretch and stretch-rate protocol

    Directory of Open Access Journals (Sweden)

    Criscione John C

    2008-01-01

    Full Text Available Abstract Background Much of the experimental work in soft tissue mechanics has been focused on fitting approximate relations for specific tissue types from aggregate data on multiple samples of the tissue. Such relations are needed for modeling applications and have reasonable predictability – especially given the natural variance in specimens. There is, however, much theoretical and experimental work to be done in determining constitutive behaviors for particular specimens and tissues. In so doing, it may be possible to exploit the natural variation in tissue ultrastructure – so to relate ultrastructure composition to tissue behavior. Thus, this study focuses on an experimental method for determining constitutive behaviors and illustrates the method with analysis of a porcine pulmonary artery strip. The method characterizes the elastic part of the response (implicitly in terms of stretch and the inelastic part in terms of short term stretch history (i.e., stretch-rate Ht2, longer term stretch history Ht1, and time since the start of testing T. Methods A uniaxial testing protocol with a random stretch and random stretch-rate was developed. The average stress at a particular stretch was chosen as the hyperelastic stress response, and deviation from the mean at this particular stretch is chosen as the inelastic deviation. Multivariable Linear Regression Analysis (MLRA was utilized to verify if Ht2, Ht1, and T are important factors for characterizing the inelastic deviation. For acquiring Ht2 and Ht1, an integral function type of stretch history was employed with time constants chosen from the relaxation spectrum of an identical size strip from the same tissue with the same orientation. Finally, statistical models that characterize the inelasticity were developed at various, nominal values of stretch, and their predictive capability was examined. Results Inelastic deviation from hyperelasticity was high (31% for low stretch and declined

  3. Mechanisms involved in the early increase of serotonin contraction evoked by endotoxin in rat middle cerebral arteries

    Science.gov (United States)

    Hernanz, Raquel; Alonso, María J; Briones, Ana M; Vila, Elisabet; Simonsen, Ulf; Salaices, Mercedes

    2003-01-01

    The present study investigated the mechanisms involved in the increased 5-hydroxytryptamine (5-HT) vasoconstriction observed in rat middle cerebral arteries exposed in vitro to lipopolysaccharide (LPS, 10 μg ml−1) for 1–5 h. Functional, immunohistochemical and Western blot analysis and superoxide anion measurements by ethidium fluorescence were performed. LPS exposure increased 5-HT (10 μM) vasoconstriction only during the first 4 h. In contrast to control tissue, indomethacin (10 μM), the COX-2 inhibitor NS 398 (10 μM), the TXA2/PGH2 receptor antagonist SQ 29,548 (1 μM) and the TXA2 synthase inhibitor furegrelate (1 μM) reduced 5-HT contraction of LPS-treated arteries from hour one. The iNOS inhibitor aminoguanidine (0.1 mM) increased 5-HT contraction from hour three of LPS incubation. The superoxide anion scavenger superoxide dismutase (SOD, 100 U ml−1) and the H2O2 scavenger catalase (1000 U ml−1), as well as the respective inhibitors of NAD(P)H oxidase and xanthine oxidase, apocynin (0.3 mM) and allopurinol (0.3 mM), reduced 5-HT contraction after LPS incubation. LPS induced an increase in superoxide anion levels that was abolished by PEG-SOD. Subthreshold concentrations of the TXA2 analogue U 46619, xanthine/xanthine oxidase and H2O2 potentiated, whereas those of sodium nitroprusside inhibited, the 5-HT contraction. COX-2 expression was increased at 1 and 5 h of LPS incubation, while that of iNOS, Cu/Zn-SOD and Mn-SOD was only increased after 5 h. All the three vascular layers expressed COX-2 and Cu/Zn-SOD. iNOS expression was detected in the endothelium and adventitia after LPS. In conclusion, increased production of TXA2 from COX-2, superoxide anion and H2O2 enhanced vasoconstriction to 5-HT during the first few hours of LPS exposure; iNOS and SOD expression counteracted that increase at 5 h. These changes can contribute to the disturbance of cerebral blood flow in endotoxic shock. PMID:14534151

  4. Ambulatory arterial stiffness index in chronic kidney disease stage 2-5. Reproducibility and relationship with pulse wave parameters and kidney function

    DEFF Research Database (Denmark)

    Boesby, Lene; Thijs, Lutgarde; Elung-Jensen, Thomas;

    2012-01-01

    Arterial stiffness contributes to the increased cardiovascular risk in patients with chronic kidney disease (CKD). Reproducible and easily obtainable indices of arterial stiffness are needed in order to monitor therapeutic strategies. The ambulatory arterial stiffness index (AASI) has been proposed...... as such a marker. The present study investigated the day-to-day reproducibility of AASI in CKD stage 2-5 and its relationship with other markers of arterial stiffness as well as with kidney function....

  5. Mechanical design and analysis for a low beta squeezed half-wave resonator

    CERN Document Server

    He, Shoubo; Zhang, Shenghu; Yue, Weiming; Zhang, Cong; Wang, Zhijun; Wang, Ruoxu; Xu, Mengxin; Huang, Shichun; Huang, Yulu; Jiang, Tiancai; Wang, Fengfeng; Zhang, Shengxue; Zhao, Hongwei

    2013-01-01

    A superconducting half-wave resonator (HWR) of frequency=162.5 MHz and {\\beta}=0.09 has been developed at Institute of Modern Physics. Mechanical stability of the low beta HWR cavity is a big challenge in cavity design and optimization. The mechanical deformations of a radio frequency superconducting cavity could be a source of instability, both in continues wave(CW) operation or in pulsed mode. Generally, the lower beta cavities have stronger Lorentz force detuning than that of the higher beta cavities. In this paper, a basic design consideration in the stiffening structure for the detuning effect caused by helium pressure and Lorentz force has been presented. The mechanical modal analysis has been investigated with finite element method(FEM). Based on these considerations, a new stiffening structure has been promoted for the HWR cavity. The computation results concerning the frequency shift show that the low beta HWR cavity with new stiffening structure has low frequency sensitivity coefficient, Lorentz for...

  6. The attenuation mechanism of S-waves in the source zone of the 1999 Chamoli earthquake

    OpenAIRE

    Mukhopadhyay, S.; Department of Earth Sciences, IIT Roorkee, Roorkee 247667, India; Kumar, A.; Department of Earth Sciences, IIT Roorkee, Roorkee 247667, India; Garg, A.; Department of Earth Sciences, IIT Roorkee, Roorkee 247667, India; Del Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Kayal, J. R.; School of Oceanographic Studies, Jadavpur University, Kolkata 700016, India

    2014-01-01

    In the present study the attenuation mechanism of seismic wave energy in and around the source area of the Chamoli earthquake of 29th March 1999 is estimated using the aftershock data. Most of the analyzed events are from the vicinity of the Main Central Thrust (MCT), which is a well-defined tectonic discontinuity in the Himalayas. Separation of intrinsic (Q 1 i ) and scattering (Q 1 s ) attenuation coefficient is done over the frequencies 1, 2, 4, 8 and 16 Hz using Multiple...

  7. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, S.; Bourquin, R. [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe, 25000, Besançon (France)

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  8. Relativistic quantum mechanical spin-1 wave equation in 2+1 dimensional spacetime

    CERN Document Server

    Dernek, Mustafa; Sucu, Yusuf; Unal, Nuri

    2016-01-01

    In the study, we introduce a relativistic quantum mechanical wave equation of the spin-1 particle as an excited state of the zitterbewegung and show that it is consistent with the 2+1 dimensional Proca theory. At the same time, we see that this equation has two eigenstates, particle and antiparticle states or negative and positive energy eigenstates, respectively, in the rest frame and the spin-1 matrices satisfy $SO(2,1)$ spin algebra. As practical applications, we derive the exact solutions of the equation in the presence of a constant magnetic field and a curved spacetime. From these solutions, we construct the current components of the spin-1 particle.

  9. Critical Assessment of Wave-Particle Complementarity via Derivation from Quantum Mechanics

    CERN Document Server

    Herbut, Fedor

    2009-01-01

    After introducing sketchily Bohr's wave-particle complementarity principle in his own words, a derivation of an extended form of the principle from standard quantum mechanics is performed. Reality-evaluation of each step is given. The derived theory is applied to simple examples and the extended entities are illustrated in a thought experiment. Assessment of the approach of Bohr and of this article is taken up again with a rather negative conclusion as far as reflecting reality is concerned. The paper ends with selected incisive opinions on Bohr's dogmatic attitude and with some comments by the present author.

  10. Ion cyclotron heating mechanism of fast magnetosonic wave in the TNT-A tokamak

    International Nuclear Information System (INIS)

    Ion heating mechanism of fast magnetosonic wave in the ion cyclotron range of frequency (ICRF) has been studied in the TNT-A tokamak. Ion temperature measurements have been made with mass separated neutral particle analyser. The effects of the fundamental proton cyclotron resonance layer (ICR) and the two-ion hybrid resonance layer (HBR) on ion heating are observed. In the case of hydrogen minority (ICR and HBR in the plasma), where the ratio of hydrogen-to-deuterium concentration, nH/nD, is 0.05, the increase in hydrogen temperature is larger than that in deuterium, and most of RF power is absorbed by hydrogen. (author)

  11. Self-consistent plasma heating and acceleration by strong magnetosonic waves for theta = 90 0. Part I: Basic mechanisms

    International Nuclear Information System (INIS)

    The behavior of strong magnetosonic waves propagating perpendicular to a static field B0 is investigated within the frequency range ω/sub c/i0 results; the electrons exhibit only poor heating associated with their adiabatic compression. The dynamics of both particle species, the consequences of the wave--particle energy transfer and the particle viscosities, are studied in detail. Competitive and self-consistent effects such as space-charge effects, wave overtaking, ion trapping, and wave damping are investigated and compared with previous models; the mechanisms by which these various phenomena interact on each other are analyzed. Characteristics of nonstochastic and stochastic ion heating are also discussed. Our computations show that if sufficient intensity is reached, one is not constrained to use lower-hybrid waves or cyclotron harmonic waves to heat a plasma efficiently and that any frequency below ω/sub lh/ can be used

  12. Picometer stable scan mechanism for gravitational wave detection in space: LISA PAAM

    Science.gov (United States)

    Pijnenburg, Joep; Rijnveld, Niek; Sheard, Benjamin

    Picometer stable scan mechanism for gravitational wave detection in space: LISA PAAM Detection and observation of gravitational waves requires extreme stability in the frequency range 1E-4 to 1 Hz. The Laser Interferometer Space Antenna (LISA) mission will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. Due to orbit evolution and time delay in the interferometer arms, the direction of transmitted light changes. To solve this problem, an extremely stable Point Ahead Angle Mechanism (PAAM) was designed, built and tested. The PAAM concept is based on a rotatable mirror. The critical requirements are the contri-bution to the optical path delay (less than 1.4 pm / rt Hz) and the angular jitter (less than 8 nrad / rt Hz). To meet these requirements, the PAAM is designed for extreme mechanical and thermal stability. Extreme mechanical stability is achieved by manufacturing a monolithical Haberland hinge mechanism out of Ti-6Al-4V, through high precision wire erosion. Cross-talk is minimized by separation of the mirror rotation and actuation by a strut, resulting in a min-imum of parasitical forces. Extreme thermal stability is realized by placing the thermal center on the surface of the mirror. Because of piezo actuator noise and leakage, the PAAM has to be controlled in closed-loop. To meet the requirements in the low frequencies, an active target charge integration capacitance-to-digital converter is used. Interferometric measurements with a triangular resonant cavity in high vacuum proved that the PAAM meets the requirements. The critical component in the performance is the low frequency capacitive sensor noise.

  13. Mechanical to electrical energy conversion by shock wave effect in a ferro-electric material

    International Nuclear Information System (INIS)

    The shock wave propagation through a polarized ferroelectric ceramic changes or destroys remanent polarization and this way allows to get, in adequate electrical circuit, a volume energy of about 2 J/ cm3, during a time of the order of 0,4 μs; which corresponds to a peak - power of 5 MW/cm3. The present report has for objective to specify the optimum working conditions of this mechanical to electrical conversion from ceramic characteristics, load circuit connected to its electrodes and from the characteristics of the pressure wave which travels through the materials which constitute the converter. After a few lines about the ferroelectric materials and about the shock waves, the shock generator, the used setting and measures are described. A mathematical model which exhibits the transducer operation and a computation of the allowable electrical energy are given. For ending, the released electrical energies by industrial and laboratory ceramics are compared to the estimated computations and a thermodynamical balance is carried out. (author)

  14. Wave propagation visualization in an experimental model for a control rod drive mechanism assembly

    International Nuclear Information System (INIS)

    Highlights: → We fabricate a full-scale mock-up of the control rod drive mechanism (CRDM) assembly in the upper reactor head of the nuclear power plant. → An ultrasonic propagation imaging method using a scanning laser ultrasonic generator is proposed to visualize and simulate ultrasonic wave propagation around the CRDM assembly. → The ultrasonic source location and frequency are simulated by changing the sensor location and the band pass-filtering zone. → The ultrasonic propagation patterns before and after cracks in the weld and nozzle of the CRDM assembly are analyzed. - Abstract: Nondestructive inspection techniques such as ultrasonic testing, eddy current testing, and visual testing are being developed to detect primary water stress corrosion cracks in control rod drive mechanism (CRDM) assemblies of nuclear power plants. A unit CRDM assembly consists of a reactor upper head including cladding, a penetration nozzle, and J-groove dissimilar metal welds with buttering. In this study, we fabricated a full-scale CRDM assembly mock-up. An ultrasonic propagation imaging (UPI) method using a scanning laser ultrasonic generator is proposed to visualize and simulate ultrasonic wave propagation around the thick and complex CRDM assembly. First, the proposed laser UPI system was validated for a simple aluminium plate by comparing the ultrasonic wave propagation movie (UWPM) obtained using the system with numerical simulation results reported in the literature. Lamb wave mode identification and damage detectability, depending on the ultrasonic frequency, were also included in the UWPM analysis. A CRDM assembly mock-up was fabricated in full-size and its vertical cross section was scanned using the laser UPI system to investigate the propagation characteristics of the longitudinal and Rayleigh waves in the complex structure. The ultrasonic source location and frequency were easily simulated by changing the sensor location and the band pass filtering zone

  15. Inhibition of Orai1-mediated Ca(2+) entry is a key mechanism of the antiproliferative action of sirolimus in human arterial smooth muscle.

    Science.gov (United States)

    König, Sarah; Browne, Sara; Doleschal, Bernhard; Schernthaner, Michaela; Poteser, Michael; Mächler, Heinrich; Wittchow, Eric; Braune, Marlen; Muik, Martin; Romanin, Christoph; Groschner, Klaus

    2013-12-01

    Sirolimus (rapamycin) is used in drug-eluting stent strategies and proved clearly superior in this application compared with other immunomodulators such as pimecrolimus. The molecular basis of this action of sirolimus in the vascular system is still incompletely understood. Measurements of cell proliferation in human coronary artery smooth muscle cells (hCASM) demonstrated a higher antiproliferative activity of sirolimus compared with pimecrolimus. Although sirolimus lacks inhibitory effects on calcineurin, nuclear factor of activated T-cell activation in hCASM was suppressed to a similar extent by both drugs at 10 μM. Sirolimus, but not pimecrolimus, inhibited agonist-induced and store-operated Ca(2+) entry as well as cAMP response element binding protein (CREB) phosphorylation in human arterial smooth muscle, suggesting the existence of an as-yet unrecognized inhibitory effect of sirolimus on Ca(2+) signaling and Ca(2+)-dependent gene transcription. Electrophysiological experiments revealed that only sirolimus but not pimecrolimus significantly blocked the classical stromal interaction molecule/Orai-mediated, store-operated Ca(2+) current reconstituted in human embryonic kidney cells (HEK293). A link between Orai function and proliferation was confirmed by dominant-negative knockout of Orai in hCASM. Analysis of the effects of sirolimus on cell proliferation and CREB activation in an in vitro model of arterial intervention using human aorta corroborated the ability of sirolimus to suppress stent implantation-induced CREB activation in human arteries. We suggest inhibition of store-operated Ca(2+) entry based on Orai channels and the resulting suppression of Ca(2+) transcription coupling as a key mechanism underlying the antiproliferative activity of sirolimus in human arteries. This mechanism of action is specific for sirolimus and not a general feature of drugs interacting with FK506-binding proteins. PMID:24056904

  16. Involvement of K channels and calcium-independent mechanisms in hydrogen sulfide-induced relaxation of rat mesenteric small arteries

    DEFF Research Database (Denmark)

    Hedegaard, Elise R; Gouliaev, Anja; Winther, Anna K;

    2015-01-01

    that free [H2S] after addition to closed tubes of NaSH, Na2S, and GYY4137 were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free [H2S......] than NaSH and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 μM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaSH lowered calcium and caused...... relaxation of norepinephrine-contracted arteries, while high extracellular potassium reduced NaSH relaxation without corresponding calcium changes. In norepinephrine-contracted arteries, NaSH (1 mM) lowered phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1...

  17. Two step mechanism for Moreton wave excitations in a blast-wave scenario: the 2006 December 06 case study

    Science.gov (United States)

    Krause, G.; Cécere, M.; Francile, C.; Costa, A.; Elaskar, S.; Schneiter, M.

    2015-11-01

    We examine the capability of a blast-wave scenario - associated with a coronal flare or to the expansion of CME flanks - to reproduce a chromospheric Moreton phenomenon. We also simulate the Moreton event of 2006 December 06, considering both the corona and the chromosphere. To obtain a sufficiently strong coronal shock - able to generate a detectable chromospheric Moreton wave - a relatively low magnetic field intensity is required, in comparison with the active region values. Employing reasonable coronal constraints, we show that a flare ignited blast-wave or the expansion of the CME flanks emulated as an instantaneous or a temporal piston model, respectively, are capable to reproduce the observations.

  18. The ent-15α-Acetoxykaur-16-en-19-oic Acid Relaxes Rat Artery Mesenteric Superior via Endothelium-Dependent and Endothelium-Independent Mechanisms

    OpenAIRE

    Êurica Adélia Nogueira Ribeiro; Edla de Azevedo Herculano; Cintia Danieli Ferreira da Costa; Fabiola Fialho Furtado; Emídio Vasconcelos Leitão da-Cunha; José Maria Barbosa-Filho; Marcelo Sobral da Silva; Isac Almeida de Medeiros

    2012-01-01

    The objective of the study was to investigate the mechanism of the relaxant activity of the ent-15 α -acetoxykaur-16-en-19-oic acid (KA-acetoxy). In rat mesenteric artery rings, KA-acetoxy induced a concentration-dependent relaxation in vessels precontracted with phenylephrine. In the absence of endothelium, the vasorelaxation was significantly shifted to the right without reduction of the maximum effect. Endothelium-dependent relaxation was significantly attenuated by pretreatment with L-NAM...

  19. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    Science.gov (United States)

    Ambroziński, Łukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-07-01

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  20. Cellular polarization: Interaction between extrinsic bounded noises and the wave-pinning mechanism

    Science.gov (United States)

    de Franciscis, Sebastiano; d'Onofrio, Alberto

    2013-09-01

    Cell polarization (cued or uncued) is a fundamental mechanism in cell biology. As an alternative to the classical Turing bifurcation, it has been proposed that the onset of cell polarity might arise by means of the well-known phenomenon of wave-pinning [Gamba , Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.0503974102 102, 16927 (2005)]. A particularly simple and elegant deterministic model of cell polarization based on the wave-pinning mechanism has been proposed by Edelstein-Keshet and coworkers [Biophys. J.BIOJAU0006-349510.1529/biophysj.107.120824 94, 3684 (2008)]. This model consists of a small biomolecular network where an active membrane-bound factor interconverts into its inactive form that freely diffuses in the cell cytosol. However, biomolecular networks do communicate with other networks as well as with the external world. Thus, their dynamics must be considered as perturbed by extrinsic noises. These noises may have both a spatial and a temporal correlation, and in any case they must be bounded to preserve the biological meaningfulness of the perturbed parameters. Here we numerically show that the inclusion of external spatiotemporal bounded parametric perturbations in the above wave-pinning-based model of cellular polarization may sometimes destroy the polarized state. The polarization loss depends on both the extent of temporal and spatial correlations and on the kind of noise employed. For example, an increase of the spatial correlation of the noise induces an increase of the probability of cell polarization. However, if the noise is spatially homogeneous then the polarization is lost in the majority of cases. These phenomena are independent of the type of noise. Conversely, an increase of the temporal autocorrelation of the noise induces an effect that depends on the model of noise.

