WorldWideScience

Sample records for arterial wave mechanics

  1. A review of wave mechanics in the pulmonary artery with an emphasis on wave intensity analysis.

    Science.gov (United States)

    Su, J; Hilberg, O; Howard, L; Simonsen, U; Hughes, A D

    2016-12-01

    Mean pulmonary arterial pressure and pulmonary vascular resistance (PVR) remain the most common haemodynamic measures to evaluate the severity and prognosis of pulmonary hypertension. However, PVR only captures the non-oscillatory component of the right ventricular hydraulic load and neglects the dynamic compliance of the pulmonary arteries and the contribution of wave transmission. Wave intensity analysis offers an alternative way to assess the pulmonary vasculature in health and disease. Wave speed is a measure of arterial stiffness, and the magnitude and timing of wave reflection provide information on the degree of impedance mismatch between the proximal and distal circulation. Studies in the pulmonary artery have demonstrated distinct differences in arterial wave propagation between individuals with and without pulmonary vascular disease. Notably, greater wave speed and greater wave reflection are observed in patients with pulmonary hypertension and in animal models exposed to hypoxia. Studying wave propagation makes a valuable contribution to the assessment of the arterial system in pulmonary hypertension, and here, we briefly review the current state of knowledge of the methods used to evaluate arterial waves in the pulmonary artery.

  2. Wave Mechanics or Wave Statistical Mechanics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.

  3. Pulse Wave Velocity in the Carotid Artery

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jensen, Julie Brinck; Udesen, Jesper;

    2008-01-01

    The pulse wave velocity (PWV) in the carotid artery (CA) has been estimated based on ultrasound data collected by the experimental scanner RASMUS at DTU. Data is collected from one test subject using a frame rate (FR) of 4000 Hz. The influence of FRs is also investigated. The PWV is calculated from...... distension wave forms (DWF) estimated using cross-correlation. The obtained velocities give results in the area between 3-4 m/s, and the deviations between estimated PWV from two beats of a pulse are around 10%. The results indicate that the method presented is applicable for detecting the local PWV...

  4. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  5. Mechanics, Waves and Thermodynamics

    Science.gov (United States)

    Ranjan Jain, Sudhir

    2016-05-01

    Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.

  6. Arterial wave reflection decreases gradually from supine to upright

    DEFF Research Database (Denmark)

    van den Bogaard, Bas; Westerhof, Berend E; Best, Hendrik;

    2011-01-01

    BACKGROUND. An increase in total peripheral resistance (TPR) usually increases arterial wave reflection. During passive head-up tilt (HUT), however, arterial wave reflection decreases with increasing TPR. This study addressed whether arterial wave reflection gradually decreases during HUT. METHODS...... was quantified as the augmentation index (AIx) and the reflection magnitude (RM). RESULTS. During HUT, heart rate increased (p TPR increased...... represented as AIx and RM gradually decreases in the presence of increasing TPR....

  7. Distal shift of arterial pressure wave reflection sites with aging.

    Science.gov (United States)

    Sugawara, Jun; Hayashi, Koichiro; Tanaka, Hirofumi

    2010-11-01

    An early return of reflected waves, the backward propagation of the arterial pressure wave from the periphery to the heart, is associated with the augmentation of central pulse pressure and cardiovascular risks. The locations of arterial pressure wave reflection, along with arterial stiffening, have a major influence on the timing of the reflected wave. To determine the influence of aging on the location of a major reflection site, arterial length (via 3D artery tracing of MRI) and central (carotid-femoral) and peripheral (femoral-ankle) pulse wave velocities were measured in 208 adults varying in age. The major reflection site was detected by carotid-femoral pulse wave velocity and the reflected wave transit time (via carotid arterial pressure wave analysis). The length from the aortic valve to the major reflection site (eg, effective reflecting length) significantly increased with aging. The effective reflecting length normalized by the arterial length demonstrated that the major reflection sites were located between the aortic bifurcation and femoral site in most of the subjects. The normalized effective reflecting length did not alter with aging until 65 years of age and increased remarkably thereafter in men and women. The effective reflecting length was significantly and positively associated with the difference between central and peripheral pulse wave velocities (r=0.76). This correlation remained significant even when the influence of aortic pulse wave velocity was partial out (r=0.35). These results suggest that the major reflection site shifts distally with aging partly because of the closer matching of impedance provided by central and peripheral arterial stiffness.

  8. Clinical review: Interpretation of arterial pressure wave in shock states

    OpenAIRE

    Lamia, Bouchra; Chemla, Denis; Richard, Christian; Teboul, Jean-Louis

    2005-01-01

    In critically ill patients monitored with an arterial catheter, the arterial pressure signal provides two types of information that may help the clinician to interpret haemodynamic status better: the mean values of systolic, diastolic, mean and pulse pressures; and the magnitude of the respiratory variation in arterial pressure in patients undergoing mechanical ventilation. In this review we briefly discuss the physiological mechanisms responsible for arterial pressure generation, with specia...

  9. Immune Mechanisms in Arterial Hypertension.

    Science.gov (United States)

    Wenzel, Ulrich; Turner, Jan Eric; Krebs, Christian; Kurts, Christian; Harrison, David G; Ehmke, Heimo

    2016-03-01

    Traditionally, arterial hypertension and subsequent end-organ damage have been attributed to hemodynamic factors, but increasing evidence indicates that inflammation also contributes to the deleterious consequences of this disease. The immune system has evolved to prevent invasion of foreign organisms and to promote tissue healing after injury. However, this beneficial activity comes at a cost of collateral damage when the immune system overreacts to internal injury, such as prehypertension. Renal inflammation results in injury and impaired urinary sodium excretion, and vascular inflammation leads to endothelial dysfunction, increased vascular resistance, and arterial remodeling and stiffening. Notably, modulation of the immune response can reduce the severity of BP elevation and hypertensive end-organ damage in several animal models. Indeed, recent studies have improved our understanding of how the immune response affects the pathogenesis of arterial hypertension, but the remarkable advances in basic immunology made during the last few years still await translation to the field of hypertension. This review briefly summarizes recent advances in immunity and hypertension as well as hypertensive end-organ damage.

  10. Cardiac mechanical energy and effects on the arterial tree.

    Science.gov (United States)

    Muñoz, H R; Sacco, C M

    1997-05-01

    Blood flow pulsatility is the result of the heart's activity as a pump unable to develop steady flow, and its interaction with the arterial tree. Thus, the heart is a cyclic energy generator whose adequate function requires the two phases of this cycle to be normal. Diastolic properties determine the degree of filling of the ventricles and the strength of the following systole. Systole, in turn, must generate enough energy to overcome forces opposing ejection. These can be divided into internal (the mechanical characteristics of the ventricle itself) and external loads (the characteristics of the arterial tree). As a result, hydraulic energy is imparted to blood (external ventricular work) that manifests itself as blood pressure and flow. Given the cyclic nature of cardiac activity, the external ventricular work has steady and pulsatile components. The steady component is energy lost during steady flow because of vascular resistance, and the pulsatile work is that lost in arterial pulsations and mainly depends on the aortic impedance. Thus, the characteristics of the arterial tree will determine the relative contribution of these two components to blood flow and the efficency of the heart. In addition, the arterial tree modifies the different waves (pressure and flow) traveling in the circulation. These modifications have important consequences for cardiac function. The ventricle and the arterial tree constitute a coupled biological system, and its overall performance is a function of the behavior of each unit at any given moment.

  11. Mechanical thrombectomy in basilar artery thrombosis

    DEFF Research Database (Denmark)

    Fesl, Gunther; Holtmannspoetter, Markus; Patzig, Maximilian;

    2014-01-01

    PURPOSE: Multiple endovascular devices have been used for mechanical thrombectomy (MT) in basilar artery occlusion (BAO) for >10 years. Based on a single-center experience during the course of one decade, we present data on safety and efficacy of previous MT devices compared with modern stent ret...

  12. ANALYSE OF PULSE WAVE PROPAGATION IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    PAN Yi-shan; JIA Xiao-bo; CUI Chang-kui; XIAO Xiao-chun

    2006-01-01

    Based upon the blood vessel of being regarded as the elasticity tube, and that the tissue restricts the blood vessel wall, the rule of pulse wave propagation in blood vessel was studied. The viscosity of blood, the elastic modulus of blood vessel, the radius of tube that influenced the pulse wave propagation were analyzed. Comparing the result that considered the viscosity of blood with another result that did not consider the viscosity of blood, we finally discover that the viscosity of blood that influences the pulse wave propagation can not be neglected; and with the accretion of the elastic modulus the speed of propagation augments and the press value of blood stream heightens; when diameter of blood vessel reduces, the press of blood stream also heightens and the speed of pulse wave also augments. These results will contribute to making use of the information of pulse wave to analyse and auxiliarily diagnose some causes of human disease.

  13. Heterogeneous mechanics of the mouse pulmonary arterial network.

    Science.gov (United States)

    Lee, Pilhwa; Carlson, Brian E; Chesler, Naomi; Olufsen, Mette S; Qureshi, M Umar; Smith, Nicolas P; Sochi, Taha; Beard, Daniel A

    2016-10-01

    Individualized modeling and simulation of blood flow mechanics find applications in both animal research and patient care. Individual animal or patient models for blood vessel mechanics are based on combining measured vascular geometry with a fluid structure model coupling formulations describing dynamics of the fluid and mechanics of the wall. For example, one-dimensional fluid flow modeling requires a constitutive law relating vessel cross-sectional deformation to pressure in the lumen. To investigate means of identifying appropriate constitutive relationships, an automated segmentation algorithm was applied to micro-computerized tomography images from a mouse lung obtained at four different static pressures to identify the static pressure-radius relationship for four generations of vessels in the pulmonary arterial network. A shape-fitting function was parameterized for each vessel in the network to characterize the nonlinear and heterogeneous nature of vessel distensibility in the pulmonary arteries. These data on morphometric and mechanical properties were used to simulate pressure and flow velocity propagation in the network using one-dimensional representations of fluid and vessel wall mechanics. Moreover, wave intensity analysis was used to study effects of wall mechanics on generation and propagation of pressure wave reflections. Simulations were conducted to investigate the role of linear versus nonlinear formulations of wall elasticity and homogeneous versus heterogeneous treatments of vessel wall properties. Accounting for heterogeneity, by parameterizing the pressure/distention equation of state individually for each vessel segment, was found to have little effect on the predicted pressure profiles and wave propagation compared to a homogeneous parameterization based on average behavior. However, substantially different results were obtained using a linear elastic thin-shell model than were obtained using a nonlinear model that has a more

  14. Arterial mechanics at rest and during exercise in adolescents and young adults after arterial switch operation for complete transposition of the great arteries.

    Science.gov (United States)

    Chen, Robin H; Wong, Sophia J; Wong, Wilfred H; Cheung, Yiu-Fai

    2014-02-15

    We sought to determine the arterial mechanics at rest and during exercise in adolescents and young adults with complete transposition of the great arteries after arterial switch operation and their relations with neoaortic complications. Thirty patients (22 men) aged 16.2 ± 2.1 years and 22 controls (15 men) were studied. Central and peripheral arterial pulse wave velocities, carotid and radial augmentation indices, and central systolic blood pressure (cSBP) were determined by oscillometry and applanation tonometry, whereas arterial dimensions were measured by 2-dimensional echocardiography. Arterial strain, distensibility, and stiffness were determined at rest and during supine bicycle exercise testing. At rest, patients had significantly higher heart-carotid pulse wave velocity, carotid and radial augmentation indices, and cSBP than controls. At rest and during submaximal exercise, patients had significantly lower aortic strain and distensibility, greater aortic and carotid stiffness, and higher SBP than controls. Dilated aortic sinus found in 23 (76.7%) patients was associated with lower aortic distensibility, greater aortic stiffness, and higher cSBP at rest and lower aortic distensibility and strain at submaximal exercise. Significant aortic regurgitation found in 20% (6 of 30) of patients was associated with significantly higher neoaortic z scores. Multivariate analysis identified aortic stiffness at rest (β = 0.46, p = 0.003) and age at operation (β = 0.44, p = 0.004) as significant determinants of aortic sinus z scores. In conclusion, altered mechanics of the central arteries are present at rest and during exercise in adolescents and young adults after arterial switch operation. These findings may have important implications on progression of neoaortic root dilation, exercise recommendations, and medical therapy.

  15. Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves.

    Science.gov (United States)

    Feng, J; Long, Q; Khir, A W

    2007-01-01

    Earlier work of wave dissipation in flexible tubes and arteries has been carried out predominantly in the frequency domain and most of the studies used the measured pressure waveform for presenting the results. In this work we investigate the pattern of wave dissipation in the time domain using the separated forward and backward travelling waves in flexible tubes. We tested four sizes of latex tubes of 2m in length each, where a single semi-sinusoidal in shape, pressure wave, was produced at the inlet of each tube. Simultaneous measurements of pressure and flow waveforms were recorded every 5cm along the tubes and wave speed was determined using the pressure-velocity loop method (PU-loop). The measured data and wave speed were used to separate the pressure waveform and wave intensity, into their forward and backward directions, using wave intensity analysis (WIA). Also, the energy carried by the wave was calculated by integrating the relevant area under the wave intensity curve. The peak of the measured pressure waveform increased downstream, however, the peak of the separated forward pressure waveform decreased exponentially along the tube. Wave intensity and energy also dissipated exponentially along the travelling distance. The peaks of the separated pressure and wave intensity decreased in the forward in a similar exponential way to that in the backward direction in all four tube sizes. Also, the smaller the size of the tube the greater wave dissipation it caused. We conclude that wave separation is useful in studying wave dissipation in elastic tubes, and WIA provides a convenient method for determining the dissipation of the energy carried by the wave along the travelled distance. The separated pressure waveform, wave intensity and wave energy dissipate exponentially with the travelling distance, and wave dissipation varies conversely with the diameter of elastic tubes.

  16. Arterial Stiffness and Pulse Wave Reflection in Young Adult Heterozygous Sickle Cell Carriers

    Directory of Open Access Journals (Sweden)

    Tünzale Bayramoğlu

    2013-12-01

    Full Text Available OBJECTIVE: Pulse wave velocity (PWV and aortic augmentation index (AI are indicators of arterial stiffness. Pulse wave reflection and arterial stiffness are related to cardiovascular events and sickle cell disease. However, the effect of these parameters on the heterozygous sickle cell trait (HbAS is unknown. The aim of this study is to evaluate the arterial stiffness and wave reflection in young adult heterozygous sickle cell carriers. METHODS: We enrolled 40 volunteers (20 HbAS cases, 20 hemoglobin AA [HbAA] cases aged between 18 and 40 years. AI and PWV values were measured by arteriography. RESULTS: Aortic blood pressure, aortic AI, and brachial AI values were significantly higher in HbAS cases compared to the control group (HbAA (p=0.033, 0.011, and 0.011, respectively. A statistically significant positive correlation was found between aortic pulse wave velocity and mean arterial pressure, age, aortic AI, brachial AI, weight, and low-density lipoprotein levels (p=0.000, 0.017, 0.000, 0.000, 0.034, and 0.05, respectively in the whole study population. Aortic AI and age were also significantly correlated (p=0.026. In addition, a positive correlation between aortic PWV and systolic blood pressure and a positive correlation between aortic AI and mean arterial pressure (p=0.027 and 0.009, respectively were found in HbAS individuals. Our study reveals that mean arterial pressure and heart rate are independent determinants for the aortic AI. Mean arterial pressure and age are independent determinants for aortic PWV. CONCLUSION: Arterial stiffness measurement is an easy, cheap, and reliable method in the early diagnosis of cardiovascular disease in heterozygous sickle cell carriers. These results may depend on the amount of hemoglobin S in red blood cells. Further studies are required to investigate the blood pressure changes and its effects on arterial stiffness in order to explain the vascular aging mechanism in the HbAS trait population.

  17. Microstructure and mechanics of human resistance arteries.

    Science.gov (United States)

    Bell, J S; Adio, A O; Pitt, A; Hayman, L; Thorn, C E; Shore, A C; Whatmore, J L; Winlove, C P

    2016-12-01

    Vascular diseases such as diabetes and hypertension cause changes to the vasculature that can lead to vessel stiffening and the loss of vasoactivity. The microstructural bases of these changes are not presently fully understood. We present a new methodology for stain-free visualization, at a microscopic scale, of the morphology of the main passive components of the walls of unfixed resistance arteries and their response to changes in transmural pressure. Human resistance arteries were dissected from subcutaneous fat biopsies, mounted on a perfusion myograph, and imaged at varying transmural pressures using a multimodal nonlinear microscope. High-resolution three-dimensional images of elastic fibers, collagen, and cell nuclei were constructed. The honeycomb structure of the elastic fibers comprising the internal elastic layer became visible at a transmural pressure of 30 mmHg. The adventitia, comprising wavy collagen fibers punctuated by straight elastic fibers, thinned under pressure as the collagen network straightened and pulled taut. Quantitative measurements of fiber orientation were made as a function of pressure. A multilayer analytical model was used to calculate the stiffness and stress in each layer. The adventitia was calculated to be up to 10 times as stiff as the media and experienced up to 8 times the stress, depending on lumen diameter. This work reveals that pressure-induced reorganization of fibrous proteins gives rise to very high local strain fields and highlights the unique mechanical roles of both fibrous networks. It thereby provides a basis for understanding the micromechanical significance of structural changes that occur with age and disease.

  18. Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics.

    Science.gov (United States)

    Mynard, Jonathan P; Smolich, Joseph J

    2014-08-01

    Controversy exists about whether one-dimensional wave theory can explain the "self-canceling" waves that accompany the diastolic pressure decay and discharge of the arterial reservoir. Although it has been proposed that reservoir and wave effects be treated as separate phenomena, thus avoiding the issue of self-canceling waves, we have argued that reservoir effects are a phenomenological and mathematical subset of wave effects. However, a complete wave-based explanation of self-canceling diastolic expansion (pressure-decreasing) waves has not yet been advanced. These waves are present in the forward and backward components of arterial pressure and flow (P ± and Q ±, respectively), which are calculated by integrating incremental pressure and flow changes (dP ± and dQ ±, respectively). While the integration constants for this calculation have previously been considered arbitrary, we showed that physiologically meaningful constants can be obtained by identifying "undisturbed pressure" as mean circulatory pressure. Using a series of numeric experiments, absolute P ± and Q ± values were shown to represent "wave potential," gradients of which produce propagating wavefronts. With the aid of a "one-dimensional windkessel," we showed how wave theory predicts discharge of the arterial reservoir. Simulated data, along with hemodynamic recordings in seven sheep, suggested that self-canceling diastolic waves arise from repeated and diffuse reflection of the late systolic forward expansion wave throughout the arterial system and at the closed aortic valve, along with progressive leakage of wave potential from the conduit arteries. The combination of wave and wave potential concepts leads to a comprehensive one-dimensional (i.e., wave-based) explanation of arterial hemodynamics, including the diastolic pressure decay.

  19. Pulmonary artery dilatation: an overlooked mechanism for angina pectoris.

    Science.gov (United States)

    Ginghina, Carmen; Popescu, Bogdan A; Enache, Roxana; Ungureanu, Catalina; Deleanu, Dan; Platon, Pavel

    2008-07-01

    Dilatation of the pulmonary artery may lead to the compression of adjacent structures. Of those, the extrinsic compression of the left main coronary artery is the most worrisome. We present the case of a 48-year-old woman who was diagnosed with pulmonary artery dilatation due to severe, thromboembolic pulmonary hypertension. She also had angina and coronary angiography revealed a 70% ostial stenosis of the left main coronary artery. The presence of this isolated lesion in a young woman without risk factors for atherosclerosis suggests extrinsic compression of the left main coronary artery by the dilated pulmonary artery as the likely mechanism. The patient underwent direct stenting of the left main coronary stenosis with a good result.

  20. Arterial pulse pressure amplification described by means of a nonlinear wave model: characterization of human aging

    Science.gov (United States)

    Alfonso, M.; Cymberknop, L.; Armentano, R.; Pessana, F.; Wray, S.; Legnani, W.

    2016-04-01

    The representation of blood pressure pulse as a combination of solitons captures many of the phenomena observed during its propagation along the systemic circulation. The aim of this work is to analyze the applicability of a compartmental model for propagation regarding the pressure pulse amplification associated with arterial aging. The model was applied to blood pressure waveforms that were synthesized using solitons, and then validated by waveforms obtained from individuals from differentiated age groups. Morphological changes were verified in the blood pressure waveform as a consequence of the aging process (i.e. due to the increase in arterial stiffness). These changes are the result of both a nonlinear interaction and the phenomena present in the propagation of nonlinear mechanic waves.

  1. On the mechanical stability of growing arteries

    KAUST Repository

    Goriely, A.

    2010-04-22

    Arteries are modelled, within the framework of non-linear elasticity, as incompressible two-layer cylindrical structures that are residually stressed through differential growth. These structures are loaded by an axial force, internal pressure and have non-linear, anisotropic, hyperelastic response to stresses. Parameters for this model are directly related to experimental observations. The possible role of axial residual stress in regulating stress in arteries and preventing buckling instabilities is investigated. It is shown that axial residual stress lowers the critical internal pressure leading to buckling and that a reduction of axial loading may lead to a buckling instability which may eventually lead to arterial tortusity. © 2010 The Author. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  2. Mechanical and vasomotor properties of piglet isolated middle cerebral artery

    DEFF Research Database (Denmark)

    Eriksen, Vibeke Ramsgaard; Abdolalizadeh, Bahareh; Trautner, Simon;

    2016-01-01

    Piglets are often used as experimental models for studying cerebrovascular responses in newborn infants. However, the mechanical characteristics of piglets’ middle cerebral arteries (MCA) are not well characterized. Additionally, the vessels’ response to dopamine, the most commonly used vasopress...

  3. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube

    Directory of Open Access Journals (Sweden)

    Painter Page R

    2008-07-01

    Full Text Available Abstract Background The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV. The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. Methods An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. Results For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for

  4. An Inexpensive Arterial Pressure Wave Sensor and its application in different physiological condition

    CERN Document Server

    Sur, S; Sur, Shantanu

    2005-01-01

    Arterial Blood Pressure wave monitoring is considered to be important in assessment of cardiovascular system. We developed a novel pulse wave detection system using low frequency specific piezoelectric material as pressure wave sensor. The transducer detects the periodic change in the arterial wall diameter produced by pressure wave and the amplified signal after integration represents the pressure wave. The signal before integration is proportional to the rate of change of pressure wave and it not only reproduces the pressure waveform faithfully, but also its sharper nature helps to reliably detect the heart period variability (HPV). We have studied the position-specific (e.g. over carotid or radial artery) nature of change of this pulse wave signal (shape and amplitude) and also the changes at different physiological states.

  5. The effect of glycation on arterial microstructure and mechanical response.

    Science.gov (United States)

    Stephen, Elizabeth A; Venkatasubramaniam, Arundhathi; Good, Theresa A; Topoleski, L D T

    2014-08-01

    Like engineered materials, an artery's biomechanical behavior and function depend on its microstructure. Glycation is associated with both normal aging and diabetes and has been shown to increase arterial stiffness. In this study we examined the direct effect of glycation on the mechanical response of intact arteries and on the mechanical response and structure of elastin isolated from the arteries. Samples of intact arteries and isolated elastin were prepared from porcine aortas and glycated. The mechanical response of all samples was completed using a uniaxial material test system. Glycation levels were measured using ELISA. A confocal microscope was used to image differences in the structure of the glycated and untreated elastin fibers. We found that, under the conditions used in this study, glycation led to decreased stiffness of elastin isolated from arteries, which was associated with a thinning of elastin fibers as imaged by confocal microscopy. We observed no effect of glycation on collagen fibers under our treatment conditions. These results suggest that glycation leads to weakening of the elastin component of arteries that could contribute to vascular defects seen in diabetes and aging. Prevention of glycation reactions may be an important consideration for vascular health later in life.

  6. In vivo noninvasive method for measuring local wave velocity in femoral arteries of pig

    Science.gov (United States)

    Zhang, Xiaoming; Kinnick, Randall; Pislaru, Cristina; Fatemi, Mostafa; Greenleaf, James

    2005-09-01

    We have proposed generating a bending wave in the arterial wall using ultrasound radiation force and measuring the wave velocity along the arterial wall [Zhang et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 642-652 (2005)]. Here, we report the results of in vivo studies on pigs. The pig was anesthetized, and a micromanometer tip catheter was inserted into the femoral artery to measure luminal pressure. A water bath was created on the animal's groin to allow unimpeded access of the ultrasound beams to the femoral artery. The femoral artery was first located using a 13-MHz linear-array transducer. Then, a vibro-acoustography image was obtained to ensure precise positioning of the excitation force relative to the artery. The artery was excited by the force transducer and the resulting vibration of the arterial wall was measured by a sensing Doppler transceiver. Measured wave velocity was 3.1 m/s at 300 Hz. With this new method wave velocity over a distance of 5 mm, and therefore stiffness of arteries, can be measured locally and non-invasively. Measurement time is short in a few tens of milliseconds, which allows pressure dependence and pharmacological effect on the wall properties to be measured at different cardiac times.

  7. Pathogenic Mechanisms of Pulmonary Arterial Hypertension

    Science.gov (United States)

    Chan, Stephen Y.; Loscalzo, Joseph

    2008-01-01

    Pulmonary arterial hypertension (PAH)1 is a complex disease that causes significant morbidity and mortality and is clinically characterized by an increase in pulmonary vascular resistance. The histopathology is marked by vascular proliferation/fibrosis, remodeling, and vessel obstruction. Development of PAH involves the complex interaction of multiple vascular effectors at all anatomic levels of the arterial wall. Subsequent vasoconstriction, thrombosis, and inflammation ensue, leading to vessel wall remodeling and cellular hyperproliferation as the hallmarks of severe disease. These processes are influenced by genetic predisposition as well as diverse endogenous and exogenous stimuli. Recent studies have provided a glimpse at certain molecular pathways that contribute to pathogenesis; these have led to the identification of attractive targets for therapeutic intervention. We will review our current understanding of the mechanistic underpinnings of the genetic and exogenous/acquired triggers of PAH. The resulting imbalance of vascular effectors provoking pathogenic vascular changes will also be discussed, with an emphasis on common and overarching regulatory pathways that may relate to the primary triggers of disease. The current conceptual framework should allow for future studies to refine our understanding of the molecular pathogenesis of PAH and improve the therapeutic regimen for this disease. PMID:17950310

  8. A new technique for assessing arterial pressure wave forms and central pressure with tissue Doppler

    Science.gov (United States)

    Haluska, Brian A; Jeffriess, Leanne; Mottram, Phillip M; Carlier, Stephane G; Marwick, Thomas H

    2007-01-01

    Background Non-invasive assessment of arterial pressure wave forms using applanation tonometry of the radial or carotid arteries can be technically challenging and has not found wide clinical application. 2D imaging of the common carotid arteries is routinely used and we sought to determine whether arterial waveform measurements could be derived from tissue Doppler imaging (TDI) of the carotid artery. Methods We studied 91 subjects (52 men, age 52 ± 14 years) with and without cardiovascular disease. Tonometry was performed on the carotid artery simultaneously with pulsed wave Doppler of the LVOT and acquired digitally. Longitudinal 2D images of the common carotid artery with and without TDI were also acquired digitally and both TDI and tonometry were calibrated using mean and diastolic cuff pressure and analysed off line. Results Correlation between central pressure by TDI and tonometry was excellent for maximum pressure (r = 0.97, p < 0.0001). The mean differences between central pressures derived by TDI and tonometry were minimal (systolic 5.36 ± 5.5 mmHg; diastolic 1.2 ± 1.2 mmHg). Conclusion Imaging of the common carotid artery motion with tissue Doppler may permit acquisition of a waveform analogous to that from tonometry. This method may simplify estimation of central arterial pressure and calculation of total arterial compliance. PMID:17266772

  9. Discrete wave mechanics: The hydrogen atom.

    Science.gov (United States)

    Wall, F T

    1986-08-01

    The quantum mechanical problem of the hydrogen atom is treated by use of a finite difference equation in place of Schrödinger's differential equation. The exact solution leads to a wave vector energy expression that is readily converted to the Bohr-Rydberg formula. (The calculations here reported are limited to spherically symmetric states.) The wave vectors reduce to the familiar solutions of Schrödinger's equation as c --> infinity. The internal consistency and limiting behavior provide support for the view that the equations employed could well constitute an approach to a relativistic formulation of wave mechanics.

  10. Wave-Particle Duality in Classical Mechanics

    CERN Document Server

    Davydov, Alexander Y

    2012-01-01

    Until recently, wave-particle duality has been thought of as quantum principle without a counterpart in classical physics. This belief was challenged after surprising discovery of "walkers" - droplets that bounce on a vertically vibrating bath of the same fluid and can form wave-particle symbiotic structures with the surface waves they generate. Macroscopic walkers were shown experimentally to exhibit particle and wave properties simultaneously. This paper exposes a new family of objects that can display both particle and wave features all together while strictly obeying laws of the Newtonian mechanics. In contrast to walkers, no constant inflow of energy is required for their existence. These objects behave deterministically provided that all their degrees of freedom are known to an observer. If, however, some degrees of freedom are unknown, observer can describe such objects only probabilistically and they manifest weird features similar to that of quantum particles. We show that such quantum phenomena as p...

  11. Arterial pulse wave velocity, inflammatory markers, pathological GH and IGF states, cardiovascular and cerebrovascular disease

    Directory of Open Access Journals (Sweden)

    Michael R Graham

    2008-12-01

    Full Text Available Michael R Graham1, Peter Evans2, Bruce Davies1, Julien S Baker11Health and Exercise Science Research Unit, Faculty of Health Sport and Science, University of Glamorgan, Pontypridd, Wales, United Kingdom; 2Royal Gwent Hospital, Newport, Gwent, United KingdomAbstract: Blood pressure (BP measurements provide information regarding risk factors associated with cardiovascular disease, but only in a specific artery. Arterial stiffness (AS can be determined by measurement of arterial pulse wave velocity (APWV. Separate from any role as a surrogate marker, AS is an important determinant of pulse pressure, left ventricular function and coronary artery perfusion pressure. Proximal elastic arteries and peripheral muscular arteries respond differently to aging and to medication. Endogenous human growth hormone (hGH, secreted by the anterior pituitary, peaks during early adulthood, declining at 14% per decade. Levels of insulin-like growth factor-I (IGF-I are at their peak during late adolescence and decline throughout adulthood, mirror imaging GH. Arterial endothelial dysfunction, an accepted cause of increased APWV in GH deficiency (GHD is reversed by recombinant human (rh GH therapy, favorably influencing the risk for atherogenesis. APWV is a noninvasive method for measuring atherosclerotic and hypertensive vascular changes increases with age and atherosclerosis leading to increased systolic blood pressure and increased left ventricular hypertrophy. Aerobic exercise training increases arterial compliance and reduces systolic blood pressure. Whole body arterial compliance is lowered in strength-trained individuals. Homocysteine and C-reactive protein are two infl ammatory markers directly linked with arterial endothelial dysfunction. Reviews of GH in the somatopause have not been favorable and side effects of treatment have marred its use except in classical GHD. Is it possible that we should be assessing the combined effects of therapy with rhGH and rh

  12. Quantum mechanics as electrodynamics of curvilinear waves

    OpenAIRE

    2002-01-01

    The suggested theory is the new quantum mechanics (QM) interpretation.The research proves that QM represents the electrodynamics of the curvilinear closed (non-linear) waves. It is entirely according to the modern interpretation and explains the particularities and the results of the quantum field theory.

  13. Harmonics tracking of intracranial and arterial blood pressure waves.

    Science.gov (United States)

    Shahsavari, Sima; McKelvey, Tomas

    2008-01-01

    Considering cardiorespiratory interaction and heart rate variability, a new approach is proposed to decompose intracranial pressure and arterial blood pressure to their different harmonics. The method is based on tracking the amplitudes of the harmonics by a Kalman filter based tracking algorithm. The algorithm takes benefit of combined frequency estimation technique which uses both Fast Fourier Transform and RR-interval detection. The result would be of use in intracranial pressure and arterial blood pressure waveform analysis as well as other investigations which need to estimate contribution of specific harmonic in above mentioned signals such as Pressure-Volume Compensatory Reserve assessment.

  14. Wave speed in human coronary arteries is not influenced by microvascular vasodilation: implications for wave intensity analysis.

    Science.gov (United States)

    Rolandi, M Cristina; De Silva, Kalpa; Lumley, Matthew; Lockie, Timothy P E; Clapp, Brian; Spaan, Jos A E; Perera, Divaka; Siebes, Maria

    2014-03-01

    Wave intensity analysis and wave separation are powerful tools for interrogating coronary, myocardial and microvascular physiology. Wave speed is integral to these calculations and is usually estimated by the single-point technique (SPc), a feasible but as yet unvalidated approach in coronary vessels. We aimed to directly measure wave speed in human coronary arteries and assess the impact of adenosine and nitrate administration. In 14 patients, the transit time Δt between two pressure signals was measured in angiographically normal coronary arteries using a microcatheter equipped with two high-fidelity pressure sensors located Δs = 5 cm apart. Simultaneously, intracoronary pressure and flow velocity were measured with a dual-sensor wire to derive SPc. Actual wave speed was calculated as DNc = Δs/Δt. Hemodynamic signals were recorded at baseline and during adenosine-induced hyperemia, before and after nitroglycerin administration. The energy of separated wave intensity components was assessed using SPc and DNc. At baseline, DNc equaled SPc (15.9 ± 1.8 vs. 16.6 ± 1.5 m/s). Adenosine-induced hyperemia lowered SPc by 40 % (p DNc remained unchanged, leading to marked differences in respective separated wave energies. Nitroglycerin did not affect DNc, whereas SPc transiently fell to 12.0 ± 1.2 m/s (p < 0.02). Human coronary wave speed is reliably estimated by SPc under resting conditions but not during adenosine-induced vasodilation. Since coronary wave speed is unaffected by microvascular dilation, the SPc estimate at rest can serve as surrogate for separating wave intensity signals obtained during hyperemia, thus greatly extending the scope of WIA to study coronary physiology in humans.

  15. Stent-based mechanical thrombectomy in acute basilar artery occlusion.

    Science.gov (United States)

    Cohen, José E; Leker, Ronen R; Moscovici, Samuel; Attia, Moshe; Itshayek, Eyal

    2011-12-01

    Stent-based mechanical thrombectomy was recently proposed as an effective alternative to other mechanical techniques to achieve recanalization of large-vessel embolic occlusions in the anterior circulation. To our knowledge, there are no reports of the use of this technique in acute basilar artery occlusion (ABAO). We present a patient with complete endovascular recanalization of ABAO using a stent-based thrombectomy technique. Advantages and limitations of this technique in the management of ABAO are discussed. The stent-thrombectomy technique is promising, and will need further evaluation in posterior circulation stroke.

  16. Clinical characteristic of pulse wave velocity and arterial compliance in elderly patients with diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    张红

    2013-01-01

    Objective To explore the clinical characteristics of pulse wave velocity,arterial compliance and cardiovascular risk factors in elderly patients with type 2 diabetes mellitus.Methods A total of 363 patients were selected and divided into 4 groups:diabetic group,diabetic

  17. External iliac artery injury secondary to indirect pressure wave effect from gunshot wound

    OpenAIRE

    Ng, Eugene; Choong, Andrew MTL

    2016-01-01

    In patients presenting with gunshot wounds, a high clinical suspicion of injury to vasculature and viscera remote from the projectile track is paramount. We present a case of a 17 year old male who sustained a gunshot wound to his abdomen and subsequently developed a right external iliac artery contusion requiring surgery as an indirect effect of the pressure wave from the bullet.

  18. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    Science.gov (United States)

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes.

  19. White coat hypertension is more risky than prehypertension: important role of arterial wave reflections.

    Science.gov (United States)

    Sung, Shih-Hsien; Cheng, Hao-Min; Wang, Kang-Ling; Yu, Wen-Chung; Chuang, Shao-Yuan; Ting, Chih-Tai; Lakatta, Edward G; Yin, Frank C P; Chou, Pesus; Chen, Chen-Huan

    2013-06-01

    Arterial aging may link cardiovascular risk to white coat hypertension (WCH). The aims of the present study were to investigate the role of arterial aging in the white coat effect, defined as the difference between office and 24-hour ambulatory systolic blood pressures, and to compare WCH with prehypertension (PH) with respect to target organ damage and long-term cardiovascular mortality. A total of 1257 never-been-treated volunteer subjects from a community-based survey were studied. WCH and PH were defined by office and 24-hour ambulatory blood pressures. Left ventricular mass index, carotid intima-media thickness, estimated glomerular filtration rate, carotid-femoral pulse wave velocity, carotid augmentation index, amplitude of the reflection pressure wave, and 15-year cardiovascular mortality were determined. Subjects with WCH were significantly older and had greater body mass index, blood pressure values, intima-media thickness, carotid-femoral pulse wave velocity, augmentation index, amplitude of the backward pressure wave, and a lower estimated glomerular filtration rate than PH. Amplitude of the backward pressure wave was the most important independent correlate of the white coat effect in multivariate analysis (model r(2)=0.451; partial r(2)/model r(2)=90.5%). WCH had significantly greater cardiovascular mortality than PH (hazard ratio, 2.94; 95% confidence interval, 1.09-7.91), after accounting for age, sex, body mass index, smoking, fasting plasma glucose, and total cholesterol/high-density lipoprotein-cholesterol ratio. Further adjustment of the model for amplitude of the backward pressure wave eliminated the statistical significance of the WCH effect. In conclusion, the white coat effect is mainly caused by arterial aging. WCH carries higher risk for cardiovascular mortality than PH, probably via enhanced wave reflections that accompany arterial aging.

  20. Mechanical properties of mesenteric arteries in diabetic rats : consequences of outward remodeling

    NARCIS (Netherlands)

    Crijns, F R; Wolffenbuttel, B H; De Mey, J G; Struijker Boudier, H A

    1999-01-01

    Diabetes induces hemodynamic and biochemical changes that can influence mechanical properties of arteries. Structure and mechanics of mesenteric small arteries were investigated in rats with streptozotocin-induced diabetes (duration 7-9 wk). The external diameter of mesenteric artery branches was me

  1. Wave-particle duality in classical mechanics

    Science.gov (United States)

    Davydov, Alexander Y.

    2012-05-01

    Until recently, wave-particle duality has been thought of as quantum principle without a counterpart in classical physics. This belief was challenged after (i) finding that average dynamics of a classical particle in a strong inhomogeneous oscillating field resembles that of a quantum object and (ii) experimental discovery of "walkers" - macroscopic droplets that bounce on a vertically vibrating bath of the same fluid and can self-propel via interaction with the surface waves they generate. This paper exposes a new family of objects that can display both particle and wave features all together while strictly obeying laws of the Newtonian mechanics. In contrast to the previously known duality examples in classical physics, oscillating field or constant inflow of energy are not required for their existence. These objects behave deterministically provided that all their degrees of freedom are known to an observer. If, however, some degrees of freedom are unknown, an observer can describe such objects only probabilistically and they manifest weird features similar to that of quantum particles. We show new classical counterparts of such quantum phenomena as particle interference, tunneling, above-barrier reflection, trapping on top of a barrier, and spontaneous emission of radiation. In the light of these findings, we hypothesize that quantum mechanics may emerge as approximation from a more profound theory on a deeper level.

  2. Mechanical evaluation of anastomotic tension and patency in arteries.

    Science.gov (United States)

    Zhang, F; Lineaweaver, W C; Buntic, R; Walker, R

    1996-02-01

    This study quantified arterial anastomotic tension, evaluated subsequent patency rates, and examined the degree of tension reduction with vessel mobilization. The study was divided into two components. In part I, a mechanical analysis was undertaken to evaluate tension, based on the determination of the force required to deflect a cable (vessel) laterally, and its resulting lateral displacement. Six Sprague-Dawley rats with 12 femoral arteries were divided into two subgroups: 1) no mobilization; and 2) axial mobilization by ligation and transection of superficial epigastric and gracilis muscular branches. The tension of femoral arterial anastomoses was calculated in vessels with no segmental defect and with 1.5-, 3-, 4.5-, 6-, and 7.5-mm defects. In part II, patency was evaluated. Fifty-five rats with 110 femoral arteries were divided into two sub-groups as defined in part I: 1) no mobilization; and 2) axial mobilization by ligation and transection of superficial epigastric and gracilis muscular branches. Microvascular anastomoses were performed with no segmental defect and with 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, and 10-mm segmental vessel defects. Patency was evaluated 24 hr postoperatively. Part I of the study revealed that anastomotic tension gradually increased along with an increase in the length of the vessel defect, from 1.9 to 11.34 g in the no-mobilization group and from 1.97 to 8.44 g in the axial-mobilization group. Comparison of tension linear regression coefficient showed a significant difference between the two groups (p tension approximately 6 g) in the no-mobilization group and 6 mm in the axial-mobilization group (tension approximately 6.48 g). Microanastomotic tension was related to the size of the vessel defect, with increasing tension leading to thrombosis. Axial mobilization significantly reduced the tension in vessels with segmental defects and decreased thrombosis rates.

  3. Low-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical properties

    Science.gov (United States)

    Ghigo, A. R.; Delestre, O.; Fullana, J.-M.; Lagrée, P.-Y.

    2017-02-01

    The purpose of this work is to construct a simple, efficient and accurate well-balanced numerical scheme for one-dimensional (1D) blood flow in large arteries with varying geometrical and mechanical properties. As the steady states at rest are not relevant for blood flow, we construct two well-balanced hydrostatic reconstruction techniques designed to preserve low-Shapiro number steady states that may occur in large network simulations. The Shapiro number Sh = u / c is the equivalent of the Froude number for shallow water equations and the Mach number for compressible Euler equations. The first is the low-Shapiro hydrostatic reconstruction (HR-LS), which is a simple and efficient method, inspired from the hydrostatic reconstruction technique (HR). The second is the subsonic hydrostatic reconstruction (HR-S), adapted here to blood flow and designed to exactly preserve all subcritical steady states. We systematically compare HR, HR-LS and HR-S in a series of single artery and arterial network numerical tests designed to evaluate their well-balanced and wave-capturing properties. The results indicate that HR is not adapted to compute blood flow in large arteries as it is unable to capture wave reflections and transmissions when large variations of the arteries' geometrical and mechanical properties are considered. On the contrary, HR-S is exactly well-balanced and is the most accurate hydrostatic reconstruction technique. However, HR-LS is able to compute low-Shapiro number steady states as well as wave reflections and transmissions with satisfying accuracy and is simpler and computationally less expensive than HR-S. We therefore recommend using HR-LS for 1D blood flow simulations in large arterial network simulations.

  4. Localization and solitary waves in solid mechanics

    CERN Document Server

    Champneys, A R; Thompson, J M T

    1999-01-01

    This book is a collection of recent reprints and new material on fundamentally nonlinear problems in structural systems which demonstrate localized responses to continuous inputs. It has two intended audiences. For mathematicians and physicists it should provide useful new insights into a classical yet rapidly developing area of application of the rich subject of dynamical systems theory. For workers in structural and solid mechanics it introduces a new methodology for dealing with structural localization and the related topic of the generation of solitary waves. Applications range from classi

  5. High resolution wavenumber analysis for investigation of arterial pulse wave propagation

    Science.gov (United States)

    Hasegawa, Hideyuki; Sato, Masakazu; Irie, Takasuke

    2016-07-01

    The propagation of the pulse wave along the artery is relatively fast (several m/s), and a high-temporal resolution is required to measure pulse wave velocity (PWV) in a regional segment of the artery. High-frame-rate ultrasound enables the measurement of the regional PWV. In analyses of wave propagation phenomena, the direction and propagation speed are generally identified in the frequency-wavenumber space using the two-dimensional Fourier transform. However, the wavelength of the pulse wave is very long (1 m at a propagation velocity of 10 m/s and a temporal frequency of 10 Hz) compared with a typical lateral field of view of 40 mm in ultrasound imaging. Therefore, PWV cannot be identified in the frequency-wavenumber space owing to the low resolution of the two-dimensional Fourier transform. In the present study, PWV was visualized in the wavenumber domain using phases of arterial wall acceleration waveforms measured by high-frame-rate ultrasound.

  6. Wave mechanics of the hydrogen atom

    CERN Document Server

    Ogilvie, J F

    2016-01-01

    The hydrogen atom is a system amenable to an exact treatment within Schroedinger's formulation of quantum mechanics according to coordinates in four systems -- spherical polar, paraboloidal, ellipsoidal and spheroconical coordinates; the latter solution is reported for the first time. Applications of these solutions include angular momenta, a quantitative calculation of the absorption spectrum and accurate plots of surfaces of amplitude functions. The shape of an amplitude function, and even the quantum numbers in a particular set to specify such an individual function, depend on the coordinates in a particular chosen system, and are therefore artefacts of that particular coordinate representation within wave mechanics. All discussion of atomic or molecular properties based on such shapes or quantum numbers therefore lacks general significance

  7. Robust pulse wave velocity estimation by application of system identification to proximal and distal arterial waveforms.

    Science.gov (United States)

    Xu, Da; Ryan, Kathy L; Rickards, Caroline A; Zhang, Guanqun; Convertino, Victor A; Mukkamala, Ramakrishna

    2010-01-01

    Pulse wave velocity (PWV) is a marker of arterial stiffness and may permit continuous, non-invasive, and cuff-less monitoring of blood pressure. Here, robust PWV estimation was sought by application of system identification to proximal and distal arterial waveforms. In this approach, the system that optimally couples the proximal waveform to the distal waveform is identified, and the time delay of this system is then used to calculate PWV. To demonstrate proof-of-concept, a standard identification technique was applied to non-invasive impedance cardiography and peripheral arterial blood pressure waveforms from six humans subjected to progressive reductions in central blood volume induced by lower body negative pressure. This technique estimated diastolic pressure with an overall root-mean-squared-error of 5.2 mmHg. For comparison, the conventional detection method for estimating PWV yielded a corresponding error of 8.3 mmHg.

  8. Arterial mechanics considering the structural and mechanical contributions of ECM constituents.

    Science.gov (United States)

    Wang, Yunjie; Zeinali-Davarani, Shahrokh; Zhang, Yanhang

    2016-08-16

    Considering the organization and engagement behavior of different extracellular matrix (ECM) constituents in the medial and adventitial layer of the arterial wall, in this study, we proposed a new constitutive model of ECM mechanics that considers the distinct structural and mechanical contributions of medial elastin, medial collagen, and adventitial collagen, to incorporate the constituent-specific fiber orientation and the sequential fiber engagement in arterial mechanics. Planar biaxial tensile testing method was used to characterize the orthotropic and hyperelastic behavior of porcine thoracic aorta. Fiber distribution functions of medial elastin, medial collagen, and adventitial collagen were incorporated into the constitutive model. Considering the sequential engagement of ECM constituents in arterial mechanics, a recruitment density function was incorporated into the model to capture the delayed engagement of adventitial collagen. A freely jointed chain model was used to capture the mechanical behavior of elastin and collagen at the fiber level. The tissue-level ECM mechanics was obtained by incorporating fiber distribution, engagement, and elastin and collagen content. The multi-scale constitutive model considering the structural and mechanical contributions of the three major ECM constituents allows us to directly incorporate information obtained from quantitative multi-photon imaging and analysis, and biochemical assay for the prediction of tissue-level mechanical response. Moreover, the model shows promises in fitting and predicting with a small set of material parameters, which has physical meanings and can be related to the structure of the ECM.