  1. Comparison of effects of cromakalim and pinacidil on mechanical activity and 86Rb efflux in dog coronary arteries

    International Nuclear Information System (INIS)

    Effects of two K+ channel openers, cromakalim and pinacidil, on mechanical activity and on 86Rb efflux were compared in strips of dog coronary arteries. Cromakalim and pinacidil produced the relaxation in 20.9 mM K(+)-contracted strips with a pD2 of 6.53 and 5.95, respectively. In 65.9 mM K(+)-contracted strips, high concentrations of pinacidil, but not cromakalim, produced relaxation. Ca+(+)-induced contractions in 80 mM K(+)-depolarized strips were also inhibited by pinacidil but not by cromakalim. Glibenclamide, a blocker of ATP-regulated K+ (KATP) channels, competitively antagonized the relaxant responses to cromakalim with a pA2 value of 7.62. However, the antagonism by glibenclamide of the relaxant responses to pinacidil was not a typical competitive type, suggesting the contribution of other effects than the KATP channel opening activity to the relaxant effects of pinacidil. In resting strips preloaded with 86Rb, cromakalim and pinacidil increased the basal 86Rb efflux in a dose-dependent manner. The increase in the 86Rb efflux induced by cromakalim was greater than that by pinacidil. When the effects of cromakalim and pinacidil on the 86Rb efflux were determined in the 20.9 or 65.9 mM K(+)-contracted strips, both drugs increased the 86Rb efflux. Under the same conditions nifedipine, a Ca(+)+ channel blocker, produced the relaxation that is accompanied by the decrease in 86Rb efflux. The increase in the 86Rb efflux induced by cromakalim was much greater than that by pinacidil

  2. Dependence of P-wave dispersion on mean arterial pressure as an independent hemodynamic variable in school children

    Directory of Open Access Journals (Sweden)

    Elibet Chávez González

    2013-09-01

    Full Text Available Introduction:The relationship between diastolic dysfunction and P-wave dispersion (PWD in the electrocardiogram has been studied for some time. In this regard, echocardiography is emerging as a diagnostic tool to improve risk stratification for mild hypertension.Objective:To determine the dependence of PWD on the electrocardiogram and on echocardiographic variables in a pediatric population.Methods: Five hundred and fifteen children from three elementary schools were studiedfrom a total of 565 children. Those whose parents did not want them to take part in the study, as well as those with known congenital diseases, were excluded. Tests including 12-lead surface ECGs and 4 blood pressure (BP measurements were performed. Maximum and minimum P-values were measured, and the PWD on the electrocardiogram was calculated. Echocardiography for structural measurements and the pulsed Doppler of mitral flow were also performed.Results: A significant correlation in statistical variables was found between PWD and mean BP for pre-hypertensive and hypertensive children, i.e., r= 0.32, p <0.01 and r= 0.33, p <0.01, respectively. There was a significant correlation found between PWD and the left atrial area (r= 0.45 and p <0.01.Conclusions: We highlight the dependency between PWD, the electrocardiogram and  mean  blood pressure. We also draw attention to the dependence of PWD on the left atrial area.  This result provides an explanation for earlier changes in atrial electrophysiological and hemodynamic characteristics in pediatric patients.

  3. Hamilton-Jacobi approach to photon wave mechanics: near-field aspects.

    Science.gov (United States)

    Keller, O

    2008-02-01

    After having briefly reviewed the Hamilton-Jacobi theory of classical point-particle mechanics, its extension to the quantum regime and the formal identity between the Hamilton-Jacobi equation for Hamilton's characteristic function and the eikonal equation of geometrical optics, an eikonal theory for free photons is established. The space-time dynamics of the photon is described on the basis of the six-component Riemann-Silberstein energy wave function. Form-identical eikonal equations are obtained for the positive and negative helicity dynamics. Microscopic response theory is used to describe the linear photon-matter interaction. In the presence of matter the free-photon concept is replaced by a quasi-photon concept, and there is a quasi-photon for each of the two helicity states. After having established integro-differential equations for the wave functions of the two quasi-photons, the eikonal conditions for the quasi-photons are determined. It appears that the eikonal condition contains complicated space integrals of the gradient of the eikonal over volumes of near-field domain size. In these space integrals the dynamics of the electrons (matter particles) appears via transverse transition current densities between pairs of many-body states. Generalized microscopic polarization and magnetization fields are introduced to establish the connection between the quasi-photon and macroscopic eikonal theories. PMID:18304094

  4. Phase synchronization in the cochlea at transition from mechanical waves to electrical spikes

    Science.gov (United States)

    Bader, Rolf

    2015-10-01

    Measured auditory nervous spikes often show synchronization, phase-locking, or entrainment (P. Cariani, Neural Plast. 6(4), 142-172 (1999) and Kumaresana et al., J. Acoust. Soc. Am. 133(6), 4290-4310 (2013). Physiologically synchronization is found in the anteroventral cochlear nucleus (Joris et al., J. Neurophysiol. 71(3), 1022-1036 (1994)) or in the trapezoid body also between critical bandwidths (Louage et al., Auditory Signal Processing: Physiology, Psychoacoustics, and Models (Springer, New York, 2004), pp. 100-106). The effect is an enhancement of pitch detection, spatial localization, or speech intelligibility. To investigate the presence of synchronization already in the cochlea, in the present paper, a finite-difference time-domain model of the cochlea is implemented with conditions for spike excitation caused by mechanical basilar membrane displacement. This model shows synchronization already in the cochlea at the transition from mechanical waves to nerve spike excitation. Using a sound as model input consisting of ten harmonic overtones with random phase relations, the output spikes are strongly phase aligned after this transition. When using a two-sinusoidal complex as input, and altering the phase relations between the two sinusoidals, the output spikes show the higher sinusoidal shifting the phase of the lower one in its direction in a systematic way. Therefore, already during the transition from mechanical to electrical excitation within the cochlea, synchronization appears to be improving perception of pitch, speech, or localization.

  5. A ``local observables'' method for wave mechanics applied to atomic hydrogen

    Science.gov (United States)

    Bowman, Peter J.

    2008-12-01

    An alternative method of deriving the values of the observables of atomic systems is presented. Rather than using operators and eigenvalues the local variables method uses the continuity equation together with current densities derived from wave functions that are solutions of the Dirac or Pauli equation. The method is applied to atomic hydrogen using the usual language of quantum mechanics rather than that of geometric algebra with which the method is often associated. The picture of the atom that emerges is one in which the electron density as a whole is rotating about a central axis. The results challenge some assumptions of conventional quantum mechanics. Electron spin is shown to be a property of the dynamical motion of the electron and not an intrinsic property of the electron, the ground state of hydrogen is shown to have an orbital angular momentum of ℏ, and excited states are shown to have angular momenta that are different from the eigenvalues of the usual quantum mechanical operators. The uncertainty relations are found not to be applicable to the orthogonal components of the angular momentum. No double electron spin gyromagnetic ratio is required to account for the observed magnetic moments, and the behavior of the atom in a magnetic field is described entirely in kinetic terms.

  6. Shock Wave Boundary Layer Interaction Mechanism on a Double Wedge Geometry

    Science.gov (United States)

    Celik, Bayram; Barada, Mohammad Adel El Hajj Ali; Durna, Ahmet Selim

    2015-11-01

    A hypersonic test series by Swantek & Austin report complex shock wave boundary layer interaction mechanisms and unsteady surface heat flux from a double wedge geometry in a low enthalpy Mach 7 flow. In order to understand the physics of the flow and the heat transfer, we study the flow computationally and compare the results for the double wedge geometries, whose second angle is higher and lower than the maximum deflection angle at Mach 7. Apart from the numbers of comprehensive computational studies on the subject available in open literature, our study aims to describe the flow physics by taking the influence of both boundary layers that are formed on the two walls of the wedge into account. In addition to describing the flow and heat transfer mechanisms, we investigate the time for the flows to reach steady state. We evaluate the interaction mechanisms in term of instant and time average surface heat flux distributions. We perform all computations using a finite volume based compressible Navier-Stokes solver, rhoCentralFoam, which is one of the several compressible flow solvers of an open source software, openFOAM.

  7. Reduction in visceral adiposity is highly related to improvement in vascular endothelial dysfunction among obese women: an assessment of endothelial function by radial artery pulse wave analysis.

    Science.gov (United States)

    Park, Si-Hoon; Shim, Kyung-Won

    2005-08-31

    Because obesity is frequently complicated by other cardiovascular risk factors, the impact of a reduction in visceral adiposity on vascular endothelial dysfunction (VED) in obese patients is difficult to determine. In the present study, we evaluated the impact of a reduction in visceral adiposity on VED in obese women. Thirty-six premenopausal obese women (BMI >/= 25 kg/m2) without complications were enrolled in the study. VED was evaluated by determining the augmentation index (AIx) from radial artery pulse waves obtained by applanation tonometry. Changes in AIx in response to nitroglycerin- induced endothelium-independent vasodilatation (DeltaAIx-NTG) and in response to salbutamol administration (DeltaAIx-Salb) were determined before and after weight reduction. After a 12-week weight reduction program, the average weight loss was 7.96 +/- 3.47 kg, with losses of 21.88 +/- 20.39 cm2 in visceral fat areas (p analysis combined with provocative pharmacological testing demonstrated preserved endothelium-independent vasodilation in healthy premenopausal obese women (DeltaAIx-NTG: 31.36 +/- 9.80% before weight reduction vs. 28.25 +/- 11.21% after weight reduction, p > 0.1) and an improvement in endothelial-dependent vasodilation following weight reduction (DeltaAIx-Salb: 10.03 +/- 6.49% before weight reduction vs. 19.33 +/- 9.28% after reduction, p VED. This finding suggests that reduction of visceral adiposity may be as important as the control of other major risk factors in the prevention of atherosclerosis in obese women. PMID:16127776

  8. Highly eccentric Kozai mechanism and gravitational-wave observation for neutron-star binaries.

    Science.gov (United States)

    Seto, Naoki

    2013-08-01

    The Kozai mechanism for a hierarchical triple system could reduce the merger time of inner eccentric binary emitting gravitational waves (GWs) and has been qualitatively explained with the secular theory that is derived by averaging short-term orbital revolutions. However, with the secular theory, the minimum value of the inner pericenter distance could be excessively limited by the averaging operation. Compared with traditional predictions, the actual evolution of an eccentric inner binary could be accompanied by (i) a higher characteristic frequency of the pulselike GWs around its pericenter passages and (ii) a larger residual eccentricity at its final inspiral phase. These findings would be important for GW astronomy with the forthcoming advanced detectors. PMID:23971554

  9. ANALYSIS AND SIMULATION ON THE MECHANISM OF A NOVEL DUAL-WAVE SHOCK TEST MACHINE

    Institute of Scientific and Technical Information of China (English)

    WANG Gongxian; ZHANG Zhiyi; CHU Deying; SHEN Rongying

    2008-01-01

    For qualifying the anti-shock performance of shipboard equipments and simulating actual underwater explosion environments, a novel dual-wave shock test machine is proposed to increase testing capability of shock test machines as well as to meet certain shock testing specification. The machine can generate a double-pulse acceleration shock for test articles according to specification defined in BV043/85. On the basis of the impact theory, a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism which involves conversion of gas potential energy and dissipation of kinetic energy. Simulation results have demonstrated that the machine can produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain, which sets a theoretical base for the construction of the proposed machine.

  10. On the extension of solutions of the real to complex KdV equation and a mechanism for the construction of rogue waves

    Science.gov (United States)

    Abdel-Gawad, H. I.; Tantawy, M.; Abo Elkhair, R. E.

    2016-07-01

    Rogue waves are more precisely defined as waves whose height is more than twice the significant wave height. This remarkable height was measured (by Draupner in 1995). Thus, the need for constructing a mechanism for the rogue waves is of great utility. This motivated us to suggest a mechanism, in this work, that rogue waves may be constructed via nonlinear interactions of solitons and periodic waves. This suggestion is consolidated here, in an example, by studying the behavior of solutions of the complex (KdV). This is done here by the extending the solutions of its real version.

  11. Percutaneous mechanical atherectomy for treatment of peripheral arterial occlusive disease; Perkutane mechanische Atherektomie zur Behandlung der peripheren arteriellen Verschlusskrankheit

    Energy Technology Data Exchange (ETDEWEB)

    Buecker, A.; Minko, P.; Massmann, A.; Katoh, M. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Radiologie, Homburg (Germany)

    2010-01-15

    Peripheral arterial occlusive disease (PAOD) is still an extremely important politico-economic disease. Diverse treatment procedures exist but the pillars of therapy are changes in lifestyle, such as nicotine abstinence and walking exercise as well as drug therapy. Further therapy options are considered after conventional procedures have been exhausted. These further options consist of improvement of the blood supply by surgical or minimally invasive procedures. The latter therapy options include balloon dilatation and stenting as the most widely used techniques. More recent techniques also used are cryoplasty, laser angioplasty, drug-coated stents or balloons as well as brachytherapy or atherectomy, whereby this list makes no claims to completeness. The multitude of different treatment methods emphatically underlines the fact that no resounding success can be achieved with one single method. The long-term results of both balloon dilatation and stenting techniques show a need for improvement, which elicited the search for additional methods for the treatment of PAOD. Atherectomy represents such an alternative method for treatment of PAOD. Basically, the term atherectomy means the removal of atheroma tissue. For percutaneous atherectomy, in contrast to surgical procedures, it is not necessary to create surgically access to the vessel but accomplishes the atherectomy by means of dedicated systems via a minimally invasive access. There are two basic forms of mechanical atherectomy: directional and rotational systems. (orig.) [German] Die periphere arterielle Verschlusskrankheit (PAVK) stellt nach wie vor eine volkswirtschaftlich ueberaus bedeutsame Erkrankung dar. Diverse Behandlungsverfahren existieren; Lebensstilaenderungen wie Nikotinabstinenz und Gehtraining und auch medikamentoese Therapien machen einen Pfeiler der Therapie aus. Weitere Therapieansaetze kommen nach Ausreizen der konventionellen Verfahren zur Anwendung. Sie bestehen in der Verbesserung der

  12. Characterization of mechanical and geometrical properties of a tube with axial and circumferential guided waves.

    Science.gov (United States)

    Yeh, Cheng-Hung; Yang, Che-Hua

    2011-05-01

    Guided waves propagating in cylindrical tubes are frequently applied for the characterization of material or geometrical properties of tubes. In a tube, guided waves can propagate in the axial direction and called axial guided waves, or in the circumferential direction called circumferential guided waves. Dispersion spectra for the axial and circumferential guided waves share some common behaviors and however exhibit some particular behaviors of their own. This study provides an investigation with theoretical modeling, experimental measurements, and a simplex-based inversion procedure to explore the similarity and difference between the axial guided waves and circumferential guided waves, aiming at providing useful information while axial and circumferential guided waves are applied in the area of material characterization. The sensitivity to the radius curvature for the circumferential guided waves dispersion spectra is a major point that makes circumferential guided waves different from axial guided waves. For the purpose of material characterization, both axial and circumferential guided waves are able to extract an elastic moduli and wall-thickness information from the dispersion spectra, however, radius information can only be extracted from the circumferential guided waves spectra. PMID:21211810

  13. Letters on wave mechanics correspondence with H. A. Lorentz, Max Planck, and Erwin Schrödinger

    CERN Document Server

    Einstein, Albert

    2011-01-01

    A lively collection of Einstein's groundbreaking scientific correspondence on modern physics with Schrödinger, Planck, and LorentzImagine getting four of the greatest minds of modern physics in a room together to explain and debate the theories and innovations of their day. This is the fascinating experience of reading Letters on Wave Mechanics, the correspondence between Erwin Schrödinger and Max Planck, H.A. Lorentz, and Albert Einstein. These remarkable letters illuminate not only the basis of Schrödinger's work in wave mechanics, but also how great scientific minds debated and challenged

  14. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms

    Science.gov (United States)

    Wei, Hong-Xing; Li, Yong-Dong; Xiong, Tao; Guan, Yong

    2016-09-01

    The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained.

  15. Causal wave mechanics and the advent of complexity; 4, dynamical origin of quantum indeterminacy and wave reduction

    CERN Document Server

    Kirilyuk, A P

    1995-01-01

    The concept of the fundamental dynamic uncertainty (or the fundamental multivaluedness of dynamical functions) developed in parts I-III of this work and used to re-establish the correspondence principle for chaotic Hamiltonian systems provides also a causal description of the basic properties of quantum measurement, - quantum indeterminacy and wave reduction. The modified Schrödinger formalism involving multivalued effective dynamical functions reveals the dynamical origin of quantum indeterminacy as the intrinsic nonlinear instability in the combined quantum system of the measured object interacting with the instrument. As a result of this instability, the originally wide measured wave dynamically "shrinks" around a random accessible point of the combined configurational space loosing its coherence with respect to other possibilities. We do not use any assumptions on particular "classical", "macroscopic", "stochastic", etc. nature of the instrument or environment: full quantum indeterminacy dynamically appe...

  16. The Generation and Propagation of Arterial Murmurs from a Stenosed Artery: A Computational Study

    Science.gov (United States)

    Zhu, Chi; Seo, Jung-Hee; Bakhshaee, Hani; Mittal, Rajat

    2015-11-01

    Cardiac auscultation - the procedure of diagnosing cardiovascular conditions using the stethoscope - has been used effectively for over a hundred years but still, the flow mechanism(s) responsible for the generation of these murmurs, as well as the effect of intervening tissue on the propagation of these murmurs, is not well understood. In this study, a one-way coupled, hybrid approach is used to investigate the propagation of murmurs generated from the flow in a stenosed artery. Specifically, the flow in the modeled artery is solved by an incompressible Navier-Stokes solver with the immersed-boundary method. The structural wave propagation in the tissue is resolved by a high-order, linear viscoelastic wave solver, and a mathematical decomposition is applied to separate the compressional and shear component of the acoustic wave propagating through the tissue. The simulations suggest, somewhat counterintuitively, that the shear wave contributes a significant component to the signal picked up by a stethoscope, and that this component carries much of the information that characterizes the source of the murmur. The implications of this for cardiac auscultation and further modeling of hemoacoustics are discussed. The effect of the stenosis severity and the flow pulsatility will also be investigated. The authors would like to acknowledge the SCH for funding this project.

  17. Arterial Ageing

    OpenAIRE

    Lee, Seung-Jun; Park, Sung-Ha

    2013-01-01

    Arterial ageing is characterized by age associated degeneration and sclerosis of the media layer of the large arteries. However, besides ageing, clinical conditions, which enhance oxidative stress and inflammation act to accelerate the degree of arterial ageing. In this review, we summarized the pathophysiology and contributing factors that accelerate arterial ageing. Among them, we focused on hypertension, the renin-angiotensin-aldosterone system and vascular inflammation which are modifiabl...

  18. Supercritical super-Brownian motion with a general branching mechanism and travelling waves

    CERN Document Server

    Kyprianou, A E; Murillo-Salas, A; Ren, Y -X

    2010-01-01

    We consider the classical problem of existence, uniqueness and asymptotics of monotone solutions to the travelling wave equation associated to the parabolic semi-group equation of a super-Brownian motion with a general branching mechanism. Whilst we are strongly guided by the probabilistic reasoning of Kyprianou (2004) for branching Brownian motion, the current paper offers a number of new insights. Our analysis incorporates the role of Seneta-Heyde norming which, in the current setting, draws on classical work of Grey (1974). We give a pathwise explanation of Evans' immortal particle picture (the spine decomposition) which uses the Dynkin-Kuznetsov N-measure as a key ingredient. Moreover, in the spirit of Neveu's stopping lines we make repeated use of Dynkin's exit measures. Additional complications arise from the general nature of the branching mechanism. As a consequence of the analysis we also offer an exact X(log X)^2 moment dichotomy for the almost sure convergence of the so-called derivative martingale...

  19. MODELING THE ASIAN TSUNAMI EVOLUTION AND PROPAGATION WITH A NEW GENERATION MECHANISM AND A NON-LINEAR DISPERSIVE WAVE MODEL

    Directory of Open Access Journals (Sweden)

    Paul C. Rivera

    2006-01-01

    Full Text Available A common approach in modeling the generation and propagation of tsunami is based on the assumption of a kinematic vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. In this study, a new generation mechanism and the use of a highly-dispersive wave model to simulate tsunami inception, propagation and transformation are proposed. The new generation model assumes that transient ground motion during the earthquake can accelerate horizontal currents with opposing directions near the fault line whose successive convergence and divergence generate a series of potentially destructive oceanic waves. The new dynamic model incorporates the effects of earthquake moment magnitude, ocean compressibility through the buoyancy frequency, the effects of focal and water depths, and the orientation of ruptured fault line in the tsunami magnitude and directivity.For tsunami wave simulation, the nonlinear momentum-based wave model includes important wave propagation and transformation mechanisms such as refraction, diffraction, shoaling, partial reflection and transmission, back-scattering, frequency dispersion, and resonant wave-wave interaction. Using this model and a coarse-resolution bathymetry, the new mechanism is tested for the Indian Ocean tsunami of December 26, 2004. A new flooding and drying algorithm that consider waves coming from every direction is also proposed for simulation of inundation of low-lying coastal regions.It is shown in the present study that with the proposed generation model, the observed features of the Asian tsunami such as the initial drying of areas east of the source region and the initial flooding of western coasts are correctly simulated. The formation of a series of tsunami waves with periods and lengths comparable to observations

  20. Study on the Tidal Wave System and Formation Mechanism of M2 Tide in the Taiwan Strait

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-sheng; SONG Zhi-yao; ZHANG Jin-shan; ZHANG Hong-gui; KONG Jun; WANG Yan-hong

    2008-01-01

    To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce the amphidromic system of the M2 tide in the south end of the Taiwan strait, and consequently confirm the existence of the degenerate amphidromic system. On this basis, further discussion is conducted on the M2 system and its formation mechanism. It can be concluded that the tidal waves of the TS is consisted of the progressing wave from the north entrance and the degenerate amphidromic system from the south entrance, in which the progressing wave from the north entrance dominates the tidal wave motion in the strait. Except for the convergent effect caused by the landform and boundary, the degenerate amphidromic system produced in the south of the strait is another important factor for the following phenomena: the large tidal range in the middle of the strait, the concentrative zone of co-amplitude and co-phase line in the south of the strait. The degenerate amphidromic system is mainly produced by the incident Pacific Ocean tidal wave from the Luzon strait and the action by the shoreline and landform. The position of the amphidromic point is compelled to move toward southwest until degenerating by the powerful progressing wave from the north entrance.

  1. Investigation of heavy ions diffusion under the influence of current-driven mechanism and compositional waves in plasma

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the Hall effect and electric currents, and argue that such diffusion forms chemical inhomogeneities in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. Such current-driven diffusion can be accompanied by the propagation of a particular type of waves which have not been considered earlier. In these waves, the impurity number density oscillare alone and their frequency is determined by the electric currents and sort of impurity ions. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure. Such waves lead to local variations of chemical composition and, hence, can manifest themselves by variations of the emission in spectral lines.

  2. On Novel Mechanism of a Pump Electromagnetic Wave Absolute Two-Plasmon Parametric Decay Instability Excitation in Tokamak ECRH Experiments

    CERN Document Server

    Gusakov, E Z

    2016-01-01

    Novel mechanism leading to excitation of absolute two plasmon parametric decay instability (TPDI) of a pump extraordinary (X) wave is discussed. It is shown that the upper hybrid (UH) plasmon can be 3D trapped in the presence of both a nonmonotonous density profile and a finite-size pump beam in a plane perpendicular to the plasma inhomogeneity direction. This leads to excitation of the absolute TPDI of the pump X wave, which manifests itself in temporal exponential growth of the trapped daughter UH wave amplitude and is perhaps the most dangerous instability for mm-waves, widely utilized nowadays in tokamak and stellarators for local plasma heating and current drive and being considered for application in ITER.

  3. The mechanism of self-sustainment in collisional drift-wave turbulence

    International Nuclear Information System (INIS)

    Although collisional drift waves in a sheared slab configuration are linearly damped, it is found that the corresponding turbulence is self-sustaining if initialized at nonlinear amplitude. The influence of the free energy source represented by the temperature and density gradients on the turbulent system involving bi-directional spectral energy transfer is responsible for this change of regime, manifested through an indetifiably self-organized mode structure. Fluctuation mode widths are determined by a competition between turbulent advective broadening and parallel dissipation. All of the features of nonlinear mode structure are thereby determined by nonlinear processes, divesting linear stability criteria of their relevance to that structure, or its amplitude. Detailed study with the computations suggests: (a) The threshold amplitude for nonlinear self-sustainment is somewhat less than ρs/Ln, weakly dependent on parameters. (b) In the 2D slab, increasingly strong temperature gradient relative to density exacerbates collisional dissipation, introducing a nonlinear stability boundary. (c) Effects of neighboring rational surfaces are judged through the overlap criterion, which shows that the self-organized part does not overlap, but the free-energy tapping part does, leading to the expectation that gradients can be maintained in the tokamak, and that much of the small-scale side of collisional dissipation should be suppressed, enhancing the turbulence in the tokamak edge. (d) The introduction of rvec Ex rvec B shear flows with gradients as large as cs/Ln does not suppress this turbulence, but nonlinearly enhances it for strong enough shear (cs/Ln). Many important features of experimentally observed tokamak edge fluctuations are reproduced by these single-rational-surface nonlinear dynamics. Consequently, one must continue to consider drift-wave turbulence as a plausible mechanism behind such observations

  4. Symbolic computation on integrable properties of a variable-coefficient Korteweg-de Vries equation from arterial mechanics and Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Applicable in arterial mechanics, Bose gases of impenetrable bosons and Bose-Einstein condensates, a variable-coefficient Korteweg-de Vries (vcKdV) equation is investigated in this paper with symbolic computation. Based on the Ablowitz-Kaup-Newell-Segur system, the Lax pair and auto-Baecklund transformation are constructed. Furthermore, the nonlinear superposition formula and an infinite number of conservation laws for the vcKdV equation are also derived. Special attention is paid to the analytic one- and two-solitonic solutions with their physical properties and possible applications discussed

  5. Dynamic analysis of propulsion mechanism directly driven by wave energy for marine mobile buoy

    Science.gov (United States)

    Yu, Zhenjiang; Zheng, Zhongqiang; Yang, Xiaoguang; Chang, Zongyu

    2016-05-01

    Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science. Great progress has been made, however the technology in this area is far from maturity in theory and faced with many difficulties in application. A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB, especially with consideration of hydrodynamic force. The principle of wave-driven propulsion mechanism is briefly introduced. To set a theory foundation for study on the MMB, a dynamic model of the propulsion mechanism of the MMB is obtained. The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations. A simplified form of the motion equations is reached by omitting terms with high order small values. The relationship among the heave motion of the buoy, stiffness of the elastic components, and the forward speed can be obtained by using these simplified equations. The dynamic analysis show the following: The angle of displacement of foil is fairly small with the biggest value around 0.3 rad; The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy; The relationship among heaven motion, stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle, therefore, the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant. The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.

  6. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis.

    Science.gov (United States)

    Welch, Tré R; Eberhart, Robert C; Banerjee, Subhash; Chuong, Cheng-Jen

    2016-03-01

    Wall injury is observed during stent expansion within atherosclerotic arteries, related in part to stimulation of the inflammatory process. Wall stress and strain induced by stent expansion can be closely examined by finite element analysis (FEA), thus shedding light on procedure-induced sources of inflammation. The purpose of this work was to use FEA to examine the interaction of a coiled polymer stent with a plaque-containing arterial wall during stent expansion. An asymmetric fibrotic plaque-containing arterial wall model was created from intravascular ultrasound (IVUS) images of a diseased artery. A 3D model for a coil stent at unexpanded state was generated in SolidWorks. They were imported into ANSYS for FEA of combined stent expansion and fibrotic plaque-distortion. We simulated the stent expansion in the plaqued lumen by increasing balloon pressure from 0 to 12 atm in 1 atm step. At increasing pressure, we examined how the expanding stent exerts forces on the fibrotic plaque and vascular wall components, and how the latter collectively resist and balance the expansive forces from the stent. Results show the expanding coiled stent creates high stresses within the plaque and the surrounding fibrotic capsule. Lower stresses were observed in adjacent medial and adventitial layers. High principal strains were observed in plaque and fibrotic capsule. The results suggest fibrotic capsule rupture might occur at localized regions. The FEA/IVUS method can be adapted for routine examination of the effects of the expansion of selected furled stents against IVUS-reconstructed diseased vessels, to improve stent deployment practices. PMID:26621671

  7. A comparative study of the mechanisms of migrating diurnal tidal variability due to interaction with propagating planetary waves

    Science.gov (United States)

    Chang, Loren; Palo, Scott; Liu, Hanli

    The migrating diurnal tide is one of the dominant dynamical features of the Earth's Mesosphere and Lower Thermosphere (MLT) region, particularly at low latitudes. As an actively forced disturbance with a period of 24 hours and westward zonal wave number 1, the migrating diurnal tide represents the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. While the seasonal evolution of the migrating diurnal tide has been well explored, ground-based observations of the tide have exhibited a modulation of tidal amplitudes at periods related to those of propagating planetary waves generally present in the region, as well as a decrease in tidal amplitudes during large planetary wave events. Past studies have attributed tidal amplitude modulation to the presence of child waves generated as a byproduct of nonlinear wave-tide interactions. The resulting child waves have frequencies and wavenumbers that are the sum and difference of those of the parent waves. Many questions still remain about the nature and physical drivers responsible for such interactions. The conditions under which various planetary waves may or may not interact with the atmospheric tides, the overall effect on the tidal response, as well as the physical mechanisms coupling the planetary wave and the tide interaction, which has not clearly been determined. These questions are addressed in a recent modeling study, by examining two general categories of planetary waves that are known to attain significant amplitudes in the low latitude and equa-torial region where the migrating diurnal tide is dominant. These are the eastward propagating class of ultra fast Kelvin (UFK) waves with periods near three days which attain their largest amplitudes in the temperature and zonal wind fields of the equatorial lower thermosphere. The second wave examined is the quasi-two day wave (QTDW) which is a westward propagating Rossby wave and can

  8. An alternative view on the role of the β-effect in the Rossby wave propagation mechanism

    Directory of Open Access Journals (Sweden)

    Eyal Heifetz

    2014-11-01

    Full Text Available The role of the β-effect in the Rossby wave propagation mechanism is examined in the linearised shallow water equations directly in momentum–height variables, without recourse to potential vorticity (PV. Rigorous asymptotic expansion of the equations, with respect to the small non-dimensionalised β parameter, reveals in detail how the Coriolis force acting on the small ageostrophic terms translates the geostrophic leading-order solution to propagate westward in concert. This information cannot be obtained directly from the conventional PV perspective on the propagation mechanism. Furthermore, a comparison between the β-effect in planetary Rossby waves and the sloping-bottom effect in promoting topographic Rossby waves shows that the ageostrophic terms play different roles in the two cases. This is despite the fact that from the PV viewpoint whether the advection of mean PV gradient is set up by changes in planetary vorticity or by mean depth is inconsequential.

  9. Patent arterial duct

    Directory of Open Access Journals (Sweden)

    Martin Robin P

    2009-07-01

    Full Text Available Abstract Patent arterial duct (PAD is a congenital heart abnormality defined as persistent patency in term infants older than three months. Isolated PAD is found in around 1 in 2000 full term infants. A higher prevalence is found in preterm infants, especially those with low birth weight. The female to male ratio is 2:1. Most patients are asymptomatic when the duct is small. With a moderate-to-large duct, a characteristic continuous heart murmur (loudest in the left upper chest or infraclavicular area is typical. The precordium may be hyperactive and peripheral pulses are bounding with a wide pulse pressure. Tachycardia, exertional dyspnoea, laboured breathing, fatigue or poor growth are common. Large shunts may lead to failure to thrive, recurrent infection of the upper respiratory tract and congestive heart failure. In the majority of cases of PAD there is no identifiable cause. Persistence of the duct is associated with chromosomal aberrations, asphyxia at birth, birth at high altitude and congenital rubella. Occasional cases are associated with specific genetic defects (trisomy 21 and 18, and the Rubinstein-Taybi and CHARGE syndromes. Familial occurrence of PAD is uncommon and the usual mechanism of inheritance is considered to be polygenic with a recurrence risk of 3%. Rare families with isolated PAD have been described in which the mode of inheritance appears to be dominant or recessive. Familial incidence of PAD has also been linked to Char syndrome, familial thoracic aortic aneurysm/dissection associated with patent arterial duct, and familial patent arterial duct and bicuspid aortic valve associated with hand abnormalities. Diagnosis is based on clinical examination and confirmed with transthoracic echocardiography. Assessment of ductal blood flow can be made using colour flow mapping and pulsed wave Doppler. Antenatal diagnosis is not possible, as PAD is a normal structure during antenatal life. Conditions with signs and symptoms of

  10. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional calculus

    CERN Document Server

    Pandey, Vikash

    2015-01-01

    An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that...

  11. Linking the viscous grain-shearing mechanism of wave propagation in marine sediments to fractional calculus

    Science.gov (United States)

    Pandey, Vikash; Holm, Sverre

    2016-04-01

    An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that fractional calculus is not just a mathematical framework which can be used to curve-fit the complex behavior of materials, but rather it can be justified from real physical process of grain-shearing as well.

  12. Acute arterial occlusion - kidney

    Science.gov (United States)

    ... arterial thrombosis; Renal artery embolism; Acute renal artery occlusion; Embolism - renal artery ... often result in permanent kidney failure. Acute arterial occlusion of the renal artery can occur after injury ...

  13. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    International Nuclear Information System (INIS)

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance

  14. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of)

    2015-01-15

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

  15. Specific Mechanism of Negative Reactivity Feedback in the Nuclear Burning Wave Reactor

    International Nuclear Information System (INIS)

    The specific mechanism of negative reactivity feedback which is inherent in the innovative fast reactor concept based on the self-sustained regime of nuclear burning wave (NBW) has been studied. This phenomenon has been considered for the case of NBW reactor with metal fuel of the mixed Th–U–Pu cycle and the Pb–Bi coolant. The corresponding calculations have been performed by numerically solving the non-stationary non-linear diffusion equation of neutron transport together with a set of the burn-up equations for fuel components and the equations of nuclear kinetics for the precursor nuclei of delayed neutrons. The temperature effects and heat sink are not taken into account. A notable stability of the NBW regime relative to disturbances of the neutron flux in the system and to possible irregularities of the fuel composition has been shown. This stability is the sequel of the above-mentioned negative reactivity feedback which underlies the intrinsic safety of the NBW reactor. (author)

  16. The mechanical design of a high-power, dual frequency, millimeter-wave antenna feed system

    Science.gov (United States)

    Moldovan, N.

    1984-03-01

    This paper describes the mechanical design and fabrication of a high power, dual-frequency, millimeter-wave feed system. The feed system consists of a 35 GHz circularly polarized monopulse subsystem and a 95 GHz circularly polarized feed. The 35 GHz feed is designed to handle 5.0 kW average and 50 kW peak power and the 95 GHz 1.2 kW average and 12 kW peak power. A Frequency Selective Surface (FSS) is incorporated to provide dual frequency capability. Each feed is liquid cooled to provide suitable cooling during high power operation. The two feeds and FSS assembly are mounted in a supporting space frame to provide an optically integral assembly ready to be mounted at the vertex of a reflector. The paper addresses three main areas: the general feed design, which includes the manufacturing processes, flange considerations and waveguide cooling; the FSS fabrication; and beam alignment for both the primary and secondary field.

  17. Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation

    OpenAIRE

    Kiverin, A. D.; Kassoy, D. R.; Ivanov, M. F.; Liberman, Mikhail A.

    2013-01-01

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source, and the size of the hot spot. The main parameters which define regimes of the combustion wave...

  18. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    International Nuclear Information System (INIS)

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  19. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    Science.gov (United States)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  20. Cardiovascular modeling in pulmonary arterial hypertension: focus on mechanisms and treatment of right heart failure using the CircAdapt model.

    Science.gov (United States)

    Lumens, Joost; Delhaas, Tammo

    2012-09-15

    In recent years, increased understanding of cardiovascular system dynamics has led to the development of mathematical models of the heart and circulation. Models that enable realistic simulation of ventricular mechanics and interactions under a range of conditions have the potential to provide an ideal method with which to investigate the effects of pulmonary arterial hypertension and its treatment on cardiac mechanics and hemodynamics. Such mathematical models have the potential to contribute to a personalized, patient-specific treatment approach and allow more objective diagnostic decision-making, patient monitoring, and assessment of treatment outcome. This review discusses the development of mathematical models of the heart and circulation, with particular reference to the closed-loop CircAdapt model, and how the model performs under both normal and pathophysiological (pulmonary hypertensive) conditions. PMID:22921031

  1. High-speed landslide mechanism extracted from long-period surface waves

    Science.gov (United States)

    Zhao, J.; Yu, H.; Mangeney, A.; Stutzmann, E.

    2013-12-01

    Long-period seismic signals gathered at stations far from the landslide source can be used to recover the characteristics of the event. Source mechanism inversion based on the surface waves had already been done on two large volcanic debris avalanches (Montserrat, Lesser Antilles 1997 and Mount St. Helens, USA 1980), the initial flow direction, the total volume and the mean slope of the topography had been successfully extracted. We here try to apply the method to two other landslide events, our objective is to refine the source model used in the inversion, and to improve the method for a wider application. The first event is a huge landslide occurred in Yigong Bomi district (30.22N, 94.99E) in Tibet province of China on 9 April 2000. This landslide began as a sliding mass started to fall at the elevation of 5500m, when colliding with the ground, it broke up into debris, and ran for long distance. The whole process lasted about 10 minutes, about 300 million cube meters deposit formed a 60m-high dam in the Yigong river at the elevation of 2190m. The other event is the sudden failure happened at Qianjiangping village (30.97N, 110.61E) on 13 July 2003, on the bank of the Qinggan river. It is the biggest landslide in the last 20 years in the Three Gorges Reservoir area. The landslide flow brought about 20 million cube meters rock and soil masses right into the Qinggan river in a short time with a maximum sliding velocity of about 16m/s. It is a typical rocky-bedding slide, which has been compared to the 1963 Vaiont landslide in Italy. Seismic waves generated by these two events have been recorded respectively by more than 3 seismic stations from China Earthquake Networks (CEN), in the distance range between 360km and 1700km from the landslide source. We use a source model with impulse forces, derived from the schematic view of the mass traveling down the slope.We also perform waveform inversion and compare the result with the force model. The two landslides are

  2. Mechanisms of Ignition by Transient Energy Deposition: Regimes of Combustion Waves Propagation

    CERN Document Server

    Kiverin, Alexey D; Ivanov, Mikhail F; Liberman, Michael A

    2013-01-01

    Regimes of chemical reaction wave propagating in reactive gaseous mixtures, whose chemistry is governed by chain-branching kinetics, are studied depending on the characteristics of a transient thermal energy deposition localized in a finite volume of reactive gas. Different regimes of the reaction wave propagation are initiated depending on the amount of deposited thermal energy, power of the source and the size of the hot spot. The main parameters which define regimes of the combustion waves facilitated by the transient deposition of thermal energy are: acoustic timescale, duration of the energy deposition, ignition time scale and size of the hot spot. The interplay between these parameters specifies the role of gasdynamical processes, the formation and steepness of the temperature gradient and speed of the spontaneous wave. The obtained results show how ignition of one or another regime of combustion wave depends on the value of energy, rate of the energy deposition and size of the hot spot, which is import...

  3. Analysis of Wave Propagation in Mechanical Continua Using a New Variational Approach

    Science.gov (United States)

    Chakraborty, Goutam

    2016-06-01

    In this paper a new variational principle is presented for studying various wave propagation phenomena without explicitly deriving the equations of motion. The method looks for steady state solutions of linear or non-linear partial differential equations that admit wave-like solutions. Dispersion relations of plane waves propagating in unbounded continuous media, transmission and reflection coefficients of wave incident on the boundary of two semi-infinite media and wave impedance and mobility in an excited medium are studied with the help of the same principle. Numerous examples are given to clarify the method adopted showing distinct advantages over the traditional methods. The scientific insights that this principle provides are also highlighted.

  4. Alfv\\'en Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-Induced Emission Line Broadening

    CERN Document Server

    Oran, R; van der Holst, B; Sokolov, I V; Gombosi, T I

    2014-01-01

    In the present work, we test the predictions of the AWSoM model, a global extended-MHD model capable of calculating the propagation and turbulent dissipation of Alfv\\'en waves in any magnetic topology, against high resolution spectra of the quiescent off-disk solar corona. Wave dissipation is the only heating mechanism assumed in this model. Combining 3D model results with the CHIANTI atomic database, we were able to create synthetic line-of-sight spectra which include the effects of emission line broadening due to both thermal and wave-related non-thermal motions. To the best of our knowledge this is the first time a global model is used to obtain synthetic non-thermal line broadening. We obtained a steady-state solution driven by a synoptic magnetogram and compared the synthetic spectra with SUMER observations of a quiescent area above the solar west limb extending between 1.04 and 1.34 solar radii at the equator. Both the predicted line widths and the total line fluxes were consistent with the observations...

  5. Laboratory investigation of spray generation mechanism in wind-wave interaction under strong wind conditions

    Science.gov (United States)

    Kandaurov, Alexander; Troitskaya, Yuliya; Sergeev, Daniil; Ermakova, Olga; Kazakov, Vassily

    2015-04-01

    The sea spray is considered as a possible mechanism of the reduction of sea surface aerodynamic drag coefficient at hurricane conditions [1]. In this paper the mechanism of generation of spray in the near-surface layer of the atmosphere in a strong wind through the mechanism of «bag-breakup instability» was investigated in laboratory conditions with the help of high-speed video shooting. The laboratory experiments were performed on the Thermostratified Wind-Wave Channel of the IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) [2]. Experiments were carried out for the wind speeds from 14 to 22 m/s. In this range spray generation characteristics change dramatically from almost no spray generation to so called catastrophic regime with multiple cascade breakups on each crest. Shooting was performed with High-speed digital camera NAC Memrecam HX-3 in two different setups to obtain both statistical data and detailed spray generation mechanism overview. In first setup bright LED spotlight with mate screen the side of a channel was used for horizontal shadow-method shooting. Camera was placed in semi-submerged box on the opposite side of the channel. Shooting was performed at the distance of 7.5 m from the beginning of the working section. Series of short records of the surface evolution were made at 10 000 fps with 55 to 119 µm/px scale revealed the dominant mechanism of spray generation - bag-breakup instability. Sequences of high resolution images allowed investigating the details of this "bags" evolution. Shadow method provided better image quality for such conditions than side illumination and fluorescence methods. To obtain statistical data on "bags" sizes and densities vertical shadow method was used. Submerged light box was created with two 300 W underwater lamps and mate screen places at the fetch of 6.5 m. Long records (up to 8 seconds) were made with 4500 fps at 124-256 µm/px scales. Specially developed software

  6. Radial frequency stimuli and sine-wave gratings seem to be processed by distinct contrast brain mechanisms

    Directory of Open Access Journals (Sweden)

    M.L.B. Simas

    2005-03-01

    Full Text Available An assumption commonly made in the study of visual perception is that the lower the contrast threshold for a given stimulus, the more sensitive and selective will be the mechanism that processes it. On the basis of this consideration, we investigated contrast thresholds for two classes of stimuli: sine-wave gratings and radial frequency stimuli (i.e., j0 targets or stimuli modulated by spherical Bessel functions. Employing a suprathreshold summation method, we measured the selectivity of spatial and radial frequency filters using either sine-wave gratings or j0 target contrast profiles at either 1 or 4 cycles per degree of visual angle (cpd, as the test frequencies. Thus, in a forced-choice trial, observers chose between a background spatial (or radial frequency alone and the given background stimulus plus the test frequency (1 or 4 cpd sine-wave grating or radial frequency. Contrary to our expectations, the results showed elevated thresholds (i.e., inhibition for sine-wave gratings and decreased thresholds (i.e., summation for radial frequencies when background and test frequencies were identical. This was true for both 1- and 4-cpd test frequencies. This finding suggests that sine-wave gratings and radial frequency stimuli are processed by different quasi-linear systems, one working at low luminance and contrast level (sine-wave gratings and the other at high luminance and contrast levels (radial frequency stimuli. We think that this interpretation is consistent with distinct foveal only and foveal-parafoveal mechanisms involving striate and/or other higher visual areas (i.e., V2 and V4.