  9. Prediction of arterial blood gas values from arterialized earlobe blood gas values in patients treated with mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Honarmand Azim

    2008-01-01

    Full Text Available Background/Objective: Arterial blood gas (ABG analysis is useful in evaluation of the clinical condition of critically ill patients; however, arterial puncture or insertion of an arterial catheter may sometimes be difficult and cause many complications. Arterialized ear lobe blood samples have been described as adequate to gauge gas exchange in acute and chronically ill pediatric patients. Purpose: This study evaluates whether pH, partial pressure of oxygen (PO 2 , partial pressure of carbon dioxide (PCO 2 , base excess (BE, and bicarbonate (HCO 3 values of arterialized earlobe blood samples could accurately predict their arterial blood gas analogs for adult patients treated by mechanical ventilation in an intensive care unit (ICU. Setting: A prospective descriptive study Methods: Sixty-seven patients who were admitted to ICU and treated with mechanical ventilation were included in this study. Blood samples were drawn simultaneously from the radial artery and arterialized earlobe of each patient. Results: Regression equations and mean percentage-difference equations were derived to predict arterial pH, PCO 2 , PO 2 , BE, and HCO 3 -values from their earlobe analogs. pH, PCO 2 , BE, and HCO 3 all significantly correlated in ABG and earlobe values. In spite of a highly significant correlation, the limits of agreement between the two methods were wide for PO 2 . Regression equations for prediction of pH, PCO 2 , BE, and HCO3- values were: arterial pH (pHa = 1.81+ 0.76 x earlobe pH (pHe [r = 0.791, P < 0.001]; PaCO 2 = 1.224+ 1.058 x earlobePCO 2 (PeCO 2 [r = 0.956, P < 0.001]; arterial BE (BEa = 1.14+ 0.95 x earlobe BE (BEe [r= 0.894, P < 0.001], and arterial HCO 3 - (HCO 3 -a = 1.41+ earlobe HCO 3 (HCO 3 -e [r = 0.874, P < 0.001]. The predicted ABG values from the mean percentage-difference equations were derived as follows: pHa = pHe x 1.001; PaCO 2 = PeCO 2 x 0.33; BEa = BEe x 0.57; and HCO 3 -a = HCO 3 -e x 1.06. Conclusions: Arterialized

  10. Serum Uric Acid Level and Diverse Impacts on Regional Arterial Stiffness and Wave Reflection

    Directory of Open Access Journals (Sweden)

    Suyan Bian

    2012-08-01

    Full Text Available Background: Both increased arterial stiffness and hyperuricaemia are associated with elevated cardiovascular risks. Little is known about the relations of serum uric acid (UA level to regional arterial stiffness and wave reflection. The aim of the study was to investigate the gender-specific association of serum UA and indices of arterial function in a community-based investigation in China.Methods: Cross-sectional data from 2374 adults (mean age 58.24 years who underwent routine laboratory tests, regional pulse wave velocity (PWV and pulse wave analysis measurements were analyzed in a gender-specific manner. None of the participants had atherosclerotic cardiovascular disease, chronic renal failure, systemic inflammatory disease, gout, or were under treatment which would affect serum UA level.Results: Men had higher serum UA level than women. Subjects with hyperuricaemia had significantly higher carotid-ankle PWV in both genders (P< 0.05, and the carotid-femoral PWV (PWVc-f was higher in women (P< 0.001 while the augmentation index was marginally lower in men (P = 0.049. Multiple regression analysis showed that serum UA was an independent determinant only for PWVc-f in women (β = 0.104, P = 0.027 when adjusted for atherogenic confounders. No other independent relationship was found between UA level and other surrogates of arterial stiffness.Conclusions: Serum UA levels are associated with alterations in systemic arterial stiffness that differ in men and women. Women might be more susceptible to large vascular damage associated with hyperuricaemia.

  11. Supersonic Shear Wave Imaging to Assess Arterial Nonlinear Behavior and Anisotropy: Proof of Principle via Ex Vivo Testing of the Horse Aorta

    Directory of Open Access Journals (Sweden)

    D. A. Shcherbakova

    2014-09-01

    Full Text Available Supersonic shear wave imaging (SSI is a noninvasive, ultrasound-based technique to quantify the mechanical properties of bulk tissues by measuring the propagation speed of shear waves (SW induced in the tissue with an ultrasound transducer. The technique has been successfully validated in liver and breast (tumor diagnostics and is potentially useful for the assessment of the stiffness of arteries. However, SW propagation in arteries is subjected to different wave phenomena potentially affecting the measurement accuracy. Therefore, we assessed SSI in a less complex ex vivo setup, that is, a thick-walled and rectangular slab of an excised equine aorta. Dynamic uniaxial mechanical testing was performed during the SSI measurements, to dispose of a reference material assessment. An ultrasound probe was fixed in an angle position controller with respect to the tissue to investigate the effect of arterial anisotropy on SSI results. Results indicated that SSI was able to pick up stretch-induced stiffening of the aorta. SW velocities were significantly higher along the specimen's circumferential direction than in the axial direction, consistent with the circumferential orientation of collagen fibers. Hence, we established a first step in studying SW propagation in anisotropic tissues to gain more insight into the feasibility of SSI-based measurements in arteries.

  12. Analysis of Arterial Mechanics During Head-Down-Tilt Bed Rest

    Science.gov (United States)

    Elliott, Morgan B.; Martin, David S.; Westby, Christian M.; Stenger, Michael B.; Platts, Steven H.

    2014-01-01

    Carotid, brachial, and tibial arteries reacted differently to HDTBR. Previous studies have not analyzed the mechanical properties of the human brachial or anterior tibial arteries. After slight variations during bed-rest, arterial mechanical properties and IMT returned to pre-bed rest values, with the exception of tibial stiffness and PSE, which continued to be reduced post-bed rest while the DC remained elevated. The tibial artery remodeling was probably due to decreased pressure and volume. Resulting implications for longer duration spaceflight are unclear. Arterial health may be affected by microgravity, as shown by increased thoracic aorta stiffness in other ground based simulations (Aubert).

  13. Arterial stiffness and wave reflections in patients with sickle cell disease.

    Science.gov (United States)

    Lemogoum, Daniel; Van Bortel, Luc; Najem, Boutaina; Dzudie, Anasthase; Teutcha, Charles; Madu, Ernest; Leeman, Marc; Degaute, Jean-Paul; van de Borne, Philippe

    2004-12-01

    We tested the hypothesis that lower blood pressure and increased vasodilatation reported in sickle cell disease (SCD) patients with hemoglobin SS genotype (SS) are translated by lower arterial stiffness determined by pulse wave velocity (PWV) and wave reflections assessed by augmentation index (AI). We enrolled 20 SS (8 females; 12 male) patients closely matched for age, gender, height, and body mass index to 20 subjects with hemoglobin AA genotype (AA). Carotid-femoral PWV (PWV(CF)) and carotid-radial PWV (PWV(CR)) were recorded with the Complior device. Aortic AI was derived from pressure wave analysis (SphygmocoR). PWV(CF) and PWV(CR) were lower in SS than in AA (4.5+/-0.7 m/s versus 6.9+/-0.9 m/s, P<0.0001 and 6.6+/-1.2 m/s versus 9.5+/-1.4 m/s, P<0.0001, respectively). AI was lower in SS than in AA (2+/-14% versus 11+/-8%, P=0.02). Multivariate analysis revealed that both PWV(CF) and PWV(CR) were negatively associated with hemoglobin SS type and positively related to mean arterial pressure (MAP), whereas AI was positively associated with MAP and total cholesterol (all P<0.0001). Multivariate analysis restricted to SS indicated a positive association between PWV(CF) and PWV(CR) with age but a negative association with MAP (R2=0.57 and 0.51, respectively, both P<0.001), whereas MAP and heart rate were independently associated with AI (R2=0.65, P<0.001). This study provides the first evidence that SCD is associated with both lower arterial stiffness and wave reflections. SS patients have a paradoxical negative association between PWV and MAP, suggesting that low MAP does not protect them against arterial stiffness impairment.

  14. External iliac artery injury secondary to indirect pressure wave effect from gunshot wound

    Institute of Scientific and Technical Information of China (English)

    Eugene Ng; Andrew MTL.Choong

    2016-01-01

    In patients presenting with gunshot wounds,a high clinical suspicion of injury to vasculature and viscera remote from the projectile track is paramount.We present a case of a 17 year old male who sustained a gunshot wound to his abdomen and subsequently developed a right external iliac artery contusion requiring surgery as an indirect effect of the pressure wave from the bullet.

  15. Development of Mechanical and Failure Properties in Sheep Cerebral Arteries.

    Science.gov (United States)

    Nye, Kevin S; Converse, Matthew I; Dahl, Mar Janna; Albertine, Kurt H; Monson, Kenneth L

    2017-04-01

    Traumatic brain injury (TBI) is a devastating problem for people of all ages, but the nature of the response to such injury is often different in children than in adults. Cerebral vessel damage and dysfunction are common following TBI, but age-dependent, large-deformation vessel response has not been characterized. Our objective was to investigate the mechanical properties of cerebral arteries as a function of development. Sheep middle cerebral arteries from four age groups (fetal, newborn, juvenile, and adult) were subjected to biaxial loading around physiological conditions and then to failure in the axial direction. Results show little difference among age groups under physiological loading conditions, but response varied significantly with age in response to large axial deformation. Vessels from all age groups reached the same ultimate stretch level, but the amount of stress carried at a given level of stretch increased significantly with age through the developmental period (fetal to juvenile). Our results are the first to identify changes in cerebral vessel response to large deformations with age and may lead to new insights regarding differences in response to TBI with age.

  16. An innovative method to measure the peripheral arterial elasticity: spring constant modeling based on the arterial pressure wave with radial vibration.

    Science.gov (United States)

    Wei, Ching-Chuan

    2011-11-01

    In this study, we propose an innovative method for the direct measurement of the peripheral artery elasticity using a spring constant model, based on the arterial pressure wave equation, vibrating in a radial direction. By means of the boundary condition of the pressure wave equation at the maximum peak, we can derive the spring constant used for evaluating peripheral arterial elasticity. The calculated spring constants of six typical subjects show a coincidence with their proper arterial elasticities. Furthermore, the comparison between the spring constant method and pulse wave velocity (PWV) was investigated in 70 subjects (21-64 years, 47 normotensives and 23 hypertensives). The results reveal a significant negative correlation for the spring constant vs. PWV (correlation coefficient = -0.663, p constant method to assess the arterial elasticity is carefully verified, and it is shown to be effective as well as fast. This method should be useful for healthcare, not only in improving clinical diagnosis of arterial stiffness but also in screening subjects for early evidence of cardio-vascular diseases and in monitoring responses to therapy in the future.

  17. PUVB-mediated prevention of luminal narrowing after arterial wall injury: modulation of mechanical arterial properties as a putative mechanism of action

    Science.gov (United States)

    Perree, Jop; Kerindongo, Raphaela P.; van Leeuwen, Ton G. J. M.

    2001-10-01

    In a previous study we have found that the photodynamic modality PUVB (8-methoxy-Psoralen + UVB) reduces luminal narrowing after arterial endovascular injury. We hypothesized that PUVB may modulate the arterial mechanical properties and tested this hypothesis by measuring the stress as a function of the strain in segments of carotid artery. Furthermore, we have investigated the potential for PUVB-induced cross-linking of extracellular matrix proteins by gel electrophoresis. It was found that both techniques were suitable for testing our hypotheses as evidenced by a statistically significant difference for the positive control. However, no differences between A) control, B) sensitizer only, C) light only and D) PUVB-treated samples could be found with respect to macro- and micro-mechanical properties. Therefore, the hypothesis that PUVB mediates its luminal narrowing reduction effect by directly changing the arterial mechanical properties should be rejected.

  18. Cosmology and the pilot wave interpretation of quantum mechanics

    Science.gov (United States)

    Tipler, Frank J.

    1984-07-01

    Bell has recently revived the pilot wave interpretation of de Broglie and Bohm as a possible scheme for interpreting wave functions in quantum cosmology. I argue that the pilot wave interpretation cannot be applied consistently to systems whose wave functions split into macroscopically distinguishable states. At some stage the pilot wave interpretation must either tacitly invoke wave function reduction in the same manner as the Copenhagen interpretation, or else abandon locality by requiring physical particles to move faster than light. Consequently, the many-worlds interpretation is the only known realist interpretation of the quantum mechanical formalism which can be extended to quantum cosmology.

  19. Estimation of local pulse wave velocity using arterial diameter waveforms: Experimental validation in sheep

    Science.gov (United States)

    Graf, S.; Craiem, D.; Barra, J. G.; Armentano, R. L.

    2011-12-01

    Increased arterial stiffness is associated with an increased risk of cardiovascular events. Estimation of arterial stiffness using local pulse wave velocity (PWV) promises to be very useful for noninvasive diagnosis of arteriosclerosis. In this work we estimated in an instrumented sheep, the local aortic pulse wave velocity using two sonomicrometry diameter sensors (separated 7.5 cm) according to the transit time method (PWVTT) with a sampling rate of 4 KHz. We simultaneously measured aortic pressure in order to determine from pressure-diameter loops (PWVPDLoop), the "true" local aortic pulse wave velocity. A pneumatic cuff occluder was implanted in the aorta in order to compare both methods under a wide range of pressure levels. Mean pressure values ranged from 47 to 101 mmHg and mean proximal diameter values from 12.5. to 15.2 mm. There were no significant differences between PWVTT and PWVPDLoop values (451±43 vs. 447±48 cm/s, p = ns, paired t-test). Both methods correlated significantly (R = 0.81, p<0.05). The mean difference between both methods was only -4±29 cm/s, whereas the range of the limits of agreement (mean ± 2 standard deviation) was -61 to +53 cm/s, showing no trend. In conclusion, the diameter waveforms transit time method was found to allow an accurate and precise estimation of the local aortic PWV.

  20. Comparison of arterial waves derived by classical wave separation and wave intensity analysis in a model of aortic coarctation

    NARCIS (Netherlands)

    van den Wijngaard, J.P.H.M.; Siebes, M.; Westerhof, B.E.

    2009-01-01

    Coarctation of the aorta may develop during fetal life and impair quality of life in the adult because upper body hypertension and aneurysm formation in the descending aorta may develop. We used our computational model of the young adult arterial circulation, incorporated aorta coarctation over a ra

  1. Dynamic respiratory mechanics and exertional dyspnoea in pulmonary arterial hypertension.

    Science.gov (United States)

    Laveneziana, Pierantonio; Garcia, Gilles; Joureau, Barbara; Nicolas-Jilwan, Fadia; Brahimi, Toufik; Laviolette, Louis; Sitbon, Olivier; Simonneau, Gérald; Humbert, Marc; Similowski, Thomas

    2013-03-01

    Patients with pulmonary arterial hypertension (PAH) may exhibit reduced expiratory flows at low lung volumes, which could promote exercise-induced dynamic hyperinflation (DH). This study aimed to examine the impact of a potential exercise-related DH on the intensity of dyspnoea in patients with PAH undergoing symptom-limited incremental cardiopulmonary cycle exercise testing (CPET). 25 young (aged mean±sd 38±12 yrs) nonsmoking PAH patients with no evidence of spirometric obstruction and 10 age-matched nonsmoking healthy subjects performed CPET to the limit of tolerance. Ventilatory pattern, operating lung volumes (derived from inspiratory capacity (IC) measurements) and dyspnoea intensity (Borg scale) were assessed throughout CPET. IC decreased (i.e. DH) progressively throughout CPET in PAH patients (average 0.15 L), whereas it increased in all the healthy subjects (0.45 L). Among PAH patients, 15 (60%) exhibited a decrease in IC throughout exercise (average 0.50 L), whereas in the remaining 10 (40%) patients IC increased (average 0.36 L). Dyspnoea intensity and ventilation were greater in PAH patients than in controls at any stage of CPET, whereas inspiratory reserve volume was lower. We conclude that DH-induced mechanical constraints and excessive ventilatory demand occurred in these young nonsmoking PAH patients with no spirometric obstruction and was associated with exertional dyspnoea.

  2. Ocean wave imaging mechanism by imaging radar

    Institute of Scientific and Technical Information of China (English)

    何宜军

    2000-01-01

    Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.

  3. Numerical simulation and mechanism analysis of freak waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A numerical wave model based on the modified fourth-order nonlinear Schroe dinger equation (mNLSE) in deep water was developed to simulate the formation of freak waves and a standard split-step, pseudo-spectral method was used to solve the equation. The validation of the model is firstly verified, then the simulation of freak waves was performed by changing sideband conditions, and the variation of wave energy was also analyzed in the evolution. The results indicate that Benjamin-Feir instability (sideband instability) is an important mechanism for freak wave formation.

  4. Plasma homocysteine is associated with aortic arterial stiffness but not wave reflection in Chinese hypertensive subjects.

    Directory of Open Access Journals (Sweden)

    Wenkai Xiao

    Full Text Available OBJECTIVE: Elevated plasma total homocysteine (tHcy acts synergistically with hypertension to exert a multiplicative effect on cardiovascular diseases risk. The aim of this study was to determine the relationship between tHcy concentration and blood pressure, and to evaluate the role of plasma tHcy in arterial stiffness and wave reflection in hypertension. METHODS: In this cross-sectional study, a community-based sample of 1680 subjects (mean age 61.6 years was classified into four groups according to tHcy level (<21.6 vs. ≥ 21.6 µmol/l and blood pressure (hypertensive vs. normotensive. Levels of plasma tHcy and other biochemical parameters (e.g., lipids, glucose were determined. Central arterial blood pressure, reflected pressure wave, and carotid-femoral pulse wave velocity (cf-PWV were assessed by tonometry within 2 days of obtaining the blood specimen. RESULTS: Neither peripheral nor central blood pressure differed according to tHcy levels in normotensive and hypertensive subjects. Differences in cf-PWV according to tHcy were observed only in hypertensive subjects; differences in cf-PWV in normotensive subjects were not significant after adjusting for confounding factors. Central augmentation index did not differ according to tHcy level in either normotensive or hypertensive subjects. Results of univariate analysis revealed significant correlations between blood pressure parameters and tHcy concentration only among normotensive subjects; however, these correlations were not significant in a partial correlation analysis. Results of multiple regression analysis showed that plasma tHcy levels were independently correlated with cf-PWV in hypertensive subjects (β = 0.713, P = 0.004. The independent relationship between tHcy and central augmentation index was not significant by further multiple analyses in normotensive or hypertensive individuals. CONCLUSIONS: Plasma tHcy level is strongly and independently correlated with arterial

  5. Mechanical and metallurgical properties of carotid artery clamps.

    Science.gov (United States)

    Dujovny, M; Kossovsky, N; Kossowsky, R; Segal, R; Diaz, F G; Kaufman, H; Perlin, A; Cook, E E

    1985-11-01

    The mechanical and metallurgical properties of carotid artery clamps were evaluated. The pressure plate retreat propensity, metallurgical composition, surface morphology, magnetic properties, and corrosion resistance of the Crutchfield, Selverstone, Salibi, and Kindt clamps were tested. None of the clamps showed evidence of pressure plate retreat. The clamps differed significantly in their composition, surface cleanliness, magnetic properties, and corrosion resistance. The Crutchfield clamp was the only one manufactured from an ASTM-ANSI-approved implantable stainless steel (AISI 316) and the only clamp in which the surfaces were clean and free of debris. The Selverstone clamp was made principally from AISI 304 stainless steel, as was one Salibi clamp. The pressure plate on another Salibi clamp was made from a 1% chromium and 1% manganese steel. Machining and surface debris consisting principally of aluminum, silicon, and sulfur was abundant on the Selverstone and Salibi clamps. The Kindt clamp was manufactured from AISI 301 stainless steel with a silicate-aluminized outer coating. The Crutchfield and Selverstone clamps were essentially nonferromagnetic, whereas the Salibi and Kindt clamps were sensitive to magnetic flux. In the pitting potential corrosion test, the Crutchfield clamp demonstrated good corrosion resistance with a pitting potential of 310 mV and no surface corrosion or pitting by scanning electron microscopy examination. The Selverstone clamp had lower pitting potentials and showed various degrees of corrosion and surface pitting by scanning electron microscopy. The Salibi pressure plate had a very low pitting potential of -525 mV and showed severe corrosion. By metallurgical criteria, only the Crutchfield clamp is suitable for long term implantation.

  6. Photon physics: from wave mechanics to quantum electrodynamics

    Science.gov (United States)

    Keller, Ole

    2009-05-01

    When rewritten in an appropriate manner, the microscopic Maxwell-Lorentz equations appear as a wave-mechanical theory for photons, and their quantum physical interaction with matter. A natural extension leads from photon wave mechanics to quantum electrodynamics (QED). In its modern formulation photon wave mechanics has given us valuable new insight in subjects such as spatial photon localization, near-field photon dynamics, transverse photon mass, photon eikonal theory, photon tunneling, and rim-zone electrodynamics. The present review is based on my plenary lecture at the SPIE-Europe 2009 Optics and Optoelectronics International Symposium in Prague.

  7. On quantum mechanical phase-space wave functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim J.

    1994-01-01

    An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...

  8. Mechanism of arterial remodeling in chronic allograft vasculopathy

    Institute of Scientific and Technical Information of China (English)

    Qichang Zheng; Shanglong Liu; Zifang Song

    2011-01-01

    Chronic allograft vasculopathy (CAV) remains a major obstacle for long-term survival of grafts even though therapeutic strategies have improved considerably in recent years.CAV is characterized by concentric and diffuse neointimal formation,medial apoptosis,infiltration of lymphocyte or inflammatory cells,and deposition of extracellular matrix both in arteries and veins.Recent studies have shown that stem cells derived from the recipient contribute to neointimal formation under the regulation of chemokines and cytokines.Arterial remodeling in allografts eventually causes ischemic graft failure.The pathogenesis is multi-factorial with both immunologic and non-immunological factors being involved.The immunological factors have been discussed extensively in other articles.This review focuses mainly on the arterial remodeling that occurs in 3 layers of vessel walls including intimal injury,accumulation of smooth muscle-like cells in the neointimal,medial smooth muscle cell apoptosis,adventitial fibrosis,and deposition of extracellular matrix.

  9. Mechanical compression of coronary artery stents: potential hazard for patients undergoing cardiopulmonary resuscitation.

    Science.gov (United States)

    Windecker, S; Maier, W; Eberli, F R; Meier, B; Hess, O M

    2000-12-01

    Mechanical compression of coronary artery stents may be associated with a fatal outcome as the result of refractory myocardial ischemia. We present the history of an 83-yr-old patient, who died owing to hemorrhagic shock 3 days after stent implantation, despite immediate cardiopulmonary resuscitation (CPR). Postmortem examination showed stent compression, probably due to mechanical deformation during CPR. This complication has been reported in two other cases in the literature, suggesting that CPR may be hazardous to patients with coronary artery stents.

  10. Probing the Core-Collapse Supernova Mechanism with Gravitational Waves

    CERN Document Server

    Ott, C D

    2009-01-01

    The mechanism of core-collapse supernova explosions must draw on the energy provided by gravitational collapse and transfer the necessary fraction to the kinetic and internal energy of the ejecta. Despite many decades of concerted theoretical effort, the detailed mechanism of core-collapse supernova explosions is still unknown, but indications are strong that multi-D processes lie at its heart. This opens up the possibility of probing the supernova mechanism with gravitational waves, carrying direct dynamical information from the supernova engine deep inside a dying massive star. I present a concise overview of the physics and primary multi-D dynamics in neutrino-driven, magnetorotational, and acoustically-driven core-collapse supernova explosion scenarios. Discussing and contrasting estimates for the gravitational-wave emission characteristics of these mechanisms, I argue that their gravitational-wave signatures are clearly distinct and that the observation (or non-observation) of gravitational waves from a ...

  11. Noninvasive pulse wave analysis for the determination of central artery stiffness

    DEFF Research Database (Denmark)

    Wittrock, Marc; Scholze, Alexandra; Compton, Friederike;

    2009-01-01

    Central artery stiffness predicts cardiovascular structural damage and clinical outcome. It is controversial whether central artery stiffness can be determined by noninvasive measurements. We compared noninvasive determination of central artery stiffness obtained from applanation tonometry of the...

  12. The Molecular Genetics and Cellular Mechanisms Underlying Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Rajiv D. Machado

    2012-01-01

    Full Text Available Pulmonary arterial hypertension (PAH is an incurable disorder clinically characterised by a sustained elevation of mean arterial pressure in the absence of systemic involvement. As the adult circulation is a low pressure, low resistance system, PAH represents a reversal to a foetal state. The small pulmonary arteries of patients exhibit luminal occlusion resultant from the uncontrolled growth of endothelial and smooth muscle cells. This vascular remodelling is comprised of hallmark defects, most notably the plexiform lesion. PAH may be familial in nature but the majority of patients present with spontaneous disease or PAH associated with other complications. In this paper, the molecular genetic basis of the disorder is discussed in detail ranging from the original identification of the major genetic contributant to PAH and moving on to current next-generation technologies that have led to the rapid identification of additional genetic risk factors. The impact of identified mutations on the cell is examined, particularly, the determination of pathways disrupted in disease and critical to pulmonary vascular maintenance. Finally, the application of research in this area to the design and development of novel treatment options for patients is addressed along with the future directions PAH research is progressing towards.

  13. Celestial Mechanics, Conformal Structures, and Gravitational Waves

    CERN Document Server

    Duval, C; Horvathy, P

    1991-01-01

    The equations of motion for $N$ non-relativistic particles attracting according to Newton's law are shown to correspond to the equations for null geodesics in a $(3N+2)$-dimensional Lorentzian, Ricci-flat, spacetime with a covariantly constant null vector. Such a spacetime admits a Bargmann structure and corresponds physically to a generalized pp-wave. Bargmann electromagnetism in five dimensions comprises the two Galilean electro-magnetic theories (Le Bellac and L\\'evy-Leblond). At the quantum level, the $N$-body Schr\\"odinger equation retains the form of a massless wave equation. We exploit the conformal symmetries of such spacetimes to discuss some properties of the Newtonian $N$-body problem: homographic solutions, the virial theorem, Kepler's third law, the Lagrange-Laplace-Runge-Lenz vector arising from three conformal Killing 2-tensors, and motions under inverse square law forces with a gravitational constant $G(t)$ varying inversely as time (Dirac). The latter problem is reduced to one with time indep...

  14. Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...

  15. Wind-wave amplification mechanisms: possible models for steep wave events in finite depth

    Directory of Open Access Journals (Sweden)

    P. Montalvo

    2013-11-01

    Full Text Available We extend the Miles mechanism of wind-wave generation to finite depth. A β-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of β is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the β-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrödinger equation is derived and the Akhmediev, Peregrine and Kuznetsov–Ma breather solutions for weak wind inputs in finite depth h are obtained.

  16. Mechanic waves in sand: effect of polydispersity

    NARCIS (Netherlands)

    Luding, S.; Mouraille, O.; Peukert, W.; Schreglmann, C.

    2008-01-01

    The sound propagation mechanisms inside dense granular matter are challenging the attempts to describe it because of the discrete nature of the material. Phenomena like dissipation, scattering, and dispersion are hard to predict based on the material state and/or properties and vice-versa. We propos

  17. Arterial distensibility as a possible compensatory mechanism in chronic aortic regurgitation

    Directory of Open Access Journals (Sweden)

    Kopel Liliane

    2001-01-01

    Full Text Available OBJECTIVE: To evaluate elastic properties of conduit arteries in asymptomatic patients who have severe chronic aortic regurgitation. METHODS: Twelve healthy volunteers aged 30±1 years (control group and 14 asymptomatic patients with severe aortic regurgitation aged 29±2 years and left ventricular ejection fraction of 0.61±0.02 (radioisotope ventriculography were studied. High-resolution ultrasonography was performed to measure the systolic and diastolic diameters of the common carotid artery. Simultaneous measurement of blood pressure enabled the calculation of arterial compliance and distensibility. RESULTS: No differences were observed between patients with aortic regurgitation and the control group concerning age, sex, body surface, and mean blood pressure. Pulse pressure was significantly higher in the aortic regurgitation group compared with that in the control group (78±3 versus 48±1mmHg, P<0.01. Arterial compliance and distensibility were significantly greater in the aortic regurgitation group compared with that in the control group (11.0±0.8 versus 8.1±0.7 10-10 N-1 m4, P=0.01 e and 39.3±2.6 versus 31.1±2.0 10-6 N-1 m², P=0.02, respectively. CONCLUSION: Patients with chronic aortic regurgitation have increased arterial distensibility. Greater vascular compliance, to lessen the impact of systolic volume ejected into conduit arteries, represents a compensatory mechanism in left ventricular and arterial system coupling.

  18. Computer Simulation of the Mechanical Behaviour of Implanted Biodegradable Stents in a Remodelling Artery

    Science.gov (United States)

    Boland, Enda L.; Grogan, James A.; Conway, Claire; McHugh, Peter E.

    2016-04-01

    Coronary stents have revolutionised the treatment of coronary artery disease. While coronary artery stenting is now relatively mature, significant scientific and technological challenges still remain. One of the most fertile technological growth areas is biodegradable stents; here, there is the possibility to generate stents that will break down in the body once the initial necessary scaffolding period is past (6-12 months) (Grogan et al. in Acta Biomater 7:3523, 2011) and when the artery has remodelled (including the formation of neo-intima). A stent angioplasty computational test-bed has been developed by the authors, based on the Abaqus software (DS-SIMULIA, USA), capable of simulating stent tracking, balloon expansion, recoil and in vivo loading in a atherosclerotic artery model. Additionally, a surface corrosion model to simulate uniform and pitting corrosion of biodegradable stents and a representation of the active response of the arterial tissue following stent implantation, i.e. neointimal remodelling, has been developed. The arterial neointimal remodelling simulations with biodegradable stent corrosion demonstrate that the development of new arterial tissue around the stent struts has a substantial effect on the mechanical behaviour of degrading stents.

  19. S-nitrosothiols dilate the mesenteric artery more potently than the femoral artery by a cGMP and L-type calcium channel-dependent mechanism.

    Science.gov (United States)

    Liu, Taiming; Schroeder, Hobe J; Zhang, Meijuan; Wilson, Sean M; Terry, Michael H; Longo, Lawrence D; Power, Gordon G; Blood, Arlin B

    2016-08-31

    S-nitrosothiols (SNOs) are metabolites of NO with potent vasodilatory activity. Our previous studies in sheep indicated that intra-arterially infused SNOs dilate the mesenteric vasculature more than the femoral vasculature. We hypothesized that the mesenteric artery is more responsive to SNO-mediated vasodilation, and investigated various steps along the NO/cGMP pathway to determine the mechanism for this difference. In anesthetized adult sheep, we monitored the conductance of mesenteric and femoral arteries during infusion of S-nitroso-l-cysteine (L-cysNO), and found mesenteric vascular conductance increased (137 ± 3%) significantly more than femoral conductance (26 ± 25%). Similar results were found in wire myography studies of isolated sheep mesenteric and femoral arteries. Vasodilation by SNOs was attenuated in both vessel types by the presence of ODQ (sGC inhibitor), and both YC-1 (sGC agonist) and 8-Br-cGMP (cGMP analog) mediated more potent relaxation in mesenteric arteries than femoral arteries. The vasodilatory difference between mesenteric and femoral arteries was eliminated by antagonists of either protein kinase G or L-type Ca(2+) channels. Western immunoblots showed a larger L-type Ca(2+)/sGC abundance ratio in mesenteric arteries than in femoral arteries. Fetal sheep mesenteric arteries were more responsive to SNOs than adult mesenteric arteries, and had a greater L-Ca(2+)/sGC ratio (p = 0.047 and r = -0.906 for correlation between Emax and L-Ca(2+)/sGC). These results suggest that mesenteric arteries, especially those in fetus, are more responsive to SNO-mediated vasodilation than femoral arteries due to a greater role of the L-type calcium channel in the NO/cGMP pathway.

  20. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele eBellesi

    2014-10-01

    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  1. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Science.gov (United States)

    Bellesi, Michele; Riedner, Brady A; Garcia-Molina, Gary N; Cirelli, Chiara; Tononi, Giulio

    2014-01-01

    Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement.

  2. Elastin and Mechanics of Pig Pericardial Resistance Arteries (pPRA)

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Leurgans, Thomas; Rosenstand, Kristoffer

    Resistance arteries are remodeled in hypertension and diabetes. Elastin was reported to play a role herein. The parietal pericardium is opened during cardio-thoracic surgeries and might be a valuable biopsy for research in cardio-vascular diseases. We tested the hypothesis that resistance arteries...... can be isolated from the pericardium to study the micro-architecture of elastin and vascular wall mechanics. The pericardium of pigs served to test the hypothesis. pPRAs were microdissected. Their structure was examined using multiphoton excitation fluorescence microscopy. Diameter-tension...... and pressure-diameter-length relationships were recorded in myographs. Findings are compared to rodent mesenteric resistance arteries and –basilar arteries (rMRA, rBA) with comparable lumen diameter (±300µm at 100mmHg). pPRA have no clear external elastic lamina (present in rMRA, but not rBA), scant elastin...

  3. Regulatory mechanism of endothelin receptor B in the cerebral arteries after focal cerebral ischemia

    DEFF Research Database (Denmark)

    Grell, Anne-Sofie; Thigarajah, Rushani; Edvinsson, Lars;

    2014-01-01

    drug targets to restore normal cerebral artery contractile function as part of successful neuroprotective therapy. METHODS: We have employed in vitro methods on human and rat cerebral arteries to study the regulatory mechanisms and the efficacy of target selective inhibitor, Mithramycin A (MitA...... arteries. RESULTS: Increased expression of specificity protein (Sp1) was observed in human and rat cerebral arteries after organ culture, strongly correlating with the ETBR upregulation. Similar observations were made in MCAO rats. Treatment with MitA, a Sp1 specific inhibitor, significantly downregulated...... vasoconstriction in focal cerebral ischemia via MEK-ERK signaling, which is also conserved in humans. The results show that MitA can effectively be used to block ETBR mediated vasoconstriction as a supplement to an existing ischemic stroke therapy....

  4. Waves and Oscillations A Prelude to Quantum Mechanics

    CERN Document Server

    Smith, Walter Fox

    2010-01-01

    Waves and oscillations permeate virtually every field of current physics research, are central to chemistry, and are essential to much of engineering. Furthermore, the concepts and mathematical techniques used for serious study of waves and oscillations form the foundation for quantum mechanics. Once they have mastered these ideas in a classical context, students will be ready to focus on the challenging concepts of quantum mechanics when they encounter them, rather than struggling with techniques. This lively textbook gives a thorough grounding in complex exponentials and the key aspects of d

  5. On the cascade mechanism of short surface wave modulation

    Directory of Open Access Journals (Sweden)

    M. Charnotskii

    2002-01-01

    Full Text Available Modulation of short surface ripples by long surface or internal waves by a cascade mechanism is considered. At the first stage, the orbital velocity of the long wave (LW adiabatically modulates an intermediate length nonlinear gravity wave (GW, which generates a bound (parasitic capillary wave (CW near its crest in a wide spatial frequency band. Due to strong dependence of the CW amplitude on that of the GW, the resulting ripple modulation by LW can be strong. Adiabatic modulation at the first stage is calculated for an arbitrarily strong LW current. The CWs are calculated based on the Lonquet-Higgins theory, in the framework of a steady periodic solution, which proves to be sufficient for the cases considered. Theoretical results are compared with data from laboratory experiments. A discussion of related sea clutter data is given in the conclusion.

  6. "Slowing" Mechanical Waves with a Consumer-Type High-Speed Digital Camera

    Science.gov (United States)

    Ng, Pun-hon; Chan, Kin-lok

    2015-01-01

    In most secondary physics textbooks, waves are first introduced with examples of mechanical waves because they can be illustrated by drawings and photographs. However, these illustrations are static and cannot reflect the dynamic nature of waves. Although many mechanical waves (e.g. water waves and vibrating strings) can be easily shown using…

  7. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.

  8. Kidney transplantation improves arterial function measured by pulse wave analysis and endothelium-independent dilatation in uraemic patients despite deterioration of glucose metabolism

    DEFF Research Database (Denmark)

    Hornum, Mads; Clausen, Peter; Idorn, Thomas

    2011-01-01

    BACKGROUND: The aim of this study is to investigate the effect of kidney transplantation on arterial function in relation to changes in glucose metabolism. METHODS: Included were 40 kidney recipients (Tx group, age 38 ± 13 years) and 40 patients without known diabetes remaining on the waiting list...... for kidney transplantation (uraemic control group, age 47 ± 11 years). Arterial function was estimated by the pulse wave velocity (PWV) of the carotid-femoral pulse wave, aortic augmentation index (AIX), flow-mediated (FMD) and nitroglycerin-induced vasodilatation (NID) of the brachial artery performed...... before transplantation and after 12 months. PWV recorded sequentially at the carotid and femoral artery is an estimate of arterial stiffness; AIX is an integrated index of vascular and ventricular function. FMD and NID are the dilatory capacities of the brachial artery after increased flow (endothelium...

  9. An ultrasound-based method for determining pulse wave velocity in superficial arteries.

    Science.gov (United States)

    Rabben, Stein Inge; Stergiopulos, Nikos; Hellevik, Leif Rune; Smiseth, Otto A; Slørdahl, Stig; Urheim, Stig; Angelsen, Bjørn

    2004-10-01

    In this paper, we present a method for estimating local pulse wave velocity (PWV) solely from ultrasound measurements: the area-flow (QA) method. With the QA method, PWV is estimated as the ratio between change in flow and change in cross-sectional area (PWV = dQ/dA) during the reflection-free period of the cardiac cycle. In four anaesthetized dogs and 21 human subjects (age 23-74) we measured the carotid flow and cross-sectional area non-invasively by ultrasound. As a reference method we used the Bramwell-Hill (BH) equation which estimates PWV from pulse pressure and cross-sectional area. Additionally, we therefore measured brachial pulse pressure by oscillometry in the human subjects, and central aortic pulse pressure by micro-manometry in the dogs. As predicted by the pressure dependency of arterial stiffness, the estimated PWV decreased when the aortic pressure was lowered in two of the dogs. For the human subjects, the QA and BH estimates were correlated (R=0.43, pBH method increased with age (pBH method, indicating different precisions for the two methods. This study illustrates that the simple equation PWV = dQ/dA gives estimates correlated to the PWV of the reference method. However, improvements in the basic measurements seem necessary to increase the precision of the method.

  10. A modified regimen of extracorporeal cardiac shock wave therapy for treatment of coronary artery disease

    Directory of Open Access Journals (Sweden)

    Wang Yu

    2012-08-01

    Full Text Available Abstract Background Cardiac shock wave therapy (CSWT improves cardiac function in patients with severe coronary artery disease (CAD. We aimed to evaluate the clinical outcomes of a new CSWT treatment regimen. Methods The 55 patients with severe CAD were randomly divided into 3 treatment groups. The control group (n = 14 received only medical therapy. In group A ( n = 20, CSWT was performed 3 times within 3 months. In group B ( n = 21, patients underwent 3 CSWT sessions/week, and 9 treatment sessions were completed within 1 month. Primary outcome measurement was 6-minute walk test (6MWT. Other measurements were also evaluated. Results The 6MWT, CCS grading of angina, dosage of nitroglycerin, NYHA classification, and SAQ scores were improved in group A and B compared to control group. Conclusions A CSWT protocol with 1 month treatment duration showed similar therapeutic efficacy compared to a protocol of 3 months duration. Clinical trial registry We have registered on ClinicalTrials.gov, the protocol ID is CSWT IN CHINA.

  11. A possible mechanism of current in medium under electromagnetic wave

    Institute of Scientific and Technical Information of China (English)

    Zhang Tao

    2006-01-01

    In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understanding the interaction between medium and electromagnetic wave.

  12. Extremely stable piezo mechanisms for the New Gravitational Wave Observatory

    NARCIS (Netherlands)

    Pijnenburg, J.A.C.M.; Rijnveld, N.; Hogenhuis, H.

    2012-01-01

    Detection and observation of gravitational waves requires extreme stability in the frequency range 3e-5 Hz to 1 Hz. NGO/LISA will attain this by creating a giant interferometer in space, based on free floating proof masses in three spacecrafts. To operate NGO/LISA, the following piezo mechanisms are

  13. Schrödinger and the genesis of wave mechanics

    OpenAIRE

    Renn, J.

    2013-01-01

    In the context of a new analysis of the notebooks of Erwin Schrödinger, the paper deals with the question of the relation between Schrödinger's creation of wave mechanics and the contemporary efforts by Werner Heisenberg and his colleagues to establish a new quantum mechanics. How can one explain, from a broader historical and epistemological perspective, the astonishing simultaneity and complementarity of these discoveries? The paper argues that neither the physical problems with which both ...

  14. A mechanical argument for the differential performance of coronary artery grafts.

    Science.gov (United States)

    Prim, David A; Zhou, Boran; Hartstone-Rose, Adam; Uline, Mark J; Shazly, Tarek; Eberth, John F

    2016-02-01

    Coronary artery bypass grafting (CABG) acutely disturbs the homeostatic state of the transplanted vessel making retention of graft patency dependent on chronic remodeling processes. The time course and extent to which remodeling restores vessel homeostasis will depend, in part, on the nature and magnitude of the mechanical disturbances induced upon transplantation. In this investigation, biaxial mechanical testing and histology were performed on the porcine left anterior descending artery (LAD) and analogs of common autografts, including the internal thoracic artery (ITA), radial artery (RA), great saphenous vein (GSV) and lateral saphenous vein (LSV). Experimental data were used to quantify the parameters of a structure-based constitutive model enabling prediction of the acute vessel mechanical response pre-transplantation and under coronary loading conditions. A novel metric Ξ was developed to quantify mechanical differences between each graft vessel in situ and the LAD in situ, while a second metric Ω compares the graft vessels in situ to their state under coronary loading. The relative values of these metrics among candidate autograft sources are consistent with vessel-specific variations in CABG clinical success rates with the ITA as the superior and GSV the inferior graft choices based on mechanical performance. This approach can be used to evaluate other candidate tissues for grafting or to aid in the development of synthetic and tissue engineered alternatives.

  15. Mechanism of an acoustic wave impact on steel during solidification

    Directory of Open Access Journals (Sweden)

    K. Nowacki

    2013-04-01

    Full Text Available Acoustic steel processing in an ingot mould may be the final stage in the process of quality improvement of a steel ingot. The impact of radiation and cavitation pressure as well as the phenomena related to the acoustic wave being emitted and delivered to liquid steel affect various aspects including the internal structure fragmentation, rigidity or density of steel. The article provides an analysis of the mechanism of impact of physical phenomena caused by an acoustic wave affecting the quality of a steel ingot.

  16. Wave mechanics in quantum phase space: hydrogen atom

    Institute of Scientific and Technical Information of China (English)

    LU Jun

    2007-01-01

    The rigorous sohutions of the stationary Schr(o)dinger equation for hydrogen atom are solved with the wave-mechanics method within the framework of the quantum phase-space representation established by Torres-Vega and Frederick. The "Fourier-like"projection transformations of wave function from the phase space to position and momentum spaces are extended to three-dimensional systems. The eigenfunctions in general position and momentum spaces could be obtained through the transformations from eigenfunction in the phase space.

  17. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter; Burcharth, Hans F.

    The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University. The prerequisites for the course are the course in fluid dynamics also given on the 7th semester and some basic mathematical and physical...... knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the first four lectures of the course: • Definitions. Governing equations and boundary conditions. • Derivation of velocity potential for linear waves. Dispersion relationship...

  18. Lecture Notes for the Course in Water Wave Mechanics

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    The present notes are written for the course in water wave mechanics given on the 7th semester of the education in civil engineering at Aalborg University. The prerequisites for the course are the course in fluid dynamics also given on the 7th semester and some basic mathematical and physical...... knowledge. The course is at the same time an introduction to the course in coastal hydraulics on the 8th semester. The notes cover the following five lectures: 1. Definitions. Governing equations and boundary conditions. Derivation of velocity potential for linear waves. Dispersion relationship. 2. Particle...

  19. Morphologic,mechanical and functional sonographic parameters of arteries in autosomal dominant polycystic kidney disease

    Institute of Scientific and Technical Information of China (English)

    戎殳

    2006-01-01

    Objective To investigate whether the risk factors of cardiovascular disease exist in early stage of ADPKD patients with normal renal function. Methods Morphologic , mechanical and functional sonographic parameters of arteries were examined by high-frequency ultrasonography in 32 hypertensive and 28 normotensive ADPKD patients with preserved renal function, 25 patients with es-

  20. The wave function essays on the metaphysics of quantum mechanics

    CERN Document Server

    Albert, David Z

    2013-01-01

    This is a new volume of original essays on the metaphysics of quantum mechanics. The essays address questions such as: What fundamental metaphysics is best motivated by quantum mechanics? What is the ontological status of the wave function? Does quantum mechanics support the existence of any other fundamental entities, e.g. particles? What is the nature of the fundamental space (or space-time manifold) of quantum mechanics? What is the relationship between the fundamental ontology of quantum mechanics and ordinary, macroscopic objects like tables, chairs, and persons? This collection includes a comprehensive introduction with a history of quantum mechanics and the debate over its metaphysical interpretation focusing especially on the main realist alternatives.

  1. Mechanisms Involved in Thromboxane A2 -induced Vasoconstriction of Rat Intracavernous Small Penile Arteries.

    Science.gov (United States)

    Grann, Martin; Comerma-Steffensen, Simon; Arcanjo, Daniel D R; Simonsen, Ulf

    2016-10-01

    Diabetes is associated with erectile dysfunction and with hypercontractility in erectile tissue and this is in part ascribed to increased formation of thromboxane. Rho kinase (ROCK) is a key regulator of calcium sensitization and contraction in vascular smooth muscle. This study investigated the role of calcium and ROCK in contraction evoked by activation of the thromboxane receptors. Rat intracavernous penile arteries were mounted for isometric tension and intracellular calcium ([Ca(2+) ]i ) recording and corpus cavernosum for measurements of MYPT1 phosphorylation. In penile arteries, U46619 by activation of thromboxane receptors concentration dependently increased calcium and contraction. U46619-induced calcium influx was blocked by nifedipine, a blocker of L-type calcium channels, and by 2-aminoethoxydiphenyl borate, a blocker of transient receptor potential (TRP) channels. Inhibitors of ROCK, Y27632 and glycyl-H1152P, concentration dependently reduced U46619-induced contraction, but only Y27632 reduced [Ca(2+) ]i levels in the penile arteries activated with either high extracellular potassium or U46619. MYPT-Thr(850) phosphorylation in corpus cavernous strips was increased in response to U46619 through activation of TP receptors and was found to be a direct result of phosphorylation by ROCK. Y27632 induced less relaxation in mesenteric arteries, H1152P induced equipotent relaxations, and a protein kinase C inhibitor, Ro-318220, failed to relax intracavernous penile arteries, but induced full relaxation in rat mesenteric arteries. Our findings suggest that U46619 contraction depends on Ca(2+) influx through L-type and TRP channels, and ROCK-dependent mechanisms in penile arteries. Inhibition of the ROCK pathway is a potential approach for the treatment of erectile dysfunction associated with hypertension and diabetes.

  2. The Gatekeepers in the Mouse Ophthalmic Artery: Endothelium-Dependent Mechanisms of Cholinergic Vasodilation.

    Science.gov (United States)

    Manicam, Caroline; Staubitz, Julia; Brochhausen, Christoph; Grus, Franz H; Pfeiffer, Norbert; Gericke, Adrian

    2016-02-02

    Cholinergic regulation of arterial luminal diameter involves intricate network of intercellular communication between the endothelial and smooth muscle cells that is highly dependent on the molecular mediators released by the endothelium. Albeit the well-recognized contribution of nitric oxide (NO) towards vasodilation, the identity of compensatory mechanisms that maintain vasomotor tone when NO synthesis is deranged remain largely unknown in the ophthalmic artery. This is the first study to identify the vasodilatory signalling mechanisms of the ophthalmic artery employing wild type mice. Acetylcholine (ACh)-induced vasodilation was only partially attenuated when NO synthesis was inhibited. Intriguingly, the combined blocking of cytochrome P450 oxygenase (CYP450) and lipoxygenase (LOX), as well as CYP450 and gap junctions, abolished vasodilation; demonstrating that the key compensatory mechanisms comprise arachidonic acid metabolites which, work in concert with gap junctions for downstream signal transmission. Furthermore, the voltage-gated potassium ion channel, Kv1.6, was functionally relevant in mediating vasodilation. Its localization was found exclusively in the smooth muscle. In conclusion, ACh-induced vasodilation of mouse ophthalmic artery is mediated in part by NO and predominantly via arachidonic acid metabolites, with active involvement of gap junctions. Particularly, the Kv1.6 channel represents an attractive therapeutic target in ophthalmopathologies when NO synthesis is compromised.

  3. Stent-assisted mechanical recanalization for symptomatic subacute or chronic middle cerebral artery occlusion

    Science.gov (United States)

    Guo, Dong; Ma, Ji; Li, Teng-Fei; Zhu, Ming; Han, Xin-Wei; Shui, Shao-Feng

    2015-01-01

    To assess the feasibility and short-term effects of treating patients with subacute or chronic middle cerebral artery (M1) occlusion by stent-assisted mechanical recanalization. Six patients with cerebral arteries occlusion underwent surgery. Six cerebral arteries occlusion in 5 patients were successfully recanalized. On postoperative day 1, four patients’ symptoms were relieved and two patients’ symptoms were exacerbated, of which one was significantly improved after 3 days, the other one’s symptoms were recovered to preoperative levels in 2 weeks. No patients died after surgery. No stroke or transient ischemic attack occurred. The average follow-up of was 4.2 months, no worsening of condition, recurrence or death occurred. The results indicate that for patients with subacute or chronic middle cerebral artery (M1) occlusion, mechanical recanalization was technically feasible under the premise of strict case screening. Mechanical recanalization is able to improve ischemic symptoms and promote dysfunction restoration. But its long-term effect remains to be evaluated by further large samples, long-term follow-up studies. PMID:26885148

  4. Stem villous arteries from the placentas of heavy smokers: functional and mechanical properties

    DEFF Research Database (Denmark)

    Clausen, Helle Vibeke; Jorgensen, J C; Ottesen, B

    1999-01-01

    arteries were mounted in small-vessel myographs. Circumference-tension relationships were established with 124 mmol/L potassium chloride. Concentration-response curves were obtained for endothelin 1, prostaglandin F2alpha, vasoactive intestinal peptide, corticotropin-releasing hormone, sodium nitroprusside......, and cadmium chloride. The effect of nitric oxide was examined with N omega-nitro-l -arginine. RESULTS: Stem villous arteries from the heavy smoking group developed a significantly lower tension than did those from nonsmokers at 6 of 9 steps of the circumference-tension experiment (P ...OBJECTIVE: The aim of the study was to compare the mechanical and functional properties of isolated small stem villous arteries from the placentas of women who smoked heavily (>/=15 cigarettes/d) during pregnancy with those from the placentas of nonsmokers. STUDY DESIGN: Isolated stem villous...

  5. Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance.

    Science.gov (United States)

    Ohte, Nobuyuki; Narita, Hitomi; Sugawara, Motoaki; Niki, Kiyomi; Okada, Takashi; Harada, Akimitsu; Hayano, Junichiro; Kimura, Genjiro

    2003-07-01

    Wave intensity (WI) is a novel hemodynamic index, which is defined as (d P/d t) x (d U/d t) at any site of the circulation, where d P/d t and d U/d t are the derivatives of blood pressure and velocity with respect to time, respectively. However, the pathophysiological meanings of this index have not been fully elucidated in the clinical setting. Accordingly, we investigated this issue in 64 patients who underwent invasive evaluation of left ventricular (LV) function. WI was obtained at the right carotid artery using a color Doppler system for blood velocity measurement combined with an echo-tracking method for detecting vessel diameter changes. The vessel diameter changes were automatically converted to pressure waveforms by calibrating its peak and minimum values by systolic and diastolic brachial blood pressures. The WI of the patients showed two sharp positive peaks. The first peak was found at the very early phase of LV ejection, while the second peak was observed near end-ejection. The magnitude of the first peak of WI significantly correlated with the maximum rate of LV pressure rise (LV max. d P/d t) (r = 0.74, P WI significantly correlated with the time constant of LV relaxation (r = -0.77, P WI reflects LV contractile performance, and the amplitude of the second peak of WI is determined by LV behavior during the period from late systole to isovolumic relaxation. WI is a noninvasively obtained, clinically useful parameter for the evaluation of LV systolic and early diastolic performance at the same time.

  6. Dynamics of mechanical waves in periodic graphene nanoribbon assemblies

    Directory of Open Access Journals (Sweden)

    Chowdhury Rajib

    2011-01-01

    Full Text Available Abstract We simulate the natural frequencies and the acoustic wave propagation characteristics of graphene nanoribbons (GNRs of the type (8,0 and (0,8 using an equivalent atomistic-continuum FE model previously developed by some of the authors, where the C-C bonds thickness and average equilibrium lengths during the dynamic loading are identified through the minimisation of the system Hamiltonian. A molecular mechanics model based on the UFF potential is used to benchmark the hybrid FE models developed. The acoustic wave dispersion characteristics of the GNRs are simulated using a Floquet-based wave technique used to predict the pass-stop bands of periodic mechanical structures. We show that the thickness and equilibrium lengths do depend on the specific vibration and dispersion mode considered, and that they are in general different from the classical constant values used in open literature (0.34 nm for thickness and 0.142 nm for equilibrium length. We also show the dependence of the wave dispersion characteristics versus the aspect ratio and edge configurations of the nanoribbons, with widening band-gaps that depend on the chirality of the configurations. The thickness, average equilibrium length and edge type have to be taken into account when nanoribbons are used to design nano-oscillators and novel types of mass sensors based on periodic arrangements of nanostructures. PACS 62.23.Kn · 62.25.Fg · 62.25.Jk

  7. Uncertainty quantification of inflow boundary condition and proximal arterial stiffness coupled effect on pulse wave propagation in a vascular network

    CERN Document Server

    Brault, A; Lucor, D

    2016-01-01

    SUMMARY This work aims at quantifying the effect of inherent uncertainties from cardiac output on the sensitivity of a human compliant arterial network response based on stochastic simulations of a reduced-order pulse wave propagation model. A simple pulsatile output form is utilized to reproduce the most relevant cardiac features with a minimum number of parameters associated with left ventricle dynamics. Another source of critical uncertainty is the spatial heterogeneity of the aortic compliance which plays a key role in the propagation and damping of pulse waves generated at each cardiac cycle. A continuous representation of the aortic stiffness in the form of a generic random field of prescribed spatial correlation is then considered. Resorting to a stochastic sparse pseudospectral method, we investigate the spatial sensitivity of the pulse pressure and waves reflection magnitude with respect to the different model uncertainties. Results indicate that uncertainties related to the shape and magnitude of th...

  8. Cosmic Tsunamis in Modified Gravity: Scalar waves disrupting screening mechanisms

    CERN Document Server

    Hagala, R; Mota, D F

    2016-01-01

    Extending General Relativity by adding extra degrees of freedom is a popular approach to explain the accelerated expansion of the universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test General Relativity in a wide range of scales. The viability of a given modified theory of gravity therefore strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of the screening mechanisms, thereby spoiling the viability of modified gravity theories. Specifically, we show that the waves produced can increase the amplitude of the fifth force and the Parametrized Post Newtonian parameters by several orders of magnitude.

  9. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation

    Directory of Open Access Journals (Sweden)

    Seung-Chan Kim

    2015-08-01

    Full Text Available Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0–20.0 kHz so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commercial surface transducer, which is originally developed as a bone-conduction actuator, for mechanical signal generation. At the receiver side, a piezoelement was adopted for picking up the transferred mechanical signals. Experimental results have shown that the proposed system can successfully transfer data using mechanical waves. We also validate dual-frequency actuations under which high-frequency signals (18.0–20.0 kHz are generated along with low-frequency (up to 250 Hz haptic vibrations. The proposed method has advantages in terms of security in that it does not reveal the signals outside the body, meaning that it is not possible for attackers to eavesdrop on the signals. To further illustrate the possible application spaces, we conclude with explorations of the proposed approach.

  10. Transferring Data from Smartwatch to Smartphone through Mechanical Wave Propagation.

    Science.gov (United States)

    Kim, Seung-Chan; Lim, Soo-Chul

    2015-08-28

    Inspired by the mechanisms of bone conduction transmission, we present a novel sensor and actuation system that enables a smartwatch to securely communicate with a peripheral touch device, such as a smartphone. Our system regards hand structures as a mechanical waveguide that transmits particular signals through mechanical waves. As a signal, we used high-frequency vibrations (18.0-20.0 kHz) so that users cannot sense the signals either tactually or audibly. To this end, we adopted a commercial surface transducer, which is originally developed as a bone-conduction actuator, for mechanical signal generation. At the receiver side, a piezoelement was adopted for picking up the transferred mechanical signals. Experimental results have shown that the proposed system can successfully transfer data using mechanical waves. We also validate dual-frequency actuations under which high-frequency signals (18.0-20.0 kHz) are generated along with low-frequency (up to 250 Hz) haptic vibrations. The proposed method has advantages in terms of security in that it does not reveal the signals outside the body, meaning that it is not possible for attackers to eavesdrop on the signals. To further illustrate the possible application spaces, we conclude with explorations of the proposed approach.

  11. Surface Catalytic Mechanism in Square-Wave Voltammetry

    OpenAIRE

    Mirceski, Valentin; Gulaboski, Rubin

    2001-01-01

    A pseudo-first-order catalytic mechanism in which both reactant and product of the redox reaction are strongly immobilized on the electrode surface is theoretically analyzed under conditions of square-wave voltammetry (SWV). A mathematical procedure is developed for diffusionless conditions. The relationships between the properties of the voltammetric response and both the kinetic parameters of the redox reaction and the parameters of the excitement signal are studied. The phenomenon...

  12. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries.

    Science.gov (United States)

    Luong, Le; Duckles, Hayley; Schenkel, Torsten; Mahmoud, Marwa; Tremoleda, Jordi L; Wylezinska-Arridge, Marzena; Ali, Majid; Bowden, Neil P; Villa-Uriol, Mari-Cruz; van der Heiden, Kim; Xing, Ruoyu; Gijsen, Frank J; Wentzel, Jolanda; Lawrie, Allan; Feng, Shuang; Arnold, Nadine; Gsell, Willy; Lungu, Angela; Hose, Rodney; Spencer, Tim; Halliday, Ian; Ridger, Victoria; Evans, Paul C

    2016-07-04

    Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (pivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.

  13. Wave dynamics and composite mechanics for microstructured materials and metamaterials

    CERN Document Server

    2017-01-01

    This volume deals with topical problems concerning technology and design in construction of modern metamaterials. The authors construct the models of mechanical, electromechanical and acoustical behavior of the metamaterials, which are founded upon mechanisms existing on micro-level in interaction of elementary structures of the material. The empiric observations on the phenomenological level are used to test the created models. The book provides solutions, based on fundamental methods and models using the theory of wave propagation, nonlinear theories and composite mechanics for media with micro- and nanostructure. They include the models containing arrays of cracks, defects, with presence of micro- and nanosize piezoelectric elements and coupled physical-mechanical fields of different nature. The investigations show that the analytical, numerical and experimental methods permit evaluation of the qualitative and quantitative properties of the materials of this sort, with diagnosis of their effective characte...

  14. Effects of Crimping on Mechanical Performance of Nitinol Stent Designed for Femoral Artery: Finite Element Analysis

    Science.gov (United States)

    Nematzadeh, F.; Sadrnezhaad, S. K.

    2013-11-01

    Nitinol stents are used to minimize improper dynamic behavior, low twistability, and inadequate radial mechanical strength of femoral artery stents. In this study, finite element method is used to investigate the effect of crimping and Austenite finish temperature ( A f) of Nitinol on mechanical performance of Z-shaped open-cell femoral stent under crimping conditions. Results show that low A f Nitinol has better mechanical and clinical performance due to small chronic outward force, large radial resistive force, and appropriate superelastic behavior.

  15. Mean flow generation mechanism by inertial waves and normal modes

    Science.gov (United States)

    Will, Andreas; Ghasemi, Abouzar

    2016-04-01

    The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2

  16. Increased brachial-ankle pulse wave velocity is associated with impaired endothelial function in patients with coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    LIU Dong-hong; TAO Jun; WANG Yan; LIAO Xin-xue; XU Ming-guo; WANG Jie-mei; YANG Zhen; CHEN Long; L(U) Ming-de; LU Kun

    2006-01-01

    Background Pulse wave velocity and flow-mediated vasodilation (FMD) are widely used as noninvasive modalities for evaluating atherosclerosis. However, it is not known whether pulse wave velocity is related to FMD in patients with coronary artery disease (CAD). Therefore, the present study was designed to investigate the alteration in brachial-ankle pulse wave velocity (baPWV) and endothelial function in CAD patients.Methods Thirty-three patients with CAD and thirty control subjects were recruited for this study. baPWV was measured non-invasively using a VP 1000 automated PWV/ABI analyzer (PWV/ABI, Colin Co. Ltd., Komaki,Japan). Endothelial function as reflected by FMD in the brachial artery was assessed with a high-resolution ultrasound device.Results baPWV was increased in CAD patients compared with control subjects [(1756.1±253.1) cm/s vs(1495.3 ± 202.3) cm/s, P<0.01]. FMD was significantly reduced in CAD patients compared with control subjects[(5.2±2.1) % vs (11.1 ±4.4) %, P<0.01]. baPWV correlated with FMD (r =-0.68, P<0.001). The endothelium-independent vasodilation induced by sublingual nitroglycerin in the brachial artery was similar in the CAD group compared with the control group.Conclusions CAD is associated with increased baPWV and endothelial dysfunction. Increased baPWV parallels diminished endothelial function. Our data therefore suggest that baPWV can be used as a noninvasive surrogate index in clinical evaluation of endothelial function.

  17. Shock-wave thrombus ablation, a new method for noninvasive mechanical thrombolysis.

    Science.gov (United States)

    Rosenschein, U; Yakubov, S J; Guberinich, D; Bach, D S; Sonda, P L; Abrams, G D; Topol, E J

    1992-11-15

    Successful experimental and clinical experience with thrombus ablation has been attained with high-power acoustic energy delivered in a catheter. The goal of this study was to investigate the feasibility of noninvasive thrombus ablation by focused high-power acoustic energy. The source for high-power acoustic energy was a shock-wave generator in a water tank equipped with an acoustic lens with a fixed focal point at 22.5 cm. Thrombus was prepared in vitro, weighed (0.24 +/- 0.08 g), and inserted in excised human femoral artery segments. The arterial segments wer ligated, positioned at the focal point and then randomized into either test (n = 8) or control (n = 7). An x-ray system verified the 3-dimensional positioning of the arterial segment at the focal point. A 5 MHz ultrasound imaging system continuously visualized the arterial segment at the focal point before, during and after each experiment. The test segments were exposed to shock waves (1,000 shocks/24 kv). The arterial segment content was then flushed and the residual thrombus weighed. The arterial segment and thrombus were fixed and submitted to histologic examination. The test group achieved a significant ablation of thrombus mass (0.25 +/- 0.15 vs 0.07 +/- 0.003 g; p = 0.0001) after application of shock waves. Arterial segments showed no gross or microscopic damage. Ultrasound imaging revealed a localized (1.9 +/- 0.5 cm2), transient (744 +/- 733 ms), cavitation field at the focal point at the time of application of focused shock waves. Thus, focused high-power acoustic energy can effect noninvasive thrombus ablation without apparent damage to the arterial wall.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Cerebral Arterial Air Embolism Associated with Mechanical Ventilation and Deep Tracheal Aspiration

    Directory of Open Access Journals (Sweden)

    S. Gursoy

    2012-01-01

    Full Text Available Arterial air embolism associated with pulmonary barotrauma has been considered a rare but a well-known complication of mechanical ventilation. A 65-year-old man, who had subarachnoid hemorrhage with Glasgow coma scale of 8, was admitted to intensive care unit and ventilated with the help of mechanical ventilator. Due to the excessive secretions, deep tracheal aspirations were made frequently. GCS decreased from 8–10 to 4-5, and the patient was reevaluated with cranial CT scan. In CT scan, air embolism was detected in the cerebral arteries. The patient deteriorated and spontaneous respiratory activity lost just after the CT investigation. Thirty minutes later cardiac arrest appeared. Despite the resuscitation, the patient died. We suggest that pneumonia and frequent tracheal aspirations are predisposing factors for cerebral vascular air embolism.

  19. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Leanid Luksha

    Full Text Available The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS, prerequisites for myoendothelial gap junctions (MEGJ, and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.

  20. Modeling of the wave transmission properties of large arteries using nonlinear elastic tubes.

    Science.gov (United States)

    Pythoud, F; Stergiopulos, N; Meister, J J

    1994-11-01

    We propose a new, simple way of constructing elastic tubes which can be used to model the nonlinear elastic properties of large arteries. The tube models are constructed from a silicon elastomer (Sylgard 184, Dow Corning), which exhibits a nonlinear behavior with increased stiffness at high strains. Tests conducted on different tube models showed that, with the proper choice of geometric parameters, the elastic properties, in terms of area-pressure relation and compliance, can be similar to that of real arteries.

  1. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    Science.gov (United States)

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.

    2016-04-01

    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  2. Estimation of Arterial Stiffness by Time-Frequency Analysis of Pulse Wave

    Science.gov (United States)

    Saito, Masashi; Yamamoto, Yuya; Shibayama, Yuka; Matsukawa, Mami; Watanabe, Yoshiaki; Furuya, Mio; Asada, Takaaki

    2011-07-01

    Evaluation of a pulse wave is effective for the early diagnosis of arteriosclerosis because the pulse wave contains the reflected wave that is the age- and stiffness-dependent component. In this study, we attempted to extract the parameter reflecting the component by pulse wave analysis using continuous wavelet transform. The Morlet wavelet was used as the mother wavelet. We then investigated the relationship between the parameter and the reflected wave that was extracted from the pulse wave by our previously reported separation technique. Consequently, the result of wavelet transform of the differentiated pulse waveform changed markedly owing to age and had medium correlation with the peak of the reflected wave (R=0.68).

  3. Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals

    Science.gov (United States)

    Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu

    2016-08-01

    We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal.

  4. Spirals, chaos, and new mechanisms of wave propagation.

    Science.gov (United States)

    Chen, P S; Garfinkel, A; Weiss, J N; Karagueuzian, H S

    1997-02-01

    The chaos theory is based on the idea that phenomena that appear disordered and random may actually be produced by relatively simple deterministic mechanisms. The disordered (aperiodic) activation that characterizes a chaotic motion is reached through one of a few well-defined paths that are characteristic of nonlinear dynamical systems. Our group has been studying VF using computerized mapping techniques. We found that in electrically induced VF, reentrant wavefronts (spiral waves) are present both in the initial tachysystolic stage (resembling VT) and the later tremulous incoordination stage (true VF). The electrophysiological characteristics associated with the transition from VT to VF is compatible with the quasiperiodic route to chaos as described in the Ruelle-Takens theorem. We propose that specific restitution of action potential duration (APD) and conduction velocity properties can cause a spiral wave (the primary oscillator) to develop additional oscillatory modes that lead to spiral meander and breakup. When spiral waves begin to meander and are modulated by other oscillatory processes, the periodic activity is replaced by unstable quasiperiodic oscillation, which then undergoes transition to chaos, signaling the onset of VF. We conclude that VF is a form of deterministic chaos. The development of VF is compatible with quasiperiodic transition to chaos. These results indicate that both the prediction and the control of fibrillation are possible based on the chaos theory and with the advent of chaos control algorithms.

  5. Contribution of ultrasonic traveling wave to chemical-mechanical polishing.

    Science.gov (United States)

    Li, Liang; He, Qing; Zheng, Mian; Liu, Zheng

    2015-02-01

    The ultrasonic vibrators are introduced into the chemical-mechanical polishing devices, and in this polishing system, the ultrasonic vibrators generate ultrasonic traveling wave and keep coaxial with the polished silicon wafer rotating at given speed so as to compare the texture of the polished silicon wafers. And the experiments on the chemical-mechanical polishing with assisted ultrasonic vibration are accomplished in order to investigate the effect of the ultrasonic vibration on the chemical-mechanical polishing. Via comparing the roughness average of the two silicon wafers polished with assisted ultrasonic vibration and without assisted vibration, it is found that the morphology of the silicon wafer polished with assisted vibration is superior to that without assisted vibration, that is, this series of experiments indicate that the ultrasonic vibration is beneficial to the chemical-mechanical polishing. Aiming at understanding the contribution of the ultrasonic vibration to chemical-mechanical polishing in detail, the model of the chemical-mechanical polishing with the assisted ultrasonic vibration is built up, which establishes the relationship of the removal rate and the polishing variables such as the rotary speed of silicon wafers, the amplitude and the frequency of vibrators, the particle density of polishing slurry and the characteristics of polishing pad etc. This model not only could be used to explain the experimental results but also to illuminate the roles played by the polishing variables.

  6. Simple mechanical thrombectomy with intrapulmonary arterial thrombolysis in pulmonary thromboembolism:a small case series

    Institute of Scientific and Technical Information of China (English)

    Khurshid Ahmed; Muhammad Munawar; Dian Andina Munawar; Beny Hartono

    2014-01-01

    Pulmonary thromboembolism (PTE) is a life-threatening condition with a high early mortality rate caused by acute right ventricular failure and cardiogenic shock. We report a series of three patients who presented with acute and subacute submassive PTE. They were suc-cessfully treated by simple catheter-based mechanical thrombectomy and intrapulmonary arterial thrombolysis. Mechanical fragmentation and aspiration of thrombus was performed by commonly used J-wire, multi-purpose and Judkin Right guiding catheters and this obviated the need of specific thrombectomy devices.

  7. Mechanisms of decompensation and organ failure in cirrhosis: From peripheral arterial vasodilation to systemic inflammation hypothesis.

    Science.gov (United States)

    Bernardi, Mauro; Moreau, Richard; Angeli, Paolo; Schnabl, Bernd; Arroyo, Vicente

    2015-11-01

    The peripheral arterial vasodilation hypothesis has been most influential in the field of cirrhosis and its complications. It has given rise to hundreds of pathophysiological studies in experimental and human cirrhosis and is the theoretical basis of life-saving treatments. It is undisputed that splanchnic arterial vasodilation contributes to portal hypertension and is the basis for manifestations such as ascites and hepatorenal syndrome, but the body of research generated by the hypothesis has revealed gaps in the original pathophysiological interpretation of these complications. The expansion of our knowledge on the mechanisms regulating vascular tone, inflammation and the host-microbiota interaction require a broader approach to advanced cirrhosis encompassing the whole spectrum of its manifestations. Indeed, multiorgan dysfunction and failure likely result from a complex interplay where the systemic spread of bacterial products represents the primary event. The consequent activation of the host innate immune response triggers endothelial molecular mechanisms responsible for arterial vasodilation, and also jeopardizes organ integrity with a storm of pro-inflammatory cytokines and reactive oxygen and nitrogen species. Thus, the picture of advanced cirrhosis could be seen as the result of an inflammatory syndrome in contradiction with a simple hemodynamic disturbance.

  8. Consistency of students’ conceptions of wave propagation: Findings from a conceptual survey in mechanical waves

    Directory of Open Access Journals (Sweden)

    Chernchok Soankwan

    2011-07-01

    Full Text Available We recently developed a multiple-choice conceptual survey in mechanical waves. The development, evaluation, and demonstration of the use of the survey were reported elsewhere [ A. Tongchai et al. Int. J. Sci. Educ. 31 2437 (2009]. We administered the survey to 902 students from seven different groups ranging from high school to second year university. As an outcome of that analysis we were able to identify several conceptual models which the students seemed to be using when answering the questions in the survey. In this paper we attempt to investigate the strength with which the students were committed to these conceptual models, as evidenced by the consistency with which they answered the questions. For this purpose we focus on the patterns of student responses to questions in one particular subtopic, wave propagation. This study has three main purposes: (1 to investigate the consistency of student conceptions, (2 to explore the relative usefulness of different analysis techniques, and (3 to determine what extra information a study of consistency can give about student understanding of basic concepts. We used two techniques: first, categorizing and counting, which is widely used in the science education community, and second, model analysis, recently introduced into physics education research. The manner in which categorizing and counting is used is very diverse while model analysis has been employed only in prescriptive ways. Research studies have reported that students often use their conceptual models inconsistently when solving a series of questions that test the same idea. Our results support their conclusions. Moreover, our findings suggest that students who have had more experiences in physics learning seem to use the scientifically accepted models more consistently. Further, the two analysis techniques have different advantages and disadvantages. Our findings show that model analysis can be used in more diverse ways, provides

  9. Peripheral artery disease in patients with diabetes:Epidemiology, mechanisms, and outcomes

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Peripheral artery disease (PAD) is the atherosclerosisof lower extremity arteries and is also associated withatherothrombosis of other vascular beds, includingthe cardiovascular and cerebrovascular systems. Thepresence of diabetes mellitus greatly increases therisk of PAD, as well as accelerates its course, makingthese patients more susceptible to ischemic eventsand impaired functional status compared to patientswithout diabetes. To minimize these cardiovascularrisks it is critical to understand the pathophysiology ofatherosclerosis in diabetic patients. This, in turn, canoffer insights into the therapeutic avenues available forthese patients. This article provides an overview of theepidemiology of PAD in diabetic patients, followed by ananalysis of the mechanisms by which altered metabolismin diabetes promotes atherosclerosis and plaqueinstability. Outcomes of PAD in diabetic patients are alsodiscussed, with a focus on diabetic ulcers and criticallimb ischemia.

  10. Effects and mechanisms of action of sildenafil citrate in human chorionic arteries.

    LENUS (Irish Health Repository)

    Maharaj, Chrisen H

    2009-01-01

    OBJECTIVES: Sildenafil citrate, a specific phosphodiesterase-5 inhibitor, is increasingly used for pulmonary hypertension in pregnancy. Sildenafil is also emerging as a potential candidate for the treatment of intra-uterine growth retardation and for premature labor. Its effects in the feto-placental circulation are not known. Our objectives were to determine whether phosphodiesterase-5 is present in the human feto-placental circulation, and to characterize the effects and mechanisms of action of sildenafil citrate in this circulation. STUDY DESIGN: Ex vivo human chorionic plate arterial rings were used in all experiments. The presence of phosphodiesterase-5 in the feto-placental circulation was determined by western blotting and immunohistochemical staining. In a subsequent series of pharmacologic studies, the effects of sildenafil citrate in pre-constricted chorionic plate arterial rings were determined. Additional studies examined the role of cGMP and nitric oxide in mediating the effects of sildenafil. RESULTS: Phosphodiesterase-5 mRNA and protein was demonstrated in human chorionic plate arteries. Immunohistochemistry demonstrated phosphodiesterase-5 within the arterial muscle layer. Sildenafil citrate produced dose dependent vasodilatation at concentrations at and greater than 10 nM. Both the direct cGMP inhibitor methylene blue and the cGMP-dependent protein kinase inhibitor Rp-8-Br-PET-cGMPS significantly attenuated the vasodilation produced by sildenafil citrate. Inhibition of NO production with L-NAME did not attenuate the vasodilator effects of sildenafil. In contrast, sildenafil citrate significantly enhanced the vasodilation produced by the NO donor sodium nitroprusside. CONCLUSION: Phosphodiesterase-5 is present in the feto-placental circulation. Sildenafil citrate vasodilates the feto-placental circulation via a cGMP dependent mechanism involving increased responsiveness to NO.

  11. Effects and mechanisms of action of sildenafil citrate in human chorionic arteries

    Directory of Open Access Journals (Sweden)

    Lynch Tadhg

    2009-04-01

    Full Text Available Abstract Objectives Sildenafil citrate, a specific phosphodiesterase-5 inhibitor, is increasingly used for pulmonary hypertension in pregnancy. Sildenafil is also emerging as a potential candidate for the treatment of intra-uterine growth retardation and for premature labor. Its effects in the feto-placental circulation are not known. Our objectives were to determine whether phosphodiesterase-5 is present in the human feto-placental circulation, and to characterize the effects and mechanisms of action of sildenafil citrate in this circulation. Study Design Ex vivo human chorionic plate arterial rings were used in all experiments. The presence of phosphodiesterase-5 in the feto-placental circulation was determined by western blotting and immunohistochemical staining. In a subsequent series of pharmacologic studies, the effects of sildenafil citrate in pre-constricted chorionic plate arterial rings were determined. Additional studies examined the role of cGMP and nitric oxide in mediating the effects of sildenafil. Results Phosphodiesterase-5 mRNA and protein was demonstrated in human chorionic plate arteries. Immunohistochemistry demonstrated phosphodiesterase-5 within the arterial muscle layer. Sildenafil citrate produced dose dependent vasodilatation at concentrations at and greater than 10 nM. Both the direct cGMP inhibitor methylene blue and the cGMP-dependent protein kinase inhibitor Rp-8-Br-PET-cGMPS significantly attenuated the vasodilation produced by sildenafil citrate. Inhibition of NO production with L-NAME did not attenuate the vasodilator effects of sildenafil. In contrast, sildenafil citrate significantly enhanced the vasodilation produced by the NO donor sodium nitroprusside. Conclusion Phosphodiesterase-5 is present in the feto-placental circulation. Sildenafil citrate vasodilates the feto-placental circulation via a cGMP dependent mechanism involving increased responsiveness to NO.

  12. Mechanical Waves Conceptual Survey: Its Modification and Conversion to a Standard Multiple-Choice Test

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2016-01-01

    In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of…

  13. Biocorrosion rate and mechanism of metallic magnesium in model arterial environments

    Science.gov (United States)

    Bowen, Patrick K.

    A new paradigm in biomedical engineering calls for biologically active implants that are absorbed by the body over time. One popular application for this concept is in the engineering of endovascular stents that are delivered concurrently with balloon angioplasty. These devices enable the injured vessels to remain patent during healing, but are not needed for more than a few months after the procedure. Early studies of iron- and magnesium-based stents have concluded that magnesium is a potentially suitable base material for such a device; alloys can achieve acceptable mechanical properties and do not seem to harm the artery during degradation. Research done up to the onset of research contained in this dissertation, for the most part, failed to define realistic physiological corrosion mechanisms, and failed to correlate degradation rates between in vitro and in vivo environments. Six previously published works form the basis of this dissertation. The topics of these papers include (1) a method by which tensile testing may be applied to evaluate biomaterial degradation; (2) a suite of approaches that can be used to screen candidate absorbable magnesium biomaterials; (3) in vivo-in vitro environmental correlations based on mechanical behavior; (4) a similar correlation on the basis of penetration rate; (5) a mid-to-late stage physiological corrosion mechanism for magnesium in an arterial environment; and (6) the identification of corrosion products in degradable magnesium using transmission electron microscopy.

  14. Mechanisms of remodelling of small arteries, antihypertensive therapy and the immune system in hypertension.

    Science.gov (United States)

    Schiffrin, Ernesto L

    2015-12-04

    This review summarizes my lecture for the 2015 Distinguished Scientist Award from the Canadian Society of Clinical Investigation, and is based mainly on studies in my laboratory on the mechanisms of remodelling of small arteries in experimental animal and human hypertension and on treatments that lower blood pressure and improve structure and function of resistance vessels. Small resistance arteries undergo either inward eutrophic or hypertrophic remodelling, which raises blood pressure and impairs tissue perfusion. These vascular changes are corrected by some antihypertensive drugs, which may lead to improved outcomes. Vasoconstriction, growth, oxidative stress and inflammation are some of the mechanisms, within the vascular wall, that can be beneficially affected by antihypertensive agents. These antihypertensive-sensitive mechanisms are reviewed in this review, together with the inflammatory and immune mechanisms that may participate in hypertension and associated cardiovascular injury. Molecular studies, based on this research, will hopefully identify novel diagnostic and therapeutic targets, which will improve our ability to prevent and treat hypertension and cardiovascular disease.

  15. Exercise-induced arterial hypoxaemia and the mechanics of breathing in healthy young women.

    Science.gov (United States)

    Dominelli, Paolo B; Foster, Glen E; Dominelli, Giulio S; Henderson, William R; Koehle, Michael S; McKenzie, Donald C; Sheel, A William

    2013-06-15

    The purpose of this study was to characterize exercise-induced arterial hypoxaemia (EIAH), pulmonary gas exchange and respiratory mechanics during exercise, in young healthy women. We defined EIAH as a >10 mmHg decrease in arterial oxygen tension ( ) during exercise compared to rest. We used a heliox inspirate to test the hypothesis that mechanical constraints contribute to EIAH. Subjects with a spectrum of aerobic capacities (n = 30; maximal oxygen consumption ( ) = 49 ± 1, range 28-62 ml kg(-1) min(-1)) completed a stepwise treadmill test and a subset (n = 18 with EIAH) completed a constant load test (~85% ) with heliox gas. Throughout exercise arterial blood gases, oxyhaemoglobin saturation ( ), the work of breathing (WOB) and expiratory flow limitation (EFL) were assessed. Twenty of the 30 women developed EIAH with a nadir and ranging from 58 to 88 mmHg and 87 to 96%, respectively. At maximal exercise, was inversely related to (r = -0.57, P fitness levels demonstrated EIAH. Subjects with EIAH had a greater (51 ± 1 vs. 43 ± 2 ml kg(-1) min(-1)), lower end-exercise (93.2 ± 0.5 vs. 96.1 ± 0.3%) and a greater maximal energetic WOB (324 ± 19 vs. 247 ± 23 J min(-1)), but had similar resting pulmonary function compared to those without EIAH. Most subjects developed EIAH at submaximal exercise intensities, with distinct patterns of hypoxaemia. In some subjects with varying aerobic fitness levels, mechanical ventilatory constraints (i.e. EFL) were the primary mechanism associated with the hypoxaemia during the maximal test. Mechanical ventilatory constraints also prevented adequate compensatory alveolar hyperventilation in most EIAH subjects. Minimizing mechanical ventilatory constraints with heliox inspiration partially reversed EIAH in subjects who developed EFL. In conclusion, healthy women of all aerobic fitness levels can develop EIAH and begin to do so at submaximal intensities. Mechanical ventilatory constraints are a primary mechanism for EIAH in some

  16. The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries.

    Science.gov (United States)

    Kochová, P; Kuncová, J; Svíglerová, J; Cimrman, R; Miklíková, M; Liška, V; Tonar, Z

    2012-08-01

    The main components responsible for the mechanical behavior of the arterial wall are collagen, elastin, and smooth muscle cells (SMCs) in the medial layer. We determined the structural and mechanical changes in porcine carotid arteries after administration of Triton® X-100, elastase, and collagenase using the inflation-deflation test. The arteries were intraluminarly pressurized from 0 to 200 mmHg, and the outer diameter of the artery was measured. The pressure-strain elastic modulus was determined based on the pressure/diameter ratio. The intima-media thickness, wall thickness, thickness of the tunica adventitia layer, and the area fractions of SMCs, elastin, and collagen within the arterial wall (A(A)(SMC/elastin/collagen, wall)) were measured using stereological methods. The relative changes in the relevant components of the treated samples were as follows: the decrease in A(A)(SMC, wall) after administration of Triton® X-100 was 11% ± 7%, the decrease in A(A)(elastin, wall) after administration of elastase was 40% ± 22%, and the decrease in A(A)(collagen, wall) after the application of collagenase was 51% ± 22%. The Triton® X-100 treatment led to a decrease in the SMC content that was associated with enlargement of the arterial wall (outer diameter) for pressures up to 120 mmHg, and with mechanical stiffening of the arterial wall at higher pressures. Elastase led to a decrease in the elastin content that was associated with enlargement of the arterial wall, but not with stiffening or softening. Collagenase led to a decrease in collagen content that was associated with a change in the stiffness of the arterial wall, although the exact contribution of mechanical loading and the duration of treatment (enlargement) could not be quantified.

  17. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel [Facultad de Ingenieria y Ciencias Exactas y Naturales, Universidad Favaloro Av. Belgrano 1723 - Buenos Aires (Argentina)

    2007-11-15

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant {eta}. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and {eta}. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has been registered. The right atrium was connected to a programmable stimulator through a pair of pace-maker wires to produce changes in stimulation heart rate (HR) from 80 to 160 bpm. Additionally, local activation of vascular smooth muscle was induced with phenylephrine. After converting pressure and diameter signals into stress and strain respectively, E y {eta} were calculated in control state and during muscle activation. The elastic modulus E did not present significant changes with heart rate. The viscous modulus {eta} decreased 49% with a two-fold acceleration in heart rate from 80 to 160 bpm. However, the product {eta} HR remained stable. The viscous modulus {eta} increased 39% with smooth muscle activation. No significant pressure changes were registered during the experiment. The contractile action of vascular smooth muscle could contribute to increasing arterial wall viscosity. The decrease of {eta} when HR increased might be related to smooth muscle relaxation mediated by endothelium activity, which was stimulated by flow increase. We conclude that HR can modulate arterial wall viscoelasticity through endothelium-dependent mechanisms.

  18. New and Improved T-wave Morphology Parameters to Differentiate Healthy Individuals from those with Cardiomyopathy and Coronary Artery Disease

    Science.gov (United States)

    Greco, E. C.; Schlegel, T. T.; Arenare, B.; DePalma, J. L.; Starc, V.; Rahman, M. A.; Delgado, R.

    2007-01-01

    We investigated the ability of several known as well as new ECG repolarization parameters to differentiate healthy individuals from patients with obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. The following multiple parameters of T-wave morphology (TWM) were derived via signal averaging and singular value decomposition (SVD, which yields 8 eigenvalues, rho(sub 1) greater than rho(sub 2)...greater than rho(sub 8) and studied for their retrospective accuracy in detecting underlying disease: 1) Principal component analysis ratio of the T wave (T-PCA) = 100*rho(sub 2)/rho(sub 1); 2) Relative T-wave residuum (rTWR) = 100* SIGMA (rho(sub 4)(sup 2) +...+ rho(sub 8)(sup 2)); 3) Modified complexity ratio of the T wave (T-mCR) = 100*SIGMA(rho(sub 3)(sup 2) +...+rho(sb 8) (sup 2)); and 4) Normalized 3-dimensional volume of the T wave (nTV) = 100*(rho(sub 2)*rho(sub 3)/rho(sub 1)(sup 2). All TWM parameters significantly differentiated CAD from controls (p less than 0.0001), and also CM from controls (p less than 0.0001). Retrospective areas under the ROC curve were 0.77, 0.81, 0.82, and 0.83 (CAD vs. controls) and 0.93, 0.89, 0.95 and 0.96 (CM vs. controls) for T-PCA, rTWR, T-mCR and nTV respectively. The newer TWM parameters (T-mCR and nTV) thus outperformed the more established parameters (T-PCA and rTWR), presumably by putting a greater emphasis on the third T-wave eigenvalue, which in most healthy subjects has little energy compared to the first two eigenvalues. Subsequent prospective analyses have also yielded similar results, such that we conclude that diagnostic differentiation of pathology from non-pathology may be especially aided by detecting

  19. Mechanisms of Fluid-Mud Interactions Under Waves

    Science.gov (United States)

    2011-09-30

    lutocline that occurred when the lutocline was within a few centimeters of the water surface. This three-wave instability led to generation of subharmonic ... Subharmonic standing waves on the surface of the lutocline, generated by a long surface wave train traveling from left to right in the figure...Superharmonic waves (hard to see) and the turbulent structures (middle left) within the subharmonic waves are also present. Theoretical modeling—We

  20. Pulse Wave Velocity as Marker of Preclinical Arterial Disease: Reference Levels in a Uruguayan Population Considering Wave Detection Algorithms, Path Lengths, Aging, and Blood Pressure

    Directory of Open Access Journals (Sweden)

    Ignacio Farro

    2012-01-01

    Full Text Available Carotid-femoral pulse wave velocity (PWV has emerged as the gold standard for non-invasive evaluation of aortic stiffness; absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical implementation. This work was carried out in a Uruguayan (South American population in order to characterize normal, reference, and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender; asymptomatic subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The included subjects (n=429 were categorized according to the age decade and the blood pressure levels (at study time. All subjects represented the “reference population”; the group of subjects with optimal/normal blood pressures levels at study time represented the “normal population.” Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes.

  1. Elastodynamic metasurface: Depolarization of mechanical waves and time effects

    Energy Technology Data Exchange (ETDEWEB)

    Boutin, Claude, E-mail: claude.boutin@entpe.fr [Ecole Nationale des Travaux Publics de l' Etat, Université de Lyon, LGCB, UMR CNRS 5513, Vaulx-en-Velin (France); Schwan, Logan [Acoustics Research Center, University of Salford, Newton Building, Salford M5 4WT (United Kingdom); Dietz, Matthew S. [Department of Civil Engineering, University of Bristol, Queen' s Building, Bristol BS8 1TR (United Kingdom)

    2015-02-14

    We report the concept of microstructured surfaces with inner resonance in the field of elastodynamics, so-called elastodynamic metasurfaces. Such metasurfaces allow for wavefield manipulation of mechanical waves by tuning the boundary conditions at specific frequencies. In particular, they can be used to depolarize elastic waves without introducing heterogeneities in the medium itself; the physical means to do so in homogeneous elastic media used to remain, surprisingly, an open question while depolarization is commonplace in electromagnetism. The principle relies on the anisotropic behaviour of a subwavelength array of resonators: Their subwavelength configuration confines the Bragg interferences scattered by resonators into a boundary layer. The effective behaviour of the resonating array is expressed with homogenization as an unconventional impedance, the frequency-dependence, and anisotropy of which lead to depolarization and time effects. The concept of the elastodynamic metasurface is tested experimentally and results bear testament to its efficacy and robustness. Elastodynamic metasurfaces are easily realized and analytically predictable, opening new possibilities in tomography techniques, ultrasonics, geophysics, vibration control, materials and structure design.

  2. Vitamin D induces increased systolic arterial pressure via vascular reactivity and mechanical properties.

    Directory of Open Access Journals (Sweden)

    Priscila Portugal Dos Santos

    Full Text Available The aim of this study was to evaluate whether supplementation of high doses of cholecalciferol for two months in normotensive rats results in increased systolic arterial pressure and which are the mechanisms involved. Specifically, this study assesses the potential effect on cardiac output as well as the changes in aortic structure and functional properties.Male Wistar rats were divided into three groups: 1 Control group (C, n = 20, with no supplementation of vitamin D, 2 VD3 (n = 19, supplemented with 3,000 IU vitamin D/kg of chow; 3 VD10 (n = 21, supplemented with 10,000 IU vitamin D/kg of chow. After two months, echocardiographic analyses, measurements of systolic arterial pressure (SAP, vascular reactivity, reactive oxygen species (ROS generation, mechanical properties, histological analysis and metalloproteinase-2 and -9 activity were performed.SAP was higher in VD3 and VD10 than in C rats (p = 0.001. Echocardiographic variables were not different among groups. Responses to phenylephrine in endothelium-denuded aortas was higher in VD3 compared to the C group (p = 0.041. Vascular relaxation induced by acetylcholine (p = 0.023 and sodium nitroprusside (p = 0.005 was impaired in both supplemented groups compared to the C group and apocynin treatment reversed impaired vasodilation. Collagen volume fraction (<0.001 and MMP-2 activity (p = 0.025 was higher in VD10 group compared to the VD3 group. Elastin volume fraction was lower in VD10 than in C and yield point was lower in VD3 than in C.Our findings support the view that vitamin D supplementation increases arterial pressure in normotensive rats and this is associated with structural and functional vascular changes, modulated by NADPH oxidase, nitric oxide, and extracellular matrix components.

  3. On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere

    Directory of Open Access Journals (Sweden)

    I. P. Chunchuzov

    2009-11-01

    Full Text Available The nonlinear mechanism of shaping of a high vertical wave number spectral tail in the field of a few discrete internal gravity waves in the atmosphere is studied in this paper. The effects of advection of fluid parcels by interacting gravity waves are taken strictly into account by calculating wave field in Lagrangian variables, and performing a variable transformation from Lagrangian to Eulerian frame. The vertical profiles and vertical wave number spectra of the Eulerian displacement field are obtained for both the case of resonant and non-resonant wave-wave interactions. The evolution of these spectra with growing parameter of nonlinearity of the internal wave field is studied and compared to that of a broad band spectrum of gravity waves with randomly independent amplitudes and phases. The calculated vertical wave number spectra of the vertical displacements or relative temperature fluctuations are found to be consistent with the observed spectra in the middle atmosphere.