  7. Mechanical thrombectomy using Rotarex system and stent-in-stent placement for treatment of distal femoral artery occlusion secondary to stent fracture – a case report and literature review

    International Nuclear Information System (INIS)

    Treatment of peripheral arterial diseases may be distinguished into conservative and interventional management; the latter is divided into surgical and endovascular procedures. Management of peripheral artery stenosis and occlusion with vascular stents is associated with the risk of late complications such as restenosis, stent fracture or dislocation. A 62-year-old woman with generalized atherosclerosis, particularly extensive in lower limb arteries, was admitted to the Department of Angiology 11 months after having an endovascular procedure performed due to critical ischemia of left lower limb. Because of stent occlusion, a decision to perform angiographic examination of lower limb arteries was made. Examination revealed occlusion of the superficial femoral artery along its entire length, including previously implanted stents. Distal stent was fractured with slight dislocation of the proximal segment. A decision was made to perform mechanical thrombectomy using a Rotarex system followed by a stent-in-stent placement procedure. Follow-up angiography and ultrasound scan performed 24 hours after the procedure revealed a patent vessel with satisfactory blood flow. Nowadays, imaging diagnostics of peripheral artery stenosis involves non-invasive examinations such as ultrasound, minimally invasive examinations such as angio-MRI and MDCT, or invasive examinations such as DSA and IVUS. DSA examinations are used to confirm significant stenosis or occlusion of a vessel, particularly when qualifying a patient for endovascular treatment. Due to their anatomic location, the superficial femoral artery and the popliteal artery are subject to various forces e.g. those exerted by the working muscles. Mechanical thrombectomy and atherectomy are efficient methods of arterial recanalization used in the treatment of acute, subacute or even chronic occlusions or stenosis of peripheral vessels. Frequency of angioplasty and vascular stent implantation procedures is increased in patients

  8. Nonlinear wave-wave interactions and wedge waves

    Institute of Scientific and Technical Information of China (English)

    Ray Q.Lin; Will Perrie

    2005-01-01

    A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.

  9. High-speed landslide mechanism extracted from long-period surface waves

    Science.gov (United States)

    Zhao, Juan

    2016-04-01

    Long-period seismic signals gathered at stations far from landslide area can be used to recover the landslide source force applied on ground during the rapid sliding process. This force history is helpful to improve our ability to deduce the characteristics of the event as well as the dynamic properties of bulk motion. We use source mechanism inversion to analyse two different large landslides. Seismic waves generated by these two events have been recorded respectively by more than 5 stations, with the distance range from 69km to 1325km. The first event is the sudden failure happened at Qianjiangping village (30.97°N, 110.61°E) on 13 July 2003, on the bank of the Qinggan river. The landslide flow brought about 20 million cubic meters rock and soil masses right into the river in a short time. It moved about 250 meters in the main sliding direction of S45°E before stopped by the opposite bank. It is a typical reservoir landslide, which has been compared to the 1963 Vaiont landslide in Italy. The other event is the Xiaolin (120.64°E; 23.16°N) deep-seated landslide, located in southwestern Taiwan and had volume of about 27 million cubic meters. The landslide moved in the westward direction, divided into two streams at about the middle of the run-out, because there had been a small ridge and two valleys extended from the west side of the ridge. The deposit spreading length of this landslide is about 2300 meters. We discuss the different characteristics of the two events in both geological structure and movement mode based on the field survey. Then we show that those differences are also revealed by the source force-time functions from inversion.

  10. Observation of multiple mechanisms for stimulating ion waves in ignition scale plasmas. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, R.K.; MacGowan, B.J.; Montgomery, D.S. [and others

    1997-03-03

    The laser and plasma conditions expected in ignition experiments using indirect drive inertial confinement have been studied experimentally. It has been shown that there are at least three ways in which ion waves can be stimulated in these plasmas and have significant effect on the energy balance and distribution in the target. First ion waves can be stimulated by a single laser beam by the process of Stimulated Brillouin Scattering (SBS) in which an ion acoustic and a scattered electromagnetic wave grow from noise. Second, in a plasma where more than one beam intersect, ion waves can Lie excited at the `beat` frequency and wave number of the intersecting beams,, causing the side scatter instability to be seeded, and substantial energy to be transferred between the beams [R. K. Kirkwood et. al. Phys. Rev. Lett. 76, 2065 (1996)]. And third, ion waves may be stimulated by the decay of electron plasma waves produced by Stimulated Raman Scattering (SRS), thereby inhibiting the SRS process [R. K. Kirkwood et. al. Phys. Rev. Lett. 77, 2706 (1996)].

  11. Observation of multiple mechanisms for stimulating ion waves in ignition scale plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, R.K.; MacGowan, B.J.; Montgomery, D.S. [and others

    1996-11-01

    The laser and plasma conditions expected in ignition experiments using indirect drive inertial confinement have been studied experimentally. It has been found that there are at least three ways in which ion waves can be stimulated in these plasmas and have significant effect on the energy balance and distribution in the target. First ion waves can be stimulated by a single laser beam by the process of Stimulated Brillouin Scattering (SBS) in which an ion acoustic and a scattered electromagnetic wave grow from noise. Second, in a plasma where more than one beam intersect, ion waves can be excited at the `beat` frequency and wave number of the intersecting beams, causing the side scatter instability to be seeded, and substantial energy to be transferred between the beams [R. K. Kirkwood et. al. Phys. Re0319v. Lett. 76, 2065 (1996)]. And third, ion waves may be stimulated by the decay of electron plasma waves produced by Stimulated Raman Scattering (SRS), thereby inhibiting the SRS process [R. K. Kirkwood et. al. Phys. Rev. Lett. 77, 2706 (1996)].

  12. Observation of multiple mechanisms for stimulating ion waves in ignition scale plasmas

    International Nuclear Information System (INIS)

    The laser and plasma conditions expected in ignition experiments using indirect drive inertial confinement have been studied experimentally. It has been found that there are at least three ways in which ion waves can be stimulated in these plasmas and have significant effect on the energy balance and distribution in the target. First ion waves can be stimulated by a single laser beam by the process of Stimulated Brillouin Scattering (SBS) in which an ion acoustic and a scattered electromagnetic wave grow from noise. Second, in a plasma where more than one beam intersect, ion waves can be excited at the 'beat' frequency and wave number of the intersecting beams, causing the side scatter instability to be seeded, and substantial energy to be transferred between the beams [R. K. Kirkwood et. al. Phys. Re0319v. Lett. 76, 2065 (1996)]. And third, ion waves may be stimulated by the decay of electron plasma waves produced by Stimulated Raman Scattering (SRS), thereby inhibiting the SRS process [R. K. Kirkwood et. al. Phys. Rev. Lett. 77, 2706 (1996)

  13. Mechanism of Traumatic Brain Injury at Distant Locations After Exposure to Blast Waves: Preliminary Results from Animal and Phantom Experiments.

    Science.gov (United States)

    Nakagawa, Atsuhiro; Ohtani, Kiyonobu; Goda, Keisuke; Kudo, Daisuke; Arafune, Tatsuhiko; Washio, Toshikatsu; Tominaga, Teiji

    2016-01-01

    Purpose Primary blast-induced traumatic brain injury (bTBI) is the least understood of the four phases of blast injury. Distant injury induced by the blast wave, on the opposite side from the wave entry, is not well understood. This study investigated the mechanism of distant injury in bTBI. Materials and Methods Eight 8-week-old male Sprague-Dawley rats were divided into two groups: group 1 served as the control group and did not receive any shock wave (SW) exposure; group 2 was exposed to SWs (12.5 ± 2.5 MPa). Propagation of SWs within a brain phantom was evaluated by visualization, pressure measurement, and numerical simulation. Results Intracerebral hemorrhage near the ignition site and elongation of the distant nucleus were observed, despite no apparent damage between the two locations in the animal experiment. Visualization, pressure measurement, and numerical simulation indicated the presence of complex wave dynamics accompanying a sudden increase in pressure, followed by negative pressure in the phantom experiment. Conclusion A local increase in pressure above the threshold caused by interference of reflection and rarefaction waves in the vicinity of the brain-skull surface may cause distant injury in bTBI. PMID:27165867

  14. Anatomical variations in the origins of the celiac axis and the superior mesenteric artery: MDCT angiographic findings and their probable embryological mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Cheng, Cheng; Wang, Lu; Li, Ran; Chen, Jin-hua; Gong, Shui-gen [Institute of Surgery Research, Daping Hospital, Third Military Medical University, Department of Radiology, Chongqing (China)

    2014-08-15

    To identify the spectrum and prevalence of anatomical variations in the origin of the celiac axis (CA), the superior mesenteric artery (SMA) and their major branches by using multidetector computed tomographic (MDCT) angiography. A retrospective evaluation was carried out on 1,500 abdominal MDCT angiography images. The aortic origins of the CA, the SMA and their major branch patterns were investigated. Normal aortic origins of CA and SMA were noted in 1,347 (89.8 %) patients. Seven types of CA and SMA origin variants were identified in 153 (10.2 %) patients. The three most common variations were hepatomesenteric trunk (67 patients, 4.47 %), celiomesenteric trunk (CMT) (51 patients, 3.4 %) and splenomesenteric trunk (18 patients, 1.2 %). An evaluation of CMT was classified as long (34 patients, 66.7 %) or short (17 patients, 33.3 %) subtypes, compared with the length of the common trunk. Further CMT classification was based on the origin of the left gastric artery: subtype I, 26 patients (53.1 %); subtype II, 5 patients (10.2 %); subtype III, 15 patients (30.6 %); subtype IV, 3 patients (6.1 %). Dislocation interruption, incomplete interruption and persistence of the longitudinal anastomosis could be the embryological mechanisms of the variant origins of the CA, the SMA and their major branches. (orig.)

  15. An upper bound on $P$-wave charmonium production via the color-octet mechanism

    OpenAIRE

    Trottier, Howard D.

    1993-01-01

    A factorization theorem for $P$-wave quarkonium production, recently derived by Bodwin, Braaten, Yuan and Lepage, is applied to $\\Upsilon \\to \\chi_{cJ} + X$, where $\\chi_{cJ}$ labels the ${}^3 P_J$ charmonium states. The widths for $\\chi_{cJ}$ production through color-singlet $P$-wave and color-octet $S$-wave $c \\bar c$ subprocesses are computed each to leading order in $\\alpha_s$. Experimental data on $\\Upsilon \\to J / \\psi + X$ is used to obtain an upper bound on a nonperturbative parameter...

  16. The predominant mechanism of intercellular calcium wave propagation changes during long-term culture of human osteoblast-like cells

    DEFF Research Database (Denmark)

    Henriksen, Zanne; Hiken, Jeffrey F; Steinberg, Thomas H;

    2006-01-01

    cells still responded to addition of ATP, but P2Y desensitization did not inhibit ICW propagation. Our data indicate that the relative role of P2Y-mediated and gap junction-mediated ICW changes during osteoblast differentiation in vitro. In less differentiated cells, P2Y-mediated ICW predominate, but as......Intercellular calcium waves (ICW) are calcium transients that spread from cell to cell in response to different stimuli. We previously demonstrated that human osteoblast-like cells in culture propagate ICW in response to mechanical stimulation by two mechanisms. One mechanism involves autocrine...... activation of P2Y receptors, and the other requires gap junctional communication. In the current work we ask whether long-term culture of osteoblast-like cells affects the propagation of ICW by these two mechanisms. Human osteoblast-like cells were isolated from bone marrow. Mechanically induced ICW were...

  17. Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors

    Science.gov (United States)

    Cumming, A. V.; Craig, K.; Martin, I. W.; Bassiri, R.; Cunningham, L.; Fejer, M. M.; Harris, J. S.; Haughian, K.; Heinert, D.; Lantz, B.; Lin, A. C.; Markosyan, A. S.; Nawrodt, R.; Route, R.; Rowan, S.

    2015-02-01

    Thermal noise associated with the dielectric optical coatings used to form the mirrors of interferometric gravitational wave detectors is expected to be an important limit to the sensitivity of future detectors. Improvements in detector performance are likely to require coating materials of lower mechanical dissipation. Typically, current coatings use multiple alternating layers of ion-beam-sputtered amorphous silica and tantalum pentoxide (doped with titania). We present here measurements of the mechanical dissipation of promising alternative crystalline coatings that use multi-layers of single crystal gallium phosphide (GaP) and aluminium gallium phosphide (AlGaP) that are epitaxially grown and lattice matched to a silicon substrate. Analysis shows that the dissipation of the crystalline coating materials appears to be significantly lower than that of the currently used amorphous coatings, potentially enabling a reduction of coating thermal noise in future gravitational wave detectors.

  18. Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors

    International Nuclear Information System (INIS)

    Thermal noise associated with the dielectric optical coatings used to form the mirrors of interferometric gravitational wave detectors is expected to be an important limit to the sensitivity of future detectors. Improvements in detector performance are likely to require coating materials of lower mechanical dissipation. Typically, current coatings use multiple alternating layers of ion-beam-sputtered amorphous silica and tantalum pentoxide (doped with titania). We present here measurements of the mechanical dissipation of promising alternative crystalline coatings that use multi-layers of single crystal gallium phosphide (GaP) and aluminium gallium phosphide (AlGaP) that are epitaxially grown and lattice matched to a silicon substrate. Analysis shows that the dissipation of the crystalline coating materials appears to be significantly lower than that of the currently used amorphous coatings, potentially enabling a reduction of coating thermal noise in future gravitational wave detectors. (paper)

  19. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves

    Science.gov (United States)

    Restrepo, Simon; Basler, Konrad

    2016-08-01

    Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies.

  20. Microseismic forward modeling based on different focal mechanisms used by the seismic moment tensor and elastic wave equation

    International Nuclear Information System (INIS)

    The source mechanisms of microseismics in hydraulic fracturing present guiding significance to the research on source types, crustal stress analysis and crack prediction. Numerical simulations based on various source mechanisms can be used to investigate the stress characteristics and response characteristics of different source types. In this paper, a method based on the seismic moment tensor (SMT) and elastic wave equation (EWE) was presented for forward modeling. Additionally, we have given the expressions of nine couples of force which can be combined into different kinds of source types. The calculations of wave fields and records with three basic types of sources showed the features in homogeneous isotropic and anisotropic media by the finite-difference (FD) method. Lastly, analysis of the relationship between the polarizing angle and incident angle provided us with some evidence to distinguish the type of media in single media. The work offers methods of instruction for identification and interpretation in microseismic monitoring. (paper)

  1. Initiation and sustaining mechanisms of stabilized Oblique Detonation Waves around projectiles

    OpenAIRE

    Maeda, shinichi; Sumiya, Satoshi; Kasahara, Jiro; Matsuo, Akiko

    2013-01-01

    Direct initiations and stabilizations of three-dimensional conical detonation waves were attained by launching spheres with 1.06–1.31 times the C–J velocities into detonable mixtures. We conducted high time-resolution Schlieren visualizations of the whole processes over unsteady initiations to stable propagations of the stabilized Oblique Detonation Waves (ODWs) using a high-speed camera. The detonable mixtures were stoichiometric oxygen mixtures with acetylene, ethylene or hydrogen. They wer...

  2. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy

    OpenAIRE

    Freund, Jonathan B.; Colonius, Tim; Evan, Andrew P.

    2007-01-01

    Evidence suggests that inertial cavitation plays an important role in the renal injury incurred during shock-wave lithotripsy. However, it is unclear how tissue damage is initiated, and significant injury typically occurs only after a sufficient dose of shock waves. While it has been suggested that shock-induced shearing might initiate injury, estimates indicate that individual shocks do not produce sufficient shear to do so. In this paper, we hypothesize that the cumulative shear of the many...

  3. What does d-wave symmetry tell us about the pairing mechanism?

    OpenAIRE

    Levin, K.; Liu, D. Z.; Maly, Jiri

    1996-01-01

    In this paper we argue that d-wave symmetry is a general consequence of superconductivity driven by repulsive interactions. Van Hove (or flat band) effects, deriving from the two dimensionality of the $CuO_2$ plane are important in stabilizing this state. By extending the original Kohn-Luttinger picture to a 2 D lattice, we find that the screened Coulomb term has important wave vector structure which leads to $d_{x^2-y^2}$ superconductivity

  4. Measurement of the mechanical loss of prototype GaP/AlGaP crystalline coatings for future gravitational wave detectors

    OpenAIRE

    Cumming, Alan; Martin, Iain; Bassiri, Riccardo; Cunningham, Liam; Fejer, Martin; Harris, James; Haughian, Karen; Heinert, Daniel; Lantz, Brian; Lin, Angie; Markosyan, Ashot; Nawrodt, Ronny; Route, Roger; Rowan, Sheila

    2015-01-01

    Thermal noise associated with the dielectric optical coatings used to form the mirrors of interferometric gravitational wave detectors is expected to be an important limit to the sensitivity of future detectors. Improvements in detector performance are likely to require coating materials of lower mechanical dissipation. Typically, current coatings use multiple alternating layers of ion-beam-sputtered amorphous silica and tantalum pentoxide (doped with titania). We present here measurements of...

  5. Asynchronous Superimposition Mechanisms of Concurrent Competitve Waves for Hyper-Distributed Hyper-Parallel Heuristic Problem Solving

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper presents a new approach to hyper-distributed hyper-parallel heuristic AI problem solving,which is based on asynchronous superimposition of synchronous homogeneous concurrent propagations of competitive waves.In comparison with synchronous homogeneous mechanism,the proposed approach shows better generality,suitability and feasibility for real-time AI processing,especially for the search of implicit AND/OR graphs.

  6. A new flow co-culture system for studying mechanobiology effects of pulse flow waves

    OpenAIRE

    Scott-Drechsel, Devon; Su, Zhenbi; Hunter, Kendall; Li, Min; Shandas, Robin; Tan, Wei

    2012-01-01

    Artery stiffening is known as an important pathological change that precedes small vessel dysfunction, but underlying cellular mechanisms are still elusive. This paper reports the development of a flow co-culture system that imposes a range of arterial-like pulse flow waves, with similar mean flow rate but varied pulsatility controlled by upstream stiffness, onto a 3-D endothelial-smooth muscle cell co-culture. Computational fluid dynamics results identified a uniform flow area critical for c...

  7. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    CERN Document Server

    Yellin-Bergovoy, Ron; Umurhan, Orkan M

    2015-01-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealized two-dimensional model of a proto-stellar disc, characterized in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius r0. The fluid in basic state is prescribed to rotate with a Keplerian profile $\\Omega_k(r)\\sim r^{-3/2}$ modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabilizer irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of...

  8. Velocidade da onda de pulso, pressão arterial e adipocitocinas em adultos jovens: estudo do Rio de Janeiro Pulse wave velocity, blood pressure and adipocytokines in young adults: the Rio de Janeiro study

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Pizzi

    2012-01-01

    Full Text Available FUNDAMENTO: Dados sobre a avaliação não invasiva vascular e suas relações com variáveis de risco cardiovascular são escassos em jovens. OBJETIVO: Avaliar a relação entre a velocidade de onda de pulso e a pressão arterial,variáveis antropométricas e metabólicas, incluindo as adipocitocinas, em indivíduos adultos jovens. MÉTODOS: Foram avaliados 96 indivíduos (51 homens do estudo do Rio de Janeiro, de 26 a 35 anos (média 30,09 ± 1,92. Foram obtidos a velocidade de onda de pulso (método Complior, pressão arterial, índice de massa corporal, glicose, perfil lipídico, leptina, insulina, adiponectina e o índice de resistência à insulina HOMA-IR. Os indivíduos foram estratificados em três grupos segundo o tercil da VOP para cada sexo. RESULTADOS: O grupo com maior tercil de VOP mostrou maiores médias de pressão arterial sistólica, pressão arterial diastólica, pressão arterial média, índice de massa corporal, insulina, HOMA-IR e menores médias de adiponectina, além de maiores prevalências de diabetes mellitus/intolerância à glicose e hiperinsulinemia. Houve correlação significativa e positiva da velocidade da onda de pulso com pressão arterial sistólica, pressão arterial diastólica, pressão de pulso e pressão arterial média, índice de massa corporal, e LDL-colesterol e negativa com HDL-colesterol e adiponectina. Em modelo de regressão múltipla, após ajuste do HDL-colesterol, LDL-colesterol e adiponectina para sexo, idade, índice de massa corporal e pressão arterial média, apenas o sexo masculino e a pressão arterial média mantiveram correlação significativa com a velocidade de onda de pulso. CONCLUSÃO: A velocidade de onda de pulso em adultos jovens mostrou relação significativa com variáveis de risco cardiovascular, destacando-se o sexo masculino e a pressão arterial média como importantes variáveis no seu determinismo. Os achados sugerem que a medida da VOP pode ser útil para a

  9. Velocidade da onda de pulso, pressão arterial e adipocitocinas em adultos jovens: estudo do Rio de Janeiro Pulse wave velocity, blood pressure and adipocytokines in young adults: the Rio de Janeiro study

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Pizzi

    2013-01-01

    Full Text Available FUNDAMENTO: Dados sobre a avaliação não invasiva vascular e suas relações com variáveis de risco cardiovascular são escassos em jovens. OBJETIVO: Avaliar a relação entre a velocidade de onda de pulso e a pressão arterial,variáveis antropométricas e metabólicas, incluindo as adipocitocinas, em indivíduos adultos jovens. MÉTODOS: Foram avaliados 96 indivíduos (51 homens do estudo do Rio de Janeiro, de 26 a 35 anos (média 30,09 ± 1,92. Foram obtidos a velocidade de onda de pulso (método Complior, pressão arterial, índice de massa corporal, glicose, perfil lipídico, leptina, insulina, adiponectina e o índice de resistência à insulina HOMA-IR. Os indivíduos foram estratificados em três grupos segundo o tercil da VOP para cada sexo. RESULTADOS: O grupo com maior tercil de VOP mostrou maiores médias de pressão arterial sistólica, pressão arterial diastólica, pressão arterial média, índice de massa corporal, insulina, HOMA-IR e menores médias de adiponectina, além de maiores prevalências de diabetes mellitus/intolerância à glicose e hiperinsulinemia. Houve correlação significativa e positiva da velocidade da onda de pulso com pressão arterial sistólica, pressão arterial diastólica, pressão de pulso e pressão arterial média, índice de massa corporal, e LDL-colesterol e negativa com HDL-colesterol e adiponectina. Em modelo de regressão múltipla, após ajuste do HDL-colesterol, LDL-colesterol e adiponectina para sexo, idade, índice de massa corporal e pressão arterial média, apenas o sexo masculino e a pressão arterial média mantiveram correlação significativa com a velocidade de onda de pulso. CONCLUSÃO: A velocidade de onda de pulso em adultos jovens mostrou relação significativa com variáveis de risco cardiovascular, destacando-se o sexo masculino e a pressão arterial média como importantes variáveis no seu determinismo. Os achados sugerem que a medida da VOP pode ser útil para a

  10. A New Derivation of the Time-Dependent Schr\\"odinger Equation from Wave and Matrix Mechanics

    CERN Document Server

    Nanni, Luca

    2015-01-01

    An alternative method is proposed for deriving the time dependent Schroedinger equation from the pictures of wave and matrix mechanics. The derivation is of a mixed classical quantum character, since time is treated as a classical variable, thus avoiding any controversy over its meaning in quantum mechanics. The derivation method proposed in this paper requires no ad hoc assumption and avoids going through a second-order differential equation that can be reduced to the well known time-dependent Schroedinger equation only postulating a complex wavefunction with an exponential time dependence, as did by Schroedinger in its original paper of 1926.