  4. Fractional calculus with applications in mechanics wave propagation, impact and variational principles

    CERN Document Server

    Atanackovic, Teodor M; Stankovic, Bogoljub; Zorica, Du?an

    2014-01-01

    The books Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes and Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles contain various applications of fractional calculus to the fields of classical mechanics. Namely, the books study problems in fields such as viscoelasticity of fractional order, lateral vibrations of a rod of fractional order type, lateral vibrations of a rod positioned on fractional order viscoelastic foundations, diffusion-wave phenomena, heat conduction, wave propagation, forced oscillati

  5. Epigenetic mechanisms in pulmonary arterial hypertension: the need for global perspectives

    Directory of Open Access Journals (Sweden)

    Prakash Chelladurai

    2016-06-01

    Full Text Available Pulmonary arterial hypertension (PAH is a severe and progressive disease, characterised by high pulmonary artery pressure that usually culminates in right heart failure. Recent findings of alterations in the DNA methylation state of superoxide dismutase 2 and granulysin gene loci; histone H1 levels; aberrant expression levels of histone deacetylases and bromodomain-containing protein 4; and dysregulated microRNA networks together suggest the involvement of epigenetics in PAH pathogenesis. Thus, PAH pathogenesis evidently involves the interplay of a predisposed genetic background, epigenetic state and injurious events. Profiling the genome-wide alterations in the epigenetic mechanisms, such as DNA methylation or histone modification pattern in PAH vascular cells, may explain the great variability in susceptibility and disease severity that is frequently associated with pronounced remodelling and worse clinical outcome. Moreover, the influence of genetic predisposition and the acquisition of epigenetic alterations in response to environmental cues in PAH progression and establishment has largely been unexplored on a genome-wide scale. In order to gain insights into the molecular mechanisms leading to the development of PAH and to design novel therapeutic strategies, high-throughput approaches have to be adopted to facilitate systematic identification of the disease-specific networks using next-generation sequencing technologies, the application of these technologies in PAH has been relatively trivial to date.

  6. Arterial Wall Properties and Womersley Flow in Fabry Disease

    Directory of Open Access Journals (Sweden)

    Dimitriadis Emilios

    2002-01-01

    Full Text Available Abstract Background Fabry disease is an X-linked recessive lysosomal storage disease resulting in the cellular accumulation of globotriaosylceramide particularly globotriaosylceramide. The disease is characterized by a dilated vasculopathy with arterial ectasia in muscular arteries and arterioles. Previous venous plethysomographic studies suggest enhanced endothelium-dependent vasodilation in Fabry disease indicating a functional abnormality of resistance vessels. Methods We examined the mechanical properties of the radial artery in Fabry disease, a typical fibro-muscular artery. Eight control subjects and seven patients with Fabry disease had a right brachial arterial line placed allowing real time recording of intra-arterial blood pressure. Real time B-mode ultrasound recordings of the right radial artery were obtained simultaneously allowing calculation of the vessel wall internal and external diameter, the incremental Young's modulus and arterial wall thickness. By simultaneously measurement of the distal index finger-pulse oximetry the pulse wave speed was calculated. From the wave speed and the internal radial artery diameter the volume flow was calculated by Womersley analysis following truncation of the late diastolic phase. Results No significant difference was found between Fabry patients and controls for internal or external arterial diameters, the incremental Young's modulus, the arterial wall thickness, the pulse wave speed and the basal radial artery blood flow. Further, no significant difference was found for the radial artery blood flow in response to intra-arterial acetylcholine or sodium nitroprusside. Both drugs however, elevated the mean arterial flow. Conclusions The current study suggests that no structural or mechanical abnormality exists in the vessel wall of fibro-muscular arteries in Fabry disease. This may indicate that a functional abnormality downstream to the conductance vessels is the dominant feature in

  7. The coupled bio-chemo-electro-mechanical behavior of glucose exposed arterial elastin

    Science.gov (United States)

    Zhang, Yanhang; Li, Jiangyu; Boutis, Gregory S.

    2017-04-01

    Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling.

  8. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    Energy Technology Data Exchange (ETDEWEB)

    Betskii, O.V.

    1994-07-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  9. Modelling Mechanical Wave Propagation: Guidelines and Experimentation of a Teaching-Learning Sequence

    Science.gov (United States)

    Fazio, Claudio; Guastella, Ivan; Sperandeo-Mineo, Rosa Maria; Tarantino, Giovanni

    2008-01-01

    The present paper reports the design process and the experimentation of a teaching-learning sequence about the concept of mechanical wave propagation and the role played by media where waves are propagating. The sequence focuses on the central issue of the relationships between observable phenomena, like macroscopic behaviours of waves, and their…

  10. Characterization of Heat Waves in the Sahel and associated mechanisms

    Science.gov (United States)

    Oueslati, Boutheina; Pohl, Benjamin; Moron, Vincent; Rome, Sandra

    2016-04-01

    Large efforts are made to investigate the heat waves (HW) in developed countries because of their devastating impacts on society, economy and environment. This interest increased after the intense event over Europe during summer 2003. However, HWs are still understudied over developing countries. This is particularly true in West Africa, and especially in the Sahel, where temperatures recurrently reach critical values, such as during the 2010 HW event. Understanding the Sahelian HWs and associated health risks constitute the main objective of ACASIS, a 4-year project funded by the French Agence Nationale de la Recherche. Our work contributes to this project and aims at characterizing the Sahelian HWs and understanding the mechanisms associated with such extreme events. There is no universal definition of a HW event, since it is highly dependent on the sector (human health, agriculture, transport...) and region of interest. In our case, a HW is defined when the heat index of the day and of the night exceeds the 90th percentile for at least 3 consecutive days (Rome et al. 2016, in preparation). This index combines temperature and relative humidity in order to determine the human-perceived equivalent temperature (definition adapted from Steadman, 1979). Intrinsic properties of Sahelian HW are analyzed from the Global Summary of the Day (GSOD) synoptic observations and ERA-interim reanalyses over 1979-2014 during boreal spring seasons (April-May-June), the warmest period of the year in the Central Sahel. ERA-interim captures well the observed interannual variability and seasonal cycle at the regional scale, as well as the 1979-2014 increasing linear trend of springtime HW occurrences in the Sahel. Reanalyses, however, overestimate the duration, spatial extent of HW, and underestimate their intensity. For both GSOD and ERA-interim, we show that, over the last three decades, Sahelian HWs tend to become more frequent, last longer, cover larger areas and reach higher

  11. A review of nondestructive testing approaches using mechanical and electromagnetic waves

    Science.gov (United States)

    Lau, Denvid; Qiu, Qiwen

    2016-04-01

    Mechanical and electromagnetic waves are commonly used in nondestructive testing (NDT) techniques for evaluating the materials and structures in civil engineering industry, due to their good examination of defects inside the matter. However, the individual use of mechanical wave or electromagnetic wave in NDT methods sometimes does not fulfill the satisfactory detection in practice because of the operational inconvenience and low sensitivity. It has been demonstrated that the combination of using both types of waves can achieve a better performance for NDT application and would be the future direction for defect detection, as the advantages of each physical wave are picked out whereas the weaknesses are mitigated. This paper discusses the fundamental mechanisms and the current applications of using mechanical and electromagnetic waves for defect detection, with the goal of providing the physical knowledge and the perspectives of developing the NDT applications with these two types of waves. Typical mechanical-wave-based NDT methods such as acoustic emission, ultrasonic technique, and impact-echo method are reviewed. In addition, NDT methods using electromagnetic wave, which include optical fiber sensing technique, laser speckle interferometry and laser reflection technique are discussed. Advantages and disadvantages of these methods are outlined. In particular, we focus on a recent NDT method called acoustic-laser technique, which utilizes both the mechanical and electromagnetic waves. The basic principles and some important experimental data recorded by the acoustic-laser technique are described and its future development in the field of defect detection in civil infrastructure is presented.

  12. Pair density wave superconducting states and statistical mechanics of dimers

    Science.gov (United States)

    Soto Garrido, Rodrigo Andres

    The following thesis is divided in two main parts. Chapters 2, 3 and 4 are devoted to the study of the so called pair-density-wave (PDW) superconducting state and some of its connections to electronic liquid crystal (ELC) phases, its topological aspects in a one dimensional model and its appearance in a quasi-one dimensional system. On the other hand, chapter 5 is focused on the investigation of the classical statistical mechanics properties of dimers, in particular, the dimer model on the Aztec diamond graph and its relation with the octahedron equation. In chapter 2 we present a theory of superconducting states where the Cooper pairs have a nonzero center-of-mass momentum, inhomogeneous superconducting states known as a pair-density-waves (PDWs) states. We show that in a system of spin-1/2 fermions in two dimensions in an electronic nematic spin-triplet phase where rotational symmetry is broken in both real and spin space PDW phases arise naturally in a theory that can be analysed using controlled approximations. We show that several superfluid phases that may arise in this phase can be treated within a controlled BCS mean field theory, with the strength of the spin-triplet nematic order parameter playing the role of the small parameter of this theory. We find that in a spin-triplet nematic phase, in addition to a triplet p-wave and spin-singlet d-wave (or s depending on the nematic phase) uniform superconducting states, it is also possible to have a d-wave (or s) PDW superconductor. The PDW phases found here can be either unidirectional, bidirectional, or tridirectional depending on the spin-triplet nematic phase and which superconducting channel is dominant. In addition, a triple-helix state is found in a particular channel. We show that these PDW phases are present in the weak-coupling limit, in contrast to the usual Fulde-Ferrell-Larkin-Ovchinnikov phases, which require strong coupling physics in addition to a large magnetic field (and often both). In chapter

  13. Role of pressor mechanisms from the NTS and CVLM in control of arterial pressure.

    Science.gov (United States)

    Moreira, Thiago Santos; Sato, Monica Akemi; Takakura, Ana Carolina Thomaz; Menani, José Vanderlei; Colombari, Eduardo

    2005-11-01

    In the present study, we investigated the effects of inhibition of the caudal ventrolateral medulla (CVLM) with the GABA(A) agonist muscimol combined with the blockade of glutamatergic mechanism in the nucleus of the solitary tract (NTS) with kynurenic acid (kyn) on mean arterial pressure (MAP), heart rate (HR), and regional vascular resistances. In male Holtzman rats anesthetized intravenously with urethane/chloralose, bilateral injections of muscimol (120 pmol) into the CVLM or bilateral injections of kyn (2.7 nmol) into the NTS alone increased MAP to 186 +/- 11 and to 142 +/- 6 mmHg, respectively, vs. control: 105 +/- 4 mmHg; HR to 407 +/- 15 and to 412 +/- 18 beats per minute (bpm), respectively, vs. control: 352 +/- 12 bpm; and renal, mesenteric and hindquarter vascular resistances. However, in rats with the CVLM bilaterally blocked by muscimol, additional injections of kyn into the NTS reduced MAP to 88 +/- 5 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Moreover, in rats with the glutamatergic mechanisms of the NTS blocked by bilateral injections of kyn, additional injections of muscimol into the CVLM also reduced MAP to 92 +/- 2 mmHg and mesenteric and hindquarter vascular resistances below control baseline levels. Simultaneous blockade of NTS and CVLM did not modify the increase in HR but also abolished the increase in renal vascular resistance produced by each treatment alone. The results suggest that important pressor mechanisms arise from the NTS and CVLM to control vascular resistance and arterial pressure under the conditions of the present study.

  14. Wave propagation in nanostructures nonlocal continuum mechanics formulations

    CERN Document Server

    Gopalakrishnan, Srinivasan

    2013-01-01

    Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...

  15. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    OpenAIRE

    Michele eBellesi; Brady A Riedner; Garcia-Molina, Gary N.; Chiara eCirelli; Giulio eTononi

    2014-01-01

    Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals ...

  16. Depression and Coronary Artery Disease: The Association, Mechanisms, and Therapeutic Implications

    OpenAIRE

    Khawaja, Imran Shuja; Westermeyer, Joseph J.; Gajwani, Prashant; Feinstein, Robert E.

    2009-01-01

    We performed a comprehensive review of the literature to determine whether or not a relationship between depression and coronary artery disease exists. Our literature search supports the following: Depression and coronary artery disease have a bidirectional relationship, i.e., coronary artery disease can cause depression and depression is an independent risk factor for coronary artery disease and its complications; depression may contribute to sudden cardiac death and increase all causes of c...

  17. Quantum Mechanics of Neutrino Oscillations - Hand Waving for Pedestrians

    OpenAIRE

    Lipkin, Harry J.

    1999-01-01

    Why Hand Waving? All calculations in books describe oscillations in time. But real experiments don't measure time. Hand waving is used to convert the results of a "gedanken time experiment" to the result of a real experiment measuring oscillations in space. Right hand waving gives the right answer; wrong hand waving gives the wrong answer. Many papers use wrong handwaving to get wrong answers. This talk explains how to do it right and also answers the following questions: 1. A neutrino which ...

  18. Mechanisms of sharp wave initiation and ripple generation.

    Science.gov (United States)

    Schlingloff, Dániel; Káli, Szabolcs; Freund, Tamás F; Hájos, Norbert; Gulyás, Attila I

    2014-08-20

    Replay of neuronal activity during hippocampal sharp wave-ripples (SWRs) is essential in memory formation. To understand the mechanisms underlying the initiation of irregularly occurring SWRs and the generation of periodic ripples, we selectively manipulated different components of the CA3 network in mouse hippocampal slices. We recorded EPSCs and IPSCs to examine the buildup of neuronal activity preceding SWRs and analyzed the distribution of time intervals between subsequent SWR events. Our results suggest that SWRs are initiated through a combined refractory and stochastic mechanism. SWRs initiate when firing in a set of spontaneously active pyramidal cells triggers a gradual, exponential buildup of activity in the recurrent CA3 network. We showed that this tonic excitatory envelope drives reciprocally connected parvalbumin-positive basket cells, which start ripple-frequency spiking that is phase-locked through reciprocal inhibition. The synchronized GABA(A) receptor-mediated currents give rise to a major component of the ripple-frequency oscillation in the local field potential and organize the phase-locked spiking of pyramidal cells. Optogenetic stimulation of parvalbumin-positive cells evoked full SWRs and EPSC sequences in pyramidal cells. Even with excitation blocked, tonic driving of parvalbumin-positive cells evoked ripple oscillations. Conversely, optogenetic silencing of parvalbumin-positive cells interrupted the SWRs or inhibited their occurrence. Local drug applications and modeling experiments confirmed that the activity of parvalbumin-positive perisomatic inhibitory neurons is both necessary and sufficient for ripple-frequency current and rhythm generation. These interneurons are thus essential in organizing pyramidal cell activity not only during gamma oscillation, but, in a different configuration, during SWRs.

  19. Translational value of mechanical and vasomotor properties of mouse isolated mesenteric resistance-sized arteries

    DEFF Research Database (Denmark)

    Outzen, Emilie Middelbo; Zaki, Marina; Abdolalizadeh, Bahareh;

    2015-01-01

    Mice are increasingly used in vascular research for studying perturbations and responses to vasoactive agents in small artery preparations. Historically, small artery function has preferably been studied in rat isolated mesenteric resistance-sized arteries (MRA) using the wire myograph technique....

  20. Application of local wave time-frequency method in reciprocating mechanical fault diagnosis

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Wang Fengtao; Ma Xiaojiang

    2006-01-01

    To diagnose the reciprocating mechanical fault. We utilized local wave time-frequency approach. Firstly,we gave the principle. Secondly, the application of local wave time-frequency was given. Finally, we discussed its virtue in reciprocating mechanical fault diagnosis.

  1. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    Science.gov (United States)

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  2. Diagnostic Value of Electrocardiographic T Wave Inversion in Lead aVL in Diagnosing Coronary Artery Disease in Patients with Chronic Stable Angina

    Directory of Open Access Journals (Sweden)

    Hatem L. Farhan

    2010-04-01

    Full Text Available Objectives: The clinical value of T wave inversion in lead aVL in diagnosing coronary artery disease (CAD remains unclear. This study aims to investigate the correlation between aVL T wave inversion and CAD in patients with chronic stable angina.Methods: Electrocardiograms (ECGs of 257 consecutive patients undergoing coronary angiography were analyzed. All patients had chronic stable angina. All patients with secondary T wave inversion had been excluded (66 patients. The remaining 191 patients constituted the study population. Detailed ECG interpretation and coronary angiographic findings were conducted by experienced cardiologists.Results: T wave inversion in aVL was identified in 89 ECGs (46.8% with definite ischemic Q-ST-T changes in different leads in 97 ECGs (50.8%. Stand alone aVL T wave inversion was found in 27 ECGs (14.1% while ischemic changes in other leads with normal aVL were identified in 36 ECGs (18.8%. The incidence of CAD was 86.3%. Single, two- and multi-vessel CAD were found in 38.8%, 28.5% and 32.7% of cases respectively. The prevalence of left main, left anterior descending, left circumflex and right coronary arteries were 4.7%, 61.2%, 29.3% and 44.5%, respectively. T wave inversion in aVL was found to be the only ECG variable significantly predicting mid segment left anterior descending artery (LAD lesions (Odds Ratio 2.93, 95% Confidence Interval 1.59-5.37, p=0.001.Conclusion: This study provides new information relating to T wave inversion in lead aVL to mid segment LAD lesions. Implication of this simple finding may help in bedside diagnosis of CAD typically mid LAD lesions. However, further studies are needed to corroborate this finding.

  3. A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves

    CERN Document Server

    Courtney, Amy; 10.1016/j.mehy.2008.08.015

    2008-01-01

    The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. ...

  4. Investigating EMIC Waves as a Precipitation Mechanism for Relativistic Electrons

    Science.gov (United States)

    Li, Z.; Millan, R. M.; Woodger, L. A.

    2012-12-01

    Evidence has indicated that EMIC waves may be one of the major causes of relativistic electron precipitation (REP). We solved the pitch-angle diffusion equation for the scattering of relativistic electrons by EMIC waves, and generated flux-energy spectra of the precipitating electrons. After being converted into Bremsstrahlung X-ray counts, these spectra can be directly compared with previous (e.g. MAXIS, MINIS, BARREL test campaigns) and future (e.g. BARREL) balloon spectra measurements to determine if EMIC waves are the causes of the REP events. Parameter studies have also been conducted to investigate the influence of various geomagnetic parameters and environmental conditions on the REP spectra.

  5. Cardiac output in idiopathic normal pressure hydrocephalus: association with arterial blood pressure and intracranial pressure wave amplitudes and outcome of shunt surgery

    Directory of Open Access Journals (Sweden)

    Eide Per K

    2011-02-01

    Full Text Available Abstract Background In patients with idiopathic normal pressure hydrocephalus (iNPH responding to shunt surgery, we have consistently found elevated intracranial pressure (ICP wave amplitudes during diagnostic ICP monitoring prior to surgery. It remains unknown why ICP wave amplitudes are increased in these patients. Since iNPH is accompanied by a high incidence of vascular co-morbidity, a possible explanation is that there is reduced vascular compliance accompanied by elevated arterial blood pressure (ABP wave amplitudes and even altered cardiac output (CO. To investigate this possibility, the present study was undertaken to continuously monitor CO to determine if it is correlated to ABP and ICP wave amplitudes and the outcome of shunting in iNPH patients. It was specifically addressed whether the increased ICP wave amplitudes seen in iNPH shunt responders were accompanied by elevated CO and/or ABP wave amplitude levels. Methods Prospective iNPH patients (29 were clinically graded using an NPH grading scale. Continuous overnight minimally-invasive monitoring of CO and ABP was done simultaneously with ICP monitoring; the CO, ABP, and ICP parameters were parsed into 6-second time windows. Patients were assessed for shunt surgery on clinical grade, Evan's index, and ICP wave amplitude. Follow-up clinical grading was performed 12 months after surgery. Results ICP wave amplitudes but not CO or ABP wave amplitude, showed good correlation with the response to shunt treatment. The patients with high ICP wave amplitude did not have accompanying high levels of CO or ABP wave amplitude. Correlation analysis between CO and ICP wave amplitudes in individual patients showed different profiles [significantly positive in 10 (35% and significantly negative in 16 (55% of 29 recordings]. This depended on whether there was also a correlation between ABP and ICP wave amplitudes and on the average level of ICP wave amplitude. Conclusions These results gave no

  6. High order Hamiltonian water wave models with wave-breaking mechanism

    NARCIS (Netherlands)

    Kurnia, R.; Groesen, van E.

    2014-01-01

    Based on the Hamiltonian formulation of water waves, using Hamiltonian consistent modelling methods, we derive higher order Hamiltonian equations by Taylor expansions of the potential and the vertical velocity around the still water level. The polynomial expansion in wave height is mixed with pseudo

  7. The effects of shock wave and quasi-traveling wave in the mechanical impact test

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is well-known that the numerical value is always larger than the measured value,amounting to many times,if we calculate the stress of the specimen in the impulse test using the NASTRAN and ANSYS (N-A) software.We believe that the impact induces shock wave or quasi-traveling wave in the specimen,which can qualitatively explain the discrepancy of the two values.In order to verify it,the Lax-Friedrichs (L-F) scheme is taken to simulate the transmission of shock wave and quasi-traveling wave in solid.Numerical results show that the action area of the stress wave is small and the action time is very short,so the resulting stress and actual work are not big.In addition,the distribution of the impact values obtained by the numerical simulation is in accordance with the trend of the measured impact values.

  8. Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments

    Science.gov (United States)

    2015-09-30

    excited flexural mode that propagates in the ice layer at certain acoustic frequencies in ice-covered environments.[3] • Previously implemented EPE self...and ks,3, corresponding to the water layer sound speed, bottom compressional and shear wave speed, and ice layer compressional and shear wave speed... excitation of the Scholte interface mode. Dashed curve shows spectra for a source at 1 m depth and receiver at 25 m, showing the excitation of the

  9. Uncertainty quantification of inflow boundary condition and proximal arterial stiffness-coupled effect on pulse wave propagation in a vascular network.

    Science.gov (United States)

    Brault, Antoine; Dumas, Laurent; Lucor, Didier

    2016-12-10

    This work aims at quantifying the effect of inherent uncertainties from cardiac output on the sensitivity of a human compliant arterial network response based on stochastic simulations of a reduced-order pulse wave propagation model. A simple pulsatile output form is used to reproduce the most relevant cardiac features with a minimum number of parameters associated with left ventricle dynamics. Another source of significant uncertainty is the spatial heterogeneity of the aortic compliance, which plays a key role in the propagation and damping of pulse waves generated at each cardiac cycle. A continuous representation of the aortic stiffness in the form of a generic random field of prescribed spatial correlation is then considered. Making use of a stochastic sparse pseudospectral method, we investigate the sensitivity of the pulse pressure and waves reflection magnitude over the arterial tree with respect to the different model uncertainties. Results indicate that uncertainties related to the shape and magnitude of the prescribed inlet flow in the proximal aorta can lead to potent variation of both the mean value and standard deviation of blood flow velocity and pressure dynamics due to the interaction of different wave propagation and reflection features. Lack of accurate knowledge in the stiffness properties of the aorta, resulting in uncertainty in the pulse wave velocity in that region, strongly modifies the statistical response, with a global increase in the variability of the quantities of interest and a spatial redistribution of the regions of higher sensitivity. These results will provide some guidance in clinical data acquisition and future coupling of arterial pulse wave propagation reduced-order model with more complex beating heart models.

  10. Mechanism of the antihypertensive and vasorelaxant effects of the flavonoid tiliroside in resistance arteries.

    Science.gov (United States)

    Silva, Grazielle C; Pereira, Aline C; Rezende, Bruno A; da Silva, José P Felippe; Cruz, Jader S; de Souza, Maria de Fátima V; Gomes, Roosevelt A; Teles, Yanna C F; Cortes, Steyner F; Lemos, Virginia S

    2013-08-01

    Hypertension is a leading cause of death and disability globally, and its prevalence continues to accelerate. The cardiovascular effects of the flavonoid tiliroside have never been reported. In this work, using complementary in vivo and in vitro approaches, we describe the antihypertensive effect of tiliroside and the underlying mechanisms involved in the reduction of blood pressure. Tiliroside (1, 5 or 10 mg/kg) induced a dose-dependent long-lasting decrease in blood pressure in conscious DOCA-salt hypertensive rats that was accompanied by an increased heart rate. Tiliroside also induced a concentration-dependent vasodilation of mesenteric resistance arteries precontracted with phenylephrine. Removal of the endothelium or pretreatment of the preparation with L-NAME or indomethacin did not modify the vasodilator response for tiliroside. When vessels were precontracted with a high K⁺ (50 mM) solution, tiliroside exhibited a vasodilator effect similar to that observed in vessels precontracted with phenylephrine. Experiments carried out in nominally Ca²⁺-free solution showed that tiliroside antagonized CaCl₂-induced contractions. Moreover, tiliroside reduced the rise in intracellular Ca²⁺ concentration induced by membrane depolarization in vascular smooth muscle cells. Finally, tiliroside decreased the voltage-activated peak amplitude of the L-type Ca²⁺ channel current in freshly dissociated vascular smooth muscle cells from mesenteric arteries. Altogether, our results point to an antihypertensive effect of tiliroside due to a reduction in peripheral resistance through blockage of voltage-activated peak amplitude of the L-type Ca²⁺ channel in smooth muscle cells.

  11. Pulse Waves in the Lower Extremities as a Diagnostic Tool of Peripheral Arterial Disease and Predictor of Mortality in Elderly Chinese.

    Science.gov (United States)

    Sheng, Chang-Sheng; Li, Yan; Huang, Qi-Fang; Kang, Yuan-Yuan; Li, Fei-Ka; Wang, Ji-Guang

    2016-03-01

    Patients with peripheral arterial disease may have elongated upstroke time in pulse waves in the lower extremities. We investigated upstroke time as a diagnostic tool of peripheral arterial disease and predictor of mortality in an elderly (≥60 years) Chinese population. We recorded pulse waves at the left and right ankles by pneumoplethysmography and calculated the percentage of upstroke time per cardiac cycle. Diagnostic accuracy was compared with the conventional ankle-brachial index method (n=4055) and computed tomographic angiography (34 lower extremities in 17 subjects). Upstroke time per cardiac cycle at baseline (mean±SD, 16.4%±3.1%) was significantly (Pperipheral arterial disease (upstroke time per cardiac cycle, ≥21.7%) in comparison with computed tomographic angiography. During 5.9 years (median) of follow-up, all-cause and cardiovascular deaths occurred in 366 and 183 subjects, respectively. In adjusted Cox regression analyses, an upstroke time per cardiac cycle ≥21.7% (n=219; 5.4%) significantly (Pperipheral arterial disease and predictor of mortality in the elderly.

  12. Analysis of Arterial Mechanics During Head-down Tilt Bed Rest

    Science.gov (United States)

    Elliot, Morgan; Martin, David S.; Westby, Christian M.; Stenger, Michael B.; Platts, Steve

    2014-01-01

    Arterial health may be affected by microgravity or ground based analogs of spaceflight, as shown by an increase in thoracic aorta stiffness1. Head-down tilt bed rest (HDTBR) is often used as a ground-based simulation of spaceflight because it induces physiological changes similar to those that occur in space2, 3. This abstract details an analysis of arterial stiffness (a subclinical measure of atherosclerosis), the distensibility coefficient (DC), and the pressure-strain elastic modulus (PSE) of the arterial walls during HDTBR. This project may help determine how spaceflight differentially affects arterial function in the upper vs. lower body.

  13. Mechanism of laser-induced plasma shock wave evolution in air

    Institute of Scientific and Technical Information of China (English)

    Zhao Rui; Liang Zhong-Cheng; Han Bing; Zhang Hong-Chao; Xu Rong-Qing; Lu Jian; Ni Xiao-Wu

    2009-01-01

    A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.

  14. A wave-mechanical model of incoherent neutron scattering II. Role of the momentum transfer

    OpenAIRE

    Frauenfelder, Hans; Young, Robert D.; Fenimore, Paul W.

    2015-01-01

    We recently introduced a wave-mechanical model for quasi-elastic neutron scattering (QENS) in proteins. We call the model ELM for "Energy Landscape Model". We postulate that the spectrum of the scattered neutrons consists of lines of natural width shifted from the center by fluctuations. ELM is based on two facts: Neutrons are wave packets; proteins have low-lying substates that form the free-energy landscape (FEL). Experiments suggest that the wave packets are a few hundred micrometers long....

  15. The realization of the wave function collapse in the linguistic interpretation of quantum mechanics

    CERN Document Server

    Ishikawa, Shiro

    2015-01-01

    Recently I proposed the linguistic interpretation of quantum mechanics, which is characterized as the linguistic turn of the Copenhagen interpretation of quantum mechanics. This turn from physics to language does not only extend quantum theory to classical theory but also yield the quantum mechanical world view. Although the wave function collapse is prohibited in the linguistic interpretation, in this paper I show that the phenomenon like wave function collapse can be realized in the linguistic interpretation. And furthermore, I propose the justification of the von Neumann-L\\"uders projection postulate. After all, I conclude that the wave function collapse should not be adopted in the Copenhagen interpretation.

  16. Hereditary and environmental influences on arterial function.

    Science.gov (United States)

    Hayward, C S; Benetos, A

    2007-07-01

    1. With the ageing population and increasing heart failure, arterial function has been shown to contribute to cardiovascular risk because of its adverse effects on ventriculovascular coupling. Population studies have confirmed independent prognostic information of arterial stiffening on cardiovascular survival. 2. The term 'arterial function' encompasses a range of phenotypes, including measures of arterial structure/remodelling, measures of arterial wall mechanics, surrogate measures of stiffness and of wave reflection. There exists significant interaction between these measures and none is truly independent of the others. Added to this complexity is the recognition that, although arterial function has a strong genetic component, quantification requires a range of techniques from twin to family and population studies. 3. The contribution of heritability is often derived from statistical models with input from genomic scanning and candidate gene studies. Studies to date confirm a significant heritable component for the majority of phenotypes examined. However, it has also been recognized that the factors involved in blood pressure maintenance are likely to be separate to those in arterial structural degeneration with ageing. Candidate genes for arterial function go beyond those of the sympathetic and renin-angiotensin systems and include genes involved in signalling pathways and extracellular matrix modulation. 4. The present review examines the evidence for heritability of the major arterial function phenotypes with environmental and ageing modulation. A brief overview of the impact of atherosclerotic risk factors on arterial function is included.

  17. Cocaine mediated apoptosis of vascular cells as a mechanism for carotid artery dissection leading to ischemic stroke.

    Science.gov (United States)

    Dabbouseh, Noura M; Ardelt, Agnieszka

    2011-08-01

    In arterial dissection, blood may enter the arterial wall through an intimal tear, splitting the arterial wall and activating the coagulation cascade at the site of endothelial damage. Dissection of extracranial and intracranial vessels may lead to ischemic stroke through thromboembolic or hemodynamic mechanisms. Major blunt trauma or rapid acceleration-deceleration may cause dissection, but in patients with inherent arterial wall weakness, dissection can occur spontaneously or as a result of minor neck movement. Cocaine use has been associated with dissection of the aortic arch and coronary and renal arteries through cocaine-mediated hypertension. Recent preclinical studies have suggested, however, that cocaine may cause apoptosis of cells in the vascular wall. In this article, we postulate that cocaine may cause apoptosis of vascular endothelial and/or smooth muscle cells, thus weakening the vascular wall and resulting in a dissection-prone state. We review the literature and propose a biological basis for vasculopathy, vascular dissection, and ischemic stroke in the setting of cocaine use. Further research studies on vascular cells, as well as focused analysis of human pathological material, will be important in providing evidence for or against our hypotheses.

  18. Effect of force-induced mechanical stress at the coronary artery bifurcation stenting: Relation to in-stent restenosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheng-Hung [Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan (China); Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan (China); Jhong, Guan-Heng [Graduate Institute of Medical Mechatronics, Chang Gung University, Tao-Yuan, Taiwan (China); Hsu, Ming-Yi; Wang, Chao-Jan [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan (China); Liu, Shih-Jung, E-mail: shihjung@mail.cgu.edu.tw [Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan (China); Hung, Kuo-Chun [Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan (China)

    2014-05-28

    The deployment of metallic stents during percutaneous coronary intervention has become common in the treatment of coronary bifurcation lesions. However, restenosis occurs mostly at the bifurcation area even in present era of drug-eluting stents. To achieve adequate deployment, physicians may unintentionally apply force to the strut of the stents through balloon, guiding catheters, or other devices. This force may deform the struts and impose excessive mechanical stresses on the arterial vessels, resulting in detrimental outcomes. This study investigated the relationship between the distribution of stress in a stent and bifurcation angle using finite element analysis. The unintentionally applied force following stent implantation was measured using a force sensor that was made in the laboratory. Geometrical information on the coronary arteries of 11 subjects was extracted from contrast-enhanced computed tomography scan data. The numerical results reveal that the application of force by physicians generated significantly higher mechanical stresses in the arterial bifurcation than in the proximal and distal parts of the stent (post hoc P < 0.01). The maximal stress on the vessels was significantly higher at bifurcation angle <70° than at angle ≧70° (P < 0.05). The maximal stress on the vessels was negatively correlated with bifurcation angle (P < 0.01). Stresses at the bifurcation ostium may cause arterial wall injury and restenosis, especially at small bifurcation angles. These finding highlight the effect of force-induced mechanical stress at coronary artery bifurcation stenting, and potential mechanisms of in-stent restenosis, along with their relationship with bifurcation angle.

  19. Mechanism and patterns of cervical spine fractures-dislocations in vertebral artery injury

    Directory of Open Access Journals (Sweden)

    Pankaj Gupta

    2012-01-01

    Full Text Available Purpose: To identify the fracture patterns and mechanism of injury, based on subaxial cervical spine injury classification system (SLIC, on non-contrast computed tomography (NCCT of cervical spine predictive of vertebral artery injury (VAI. Patients and Methods: We retrospectively analyzed cervical spine magnetic resonance imaging (MRI of 320 patients who were admitted with cervical spine injury in our level I regional trauma center over a period of two years (April 2010 to April 2012. Diagnosis of VAI was based on hyperintensity replacing the flow void on a T2-weighted axial image. NCCT images of the selected 43 patients with MRI diagnosis of VAI were then assessed for the pattern of injury. The cervical spinal injuries were classified into those involving the C1 and C2 and subaxial spine. For the latter, SLIC was used. Results: A total of 47 VAI were analyzed in 43 patients. Only one patient with VAI on MRI had no detectable abnormality on NCCT. C1 and C2 injuries were found in one and six patients respectively. In subaxial injuries, the most common mechanism of injury was distraction (37.5% with facet dislocation with or without fracture representing the most common pattern of injury (55%. C5 was the single most common affected vertebral level. Extension to foramen transversarium was present in 20 (42.5% cases. Conclusion: CT represents a robust screening tool for patients with VAI. VAI should be suspected in patients with facet dislocation with or without fractures, foramina transversarium fractures and C1-C3 fractures, especially type III odontoid fractures and distraction mechanism of injury.

  20. The Mechanical Waves Conceptual Survey: An Analysis of University Students' Performance, and Recommendations for Instruction

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2017-01-01

    The Mechanical Waves Conceptual Survey (MWCS), presented in 2009, is the most important test to date that has been designed to evaluate university students' understanding of four main topics: propagation, superposition, reflection, and standing waves. In a literature review, we detected a significant need for a study that uses this test as an…

  1. Collagen thermal denaturation study for thermal angioplasty based on modified kinetic model: relation between the artery mechanical properties and collagen denaturation rate

    Science.gov (United States)

    Shimazaki, N.; Hayashi, T.; Kunio, M.; Arai, T.

    2010-02-01

    We have been developing the novel short-term heating angioplasty in which sufficient artery lumen-dilatation was attained with thermal softening of collagen fiber in artery wall. In the present study, we investigated on the relation between the mechanical properties of heated artery and thermal denaturation fractures of arterial collagen in ex vivo. We employed Lumry-Eyring model to estimate temperature- and time-dependent thermal denaturation fractures of arterial collagen fiber during heating. We made a kinetic model of arterial collagen thermal denaturation by adjustment of K and k in this model, those were the equilibrium constant of reversible denaturation and the rate constant of irreversible denaturation. Meanwhile we demonstrated that the change of reduced scattering coefficient of whole artery wall during heating reflected the reversible denaturation of the collagen in artery wall. Based on this phenomenon, the K was determined experimentally by backscattered light intensity measurement (at 633nm) of extracted porcine carotid artery during temperature elevation and descending (25°C-->80°C-->25°C). We employed the value of according to our earlier report in which the time-and temperature- dependent irreversible denaturation amount of the artery collagen fiber that was assessed by the artery birefringence. Then, the time- and temperature- dependent reversible (irreversible) denaturation fraction defined as the reversible ((irreversible) denatured collagen amount) / (total collagen amount) was calculated by the model. Thermo-mechanical analysis of artery wall was performed to compare the arterial mechanical behaviors (softening, shrinkage) during heating with the calculated denaturation fraction with the model. In any artery temperature condition in 70-80°, the irreversible denaturation fraction at which the artery thermal shrinkage started was estimated to be around 20%. On the other hand, the calculated irreversible denaturation fraction remained below

  2. Mechanisms Involved in Thromboxane A2-induced Vasoconstriction of Rat Intracavernous Small Penile Arteries

    DEFF Research Database (Denmark)

    Grann, Martin; Comerma Steffensen, Simon Gabriel; Arcanjo, Daniel Dias Rufino

    2015-01-01

    the role of calcium and ROCK in contraction evoked by activation of the thromboxane receptors. Rat intracavernous penile arteries were mounted for isometric tension and intracellular calcium ([Ca2+]i) recording and corpus cavernosum for measurements of MYPT1 phosphorylation. In penile arteries, U46619......27632 and glycyl-H1152P, concentrationdependently reduced U46619-induced contraction, but only Y27632 reduced [Ca2+]i-levels in the penile arteries activated with either high extracellular potassium or U46619. MYPTThr850 phosphorylation in corpus cavernous strips was increased in response to U46619...... through activation of TP receptors and was found to be a direct result of phosphorylation by ROCK. Y27632 induced less relaxation in mesenteric arteries, H1152P induced equipotent relaxations, and a protein kinase C inhibitor, Ro-318220, failed to relax intracavernous penile arteries, but induced full...

  3. A mechanism study of sound wave-trapping barriers.

    Science.gov (United States)

    Yang, Cheng; Pan, Jie; Cheng, Li

    2013-09-01

    The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped structures, has been proposed to confine waves within the area between the barrier and the reflecting surface, and thus improve the performance. In this paper, the deterioration in performance of a conventional sound barrier due to the reflecting surface is first explained in terms of the resonance effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field is generated by the noise source both within and in the vicinity outside the region bounded by the sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier's shadow zone, which correspond to the minimum values in the barrier's insertion loss, are largely determined by the resonance frequencies and by the shapes and losses of the trapped modes. These peak pressures usually result in high sound intensity component impinging normal to the barrier surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this case, the modified barrier profile is capable of re-organizing the pressure distribution within the bounded domain and altering the acoustic properties near the top of the sound barrier.

  4. Picometer stable scan mechanism for gravitational wave detection in space

    NARCIS (Netherlands)

    Rijnveld, N.; Pijnenburg, J.A.C.M.

    2010-01-01

    Detection and observation of gravitational waves requires extremely accurate displacement measurement in the frequency range 0.03 mHz to 1 Hz. The Laser Interferometer Space Antenna (LISA) mission will attain this by creating a giant interferometer in space, based on free floating proof masses in th

  5. Effect of atherosclerosis on thermo-mechanical properties of arterial wall and its repercussion on plaque instability.

    Science.gov (United States)

    Guinea, G V; Atienza, J M; Fantidis, P; Rojo, F J; Ortega, A; Torres, M; Gonzalez, P; Elices, M L; Hayashi, K; Elices, M

    2009-03-06

    Data from the literature report febrile reactions prior to myocardial infarction in patients with normal coronary arteries and that coronary syndromes seem to be triggered by bacterial and viral infections, being fever the common symptom. The thermo-mechanical behavior of thoracic aortas of New Zealand White rabbits with different degrees of atherosclerosis was measured by means of pressure-diameter tests at different temperatures. Specific measurements of the thermal dilatation coefficient of atheroma plaques were performed by means of tensile tests. Results show a different thermo-mechanical behavior, the dilatation coefficient of atheroma plaque being at least twice that of the arterial wall. Temperature-induced mechanical stress at the plaque-vessel interface could be enough to promote plaque rupture. Therefore, increases of corporal temperature, either local or systemic, can play a role in increasing the risk of acute coronary syndromes and deserve a more comprehensive study.

  6. Relation of Post-Coronary Artery Bypass Graft Creatine Kinase-MB Elevations and New Q Waves With Long-Term Cardiovascular Death in Patients With Diabetes Mellitus and Multivessel Coronary Artery Disease.

    Science.gov (United States)

    Domanski, Michael; Farkouh, Michael E; Zak, Victor; French, John; Alexander, John H; Bochenek, Andrzej; Hamon, Martial; Mahaffey, Kenneth; Puskas, John; Smith, Peter; Shrader, Peter; Fuster, Valentin

    2016-12-01

    Associations of early creatine phosphokinase-MB (CK-MB) elevation and new Q waves and their association with cardiovascular death (CVD) after coronary artery bypass grafting (CABG) have been reported, but this association has not been studied in a large population of patients with diabetes mellitus. In this study, we examine the association of periprocedural CK-MB elevations and new Q waves with CVD in the Future Revascularization Evaluation in Patients with Diabetes Mellitus: Optimal Management of Multivessel Disease trial. Cox proportional hazards regression was used to assess the relation of CK-MB elevations and new Q waves in the first 24 hours after procedure and their relation to CVD; logistic regression was used to assess odds ratios of these variables. Hazard ratios, 95% confidence intervals, and p values associated with Wald chi-square test are reported. CK-MB elevation in first 24 hours after procedure was independently associated with CVD. CVD hazard increased by 6% (p URL); odds of new post-CABG Q waves increased by a factor of 1.08 (p URL, HR was >2. CK-MB URL multiples of 7, 12, and 15 were associated with new Q-wave odds ratios of 9, 16, and 27 times, respectively (p ≤0.001, C-statistic >0.70). New Q waves were independently associated with survival in the multivariate model only when CK-MB was excluded (p = 0.01). In conclusion, independent associations included (1) CVD and early post-CABG CK-MB elevation; (2) new Q waves with early post-CABG CK-MB elevation; (3) CVD with new Q waves only when CK-MB elevation is excluded from analysis.

  7. The meaning of the wave function in search of the ontology of quantum mechanics

    CERN Document Server

    Gao, Shan

    2017-01-01

    At the heart of quantum mechanics lies the wave function, a powerful but mysterious mathematical object which has been a hot topic of debate from its earliest stages. Covering much of the recent debate and providing a comprehensive and critical review of competing approaches, this ambitious text provides new, decisive proof of the reality of the wave function. Aiming to make sense of the wave function in quantum mechanics and to find the ontological content of the theory, this book explores new ontological interpretations of the wave function in terms of random discontinuous motion of particles. Finally, the book investigates whether the suggested quantum ontology is complete in solving the measurement problem and if it should be revised in the relativistic domain. A timely addition to the literature on the foundations of quantum mechanics, this book is of value to students and researchers with an interest in the philosophy of physics. Presents a concise introduction to quantum mechanics, including the c...

  8. On the classical limit of Bohmian mechanics for Hagedorn wave packets

    CERN Document Server

    Dürr, Detlef

    2010-01-01

    We consider the classical limit of quantum mechanics in terms of Bohmian trajectories. For wave packets as defined by Hagedorn we show that the Bohmian trajectories converge to Newtonian trajectories in probability.

  9. Characterization of Wave Dispersion in Viscoelastic Cellular Assemblies by Doublet Mechanics

    Institute of Scientific and Technical Information of China (English)

    JIN Yan-Fang; XIONG Chun-Yang; FANG Jing; FERRARI Mauro

    2009-01-01

    Using the Voigt model, we analyze wave propagation in viscoelastic granular media with a monatomic lattice, planar simple cubic package and cubical-tetrahedral assembly within the context of doublet mechanics. Microstrains of elongation between the doublet particles are considered in the models. Wave dispersive relations are derived from dynamic equations of the particles involved in the media, and phase velocities and attenuations of the dispersive waves are obtained for the different assemblies. Variations in these dispersion characteristics are analyzed with the changes of cell interval, modulus, and wave frequency. The relations between micro-constants and macro-parameters are presented under the condition of non-scale continuity of the media.

  10. Study on the formation mechanism of shock wave in process of coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    SUN Dong-ling; MIAO Fa-tian; LIANG Yun-pei

    2009-01-01

    According to the research results of motion parameters of coal-gas flow, ana-lyzed the formation mechanism of shock waves at different states of coal-gas flow in the process of coal and gas outburst, and briefly described the two possible cases of outburst shock wave formation and their formation conditions in the process of coal and gas out-burst, and then pointed out that a high degree of under-expanded coal-gas flow was the main reason for the formation of a highly destructive shock wave. The research results improved the shock wave theory in coal and gas outburst.

  11. Efficiency of a gyroscopic device for conversion of mechanical wave energy to electrical energy

    DEFF Research Database (Denmark)

    Carlsen, Martin; Darula, Radoslav; Gravesen, Jens;

    2011-01-01

    We consider a recently proposed gyroscopic device for conversion of mechanical ocean wave energy to electrical energy. Two models of the device derived from standard engineering mechanics from the literature are analysed, and a model is derived from analytical mechanics considerations. From...

  12. Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics.

    Science.gov (United States)

    Au, Jason S; Ditor, David S; MacDonald, Maureen J; Stöhr, Eric J

    2016-07-01

    Recent studies have identified a predictable movement pattern of the common carotid artery wall in the longitudinal direction. While there is evidence that the magnitude of this carotid artery longitudinal wall motion (CALM) is sensitive to cardiovascular health status, little is known about the determinants of CALM The purpose of this integrative study was to evaluate the contribution of left ventricular (LV) cardiac motion and local blood velocity to CALM Simultaneous ultrasound measurements of CALM, common carotid artery mean blood velocity (MBV), and left ventricular motion were performed in ten young, healthy individuals (6 males; 22 ± 1 years). Peak anterograde CALM occurred at a similar time as peak MBV (18.57 ± 3.98% vs. 18.53 ± 2.81% cardiac cycle; t-test: P = 0.94; ICC: 0.79, P longitudinal displacement was not associated with peak CALM (r = 0.11, P = 0.77). These results suggest that the rotational mechanical movement of the LV base may be closely associated with longitudinal mechanics in the carotid artery. This finding may have important implications for interpreting the complex relationship between ventricular and vascular function.

  13. New aspects of the electrochemical-catalytic (EC’) mechanism in square-wave voltammetry

    OpenAIRE

    Gulaboski, Rubin; Mirceski, Valentin

    2015-01-01

    Several new theoretical aspects of the electrocatalytic (regenerative) EC’ mechanism under conditions of square-wave (SWV) and staircase cyclic voltammetry (SCV) are presented. Elaborating the effect of the rate of the catalytic reaction in the diffusion-controlled catalytic mechanism (diffusional EC’ mechanism) and surface catalytic mechanism (surface EC’ mechanism), we refer to several phenomena related to the shift of the position and the half-peak width of the net peak in ...

  14. Identifying coronary artery disease in men with type 2 diabetes: osteoprotegerin, pulse wave velocity, and other biomarkers of cardiovascular risk.

    LENUS (Irish Health Repository)

    Davenport, Colin

    2012-02-01

    OBJECTIVES: In patients with type 2 diabetes, high serum levels of osteoprotegerin (OPG) have been associated with a greater risk of cardiovascular events. However, it remains unclear how well OPG performs when compared with traditional biomarkers of cardiovascular risk such as high-sensitivity C-reactive protein (hsCRP). Furthermore, OPG levels are also high in the presence of diabetes-related microvascular disease, and it is unclear whether OPG can distinguish microvascular disease from large-vessel atherosclerosis. The first aim of this study was to compare OPG levels against other biomarkers of cardiovascular risk in the identification of patients with documented multivessel coronary artery disease (CAD). The second aim was to compare OPG levels in patients with microvascular complications (microalbuminuria) against those with established CAD. METHODS: Three groups of male patients with type 2 diabetes were recruited: patients without microvascular complications or large-vessel atherosclerosis (n = 24), patients with microalbuminuria only (n = 23), and patients with microalbuminuria and documented multivessel CAD (n = 25). OPG, hsCRP, interleukin 6, urate, and pulse wave velocity were measured. RESULTS: Serum OPG levels were significantly higher in patients with a combination of microalbuminuria and CAD than in those with microalbuminuria alone. There were no significant differences in any of the other biomarkers between the groups. CONCLUSION: OPG was found to be superior to the other biomarkers studied in identifying patients with documented CAD. The presence of CAD was a greater determinant of serum OPG levels than microalbuminuria in our population. These findings support the use of OPG as a biomarker of cardiovascular risk.

  15. Imaging mechanical shear waves induced by piezoelectric ceramics in magnetic resonance elastography

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Magnetic Resonance Elastography (MRE) is a noninvasive technique to measure elasticity of tissues in vivo. In this paper, a mechanical shear wave MR imaging system experiment is set for MRE. A novel actuator is proposed to generate mechanical shear waves propagating inside a gel phantom. The actuator is made of piezoelectric ceramics, and fixed on a plexiglass bracket. Both of the gel phantom and the actuator are put into a head coil inside the MR scanner's bore. The actuator works synchronously with an MR imaging sequence running on the MR scanner. The sequence is modified from a FLASH sequence into a motion-sensitizing phase- contrast sequence for shear wave MR imaging. Shear wave images are presented, and these effects on the shear wave MR imaging system, including the stiffness of phantoms, the frequency of the actuator, the parameters of the motion-sensitizing gradient, and the oscillation of the patient bed, are discussed.

  16. Mechanisms of Fluid-Mud Interactions Under Waves

    Science.gov (United States)

    2011-01-01

    surface a corrugated appearance (Figure 12). Through careful analysis of these tests, it has been concluded that the waves are the result of a resonant...square meter per month. Analysis of X-radiographs from this field program has contributed to development of new theory relating hydrodynamics of...Shear near the base of the mobile fluid mud layer mixes coarser underlying rippled sediment with overlying finer sediment, producing laminations

  17. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... as resonators storing mechanical energy. These resonators are evanescently coupled by the surface. The dispersion diagram is presented and shows very low group velocities as the wave vector approaches the limit of the first Brillouin zone. ©2009 American Institute of Physics...

  18. Generation mechanism of whistler waves produced by electron beam injection in space

    Science.gov (United States)

    Pritchett, P. L.; Karimabadi, H.; Omidi, N.

    1989-01-01

    Electromagnetic particle simulations are used to determine the generation mechanism of the whistler waves observed in connection with the artificial injection of electron beams in the ionosphere. The production of the waves is shown to be closely connected with the beam-plasma interaction, which leads to the formation of a current structure which acts like an antenna and emits the whistler waves in a coherent manner. This process, in contrast to a mechanism involving amplification of radiation by a whistler mode plasma instability within the beam, allows the whistlers to be generated even though the beam width is less than one wavelength.

  19. Characterization of the vessel geometry, flow mechanics and wall shear stress in the great arteries of wildtype prenatal mouse.

    Directory of Open Access Journals (Sweden)

    Choon Hwai Yap

    Full Text Available INTRODUCTION: Abnormal fluid mechanical environment in the pre-natal cardiovascular system is hypothesized to play a significant role in causing structural heart malformations. It is thus important to improve our understanding of the prenatal cardiovascular fluid mechanical environment at multiple developmental time-points and vascular morphologies. We present such a study on fetal great arteries on the wildtype mouse from embryonic day 14.5 (E14.5 to near-term (E18.5. METHODS: Ultrasound bio-microscopy (UBM was used to measure blood velocity of the great arteries. Subsequently, specimens were cryo-embedded and sectioned using episcopic fluorescent image capture (EFIC to obtain high-resolution 2D serial image stacks, which were used for 3D reconstructions and quantitative measurement of great artery and aortic arch dimensions. EFIC and UBM data were input into subject-specific computational fluid dynamics (CFD for modeling hemodynamics. RESULTS: In normal mouse fetuses between E14.5-18.5, ultrasound imaging showed gradual but statistically significant increase in blood velocity in the aorta, pulmonary trunk (with the ductus arteriosus, and descending aorta. Measurement by EFIC imaging displayed a similar increase in cross sectional area of these vessels. However, CFD modeling showed great artery average wall shear stress and wall shear rate remain relatively constant with age and with vessel size, indicating that hemodynamic shear had a relative constancy over gestational period considered here. CONCLUSION: Our EFIC-UBM-CFD method allowed reasonably detailed characterization of fetal mouse vascular geometry and fluid mechanics. Our results suggest that a homeostatic mechanism for restoring vascular wall shear magnitudes may exist during normal embryonic development. We speculate that this mechanism regulates the growth of the great vessels.

  20. SAR Imaging of Wave Tails: Recognition of Second Mode Internal Wave Patterns and Some Mechanisms of their Formation

    Science.gov (United States)

    da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.

    2016-08-01

    Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented

  1. Whistler wave-induced ionospheric plasma turbulence: Source mechanisms and remote sensing

    Science.gov (United States)

    Pradipta, R.; Rooker, L. A.; Whitehurst, L. N.; Lee, M. C.; Ross, L. M.; Sulzer, M. P.; Gonzalez, S.; Tepley, C.; Aponte, N.; See, B. Z.; Hu, K. P.

    2013-10-01

    We report a series of experiments conducted at Arecibo Observatory in the past, aimed at the investigation of 40.75 kHz whistler wave interactions with ionospheric plasmas and the inner radiation belts at L=1.35. The whistler waves are launched from a Naval transmitter (code-named NAU) operating in Aguadilla, Puerto Rico at the frequency and power of 40.75 kHz and 100 kW, respectively. Arecibo radar, CADI, and optical instruments were used to monitor the background ionospheric conditions and detect the induced ionospheric plasma effects. Four-wave interaction processes produced by whistler waves in the ionosphere can excite lower hybrid waves, which can accelerate ionospheric electrons. Furthermore, whistler waves propagating into the magnetosphere can trigger precipitation of energetic electrons from the radiation belts. Radar and optical measurements can distinguish wave-wave and wave-particle interaction processes occurring at different altitudes. Electron acceleration by different mechanisms can be verified from the radar measurements of plasma lines. To facilitate the coupling of NAU-launched 40.75 kHz whistler waves into the ionosphere, we can rely on naturally occurring spread F irregularities to serve as ionospheric ducts. We can also use HF wave-created ducts/artificial waveguides, as demonstrated in our earlier Arecibo experiments and recent Gakona experiments at HAARP. The newly constructed Arecibo HF heater will be employed in our future experiments, which can extend the study of whistler wave interactions with the ionosphere and the magnetosphere/radiation belts as well as the whistler wave conjugate propagation between Arecibo and Puerto Madryn, Argentina.

  2. Use of the Frank-Starling mechanism during exercise is linked to exercise-induced changes in arterial load.

    Science.gov (United States)

    Chantler, Paul D; Melenovsky, Vojtech; Schulman, Steven P; Gerstenblith, Gary; Becker, Lewis C; Ferrucci, Luigi; Fleg, Jerome L; Lakatta, Edward G; Najjar, Samer S

    2012-01-01

    Effective arterial elastance(E(A)) is a measure of the net arterial load imposed on the heart that integrates the effects of heart rate(HR), peripheral vascular resistance(PVR), and total arterial compliance(TAC) and is a modulator of cardiac performance. To what extent the change in E(A) during exercise impacts on cardiac performance and aerobic capacity is unknown. We examined E(A) and its relationship with cardiovascular performance in 352 healthy subjects. Subjects underwent rest and exercise gated scans to measure cardiac volumes and to derive E(A)[end-systolic pressure/stroke volume index(SV)], PVR[MAP/(SV*HR)], and TAC(SV/pulse pressure). E(A) varied with exercise intensity: the ΔE(A) between rest and peak exercise along with its determinants, differed among individuals and ranged from -44% to +149%, and was independent of age and sex. Individuals were separated into 3 groups based on their ΔE(A)I. Individuals with the largest increase in ΔE(A)(group 3;ΔE(A)≥0.98 mmHg.m(2)/ml) had the smallest reduction in PVR, the greatest reduction in TAC and a similar increase in HR vs. group 1(ΔE(A)<0.22 mmHg.m(2)/ml). Furthermore, group 3 had a reduction in end-diastolic volume, and a blunted increase in SV(80%), and cardiac output(27%), during exercise vs. group 1. Despite limitations in the Frank-Starling mechanism and cardiac function, peak aerobic capacity did not differ by group because arterial-venous oxygen difference was greater in group 3 vs. 1. Thus the change in arterial load during exercise has important effects on the Frank-Starling mechanism and cardiac performance but not on exercise capacity. These findings provide interesting insights into the dynamic cardiovascular alterations during exercise.

  3. Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations

    DEFF Research Database (Denmark)

    Liang, Z.; Willatzen, Morten; Christensen, Johan

    2015-01-01

    for designing Bloch oscillations in classical plate structures and show how mechanical Bloch oscillations can be generated in arrays of solid plates when the modal wavelength is gradually reduced. The design recipe describes how Bloch oscillations in classical structures of arbitrary dimensions can be generated......We propose hitherto unexplored and fully analytical insights into laminate elastic materials in a true condensed-matter-physics spirit. Pure mechanical surface waves that decay as evanescent waves from the interface are discussed, and we demonstrate how these designer Scholte waves are controlled......, and we demonstrate this numerically for structures with millimeter and centimeter dimensions in the kilohertz to megahertz range. Analytical predictions agree entirely with full wave simulations showing how elastodynamics can mimic quantum-mechanical condensed-matter phenomena....

  4. Catheter-induced dissection of a normal right coronary artery: Reappraisal of the underlying mechanisms

    Directory of Open Access Journals (Sweden)

    Wassam El Din HadadEl Shafey

    2016-06-01

    Full Text Available Iatrogenic coronary artery dissection during diagnostic coronary catheterization is a rare but life-threatening event with a reported incidence of less than 0.1%. The current case report addresses the issue of catheter-induced dissection of an apparently normal right coronary artery (RCA. I tried to explain the factors underlying its occurrence, in view of the current knowledge of the aortic root motion during the cardiac cycle, and the spatial orientation of the RCA ostium.

  5. Plasma levels of the arterial wall protein fibulin-1 are associated with carotid-femoral pulse wave velocity

    DEFF Research Database (Denmark)

    Laugesen, Esben; Høyem, Pernille; Christiansen, Jens Sandahl;

    2013-01-01

    -associated extracellular matrix protein, fibulin-1, was recently found in higher concentrations in the arterial wall and in plasma in patients with long duration type 2 diabetes. Furthermore, plasma fibulin-1 independently predicted total mortality and was associated with pulse pressure, an indirect measure of arterial...

  6. Drift and breakup of spiral waves in reaction-diffusion-mechanics systems.

    Science.gov (United States)

    Panfilov, A V; Keldermann, R H; Nash, M P

    2007-05-08

    Rotating spiral waves organize excitation in various biological, physical, and chemical systems. They underpin a variety of important phenomena, such as cardiac arrhythmias, morphogenesis processes, and spatial patterns in chemical reactions. Important insights into spiral wave dynamics have been obtained from theoretical studies of the reaction-diffusion (RD) partial differential equations. However, most of these studies have ignored the fact that spiral wave rotation is often accompanied by substantial deformations of the medium. Here, we show that joint consideration of the RD equations with the equations of continuum mechanics for tissue deformations (RD-mechanics systems), yield important effects on spiral wave dynamics. We show that deformation can induce the breakup of spiral waves into complex spatiotemporal patterns. We also show that mechanics leads to spiral wave drift throughout the medium approaching dynamical attractors, which are determined by the parameters of the model and the size of the medium. We study mechanisms of these effects and discuss their applicability to the theory of cardiac arrhythmias. Overall, we demonstrate the importance of RD-mechanics systems for mathematics applied to life sciences.

  7. Mechanical Recanalization of Subacute Vessel Occlusion in Peripheral Arterial Disease with a Directional Atherectomy Catheter

    Energy Technology Data Exchange (ETDEWEB)

    Massmann, Alexander, E-mail: Alexander.Massmann@uks.eu; Katoh, Marcus [Saarland University Hospital, Department of Diagnostic and Interventional Radiology (Germany); Shayesteh-Kheslat, Roushanak [Saarland University Hospital, Department of General Surgery, Visceral, Vascular, and Pediatric Surgery (Germany); Buecker, Arno [Saarland University Hospital, Department of Diagnostic and Interventional Radiology (Germany)

    2012-10-15

    Purpose: To retrospectively examine the technical feasibility and safety of directional atherectomy for treatment of subacute infrainguinal arterial vessel occlusions. Methods: Five patients (one woman, four men, age range 51-81 years) with peripheral arterial disease who experienced sudden worsening of their peripheral arterial disease-related symptoms during the last 2-6 weeks underwent digital subtraction angiography, which revealed vessel occlusion in native popliteal artery (n = 4) and in-stent occlusion of the superficial femoral artery (n = 1). Subsequently, all patients were treated by atherectomy with the SilverHawk (ev3 Endovascular, USA) device. Results: The mean diameter of treated vessels was 5.1 {+-} 1.0 mm. The length of the occlusion ranged 2-14 cm. The primary technical success rate was 100%. One patient experienced a reocclusion during hospitalization due to heparin-induced thrombocytopenia. There were no further periprocedural complications, in particular no peripheral embolizations, until hospital discharge or during the follow-up period of 1 year. Conclusion: The recanalization of infrainguinal arterial vessel occlusions by atherectomy with the SilverHawk device is technically feasible and safe. In our limited retrospective study, it was associated with a high technical success rate and a low procedure-related complication rate.

  8. Endothelin-1 and endothelin-2 initiate and maintain contractile responses by different mechanisms in rat mesenteric and cerebral arteries

    DEFF Research Database (Denmark)

    Compeer, M. G.; Janssen, G. M. J.; De Mey, J. G. R.

    2013-01-01

    Background and PurposeEndothelin (ET)-1 and ET-2 cause potent long-lasting vasoconstrictions by tight binding to smooth muscle ETA receptors. We tested the hypotheses that different mechanisms mediate initiation and maintenance of arterial contractile responses to ET-1 and ET-2 and that this diff...... and BA. Selective functional antagonism may be considered for agonist- and vascular bed selective pharmacotherapy of ET-related diseases....

  9. Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse

    OpenAIRE

    Choon Hwai Yap; Xiaoqin Liu; Kerem Pekkan

    2014-01-01

    Characterizaton of the Vessel Geometry, Flow Mechanics and Wall Shear Stress in the Great Arteries of Wildtype Prenatal Mouse Choon Hwai Yap1, Xiaoqin Liu2, Kerem Pekkan3* 1 Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore, 2 Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America, 3 Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh...

  10. The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics

    CERN Document Server

    Gao, Shan

    2016-01-01

    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of (incomplete) knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave function is indeed ontic, then exactly what physical state does it represent? In this book, I aim to make sense of the wave function in quantum mechanics and find the ontological content of the theory. The book can be divided into three parts. The first part addresses the question of the nature of the wave function (Chapters 1-5). After giving a comprehensive and critical review of the competing views of the wave function, I present a new argument for the ontic view in terms of protective measurements. In addition, I also analyze the origin of the wave function by derivin...

  11. Relaxation of endothelin-1-induced pulmonary arterial constriction by niflumic acid and NPPB: mechanism(s) independent of chloride channel block.

    Science.gov (United States)

    Kato, K; Evans, A M; Kozlowski, R Z

    1999-03-01

    We investigated the effects of the Cl- channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) and 4, 4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) on endothelin-1 (ET-1)-induced constriction of rat small pulmonary arteries (diameter 100-400 microm) in vitro, following endothelium removal. ET-1 (30 nM) induced a sustained constriction of rat pulmonary arteries in physiological salt solution. Arteries preconstricted with ET-1 were relaxed by niflumic acid (IC50: 35.8 microM) and NPPB (IC50: 21.1 microM) in a reversible and concentration-dependent manner. However, at concentrations known to block Ca++-activated Cl- channels, DIDS (arteries were preincubated with these Cl- channel blockers. When L-type Ca++ channels were blocked by nifedipine (10 microM), the ET-1-induced (30 nM) constriction was inhibited by only 5.8%. However, niflumic acid (30 microM) and NPPB (30 microM) inhibited the ET-1-induced constriction by approximately 53% and approximately 60%, respectively, both in the continued presence of nifedipine and in Ca++-free physiological salt solution. The Ca++ ionophore A23187 (10 microM) also evoked a sustained constriction of pulmonary arteries. Surprisingly, the A23187-induced constriction was also inhibited in a reversible and concentration-dependent manner by niflumic acid (IC50: 18.0 microM) and NPPB (IC50: 8.8 microM), but not by DIDS (mechanism by which niflumic acid and NPPB inhibit pulmonary artery constriction is independent of Cl- channel blockade. One possibility is that these compounds may block the Ca++-dependent contractile processes.

  12. Effect of force-induced mechanical stress at the coronary artery bifurcation stenting: Relation to in-stent restenosis

    Science.gov (United States)

    Lee, Cheng-Hung; Jhong, Guan-Heng; Hsu, Ming-Yi; Liu, Shih-Jung; Wang, Chao-Jan; Hung, Kuo-Chun

    2014-05-01

    The deployment of metallic stents during percutaneous coronary intervention has become common in the treatment of coronary bifurcation lesions. However, restenosis occurs mostly at the bifurcation area even in present era of drug-eluting stents. To achieve adequate deployment, physicians may unintentionally apply force to the strut of the stents through balloon, guiding catheters, or other devices. This force may deform the struts and impose excessive mechanical stresses on the arterial vessels, resulting in detrimental outcomes. This study investigated the relationship between the distribution of stress in a stent and bifurcation angle using finite element analysis. The unintentionally applied force following stent implantation was measured using a force sensor that was made in the laboratory. Geometrical information on the coronary arteries of 11 subjects was extracted from contrast-enhanced computed tomography scan data. The numerical results reveal that the application of force by physicians generated significantly higher mechanical stresses in the arterial bifurcation than in the proximal and distal parts of the stent (post hoc P stenting, and potential mechanisms of in-stent restenosis, along with their relationship with bifurcation angle.

  13. Extracorporeal Cardiac Shock Wave Therapy Ameliorates Clinical Symptoms and Improves Regional Myocardial Blood Flow in a Patient with Severe Coronary Artery Disease and Refractory Angina

    Directory of Open Access Journals (Sweden)

    Christian Prinz

    2009-01-01

    Full Text Available Different therapeutic options are being used for chronic coronary artery disease (CAD. We report about a 51-year-old female with CAD and refractory angina pectoris despite maximally tolerated medical therapy and after both percutaneous coronary intervention (PCI and coronary artery bypass grafting (CABG. The patient received cardiac shock wave therapy (CSWT over a period of 6 month. There was no arrhythmia during or after treatment; enzyme levels were normal at all times. PET imaging showed a substantial improvement of myocardial stress perfusion. Since the patient reported that she now was fully capable to deal with her everyday life, further treatment options were postponed. Our case report suggests that ultrasound-guided CSWT is able to improve symptoms and perfusion in ischemic myocardium.

  14. Reproducibility of arterial stiffness and wave reflections in chronic obstructive pulmonary disease: the contribution of lung hyperinflation and a comparison of techniques.

    Science.gov (United States)

    Stone, Ian S; John, Leonette; Petersen, Steffen E; Barnes, Neil C

    2013-11-01

    Significant cardiovascular morbidity and mortality exists in chronic obstructive pulmonary disease (COPD). Arterial stiffness is raised in COPD and may be a mechanistic link. Non-invasive assessment of arterial stiffness has the potential to be a surrogate outcome measure, although no reproducibility data exists in COPD patients. Two studies (23 and 33 COPD patients) were undertaken to 1) assess the Vicorder reproducibility of carotid-femoral pulse wave velocity and Augmentation index in COPD; 2) compare it to SphygmoCor; and 3) assess the contribution of lung hyperinflation to measurement variability. There were excellent correlations and good agreement between repeat Vicorder measurements for carotid-femoral pulse wave velocity (r = 0.96 (p lung hyperinflation (as measured by residual volume percent predicted, total lung capacity percent predicted or the ratio of inspiratory capacity to residual volume) and variability of measurements in either study. In COPD, measurement of carotid-femoral pulse wave velocity is highly reproducible, not affected by lung hyperinflation and suitable as a surrogate endpoint in research studies. Day-to-day variation in augmentation index highlights the importance of such studies prior to the planning and undertaking of clinical COPD research.

  15. Mechanisms of acetylcholine-mediated vasodilation in systemic arteries from mourning doves (Zenaida macroura).

    Science.gov (United States)

    Jarrett, Catherine; Lekic, Mateja; Smith, Christina L; Pusec, Carolina M; Sweazea, Karen L

    2013-10-01

    For mammals, acetylcholine (ACh) promotes endothelium-dependent vasodilation primarily through nitric oxide (NO) and prostaglandin-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors. Currently, no studies have been conducted on small systemic arteries from wild birds. We hypothesized that ACh-mediated vasodilation of isolated small arteries from mourning doves (Zenaida macroura) would likewise depend on endothelial-derived factors. Small resistance mesenteric and cranial tibial (c. tibial) arteries (80-150 μm, inner diameter) were cannulated and pre-constricted to 50 % of resting inner diameter with phenylephrine then exposed to increasing concentrations of ACh (10(-9)-10(-5) M) or the NO donor, sodium nitroprusside (SNP; 10(-12)-10(-3) M). For mesenteric arteries, ACh-mediated vasodilation was significantly blunted with the potassium channel antagonist tetraethylammonium chloride (TEA, 10 mM); whereas responses were only moderately impaired with endothelial disruption or inhibition of prostaglandins (indomethacin, 10 μM). In contrast, endothelial disruption as well as exposure to TEA largely abolished vasodilatory responses to ACh in c. tibial arteries while no effect of prostaglandin inhibition was observed. For both vascular beds, responses to ACh were moderately dependent on the NO signaling pathway. Inhibition of NO synthase had no impact, despite complete reversal of phenylephrine-mediated tone with SNP, whereas inhibition of soluble guanylate cyclase (sGC) caused minor impairments. Endothelium-independent vasodilation also relied on potassium channels. In summary, ACh-mediated vasodilation of mesenteric and c. tibial arteries occurs through the activation of potassium channels to induce hyperpolarization with moderate reliance on sGC. Prostaglandins likewise play a small role in the vasodilatory response to ACh in mesenteric arteries.

  16. Advances in one-dimensional wave mechanics. Towards a unified classical view

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhuangqi [Shanghai Jiao Tong Univ., (China). Dept. of Physics and Astronomy; Yin, Cheng [Hohai Univ., Changzhou, Jiangsu (China). College of IoT Engineering

    2014-06-01

    Introduces a completely new concept of the scattered sub-waves via the Analytical Transfer Matrix (ATM) method. Develops a relatively simple method to accurately solve one-dimensional problems in quantum mechanics. Based on the analogy between the Quantum Mechanics and Electromagnetism, several interesting issues in quantum mechanics, such as tunneling, quantum reflection and scattering time are restudied. Advances in One-Dimensional Wave Mechanics provides a comprehensive description of the motion of microscopic particles in one-dimensional, arbitrary-shaped potentials based on the analogy between Quantum Mechanics and Electromagnetism. Utilizing a deeper understanding of the wave nature of matter, this book introduces the concept of the scattered sub-waves and a series of new analytical results using the Analytical Transfer Matrix (ATM) method. This work will be useful for graduate students majoring in physics, mainly in basic quantum theory, as well as for academic researchers exploring electromagnetism, particle physics, and wave mechanics and for experts in the field of optical waveguide and integrated optics.

  17. Wave equations, dispersion relations, and van Hove singularities for applications of doublet mechanics to ultrasound propagation in bio- and nanomaterials

    Science.gov (United States)

    Wu, Junru; Layman, Christopher; Liu, Jun

    2004-02-01

    A fundamental mathematical framework for applications of Doublet Mechanics to ultrasound propagation in a discrete material is introduced. A multiscale wave equation, dispersion relation for longitudinal waves, and shear waves are derived. The van Hove singularities and corresponding highest frequency limits for the Mth-order wave equations of longitudinal and shear waves are determined for a widely used microbundle structure. Doublet Mechanics is applied to soft tissue and low-density polyethylene. The experimental dispersion data for soft tissue and low-density polyethylene are compared with results predicted by Doublet Mechanics and an attenuation model based on a Kramers-Kronig relation in classical continuum mechanics.

  18. An analysis of interfacial waves and air ingestion mechanisms

    Science.gov (United States)

    Galimov, Azat

    This research was focused on developing analytical methods with which to derive the functional forms of the various interfacial forces in two-fluid models [Galimov et al., 2004], and on the Direct Numerical Simulations (DNS) of traveling breaking waves and plunging liquid jets. Analytical results are presented for a stable stratified wavy two-phase flow and the associated interfacial force densities of a two-fluid model. In particular, the non-drag interfacial force density [Drew & Passman, 1998], the Reynolds stress tensor, and the term ( p˜cli -pcl)∇alphacl, which drives surface waves, were derived, where p˜cli is interfacial average pressure, pcl is the average pressure, and alphacl is the volume fraction of the continuous liquid phase. These functional forms are potentially useful for developing two-fluid model closure relations for computational multiphase fluid dynamics (CMFD) numerical solvers. Moreover, it appears that this approach can be generalized to other flow regimes (e.g., annular flows). A comparison of the analytical and ensemble-averaged DNS results show good agreement, and it appears that this approach can be used to develop phenomenological flow-regime-specific closure laws for two-fluid models [Lahey & Drew, 2004], [Lahey, 2005]. A successful 2-D DNS of breaking traveling waves was performed. These calculations had periodic boundary conditions and the physical parameters for air/water flow at atmospheric pressure, including a liquid/gas density ratio of 1,000 and representative surface tension and viscosities. Detailed 3-D DNS was also made for a plunging liquid jet. The processes of forming the liquid jet, the associated air cavity, capturing an initial large donut-shaped air bubble, and developing and breaking-up this bubble into smaller bubbles due to liquid shear, were shown. These simulations showed that the inertia of the liquid jet initially depressed the pool's surface and the toroidal liquid eddy formed subsequently resulted in air

  19. Mechanical Values Transformer on the Surface Acoustic Waves

    Directory of Open Access Journals (Sweden)

    V. O. Piddubnyi

    2008-05-01

    Full Text Available Calculation of parameters of the membrane type mechanical values transformer into the frequency electric signal is rewired. The article deals with the issues of deformational and heat sensitivity. Results of research are shown.

  20. Wave-optics description of self-healing mechanism in Bessel beams.

    Science.gov (United States)

    Aiello, Andrea; Agarwal, Girish S

    2014-12-15

    Bessel beams' great importance in optics lies in that these propagate without spreading and can reconstruct themselves behind an obstruction placed across their path. However, a rigorous wave-optics explanation of the latter property is missing. In this work, we study the reconstruction mechanism by means of a wave-optics description. We obtain expressions for the minimum distance beyond the obstruction at which the beam reconstructs itself, which are in close agreement with the traditional one determined from geometrical optics. Our results show that the physics underlying the self-healing mechanism can be entirely explained in terms of the propagation of plane waves with radial wave vectors lying on a ring.

  1. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.

    Science.gov (United States)

    Karimi, Alireza; Rahmati, Seyed Mohammadali; Sera, Toshihiro; Kudo, Susumu; Navidbakhsh, Mahdi

    2017-02-02

    It has been indicated that the content and structure of the elastin and collagen of the arterial wall can subject to a significant alteration due to the atherosclerosis. Consequently, a high tissue stiffness, stress, and even damage/rupture are triggered in the arterial wall. Although many studies so far have been conducted to quantify the mechanical properties of the coronary arteries, none of them consider the role of collagen damage of the healthy and atherosclerotic human coronary arterial walls. Recently, a fiber family-based constitutive equation was proposed to capture the anisotropic mechanical response of the healthy and atherosclerotic human coronary arteries via both the histostructural and uniaxial data. In this study, experimental mechanical measurements along with histological data of the healthy and atherosclerotic arterial walls were employed to determine the constitutive damage parameters and remodeling of the collagen fibers. To do this, the preconditioned arterial tissues were excised from human cadavers within 5-h postmortem, and the mean angle of their collagen fibers was precisely determined. Thereafter, a group of quasistatic axial and circumferential loadings were applied to the arterial walls, and the constrained nonlinear minimization method was employed to identify the arterial parameters according to the axial and circumferential extension data. The remodeling of the collagen fibers during the tensile test was also predicted via Artificial Neural Networks algorithm. Regardless of loading direction, the results presented a noteworthy load-bearing capability and stiffness of the atherosclerotic arteries compared to the healthy ones (P < 0.005). Theoretical fiber angles were found to be consistent with the experimental histological data with less than 2 and 5° difference for the healthy and atherosclerotic arterial walls, respectively. The pseudoelastic damage model data were also compared with that of the experimental data, and

  2. The mechanical properties of the systemic and pulmonary arteries of Python regius correlate with blood pressures.

    Science.gov (United States)

    van Soldt, Benjamin J; Danielsen, Carl Christian; Wang, Tobias

    2015-12-01

    Pythons are unique amongst snakes in having different pressures in the aortas and pulmonary arteries because of intraventricular pressure separation. In this study, we investigate whether this correlates with different blood vessel strength in the ball python Python regius. We excised segments from the left, right, and dorsal aortas, and from the two pulmonary arteries. These were subjected to tensile testing. We show that the aortic vessel wall is significantly stronger than the pulmonary artery wall in P. regius. Gross morphological characteristics (vessel wall thickness and correlated absolute amount of collagen content) are likely the most influential factors. Collagen fiber thickness and orientation are likely to have an effect, though the effect of collagen fiber type and cross-links between fibers will need further study.

  3. PERIPHERAL VENO-ARTERIAL ECMO AS MECHANICAL CIRCULATORY SUPPORT BEFORE HEART TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    E. A. Spirina

    2013-01-01

    Full Text Available Aim of our clinical study was evaluation own initial experience of high-urgency ortotopic heart transplantation (OHT in recipients, who were bridged on peripheral Vena-Arterial Extracorporeal Membrane Oxygenation (VA ECMO. Materials and methods. In this study was included 17 patients (14/3 M/F, age 16–66 (40.1 ± 4.2 yrs who underwent OHT while on peripheral ECMO support. In all cases we used peripheral surgical can- nulation technique via femoral vessels – arterial cannula 15–19 Fr, venous cannula – 21–25 Fr, arterial cannula or vascular catheter 8–10 Fr for anterograde leg’s perfusion. Results. Duration Vena-Arterial Extracorporeal Membrane Oxygenation before OHT was 81 ± 17 h. VA ECMO support was blood flow 4.8 ± 0.6 l/min or 2.63 ± 0/04 l/min/m2, gas flow 4.8 ± 0.6 l/min, FiO2 0.86 ± 0.07. Vena-Arterial Extracorporeal Membrane Oxygenation support was continued in “protective mode” (blood flow 1.9 ± 0.2 l/min 4.3 ± 0.5 days after OHT. Thirteen pa- tients (76.4% were weaned from VA ECMO successfully and survived to be discharged. ICU and hospital LOS after orthotopic heart transplantation was respectively 6.7 ± 0.8 and 32.3 ± 4.6 days in group of survived patients. The reasons of a lethal outcome (n = 4, 23.5% were sepsis and multiorgan failure (n = 3, sudden cardiac arrest (n = 1. Conclusion. Vena-Arterial Extracorporeal Membrane Oxygenation is a favorable short-term method of circulatory support in patients who needed in high-urgency heart transplantation. 

  4. Aberrant right subclavian artery- suggested mechanism for esophageal foreign body impaction: Case report

    Directory of Open Access Journals (Sweden)

    Best Lael A

    2011-04-01

    Full Text Available Abstract Aberrant right subclavian artery (ARSA is asymptomatic in most cases. This variant anatomy can cause dysphagia in elderly patients. Impaction of foreign body in the esophagus is rarely the presenting symptom of ARSA. We present an eighty four years old patient who first presented with esophageal foreign body impaction and was diagnosed with an aberrant right subclavian artery compressing the esophagus just below the site of impaction. We assume that the exact place of impaction was not incidental and that a relative narrowing of the esophagus caused by the vascular anomaly is responsible for this specific presentation.

  5. Mechanical constraint converts planar waves into helices on tunicate and sea urchin sperm flagella.

    Science.gov (United States)

    Ishijima, Sumio

    2012-01-01

    The change in the flagellar waves of spermatozoa from a tunicate and sea urchins was examined using high-speed video microscopy to clarify the regulation of localized sliding between doublet microtubules in the axoneme. When the tunicate Ciona spermatozoa attached to a coverslip surface by their heads in seawater or they moved in seawater with increased viscosity, the planar waves of the sperm flagella were converted into left-handed helical waves. On the other hand, conversion of the planar waves into helical waves in the sea urchin Hemicentrotus spermatozoa was not seen in seawater with an increased viscosity as well as in ordinary seawater. However, the sea urchin Clypeaster spermatozoa showed the conversion, albeit infrequently, when they thrust their heads into seawater with an increased viscosity. The chirality of the helical waves of the Clypeaster spermatozoa was right-handed. When Ciona spermatozoa swam freely near a glass surface, they moved in relatively large circular paths (yawing motion). There was no difference in the proportion of spermatozoa yawing in either a clockwise or counterclockwise direction when viewed from above, which was also different from that of the sea urchin spermatozoa. These observations suggest that the planar waves generally observed on the sperm flagella are mechanically regulated, although their stability must depend on the Ca(2+) concentration in the cell. Furthermore, the chirality of the helical waves may be determined by the intracellular Ca(2+) concentration and changed by transmitting the localized active sliding between the doublet microtubules around the axoneme in an alternative direction.

  6. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2015-09-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  7. Low Model Analysis and Synchronous Simulation of the Wave Mechanics

    Directory of Open Access Journals (Sweden)

    Wenyuan Duan

    2016-01-01

    Full Text Available The dynamic behavior of a chaotic system in the internal wave dynamics and the problem of the tracing and synchronization are investigated, and the numerical simulation is carried out in this paper. The globally exponentially attractive set and positive invariant set of the chaotic system are studied via constructing the positive definite and radial unbounded Lyapunov function. There are no equilibrium positions, periodic solutions, quasi-period motions, wandering recovering motions, and other chaotic attractors of the system out of the globally exponentially attractive set. Strange attractors can only locate in the globally exponentially attractive set. A feedback controller is designed for the chaotic system to realize the control of the unstable point. The second method of Lyapunov is used to discuss theoretically the rationality of the design of the controller. The driving-response synchronization method is used to realize the globally exponential synchronization. The numerical simulation is carried out by MATLAB software, and the simulation results show that the method is effective.

  8. Nonlinear mechanisms for drift wave saturation and induced particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A.M. (Maryland Univ., College Park, MD (USA). Lab. for Plasma Research); Lee, W.W. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1989-12-01

    A detailed theoretical study of the nonlinear dynamics of gyrokinetic particle simulations of electrostatic collisionless and weakly collisional drift waves is presented. In previous studies it was shown that, in the nonlinearly saturated phase of the evolution, the saturation levels and especially the particle fluxes have an unexpected dependence on collisionality. In this paper, the explanations for these collisionality dependences are found to be as follows: The saturation level is determined by a balance between the electron and ion fluxes. The ion flux is small for levels of the potential below an E {times} B-trapping threshold and increases sharply once this threshold is crossed. Due to the presence of resonant electrons, the electron flux has a much smoother dependence on the potential. In the 2-1/2-dimensional ( pseudo-3D'') geometry, the electrons are accelerated away from the resonance as they diffuse spatially, resulting in an inhibition of their diffusion. Collisions and three-dimensional effects can repopulate the resonance thereby increasing the value of the particle flux. 30 refs., 32 figs., 2 tabs.

  9. Molecular Mechanisms and Treatment Strategies for Obesity-Associated Coronary Artery Disease, an Imminent Military Epidemic

    Science.gov (United States)

    2007-12-01

    of cholesterol, infl ammatory cells and extracellular matrix in focal areas of the arterial tree ( Braunwald 1997). The vast majority of these focal...Cardiovasc Pathol 13:125–138 Braunwald E 1997 Cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J

  10. Wave-like variables of a classical particle and their connections to quantum mechanics

    Science.gov (United States)

    Yang, Chen

    2017-01-01

    In many texts, the transition from classical mechanics to quantum mechanics is achieved by substituting the action for the phase angle. The paper presents a different approach to show some connections between classical and quantum mechanics for a single particle for an audience at graduate and postgraduate levels. Firstly, it is shown that a wave equation of action can be derived under the free particle condition and the Legendre transform. The wave-like solutions of the action, Hamiltonian and momentum of the free particle are presented. Using the discrete approximation, the equation of motion of a single particle, in scalar potential field, is obtained in a similar form to Schrödinger’s equation. The rest of the paper discusses the propagation, superposition of the wave-like dynamic variables and their connections to quantum mechanics. The superposition of the variables of a particle is generally distinct from the superposition of classical waves (e.g. acoustics). The quantum superposition provides a self-consistent interpretation of the wave-like solutions of the variables. Connections between the classical and quantum relations for corresponding variables are observed from the one-to-one comparisons.

  11. Mechanisms of realization of THz-waves of nitrogen oxide occurrence physiological effects

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2013-11-01

    Full Text Available In this review, there is generalized material of many experimental researches in interaction of THz-waves molecular emission and absorption spectrum (MEAS of nitrogen oxide occurrence with bioobjects. Thrombocytes and experimental animals were used as bioobjects. The experiments let indicate changes caused by THz-waves: at the cellular, tissular, system, organismic levels. There are all data of changes in physiological mechanisms of reglations at all levels: autocrine, paracrine, endocrine and nervous. There is a complex overview of experimental material firstly performed in the article. There had been shown that the effect of THz-waves of the given occurrence is realized by the changed activity of nitroxidergic system. It had been proved that THz-waves of nitrogen oxide occurrence can stimulate nitrogen oxide producing in organs and tissues in condition of its low concentration. Possible mechanisms of antiaggregative effect of the given waves had been described. There had been shown the possibility of regulating of vascular tone and system hemodynamics with the help of the studying these frequencies. The represented data of lipid peroxidation and enzymatic and nonenzymatic components of organism system under the influence of THz-waves of nitrogen oxide occurrence in stress conditions. Besides, there were shown changes of stress-regulating system activity and in concentration of important mediators - catecholamines and glucocorticosteroids. These data let characterize mechanism of realization of THz-waves basic effects. The research had shown the possibility of THz-waves of nitrogen oxide occurrence usage as a method of natural physiological noninvasive regulation of significant organism functions.

  12. Red wine, arterial stiffness and central hemodynamics.

    Science.gov (United States)

    Karatzi, Kalliopi; Papaioannou, Theodore G; Papamichael, Christos; Lekakis, John; Stefanadis, Christodoulos; Zampelas, Antonis

    2009-01-01

    Red wine is considered to reduce cardiovascular risk and decrease peripheral systolic and diastolic blood pressure. Central aortic pressures are often more sensitive clinical and prognostic factors than peripheral pressures, while arterial stiffness is an independent prognostic factor for cardiovascular events. Great efforts are being made to find natural sources of improving health. In order to clarify the mechanisms under which a widely used drink, like red wine, is affecting heart and vessels, we aimed to review the available data regarding the effects of red wine on arterial stiffness, wave reflections and central blood pressures. The effect of red wine on central hemodynamics has been poorly explored with divergent results. Possible consequences of acute and long-term intake on arterial stiffness, wave reflections and central pressures are not clear. This might make someone skeptical when suggesting the consumption of a glass of red wine, although its cardioprotective actions (when moderately consumed) are already shown from epidemiological studies.

  13. Mechanism of destruction of transport barriers in geophysical jets with Rossby waves

    CERN Document Server

    Uleysky, M Yu; Prants, S V; 10.1103/PhysRevE.81.017202

    2012-01-01

    The mechanism of destruction of a central transport barrier in a dynamical model of a geophysical zonal jet current in the ocean or the atmosphere with two propagating Rossby waves is studied. We develop a method for computing a central invariant curve which is an indicator of existence of the barrier. Breakdown of this curve under a variation of the Rossby wave amplitudes and onset of chaotic cross-jet transport happen due to specific resonances producing stochastic layers in the central jet. The main result is that there are resonances breaking the transport barrier at unexpectedly small values of the amplitudes that may have serious impact on mixing and transport in the ocean and the atmosphere. The effect can be found in laboratory experiments with azimuthal jets and Rossby waves in rotating tanks under specific values of the wave numbers that are predicted in the theory.

  14. A dendritic mechanism for decoding traveling waves: principles and applications to motor cortex.

    Directory of Open Access Journals (Sweden)

    Stewart Heitmann

    2013-10-01

    Full Text Available Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons - the principle outputs of the motor cortex - decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands.

  15. Laboratory investigation on mechanisms of stress wave propagations in porous media

    Institute of Scientific and Technical Information of China (English)

    JU Yang; YANG YongMing; MAO YanZhe; LIU HongBin; WANG HuiJie

    2009-01-01

    A number of porous models having the similar statistical characteristics of pores and physical properties with natural sandstones have been produced using reactive powder concrete (RPC) and polystyrene. Spit-Hopkinson-Pressure -Bar tests and CT scans have been carried out on the models with the various porosities to probe the performance of wave propagations and the responses of pores and the matrix during wave propagations. It is shown that porosities significantly influence wave propagations. For an identical impact strain rate, the greater the porosity is, the larger the amplitude of the reflected wave appears, the more the peak in the reflected wave presents, and the smaller the amplitude of the trans-mitted wave turns out. A single peak emerges in the reflected wave when the porosity falls down to 5%.The larger the impact strain rate, the much remarkable the phenomena. The energy-dissipated ratio of porous models, i.e., WJ/Wb linearly increases with the increment of porosities. The ratio is sensitive to the impact strain rate. Differences in the performance of wave propagations and energy dissipation result from the varied mechanisms that pores response to impacts. For the porosity less than 10%, the mechanism appears to be a process fracturing the matrix to generate new surfaces or pores. Energy has primarily been dissipated in creating new surfaces or pores. No apparent pore deformation takes place. The impact strain rate takes little effect on pore geometry. For the porosity of 15% or more, the mechanism works depending on the impact strain rate. When a low impact strain rate applies, the mechanism still appears to crack the matrix to generate surfaces or pores, but the amount is lower as compared to the case with a low porosity. If a large impact stain rate applies, the mechanism combines both fracturing the matrix and deforming the pores, with the deforming pores predominating. The vast majority of energy has been dissipated to deform pores. Only high

  16. Laboratory investigation on mechanisms of stress wave propagations in porous media

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A number of porous models having the similar statistical characteristics of pores and physical properties with natural sandstones have been produced using reactive powder concrete(RPC) and polystyrenes.Spit-Hopkinson-Pressure-Bar tests and CT scans have been carried out on the models with the various porosities to probe the performance of wave propagations and the responses of pores and the matrix during wave propagations.It is shown that porosities significantly influence wave propagations.For an identical impact strain rate,the greater the porosity is,the larger the amplitude of the reflected wave appears,the more the peak in the reflected wave presents,and the smaller the amplitude of the trans-mitted wave turns out.A single peak emerges in the reflected wave when the porosity falls down to 5%.The larger the impact strain rate,the much remarkable the phenomena.The energy-dissipated ratio of porous models,i.e.,WJ /WI,linearly increases with the increment of porosities.The ratio is sensitive to the impact strain rate.Differences in the performance of wave propagations and energy dissipation result from the varied mechanisms that pores response to impacts.For the porosity less than 10%,the mechanism appears to be a process fracturing the matrix to generate new surfaces or pores.Energy has primarily been dissipated in creating new surfaces or pores.No apparent pore deformation takes place.The impact strain rate takes little effect on pore geometry.For the porosity of 15% or more,the mechanism works depending on the impact strain rate.When a low impact strain rate applies,the mechanism still appears to crack the matrix to generate surfaces or pores,but the amount is lower as compared to the case with a low porosity.If a large impact stain rate applies,the mechanism combines both fracturing the matrix and deforming the pores,with the deforming pores predominating.The vast majority of energy has been dissipated to deform pores.Only high porosity and impact strain rate

  17. Mecanismos desenvolvidos por idosos para enfrentar a hipertensão arterial Mecanismos desarrollados por ancianos para enfrentar a la hipertensión arterial Mechanisms developed by old-aged people to face arterial hypertension

    Directory of Open Access Journals (Sweden)

    Taciana Cavalcante de Oliveira

    2002-09-01

    Full Text Available Objetivamos investigar estratégias de enfrentamento, elaboradas por idosos portadores de hipertensão arterial, participantes de um grupo de auto-ajuda, em acompanhamento terapêutico. Os mecanismos de enfrentamento corresponderam à fé em Deus, apoio da família, realização de atividades ocupacionais, lazer e participação grupal. Alguns idosos citaram a estrutura familiar como pilar de sustentação para um melhor seguimento da terapêutica, permitindo assim a elaboração de respostas adaptativas. Concluímos que, apesar de todas as perdas sentidas e referidas, os idosos buscam ativar mecanismos que propiciem respostas adaptativas à situação de saúde-doença.Tuvimos como objetivo investigar las estrategias de enfrentamiento desarrolladas por ancianos portadores de hipertensión arterial, participantes de un grupo de autoayuda, bajo seguimiento terapéutico. Los mecanismos de enfrentamiento correspondieron a la fe en Dios, al apoyo de la familia, a la realización de actividades ocupacionales, a la diversión y participación grupal. Algunos ancianos refirieron a la estructura familiar como el pilar de sustentación para un mejor seguimiento de la terapéutica, permitiendo asi la elaboración de respuestas adaptativas. Se concluyó que, además de todas las pérdidas sentidas y referidas, los ancianos buscan activar mecanismos que le propicien respuestas adapativas a la situación de salud-enfermedad.We objectified to investigate facing strategies elaborated by old-aged people which were attacked by arterial hypertension, being participants of a self-helping group, in a therapeutic accompaniment. The facing mechanisms corresponded to faith in God, family support , occupational activities accomplishment, leisure activities and group participation . Some old-aged people mentioned the family structure as the sustentation pillar for a better therapeutic following, making the elaboration of adaptative answers possible. We concluded that

  18. [Hemiplegia in posterior cerebral artery infarctions: analysis of various responsible mechanisms].