  11. Seismic source mechanisms for quarry blasts: modelling observed Rayleigh and Love wave radiation patterns from a Texas quarry

    Science.gov (United States)

    McLaughlin, Keith L.; Bonner, Jessie L.; Barker, Terrance

    2004-01-01

    A theoretical understanding of the mechanisms by which quarry blasts excite seismic waves is useful in understanding how quarry blast discriminants may be transported from one region to another. An experiment in Texas with well-placed seismic stations and a cooperative blasting engineer has shed light on some of the physical mechanisms of seismic excitation at short periods (0.1-3 Hz). Azimuthal radiation patterns of the 0.2-3 Hz Rayleigh and Love waves are diagnostic of two proposed mechanisms for non-isotropic radiation from quarry blasts. Observations show that the Love and Rayleigh wave radiation patterns depend upon the orientation of the quarry benches. Two possible mechanisms for non-isotropic radiation are (1) the lateral throw of spalled material and (2) the presence of the topographic bench in the quarry. The spall of material can be modelled by vertical and horizontal forces applied to the free surface with time functions proportional to the derivative of the momentum of the spalled material. We use wavenumber integration synthetics to model the explosion plus spall represented by seismic moment tensor sources plus point forces. The resulting synthetics demonstrate that the magnitude of the SH (Love) compared with the SV (fundamental Rayleigh or Rg) in the short period band (0.5-3 Hz) may be explained by the spall mechanism. Nearly all of the available mass must participate in the spall with an average velocity of 2-5 m s-1 to provide sufficient impulse to generate the observed Love waves. Love wave radiation patterns from such a mechanism are consistent with the spall mechanism. We modelled the effects of the topographic bench using 3-D linear finite-difference calculations to compute progressive elastic wavefields from explosion sources behind the quarry bench. These 3-D calculations show SH radiation patterns consistent with observations while the SV radiation patterns are not consistent with observations. We find that the radiation patterns from the

  12. Non-invasive Ultrasonic Measurements of Small Mechanical Alterations in Sub-millimeter Walls of Arteries and Phantoms

    Science.gov (United States)

    Brum, J.; Ramos, A.; Bazan, I.; Negreira, C.; Ramirez, A.; Diez, L.

    The detection of changes in the properties of the walls in blood vessels (e.g. modifications in thickness or elasticity) is a promising way for the early diagnosis of cardiovascular diseases (e.g. atherosclerosis), and some attempts have been made using classic ultrasonic images. However, to obtain a reliable non-invasive estimation of these changes still presents many challenges that must be overcome, in particular, to achieve an accurate estimation of the vessel wall thickness, which usually is associated to strain and elasticity alterations happening before the cardiovascular disease presents clinical symptom; to solve efficiently these aspects is a very difficult task. In this work, the application to vessels of a recent ultrasonic method developed by the authors for estimating wall thicknesses is described. This method (based on high-resolution power spectral density - PSD) and its algorithmic responses were tested on an arterial phantom under physiological conditions of flow and pressure, and some results are compared to those obtained using a direct-time thickness estimation and with the resolutions related to our alternative cross-correlation option shown in previous papers. A higher spatial resolution is obtained, for experimental multi-pulse ultrasonic echoes, with this PSD method in comparison to those based on conventional echography, cross correlation operators or other spectral options.

  13. The classical limit of Bohmian mechanics. Semiclassical wave packets and an application to many particle scattering theory

    International Nuclear Information System (INIS)

    Bohmian mechanics is a quantum theory about particles in motion (i.e. about particle trajectories) that is empirically equivalent to orthodox quantum mechanics. Since also Newtonian mechanics is about particle trajectories, in Bohmian mechanics the question of the classical limit is as simple as it can possibly be: When do Bohmian trajectories look like Newtonian trajectories? As a first step towards an answer to this question we show, that the Bohmian trajectories belonging to a particular class of semiclassical wave packets become classical in an appropriate scaling limit. Furthermore, also the Bohmian trajectories of particles scattered on a short range potential become free in the classical sense: For large times their velocities tend to constants. We use this result to deduce the scattering cross section (the probability of detecting particles in a given solid angle) from first principles. In particular we show that, in the case of many particles, the collapse of the wave function due to the detection of one particle does not alter the remaining particles' detection statistics. (orig.)

  14. Three-dimensional shear wave imaging based on full-field laser speckle contrast imaging with one-dimensional mechanical scanning.

    Science.gov (United States)

    Chao, Pei-Yu; Li, Pai-Chi

    2016-08-22

    The high imaging resolution and motion sensitivity of optical-based shear wave detection has made it an attractive technique in biomechanics studies with potential for improving the capabilities of shear wave elasticity imaging. In this study we implemented laser speckle contrast imaging for two-dimensional (X-Z) tracking of transient shear wave propagation in agarose phantoms. The mechanical disturbances induced by the propagation of the shear wave caused temporal and spatial fluctuations in the local speckle pattern, which manifested as local blurring. By mechanically moving the sample in the third dimension (Y), and performing two-dimensional shear wave imaging at every scan position, the three-dimensional shear wave velocity distribution of the phantom could be reconstructed. Based on comparisons with the reference shear wave velocity measurements obtained using a commercial ultrasound shear wave imaging system, the developed system can estimate the shear wave velocity with an error of less than 6% for homogeneous phantoms with shear moduli ranging from 1.52 kPa to 7.99 kPa. The imaging sensitivity of our system makes it capable of measuring small variations in shear modulus; the estimated standard deviation of the shear modulus was found to be less than 0.07 kPa. A submillimeter spatial resolution for three-dimensional shear wave imaging has been achieved, as demonstrated by the ability to detect a 1-mm-thick stiff plate embedded inside heterogeneous agarose phantoms. PMID:27557169

  15. Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amit Modgil

    Full Text Available Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+-activated K(+ (BKCa channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BK(Ca channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM caused concentration-dependent inhibition of BK(Ca in VSM cells. Apelin-13 (0.1 µM significantly decreased BK(Ca current density from 71.25 ± 8.14 pA/pF to 44.52 ± 7.10 pA/pF (n=14 cells, P<0.05. This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM decreased the open-state probability (NPo of BK(Ca channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1 µM did not alter the NPo of BK(Ca channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BK(Ca. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BK(Ca current density. In addition, treatment of arteries with apelin-13 (0.1 µM significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BK(Ca channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.

  16. Generation mechanism of the whistler-mode waves in the plasma sheet prior to magnetic reconnection

    Czech Academy of Sciences Publication Activity Database

    Wei, X. H.; Cao, J. B.; Zhou, G. C.; Fu, H. S.; Santolík, Ondřej; Reme, H.; Dandouras, I.; Cornilleau, N.; Fazakerley, A.

    2013-01-01

    Roč. 52, č. 1 (2013), s. 205-210. ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : whistler-mode waves * electron temperature anisotropy * Reconnection * the plasma sheet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.238, year: 2013 http://www.sciencedirect.com/science/article/pii/S0273117713001221

  17. Studies of (p,t) reaction mechanism employing the realistic deuteron and triton wave functions

    International Nuclear Information System (INIS)

    The roles of the simultaneous (one-step) and the sequential (two-step) transfer processes in the (p,t) reactions were investigated. For this purpose, the exact evaluations of both processes were carried out employing the realistic light-ion wave functions and the interaction which causes the transfer. (author)

  18. Universal Concept of Complexity by the Dynamic Redundance Paradigm Causal Randomness, Complete Wave Mechanics, and the Ultimate Unification of Knowledge

    CERN Document Server

    Kirilyuk, A P

    1998-01-01

    This work introduces the Universal Science of Complexity. It emerges together with the paradigm of the dynamic redundance, or fundamental multivaluedness of dynamical functions, based on the plurality of incompatible, but equally real, solutions to a problem which naturally appear in the formal description of a generic dynamical behaviour, if one tries to avoid, in a universally applicable fashion, the simplification of the ordinary perturbative reduction to an effectively one-dimensional, 'separable' problem. The discovered dynamic multivaluedness directly leads to the new, universal concept of dynamic complexity and its naturally forming hierarchical structure. The lowest levels of the universal hierarchy of complexity give the complete causal wave mechanics that can be described as the unreduced version of the double solution proposed by Louis de Broglie and amplified here with the idea of the intrinsic dynamical chaos realising the dynamic redundance at the lowest levels of being. This complete wave mecha...

  19. STUDY ON DYNAMICS OF TROPICAL CISK-ROSSBY WAVES AND MECHANISM OF 30-50 DAY OSCILLATIONS

    Institute of Scientific and Technical Information of China (English)

    张韧; 余志豪; 蒋全荣

    2001-01-01

    To add to the growing mature research on the tropical 30-50 day oscillations from a new prospective, the current work bases on dynamic analysis of baroclinic quasi-geostrophic models to discuss dynamic mechanisms for the generation and propagation of CISK-Rossby waves, and to understand restraints and effects of different wave structures and thermodynamic forcing on the 30-50 day oscillations in the tropical atmosphere. Some important properties of the oscillation propagation have been explained and, in detail, with respect to its meridional propagation and vertical "baroclinic" structure. The work has come up with some new opinions and viewpoints. New opinions about the propagation and energy dispersion are to be proved by more observations and study.

  20. Wave turbulence

    Science.gov (United States)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  1. Electrophysiological and Mechanical Characteristics in Human Ileal Motility: Recordings of Slow Waves Conductions and Contractions, In vitro.

    Science.gov (United States)

    Ryoo, Seung-Bum; Oh, Heung-Kwon; Moon, Sang Hui; Choe, Eun Kyung; Yu, Sung A; Park, Sung-Hye; Park, Kyu Joo

    2015-11-01

    Little human tissue data are available for slow waves and migrating motor complexes, which are the main components of small bowel motility. We investigated the electrophysiological and mechanical characteristics of human ileal motility, in vitro. Ileum was obtained from patients undergoing bowel resection. Electrophysiological microelectrode recordings for membrane potential changes and mechanical tension recordings for contraction from smooth muscle strips and ileal segments were performed. Drugs affecting the enteric nervous system were applied to measure the changes in activity. Slow waves were detected with a frequency of 9~10/min. There were no cross-sectional differences in resting membrane potential (RMP), amplitude or frequency between outer and inner circular muscle (CM), suggesting that electrical activities could be effectively transmitted from outer to inner CM. The presence of the interstitial cell of Cajal (ICC) at the linia septa was verified by immunohistochemistry. Contractions of strips and segments occurred at a frequency of 3~4/min and 1~2/min, respectively. The frequency, amplitude and area under the curve were similar between CM and LM. In segments, contractions of CM were associated with LM, but propagation varied with antegrade and retrograde directions. Atropine, N(W)-oxide-L-arginine, and sodium nitroprusside exhibited different effects on RMP and contractions. There were no cross-sectional differences with regard to the characteristics of slow waves in CM. The frequency of contractions in smooth muscle strips and ileal segments was lower than slow waves. The directions of propagation were diverse, indicating both mixing and transport functions of the ileum. PMID:26557020

  2. The quantum mechanics is a non-universal theory. The realistic Schrodinger's and positivistic Born's interpretation of the wave function

    CERN Document Server

    Nikulov, Alexey

    2013-01-01

    Quantum mechanics describes successfully numerous quantum phenomena both microscopic and macroscopic, such as superconductivity. But the controversies about quantum mechanics, in the old days and present day, reveal fundamental obscurity in quantum mechanics. In this work reader attention is drawn first of all to the fact that the orthodox description of superconductivity and some other quantum phenomena uses the realistic interpretation of the wave function proposed by Schrodinger whereas the controversies take place until the present about the positivistic interpretation proposed by Born. Causes and essence of the fundamental obscurity of the Born interpretation are considered in detail in the first part of the paper. The fundamental obscurities of the orthodox description of superconductivity and other quantum phenomena are considered in the end of the paper.

  3. Radar imaging mechanism of marine sand waves at very low grazing angle illumination caused by unique hydrodynamic interactions

    Science.gov (United States)

    Hennings, Ingo; Herbers, Dagmar

    2006-10-01

    The investigations carried out between 2002 and 2004 during six field experiments within the Operational Radar and Optical Mapping in monitoring hydrodynamic, morphodynamic and environmental parameters for coastal management (OROMA) project aimed to improve the effectiveness of new remote sensing monitoring technologies such as shipborne imaging radars in coastal waters. The coastal monitoring radar of the GKSS Research Center, Geesthacht, Germany, is based on a Kelvin Hughes RSR 1000 X band (9.42 GHz) vertical (VV) polarized river radar and was mounted on board the research vessel Ludwig Prandtl during the experiments in the Lister Tief, a tidal inlet of the German Bight in the North Sea. The important progress realized in this investigation is the availability of calibrated X band radar data. Another central point of the study is to demonstrate the applicability of the quasi-specular scattering theory in combination with the weak hydrodynamic interaction theory for the radar imaging mechanism of the seabed. Radar data have been taken at very low grazing angles ≤2.6° of flood and ebb tide-oriented sand wave signatures at the sea surface during ebb tidal current phases. Current speeds perpendicular to the sand wave crest ≤0.6 m s-1 have been measured at wind speeds ≤4.5 m s-1 and water depths ≤25 m. The difference between the maximum measured and simulated normalized radar cross section (NRCS) modulation of the ebb tide-oriented sand wave is 27%. For the flood tide-oriented sand wave, a difference of 21% has been calculated. The difference between the minimum measured and simulated NRCS modulation of the ebb tide-oriented sand wave is 10%, and for the flood tide-oriented sand wave, a value of 43% has been derived. Phases of measured and simulated NRCS modulations correspond to asymmetric sand wave slopes. The results of the simulated NRCS modulation show the qualitative trend but do not always quantitatively match the measured NRCS modulation profiles

  4. Physical and Mechanical Properties of Plasticized HMX under Effect of Mechanical Loadings, Temperature Drops and Shock Waves

    Institute of Scientific and Technical Information of China (English)

    E.N. Kostyukov; L.V. Fomicheva; Yu. A. Vlasov; E.A.Pazhina

    2004-01-01

    @@ During their life cycles, energetic materials (EM) can be subjected to various external effects, including non-authorized effects. Due to these effects, irreversible changes can occur in EM structures that, in turn, can be the reason for change of their physical and mechanical properties.

  5. The emission mechanism of THz electromagnetic waves from Bi2212 mesa device

    Science.gov (United States)

    Watanabe, Chiharu; Minami, Hidetoshi; Kitamura, Takeo; Kashiwagi, Takanari; Klemm, Richard; Kadowaki, Kazuo

    From the detailed study of the severe temperature inhomogeneity of the Bi2212 IJJ mesa structure often forming ``hot-spot'' at relatively higher bias current region, while the electromagnetic waves are emitted, multi terminal potential measurement of the mesa device has revealed that the equipotential part of the mesa can only give universal ac-Josephson relationship between the potential difference and the frequency measured by the FT-IR spectrometer, and it is violated as the potential is measured in the region where the hot-spot is formed. This means that the deviation of the emission frequency from the ac-Josephson effect comes from a gradient of the electrical potential distribution. This strongly suggests that the electromagnetic waves at THz frequency may be generated in the superconducting part of the mesa, where the static electric potential is uniform, satisfying the ac-Josephson relation universally no matter how much temperature gradient is.

  6. Source mechanisms and near-source wave propagation from broadband seismograms

    Directory of Open Access Journals (Sweden)

    J. Perrot

    1994-06-01

    Full Text Available Recording seismic events at teleseismic distances with broadband and high dynamic range instruments provides new high-quality data that allow us to interpret in more detail the complexity of seismic rupture as well as the heterogeneous structure of the medium surrounding the source where waves are initially propagating. Wave propagation analysis is performed by ray tracing in a local cartesian coordinate system near the source and in a global spherical coordinate system when waves enter the mantle. Seismograms are constructed at each station for a propagation in a 2.5-D medium. Many phases can be included and separately analyzed; this is one of the major advantages of ray tracing compared to other wave propagation techniques. We have studied four earthquakes, the 1988 Spitak Armenia Earthquake (Ms = 6.9, the 1990 Iran earthquake (Ms = 7.7, the 1990 romanian earthquake (Ms = 5.8 and the 1992 Erzincan, Turkey earthquake (Ms = 6.8. These earthquakes exhibit in different ways the complexity of the rupture and the signature of the medium surrounding the source. The use of velocity seismograms, the time derivative of displacement, increases the difficulty of the fit between synthetic seismograms and real seismograms but provides clear evidence for a need of careful time delay estimations of the different converted phases. We find that understanding of the seismic rupture as well as the influence of the medium surrounding the source for teleseismically recorded earthquakes requires a multi-stop procedure: starting with ground displacement seismograms, one is able to give a first description of the rupture as well as of the first-order influence of the medium. Then, considering the ground velocity seismograms makes the fit more difficult to obtain but increases our sensitivity to the rupture process and early converted phases. With increasing number of worldwide broadband stations, a complex rupture description is possible independently of field

  7. Wave propagation and non-local effects in periodic frame materials: Generalized continuum mechanics

    OpenAIRE

    Chesnais, Céline; Boutin, Claude; Hans, Stéphane

    2015-01-01

    Through the analysis of the wave propagation in infinite two-dimensional periodic frame materials, this paper illustrates the complexity of their dynamic behavior. Assuming the frame size is small compared to the wavelength, the homogenization method of periodic discrete media coupled with normalization is used to identify the macroscopic behavior at the leading order. The method is applied on a frame material with the vertical elements stiffer than the horizontal elements. Such a material is...

  8. Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism?

    Science.gov (United States)

    de la Torre, A.; Alexander, P.; Llamedo, P.; Menéndez, C.; Schmidt, T.; Wickert, J.

    2006-12-01

    A significant wave activity (WA) in the upper troposphere and lower stratosphere, mainly during winter, was detected at midlatitudes in the southern hemisphere (30-40S) above the Andes Range, from an analysis of Global Positioning System Radio Occultation (GPS RO) temperature profiles retrieved by CHAMP (CHAllenging Minisatellite Payload) and SAC-C (Satélite de Aplicaciones Científicas-C) Low Earth Orbit (LEO) satellites, between May 2001 and February 2006. The possible main gravity wave sources in this region are: i) orographic forcing, ii) geostrophic adjustment and iii) deep convection. The available vertical resolution of GPS RO soundings does not rule out any of these alternatives. Based on satellite imaginary, the WA enhancements cannot be attributed to deep convection events. Inertia-gravity waves (IGWs) could be generated after a geostrophic adjustment process, following a perturbation of the zonal jet situated above the Andes Mountains by mountain waves (MWs). The monthly WA intensity follows the zonal wind velocity strength according to its seasonal variability at jet altitudes. As the GPS-LEO lines of sight are roughly meridionally aligned and the morphology of the Andes at middle latitudes is predominantly north-south, it was possible to detect MWs as well as IGWs from GPS RO temperature profiles. This characteristic does not apply for other mountain range alignments. From the analysis of a numerical simulation at the time and location of a single RO event with very strong WA, two main modes of oscillation with horizontal wavelength around 40 and 200 km were identified. The first one is attributed to a MW and the second one to an IGW.

  9. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    International Nuclear Information System (INIS)

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam

  10. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    Science.gov (United States)

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.; Zaslavsky, V. Yu.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-01

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by "fresh" electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  11. Kidney transplantation improves arterial function measured by pulse wave analysis and endothelium-independent dilatation in uraemic patients despite deterioration of glucose metabolism

    DEFF Research Database (Denmark)

    Hornum, Mads; Clausen, Peter; Idorn, Thomas;

    2011-01-01

    BACKGROUND: The aim of this study is to investigate the effect of kidney transplantation on arterial function in relation to changes in glucose metabolism. METHODS: Included were 40 kidney recipients (Tx group, age 38 ± 13 years) and 40 patients without known diabetes remaining on the waiting list...... (endothelium dependent) and after nitroglycerin administration (endothelium independent). The insulin resistance was estimated by the insulin sensitivity index (ISI). RESULTS: AIX was reduced from 27% (17-33) to 14% (7-25) (P = 0.01) after 1 year in the Tx group and remained stable in uraemic controls (P = 0...