    Science.gov (United States)

    Ortiz, N; Barraquer Bordas, L; Dourado, M; Rey, A; Avila, A

    1993-01-01

    When cerebral infarction determines hemiplegia or hemiparesia which accompany a hemilateral sensitive deficit and hemianopsia and even neuropsychologic symptoms (aphasic alterations in the case of injury to the left hemisphere, heminegligence and anosognosy in the case of injury to the right hemisphere) the involvement of a sylvian artery syndrome is usually considered. Nonetheless, recent contributions have reported that such symptoms may appear in infarctions of the territory of the posterior cerebral artery. Two clinical-radiologic observations in this line are presented. Nuclear magnetic resonance demonstrated injury to the posterior arm of the internal capsule in one case and in the other the lesion developed over three times, in the latter of which injury to the cerebral peduncle was produced causing hemiparesia. The authors emphasize that hemiplegia or hemiparesia in some infarctions of the posterior cerebral artery may be due to 1) mesencephalic infarction in the posterior plane of the retromamillar Foix and Hillemand pediculum (or G. Lazorthes interpedunculum), 2) infarction or "ischemic penumbra" in the internal capsule by involvement of any of the perforating branches of the posterior cerebrum irrigating the thalamus, except for the medial posterior choroid artery or even of the Foix and Hillemand thalamus-tuberian pediculum (or Lazorthes inferior and anterior) which principally initiates at the posterior communicating branch with a fragment of the posterior branch of the internal capsule perhaps not always being under its control. In this case, the thrombus occupying the posterior cerebrum may extend to the cited communicating branch or a hemodynamic deficit may be produced in the territory of the same.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. A Mechanism of the Effect of Non-uniform Current on the Spectrum of Short Wind Waves

    Institute of Scientific and Technical Information of China (English)

    ZHENG Guizhen; SHENG Lifang; CONG Peixiu

    2004-01-01

    A mechanism is suggested in this paper concerning the effect of non-uniform current on the spectrum of short wind waves. According to this mechanism, a non-uniform current brings changes to the breaking criteria of short wind waves through modulating the surface drift, and hence enhances or weakens wave breaking. Some modification is proposed to the source term, which represents the spectral rate of wave energy dissipation due to wave breaking so that the source term can incorporate this mechanism. In order to illustrate whether this mechanism is significant, a real case is studied, in which the wind waves propagate on a tidal current flowing over the sea bottom covered with sand waves. Finally, the effect of the new mechanism on the equilibrium spectrum of small scale gravity waves is discussed. Numerical estimates suggest that, for water depths less than 50 m and wavelengths less than 1 m, this current field may result in distinct spatial variations of the wave breaking criteria, the spectral rate of wave energy dissipation and the equilibrium spectrum of short gravity waves.

  20. Mechanical identification of layer-specific properties of mouse carotid arteries using 3D-DIC and a hyperelastic anisotropic constitutive model

    CERN Document Server

    Badel, Pierre; Lessner, Susan; Sutton, Michael A; 10.1080/10255842.2011.586945

    2012-01-01

    The role of mechanics is known to be of primary order in many arterial diseases; however, determining mechanical properties of arteries remains a challenge. This paper discusses the identifiability of the passive mechanical properties of a mouse carotid artery, taking into account the orientation of collagen fibres in the medial and adventitial layers. On the basis of 3D digital image correlation measurements of the surface strain during an inflation/extension test, an inverse identification method is set up. It involves a 3D finite element mechanical model of the mechanical test and an optimisation algorithm. A two-layer constitutive model derived from the Holzapfel model is used, with five and then seven parameters. The five-parameter model is successfully identified providing layer-specific fibre angles. The seven-parameter model is over parameterised, yet it is shown that additional data from a simple tension test make the identification of refined layer-specific data reliable.

  1. Diminishing of the mutual influencing in the transformers of mechanical values on surface acoustic waves

    Directory of Open Access Journals (Sweden)

    V. V. Piddubnyi

    2010-01-01

    Full Text Available Normal 0 false false false RU X-NONE X-NONE MicrosoftInternetExplorer4 Examined the problems usage differential amplifier as an active part of the secondary transformer mechanical values in the electrical signal to the surface acoustic wave. Description and results of his researches is resulted.

  2. Tunneling time distribution by means of Nelson’s quantum mechanics and wave-particle duality

    Indian Academy of Sciences (India)

    Koh'Ichiro Hara; Ichiro Ohba

    2002-08-01

    We construct a tunneling time distribution by means of Nelson’s quantum mechanics and investigate statistical properties of the tunneling time distribution. As a result, we find that the relationship between the average and the variance of the tunneling time shows ‘wave-particle duality’.

  3. The blowup mechanism for 3-D quasilinear wave equations with small data

    Institute of Scientific and Technical Information of China (English)

    尹会成

    2000-01-01

    For a class of special three-dimensional quasilinear wave equations, we study the blowup mechanism of classical solutions. More precisely, under the nondegenerate conditions, any radially symmetric solution with small initial data is shown to develop singularities in the second order derivatives while the first order derivatives and itself remain continuous, moreover the blowup of solution is of "cusp type".

  4. On coherent-state representations of quantum mechanics: Wave mechanics in phase space

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Jørgensen, Thomas Godsk; Torres-Vega, Gabino

    1997-01-01

    one wants to solve the stationary Schrodinger equation in phase space and we devise two schemes for the removal of these ambiguities. The physical interpretation of the phase-space wave functions is discussed and a procedure for computing expectation values as integrals over phase space is presented...

  5. Numerical prediction of oblique detonation wave structures using detailed and reduced reaction mechanisms

    Science.gov (United States)

    Thaker, A. A.; Chelliah, H. K.

    1997-12-01

    Modelling of the structure and the limiting flow turning angles of an oblique detonation wave, established by a two-dimensional wedge, requires the implementation of detailed chemical kinetic models involving a large number of chemical species. In this paper, a method of reducing the computational effort involved in simulating such high-speed reacting flows by implementing a systematically reduced reaction mechanism is presented. For a hydrogen - air mixture, starting with an elementary mechanism having eight species in 12 reactions, three alternate four-step reduced reaction mechanisms are developed by introducing the steady-state approximation for the reaction intermediates HO2, O and OH, respectively. Additional reduction of the computational effort is achieved by introducing simplifications to the thermochemical data evaluations. The influence of the numerical grid used in predicting the induction process behind the shock is also investigated. Comparisons of the induction zone predicted by two-dimensional oblique detonation wave calculations with that of a static reactor model (with initial conditions of the gas mixture specified by those behind the nonreactive oblique shock wave) are also presented. The reasonably good agreement between the three four-step reduced mechanism predictions and the starting mechanism predictions indicates that further reduction to a two-step mechanism is feasible for the physical flow time scales (corresponding to inflow Mach numbers of 8 - 10) considered here, and needs to be pursued in the future.

  6. The Role of Waves in the Explosion Mechanism of Core-Collapse Supernovae

    Science.gov (United States)

    Gossan, Sarah; Fuller, Jim; Roberts, Luke

    2017-01-01

    The core-collapse supernova (CCSN) explosion mechanism is not well understood. For garden variety CCSNe, the favored explosion scenario is delayed revival of the stalled shock powered by neutrino-driven convection. Despite huge computational advances, many simulations must use parameterized `light-bulb' models for neutrino heating or mask out inner regions of the proto-neutron star (PNS) for computational efficiency. These approximations can fail to capture hydrodynamical processes in the PNS core where nearly all the binding energy resides, and from which much of the explosion energy may originate. We show that gravity waves excited by core PNS convection may represent a significant heating source for the post-shock region. Using 1D simulations, we calculate the wave heating rate in the post-shock region out to one second after core bounce, showing that wave heating rates in excess of 1051 erg/s may persist for several hundreds of milliseconds, even after neutrino heating rates have decreased. Waves excited by PNS convection may therefore significantly contribute to shock revival and, subsequently, a successful and energetic explosion. We discuss how simulations can miss the effect of waves, and how future simulations can more accurately quantify wave heating rates.

  7. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy.

    Science.gov (United States)

    Mittermayr, Rainer; Antonic, Vlado; Hartinger, Joachim; Kaufmann, Hanna; Redl, Heinz; Téot, Luc; Stojadinovic, Alexander; Schaden, Wolfgang

    2012-01-01

    For almost 30 years, extracorporeal shock wave therapy has been clinically implemented as an effective treatment to disintegrate urinary stones. This technology has also emerged as an effective noninvasive treatment modality for several orthopedic and traumatic indications including problematic soft tissue wounds. Delayed/nonhealing or chronic wounds constitute a burden for each patient affected, significantly impairing quality of life. Intensive wound care is required, and this places an enormous burden on society in terms of lost productivity and healthcare costs. Therefore, cost-effective, noninvasive, and efficacious treatments are imperative to achieve both (accelerated and complete) healing of problematic wounds and reduce treatment-related costs. Several experimental and clinical studies show efficacy for extracorporeal shock wave therapy as means to accelerate tissue repair and regeneration in various wounds. However, the biomolecular mechanism by which this treatment modality exerts its therapeutic effects remains unclear. Potential mechanisms, which are discussed herein, include initial neovascularization with ensuing durable and functional angiogenesis. Furthermore, recruitment of mesenchymal stem cells, stimulated cell proliferation and differentiation, and anti-inflammatory and antimicrobial effects as well as suppression of nociception are considered important facets of the biological responses to therapeutic shock waves. This review aims to provide an overview of shock wave therapy, its history and development as well as its current place in clinical practice. Recent research advances are discussed emphasizing the role of extracorporeal shock wave therapy in soft tissue wound healing.

  8. Relationship between resistant hypertension and arterial stiffness assessed by brachial-ankle pulse wave velocity in the older patient

    Directory of Open Access Journals (Sweden)

    Chung CM

    2014-09-01

    Full Text Available Chang-Min Chung,1,2 Hui-Wen Cheng,2 Jung-Jung Chang,2 Yu-Sheng Lin,2 Ju-Feng Hsiao,2 Shih-Tai Chang,1 Jen-Te Hsu2,31School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 2Division of Cardiology, Chang Gung Memorial Hospital, Chiayi, 3Department of Medicine, College of Medicine, Chang Gung University, Taoyuan County, TaiwanBackground: Resistant hypertension (RH is a common clinical condition associated with increased cardiovascular mortality and morbidity in older patients. Several factors and conditions interfering with blood pressure (BP control, such as excess sodium intake, obesity, diabetes, older age, kidney disease, and certain identifiable causes of hypertension are common in patients resistant to antihypertensive treatment. Arterial stiffness, measured by brachial-ankle pulse wave velocity (baPWV, is increasingly recognized as an important prognostic index and potential therapeutic target in hypertensive patients. The aim of this study was to determine whether there is an association between RH and arterial stiffness. Methods: This study included 1,620 patients aged ≥65 years who were referred or self-referred to the outpatient hypertension unit located at a single cardiovascular center. They were separated into normotensive, controlled BP, and resistant hypertension groups. Home BP, blood laboratory parameters, echocardiographic studies and baPWV all were measured. Results: The likelihood of diabetes mellitus was significantly greater in the RH group than in the group with controlled BP (odds ratio 2.114, 95% confidence interval [CI] 1.194–3.744, P=0.010. Systolic BP was correlated in the RH group significantly more than in the group with controlled BP (odds ratio 1.032, 95% CI 1.012–1.053, P=0.001. baPWV (odds ratio 1.084, 95% CI 1.016–1.156, P=0.015 was significantly correlated with the presence of RH. The other factors were negatively correlated with the existence of RH.Conclusion: In

  9. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    Science.gov (United States)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2016-05-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealized two-dimensional model of a proto-stellar disc, characterized in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius r0. The fluid in basic state is prescribed to rotate with a Keplerian profile $\\Omega_k(r)\\sim r^{-3/2}$ modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabilizer irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non- Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density, in addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect . Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.

  10. The Role of Waves in the Explosion Mechanism of Core-Collapse Supernovae

    Science.gov (United States)

    Gossan, Sarah; Fuller, Jim; Roberts, Luke

    2017-01-01

    The core-collapse supernova (CCSN) explosion mechanism is not well understood. For garden variety CCSNe, the favored scenario for explosion is delayed revival of the stalled shock powered by neutrino-driven convection. Despite tremendous computational advances, many simulations must use parameterized ‘light-bulb’ models for neutrino heating or mask out inner regions of the proto-neutron star (PNS) for computational efficiency. These approximations can fail to capture hydrodynamical processes in the core of the PNS where nearly all the binding energy resides, and from which much of the explosion energy may originate. We show that gravity (buoyancy) waves excited by core PNS convection (within the central 20 km of the PNS) may represent a significant heating source for the post-shock region. The gravity waves propagate out of the PNS and transform into acoustic waves before depositing their energy at the shock, converting a small fraction of the PNS binding energy into explosion energy. Using 1D simulations, we calculate the wave heating rate in the post-shock region out to one second after core bounce, showing that wave heating rates in excess of 1051 erg/s may persist for several hundreds of milliseconds, even after neutrino heating rates have declined to smaller values. Waves excited by PNS convection may therefore significantly contribute to shock revival and, subsequently, a successful and energetic explosion. We discuss how simulations can miss the effect of waves (or have not recognized them), and how future simulations can more accurately quantify wave heating rates.

  11. Numerical modeling and analysis of the mechanism of a novel shock wave regulator for impact test

    Institute of Scientific and Technical Information of China (English)

    Wang Gongxian; Zhang Zhiyi; Wang Yu

    2008-01-01

    Based on the concept of hydraulic dissipation of kinetic energy, a novel shock wave regulator, which is composed of a damper and an externally triggered valve, is presented with thorough analyses on its working mechanism. By establishing motion equations of each component of the regulator and simulating the dynamic behavior of the whole system, the shock wave regulator is demonstrated numerically to be able to change the width and amplitude of shock pulses. Prompt and easy adjustment can be achieved by changing the equivalent flow area of damping orifices and consequently the closing velocity of the flow area of a valve, which makes it applicable to different impact testing.

  12. Manipulating the Magnetization of a Nanomagnet with Surface Acoustic Waves: Spin-Rotation Mechanism

    Science.gov (United States)

    Chudnovsky, Eugene M.; Jaafar, Reem

    2016-03-01

    We show that the magnetic moment of a nanoparticle embedded in the surface of a solid can be switched by surface acoustic waves in the GHz frequency range via a universal mechanism that does not depend on the structure of the particle and the structure of the substrate. It is based upon the generation of the effective ac magnetic field in the coordinate frame of the nanoparticle by the shear deformation of the surface due to surface acoustic waves. The magnetization reversal occurs via a consecutive absorption of surface phonons of the controlled variable frequency. We derive analytical equations governing this process and solve them numerically for the practical range of parameters.

  13. Mechanical waves conceptual survey: Its modification and conversion to a standard multiple-choice test

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2016-06-01

    In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of several test questions that had some problems in their original design, (ii) standardization of the number of options for each question to five, (iii) conversion of the two-tier questions to multiple-choice questions, and (iv) modification of some questions to make them independent of others. To obtain a final version of the test, we administered both the original and modified versions several times to students at a large private university in Mexico. These students were completing a course that covers the topics tested by the survey. The final modified version of the test was administered to 234 students. In this study we present the modifications for each question, and discuss the reasons behind them. We also analyze the results obtained by the final modified version and offer a comparison between the original and modified versions. In the Supplemental Material we present the final modified version of the test. It can be used by teachers and researchers to assess students' understanding of, and learning about, mechanical waves.

  14. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    Science.gov (United States)

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  15. The operation of stochastic heating mechanisms in an electromagnetic standing wave configuration

    Energy Technology Data Exchange (ETDEWEB)

    Gell, Y.; Nakach, R.

    1991-10-01

    The possibility of the operation of stochastic heating mechanisms of charged particles in a configuration consisting of a left-handed circularly polarized standing electromagnetic wave and a uniform magnetic field, has been studied numerically and theoretically. It is found that such a configuration induces stochasticity, the threshold of which is dependent on two independent parameters, determined by the frequency and the amplitude of the wave and the strength of the magnetic field. From the theoretical analysis, it emerges that the origin of onset of large scale stochasticity is the destabilization of fixed points associated with an equation describing the motion of the particles in an electrostatic-type potential having standing wave characteristics. The comparison of the theoretical predictions with the numerical results is found to be quite satisfactory. Possible applications to realistic plasmas have been discussed.

  16. A mechanical analog of the two-bounce resonance of solitary waves: Modeling and experiment

    Science.gov (United States)

    Goodman, Roy H.; Rahman, Aminur; Bellanich, Michael J.; Morrison, Catherine N.

    2015-04-01

    We describe a simple mechanical system, a ball rolling along a specially-designed landscape, which mimics the well-known two-bounce resonance in solitary wave collisions, a phenomenon that has been seen in countless numerical simulations but never in the laboratory. We provide a brief history of the solitary wave problem, stressing the fundamental role collective-coordinate models played in understanding this phenomenon. We derive the equations governing the motion of a point particle confined to such a surface and then design a surface on which to roll the ball, such that its motion will evolve under the same equations that approximately govern solitary wave collisions. We report on physical experiments, carried out in an undergraduate applied mathematics course, that seem to exhibit the two-bounce resonance.

  17. Photonic Rutherford Scattering: A Classical and Quantum Mechanical Analogy in Ray- and Wave-Optics

    CERN Document Server

    Selmke, Markus

    2012-01-01

    Using Fermat's least optical path principle the family of ray-trajectories through a special but common type of a gradient refractive index lens, n(r)=n_0+\\Delta n R/r, is solved analytically. The solution, i.e. the ray-equation r(phi), is shown to be closely related to the famous Rutherford scattering and therefore termed photonic Rutherford scattering. It is shown that not only do these classical limits correspond, but also the wave-mechanical pictures coincide: The time-independent Schr\\"odingier equation and the inhomogeneous Helmholz equation permit the same mapping between massive particle scattering and diffracted optical scalar waves. Scattering of narrow wave-packets finally recovers the classical trajectories. The analysis suggests that photothermal single particle microscopy infact measures photonic Rutherford scattering in specific limits.

  18. Qualitative Experimental Evidences for the thermal Wave Mechanisms of temperature Oscillations in Living Tissues

    Institute of Scientific and Technical Information of China (English)

    JingLiu; XingguoSun; 等

    1996-01-01

    To make it possible for the thermal wave theory on temperature oscillation (TO)effects in living tissues to be founded on the substantial experimental basis,a series of typical decisive experiments in vivo as well as in artificially simulating costructions were carred out.COnclusions obtained including some other scholars animal experimental results all greatly support the thermal wave viewpoint qualitatively,A few experimental facts used not to be easily understood from the classical viewpoint are also well reinterpreted.The revealing on the thermal wave mechanisms of TO in living tissues is a brand new discovery and deep insight into this important thermophysiological phenomenon,It may possibly promote new investigations on the corresponding topics in the field of bioheat transfer science.

  19. Optical Measurement of In-plane Elastic Waves in Mechanical Metamaterials Through Digital Image Correlation

    CERN Document Server

    Schaeffer, Marshall; Ruzzene, Massimo

    2016-01-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behavior, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centering image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subsequent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing ...

  20. Effects of simulated microgravity on circadian rhythm of caudal arterial pressure and heart rate in rats and their underlying mechanism

    Directory of Open Access Journals (Sweden)

    Li CHEN

    2016-04-01

    Full Text Available Objective  To explore the effects of simulated microgravity on the circadian rhythm of rats' caudal arterial pressure and heart rate, and their underlying mechanism. Methods  Eighteen male SD rats (aged 8 weeks were randomly assigned to control (CON and tail suspension (SUS group (9 each. Rats with tail suspension for 28 days were adopted as the animal model to simulate microgravity. Caudal arterial pressure and heart rate of rats were measured every 3 hours. The circadian difference of abdominal aorta contraction was measured by aortic ring test. Western blotting was performed to determine and compare the protein expression level of clock genes such as Per2 (Period2, Bmal1 (Aryl hydrocarbon receptor nuclear translocatorlike and dbp (D element binding protein in suprachiasmatic nucleus (SCN and abdominal aorta of rats in CON and SUS group at different time points. Results  Compared with CON group, the caudal arterial pressure, both systolic and diastolic pressure, decreased significantly and the diurnal variability disappeared, meanwhile the heart rate increased obviously and also the diurnal variability disappeared in rats of SUS group. Compared with CON group, the contraction reactivity of abdominal aorta decreased with disappearence of the diurnal variability, and also the clock genes expression in SCN and abdominal aorta showed no diurnal variability in rats of SUS group. Conclusion  Simulated microgravity may lead to circadian rhythm disorders in rats' cardiovascular system, which may be associated with the changes of the clock genes expression. DOI: 10.11855/j.issn.0577-7402.2016.04.06

  1. Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium

    Science.gov (United States)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the

  2. Experimental exposure to diesel exhaust increases arterial stiffness in man

    Directory of Open Access Journals (Sweden)

    Newby David E

    2009-03-01

    Full Text Available Abstract Introduction Exposure to air pollution is associated with increased cardiovascular morbidity, although the underlying mechanisms are unclear. Vascular dysfunction reduces arterial compliance and increases central arterial pressure and left ventricular after-load. We determined the effect of diesel exhaust exposure on arterial compliance using a validated non-invasive measure of arterial stiffness. Methods In a double-blind randomized fashion, 12 healthy volunteers were exposed to diesel exhaust (approximately 350 μg/m3 or filtered air for one hour during moderate exercise. Arterial stiffness was measured using applanation tonometry at the radial artery for pulse wave analysis (PWA, as well as at the femoral and carotid arteries for pulse wave velocity (PWV. PWA was performed 10, 20 and 30 min, and carotid-femoral PWV 40 min, post-exposure. Augmentation pressure (AP, augmentation index (AIx and time to wave reflection (Tr were calculated. Results Blood pressure, AP and AIx were generally low reflecting compliant arteries. In comparison to filtered air, diesel exhaust exposure induced an increase in AP of 2.5 mmHg (p = 0.02 and in AIx of 7.8% (p = 0.01, along with a 16 ms reduction in Tr (p = 0.03, 10 minutes post-exposure. Conclusion Acute exposure to diesel exhaust is associated with an immediate and transient increase in arterial stiffness. This may, in part, explain the increased risk for cardiovascular disease associated with air pollution exposure. If our findings are confirmed in larger cohorts of susceptible populations, this simple non-invasive method of assessing arterial stiffness may become a useful technique in measuring the impact of real world exposures to combustion derived-air pollution.

  3. Educing the emission mechanism of internal gravity waves in the differentially heat rotating annulus

    Science.gov (United States)

    Rolland, Joran; Hien, Steffen; Achatz, Ulrich; Borchert, Sebastian; Fruman, Mark

    2016-04-01

    Understanding the lifecycle of gravity waves is fundamental to a good comprehension of the dynamics of the atmosphere. In this lifecycle, the emission mechanisms may be the most elusive. Indeed, while the emission of gravity waves by orography or convection is well understood, the so-called spontaneous emission is still a quite open topic of investigation [1]. This type of emission usually occur very near jet-front systems in the troposphere. In this abstract, we announce our numerical study of the question. Model systems of the atmosphere which can be easily simulated or built in a laboratory have always been an important part of the study of atmospheric dynamics, alongside global simulations, in situ measurements and theory. In the case of the study of the spontaneous emission of gravity waves near jet-front systems, the differentially heated rotating annulus set up has been proposed and extensively used. It comprises of an annular tank containing water: the inner cylinder is kept at a cold temperature while the outer cylinder is kept at a warm temperature. The whole system is rotating. Provided the values of the control parameters (temperature, rotation rate, gap between the cylinders, height of water) are well chosen, the resulting flow mimics the troposphere at midlatitudes: it has a jet stream, and a baroclinic lifecycle develops on top of it. A very reasonable ratio of Brunt-Väisälä frequency over rotation rate of the system can be obtained, so as to be as close to the atmosphere as possible. Recent experiments as well as earlier numerical simulations in our research group have shown that gravity waves are indeed emitted in this set up, in particular near the jet front system of the baroclinic wave [2]. After a first experimental stage of characterising the emitted wavepacket, we focused our work on testing hypotheses on the gravity wave emission mechanism: we have tested and validated the hypothesis of spontaneous imbalance generated by the flow in

  4. Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves

    Science.gov (United States)

    Hagala, R.; Llinares, C.; Mota, D. F.

    2017-03-01

    Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.

  5. Influence of air pressure on mechanical effect of laser plasma shock wave

    Institute of Scientific and Technical Information of China (English)

    Zhang Yu-Zhu; Wang Guang-An; Zhu Jin-Rong; Shen Zhong-Hua; Ni Xiao-Wu; Lu Jian

    2007-01-01

    The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ at 1.06μm wavelength is focused on the aluminium target mounted on a ballistic pendulum, and the air pressure in the chamber changes from 2.8 × 103 to 1.01×105pa. The experimental results show that the impulse coupling coefficient changes as the air pressure and the distance of the target from focus change. The mechanical effects of the plasma shock wave on the target are analysed at different distances from focus and the air pressure.

  6. Actuating Mechanism and Design of a Cylindrical Traveling Wave Ultrasonic Motor Using Cantilever Type Composite Transducer

    OpenAIRE

    Yingxiang Liu; Weishan Chen; Junkao Liu; Shengjun Shi

    2010-01-01

    BACKGROUND: Ultrasonic motors (USM) are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the ...

  7. The Mechanical Analysis and Experimental Study of Shock Wave Effect of Electrical Discharge under Water In Filth Cleaning

    Institute of Scientific and Technical Information of China (English)

    Deng Qilin; Zhang Lei; Zhou Jinjin

    2004-01-01

    Filth adhering to metal pipes can be cleaned by shock wave generated by electrical discharge under water. The mechanism of shock wave effect of electrical discharge under water on filth cleaning is analyzed by building a mechanical model. A metal pipe coated with cement to simulate real filth is cleaned by using electrical discharge under water. The experimental results confirm the mechanical analysis and also show the technology of electrical discharge under water is an very effective method for filth cleaning.

  8. Postoperative neuropsychological change and its underlying mechanism in patients undergoing coronary artery bypass grafting

    Institute of Scientific and Technical Information of China (English)

    YIN Yi-qing; LUO Ai-lun; GUO Xiang-yang; LI Li-huan; HUANG Yu-guang

    2007-01-01

    Background The high incidence of neuropsychologic deficits after cardiac surgery, including cognitive dysfunction and mood status, has significantly influenced the prognosis, outcome of treatment and long-term quality of life of patients. With a circadian secretion pattern, melatonin and cortisol are capable of modulating the human physiological processes and neuropsychological status, whereas disorder of their secretion pattern may lead to many diseases. However, it is unclear whether neuroendocrine variations are related to the neuropsychologic status in patients undergoing coronary artery bypass grafting (CABG). Methods Forty male patients scheduled for CABG with hypothermic cardiopulmonary bypass (CPB) (n=20) or off-pump coronary artery bypass (OPCAB) (n=20) were studied. Blood samples were taken intraoperatively at specific time-points and every 3 hours within the first postoperative 24 hours to determine plasma concentrations of melatonin and cortisol. A neuropsychologic test battery including depression and anxiety was administered preoperatively and 7 to 10 days postoperatively. Statistical methods included the nonparametric analysis, multiple linear regression and cosinor analysis. Results The patients in the CPB group exhibited more severe neuropsychologic deficits and more anxious than those in the OPCAB group after surgery. In both groups, patients were more depressed postoperatively than preoperatively and recovered 3 months after surgery. Depression and anxiety were correlated with some factors of cognitive dysfunctions. In the postoperative 24 hours, 2 patients in the CPB group, and 6 patients in the OPCAB group showed a circadian rhythm of melatonin secretion. As for cortisol secretion, there were 3 patients in the CPB group and 7 in the OPCAB group respectively. Parameters of circadian rhythm of melatonin in the CPB group and those of secretion rhythm of cortisol in both groups were correlated with depression and some neuropsychologic tests

  9. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids.

    Science.gov (United States)

    Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F

    2011-04-07

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.

  10. Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Mitchell, Scott A; Greenleaf, James F [Basic Ultrasound Research Laboratory, Department of Physiology and Biophysics, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-04-07

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of shear wave dispersion ultrasound vibrometry (SDUV), a noninvasive ultrasound-based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave dispersion ultrasound vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify the mechanical properties of soft tissues with a plate-like geometry.

  11. Effects of Breath Training Pattern "End-Inspiratory Pause" on Respiratory Mechanics and Arterial Blood Gas of Patients with COPD

    Institute of Scientific and Technical Information of China (English)

    梁永杰; 蔡映云

    2002-01-01

    Objective:In order to explore the mechanism of Chinese traditional breath training, theeffects of end-inspiratory pause breathing (EIPB) on the respiratory mechanics and arterial blood gas werestudied in patients with chronic obstructive pulmonary disease (COPD). Methods: Ten patients in steadystage participating in the study had a breath training of regulating the respiration rhythm as to having apause between the deep and slow inspiration and the slow expiration. Effect of the training was observed byvisual feedback from the screen of the respiratory inductive plethysmograph. The dynamic change of par-tial pressure of oxygen saturation in blood (SpO2) was recorded with sphygmo-oximeter, the pulmonarymechanics and EIPB were determined with spirometer, and the data of arterial blood gases in tranquilizedbreathing and EIPB were analysed. Results: After EIPB training, SpO2 increased progressively, PaO2 in-creased and PaCO2 decreased, and the PaO2 increment was greater than the PaCO2 decrement. Further-more, the tidal volume increased and the frequency of respiration decreased significantly, both inspirationtime and expiration time were prolonged. There was no significant change in both mean inspiration flowrate (VT/Ti) and expiration flow rate (VT/Te). The baselines in spirogram during EIPB training had noraise. Conclusion: EIPB could decrease the ratio of the dead space and tidal volume (VD/VT), cause in-crease of PaO2 more than the decrease of PaCO2, suggesting that this training could improve both the func-tion of ventilation and gaseous exchange in the lung. EIPB training might be a breathing training patternfor rehabilitation of patients with COPD.

  12. Tetrodotoxin as a Tool to Elucidate Sensory Transduction Mechanisms: The Case for the Arterial Chemoreceptors of the Carotid Body

    Directory of Open Access Journals (Sweden)

    Constancio Gonzalez

    2011-12-01

    Full Text Available Carotid bodies (CBs are secondary sensory receptors in which the sensing elements, chemoreceptor cells, are activated by decreases in arterial PO2 (hypoxic hypoxia. Upon activation, chemoreceptor cells (also known as Type I and glomus cells increase their rate of release of neurotransmitters that drive the sensory activity in the carotid sinus nerve (CSN which ends in the brain stem where reflex responses are coordinated. When challenged with hypoxic hypoxia, the physiopathologically most relevant stimulus to the CBs, they are activated and initiate ventilatory and cardiocirculatory reflexes. Reflex increase in minute volume ventilation promotes CO2 removal from alveoli and a decrease in alveolar PCO2 ensues. Reduced alveolar PCO2 makes possible alveolar and arterial PO2 to increase minimizing the intensity of hypoxia. The ventilatory effect, in conjunction the cardiocirculatory components of the CB chemoreflex, tend to maintain an adequate supply of oxygen to the tissues. The CB has been the focus of attention since the discovery of its nature as a sensory organ by de Castro (1928 and the discovery of its function as the origin of ventilatory reflexes by Heymans group (1930. A great deal of effort has been focused on the study of the mechanisms involved in O2 detection. This review is devoted to this topic, mechanisms of oxygen sensing. Starting from a summary of the main theories evolving through the years, we will emphasize the nature and significance of the findings obtained with veratridine and tetrodotoxin (TTX in the genesis of current models of O2-sensing.

  13. Mechanics and composition of middle cerebral arteries from simulated microgravity rats with and without 1-h/d -Gx gravitation.

    Directory of Open Access Journals (Sweden)

    Jiu-Hua Cheng

    Full Text Available BACKGROUND: To elucidate further from the biomechanical aspect whether microgravity-induced cerebral vascular mal-adaptation might be a contributing factor to postflight orthostatic intolerance and the underlying mechanism accounting for the potential effectiveness of intermittent artificial gravity (IAG in preventing this adverse effect. METHODOLOGY/PRINCIPAL FINDINGS: Middle cerebral arteries (MCAs were isolated from 28-day SUS (tail-suspended, head-down tilt rats to simulate microgravity effect, S+D (SUS plus 1-h/d -Gx gravitation by normal standing to simulate IAG, and CON (control rats. Vascular myogenic reactivity and circumferential stress-strain and axial force-pressure relationships and overall stiffness were examined using pressure arteriography and calculated. Acellular matrix components were quantified by electron microscopy. The results demonstrate that myogenic reactivity is susceptible to previous pressure-induced, serial constrictions. During the first-run of pressure increments, active MCAs from SUS rats can strongly stiffen their wall and maintain the vessels at very low strains, which can be prevented by the simulated IAG countermeasure. The strains are 0.03 and 0.14 respectively for SUS and S+D, while circumferential stress being kept at 0.5 (106 dyn/cm2. During the second-run pressure steps, both the myogenic reactivity and active stiffness of the three groups declined. The distensibility of passive MCAs from S+D is significantly higher than CON and SUS, which may help to attenuate the vasodilatation impairment at low levels of pressure. Collagen and elastin percentages were increased and decreased, respectively, in MCAs from SUS and S+D as compared with CON; however, elastin was higher in S+D than SUS rats. CONCLUSIONS: Susceptibility to previous myogenic constrictions seems to be a self-limiting protective mechanism in cerebral small resistance arteries to prevent undue cerebral vasoconstriction during orthostasis at 1-G

  14. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.

    Directory of Open Access Journals (Sweden)

    Yingxiang Liu

    Full Text Available BACKGROUND: Ultrasonic motors (USM are based on the concept of driving the rotor by a mechanical vibration excited on the stator via piezoelectric effect. USM exhibit merits such as simple structure, quick response, quiet operation, self-locking when power off, nonelectromagnetic radiation and higher position accuracy. PRINCIPAL FINDINGS: A cylindrical type traveling wave ultrasonic motor using cantilever type composite transducer was proposed in this paper. There are two cantilevers on the outside surface of cylinder, four longitudinal PZT ceramics are set between the cantilevers, and four bending PZT ceramics are set on each outside surface of cantilevers. Two degenerate flexural vibration modes spatially and temporally orthogonal to each other in the cylinder are excited by the composite transducer. In this new design, a single transducer can excite a flexural traveling wave in the cylinder. Thus, elliptical motions are achieved on the teeth. The actuating mechanism of proposed motor was analyzed. The stator was designed with FEM. The two vibration modes of stator were degenerated. Transient analysis was developed to gain the vibration characteristic of stator, and results indicate the motion trajectories of nodes on the teeth are nearly ellipses. CONCLUSIONS: The study results verify the feasibility of the proposed design. The wave excited in the cylinder isn't an ideal traveling wave, and the vibration amplitudes are inconsistent. The distortion of traveling wave is generated by the deformation of bending vibration mode of cylinder, which is caused by the coupling effect between the cylinder and transducer. Analysis results also prove that the objective motions of nodes on the teeth are three-dimensional vibrations. But, the vibration in axial direction is minute compared with the vibrations in circumferential and radial direction. The results of this paper can guide the development of this new type of motor.

  15. Research of the elastic waves generated by a pulse laser. Excitation mechanism of elastic waves and application to nondestructive testing; Pulse laser de reikishita danseiha ni kansuru kenkyu. Danseiha reiki no mechanism to hihakai kensa eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H.; Takemoto, M. [Aoyama Gakuin University, Tokyo (Japan). College of Science and Engineering

    1994-07-20

    A bulk wave is generated when a pulse laser is irradiated to the material, and the characteristics of a Young`s modulus and Poisson`s ratio can be nondestructively estimated from the bulk wave. The generation mechanism of laser ultrasonic waves must be first clarified for such application. In this paper, fundamental research was conducted to study the generation mechanism of the elastic waves excited by a Q-switched Nd-YAG laser, and the generation method and characteristics of Rayleigh waves. The following result was obtained. A bulk wave is generated by the disk-like adiabatic expansion near the surface if the laser power is small when a spot-shape pulse laser was irradiated. A bulk wave is generated by the thin disk-like adiabatic expansion beneath the surface due to the thermal diffusion in the depth direction of a base material when the laser power becomes large. Moreover, a bulk wave is generated by the impact force due to abrasion and plasma when the power becomes still larger. The information on the bulk wave characteristics and Rayleigh wave was also obtained. 25 refs., 15 figs., 1 tab.

  16. On the nature of the change in the wave function in a measurement in quantum mechanics

    CERN Document Server

    Snyder, D M

    1996-01-01

    Generally a central role has been assigned to an unavoidable physical interaction between the measuring instrument and the physical entity measured in the change in the wave function that often occurs in measurement in quantum mechanics. A survey of textbooks on quantum mechanics by authors such as Dicke and Witke (1960), Eisberg and Resnick (1985), Gasiorowicz (1974), Goswami (1992), ift fur Physik, vol. 158, p. 417), supports these points. Work on electron shelving is reported by Dehmelt and his colleagues (Physical Review Letters, vol. 56, p. 2797), Wineland and his colleagues (Physical Review Letters, vol. 57, p. 1699), and Sauter, Neuhauser, Blatt, and Toschek (Physical Review Letters, vol. 57, p. 1696).

  17. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...

  18. Insight into the labeling mechanism of acceleration selective arterial spin labeling

    DEFF Research Database (Denmark)

    Schmid, Sophie; Petersen, Esben T; Van Osch, Matthias J P

    2016-01-01

    OBJECTIVES: Acceleration selective arterial spin labeling (AccASL) is a spatially non-selective labeling technique, used in traditional ASL methods, which labels spins based on their flow acceleration rather than spatial localization. The exact origin of the AccASL signal within the vasculature...... of the control and label conditions in both the acceleration and velocity selective module. The cut-off acceleration (0.59 m/s(2)) or velocity (2 cm/s) was kept constant in one module, while it was varied over a large range in the other module. With the right subtractions this resulted in AccASL, VS......-ASL, combined AccASL and VS-ASL signal, and signal from one module with crushing from the other. RESULTS: The label created with AccASL has an overlap of approximately 50% in the vascular region with VS-ASL, but also originates from smaller vessels closer to the capillaries. CONCLUSION: AccASL is able to label...

  19. Pathophysiological Mechanisms on Treating Pulmonary Arterial Hypertension with Artemisinine%青蒿素治疗肺动脉高压的病理生理机制

    Institute of Scientific and Technical Information of China (English)

    文宏

    2011-01-01

    肺动脉高压(PAH)是以肺动脉压力升高和肺动脉重构为特征的病理生理综合征.由于其发病机制较为复杂,目前尚无有效的治愈措施,预后差.如何有效降低PAH的肺动脉压力,减轻或逆转肺动脉重构,改善患者的预后已成为PAH治疗领域的研究热点.现就青蒿素在PAH治疗中可能的保护性病理生理机制予以综述,旨在探讨青蒿素防治PAH的理论基础.%Pulmonary arterial hypertension is a pathophysiological syndrome characterized by high pulmonary arterial pressure and pulmonary arterial remodeling. Due to its complex pathogenesis, at present , there is no effective healing treatment and the prognosis is poor. How to effectively decrease the pulmonary arterial pressure, alleviating or reversing the pulmonary arterial remodeling and improving the prognosis is becoming the hot topics in the field of PAH treatment. The protective pathophysiological mechanisms on treating pulmonary arterial hypertension with artemisinine is reviewed,in aiming to study its pharmacological foundation of the prevention with PAH.

  20. Impedance matching at arterial bifurcations.

    Science.gov (United States)

    Brown, N

    1993-01-01

    Reflections of pulse waves will occur in arterial bifurcations unless the impedance is matched continuously through changing geometric and elastic properties. A theoretical model is presented which minimizes pulse wave reflection through bifurcations. The model accounts for the observed linear changes in area within the bifurcation, generalizes the theory to asymmetrical bifurcations, characterizes changes in elastic properties from parent to daughter arteries, and assesses the effect of branch angle on the mechanical properties of daughter vessels. In contradistinction to previous models, reflections cannot be minimized without changes in elastic properties through bifurcations. The theoretical model predicts that in bifurcations with area ratios (beta) less than 1.0 Young's moduli of daughter vessels may be less than that in the parent vessel if the Womersley parameter alpha in the parent vessel is less than 5. Larger area ratios in bifurcations are accompanied by greater increases in Young's moduli of branches. For an idealized symmetric aortic bifurcation (alpha = 10) with branching angles theta = 30 degrees (opening angle 60 degrees) Young's modulus of common iliac arteries relative to that of the distal abdominal aorta has an increase of 1.05, 1.68 and 2.25 for area ratio of 0.8, 1.0 and 1.15, respectively. These predictions are consistent with the observed increases in Young's moduli of peripheral vessels.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Formation and mechanics of granular waves in gravity and shallow overland flow

    Science.gov (United States)

    Römkens, Mathias J. M.; Suryadevara, Madhu R.; Prasad, Shyam N.

    2010-05-01

    Sediment transport in overland flow is a highly complex process involving many properties relative to the flow regime characteristics, soil surface conditions, and type of sediment. From a practical standpoint, most sediment transport studies are concerned with developing relationships of rates of sediment movement under different hydraulic regimes in channel flow for use in soil erosion and sediment transport prediction models. Relatively few studies have focused on the more basic aspects of sediment movement in which particle-to-particle, particle-to-boundary, and particle-to-fluid interactions determine in an important way the nature of the movement. Our experimental work under highly controlled experimental conditions with both gravity flow of granular material (glass beads) in air and sediment transport (sand particles and glass beads) in shallow overland flow have shown that sediment movement is not a simple phenomenon solely determined by flow rates on a proportional basis, but that it is represented by a highly structured and organized regime determined by sedimentary fluid mechanical principles which yield very characteristic waves during transport. In the gravity flow case involving granular chute flow, two-dimensional grain waves developed into the rolling and saltating moving grain mass at certain grain concentrations. This phenomenon appeared to be related to an energy exchange process as a result of collisions between moving grain particles that led to reduced kinetic velocities. As a result, particle concentration differences in the direction of flow developed that were noted as denser zones. In these zones, particles dropped out at the upstream part of these denser zones to resume their accelerating motion once they reached the downstream part of the zone until, during the next collision event, the process is repeated. Thus a periodic granular wave structure evolved. Depending on the addition rate, the granular flow regime may be a fluidized

  2. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  3. Beneficial effects on arterial stiffness and pulse-wave reflection of combined enalapril and candesartan in chronic kidney disease--a randomized trial.

    Directory of Open Access Journals (Sweden)

    Marie Frimodt-Møller

    Full Text Available BACKGROUND: Cardiovascular disease (CVD is highly prevalent in patients with chronic kidney disease (CKD. Inhibition of the renin-angiotensinsystem (RAS in hypertension causes differential effects on central and brachial blood pressure (BP, which has been translated into improved outcome. The objective was to examine if a more complete inhibition of RAS by combining an angiotensin converting enzyme inhibitor (ACEI and an angiotensin receptor antagonist (ARB compared to monotherapy has an additive effect on central BP and pulse-wave velocity (PWV, which are known markers of CVD. METHODS: Sixty-seven CKD patients (mean GFR 30, range 13-59 ml/min/1.73 m(2 participated in an open randomized study of 16 weeks of monotherapy with either enalapril or candesartan followed by 8 weeks of dual blockade aiming at a total dose of 16 mg candesartan and 20 mg enalapril o.d. Pulse-wave measurements were performed at week 0, 8, 16 and 24 by the SphygmoCor device. RESULTS: Significant additive BP independent reductions were found after dual blockade in aortic PWV (-0.3 m/s, P<0.05 and in augmentation index (-2%, P<0.01 compared to monotherapy. Furthermore pulse pressure amplification was improved (P<0.05 and central systolic BP reduced (-6 mmHg, P<0.01. CONCLUSIONS: Dual blockade of the RAS resulted in an additive BP independent reduction in pulse-wave reflection and arterial stiffness compared to monotherapy in CKD patients. TRIAL REGISTRATION: Clinical trial.gov NCT00235287.

  4. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    Science.gov (United States)

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-02-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.

  5. Effects of the local resonance on the wave propagation in periodic frame structures: generalized Newtonian mechanics.

    Science.gov (United States)

    Chesnais, Céline; Boutin, Claude; Hans, Stéphane

    2012-10-01

    This work is devoted to the study of the wave propagation in infinite two-dimensional structures made up of the periodic repetition of frames. Such materials are highly anisotropic and, because of lack of bracing, can present a large contrast between the shear and compression deformabilities. Moreover, when the thickness to length ratio of the frame elements is small, these elements can resonate in bending at low frequencies when compressional waves propagate in the structure. The frame size being small compared to the wavelength of the compressional waves, the homogenization method of periodic discrete media is extended to situations with local resonance, and it is applied to identify the macroscopic behavior at the leading order. In particular, the local resonance in bending leads to an effective mass different from the real mass and to the generalization of the Newtonian mechanics at the macroscopic scale. Consequently, compressional waves become dispersive and frequency bandgaps occur. The physical origin of these phenomena at the microscopic scale is also presented. Finally, a method is proposed for the design of such materials.

  6. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    Science.gov (United States)

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-01-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields. PMID:28205589

  7. On the Quantum Mechanical Wave Function as a Link Between Cognition and the Physical World A Role for Psychology

    CERN Document Server

    Snyder, D

    2002-01-01

    A straightforward explanation of fundamental tenets of quantum mechanics concerning the wave function results in the thesis that the quantum mechanical wave function is a link between human cognition and the physical world. The reticence on the part of physicists to adopt this thesis is discussed. A comparison is made to the behaviorists' consideration of mind, and the historical roots of how the problem concerning the quantum mechanical wave function arose are discussed. The basis for an empirical demonstration that the wave function is a link between human cognition and the physical world is provided through developing an experiment using methodology from psychology and physics. Based on research in psychology and physics that relied on this methodology, it is likely that Einstein, Podolsky, and Rosen's theoretical result that mutually exclusive wave functions can simultaneously apply to the same concrete physical circumstances can be implemented on an empirical level.

  8. A mechanism of wave drag reduction in the thermal energy deposition experiments

    Science.gov (United States)

    Markhotok, A.

    2015-06-01

    Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressure and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches.

  9. DIFFERENTIAL AUTONOMIC MECHANISMS UNDERLYING EARLY-MORNING AND DAYTIME TRANSIENT MYOCARDIAL-ISCHEMIA IN PATIENTS WITH STABLE CORONARY-ARTERY DISEASE

    NARCIS (Netherlands)

    VANBOVEN, AJ; BROUWER, J; CRIJNS, HJGM; HAAKSMA, J; LIE, KI

    1995-01-01

    Objectives-To see whether autonomic regulatory mechanisms play a part in transient myocardial ischaemia in patients treated with beta blockers. Design-Prospective study. Setting-Outpatients' clinic. Patients-51 consecutive patients with angiographically documented coronary artery disease, stable ang

  10. Lamb Wave Stiffness Characterization of Composites Undergoing Thermal-Mechanical Aging

    Science.gov (United States)

    Seale, Michael D.; Madaras, Eric I.

    2004-01-01

    The introduction of new, advanced composite materials into aviation systems requires a thorough understanding of the long term effects of combined thermal and mechanical loading upon those materials. Analytical methods investigating the effects of intense thermal heating combined with mechanical loading have been investigated. The damage mechanisms and fatigue lives were dependent on test parameters as well as stress levels. Castelli, et al. identified matrix dominated failure modes for out-of-phase cycling and fiber dominated damage modes for in-phase cycling. In recent years, ultrasonic methods have been developed that can measure the mechanical stiffness of composites. To help evaluate the effect of aging, a suitably designed Lamb wave measurement system is being used to obtain bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system works by exciting an antisymmetric Lamb wave and calculating the velocity at each frequency from the known transducer separation and the measured time-of-flight. The same peak in the waveforms received at various distances is used to measure the time difference between the signals. The velocity measurements are accurate and repeatable to within 1% resulting in reconstructed stiffness values repeatable to within 4%. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. A mechanical scanner is used to move the sensors over the surface to map the time-of-flight, velocity, or stiffnesses of the entire specimen. Access to only one side of the material is required and no immersion or couplants are required because the sensors are dry coupled to the surface of the plate. In this study, the elastic stiffnesses D(sub 11), D(sub 22), A(sub 44), and A(sub 55) as well as time-of-flight measurements for composite samples that have undergone combined thermal and mechanical aging for

  11. Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism.

    Science.gov (United States)

    Trinity, Joel D; Wray, D Walter; Witman, Melissa A H; Layec, Gwenael; Barrett-O'Keefe, Zachary; Ives, Stephen J; Conklin, Jamie D; Reese, Van; Zhao, Jia; Richardson, Russell S

    2016-03-15

    The proposed mechanistic link between the age-related attenuation in vascular function and free radicals is an attractive hypothesis; however, direct evidence of free radical attenuation and a concomitant improvement in vascular function in the elderly is lacking. Therefore, this study sought to test the hypothesis that ascorbic acid (AA), administered intra-arterially during progressive handgrip exercise, improves brachial artery (BA) vasodilation in a nitric oxide (NO)-dependent manner, by mitigating free radical production. BA vasodilation (Doppler ultrasound) and free radical outflow [electron paramagnetic resonance (EPR) spectroscopy] were measured in seven healthy older adults (69 ± 2 yr) during handgrip exercise at 3, 6, 9, and 12 kg (∼13-52% of maximal voluntary contraction) during the control condition and nitric oxide synthase (NOS) inhibition via N(G)-monomethyl-L-arginine (L-NMMA), AA, and coinfusion of l-NMMA + AA. Baseline BA diameter was not altered by any of the treatments, while L-NMMA and L-NMMA + AA diminished baseline BA blood flow and shear rate. AA improved BA dilation compared with control at 9 kg (control: 6.5 ± 2.2%, AA: 10.9 ± 2.5%, P = 0.01) and 12 kg (control: 9.5 ± 2.7%, AA: 15.9 ± 3.7%, P vasodilation compared with control and when combined with AA eliminated the AA-induced improvement in BA vasodilation. Free radical outflow increased with exercise intensity but, interestingly, was not attenuated by AA. Collectively, these results indicate that AA improves BA vasodilation in the elderly during handgrip exercise through an NO-dependent mechanism; however, this improvement appears not to be the direct consequence of attenuated free radical outflow from the forearm.

  12. Lamb Wave Dispersion Ultrasound Vibrometry (LDUV) Method for Quantifying Mechanical Properties of Viscoelastic Solids

    Science.gov (United States)

    Nenadic, Ivan Z.; Urban, Matthew W.; Mitchell, Scott A.; Greenleaf, James F.

    2011-01-01

    Diastolic dysfunction is the inability of the left ventricle to supply sufficient stroke volumes under normal physiological conditions and is often accompanied by stiffening of the left-ventricular myocardium. A noninvasive technique capable of quantifying viscoelasticity of the myocardium would be beneficial in clinical settings. Our group has been investigating the use of Shearwave Dispersion Ultrasound Vibrometry (SDUV), a noninvasive ultrasound based method for quantifying viscoelasticity of soft tissues. The primary motive of this study is the design and testing of viscoelastic materials suitable for validation of the Lamb wave Dispersion Ultrasound Vibrometry (LDUV), an SDUV-based technique for measuring viscoelasticity of tissues with plate-like geometry. We report the results of quantifying viscoelasticity of urethane rubber and gelatin samples using LDUV and an embedded sphere method. The LDUV method was used to excite antisymmetric Lamb waves and measure the dispersion in urethane rubber and gelatin plates. An antisymmetric Lamb wave model was fitted to the wave speed dispersion data to estimate elasticity and viscosity of the materials. A finite element model of a viscoelastic plate submerged in water was used to study the appropriateness of the Lamb wave dispersion equations. An embedded sphere method was used as an independent measurement of the viscoelasticity of the urethane rubber and gelatin. The FEM dispersion data were in excellent agreement with the theoretical predictions. Viscoelasticity of the urethane rubber and gelatin obtained using the LDUV and embedded sphere methods agreed within one standard deviation. LDUV studies on excised porcine myocardium sample were performed to investigate the feasibility of the approach in preparation for open-chest in vivo studies. The results suggest that the LDUV technique can be used to quantify mechanical properties of soft tissues with a plate-like geometry. PMID:21403186

  13. On the propagation mechanism of a detonation wave in a round tube with orifice plates

    Science.gov (United States)

    Ciccarelli, G.; Cross, M.

    2016-09-01

    This study deals with the investigation of the detonation propagation mechanism in a circular tube with orifice plates. Experiments were performed with hydrogen air in a 10-cm-inner-diameter tube with the second half of the tube filled with equally spaced orifice plates. A self-sustained Chapman-Jouguet (CJ) detonation wave was initiated in the smooth first half of the tube and transmitted into the orifice-plate-laden second half of the tube. The details of the propagation were obtained using the soot-foil technique. Two types of foils were used between obstacles, a wall-foil placed on the tube wall, and a flat-foil (sooted on both sides) placed horizontally across the diameter of the tube. When placed after the first orifice plate, the flat foil shows symmetric detonation wave diffraction and failure, while the wall foil shows re-initiation via multiple local hot spots created when the decoupled shock wave interacts with the tube wall. At the end of the tube, where the detonation propagated at an average velocity much lower than the theoretical CJ value, the detonation propagation is much more asymmetric with only a few hot spots on the tube wall leading to local detonation initiation. Consecutive foils also show that the detonation structure changes after each obstacle interaction. For a mixture near the detonation propagation limit, detonation re-initiation occurs at a single wall hot spot producing a patch of small detonation cells. The local overdriven detonation wave is short lived, but is sufficient to keep the global explosion front propagating. Results associated with the effect of orifice plate blockage and spacing on the detonation propagation mechanism are also presented.

  14. Neutron interferometry lessons in experimental quantum mechanics, wave-particle duality, and entanglement

    CERN Document Server

    Rauch, Helmut

    2015-01-01

    The quantum interference of de Broglie matter waves is probably one of the most startling and fundamental aspects of quantum mechanics. It continues to tax our imaginations and leads us to new experimental windows on nature. Quantum interference phenomena are vividly displayed in the wide assembly of neutron interferometry experiments, which have been carried out since the first demonstration of a perfect silicon crystal interferometer in 1974. Since the neutron experiences all four fundamental forces of nature (strong, weak, electromagnetic, and gravitational), interferometry with neutrons provides a fertile testing ground for theory and precision measurements. Many Gedanken experiments of quantum mechanics have become real due to neutron interferometry. Quantum mechanics is a part of physics where experiment and theory are inseparably intertwined. This general theme permeates the second edition of this book. It discusses more than 40 neutron interferometry experiments along with their theoretical motivation...

  15. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Madsen, Jacob; Reichelt, Christian Günther

    2015-01-01

    even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes...... place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our...... results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schro...

  16. Assessment of left anterior descending artery stenosis of intermediate severity by fractional flow reserve, instantaneous wave-free ratio, and non-invasive coronary flow reserve.

    Science.gov (United States)

    Meimoun, P; Clerc, J; Ardourel, D; Djou, U; Martis, S; Botoro, T; Elmkies, F; Zemir, H; Luycx-Bore, A; Boulanger, J

    2016-10-17

    To test the usefulness of non-invasive coronary flow reserve (CFR) by transthoracic Doppler echocardiography by comparison to invasive fractional flow reserve (FFR) and instantaneous wave-free ratio (IFR), a new vasodilator-free index of coronary stenosis severity, in patients with left anterior descending artery (LAD) stenosis of intermediate severity (IS) and stable coronary artery disease. 94 consecutive patients (mean age 68 ± 10 years) with angiographic LAD stenosis of IS (50-70 % diameter stenosis), were prospectively studied. IFR was calculated as a trans-lesion pressure ratio during the wave-free period in diastole; FFR as distal pressure divided by mean aortic pressure during maximal hyperemia (using 180 μg intracoronary adenosine); and CFR as hyperemic peak LAD flow velocity divided by baseline flow velocity using intravenous adenosine (140 μg/kg/min over 2 min). The mean values of IFR, FFR, and CFR were 0.88 ± 0.07, 0.81 ± 0.09, and 2.4 ± 0.6 respectively. A significant correlation was found between CFR and FFR (r = 0. 68), FFR and IFR (r = 0.6), and between CFR and IFR (r = 0.5) (all, p < 0.01). Using a ROC curve analysis, the best cut-off to detect a significant lesion based on FFR assessment (FFR ≤ 0.8, n = 31) was IFR ≤ 0.88 with a sensitivity (Se) of 74 %, specificity (Sp) of 73 %, AUC 0.81 ± 0.04, accuracy 72 %; and CFR ≤ 2 with a Se = 77 %, Sp = 89 %, AUC 0.88 ± 0.04, accuracy 85 % (all, p < 0.001). In stable patients with LAD stenosis of IS, non-invasive CFR is a useful tool to detect a significant lesion based on FFR. Furthermore, there was a better correlation between CFR and FFR than between CFR and IFR, and a trend to a better diagnostic performance for CFR versus IFR.

  17. Mechanical design and analysis for a low beta squeezed half-wave resonator

    CERN Document Server

    He, Shoubo; Zhang, Shenghu; Yue, Weiming; Zhang, Cong; Wang, Zhijun; Wang, Ruoxu; Xu, Mengxin; Huang, Shichun; Huang, Yulu; Jiang, Tiancai; Wang, Fengfeng; Zhang, Shengxue; Zhao, Hongwei

    2013-01-01

    A superconducting half-wave resonator (HWR) of frequency=162.5 MHz and {\\beta}=0.09 has been developed at Institute of Modern Physics. Mechanical stability of the low beta HWR cavity is a big challenge in cavity design and optimization. The mechanical deformations of a radio frequency superconducting cavity could be a source of instability, both in continues wave(CW) operation or in pulsed mode. Generally, the lower beta cavities have stronger Lorentz force detuning than that of the higher beta cavities. In this paper, a basic design consideration in the stiffening structure for the detuning effect caused by helium pressure and Lorentz force has been presented. The mechanical modal analysis has been investigated with finite element method(FEM). Based on these considerations, a new stiffening structure has been promoted for the HWR cavity. The computation results concerning the frequency shift show that the low beta HWR cavity with new stiffening structure has low frequency sensitivity coefficient, Lorentz for...

  18. Ionic radiocontrast inhibits endothelium-dependent vasodilation of the canine renal artery in vitro: possible mechanism of renal failure following contrast medium infusion

    Directory of Open Access Journals (Sweden)

    B. Discigil

    2004-02-01

    Full Text Available To determine if radiocontrast impairs vascular relaxation of the renal artery, segments (4-5 mm in length of canine renal artery were suspended in vitro in organ chambers to measure isometric force (95% O2/5% CO2, at 37ºC. Arterial segments with and without endothelium were placed at the optimal point of their length-tension relation and incubated with 10 µM indomethacin to prevent synthesis of endogenous prostanoids. The presence of nonionic radiocontrast (iohexol, Omnipaque 350, 1 ml in 25 ml control solution, 4% (v/v did not alter endothelium-dependent relaxation to acetylcholine in rings precontracted with both norepinephrine and prostaglandin F2alpha (N = 6. When the rings were precontracted with prostaglandin F2alpha, the presence of ionic contrast did not inhibit the relaxation of the arteries. However, in canine renal arteries contracted with norepinephrine, the presence of ionic radiocontrast (diatrizoate meglumine and diatrizoate sodium, MD-76, 1 ml in 25 ml control solution, 4% (v/v inhibited relaxation in response to acetylcholine, sodium nitroprusside (N = 6 in each group, and isoproterenol (N = 5; P < 0.05. Rings were relaxed less than 50% of norepinephrine contraction. Following removal of the contrast, vascular relaxation in response to the agonists returned to normal. These results indicate that ionic radiocontrast nonspecifically inhibits vasodilation (both cAMP-mediated and cGMP-mediated of canine renal arteries contracted with norepinephrine. This reversible impairment of vasodilation could inhibit normal renal perfusion and act as a mechanism of renal failure following radiocontrast infusion. In the adopted experimental protocol the isoproterenol-induced relaxation of renal arteries precontracted with norepinephrine was more affected, suggesting a pivotal role of the cAMP system.

  19. Chip scale mechanical spectrum analyzers based on high quality factor overmoded bulk acouslic wave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, R. H., III

    2012-03-01

    The goal of this project was to develop high frequency quality factor (fQ) product acoustic resonators matched to a standard RF impedance of 50 {Omega} using overmoded bulk acoustic wave (BAW) resonators. These resonators are intended to serve as filters in a chip scale mechanical RF spectrum analyzer. Under this program different BAW resonator designs and materials were studied theoretically and experimentally. The effort resulted in a 3 GHz, 50 {Omega}, sapphire overmoded BAW with a fQ product of 8 x 10{sup 13}, among the highest values ever reported for an acoustic resonator.

  20. Relativistic quantum mechanical spin-1 wave equation in 2+1 dimensional spacetime

    CERN Document Server

    Dernek, Mustafa; Sucu, Yusuf; Unal, Nuri

    2016-01-01

    In the study, we introduce a relativistic quantum mechanical wave equation of the spin-1 particle as an excited state of the zitterbewegung and show that it is consistent with the 2+1 dimensional Proca theory. At the same time, we see that this equation has two eigenstates, particle and antiparticle states or negative and positive energy eigenstates, respectively, in the rest frame and the spin-1 matrices satisfy $SO(2,1)$ spin algebra. As practical applications, we derive the exact solutions of the equation in the presence of a constant magnetic field and a curved spacetime. From these solutions, we construct the current components of the spin-1 particle.

  1. Mechanical state assessment using lamb wave technique in static tensile tests

    Science.gov (United States)

    Burkov, M. V.; Shah, R. T.; Eremin, A. V.; Byakov, A. V.; Panin, S. V.

    2016-11-01

    The paper deals with the investigation of Lamb wave ultrasonic technique for damage (or mechanical state) evaluation of AA7068T3 specimens in the course of tensile testing. Two piezoelectric transducers (PZT), one of which is used as an actuator and the other as sensor, were adhesively bonded on the specimen surface using epoxy. Two frequencies of testing signals (60 kHz and 350 kHz) were used. The set of static tensile tests were performed. The recorded signals were processed to calculate the informative parameters in order to evaluate the changes in stress-strain state of the specimens and their microstructure.

  2. Critical Assessment of Wave-Particle Complementarity via Derivation from Quantum Mechanics

    CERN Document Server

    Herbut, Fedor

    2009-01-01

    After introducing sketchily Bohr's wave-particle complementarity principle in his own words, a derivation of an extended form of the principle from standard quantum mechanics is performed. Reality-evaluation of each step is given. The derived theory is applied to simple examples and the extended entities are illustrated in a thought experiment. Assessment of the approach of Bohr and of this article is taken up again with a rather negative conclusion as far as reflecting reality is concerned. The paper ends with selected incisive opinions on Bohr's dogmatic attitude and with some comments by the present author.

  3. A narrow QRS tachycardia and cannon A waves: What is the mechanism?

    Science.gov (United States)

    Ali, Hussam; Epicoco, Gianluca; De Ambroggi, Guido; Lupo, Pierpaolo; Foresti, Sara; Cappato, Riccardo

    2016-12-23

    Regular narrow QRS tachycardia, particularly if well-tolerated, is usually considered a "benign" arrhythmia of a supraventricular origin. This case concerns an 82-year-old male with ischemic heart disease who presented with recurrent episodes of a narrow QRS tachycardia that was initially diagnosed and treated as atrial tachyarrhythmia. However, careful physical examination and ECG analysis established the correct diagnosis, and the patient was managed appropriately. Remarkably, the observation of irregular cannon A waves, and Lewis lead recording, confirmed atrioventricular dissociation during tachycardia and indicated its underlying mechanism.

  4. [Lipoproteins HDL and coronary artery disease: a molecular mechanism of fibrate].

    Science.gov (United States)

    Kaletha, Krystian; Chodorowski, Zygmunt; Anand, Izabela Sein; Rybakowska, Iwona; Nagel-Starczynowska, Gabriela

    2003-01-01

    The importance of dyslipidemia in the development of cardiovascular disease is now recognized as a central factor of equal, if not greater significance than any other risk factor. Although correction of high level of low-density lipoproteins (LDL) has been regarded now as the main goal of therapy, it has now been reaffirmed that the contribution of low level of high-density lipoproteins (HDL) to the risk of ischaemic heart disease should also be considered. In the therapy of dislipidemias with hipertriglyceridemia and decreased level of HDL lipoprotein fibrates play an especially important role. In the article the molecular mechanism of fibrates action is presented.

  5. Propagation of SH waves in a piezoelectric/piezomagnetic plate: Effects of interfacial imperfection couplings and the related physical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Hong-Xing [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Li, Yong-Dong, E-mail: LYDbeijing@163.com [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China); Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Xiong, Tao [Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072 (China); Guan, Yong [Beijing Advanced Innovation Center for Imaging Technology, Capital Normal University, Beijing 100048 (China)

    2016-09-07

    The problem of dispersive SH wave in a piezoelectric/piezomagnetic plate that contains an imperfect interface is considered in the present work. An imperfection coupling model is adopted to describe the magnetic, electric and mechanical imperfections on the interface. A transcendental dispersion equation is derived and numerically solved to get the phase velocity. The validity of the numerical procedure is verified in a degenerated case. The effects of the coupled interfacial imperfections on the dispersion behavior of SH waves are discussed in detail and the related underlying physical mechanisms are explained. - Highlights: • SH-wave is investigated in a multiferroic plate with coupled interfacial imperfections. • SH-wave is affected by both interfacial imperfections and their inter-couplings. • Physical mechanisms of the effects are explained via energy transformations.

  6. Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media

    Science.gov (United States)

    Ambroziński, Łukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew

    2016-07-01

    A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.

  7. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional order wave equations.

    Science.gov (United States)

    Pandey, Vikash; Holm, Sverre

    2016-12-01

    The characteristic time-dependent viscosity of the intergranular pore-fluid in Buckingham's grain-shearing (GS) model [Buckingham, J. Acoust. Soc. Am. 108, 2796-2815 (2000)] is identified as the property of rheopecty. The property corresponds to a rare type of a non-Newtonian fluid in rheology which has largely remained unexplored. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and the shear wave equation derived from the GS model are shown to take the form of the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation, respectively. Therefore, an analogy is drawn between the dispersion relations obtained from the fractional framework and those from the GS model to establish the equivalence of the respective wave equations. Further, a physical interpretation of the characteristic fractional order present in the wave equations is inferred from the GS model. The overall goal is to show that fractional calculus is not just a mathematical framework which can be used to curve-fit the complex behavior of materials. Rather, it can also be derived from real physical processes as illustrated in this work by the example of GS.

  8. An investigation of student understanding of wave phenomena at a boundary as a guide to the development and assessment of instructional materials on mechanical waves

    Science.gov (United States)

    Kryjevskaia, Lioudmila N.

    This dissertation reports on an in-depth investigation of student understanding of wave phenomena at a boundary. The research and curriculum development were conducted in the contexts of the introductory calculus-based physics course and special courses for preservice and inservice teachers. Research methods included pretests, post-tests, and informal observations and discussions with students. Several student difficulties with wave behavior at a boundary and the cause and effect relationship between wavelength, frequency, and propagation speed were identified. The results from this investigation have guided the development of two sets of instructional materials designed to address the conceptual and reasoning difficulties that were identified. The first is a sequence of tutorials intended to supplement standard lecture and laboratory instruction on mechanical waves in a traditional introductory course. The second consists of a module on mechanical waves designed for use in inquiry-oriented courses for preservice and inservice teachers. Ongoing assessment of both sets of materials indicates that they are effective in addressing many of the student difficulties that were found to be persistent. Such difficulties, when not addressed, may hinder student understanding of more advanced topics such as interference and diffraction of waves.

  9. Microstructure and Mechanical Properties After Shock Wave Loading of Cast CrMnNi TRIP Steel

    Science.gov (United States)

    Eckner, Ralf; Krüger, L.; Ullrich, C.; Rafaja, D.; Schlothauer, T.; Heide, G.

    2016-10-01

    The mechanical response of shock wave-prestrained high-alloy Cr16-Mn7-Ni6 TRIP steel was investigated under compressive and tensile loading at room temperature. Previous shock wave loading was carried out using a flyer-plate assembly with different amounts of explosives in order to achieve shock pressures of 0.3, 0.6, 0.9, and 1.2 Mbar. A significant increase in hardness and strength was observed as compared with the initial as-cast condition. In contrast, a slight decrease in strain hardening rates was measured together with a decrease in fracture elongation in the tensile test. Microstructural analyses of the shock-loaded samples were performed by light optical and scanning electron microscopy. The microstructure revealed a high density of deformation bands consisting of separated stacking faults, ɛ-martensite, or twins. Significant amounts of deformation-induced α'-martensite were only present at the highest shock pressure of 1.2 Mbar. The thickness of the deformation bands and the number of martensite nuclei at their intersections increased with increasing shock pressure. In all shock-loaded specimens, pronounced phase transformation occurred during subsequent mechanical testing. Consequently, the amount of the deformation-induced α'-martensite in the shock-loaded specimens was higher than in the unshocked as-cast samples.

  10. The acoustical Klein-Gordon equation: the wave-mechanical step and barrier potential functions.

    Science.gov (United States)

    Forbes, Barbara J; Pike, E Roy; Sharp, David B

    2003-09-01

    The transformed form of the Webster equation is investigated. Usually described as analogous to the Schrödinger equation of quantum mechanics, it is noted that the second-order time dependency defines a Klein-Gordon problem. This "acoustical Klein-Gordon equation" is analyzed with particular reference to the acoustical properties of wave-mechanical potential functions, U(x), that give rise to geometry-dependent dispersions at rapid variations in tract cross section. Such dispersions are not elucidated by other one-dimensional--cylindrical or conical--duct models. Since Sturm-Liouville analysis is not appropriate for inhomogeneous boundary conditions, the exact solution of the Klein-Gordon equation is achieved through a Green's-function methodology referring to the transfer matrix of an arbitrary string of square potential functions, including a square barrier equivalent to a radiation impedance. The general conclusion of the paper is that, in the absence of precise knowledge of initial conditions on the area function, any given potential function will map to a multiplicity of area functions of identical relative resonance characteristics. Since the potential function maps uniquely to the acoustical output, it is suggested that the one-dimensional wave physics is both most accurately and most compactly described within the Klein-Gordon framework.

  11. Interfacial wave theory for dendritic structure of a growing needle crystal. I - Local instability mechanism. II - Wave-emission mechanism at the turning point

    Science.gov (United States)

    Xu, Jian-Jun

    1989-01-01

    The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.

  12. Reference values for local arterial stiffness. Part B : femoral artery

    NARCIS (Netherlands)

    Bossuyt, Jelle; Engelen, Lian; Ferreira, Isabel; Stehouwer, Coen D; Boutouyrie, Pierre; Laurent, Stéphane; Segers, Patrick; Reesink, Koen; Van Bortel, Luc M

    2015-01-01

    OBJECTIVE: Carotid-femoral pulse wave velocity (PWV) is considered the gold standard measure of arterial stiffness, representing mainly aortic stiffness. As compared with the elastic carotid and aorta, the more muscular femoral artery may be differently associated with cardiovascular risk factors (C

  13. Dependence of P-wave dispersion on mean arterial pressure as an independent hemodynamic variable in school children

    Directory of Open Access Journals (Sweden)

    Elibet Chávez González

    2013-09-01

    Full Text Available Introduction:The relationship between diastolic dysfunction and P-wave dispersion (PWD in the electrocardiogram has been studied for some time. In this regard, echocardiography is emerging as a diagnostic tool to improve risk stratification for mild hypertension.Objective:To determine the dependence of PWD on the electrocardiogram and on echocardiographic variables in a pediatric population.Methods: Five hundred and fifteen children from three elementary schools were studiedfrom a total of 565 children. Those whose parents did not want them to take part in the study, as well as those with known congenital diseases, were excluded. Tests including 12-lead surface ECGs and 4 blood pressure (BP measurements were performed. Maximum and minimum P-values were measured, and the PWD on the electrocardiogram was calculated. Echocardiography for structural measurements and the pulsed Doppler of mitral flow were also performed.Results: A significant correlation in statistical variables was found between PWD and mean BP for pre-hypertensive and hypertensive children, i.e., r= 0.32, p <0.01 and r= 0.33, p <0.01, respectively. There was a significant correlation found between PWD and the left atrial area (r= 0.45 and p <0.01.Conclusions: We highlight the dependency between PWD, the electrocardiogram and  mean  blood pressure. We also draw attention to the dependence of PWD on the left atrial area.  This result provides an explanation for earlier changes in atrial electrophysiological and hemodynamic characteristics in pediatric patients.

  14. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    Science.gov (United States)

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model.

  15. Inferring the core-collapse supernova explosion mechanism with gravitational waves

    Science.gov (United States)

    Powell, Jade; Gossan, Sarah E.; Logue, Joshua; Heng, Ik Siong

    2016-12-01

    A detection of a core-collapse supernova (CCSN) gravitational-wave (GW) signal with an Advanced LIGO and Virgo detector network may allow us to measure astrophysical parameters of the dying massive star. GWs are emitted from deep inside the core, and, as such, they are direct probes of the CCSN explosion mechanism. In this study, we show how we can determine the CCSN explosion mechanism from a GW supernova detection using a combination of principal component analysis and Bayesian model selection. We use simulations of GW signals from CCSN exploding via neutrino-driven convection and rapidly rotating core collapse. Previous studies have shown that the explosion mechanism can be determined using one LIGO detector and simulated Gaussian noise. As real GW detector noise is both nonstationary and non-Gaussian, we use real detector noise from a network of detectors with a sensitivity altered to match the advanced detectors design sensitivity. For the first time, we carry out a careful selection of the number of principal components to enhance our model selection capabilities. We show that with an advanced detector network we can determine if the CCSN explosion mechanism is driven by neutrino convection for sources in our Galaxy and rapidly-rotating core collapse for sources out to the Large Magellanic Cloud.

  16. Equations of interdoublet separation during flagella motion reveal mechanisms of wave propagation and instability.

    Science.gov (United States)

    Bayly, Philip V; Wilson, Kate S

    2014-10-07

    The motion of flagella and cilia arises from the coordinated activity of dynein motor protein molecules arrayed along microtubule doublets that span the length of axoneme (the flagellar cytoskeleton). Dynein activity causes relative sliding between the doublets, which generates propulsive bending of the flagellum. The mechanism of dynein coordination remains incompletely understood, although it has been the focus of many studies, both theoretical and experimental. In one leading hypothesis, known as the geometric clutch (GC) model, local dynein activity is thought to be controlled by interdoublet separation. The GC model has been implemented as a numerical simulation in which the behavior of a discrete set of rigid links in viscous fluid, driven by active elements, was approximated using a simplified time-marching scheme. A continuum mechanical model and associated partial differential equations of the GC model have remained lacking. Such equations would provide insight into the underlying biophysics, enable mathematical analysis of the behavior, and facilitate rigorous comparison to other models. In this article, the equations of motion for the flagellum and its doublets are derived from mechanical equilibrium principles and simple constitutive models. These equations are analyzed to reveal mechanisms of wave propagation and instability in the GC model. With parameter values in the range expected for Chlamydomonas flagella, solutions to the fully nonlinear equations closely resemble observed waveforms. These results support the ability of the GC hypothesis to explain dynein coordination in flagella and provide a mathematical foundation for comparison to other leading models.

  17. Spatio-temporal PLC activation in parallel with intracellular Ca2+ wave propagation in mechanically stimulated single MDCK cells.

    Science.gov (United States)

    Tsukamoto, Akira; Hayashida, Yasunori; Furukawa, Katsuko S; Ushida, Takashi

    2010-03-01

    Intracellular Ca2+ transients are evoked either by the opening of Ca2+ channels on the plasma membrane or by phospholipase C (PLC) activation resulting in IP3 production. Ca2+ wave propagation is known to occur in mechanically stimulated cells; however, it remains uncertain whether and how PLC activation is involved in intracellular Ca2+ wave propagation in mechanically stimulated cells. To answer these questions, it is indispensable to clarify the spatio-temporal relations between intracellular Ca2+ wave propagation and PLC activation. Thus, we visualized both cytosolic Ca2+ and PLC activation using a real-time dual-imaging system in individual Mardin-Darby Canine Kidney (MDCK) cells. This system allowed us to simultaneously observe intracellular Ca2+ wave propagation and PLC activation in a spatio-temporal manner in a single mechanically stimulated MDCK cell. The results showed that PLC was activated not only in the mechanically stimulated region but also in other subcellular regions in parallel with intracellular Ca2+ wave propagation. These results support a model in which PLC is involved in Ca2+ signaling amplification in mechanically stimulated cells.

  18. Prediction of True Circulatory Decompensation in Chronic Heart Failure for Optimal Timing of Mechanical Circulatory Support: Non-Invasive Arterial-Ventricular Coupling

    Directory of Open Access Journals (Sweden)

    Roland Hetzer

    2012-02-01

    Full Text Available Background: Prospective comparative studies to predict the risk of hemodynamic deterioration in patients referred for transplantation were performed on the basis of standard invasive and non-invasive data and new wave intensity (WI parameters. Methods and results: Study Group 1 consisted of 151 consecutive outpatients (age 48.7 ± 12 years; 110 men with end-stage dilative cardiomyopathy. Group 2, consisting of 11 consecutive patients (age 50 ± 11 years; 6 men with sinus rhythm and “true” decompensation, was used to create “critical values” of WI. There were no demographic or somatic (weight and height differences between the groups. The follow-up period of ambulatory patients was 31 ± 8 months. Non-invasive WI was studied in the common carotid artery. Complete invasive and non-invasive data were also recorded on the day of investigation. During follow-up 44 pts were lost; there were 15 cardiac deaths (10%, life-saving ventricular assist device implantation in 10 (6.6% and transplantation in 19 (12.7%. For statistical purposes this group was named the “events” Group B (n = 44. A predisposing factor for events (death, “true” decompensation and “urgent” transplantation in ambulatory patients was low first peak (“cut-off value” assessed in Group 2 < 4100 mmHg*s³ (OR 45.6, CI 14.5–143.3, p < 0.001. Less powerful predictors of the risk of deterioration were pulmonary capillary pressure (PCP, diastolic pulmonary artery pressure (PAP and E/A mitral wave relation (p = 0.05. Conclusions: The new ventricular-arterial coupling parameter 1st peak of WI can potentially be used to distinguish patients at high risk for true deterioration and death. This parameter can be used to predict the need for assist device implantation.

  19. Assessment of distributed arterial network models.

    Science.gov (United States)

    Segers, P; Stergiopulos, N; Verdonck, P; Verhoeven, R

    1997-11-01

    The aim of this study is to evaluate the relative importance of elastic non-linearities, viscoelasticity and resistance vessel modelling on arterial pressure and flow wave contours computed with distributed arterial network models. The computational results of a non-linear (time-domain) and a linear (frequency-domain) mode were compared using the same geometrical configuration and identical upstream and downstream boundary conditions and mechanical properties. pressures were computed at the ascending aorta, brachial and femoral artery. In spite of the identical problem definition, computational differences were found in input impedance modulus (max. 15-20%), systolic pressure (max. 5%) and pulse pressure (max. 10%). For the brachial artery, the ratio of pulse pressure to aortic pulse pressure was practically identical for both models (3%), whereas for the femoral artery higher values are found for the linear model (+10%). The aortic/brachial pressure transfer function indicates that pressure harmonic amplification is somewhat higher in the linear model for frequencies lower than 6 Hz while the opposite is true for higher frequencies. These computational disparities were attributed to conceptual model differences, such as the treatment of geometric tapering, rather than to elastic or convective non-linearities. Compared to the effect of viscoelasticity, the discrepancy between the linear and non-linear model is of the same importance. At peripheral locations, the correct representation of terminal impedance outweight the computational differences between the linear and non-linear models.

  20. On the extension of solutions of the real to complex KdV equation and a mechanism for the construction of rogue waves

    Science.gov (United States)

    Abdel-Gawad, H. I.; Tantawy, M.; Abo Elkhair, R. E.

    2016-07-01

    Rogue waves are more precisely defined as waves whose height is more than twice the significant wave height. This remarkable height was measured (by Draupner in 1995). Thus, the need for constructing a mechanism for the rogue waves is of great utility. This motivated us to suggest a mechanism, in this work, that rogue waves may be constructed via nonlinear interactions of solitons and periodic waves. This suggestion is consolidated here, in an example, by studying the behavior of solutions of the complex (KdV). This is done here by the extending the solutions of its real version.

  1. Bohmian mechanics in the exact factorization of electron-nuclear wave functions

    Science.gov (United States)

    Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2016-09-01

    The exact factorization of an electron-nuclear wave function [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010), 10.1103/PhysRevLett.105.123002] allows us to define the rigorous nuclear time-dependent Schrödinger equation (TDSE) with a time-dependent potential-energy surface (TDPES) that fully accounts for the coupling to the electronic motion and drives the nuclear wave-packet dynamics. Here, we study whether the propagation of multiple classical trajectories can reproduce the quantum nuclear motion in strong-field processes when their motions are governed by the quantum Hamilton-Jacobi equation derived by applying Bohmian mechanics to this exact nuclear TDSE. We demonstrate that multiple classical trajectories propagated by the force from the gradient of the exact TDPES plus the Bohmian quantum potential can reproduce the strong-field dissociation dynamics of a one-dimensional model of the H2 + molecule. Our results show that the force from the Bohmian quantum potential plays a non-negligible role in yielding quantum nuclear dynamics in the strong-field process studied here, where ionization and/or splitting of nuclear probability density occurs.

  2. Design of acoustic wave biochemical sensors using micro-electro-mechanical systems

    Science.gov (United States)

    Valentine, Jane E.; Przybycien, Todd M.; Hauan, Steinar

    2007-03-01

    Acoustic wave biochemical sensors work by detecting the frequency shifts resulting from the binding of target molecules to a functionalized resonator. Resonator types currently in use or under development include macroscopic quartz crystal microbalances (QCMs) as well as a number of different integrated Micro-electro-mechanical Systems (MEMS) structures. Due to an increased resonator surface area to mass ratio, we believe that membrane-based MEMS systems are particularly promising with regard to sensitivity. Prototypes have been developed [S. Hauan et al., U.S. Patent Application (filed 6 Nov. 2003)] and preliminary calculations [M. J. Bartkovsky et al., paper 385e presented at the AIChE Annual Meeting, Nov. 2003; J. E. Valentine et al., paper 197h presented at the AICHE Annual Meeting, Nov. 2003] indicate significant improvements over other methods, both macroscopic and MEMS based. In this article we describe our work on a MEMS-based acoustic wave biochemical sensor using a membrane resonator. We demonstrate the effects of spatial distributions of mass on the membrane on sensitivity and show how to use this spatial sensitivity to detect multiple targets simultaneously. To do so we derive a function approximating the membrane response surface to spatial mass loadings under the applicable range of conditions. We verify the agreement using finite element methods, and present our initial sensitivity calculations demonstrating the advantages of variable mass loadings.

  3. Mechanical back-action of a spin-wave resonance in a magnetoelastic thin film on a surface acoustic wave

    Science.gov (United States)

    Gowtham, P. G.; Labanowski, D.; Salahuddin, S.

    2016-07-01

    Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, through the magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film deposited on the substrate. This spin-wave resonance in the magnetic film creates a time-ynamic surface stress of magnetoelastic origin that acts back on the surface of the piezoelectric and modifies the SAW propagation. Unlike previous analyses that treat the excitation as a magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying boundary conditions on the SAW. We use acoustical perturbation theory to find closed-form expressions for the back-action surface stress and strain fields and the resultant SAW velocity shifts and attenuation. We demonstrate that the shear stres fields associated with this spin-wave back-action also generate effective surface currents on the piezoelectric both in phase and out of phase with the driving SAW potential. Characterization of these surface currents and their applications in determination of the magnetoelastic coupling are discussed. The perturbative calculation is carried out explicitly to first order (a regime corresponding to many experimental situations of current interest) and we provide a sketch of the implications of the theory at higher order.

  4. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension.

    Science.gov (United States)

    Muñoz-Durango, Natalia; Fuentes, Cristóbal A; Castillo, Andrés E; González-Gómez, Luis Martín; Vecchiola, Andrea; Fardella, Carlos E; Kalergis, Alexis M

    2016-06-23

    Arterial hypertension is a common condition worldwide and an important predictor of several complicated diseases. Arterial hypertension can be triggered by many factors, including physiological, genetic, and lifestyle causes. Specifically, molecules of the renin-angiotensin-aldosterone system not only play important roles in the control of blood pressure, but they are also associated with the genesis of arterial hypertension, thus constituting a need for pharmacological interventions. Chronic high pressure generates mechanical damage along the vascular system, heart, and kidneys, which are the principal organs affected in this condition. In addition to mechanical stress, hypertension-induced oxidative stress, chronic inflammation, and the activation of reparative mechanisms lead to end-organ damage, mainly due to fibrosis. Clinical trials have demonstrated that renin-angiotensin-aldosterone system intervention in hypertensive patients lowers morbidity/mortality and inflammatory marker levels as compared to placebo patients, evidencing that this system controls more than blood pressure. This review emphasizes the detrimental effects that a renin-angiotensin-aldosterone system (RAAS) imbalance has on health considerations above and beyond high blood pressure, such as fibrotic end-organ damage.

  5. ANALYSIS AND SIMULATION ON THE MECHANISM OF A NOVEL DUAL-WAVE SHOCK TEST MACHINE

    Institute of Scientific and Technical Information of China (English)

    WANG Gongxian; ZHANG Zhiyi; CHU Deying; SHEN Rongying

    2008-01-01

    For qualifying the anti-shock performance of shipboard equipments and simulating actual underwater explosion environments, a novel dual-wave shock test machine is proposed to increase testing capability of shock test machines as well as to meet certain shock testing specification. The machine can generate a double-pulse acceleration shock for test articles according to specification defined in BV043/85. On the basis of the impact theory, a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism which involves conversion of gas potential energy and dissipation of kinetic energy. Simulation results have demonstrated that the machine can produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain, which sets a theoretical base for the construction of the proposed machine.

  6. Highly eccentric Kozai mechanism and gravitational-wave observation for neutron-star binaries.

    Science.gov (United States)

    Seto, Naoki

    2013-08-09

    The Kozai mechanism for a hierarchical triple system could reduce the merger time of inner eccentric binary emitting gravitational waves (GWs) and has been qualitatively explained with the secular theory that is derived by averaging short-term orbital revolutions. However, with the secular theory, the minimum value of the inner pericenter distance could be excessively limited by the averaging operation. Compared with traditional predictions, the actual evolution of an eccentric inner binary could be accompanied by (i) a higher characteristic frequency of the pulselike GWs around its pericenter passages and (ii) a larger residual eccentricity at its final inspiral phase. These findings would be important for GW astronomy with the forthcoming advanced detectors.

  7. Phase synchronization in the cochlea at transition from mechanical waves to electrical spikes

    Science.gov (United States)

    Bader, Rolf

    2015-10-01

    Measured auditory nervous spikes often show synchronization, phase-locking, or entrainment (P. Cariani, Neural Plast. 6(4), 142-172 (1999) and Kumaresana et al., J. Acoust. Soc. Am. 133(6), 4290-4310 (2013). Physiologically synchronization is found in the anteroventral cochlear nucleus (Joris et al., J. Neurophysiol. 71(3), 1022-1036 (1994)) or in the trapezoid body also between critical bandwidths (Louage et al., Auditory Signal Processing: Physiology, Psychoacoustics, and Models (Springer, New York, 2004), pp. 100-106). The effect is an enhancement of pitch detection, spatial localization, or speech intelligibility. To investigate the presence of synchronization already in the cochlea, in the present paper, a finite-difference time-domain model of the cochlea is implemented with conditions for spike excitation caused by mechanical basilar membrane displacement. This model shows synchronization already in the cochlea at the transition from mechanical waves to nerve spike excitation. Using a sound as model input consisting of ten harmonic overtones with random phase relations, the output spikes are strongly phase aligned after this transition. When using a two-sinusoidal complex as input, and altering the phase relations between the two sinusoidals, the output spikes show the higher sinusoidal shifting the phase of the lower one in its direction in a systematic way. Therefore, already during the transition from mechanical to electrical excitation within the cochlea, synchronization appears to be improving perception of pitch, speech, or localization.

  8. Inferring the core-collapse supernova explosion mechanism with gravitational waves

    CERN Document Server

    Powell, Jade; Logue, Joshua; Heng, Ik Siong

    2016-01-01

    A detection of a core-collapse supernova (CCSN) gravitational-wave (GW) signal with an Advanced LIGO and Virgo detector network may allow us to measure astrophysical parameters of the dying massive star. GWs are emitted from deep inside the core and, as such, they are direct probes of the CCSN explosion mechanism. In this study we show how we can determine the CCSN explosion mechanism from a GW supernova detection using a combination of principal component analysis and Bayesian model selection. We use simulations of GW signals from CCSN exploding via neutrino-driven convection and rapidly-rotating core collapse. Previous studies have shown that the explosion mechanism can be determined using one LIGO detector and simulated Gaussian noise. As real GW detector noise is both non-stationary and non-Gaussian we use real detector noise from a network of detectors with a sensitivity altered to match the advanced detectors design sensitivity. For the first time we carry out a careful selection of the number of princi...

  9. Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves.

    Science.gov (United States)

    Wen, Xiaonan; Yang, Weiqing; Jing, Qingshen; Wang, Zhong Lin

    2014-07-22

    We invented a triboelectric nanogenerator (TENG) that is based on a wavy-structured Cu-Kapton-Cu film sandwiched between two flat nanostructured PTFE films for harvesting energy due to mechanical vibration/impacting/compressing using the triboelectrification effect. This structure design allows the TENG to be self-restorable after impact without the use of extra springs and converts direct impact into lateral sliding, which is proved to be a much more efficient friction mode for energy harvesting. The working mechanism has been elaborated using the capacitor model and finite-element simulation. Vibrational energy from 5 to 500 Hz has been harvested, and the generator's resonance frequency was determined to be ∼100 Hz at a broad full width at half-maximum of over 100 Hz, producing an open-circuit voltage of up to 72 V, a short-circuit current of up to 32 μA, and a peak power density of 0.4 W/m(2). Most importantly, the wavy structure of the TENG can be easily packaged for harvesting the impact energy from water waves, clearly establishing the principle for ocean wave energy harvesting. Considering the advantages of TENGs, such as cost-effectiveness, light weight, and easy scalability, this approach might open the possibility for obtaining green and sustainable energy from the ocean using nanostructured materials. Lastly, different ways of agitating water were studied to trigger the packaged TENG. By analyzing the output signals and their corresponding fast Fourier transform spectra, three ways of agitation were evidently distinguished from each other, demonstrating the potential of the TENG for hydrological analysis.

  10. The Effect of Ultrasonic Waves on Sugar Extraction and Mechanical Properties of Sugar Beet

    Directory of Open Access Journals (Sweden)

    K Hedayati

    2013-09-01

    Full Text Available Sugar, which can be extracted from sugar cane and sugar beet, is one of the most important ingredients of food. Conducting more research to increase the extraction efficiency of sugar is necessary due to high production of sugar beet and its numerous processing units in northern Khorasan province. In this research, the effect of temperature, time and the frequency of ultrasonic waves on mechanical properties of sugar beet and its extraction rate of sugar in moisture content of 75% were studied. In this regard, an ultrasonic bath in laboratory scale was used. The studied parameters and their levels were frequency in three levels (zero, 25 and 45 KHz, temperature in three levels (25, 50 and 70 ° C and the imposed time of ultrasonic waves in three levels (10, 20 and 30 min. Samples were prepared using planned experiments and the results were compared with control sugar beet samples. A Saccharimeter was used to measure the concenteration of sugar in samples. Two different types of probe including semi-spherical end and the other one with sharpened edges were used to measure mechanical properties. The studied parameters of frequency, temperature and time showed significant effect on sugar extraction and their resulted effect in optimized levels revealed up to 56% increase in sugar extraction compared with control samples. The obtained values of elastic modulus and shear modulus showed a decreasing trend. The obtained values of total energy of rupture, the total energy of shear, the maximum force of rupture, and the yield point of rupture showed an increasing trend. The frequency had no significant effect on the yield point of rupture and shear force.