  12. Occurrence of d-Wave Pairing in the Phonon-Mediated Mechanism of High Temperature Superconductivity in Cuprates

    International Nuclear Information System (INIS)

    The k,k' dependence of spectral function α2F(Ω,k,k') is calculated based on the extended two story house model in which carriers itinerate in the region of local antiferromagnetic ordering composed of the localized spins. The following results are obtained: (1) d-wave pairing occurs even for the phonon mechanism; (2) the out-of-plane phonon modes contribute to the superconductivity in cuprates while those like breathing modes do not contribute significantly; and (3) the electron-phonon interaction in CuO5 type cuprates is stronger than in CuO6 type cuprates. copyright 1996 The American Physical Society

  13. Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars.

    Science.gov (United States)

    Beltrán Jiménez, Jose; Piazza, Federico; Velten, Hermano

    2016-02-12

    By using observations of the Hulse-Taylor pulsar, we constrain the gravitational wave (GW) speed to the level of 10^{-2}. We apply this result to scalar-tensor theories that generalize Galileon 4 and 5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue that this effect survives conventional screening due to the persistence of a scalar field gradient inside virialized overdensities, which effectively "pierces" the Vainshtein screening. In specific branches of solutions, our result allows us to directly constrain the cosmological couplings in the effective field theory of dark energy formalism. PMID:26918974

  14. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    OpenAIRE

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2015-01-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealized two-dimensional model of a proto-stellar disc, characterized in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius r0. The fluid in basic state is prescribed to rotate with a Keplerian profile $\\Omega_k(r)\\sim r^{-3/2}$ modified by some additional azimuthal sheared flow. A linear analysis shows that there ...

  15. Evaluation of mechanical losses in a linear motor pressure wave generator

    Science.gov (United States)

    Jacob, Subhash; Rangasamy, Karunanithi; Jonnalagadda, Kranthi Kumar; Chakkala, Damu; Achanur, Mallappa; Govindswamy, Jagadish; Gour, Abhay Singh

    2012-06-01

    A moving magnet linear motor compressor or pressure wave generator (PWG) of 2 cc swept volume with dual opposed piston configuration has been developed to operate miniature pulse tube coolers. Prelimnary experiments yielded only a no-load cold end temperature of 180 K. Auxiliary tests and the interpretation of detailed modeling of a PWG suggest that much of the PV power has been lost in the form of blow-by at piston seals due to large and non-optimum clearance seal gap between piston and cylinder. The results of experimental parameters simulated using Sage provide the optimum seal gap value for maximizing the delivered PV power.

  16. Statistical mechanics of magnetic excitations from spin waves to stripes and checkerboards

    CERN Document Server

    Rastelli, Enrico

    2013-01-01

    The aim of this advanced textbook is to provide the reader with a comprehensive explanation of the ground state configurations, the spin wave excitations and the equilibrium properties of spin lattices described by the Ising-Heisenberg Hamiltonians in the presence of short (exchange) and long range (dipole) interactions.The arguments are presented in such detail so as to enable advanced undergraduate and graduate students to cross the threshold of active research in magnetism by using both analytic calculations and Monte Carlo simulations.Recent results about unorthodox spin configurations suc

  17. An integrative view of mechanisms underlying generalized spike-and-wave epileptic seizures and its implication on optimal therapeutic treatments.

    Directory of Open Access Journals (Sweden)

    Boyuan Yan

    Full Text Available Many types of epileptic seizures are characterized by generalized spike-and-wave discharges. In the past, notable effort has been devoted to understanding seizure dynamics and various hypotheses have been proposed to explain the underlying mechanisms. In this paper, by taking an integrative view of the underlying mechanisms, we demonstrate that epileptic seizures can be generated by many different combinations of synaptic strengths and intrinsic membrane properties. This integrative view has important medical implications: the specific state of a patient characterized by a set of biophysical characteristics ultimately determines the optimal therapeutic treatment. Through the same view, we further demonstrate the potentiation effect of rational polypharmacy in the treatment of epilepsy and provide a new angle to resolve the debate on polypharmacy. Our results underscore the need for personalized medicine and demonstrate that computer modeling and simulation may play an important role in assisting the clinicians in selecting the optimal treatment on an individual basis.

  18. Use of simple finite elements for mechanical systems impact analysis based on stereomechanics, stress wave propagation, and energy method approaches

    International Nuclear Information System (INIS)

    This paper examines the effectiveness of analyzing impact events in mechanical systems for design purposes using simple or low ordered finite elements. Traditional impact dynamics analyses of mechanical systems namely stereomechanics, energy method, stress-wave propagation and contact mechanics approaches are limited to very simplified geometries and provide basic analyses in making predictions and understanding the dominant features of the impact in a mechanical system. In engineering practice, impacted systems present a complexity of geometry, stiffness, mass distributions, contact areas and impact angles that are impossible to analyze and design with the traditional impact dynamics methods. In real cases, the effective tool is the finite element (FE) method. The high-end FEA codes though may be not available for typical engineer/designer. This paper provides information on whether impact events of mechanical systems can be successfully modeled using simple or low-order finite elements. FEA models using simple elements are benchmarked against theoretical impact problems and published experimental impact results. As a case study, an FE model using simple plastic beam elements is further tested to predict stresses and deflections in an experimental structural impact

  19. Carotid Artery Screening

    Science.gov (United States)

    ... Resources Professions Site Index A-Z Carotid Artery Screening What is carotid artery screening? Who should consider ... about carotid artery screening? What is carotid artery screening? Screening examinations are tests performed to find disease ...

  20. Mechanical Stimulation (Pulsed Electromagnetic Fields "PEMF" and Extracorporeal Shock Wave Therapy "ESWT") and Tendon Regeneration: A Possible Alternative.

    Science.gov (United States)

    Rosso, Federica; Bonasia, Davide E; Marmotti, Antonio; Cottino, Umberto; Rossi, Roberto

    2015-01-01

    The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP), growth factors, such as vascular endothelial growth factor (VEGF) and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF) and extracorporeal shock wave therapy (ESWT) increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10). Moreover, ESWT increases the expression of growth factors, such as transforming growth factor β(TGF-β), (VEGF), and insulin-like growth factor 1 (IGF1), as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in vitro TGF-β production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW) and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation. PMID:26617513

  1. Mechanical stimulation (pulsed electromagnetic fields "PEMF" and extracorporeal shock wave therapy "ESWT" and tendon regeneration: a possible alternative.

    Directory of Open Access Journals (Sweden)

    Federica eRosso

    2015-11-01

    Full Text Available The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP, growth factors, such as vascular endothelial growth factor (VEGF and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF and extracorporeal shock wave therapy (ESWT increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10. Moreover ESWT increases the expression of growth factors, such as transforming growth factor beta (TGF-beta, Vascular Endothelial Growth Factor (VEGF, and insulin-like growth factor 1 (IGF1, as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in-vitro TGF-beta production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  2. Mechanical balance laws for fully nonlinear and weakly dispersive water waves

    CERN Document Server

    Kalisch, Henrik; Mitsotakis, Dimitrios

    2015-01-01

    The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected. In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence o...

  3. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age

    OpenAIRE

    Mohiuddin, Mohammad W.; Rihani, Ryan J.; Laine, Glen A.; Quick, Christopher M.

    2012-01-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (Ctot) and increases in total peripheral resistance (Rtot) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (cph) make the reflected pressure wave arrive earlier, augmenting systol...

  4. The ent-15α-Acetoxykaur-16-en-19-oic Acid Relaxes Rat Artery Mesenteric Superior via Endothelium-Dependent and Endothelium-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Êurica Adélia Nogueira Ribeiro

    2012-01-01

    Full Text Available The objective of the study was to investigate the mechanism of the relaxant activity of the ent-15α-acetoxykaur-16-en-19-oic acid (KA-acetoxy. In rat mesenteric artery rings, KA-acetoxy induced a concentration-dependent relaxation in vessels precontracted with phenylephrine. In the absence of endothelium, the vasorelaxation was significantly shifted to the right without reduction of the maximum effect. Endothelium-dependent relaxation was significantly attenuated by pretreatment with L-NAME, an inhibitor of the NO-synthase (NOS, indomethacin, an inhibitor of the cyclooxygenase, L-NAME + indomethacin, atropine, a nonselective antagonist of the muscarinic receptors, ODQ, selective inhibitor of the guanylyl cyclase enzyme, or hydroxocobalamin, a nitric oxide scavenger. The relaxation was completely reversed in the presence of L-NAME + 1 mM L-arginine or L-arginine, an NO precursor. Diterpene-induced relaxation was not affected by TEA, a nonselective inhibitor of K+ channels. The KA-acetoxy antagonized CaCl2-induced contractions in a concentration-dependent manner and also inhibited an 80 mM KCl-induced contraction. The KA-acetoxy did not interfere with Ca2+ release from intracellular stores. The vasorelaxant induced by KA-acetoxy seems to involve the inhibition of the Ca2+ influx and also, at least in part, by endothelial muscarinic receptors activation, NO and PGI2 release.

  5. The ent-15α-Acetoxykaur-16-en-19-oic Acid Relaxes Rat Artery Mesenteric Superior via Endothelium-Dependent and Endothelium-Independent Mechanisms

    Science.gov (United States)

    Ribeiro, Êurica Adélia Nogueira; Herculano, Edla de Azevedo; da Costa, Cintia Danieli Ferreira; Furtado, Fabiola Fialho; da-Cunha, Emídio Vasconcelos Leitão; Barbosa-Filho, José Maria; da Silva, Marcelo Sobral; de Medeiros, Isac Almeida

    2012-01-01

    The objective of the study was to investigate the mechanism of the relaxant activity of the ent-15α-acetoxykaur-16-en-19-oic acid (KA-acetoxy). In rat mesenteric artery rings, KA-acetoxy induced a concentration-dependent relaxation in vessels precontracted with phenylephrine. In the absence of endothelium, the vasorelaxation was significantly shifted to the right without reduction of the maximum effect. Endothelium-dependent relaxation was significantly attenuated by pretreatment with L-NAME, an inhibitor of the NO-synthase (NOS), indomethacin, an inhibitor of the cyclooxygenase, L-NAME + indomethacin, atropine, a nonselective antagonist of the muscarinic receptors, ODQ, selective inhibitor of the guanylyl cyclase enzyme, or hydroxocobalamin, a nitric oxide scavenger. The relaxation was completely reversed in the presence of L-NAME + 1 mM L-arginine or L-arginine, an NO precursor. Diterpene-induced relaxation was not affected by TEA, a nonselective inhibitor of K+ channels. The KA-acetoxy antagonized CaCl2-induced contractions in a concentration-dependent manner and also inhibited an 80 mM KCl-induced contraction. The KA-acetoxy did not interfere with Ca2+ release from intracellular stores. The vasorelaxant induced by KA-acetoxy seems to involve the inhibition of the Ca2+ influx and also, at least in part, by endothelial muscarinic receptors activation, NO and PGI2 release. PMID:23346202

  6. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  7. Roll stability catastrophe mechanism of a flooded ship on regular sea waves

    International Nuclear Information System (INIS)

    Based on a typical one-free-degree ship roll motion equation, the cusp catastrophe model is built including the bifurcation set equation, splitting factor ‘u’ and regular factor ‘v’, where both ‘u’ and ‘v’ are further expressed with typical flooded ship parameters. Then, the roll catastrophe mechanism is analyzed mainly by means ‘u’, under the given parameters of a typical trawler boat. The aim of this research is to reveal the mutagenic mechanism of the roll stability and provide a reference for improving ship roll stability. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Reversal of segmental hypokinesis by coronary angioplasty in patients with unstable angina, persistent T wave inversion, and left anterior descending coronary artery stenosis. Additional evidence for myocardial stunning in humans

    International Nuclear Information System (INIS)

    To evaluate the significance of persistent negative T waves during severe ischemia, we prospectively studied 62 patients admitted for unstable angina without evidence of recent or ongoing myocardial infarction. A critical stenosis on the left anterior descending coronary artery (LAD), considered as the culprit lesion, was successfully treated by percutaneous transluminal coronary angioplasty (PTCA). The patients were divided into two groups according to the admission electrocardiogram: T NEG group (n = 32) had persistent negative T waves, and the T POS group (n = 30) had normal positive T waves on precordial leads. The two groups had similar baseline clinical, hemodynamic, and angiographic characteristics. All patients underwent a complete clinical and angiographic evaluation (coronary arteriography and left ventriculography) before undergoing PTCA and 8 +/- 3 months later. Left ventricular anterior wall motion was evaluated by the percent shortening of three areas (S1, S2, and S3) considered as LAD-related segments on left ventriculograms. Before PTCA, there was no significant difference in global ejection fraction between the two groups despite a significant depression in anterior mean percent area shortening in the T NEG compared with the T POS group (S1, 44 versus 54, p less than 0.01; S2, 39 versus 48, p less than 0.01; S3, 44 versus 50, NS). At repeated angiography, the anterior mean percent area shortening improved significantly in the T NEG group (S1, from 44 to 61, p less than 0.001; S2, from 39 to 58, p less than 0.001; S3, from 44 to 61, p less than 0.001)

  9. Skull Flexure from Blast Waves: A New Mechanism for Brain Injury with Implications for Helmet Design

    CERN Document Server

    Moss, William C; Blackman, Eric G

    2008-01-01

    Traumatic brain injury [TBI] has become the signature injury of current military conflicts. The debilitating effects of TBI on society are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various mechanisms, including impacts caused by the blast, have been investigated, but blast-induced deformation of the skull has been neglected. Through the use of hydrodynamical numerical simulations, we have discovered that non-lethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. This mechanism has implications for the diagnosis of TBI in soldiers and the design of protective equipment such as helmets.

  10. Determination of arterial wall shear stress

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The arteries can remodel their structure and function to adapt themselves to the mechanical environment. In various factors that lead to vascular remodeling, the shear stress on the arterial wall induced by the blood flow is of great importance. However, there are many technique difficulties in measuring the wall shear stress directly at present. In this paper, through analyzing the pulsatile blood flow in arteries, a method has been proposed that can determine the wall shear stress quantitatively by measuring the velocity on the arterial axis, and that provides a necessary means to discuss the influence of arterial wall shear stress on vascular remodeling.

  11. Relaxation to bradykinin in bovine pulmonary supernumerary arteries can be mediated by both a nitric oxide-dependent and -independent mechanism

    Science.gov (United States)

    Tracey, A; Bunton, D; Irvine, J; MacDonald, A; Shaw, A M

    2002-01-01

    The aim of the present study was to determine the relative contribution of prostanoids, nitric oxide and K+ channels in the bradykinin-induced relaxation of bovine pulmonary supernumerary arteries. In endothelium-intact, but not denuded rings, bradykinin produced a concentration-dependent relaxation (pEC50, 9.6±0.1), which was unaffected by the cyclo-oxygenase inhibitor indomethacin. The nitric oxide scavenger hydroxocobalamin (200 μM, pEC50, 8.5±0.2) and the nitric oxide synthase inhibitor L-NAME (100 μM, pEC50, 8.9±0.1) and the combination of L-NAME and hydroxocobalamin (pEC50, 8.1±0.2) produced rightward shifts in the bradykinin concentration response curve. The guanylyl cyclase inhibitor ODQ (10 μM, pEC50, 9.6±0.4) did not affect the response to bradykinin. Elevating the extracellular [K+] to 30 mM did not affect the response to bradykinin but abolished the response when ODQ or L-NAME was present. The K+ channel blocker apamin (100 nM), combined with charybdotoxin (100 nM), produced a small reduction in the maximum response to bradykinin but they abolished the response to bradykinin when ODQ, L-NAME or hydroxocobalamin were present. Apamin (100 nM) combined with iberiotoxin (100 nM) also reduced the response to bradykinin in the presence of hydroxocobalamin or L-NAME. The concentration response curve for sodium nitroprusside-induced relaxation was abolished by ODQ (10 μM) and shifted to the right by apamin and charybdotoxin. These studies suggest that in bovine pulmonary supernumerary arteries bradykinin can stimulate the formation of nitric oxide and activate an EDHF-like mechanism and that either of these pathways alone can mediate the bradykinin-induced relaxation. In addition nitric oxide, acting through guanylyl cyclase, can activate an apamin/charbydotoxin-sensitive K+ channel in this tissue. PMID:12359636

  12. Surface-wave mechanism of subwavelength imaging by a flat left-handed superlens

    International Nuclear Information System (INIS)

    We develop a theory describing the dynamics and interaction of electromagnetic surface waves (ESWs) resonantly excited by an external source in a slab of left-handed material (LHM) with identical negative (equal to -1) values of dielectric permittivity and magnetic permeability that makes up a so-called perfect lens, or a superlens. We show that subwavelength imaging by a superlens is associated with the degeneracy of the spectrum of eigen electromagnetic surface modes at the interfaces of the metamaterial slab, whereas the dynamic response of the superlens is completely determined by the dynamics of these modes and the dispersion properties of the metamaterial. We obtain conditions that enable one to find out when a superlens produces subwavelength images of an external source. We consider the cases of a stationary and a pulse source, as well as of a source that moves with constant velocity or oscillates in space.

  13. Surface-wave mechanism of subwavelength imaging by a flat left-handed superlens

    Science.gov (United States)

    Zharov, A. A.; Zharova, N. A.; Noskov, R. E.

    2009-11-01

    We develop a theory describing the dynamics and interaction of electromagnetic surface waves (ESWs) resonantly excited by an external source in a slab of left-handed material (LHM) with identical negative (equal to -1) values of dielectric permittivity and magnetic permeability that makes up a so-called perfect lens, or a superlens. We show that subwavelength imaging by a superlens is associated with the degeneracy of the spectrum of eigen electromagnetic surface modes at the interfaces of the metamaterial slab, whereas the dynamic response of the superlens is completely determined by the dynamics of these modes and the dispersion properties of the metamaterial. We obtain conditions that enable one to find out when a superlens produces subwavelength images of an external source. We consider the cases of a stationary and a pulse source, as well as of a source that moves with constant velocity or oscillates in space.

  14. Statistical mechanics of nonlinear wave equations. 3. Metric transitivity for hyperbolic sine-gordon

    Science.gov (United States)

    McKean, H. P.

    1995-05-01

    McKean and Vaninsky proved that the canonical measure e - H d ∞ Q d ∞ P based upon the HamiltonianH = int [tfrac{1}{2}P^2 + tfrac{1}{2}(Q')^2 + F(Q)]dx of the wave equation ∂2 Q/∂ t 2 - ∂2 Q/∂ x 2 + f( Q) = 0 with restoring force f(Q)=F'(Q) is preserved by the associated flow of Q and P = Q ṡ, and they conjectured that metric transitivity prevails, always on the whole line, and likewise on the circle unless f(Q)=Q or f(Q)=sh Q. Here, the metric transitivity is proved for the whole line in the second case. The proof employs the beautiful "d'Alembert formula" of Krichever.

  15. Direct path from microscopic mechanics to Debye shielding, Landau damping, and wave-particle interaction

    CERN Document Server

    Escande, Dominique F; Doveil, Fabrice

    2014-01-01

    The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas is performed directly by using Newton's second law for the $N$-body system. This is done in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons, in such a way that each particle is shielded by all other ones while keeping in uninterrupted motion.

  16. Direct path from microscopic mechanics to Debye shielding, Landau damping and wave-particle interaction

    Science.gov (United States)

    Escande, D. F.; Elskens, Yves; Doveil, F.

    2015-02-01

    The derivation of Debye shielding and Landau damping from the N-body description of plasmas is performed directly by using Newton’s second law for the N-body system. This is done in a few steps with elementary calculations using standard tools of calculus and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. On top of their well-known production of collisional transport, the repulsive deflections of electrons are shown to produce shielding, in such a way that each particle is shielded by all other ones, while keeping in uninterrupted motion.

  17. Mechanical Yielding and Strength Behaviour of OFHC Copper in Planar Shock Waves

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-Nian; FAN Chun-Lei; HU Jin-Wei; WU Shan-Xing; WANG Huan-Ran; TAN Hua; YU Yu-Ying

    2007-01-01

    It is necessary to study the validation of strength models under planar shock loading in view of the fact that strength models for metals obtained at moderate strain rates are often used in the numerical simulations of shock wave phenomena. The variations of longitudinal stress, transverse stress and yield strength of oxygen-free high conductance (OFHC) copper with time under planar shock loading are obtained by using the manganin stress gauges and compared with the predicted results by the constructed seven constitutive models based on Y/G=constant and on G/B=constant (Y the yield strength, G the shear modulus, B the bulk modulus), respectively. It seems that the pressure, density, temperature and plastic strain dependence of the yield strength for OFHC copper under planar shock loading is essential to the constitutive description.

  18. Influence of roughness on the detection of mechanical characteristics of low-k film by the surface acoustic waves

    International Nuclear Information System (INIS)

    The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical characteristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is investigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black Diamond™ samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films. (condensed matter: structural, mechanical, and thermal properties)

  19. Assessment of conduit artery vasomotion using photoplethysmography

    Science.gov (United States)

    Kanders, Karlis; Grabovskis, Andris; Marcinkevics, Zbignevs; Aivars, Juris Imants

    2013-11-01

    Vasomotion is a spontaneous oscillation of vascular tone. The phenomenon has been observed in small arterioles and capillaries as well as in the large conduit arteries. The layer of smooth muscle cells that surrounds a blood vessel can spontaneously and periodically change its tension and thereby the arterial wall stiffness also changes. As the understanding of the phenomenon is still rather obscure, researchers would benefit from a low-cost and reliable investigation technique such as photoplethysmography (PPG). PPG is an optical blood pulsation measurement technique that can offer substantial information about the arterial stiffness. The aims of this pilot study were to evaluate the usefulness of the PPG technique in the research of vasomotion and to investigate vasomotion in the relatively large conduit arteries. Continuous 15 minute long measurements of posterior tibial artery wall stiffness were taken. Artery diameter, electrocardiogram, blood pressure and respiration were also simultaneously registered. Fast Fourier Transform power spectra were calculated to identify unique stiffness oscillations that did not correspond to fluctuations in the systemic parameters and thus would indicate vasomotion. We concluded that photoplethysmography is a convenient method for the research of the vasomotion in large arteries. Local stiffness parameter b/a is more accurate to use and easier to measure than the pulse wave velocity which describes stiffness of a segment of an artery. Conduit arteries might exhibit a low amplitude high frequency vasomotion ( 9 to 27 cycles per minute). Low frequency vasomotion is problematic to distinguish from the passive oscillations imposed by the arterial pressure.

  20. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-14

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts. The debilitating effects of TBI are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various possibilities have been investigated, but blast-induced deformation of the skull has been neglected. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. The possibility that this mechanism may contribute to TBI has implications for the diagnosis of soldiers and the design of protective equipment such as helmets.

  1. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther;

    2015-01-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett.97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found...... reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics....

  2. Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields

    Science.gov (United States)

    Smirnov, I. N.; Speranskiy, A. A.

    2015-11-01

    It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.

  3. On the coronal heating mechanism by the resonant absorption of Alfven waves

    Directory of Open Access Journals (Sweden)

    H. Y. Alkahby

    1993-12-01

    Full Text Available In this paper, we will investigate the heating of the solar corona by the resonant absorption of Alfven waves in a viscous and isothermal atmosphere permeated by a horizontal magnetic field. It is shown that if the viscosity dominates the motion in a high (low- β plasma, it creates an absorbing and reflecting layer and the heating process is acoustic (magnetoacoustic. When the magnetic field dominates the oscillatory process it creates a non-absorbing reflecting layer. Consequently, the heating process is magnetohydrodynamic. An equation for resonance is derived. It shows that resonances may occur for many values of the frequency and of the magnetic field if the wavelength is matched with the strength of the magnetic field. At the resonance frequencies, magnetic and kinetic energies will increase to very large values which may account for the heating process. When the motion is dominated by the combined effects of the viscosity and the magnetic field, the nature of the reflecting layer and the magnitude of the reflection coefficient depend on the relative strengths of the magnetic field and the viscosity.

  4. 25-Hydroxyvitamin D status, arterial stiffness and the renin-angiotensin system in healthy humans.

    Science.gov (United States)

    Abdi-Ali, Ahmed; Nicholl, David D M; Hemmelgarn, Brenda R; MacRae, Jennifer M; Sola, Darlene Y; Ahmed, Sofia B

    2014-01-01

    Vitamin D deficiency is associated with increased arterial stiffness. We sought to clarify the influence of vitamin D in modulating angiotensin II-dependent arterial stiffness. Thirty-six healthy subjects (33 ± 2 years, 67% female, mean 25-hydroxyvitamin D 69 ± 4 nmol/L) were studied in high salt balance. Arterial stiffness, expressed as brachial pulse wave velocity (bPWV) and aortic augmentation index (AIx), was measured by tonometry at baseline and in response to angiotensin II infusion (3 ng/kg/min × 30 min then 6 ng/kg/min × 30 min). The primary outcome was change in bPWV after an angiotensin II challenge. Results were analyzed according to plasma 25-hydroxyvitamin D status: deficient (nmol/L) and sufficient (≥ 50 nmol/L). There were no differences in baseline arterial stiffness between vitamin D deficient (25-hydroxyvitamin D 40 ± 2 nmol/L) and sufficient (25-hydroxyvitamin D 80 ± 4 nmol/L) groups. Compared with sufficient vitamin D status, vitamin D deficiency was associated with a decreased arterial response to angiotensin II challenge (Δbrachial pulse wave velocity: 0.48 ± 0.44 m/s versus 1.95 ± 0.22 m/s, p=0.004; Δaortic augmentation index: 9.4 ± 3.4% versus 14.2 ± 2.7%, p=0.3), which persisted for brachial pulse wave velocity response after adjustment for covariates (p=0.03). Vitamin D deficiency is associated with increased arterial stiffness in healthy humans, possibly through an angiotensin II-dependent mechanism. PMID:24164282

  5. Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas

    CERN Document Server

    Dolgov, A; Rachimova, T; Kovalev, A; Vasilyeva, A; Lee, C J; Krivtsun, V M; Yakushev, O; Bijkerk, F

    2013-01-01

    Cleaning of contamination of optical surfaces by amorphous carbon (a-C) is highly relevant for extreme ultraviolet (EUV) lithography. We have studied the mechanisms for a-C removal from a Si surface. By comparing a-C removal in a surface wave discharge (SWD) plasma and an EUV-induced plasma, the cleaning mechanisms for hydrogen and helium gas environments were determined. The C-atom removal per incident ion was estimated for different sample bias voltages and ion fluxes. It was found that H2 plasmas generally had higher cleaning rates than He plasmas: up to seven times higher for more negatively biased samples in EUV induced plasma. Moreover, for H2, EUV induced plasma was found to be 2-3 times more efficient at removing carbon than the SWD plasma. It was observed carbon removal during exposure to He is due to physical sputtering by He+ ions. In H2, on the other hand, the increase in carbon removal rates is due to chemical sputtering. This is a new C cleaning mechanism for EUV-induced plasma, which we call "E...

  6. Influence of roughness on the detection of mechanical characteristics of low-k film by the surface acoustic waves

    Science.gov (United States)

    Xiao, Xia; Tao, Ye; Sun, Yuan

    2014-10-01

    The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical characteristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is investigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black Diamond™ samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.

  7. Development of a Wave Energy -Responsive Self-Actuated Blade Articulation Mechanism for an OWC Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Francis A. Di Bella

    2010-06-01

    The Phase I SBIR effort completed the feasibility design, fabrication, and wind tunnel testing of a self-actuated blade articulation mechanism that uses a torsion bar and a lightweight airfoil to affect the articulation of the Wells airfoil. The articulation is affected only by the air stream incident on the airfoil. The self-actuating blade eliminates the complex and costly linkage mechanism that is now needed to perform this function on either a variable pitch Wells-type or Dennis-Auld air turbine. Using the results reported by independent researchers, the projected improvement in the Wells-type turbine efficiency is 20-40%, in addition to an increase in the operating air flow range by 50-100%, therefore enabling a smaller or slower single turbine to be used.

  8. Double Solution with Chaos Completion of de Broglie's Nonlinear Wave Mechanics and Its Intrinsic Unification with the Causally Extended Relativity

    CERN Document Server

    Kirilyuk, A P

    1999-01-01

    As was shown previously, a simple system of interacting electromagnetic and gravitational protofields with generic parameters shows intrinsic instability with respect to unceasing cycles of physically real auto-squeeze (reduction) to randomly chosen centres and the reverse extension which form the causally probabilistic process of quantum beat observed as an elementary particle (like electron). Here we show that the emerging wave-particle duality, space, and time lead to the well-known equations of special relativity and quantum mechanics thus providing their causal extension and intrinsic unification. The relativistic inertial mass (energy) is universally defined as the temporal rate (intensity) of the chaotic quantum beat process(es). The same complex-dynamical processes and the same mass-energy account for the universal gravitation, since any reduction event in the electromagnetic protofield is reproduced within the (directly unobservable) gravitational protofield leading to an increase of its tension whic...

  9. The Arabidopsis Wave Complex: Mechanisms Of Localized Actin Polymerization And Growth

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Szymanski

    2012-10-23

    The objective of this project was to discover the protein complexes and control mechanisms that determine the location of actin filament roadways in plant cells. Our work provided the first molecular description of protein complexes that are converted from inactive complexes to active actin filament nucleators in the cell. These discoveries provided a conceptual framework to control to roadways in plant cells that determine the location and delivery of plant metabolites and storage molecules that are relevant to the bioenergy economy.

  10. Model of arterial tree and peripheral control for the study of physiological and assisted circulation.

    Science.gov (United States)

    Lanzarone, E; Liani, P; Baselli, G; Costantino, M L

    2007-06-01

    Peripheral vasomotion, interstitial liquid exchange, and cardiovascular system behaviour are investigated by means of a lumped parameter model of the systemic and peripheral circulation, from the aortic valve to the venules. This modelling work aims at combining arterial tree hemodynamics description, active peripheral flow regulation, and fluid exchange. The arterial compartment is constructed with 63 RCL segments and 30 peripheral districts including myogenic control on arterioles, metabolic control on venules, and Starling filtration through capillary membrane. The arterial behaviour is characterised as to the long term stability of pressure/flow waves in the different segments. Peripheral districts show autoregulatory capabilities against pressure changes over a wide range and also self-sustained oscillations mimicking vasomotor activity. A preliminary study was carried out as to the model response to changes induced by cardiopulmonary bypass (CPB). Among the induced alterations, the system responds mainly to hemodilution, which increased peripheral fluid loss and oedema beyond the compensatory capabilities of local regulation mechanisms. This resulted in an overall increase total arterial resistance. Local transport deficits were assessed for each district according to the different metabolic demand. This study shows the requirement of a suitable description of both arteries and peripheral mechanisms in order to describe cardiovascular response non-physiological conditions, as well as assisted circulation or other pathological conditions. PMID:17011809

  11. Causal wave mechanics and the advent of complexity; 3, universal structure of complexity

    CERN Document Server

    Kirilyuk, A P

    1995-01-01

    The fundamental dynamic uncertainty, introduced and studied in parts I and II of this series of papers, is further specified to reveal several hierarchical levels of dynamic complexity including the basic fractal structure of realisations of a problem and thus of the observable quantities. The results of the dynamic chaos analysis in Hamiltonian quantum systems, parts I-III, are then subjected to discussion and generalisation. The physical origins of the dynamic uncertainty are analysed from various points of view. The basic consequences, involving significant extension of the conventional quantum mechanics, are summarised. The relations to other approaches to quantum chaos description are outlined. Finally we introduce and briefly discuss the universal notions of fundamental multivaluedness, causal randomness, intrinsic probability, (non)integrability, general solution, and physical complexity supposed to be applicable to dynamical systems of any kind.

  12. The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect.

    Science.gov (United States)

    Ma, Zhichao; Guo, Jinhong; Liu, Yan Jun; Ai, Ye

    2015-09-01

    In this study, we present a simple technique capable of assembling and patterning suspended CNTs using a standing surface acoustic wave (SSAW) field. Individual CNTs could be assembled into larger CNT bundles and patterned in periodic positions on a substrate surface. The mechanism of the SSAW-based patterning technique has been investigated using both numerical simulation and experimental study. It has been found that the acoustic radiation effect due to the acoustic pressure field and the dielectrophoretic (DEP) effect induced by the electric field co-existing in the patterning process however play different roles depending on the properties of the suspended particles and the suspension medium. In the SSAW-based patterning of highly conductive CNTs with high aspect ratio geometry, the positive DEP effect dominates over the acoustic radiation effect. In contrast, the acoustic radiation effect dominates over the DEP effect when manipulating less conductive, spherical or low aspect ratio particles or biological cells. These results provide a meaningful insight into the mechanism of SSAW-based patterning, which is of great help to guide the effective use of this patterning technique for various applications. PMID:26239679

  13. Continuity and completeness in physical theory: Schroedinger's return to the wave interpretation of quantum mechanics in the 1950's

    International Nuclear Information System (INIS)

    In the 50s, Schroedinger proposed a new conception of a continuous theory of Quantum Mechanics, which remarkably modified his 1926 ideas on ondulatory mechanics. The lack of individuality of the atomic particles presented in the new statistics, and in Heisenberg's Indeterminacy Relations, was by him considered as an aspect of a more general crisis in the anthology itself of classical atomism. Unlike his 1926 ideas, he proposed now to represent the wave equation in an n-dimensional space and he considered second-quantization technique as the proper mathematical tool for his new physical conception. Although he accepted that space-time discontinuities and casual gaps may appear here and there on the observational level (e.g. in the Indeterminacy Relations), he was convinced that they could be made compatible with a continuous pure theory, provided one accepted a suitable conception of the theory's epistemiological status. For him, only a continuous theory satisfied the conditions for a complete theory. On these matters, he thought he was somehow orthodox to the ideas of Hertz and Boltzmann, which were also reflected in the teaching of Exner. (author). 69 refs

  14. Influence of mountain waves and NAT nucleation mechanisms on Polar Stratospheric Cloud formation at local and synoptic scales during the 1999–2000 Arctic winter

    Directory of Open Access Journals (Sweden)

    E. V. Browell

    2004-08-01

    Full Text Available A scheme for introducing mountain wave-induced temperature pertubations in a microphysical PSC model has been developed. A data set of temperature fluctuations attributable to mountain waves as computed by the Mountain Wave Forecast Model (MWFM-2 has been used for the study. The PSC model has variable microphysics, enabling different nucleation mechanisms for nitric acid trihydrate, NAT, to be employed. In particular, the difference between the formation of NAT and ice particles in a scenario where NAT formation is not dependent on preexisting ice particles, allowing NAT to form at temperatures above the ice frost point, Tice, and a scenario, where NAT nucleation is dependent on preexisting ice particles, is examined. The performance of the microphysical model in the different microphysical scenarios and a number of temperature scenarios with and without the influence of mountain waves is tested through comparisons with lidar measurements of PSCs made from the NASA DC-8 on 23 and 25 January during the SOLVE/THESEO 2000 campaign in the 1999–2000 winter and the effect of mountain waves on local PSC production is evaluated in the different microphysical scenarios. Mountain wave-induced temperature fluctuations are introduced in vortex-covering model runs, extending the full 1999–2000 winter season, and the effect of mountain waves on large-scale PSC production is estimated in the different microphysical scenarios.

  15. Carotid Artery Disease

    Science.gov (United States)

    ... brain with blood. If you have carotid artery disease, the arteries become narrow, usually because of atherosclerosis. ... one of the causes of stroke. Carotid artery disease often does not cause symptoms, but there are ...

  16. Mesenteric artery ischemia

    Science.gov (United States)

    Mesenteric artery ischemia occurs when there is a narrowing or blockage of one or more of the three major arteries that ... that supply blood to the intestine causes mesenteric ischemia. The arteries that supply blood to the intestines ...

  17. Relativistic aspects of scalar fields (on some bases of wave mechanisms)

    International Nuclear Information System (INIS)

    In this work, first we establish the general law of a scalar field transformation (in R or C) when we change of inertial frame, independently of any physical meaning associated to this field. Intuitively, if psi (r vector,t) is a field ''seen'' from the frame (R), we write the expression psi'(r'vector,t') which belong to the same field but ''seen'' from the frame (R') ((R) having the speed v vector in relation to (R')). For that, we use exclusively symmetry axioms of space-time-field. 1) In galilean theory we find the law: psi'(r'vector,t') = psi (r vector,t) exp id(v vector r vector + 1/2 v2t) with ral constant. Then, we show that Schroedinger equation, de Broglie formula lambda=h/p and the interpretation α=m/h are natural consequences of this law and of the least action principle. So in a strictly galilean framework we are led to a new vision of some basis of the quantum mechanics. We conclude on the epistemological interest of such a procedure by comparing it with some historical and conceptual aspects of special relativity and electromagnetism. 2) In einsteinian theory we find the law: psi'(r'vector,t') = psi(r vector,t) exp idc [v vector/v.r vector shω+(chω-1)ct]. with ω=argtanh v/c. Then, a similar way to 1) led to an equivalent equation to Klein-Gordon's

  18. Heme oxygenase-1 in cholecystokinin-octapeptipe attenuated injury of pulmonary artery smooth muscle cells induced by lipopolysaccharide and its signal transduction mechanism

    Institute of Scientific and Technical Information of China (English)

    Xin-Li Huang; Yi-Ling Ling; Yi-Qun Ling; Jun-Lin Zhou; Yah Liu; Qiu-Hong Wang

    2004-01-01

    AIM: To study the effect of cholecystokinin-octapeptide (CCK-8) on lipopolysaccharide (LPS) -induced pulmonary artery smooth muscle cell (PASMCs) injury and the role of heme oxygenase-1 (HO-1), and to explore the regulation mechanism of c-Jun N-terminal kinase (JNK) and activator protein-L (AP-1) signal transduction pathway in inducing HO-1 expression further.METHODS: Cultured PASMCs were randomly divided into 4 or 6 groups: normal culture group, LPS (10 mg/L), CCK-8(10-6 mol/L) plus LPS (10 mg/L) group, CCK-8 (10-6 mol/L)group, zinc protoporphyrin 9 (ZnPPIX) (10-6 mol/L) plus LPS (10 mg/L) group, CCK-8 (10-6 mol/L) plus ZnPPIX and LPS (10 mg/L) group. Seven hours after LPS administration,ulterstructrual changes and content of malondialdehyde (MDA) of PASMCs in each group were investigated by electron microscopy and biochemical assay respectively.HO-1 mRNA and protein of PASMCs in the former4 groups were examined by reverse transcriptase polymerase chain reaction (RT-PCR) and immunocytochemistry staining.Changes of c-fos expression and activation of JNK of PASMCs in the former 4 groups were detected with immunocytochemistry staining and Western blot 30 min after LPS administration.RESULTS: The injuries of PASMCs and the increases of MDA content induced by LPS were alleviated and significantly reduced by CCK-8 (P<0.05). The specific HO-1 inhibitorZnPPIX could worsen LPS-induced injuries and weaken the protective effect of CCK-8. The expressions of c-fos,p-JNK protein and HO-1 mRNA and protein were all slightly increased in LPS group, and significantly enhanced by CCK-8 further (P<0.05).CONCLUSION: HO-1 may be a key factor in CCK-8attenuated injuries of PASMCs induced by LPS, and HO-1expression may be related to the activation of JNK and activator protein (AP-1).

  19. 慢性肾功能不全颈动脉波强值的临床意义研究%Research of carotid artery wave intensity in chronic renal insufficiency and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    黄秀娟; 陈文卫; 孙彬; 黄文理

    2012-01-01

    目的:研究慢性肾功能不全(CRI)患者颈动脉波强值的变化及其临床意义,探讨波强技术对CRI患者心血管功能变化早期诊断的价值.材料和方法:对32例CRI患者及与之相匹配的无心血管疾病的志愿者进行波强检查,并对波强检查结果进行统计比较和相关性分析.结果:CRI患者波强值与患者年龄、血压呈正相关,相关系数有统计学意义(P<0.05),CRI患者颈动脉窦部及窦下2 cm处中内膜厚度高于正常组,差异有显著统计学意义(P<0.01).CRI患者瞬时加速波强(W1)、瞬时减速波强(W2)、负向波面积(NA)、硬化参数(β)、应变弹性模量(Ep)及脉搏波传导速度(PWVβ)均显著高于正常组,差异有统计学意义(P<0.05).结论:波强作为一种无创性心血管检查的新方法,能在血管壁出现器质性改变之前反映CRI患者心脏以及血管功能的变化,值得在临床上推广应用.%Objective: To study the changes and clinical significance of carotid artery wave intensity (WI) in patients with chronic renal insufficiency (CRI), and to assess the value of which to the early diagnosis of the changes in cardiovascular function. Materials and Methods: WI examination were carried out in 32 cases of chronic renal insufficiency and also in 36 cases of age matching volunteers without cardiovascular diseases. WI results were compared between the two groups, statistical analysis performed with SPSS 17.0. Results: The results of WI were positively related to age and blood pressure in chronic renal insufficiency group. The correlation coefficient was statistically significant(P<0.05). The thickness of tunica media and in-tima at the carotid sinus and 2 cm below the sinus in chronic renal insufficiency group were thicker than those of the normal volunteer group, there was significant difference between the two groups (P<0.01). The instantaneous accelerate speed wave in-tensity(Wl), instantaneous reducing speed wave intensity(W2

  20. Fourth year report on Edinburgh Wave Power Project 'studies of mechanisms for extracting power from sea waves'. Vol. 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey, D.C.; Keller, G.J.; Mollison, D.; Richmond, D.J.E.; Salter, S.H.; Taylor, J.R.M.; Young, I.A.

    1978-07-01

    A progress report is given on the research and development programme into the wave energy converters known as ducks. The behaviour of the duck mountings has been explored as a function of their compliance. The building and use of a wide tank for testing models in random seas are reported. Milestones for future work are suggested.

  1. Quantified Mechanical Properties of the Deltoid Muscle Using the Shear Wave Elastography: Potential Implications for Reverse Shoulder Arthroplasty

    Science.gov (United States)

    Hatta, Taku; Giambini, Hugo; Sukegawa, Koji; Yamanaka, Yoshiaki; Sperling, John W.; Steinmann, Scott P.; Itoi, Eiji; An, Kai-Nan

    2016-01-01

    The deltoid muscle plays a critical role in the biomechanics of shoulders undergoing reverse shoulder arthroplasty (RSA). However, both pre- and postoperative assessment of the deltoid muscle quality still remains challenging. The purposes of this study were to establish a novel methodology of shear wave elastography (SWE) to quantify the mechanical properties of the deltoid muscle, and to investigate the reliability of this technique using cadaveric shoulders for the purpose of RSA. Eight fresh-frozen cadaveric shoulders were obtained. The deltoid muscles were divided into 5 segments (A1, A2, M, P1 and P2) according to the muscle fiber orientation and SWE values were measured for each segment. Intra- and inter-observer reliability was evaluated using intraclass correlation coefficient (ICC). To measure the response of muscle tension during RSA, the humeral shaft was osteotomized and subsequently elongated by an external fixator (intact to 15 mm elongation). SWE of the deltoid muscle was measured under each stretch condition. Intra- and inter-observer reliability of SWE measurements for all regions showed 0.761–0.963 and 0.718–0.947 for ICC(2,1). Especially, SWE measurements for segments A2 and M presented satisfactory repeatability. Elongated deltoid muscles by the external fixator showed a progressive increase in passive stiffness for all muscular segments. Especially, SWE outcomes of segments A2 and M reliably showed an exponential growth upon stretching (R2 = 0.558 and 0.593). Segmental measurements using SWE could be reliably and feasibly used to quantitatively assess the mechanical properties of the deltoid muscle, especially in the anterior and middle portions. This novel technique based on the anatomical features may provide helpful information of the deltoid muscle properties during treatment of RSA. PMID:27152934

  2. Development of High Precision Metal Micro-Electro-Mechanical-Systems Column for Portable Surface Acoustic Wave Gas Chromatograph

    Science.gov (United States)

    Iwaya, Takamitsu; Akao, Shingo; Sakamoto, Toshihiro; Tsuji, Toshihiro; Nakaso, Noritaka; Yamanaka, Kazushi

    2012-07-01

    In the field of environmental measurement and security, a portable gas chromatograph (GC) is required for the on-site analysis of multiple hazardous gases. Although the gas separation column has been downsized using micro-electro-mechanical-systems (MEMS) technology, an MEMS column made of silicon and glass still does not have sufficient robustness and a sufficiently low fabrication cost for a portable GC. In this study, we fabricated a robust and inexpensive high-precision metal MEMS column by combining diffusion-bonded etched stainless-steel plates with alignment evaluation using acoustic microscopy. The separation performance was evaluated using a desktop GC with a flame ionization detector and we achieved the high separation performance comparable to the best silicon MEMS column fabricated using a dynamic coating method. As an application, we fabricated a palm-size surface acoustic wave (SAW) GC combining this column with a ball SAW sensor and succeeded in separating and detecting a mixture of volatile organic compounds.

  3. Influence of mountain waves and NAT nucleation mechanisms on polar stratospheric cloud formation at local and synoptic scales during the 1999-2000 Arctic winter

    Directory of Open Access Journals (Sweden)

    S. H. Svendsen

    2005-01-01

    Full Text Available A scheme for introducing mountain wave-induced temperature pertubations in a microphysical PSC model has been developed. A data set of temperature fluctuations attributable to mountain waves as computed by the Mountain Wave Forecast Model (MWFM-2 has been used for the study. The PSC model has variable microphysics, enabling different nucleation mechanisms for nitric acid trihydrate, NAT, to be employed. In particular, the difference between the formation of NAT and ice particles in a scenario where NAT formation is not dependent on preexisting ice particles, allowing NAT to form at temperatures above the ice frost point, Tice, and a scenario, where NAT nucleation is dependent on preexisting ice particles, is examined. The performance of the microphysical model in the different microphysical scenarios and a number of temperature scenarios with and without the influence of mountain waves is tested through comparisons with lidar measurements of PSCs made from the NASA DC-8 on 23 and 25 January during the SOLVE/THESEO 2000 campaign in the 1999-2000 winter and the effect of mountain waves on local PSC production is evaluated in the different microphysical scenarios. Mountain waves are seen to have a pronounced effect on the amount of ice particles formed in the simulations. Quantitative comparisons of the amount of solids seen in the observations and the amount of solids produced in the simulations show the best correspondence when NAT formation is allowed to take place at temperatures above Tice. Mountain wave-induced temperature fluctuations are introduced in vortex-covering model runs, extending the full 1999-2000 winter season, and the effect of mountain waves on large-scale PSC production is estimated in the different microphysical scenarios. It is seen that regardless of the choice of microphysics ice particles only form as a consequence of mountain waves whereas NAT particles form readily as a consequence of the synoptic conditions alone if

  4. Aortic and carotid arterial stiffness and epigenetic regulator gene expression changes precede blood pressure rise in stroke-prone Dahl salt-sensitive hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Victoria L Herrera

    Full Text Available Multiple clinical studies show that arterial stiffness, measured as pulse wave velocity (PWV, precedes hypertension and is an independent predictor of hypertension end organ diseases including stroke, cardiovascular disease and chronic kidney disease. Risk factor studies for arterial stiffness implicate age, hypertension and sodium. However, causal mechanisms linking risk factor to arterial stiffness remain to be elucidated. Here, we studied the causal relationship of arterial stiffness and hypertension in the Na-induced, stroke-prone Dahl salt-sensitive (S hypertensive rat model, and analyzed putative molecular mechanisms. Stroke-prone and non-stroke-prone male and female rats were studied at 3- and 6-weeks of age for arterial stiffness (PWV, strain, blood pressure, vessel wall histology, and gene expression changes. Studies showed that increased left carotid and aortic arterial stiffness preceded hypertension, pulse pressure widening, and structural wall changes at the 6-week time-point. Instead, differential gene induction was detected implicating molecular-functional changes in extracellular matrix (ECM structural constituents, modifiers, cell adhesion, and matricellular proteins, as well as in endothelial function, apoptosis balance, and epigenetic regulators. Immunostaining testing histone modifiers Ep300, HDAC3, and PRMT5 levels confirmed carotid artery-upregulation in all three layers: endothelial, smooth muscle and adventitial cells. Our study recapitulates observations in humans that given salt-sensitivity, increased Na-intake induced arterial stiffness before hypertension, increased pulse pressure, and structural vessel wall changes. Differential gene expression changes associated with arterial stiffness suggest a molecular mechanism linking sodium to full-vessel wall response affecting gene-networks involved in vascular ECM structure-function, apoptosis balance, and epigenetic regulation.

  5. A Set-Up of 7 Laser Triangulation Sensors and a Draw-Wire Sensor for Measuring Relative Displacement of a Piston Rod Mechanical Lead-Through Transmission in an Offshore Wave Energy Converter on the Ocean Floor

    OpenAIRE

    E. Strömstedt; Svensson, O.; Leijon, M

    2012-01-01

    A concept for offshore wave energy conversion is being developed at the Swedish Centre for Renewable Electric Energy Conversion at Uppsala University in Sweden. The wave energy converter (WEC) in focus contains a piston rod mechanical lead-through transmission for transmitting the absorbed mechanical wave energy through the generator capsule wall while preventing seawater from entering the capsule. A set-up of 7 laser triangulation sensors has been installed inside the WEC to measure relative...

  6. Structured Tree Outflow Condition for Blood Flow in Arteries

    Science.gov (United States)

    Olufsen, Mette

    1998-11-01

    Modeling blood flow and especially propagation of the pulse wave in the systemic arteries is of interests to the medical society because of the significance of the dicrotic wave. The pulse wave propagating along the larger arteries is reflected because of tapering and branching of the vessels, as well as the peripheral resistance, which is mainly stemming from the smaller arteries and arterioles. In order to avoid artificial reflections it is important to determine a boundary condition, representing the smaller arteries and arterioles, which is physiologically correct. In this work we have proposed a boundary condition based on a structured tree model. The result will be compared both with other modeling approaches as well as with results from measurements of flow and pressure at a number of locations along the larger arteries. The model for the larger arteries is based on the axisymmetrical Navier Stokes equations where the blood is assumed Newtonian and incompressible and the vessels are tapering. In the structured tree the model is based on a linearization of the axisymmetrical Navier-Stokes equations. The reason for setting up a structured tree is that the smaller arteries consist of an almost binary tree. Furthermore, the role of the smaller arteries is to allow blood perfusion of specific tissues. This is done in a structured and optimal way such that the smaller arteries cover the tissue evenly using a minimization principle.

  7. Financial Rogue Waves

    International Nuclear Information System (INIS)

    We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black-Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.

  8. Financial Rogue Waves

    Science.gov (United States)

    Yan, Zhen-Ya

    2010-11-01

    We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black—Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.

  9. Reduced Mechanical Stretch Induces Enhanced Endothelin B Receptor-mediated Contractility via Activation of Focal Adhesion Kinase and Extra Cellular-regulated Kinase 1/2 in Cerebral Arteries from Rat

    DEFF Research Database (Denmark)

    Rasmussen, Marianne N P; Spray, Stine; Skovsted, Gry F;

    2016-01-01

    Cerebral ischaemia results in enhanced endothelin B (ETB ) receptor-mediated contraction and receptor protein expression in the affected cerebrovascular smooth muscle cells (SMC). Organ culture of cerebral arteries is a method to induce similar alterations in ETB receptor expression. We hypothesize......-mediated contractility via triggering of an early mechanosensitive signalling pathway involving ERK1/2 and FAK signalling. A mechanism likely to be an initiating factor for the increased ETB receptor-mediated contractility found after cerebral ischaemia. This article is protected by copyright. All rights reserved....

  10. The role of endothelium in postradiation modification of alpha-adrenergic regulation mechanism of tone of arterial vessels at early stage of ontogenesis

    International Nuclear Information System (INIS)

    Immature male rats were exposed to acute irradiation (dose rate 9*10-4 Gy/s) and chronic irradiation (dose rate 2.3*10-7 Gy/s). Investigations were made on 10, 30 and 90th days after irradiation. The analysis of results showed that postradiation changes of alpha-adrenergic regulation of tone of arterial vessels lie in modification of sensitiveness and density of receptor structures and activity of synthesis process of endotheliomal NO

  11. Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study

    Science.gov (United States)

    Li, Ronny X.; Luo, Jianwen; Balaram, Sandhya K.; Chaudhry, Farooq A.; Shahmirzadi, Danial; Konofagou, Elisa E.

    2013-07-01

    Arterial stiffness is a well-established biomarker for cardiovascular risk, especially in the case of hypertension. The progressive stages of an abdominal aortic aneurysm (AAA) have also been associated with varying arterial stiffness. Pulse wave imaging (PWI) is a noninvasive, ultrasound imaging-based technique that uses the pulse wave-induced arterial wall motion to map the propagation of the pulse wave and measure the regional pulse wave velocity (PWV) as an index of arterial stiffness. In this study, the clinical feasibility of PWI was evaluated in normal, hypertensive, and aneurysmal human aortas. Radiofrequency-based speckle tracking was used to estimate the pulse wave-induced displacements in the abdominal aortic walls of normal (N = 15, mean age 32.5 ± 10.2 years), hypertensive (N = 13, mean age 60.8 ± 15.8 years), and aneurysmal (N = 5, mean age 71.6 ± 11.8 years) human subjects. Linear regression of the spatio-temporal variation of the displacement waveform in the anterior aortic wall over a single cardiac cycle yielded the slope as the PWV and the coefficient of determination r2 as an approximate measure of the pulse wave propagation uniformity. The aortic PWV measurements in all normal, hypertensive, and AAA subjects were 6.03 ± 1.68, 6.69 ± 2.80, and 10.54 ± 6.52 m s-1, respectively. There was no significant difference (p = 0.15) between the PWVs of the normal and hypertensive subjects while the PWVs of the AAA subjects were significantly higher (p pathologies that regionally alter the arterial wall mechanics.

  12. Does Preinterventional Flat-Panel Computer Tomography Pooled Blood Volume Mapping Predict Final Infarct Volume After Mechanical Thrombectomy in Acute Cerebral Artery Occlusion?

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Marlies, E-mail: marlies.wagner@kgu.de [Hospital of Goethe University, Institute of Neuroradiology (Germany); Kyriakou, Yiannis, E-mail: yiannis.kyriakou@siemens.com [Siemens AG, Health Care Sector (Germany); Mesnil de Rochemont, Richard du, E-mail: mesnil@em.uni-frankfurt.de [Hospital of Goethe University, Institute of Neuroradiology (Germany); Singer, Oliver C., E-mail: o.singer@em.uni-frankfurt.de [Hospital of Goethe University, Department of Neurology (Germany); Berkefeld, Joachim, E-mail: berkefeld@em.uni-frankfurt.de [Hospital of Goethe University, Institute of Neuroradiology (Germany)

    2013-08-01

    PurposeDecreased cerebral blood volume is known to be a predictor for final infarct volume in acute cerebral artery occlusion. To evaluate the predictability of final infarct volume in patients with acute occlusion of the middle cerebral artery (MCA) or the distal internal carotid artery (ICA) and successful endovascular recanalization, pooled blood volume (PBV) was measured using flat-panel detector computed tomography (FPD CT).Materials and MethodsTwenty patients with acute unilateral occlusion of the MCA or distal ACI without demarcated infarction, as proven by CT at admission, and successful Thrombolysis in cerebral infarction score (TICI 2b or 3) endovascular thrombectomy were included. Cerebral PBV maps were acquired from each patient immediately before endovascular thrombectomy. Twenty-four hours after recanalization, each patient underwent multislice CT to visualize final infarct volume. Extent of the areas of decreased PBV was compared with the final infarct volume proven by follow-up CT the next day.ResultsIn 15 of 20 patients, areas of distinct PBV decrease corresponded to final infarct volume. In 5 patients, areas of decreased PBV overestimated final extension of ischemia probably due to inappropriate timing of data acquisition and misery perfusion.ConclusionPBV mapping using FPD CT is a promising tool to predict areas of irrecoverable brain parenchyma in acute thromboembolic stroke. Further validation is necessary before routine use for decision making for interventional thrombectomy.

  13. Does Preinterventional Flat-Panel Computer Tomography Pooled Blood Volume Mapping Predict Final Infarct Volume After Mechanical Thrombectomy in Acute Cerebral Artery Occlusion?

    International Nuclear Information System (INIS)

    PurposeDecreased cerebral blood volume is known to be a predictor for final infarct volume in acute cerebral artery occlusion. To evaluate the predictability of final infarct volume in patients with acute occlusion of the middle cerebral artery (MCA) or the distal internal carotid artery (ICA) and successful endovascular recanalization, pooled blood volume (PBV) was measured using flat-panel detector computed tomography (FPD CT).Materials and MethodsTwenty patients with acute unilateral occlusion of the MCA or distal ACI without demarcated infarction, as proven by CT at admission, and successful Thrombolysis in cerebral infarction score (TICI 2b or 3) endovascular thrombectomy were included. Cerebral PBV maps were acquired from each patient immediately before endovascular thrombectomy. Twenty-four hours after recanalization, each patient underwent multislice CT to visualize final infarct volume. Extent of the areas of decreased PBV was compared with the final infarct volume proven by follow-up CT the next day.ResultsIn 15 of 20 patients, areas of distinct PBV decrease corresponded to final infarct volume. In 5 patients, areas of decreased PBV overestimated final extension of ischemia probably due to inappropriate timing of data acquisition and misery perfusion.ConclusionPBV mapping using FPD CT is a promising tool to predict areas of irrecoverable brain parenchyma in acute thromboembolic stroke. Further validation is necessary before routine use for decision making for interventional thrombectomy

  14. A LINEAR THEORY FOR DISTURBANCE OF COHERENT STRUCTURE AND MECHANISM OF SAND WAVES IN OPEN-CHANNEL FLOW

    Institute of Scientific and Technical Information of China (English)

    Yuchuan BAI; Andreas MALCHEREK; Changbo JIANG

    2001-01-01

    The formation of sand wave is such a process in which the roughness and discontinuity of the original bed surface cause the disturbance of the bottom laminar flow in an open channel,and the development of the disturbance in turn leads to instability of the flow and the appearance of the coherent structure. The evolution and development of the coherent structure further promote the undulations of bed surface and sand waves rise finally. The sand wave is explained as a result of action that the bed sediment particles are disturbed by the coherent structure. This study shows that the sand wave formation is the result of disturbance action of neutral coherent structure, and the sand wave shape obtained in computations is identical to the practical one.

  15. Multilocular True Ulnar Artery Aneurysm in a Pediatric Patient

    OpenAIRE

    Stalder, Mark W.; Sanders, Christopher; Lago, Mary; Hilaire, Hugo St

    2016-01-01

    Summary: Ulnar artery aneurysms are an exceedingly rare entity in the pediatric population and have no consistent etiologic mechanism. We present the case of a 15-year-old male with a multilocular ulnar artery aneurysm in the setting of no antecedent history of trauma, no identifiable connective tissue disorders, and no other apparent etiological factors. Furthermore, the patient’s arterial palmar arch system was absent. The aneurysm was resected, and arterial reconstruction was successfully ...

  16. Finite element method (FEM) model of the mechanical stress on phospholipid membranes from shock waves produced in nanosecond electric pulses (nsEP)

    Science.gov (United States)

    Barnes, Ronald; Roth, Caleb C.; Shadaram, Mehdi; Beier, Hope; Ibey, Bennett L.

    2015-03-01

    The underlying mechanism(s) responsible for nanoporation of phospholipid membranes by nanosecond pulsed electric fields (nsEP) remains unknown. The passage of a high electric field through a conductive medium creates two primary contributing factors that may induce poration: the electric field interaction at the membrane and the shockwave produced from electrostriction of a polar submersion medium exposed to an electric field. Previous work has focused on the electric field interaction at the cell membrane, through such models as the transport lattice method. Our objective is to model the shock wave cell membrane interaction induced from the density perturbation formed at the rising edge of a high voltage pulse in a polar liquid resulting in a shock wave propagating away from the electrode toward the cell membrane. Utilizing previous data from cell membrane mechanical parameters, and nsEP generated shockwave parameters, an acoustic shock wave model based on the Helmholtz equation for sound pressure was developed and coupled to a cell membrane model with finite-element modeling in COMSOL. The acoustic structure interaction model was developed to illustrate the harmonic membrane displacements and stresses resulting from shockwave and membrane interaction based on Hooke's law. Poration is predicted by utilizing membrane mechanical breakdown parameters including cortical stress limits and hydrostatic pressure gradients.

  17. Contributions to the determination of seismic effects produced by Vrancea earthquakes on the basis of extended analysis of wave propagation in media of special mechanical and structural characteristics

    International Nuclear Information System (INIS)

    In order to have a complete knowledge of seismic effects induced by strong Vrancea earthquakes and also by considering observational data, a requirement to have a much better theoretical analysis is necessary. We refer at wave propagation laws in stratified media originating from multiple sources, and taking into account the Moho discontinuity. We consider the deep rocks properties and the surface ones as well, which have a linear or nonlinear elastic behavior. Many analytical procedures are used: near and far field wave equation solutions are obtained using Green function method for double-couple sources, determination of surface displacements and accelerations, procedures to obtain directivity curves at surface, wave front method considering multiple reflections and refractions at geological layer interfaces. The results are in good agreement with observational data and consist in specific new effects: the existence of very well defined directivity curves and of almost punctual regions with focusing effects, their focal mechanism, deep rocks structure and wave superposition dependence, the importance of constitutive laws no linearity of soft surface soils and of multiple wave overlapped simultaneously with increasing fundamental frequency. These facts are pointing out the correlation between no linearity and directivity. The isoseismic maps, as a result of studied scenarios, are displaying the above-mentioned effects by considering the obtained data. These facts are encouraging the efforts for a new approach in viscous-plastic and fissionable rocks behavior. (authors)

  18. Arterial segmental vasoconstriction in hypercholesterolaemic patients

    International Nuclear Information System (INIS)

    Regular, wave-like constriction in medium-sized arteries, arterial segmental vasoconstriction (ASV), has been observed at arteriography and described by many authors. We found ASV in arteriograms of the superficial femoral artery in 13 of 107 hypercholesterolaemic patients, enrolled in the Probucol Quantitative Regression Swedish Trial (PQRST). The arteriograms were digitized and studied with a quantitative computer-assisted technique. The frequency of ASV was higher than has been reported earlier in clinical materials, possibly because of an increased vasoreactivity in hypercholesterolaemia, as recently observed experimentally. The ASV patients were, on average, younger, had lower blood pressure and less atherosclerosis, than the non-ASV patients. ASV was not found in any of the 19 patients in the material who either had symptoms of peripheral vascular disease or arteriographically verified arterial occlusions. No significant correlations with smoking habits or serum cholesterol levels were found. A computer-based index of ASV and measurement of ASV wavelength are discussed. (orig.)

  19. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate

    Science.gov (United States)

    Song, Shaozhen; Wei, Wei; Hsieh, Bao-Yu; Pelivanov, Ivan; Shen, Tueng T.; O'Donnell, Matthew; Wang, Ruikang K.

    2016-05-01

    We present single-shot phase-sensitive imaging of propagating mechanical waves within tissue, enabled by an ultrafast optical coherence tomography (OCT) system powered by a 1.628 MHz Fourier domain mode-locked (FDML) swept laser source. We propose a practical strategy for phase-sensitive measurement by comparing the phases between adjacent OCT B-scans, where the B-scan contains a number of A-scans equaling an integer number of FDML buffers. With this approach, we show that micro-strain fields can be mapped with ˜3.0 nm sensitivity at ˜16 000 fps. The system's capabilities are demonstrated on porcine cornea by imaging mechanical wave propagation launched by a pulsed UV laser beam, promising non-contact, real-time, and high-resolution optical coherence elastography.

  20. Arterial Stiffness and Dialysis Calcium Concentration

    Directory of Open Access Journals (Sweden)

    Fabrice Mac-Way

    2011-01-01

    Full Text Available Arterial stiffness is the major determinant of isolated systolic hypertension and increased pulse pressure. Aortic stiffness is also associated with increased cardiovascular morbidity and mortality in patients with chronic kidney disease, hypertension, and general population. Hemodynamically, arterial stiffness results in earlier aortic pulse wave reflection leading to increased cardiac workload and decreased myocardial perfusion. Although the clinical consequence of aortic stiffness has been clearly established, its pathophysiology in various clinical conditions still remains poorly understood. The aim of the present paper is to review the studies that have looked at the impact of dialysis calcium concentration on arterial stiffness. Overall, the results of small short-term studies suggest that higher dialysis calcium is associated with a transient but significant increase in arterial stiffness. This calcium dependant increase in arterial stiffness is potentially explained by increased vascular smooth muscle tone of the conduit arteries and is not solely explained by changes in mean blood pressure. However, the optimal DCa remains to be determined, and long term studies are required to evaluate its impact on the progression of arterial stiffness.