  11. Investigation on property and mechanism of redox wave of methylhesperidine at Hg electrode

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jianbin; MENG Zuchao; ZHANG Hongfang

    2005-01-01

    The voltammetric behaviors of methylhesperidine (MH) were studied by means of linear sweep voltammetry, cyclic voltammetry and normal pulse voltammetry. In the Brit ton-Robinson buffer solutions with pH values from 2.05 to 6.37, MH could yield three reduction waves PC1, PC2 and PC3. PC1 wave is an adsorptive pre-wave. PC2 wave is an irreversible reduc tion of pre-protonated MH involving one electron and one proton. PC3 wave is an irreversible wave of reduction species radical of MH involving one electron.

  12. Characterization of mechanical and geometrical properties of a tube with axial and circumferential guided waves.

    Science.gov (United States)

    Yeh, Cheng-Hung; Yang, Che-Hua

    2011-05-01

    Guided waves propagating in cylindrical tubes are frequently applied for the characterization of material or geometrical properties of tubes. In a tube, guided waves can propagate in the axial direction and called axial guided waves, or in the circumferential direction called circumferential guided waves. Dispersion spectra for the axial and circumferential guided waves share some common behaviors and however exhibit some particular behaviors of their own. This study provides an investigation with theoretical modeling, experimental measurements, and a simplex-based inversion procedure to explore the similarity and difference between the axial guided waves and circumferential guided waves, aiming at providing useful information while axial and circumferential guided waves are applied in the area of material characterization. The sensitivity to the radius curvature for the circumferential guided waves dispersion spectra is a major point that makes circumferential guided waves different from axial guided waves. For the purpose of material characterization, both axial and circumferential guided waves are able to extract an elastic moduli and wall-thickness information from the dispersion spectra, however, radius information can only be extracted from the circumferential guided waves spectra.

  13. A comparative study on the uniaxial mechanical properties of the umbilical vein and umbilical artery using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-12-01

    The umbilical cord is part of the fetus and generally includes one umbilical vein (UV) and two umbilical arteries (UAs). As the saphenous vein and UV are the most commonly used veins for the coronary artery disease treatment as a coronary artery bypass graft (CABG), understating the mechanical properties of UV has a key asset in its performance for CABG. However, there is not only a lack of knowledge on the mechanical properties of UV and UA but there is no agreement as to which stress-strain definition should be implemented to measure their mechanical properties. In this study, the UV and UA samples were removed after caesarean from eight individuals and subjected to a series of tensile testing. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were employed to determine the linear mechanical properties of UVs and UAs. The nonlinear mechanical behavior of UV/UA was computationally investigated using hyperelastic material models, such as Ogden and Mooney-Rivlin. The results showed that the effect of varying the stress definition on the maximum stress measurements of the UV/UA is significant but not when calculating the elastic modulus. In the true stress-strain diagram, the maximum strain of UV was 92 % higher, while the elastic modulus and maximum stress were 162 and 42 % lower than that of UA. The Mooney-Rivlin material model was designated to represent the nonlinear mechanical behavior of the UV and UA under uniaxial loading.

  14. Causal wave mechanics and the advent of complexity; 4, dynamical origin of quantum indeterminacy and wave reduction

    CERN Document Server

    Kirilyuk, A P

    1995-01-01

    The concept of the fundamental dynamic uncertainty (or the fundamental multivaluedness of dynamical functions) developed in parts I-III of this work and used to re-establish the correspondence principle for chaotic Hamiltonian systems provides also a causal description of the basic properties of quantum measurement, - quantum indeterminacy and wave reduction. The modified Schrödinger formalism involving multivalued effective dynamical functions reveals the dynamical origin of quantum indeterminacy as the intrinsic nonlinear instability in the combined quantum system of the measured object interacting with the instrument. As a result of this instability, the originally wide measured wave dynamically "shrinks" around a random accessible point of the combined configurational space loosing its coherence with respect to other possibilities. We do not use any assumptions on particular "classical", "macroscopic", "stochastic", etc. nature of the instrument or environment: full quantum indeterminacy dynamically appe...

  15. Letters on wave mechanics correspondence with H. A. Lorentz, Max Planck, and Erwin Schrödinger

    CERN Document Server

    Einstein, Albert

    2011-01-01

    A lively collection of Einstein's groundbreaking scientific correspondence on modern physics with Schrödinger, Planck, and LorentzImagine getting four of the greatest minds of modern physics in a room together to explain and debate the theories and innovations of their day. This is the fascinating experience of reading Letters on Wave Mechanics, the correspondence between Erwin Schrödinger and Max Planck, H.A. Lorentz, and Albert Einstein. These remarkable letters illuminate not only the basis of Schrödinger's work in wave mechanics, but also how great scientific minds debated and challenged

  16. Study on the Tidal Wave System and Formation Mechanism of M2 Tide in the Taiwan Strait

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-sheng; SONG Zhi-yao; ZHANG Jin-shan; ZHANG Hong-gui; KONG Jun; WANG Yan-hong

    2008-01-01

    To study the Taiwan Strait (TS), an unusual sea area, the numerical model in marginal seas of China is used to simulate and analyze the tidal wave motion in the strait. The numerical modeling experiments reproduce the amphidromic system of the M2 tide in the south end of the Taiwan strait, and consequently confirm the existence of the degenerate amphidromic system. On this basis, further discussion is conducted on the M2 system and its formation mechanism. It can be concluded that the tidal waves of the TS is consisted of the progressing wave from the north entrance and the degenerate amphidromic system from the south entrance, in which the progressing wave from the north entrance dominates the tidal wave motion in the strait. Except for the convergent effect caused by the landform and boundary, the degenerate amphidromic system produced in the south of the strait is another important factor for the following phenomena: the large tidal range in the middle of the strait, the concentrative zone of co-amplitude and co-phase line in the south of the strait. The degenerate amphidromic system is mainly produced by the incident Pacific Ocean tidal wave from the Luzon strait and the action by the shoreline and landform. The position of the amphidromic point is compelled to move toward southwest until degenerating by the powerful progressing wave from the north entrance.

  17. A Mechanism for the Interannual Variation of the Early Summer East Asia-Pacific Teleconnection Wave Train

    Institute of Scientific and Technical Information of China (English)

    YANG Ruowen; TAO Yun; CAO Jie

    2010-01-01

    Based on the 500-hPa geopotential height, surface air temperature, and China summer rain-belt type data from 1978 to 2002, the spatial spectrum function sets which well represent the variation of large scale atmospheric circulations were obtained using the least square method. A mechanism for the interannual variation of the East Asia-Pacific teleconnection (EAP) wave train in early summer was identified with the low-order spectral method and the hypothesis-test method. The results indicate that, when nonlinear wave-wave and wave-flow interactions on large scale are stronger in the inner dynamic process of the atmosphere, there are obvious nonlinear features in the evolution of the atmospheric circulation, and the EAP exhibits a negative-positive-negative ("- +-") spatial distribution in low to high latitudes in early summer. The corresponding EAP index is positive, which leads to a northward shift of the western Pacific subtropical high (WPSH) and the China rain-belt is located in the Huaihe River valley and its north in summer. On the contrary, when nonlinear wave-wave and wave-flow interactions on large scale are weaker, there appears a linear feature in the evolution of the atmospheric circulation, and the EAP shows a positive-negative-positive ("+-+") spatial distribution in low to high latitudes. The corresponding EAP index is negative, which inhibits the WPSH against moving northward, and the China rain-belt is located in the Huaihe and Yangtze River valleys and their south.

  18. MODELING THE ASIAN TSUNAMI EVOLUTION AND PROPAGATION WITH A NEW GENERATION MECHANISM AND A NON-LINEAR DISPERSIVE WAVE MODEL

    Directory of Open Access Journals (Sweden)

    Paul C. Rivera

    2006-01-01

    Full Text Available A common approach in modeling the generation and propagation of tsunami is based on the assumption of a kinematic vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. In this study, a new generation mechanism and the use of a highly-dispersive wave model to simulate tsunami inception, propagation and transformation are proposed. The new generation model assumes that transient ground motion during the earthquake can accelerate horizontal currents with opposing directions near the fault line whose successive convergence and divergence generate a series of potentially destructive oceanic waves. The new dynamic model incorporates the effects of earthquake moment magnitude, ocean compressibility through the buoyancy frequency, the effects of focal and water depths, and the orientation of ruptured fault line in the tsunami magnitude and directivity.For tsunami wave simulation, the nonlinear momentum-based wave model includes important wave propagation and transformation mechanisms such as refraction, diffraction, shoaling, partial reflection and transmission, back-scattering, frequency dispersion, and resonant wave-wave interaction. Using this model and a coarse-resolution bathymetry, the new mechanism is tested for the Indian Ocean tsunami of December 26, 2004. A new flooding and drying algorithm that consider waves coming from every direction is also proposed for simulation of inundation of low-lying coastal regions.It is shown in the present study that with the proposed generation model, the observed features of the Asian tsunami such as the initial drying of areas east of the source region and the initial flooding of western coasts are correctly simulated. The formation of a series of tsunami waves with periods and lengths comparable to observations

  19. Investigation of heavy ions diffusion under the influence of current-driven mechanism and compositional waves in plasma

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the Hall effect and electric currents, and argue that such diffusion forms chemical inhomogeneities in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. Such current-driven diffusion can be accompanied by the propagation of a particular type of waves which have not been considered earlier. In these waves, the impurity number density oscillare alone and their frequency is determined by the electric currents and sort of impurity ions. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure. Such waves lead to local variations of chemical composition and, hence, can manifest themselves by variations of the emission in spectral lines.

  20. Lamb wave characterization of the effects of long-term thermal-mechanical aging on composite stiffness

    Science.gov (United States)

    Seale, M. D.; Madaras, E. I.

    1999-01-01

    Lamb waves offer a promising method of evaluating damage in composite materials. The Lamb wave velocity is directly related to the material parameters, so an effective tool exists to monitor damage in composites by measuring the velocity of these waves. The Lamb Wave Imager (LWI) uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. In this study, the time-of-flight as well as the elastic stiffnesses D11, D22, A44, and A55 for composite samples which have undergone combined thermal and mechanical aging are obtained. The samples examined include a baseline specimen with 0 cycles, specimens which have been aged 2350 and 3530 cycles at high strain levels, and one specimen aged 3530 cycles at low strain levels.

  1. On Novel Mechanism of a Pump Electromagnetic Wave Absolute Two-Plasmon Parametric Decay Instability Excitation in Tokamak ECRH Experiments

    CERN Document Server

    Gusakov, E Z

    2016-01-01

    Novel mechanism leading to excitation of absolute two plasmon parametric decay instability (TPDI) of a pump extraordinary (X) wave is discussed. It is shown that the upper hybrid (UH) plasmon can be 3D trapped in the presence of both a nonmonotonous density profile and a finite-size pump beam in a plane perpendicular to the plasma inhomogeneity direction. This leads to excitation of the absolute TPDI of the pump X wave, which manifests itself in temporal exponential growth of the trapped daughter UH wave amplitude and is perhaps the most dangerous instability for mm-waves, widely utilized nowadays in tokamak and stellarators for local plasma heating and current drive and being considered for application in ITER.

  2. Higher-order rational solitons and rogue-like wave solutions of the (2 + 1)-dimensional nonlinear fluid mechanics equations

    Science.gov (United States)

    Wen, Xiao-Yong; Yan, Zhenya

    2017-02-01

    The novel generalized perturbation (n, M)-fold Darboux transformations (DTs) are reported for the (2 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation and its extension by using the Taylor expansion of the Darboux matrix. The generalized perturbation (1 , N - 1) -fold DTs are used to find their higher-order rational solitons and rogue wave solutions in terms of determinants. The dynamics behaviors of these rogue waves are discussed in detail for different parameters and time, which display the interesting RW and soliton structures including the triangle, pentagon, heptagon profiles, etc. Moreover, we find that a new phenomenon that the parameter (a) can control the wave structures of the KP equation from the higher-order rogue waves (a ≠ 0) into higher-order rational solitons (a = 0) in (x, t)-space with y = const . These results may predict the corresponding dynamical phenomena in the models of fluid mechanics and other physically relevant systems.

  3. Numerical simulation of mechanisms of deformation,failure and energy dissipation in porous rock media subjected to wave stresses

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The pore characteristics,mineral compositions,physical and mechanical properties of the subarkose sandstones were acquired by means of CT scan,X-ray diffraction and physical tests.A few physical models possessing the same pore characteristics and matrix properties but different porosities compared to the natural sandstones were developed.The 3D finite element models of the rock media with varied porosities were established based on the CT image processing of the physical models and the MIMICS software platform.The failure processes of the porous rock media loaded by the split Hopkinson pressure bar(SHPB) were simulated by satisfying the elastic wave propagation theory.The dynamic responses,stress transition,deformation and failure mechanisms of the porous rock media subjected to the wave stresses were analyzed.It is shown that an explicit and quantitative analysis of the stress,strain and deformation and failure mechanisms of porous rocks under the wave stresses can be achieved by using the developed 3D finite element models.With applied wave stresses of certain amplitude and velocity,no evident pore deformation was observed for the rock media with a porosity less than 15%.The deformation is dominantly the combination of microplasticity(shear strain),cracking(tensile strain) of matrix and coalescence of the cracked regions around pores.Shear stresses lead to microplasticity,while tensile stresses result in cracking of the matrix.Cracking and coalescence of the matrix elements in the neighborhood of pores resulted from the high transverse tensile stress or tensile strain which exceeded the threshold values.The simulation results of stress wave propagation,deformation and failure mechanisms and energy dissipation in porous rock media were in good agreement with the physical tests.The present study provides a reference for analyzing the intrinsic mechanisms of the complex dynamic response,stress transit mode,deformation and failure mechanisms and the disaster

  4. Effects of storage temperature on the mechanical properties of porcine kidney estimated using shear wave elastography.

    Science.gov (United States)

    Ternifi, R; Gennisson, J-L; Tanter, M; Beillas, P

    2013-12-01

    The objective of this study was to evaluate the effects of different conservation techniques on the mechanical properties of the ex vivo porcine kidney in order to select an appropriate conservation protocol to use prior to mechanical testing. Five groups of eight kidneys each were subjected to different methods of conservation: storage at 4°C, -18°C, -34°C and -71°C, for 7 days, or storage at 20°C for 2 days only (as the tissues degraded quickly). Their shear modulus as a function of depth in the organ was evaluated before (fresh) and after conservation using shear wave elastography. Results obtained on fresh kidneys were collected within 6h of death. Freezing lead to a significant decrease (p0.05) in the properties of the renal cortex when stored at 4°C or 20°C. The average moduli in the central region of the kidney (medulla) were much higher than in the cortex and exhibited also exhibited larger specimen to specimen variations. The effects of the conservation method on the central region were not significant. Overall, the results suggest that kidney tissues should not be frozen prior to biomechanical characterization and that inhomogeneity may be important to consider for in biomechanical models.

  5. Supercritical super-Brownian motion with a general branching mechanism and travelling waves

    CERN Document Server

    Kyprianou, A E; Murillo-Salas, A; Ren, Y -X

    2010-01-01

    We consider the classical problem of existence, uniqueness and asymptotics of monotone solutions to the travelling wave equation associated to the parabolic semi-group equation of a super-Brownian motion with a general branching mechanism. Whilst we are strongly guided by the probabilistic reasoning of Kyprianou (2004) for branching Brownian motion, the current paper offers a number of new insights. Our analysis incorporates the role of Seneta-Heyde norming which, in the current setting, draws on classical work of Grey (1974). We give a pathwise explanation of Evans' immortal particle picture (the spine decomposition) which uses the Dynkin-Kuznetsov N-measure as a key ingredient. Moreover, in the spirit of Neveu's stopping lines we make repeated use of Dynkin's exit measures. Additional complications arise from the general nature of the branching mechanism. As a consequence of the analysis we also offer an exact X(log X)^2 moment dichotomy for the almost sure convergence of the so-called derivative martingale...

  6. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    Science.gov (United States)

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  7. Mixing and Restratification in the Upper Ocean: Competing Mechanisms in the Wave-Averaged Boussinesq Equations

    Science.gov (United States)

    Haney, Sean

    The ocean mixed layer serves as buffer through which the deep ocean and atmosphere communicate. Fluxes of heat, momentum, fresh water, and gases must pass through the mixed layer, and phytoplankton flourish most in the mixed layer where light is abundant. The dynamics of the mixed layer influence these fluxes and productivity of phytoplankton by altering the stratification and mean flow. Restratifying hurricane wakes provide a unique setting in which a dramatically perturbed mixed layer is observable from satellite sea surface temperature. Strong horizontal temperature fronts which border these wakes suggest that two and three dimensional, adiabatic processes play a role. These observations provide the necessary parameters to estimate wake restratification timescales by surface heat fluxes (SF), Ekman buoyancy fluxes (EBF), and mixed layer eddies (MLEs). In the four wakes observed, the timescales for SF and EBF were comparable, while MLEs were much slower. The restratification time for MLEs is reduced for deeper and narrower wakes compared with other mechanisms. Therefore, stronger mixed layer fronts make MLEs competitive with surface heat and wind forcing. Fronts are influenced by winds, waves (Langmuir circulations; LC), MLEs, and symmetric instabilities (SI). The wave averaged (Stokes drift) effects on MLEs are subtle, with aligned (anti-aligned) Stokes and geostrophic flows yielding a slight increase (decrease) in wavenumber and growth rate. Frontal effects on LC are very weak, with the primary result confirming that increased vertical stratification suppresses LC. The effect of Stokes drift on SI is profound. It changes the background flow necessary for SI, and it alters the structure of the SI themselves. Analytic stability criteria show that iii SI exist when the Ertel potential vorticity (PV) is negative. When the Stokes drift is aligned (anti-aligned) with the geostrophic shear, the PV is increased (reduced). This PV criterion is confirmed in more

  8. Mechanisms underlying the endothelium-dependent vasodilatory effect of an aqueous extract of Elaeis Guineensis Jacq. (Arecaceae) in porcine coronary artery rings.

    Science.gov (United States)

    Ndiaye, Mamadou; Anselm, Eric; Séne, Madièye; Diatta, Williams; Dièye, Amadou Moctar; Faye, Babacar; Schini-Kerth, Valérie B

    2009-12-30

    This study was undertaken to investigate the vasodilatory effect of an aqueous extract of Elaeis guineensis Jacq (EGE) in the porcine coronary artery and elicit its possible mechanism(s) of action. Vascular effects of crude extract of dried and powdered leaves of Elaeis guineensis were evaluated on isolated coronary arteries on organ chambers. Determination of eNOS expression and the phosphorylation level of eNOS were determined by Western blot analysis. In the presence of indomethacin, EGE caused pronounced relaxations in endothelium-intact but not in endothelium-denuded coronary artery rings. Relaxations to EGE were significantly reduced by N(ω)-nitro-L-arginine (L-NA, a competitive inhibitor of NO synthase), slightly but not significantly by charybdotoxin plus apamin (two potent inhibitors of EDHF-mediated responses) and abolished by the combination of L-NA and charybdotoxin plus apamin. Relaxations to EGE were abolished by the membrane permeant, SOD mimetic, MnTMPyP, and significantly reduced by wortmannin, an inhibitor of PI3-kinase. Exposure of endothelial cells to EGE increased the phosphorylation level of eNOS at Ser1177 in a time and concentration-dependent manner. MnTMPyP abolished the EGE-induced phosphorylation of eNOS.In conclusion, the obtained data indicate that EGE induces pronounced endothelium-dependent relaxations of the porcine coronary artery, which involve predominantly NO. The stimulatory effect of EGE on eNOS involves the redox-sensitive phosphorylation of eNOS at Ser1177 most likely via the PI3-kinase pathway.

  9. Research Progress of Extracorporeal Cardiac Shock Wave Therapy in Treating Coronary Artery Disease%体外心脏震波治疗冠心病的疗效研究进展

    Institute of Scientific and Technical Information of China (English)

    彭云珠; 杨萍

    2011-01-01

    Extracorporeal cardiac shock wave therapy (CSWT) is an effective and noninvasive therapeutic strategy for coronary artery disease. Additionally, it can enhance ischemic myocardium angiogenesis, improve ventricular remodeling after myocardial infarction, and it has been shown to relieve patient symptoms without side-effects. This article presents the history of CSWT in coronary artery disease, and reviews the development of the therapy and the assessment of the curative effects of CSWT.%体外心脏震波治疗是近年来治疗冠心病的一个安全无创的新方法.研究表明它能促进血管再生,改善心肌梗死后心室重构以及慢性心肌缺血患者症状,现对心脏震波治疗冠心病的疗效研究进展做一综述.

  10. Effect of short-term exercise on brachial ankle artery pulse wave velocity in patients with coronary artery disease after PCI%短时运动对冠状动脉介入治疗术后冠心病患者肱动脉踝动脉脉搏波速度的影响

    Institute of Scientific and Technical Information of China (English)

    王浩; 张丽; 张亚晶; 王海军

    2012-01-01

    Objective To study the effect of short-term exercise on brachial ankle artery pulse wave velocity(baPWV) in patients with coronary artery disease after PCI. Methods Sixty-nine male patients with cornary artery disease after PCI were enrolled in this study. Their baPWV was measured 10 minutes after they underwent treadmill test with modified Bruce program. Results The mean arterial pressure and baPWV were significantly lower after exercise than before exer-cise(97. 26±11.51 mm Hg vs 91. 33 + 9. 64 mm Hg, 1421. 84 + 224.14 cm/s vs 1340.25 + 218. 16 cm/s,P0. 05). Conclusion Short-term exercise can effectively improve the arterial stiffness in patients with coronary artery disease.%目的 探讨短时运动对PCI术后冠心病患者肱动脉-踝动脉脉搏波速度(brachial-ankle artery pulse wave velocity,baPWV)的影响.方法 选择PCI术后常规复查的男性冠心病患者69例,平板运动试验采用改良Bruce方案,试验前及试验结束后10 min测量患者baPWV值.结果 患者短时运动后平均动脉压和baPWV值较运动前明显下降[(97.26±11.51)mm Hg vs(91.33±9.64)mm Hg(1 mm Hg=0.133 kPa),(1421.84±224.14) cm/svs (1340.25±218.16) cm/s],差异有统计学意义(P<0.01);收缩压和舒张压较运动前有所下降,但差异无统计学意义(P>0.05).结论 短时运动可以有效改善冠心病患者的动脉僵硬度.

  11. An alternative view on the role of the β-effect in the Rossby wave propagation mechanism

    Directory of Open Access Journals (Sweden)

    Eyal Heifetz

    2014-11-01

    Full Text Available The role of the β-effect in the Rossby wave propagation mechanism is examined in the linearised shallow water equations directly in momentum–height variables, without recourse to potential vorticity (PV. Rigorous asymptotic expansion of the equations, with respect to the small non-dimensionalised β parameter, reveals in detail how the Coriolis force acting on the small ageostrophic terms translates the geostrophic leading-order solution to propagate westward in concert. This information cannot be obtained directly from the conventional PV perspective on the propagation mechanism. Furthermore, a comparison between the β-effect in planetary Rossby waves and the sloping-bottom effect in promoting topographic Rossby waves shows that the ageostrophic terms play different roles in the two cases. This is despite the fact that from the PV viewpoint whether the advection of mean PV gradient is set up by changes in planetary vorticity or by mean depth is inconsequential.

  12. Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease.

    Science.gov (United States)

    Beyer, Andreas M; Zinkevich, Natalya; Miller, Bradley; Liu, Yanping; Wittenburg, April L; Mitchell, Michael; Galdieri, Ralph; Sorokin, Andrey; Gutterman, David D

    2017-01-01

    In microvessels of patients with coronary artery disease (CAD), flow-mediated dilation (FMD) is largely dependent upon the endothelium-derived hyperpolarizing factor H2O2. The goal of this study is to examine the influence of age and presence or absence of disease on the mechanism of FMD. Human coronary or adipose arterioles (~150 µm diameter) were prepared for videomicroscopy. The effect of inhibiting COX [indomethacin (Indo) or NOS (L-NAME), eliminating H2O2 (polyethylene glycol-catalase (PEG-CAT)] or targeting a reduction in mitochondrial ROS with scavengers/inhibitors [Vitamin E (mtVitamin E); phenylboronic acid (mtPBA)] was determined in children aged 0-18 years; young adults 19-55 years; older adults >55 years without CAD, and similarly aged adults with CAD. Indo eliminated FMD in children and reduced FMD in younger adults. This response was mediated mainly by PGI2, as the prostacyclin-synthase-inhibitor trans-2-phenyl cyclopropylamine reduced FMD in children and young adults. L-NAME attenuated dilation in children and younger adults and eliminated FMD in older adults without CAD, but had no effect on vessels from those with CAD, where mitochondria-derived H2O2 was the primary mediator. The magnitude of dilation was reduced in older compared to younger adults independent of CAD. Exogenous treatment with a sub-dilator dose of NO blocked FMD in vessels from subjects with CAD, while prolonged inhibition of NOS in young adults resulted in a phenotype similar to that observed in disease. The mediator of coronary arteriolar FMD evolves throughout life from prostacyclin in youth, to NO in adulthood. With the onset of CAD, NO-inhibitable release of H2O2 emerges as the exclusive mediator of FMD. These findings have implications for use of pharmacological agents, such as nonsteroidal anti-inflammatory agents in children and the role of microvascular endothelium in cardiovascular health.

  13. Dynamic analysis of propulsion mechanism directly driven by wave energy for marine mobile buoy

    Science.gov (United States)

    Yu, Zhenjiang; Zheng, Zhongqiang; Yang, Xiaoguang; Chang, Zongyu

    2016-07-01

    Marine mobile buoy(MMB) have many potential applications in the maritime industry and ocean science. Great progress has been made, however the technology in this area is far from maturity in theory and faced with many difficulties in application. A dynamic model of the propulsion mechanism is very necessary for optimizing the parameters of the MMB, especially with consideration of hydrodynamic force. The principle of wave-driven propulsion mechanism is briefly introduced. To set a theory foundation for study on the MMB, a dynamic model of the propulsion mechanism of the MMB is obtained. The responses of the motion of the platform and the hydrofoil are obtained by using a numerical integration method to solve the ordinary differential equations. A simplified form of the motion equations is reached by omitting terms with high order small values. The relationship among the heave motion of the buoy, stiffness of the elastic components, and the forward speed can be obtained by using these simplified equations. The dynamic analysis show the following: The angle of displacement of foil is fairly small with the biggest value around 0.3 rad; The speed of mobile buoy and the angle of hydrofoil increased gradually with the increase of heave motion of buoy; The relationship among heaven motion, stiffness and attack angle is that heave motion leads to the angle change of foil whereas the item of speed or push function is determined by vertical velocity and angle, therefore, the heave motion and stiffness can affect the motion of buoy significantly if the size of hydrofoil is kept constant. The proposed model is provided to optimize the parameters of the MMB and a foundation is laid for improving the performance of the MMB.

  14. Viscoelastic characterization of elliptical mechanical heterogeneities using a semi-analytical shear-wave scattering model for elastometry measures.

    Science.gov (United States)

    Montagnon, Emmanuel; Hadj-Henni, Anis; Schmitt, Cédric; Cloutier, Guy

    2013-04-07

    This paper presents a semi-analytical model of shear wave scattering by a viscoelastic elliptical structure embedded in a viscoelastic medium, and its application in the context of dynamic elastography imaging. The commonly used assumption of mechanical homogeneity in the inversion process is removed introducing a priori geometrical information to model physical interactions of plane shear waves with the confined mechanical heterogeneity. Theoretical results are first validated using the finite element method for various mechanical configurations and incidence angles. Secondly, an inverse problem is formulated to assess viscoelastic parameters of both the elliptic inclusion and its surrounding medium, and applied in vitro to characterize mechanical properties of agar-gelatin phantoms. The robustness of the proposed inversion method is then assessed under various noise conditions, biased geometrical parameters and compared to direct inversion, phase gradient and time-of-flight methods. The proposed elastometry method appears reliable in the context of estimating confined lesion viscoelastic parameters.

  15. End-inspiratory rebreathing reduces the end-tidal to arterial PCO2 gradient in mechanically ventilated pigs

    NARCIS (Netherlands)

    Fierstra, Jorn; Machina, Matthew; Battisti-Charbonney, Anne; Duffin, James; Fisher, Joseph Arnold; Minkovich, Leonid

    2011-01-01

    Noninvasive monitoring of the arterial partial pressures of CO2 (PaCO2) of critically ill patients by measuring their end-tidal partial pressures of CO2 (PetCO(2)) would be of great clinical value. However, the gradient between PetCO(2) and PaCO2 (Pet-aCO(2)) in such patients typically varies over a

  16. Proteome Analysis of Human Arterial Tissue Discloses Associations Between the Vascular Content of Small Leucine-Rich Repeat Proteoglycans and Pulse Wave Velocity

    DEFF Research Database (Denmark)

    Lyck Hansen, Maria; Beck, Hans Christian; Irmukhamedov, Akhmadjon

    2015-01-01

    .0079; Fisher exact test). Three other ECM proteins were differentially regulated, that is, collagen, type VIII, α-1 and α-2 and collagen, type IV, α-1. Several proteins related to smooth muscle cell function and structure were also found in different amounts between the 2 groups. CONCLUSIONS: Changes......OBJECTIVES: We hypothesized that arterial stiffness is associated with changes in the arterial protein profile, particularly of extracellular matrix components. We aimed at determining differentially expressed proteins by quantitative proteome analysis in arterial tissue from patients...... spectrometry/mass spectrometry. Of 418 quantified proteins, 28 were differentially expressed between the groups with high and low PWV (P

  17. Connecting the grain-shearing mechanism of wave propagation in marine sediments to fractional calculus

    CERN Document Server

    Pandey, Vikash

    2015-01-01

    An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that...

  18. The formation mechanism of defects, spiral wave in the network of neurons.

    Science.gov (United States)

    Wu, Xinyi; Ma, Jun

    2013-01-01

    A regular network of neurons is constructed by using the Morris-Lecar (ML) neuron with the ion channels being considered, and the potential mechnism of the formation of a spiral wave is investigated in detail. Several spiral waves are initiated by blocking the target wave with artificial defects and/or partial blocking (poisoning) in ion channels. Furthermore, possible conditions for spiral wave formation and the effect of partial channel blocking are discussed completely. Our results are summarized as follows. 1) The emergence of a target wave depends on the transmembrane currents with diversity, which mapped from the external forcing current and this kind of diversity is associated with spatial heterogeneity in the media. 2) Distinct spiral wave could be induced to occupy the network when the target wave is broken by partially blocking the ion channels of a fraction of neurons (local poisoned area), and these generated spiral waves are similar with the spiral waves induced by artificial defects. It is confirmed that partial channel blocking of some neurons in the network could play a similar role in breaking a target wave as do artificial defects; 3) Channel noise and additive Gaussian white noise are also considered, and it is confirmed that spiral waves are also induced in the network in the presence of noise. According to the results mentioned above, we conclude that appropriate poisoning in ion channels of neurons in the network acts as 'defects' on the evolution of the spatiotemporal pattern, and accounts for the emergence of a spiral wave in the network of neurons. These results could be helpful to understand the potential cause of the formation and development of spiral waves in the cortex of a neuronal system.

  19. The formation mechanism of defects, spiral wave in the network of neurons.

    Directory of Open Access Journals (Sweden)

    Xinyi Wu

    Full Text Available A regular network of neurons is constructed by using the Morris-Lecar (ML neuron with the ion channels being considered, and the potential mechnism of the formation of a spiral wave is investigated in detail. Several spiral waves are initiated by blocking the target wave with artificial defects and/or partial blocking (poisoning in ion channels. Furthermore, possible conditions for spiral wave formation and the effect of partial channel blocking are discussed completely. Our results are summarized as follows. 1 The emergence of a target wave depends on the transmembrane currents with diversity, which mapped from the external forcing current and this kind of diversity is associated with spatial heterogeneity in the media. 2 Distinct spiral wave could be induced to occupy the network when the target wave is broken by partially blocking the ion channels of a fraction of neurons (local poisoned area, and these generated spiral waves are similar with the spiral waves induced by artificial defects. It is confirmed that partial channel blocking of some neurons in the network could play a similar role in breaking a target wave as do artificial defects; 3 Channel noise and additive Gaussian white noise are also considered, and it is confirmed that spiral waves are also induced in the network in the presence of noise. According to the results mentioned above, we conclude that appropriate poisoning in ion channels of neurons in the network acts as 'defects' on the evolution of the spatiotemporal pattern, and accounts for the emergence of a spiral wave in the network of neurons. These results could be helpful to understand the potential cause of the formation and development of spiral waves in the cortex of a neuronal system.

  20. Mechanism of Pendulum-type wave phenomenon in deep block rock mass

    Institute of Scientific and Technical Information of China (English)

    WU Hao; FANG Qin; ZHANG Ya-dong; LIU Jin-chun; GONG Zi-ming

    2009-01-01

    Pendulum-type (μ wave) wave is a new type of elastic wave propagated with low frequency and low velocity in deep block rock masses. The μ wave is sharply different from the traditional longitudinal and transverse waves propagated in continuum media and is also a phenomenon of the sign-variable reaction of deep block rock masses to dynamic actions, besides the Anomalous Low Friction (ALF) phenomenon. In order to confirm the existence of the μ wave and study the rule of variation of this μ wave experimentally and theoretically, we first carried out one-dimensional low-speed impact experiments on granite and cement mortar blocks and continuum block models with different characteristic dimensions, based on the multipurpose testing system developed by us independently, The effects of model material and dimensions of models on the propagation properties of 1D stress wave in blocks medium are discussed. Based on a comparison and analysis of the propagation properties (acceleration amplitudes and Fou-rier spectra) of stress wave in these models, we conclude that the fractures in rock mass have considerable effect on the attenuation of the stress wave and retardarce of high frequency waves. We compared our model test data with the data of in-situ measurements from deep mines in Russia and their conclusions. The low-frequency waves occurring in blocks models were validated as Pendu-lum-type wave. The frequencies corresponding to local maxima of spectral density curves of three-directional acceleration satisfied several canonical sequences with the multiple of (√2),most of those frequencies satisfied the quantitative expression(√2)iVP/2△.

  1. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of)

    2015-01-15

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

  2. Characteristics and mechanisms of strain waves generated in rock by cylindrical explosive charges

    Institute of Scientific and Technical Information of China (English)

    刘科伟; 李萧翰; 李夕兵; 姚志华; 舒宗宪; 袁明华

    2016-01-01

    A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation (V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.

  3. Nonlinear wave-wave interactions and wedge waves

    Institute of Scientific and Technical Information of China (English)

    Ray Q.Lin; Will Perrie

    2005-01-01

    A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.

  4. ABOUT THE WAVE MECHANISM OF ACTIVATION OF FAULTS IN SEISMIC ZONES OF THE LITHOSPHERE IN MONGOLIA

    Directory of Open Access Journals (Sweden)

    M. G. Mel’nikov

    2015-09-01

    Full Text Available The study is focused on earthquake migrations along active faults in seismic zones of Mongolia. The earthquake migrations are interpreted as a result of the influence of deformational waves. Vector velocities and other parameters of the deformational waves are studied. Based on data from largescale maps, local faults are compared, and differences and similarities of parameters of waves related to faults of different ranks are described.

  5. Drift and breakup of spiral waves in reaction–diffusion–mechanics systems

    OpenAIRE

    Panfilov, A. V.; Keldermann, R.H.; Nash, M. P.

    2007-01-01

    Rotating spiral waves organize excitation in various biological, physical, and chemical systems. They underpin a variety of important phenomena, such as cardiac arrhythmias, morphogenesis processes, and spatial patterns in chemical reactions. Important insights into spiral wave dynamics have been obtained from theoretical studies of the reaction–diffusion (RD) partial differential equations. However, most of these studies have ignored the fact that spiral wave rotation is often accompanied by...

  6. Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves.

    Science.gov (United States)

    Onorato, M; Osborne, A R; Serio, M

    2006-01-13

    Here we consider a simple weakly nonlinear model that describes the interaction of two-wave systems in deep water with two different directions of propagation. Under the hypothesis that both sea systems are narrow banded, we derive from the Zakharov equation two coupled nonlinear Schrödinger equations. Given a single unstable plane wave, here we show that the introduction of a second plane wave, propagating in a different direction, can result in an increase of the instability growth rates and enlargement of the instability region. We discuss these results in the context of the formation of rogue waves.

  7. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    Science.gov (United States)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  8. [Experiments on the mechanism of action of vascular spasmolytic agents. II. Action of nitroprusside sodium, nitroglycerin, prenylamine and verapamil on the lanthanum contracture of isolated coronary arteries].

    Science.gov (United States)

    Fermum, R; Klinner, U; Meisel, P

    1976-01-01

    On isolated coronary arteries of cattle, lanthanum causes after preceding calcium depletion by EGTA a contracture which is independent of the presence of extracellular calcium. Nitroprusside sodium and nitroglycerol act on this contracture strongly relaxing in the same concentrations that were active on the potassium contracture. In contrast, a very low spasmolytic effect is demonstrable for verapamil on the lanthanum contracture, and prenylamine is without any statistically significant influence. Nitroprusside sodium and nitroglycerol and act by a mechanism entirely different from that of verapamil and prenylamine.

  9. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis.

    Science.gov (United States)

    Welch, Tré R; Eberhart, Robert C; Banerjee, Subhash; Chuong, Cheng-Jen

    2016-03-01

    Wall injury is observed during stent expansion within atherosclerotic arteries, related in part to stimulation of the inflammatory process. Wall stress and strain induced by stent expansion can be closely examined by finite element analysis (FEA), thus shedding light on procedure-induced sources of inflammation. The purpose of this work was to use FEA to examine the interaction of a coiled polymer stent with a plaque-containing arterial wall during stent expansion. An asymmetric fibrotic plaque-containing arterial wall model was created from intravascular ultrasound (IVUS) images of a diseased artery. A 3D model for a coil stent at unexpanded state was generated in SolidWorks. They were imported into ANSYS for FEA of combined stent expansion and fibrotic plaque-distortion. We simulated the stent expansion in the plaqued lumen by increasing balloon pressure from 0 to 12 atm in 1 atm step. At increasing pressure, we examined how the expanding stent exerts forces on the fibrotic plaque and vascular wall components, and how the latter collectively resist and balance the expansive forces from the stent. Results show the expanding coiled stent creates high stresses within the plaque and the surrounding fibrotic capsule. Lower stresses were observed in adjacent medial and adventitial layers. High principal strains were observed in plaque and fibrotic capsule. The results suggest fibrotic capsule rupture might occur at localized regions. The FEA/IVUS method can be adapted for routine examination of the effects of the expansion of selected furled stents against IVUS-reconstructed diseased vessels, to improve stent deployment practices.

  10. Teaching about Mechanical Waves and Sound with a Tuning Fork and the Sun

    Science.gov (United States)

    Leccia, Silvio; Colantonio, Arturo; Puddu, Emanuella; Galano, Silvia; Testa, Italo

    2015-01-01

    Literature in "Physics Education" has shown that students encounter many difficulties in understanding wave propagation. Such difficulties lead to misconceptions also in understanding sound, often used as context to teach wave propagation. To address these issues, we present in this paper a module in which the students are engaged in…

  11. Secondary microseism generation mechanisms and microseism derived ocean wave parameters, NE Atlantic, West of Ireland.

    Science.gov (United States)

    Donne, S. E.; Bean, C. J.; Lokmer, I.; Nicolau, M.; O'Neill, M.

    2014-12-01

    Ocean waves, driven by atmospheric processes, generate faint continuous Earth vibrations known as microseisms (Bromirski, 1999). Under certain conditions, ocean waves travelling in opposite directions may interact with one another producing a partial or full standing wave. This wave-wave interaction produces a pressure profile, unattenuated with depth, which exerts a pressure change at the seafloor, resulting in secondary microseisms in the 0.1-0.33 Hz band. There are clear correlations between microseism amplitude and storm and ocean wave intensity. We aim to determine ocean wave heights in the Northeast Atlantic offshore Ireland at individual buoy locations, using terrestrially recorded microseism signals. Two evolutionary approaches are used: Artificial Neural Networks (ANN) and Grammatical Evolution (GE). These systems learn to interpret particular input patterns and corresponding outputs and expose the often complex underlying relationship between them. They learn by example and are therefore entirely data driven so data selection is extremely important for the success of the methods. An analysis and comparison of the performance of these methods for a five month period in 2013 will be presented showing that ocean wave characteristics may be reconstructed using microseism amplitudes, adopting a purely data driven approach. There are periods during the year when the estimations made from both the GE and ANN are delayed in time by 10 to 20 hours when compared to the target buoy measurements. These delays hold important information about the totality of the conditions needed for microseism generation, an analysis of which will be presented.

  12. Analysis of Wave Propagation in Mechanical Continua Using a New Variational Approach

    Science.gov (United States)

    Chakraborty, Goutam

    2016-06-01

    In this paper a new variational principle is presented for studying various wave propagation phenomena without explicitly deriving the equations of motion. The method looks for steady state solutions of linear or non-linear partial differential equations that admit wave-like solutions. Dispersion relations of plane waves propagating in unbounded continuous media, transmission and reflection coefficients of wave incident on the boundary of two semi-infinite media and wave impedance and mobility in an excited medium are studied with the help of the same principle. Numerous examples are given to clarify the method adopted showing distinct advantages over the traditional methods. The scientific insights that this principle provides are also highlighted.

  13. Heritability of cilioretinal arteries

    DEFF Research Database (Denmark)

    Taarnhøj, Nina Charlotte; Munch, Inger C; Kyvik, Kirsten O;

    2005-01-01

    PURPOSE: To determine whether the presence of one or more cilioretinal arteries, a distinct element of the pattern of fundus vessels, is genetically programmed, influenced by environmental factors, or the result of random mechanisms of vascular development. METHODS: The fundi of 112 pairs...... environmental factors. CONCLUSIONS: The presence or absence of one or more cilioretinal arteries in healthy persons is markedly influenced by genetic factors....

  14. Radial frequency stimuli and sine-wave gratings seem to be processed by distinct contrast brain mechanisms

    Directory of Open Access Journals (Sweden)

    M.L.B. Simas

    2005-03-01

    Full Text Available An assumption commonly made in the study of visual perception is that the lower the contrast threshold for a given stimulus, the more sensitive and selective will be the mechanism that processes it. On the basis of this consideration, we investigated contrast thresholds for two classes of stimuli: sine-wave gratings and radial frequency stimuli (i.e., j0 targets or stimuli modulated by spherical Bessel functions. Employing a suprathreshold summation method, we measured the selectivity of spatial and radial frequency filters using either sine-wave gratings or j0 target contrast profiles at either 1 or 4 cycles per degree of visual angle (cpd, as the test frequencies. Thus, in a forced-choice trial, observers chose between a background spatial (or radial frequency alone and the given background stimulus plus the test frequency (1 or 4 cpd sine-wave grating or radial frequency. Contrary to our expectations, the results showed elevated thresholds (i.e., inhibition for sine-wave gratings and decreased thresholds (i.e., summation for radial frequencies when background and test frequencies were identical. This was true for both 1- and 4-cpd test frequencies. This finding suggests that sine-wave gratings and radial frequency stimuli are processed by different quasi-linear systems, one working at low luminance and contrast level (sine-wave gratings and the other at high luminance and contrast levels (radial frequency stimuli. We think that this interpretation is consistent with distinct foveal only and foveal-parafoveal mechanisms involving striate and/or other higher visual areas (i.e., V2 and V4.

  15. P-wave tomographic images beneath southeastern Tibet:Investigating the mechanism of the 2008 Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We used 71670 P-wave arrival times from 3594 earthquakes recorded by the Sichuan and Yunnan seismic networks to determine the three-dimensional P-wave velocity structure in the crust and uppermost mantle beneath the southeastern Tibetan Plateau. Our results show that prominent low P-wave velocity (low-Vp) anomalies exist in the midto lower crust of the Song- pan-Ganze and Sichuan-Yunnan blocks. In contrast, a high P-wave velocity (high-Vp) anomaly is resolved in the middle and lower crust beneath the Sichuan Basin. Our tomographic results provide seismic evidence for a dynamic model of lower crustal flow. Ongoing lower crustal flow beneath the central and eastern Tibetan Plateau abuts against the mechanically strong Si- chuan Basin resulting in accumulated strain in the Longmen Shan region. When a critical accumulation of strain energy was reached, its sudden release led to the occurrence of 2008 Wenchuan earthquake. Pronounced low-Vp anomalies are observed in the uppermost mantle in the region south of ~26°N. Combining these results with shear-wave splitting investigations, we suggest that the flow of asthenospheric material has impacted the velocity structure of the uppermost mantle and caused the thinning of the southwestern Yangtze Craton.

  16. Acute arterial occlusion - kidney

    Science.gov (United States)

    Acute renal arterial thrombosis; Renal artery embolism; Acute renal artery occlusion; Embolism - renal artery ... kidney can often result in permanent kidney failure. Acute arterial occlusion of the renal artery can occur after injury or trauma to ...

  17. The structural factor of hypertension: large and small artery alterations.

    Science.gov (United States)

    Laurent, Stéphane; Boutouyrie, Pierre

    2015-03-13

    Pathophysiological studies have extensively investigated the structural factor in hypertension, including large and small artery remodeling and functional changes. Here, we review the recent literature on the alterations in small and large arteries in hypertension. We discuss the possible mechanisms underlying these abnormalities and we explain how they accompany and often precede hypertension. Finally, we propose an integrated pathophysiological approach to better understand how the cross-talk between large and small artery changes interacts in pressure wave transmission, exaggerates cardiac, brain and kidney damage, and lead to cardiovascular and renal complications. We focus on patients with essential hypertension because this is the most prevalent form of hypertension, and describe other forms of hypertension only for contrasting their characteristics with those of uncomplicated essential hypertension.

  18. Generation of ROS mediated by mechanical waves (ultrasound) and its possible applications.

    Science.gov (United States)

    Duco, Walter; Grosso, Viviana; Zaccari, Daniel; Soltermann, Arnaldo T

    2016-10-15

    The thermal decomposition of 9,10 diphenylanthracene peroxide (DPAO2) generates DPA and a mix of triplet and singlet molecular oxygen. For DPAO2 the efficiency to produce singlet molecular oxygen is 0.35. On the other hand, it has shown that many thermal reactions can be carried out through the interaction of molecules with ultrasound. Ultrasound irradiation can create hydrodynamic stress (sonomechanical process), inertial cavitation (pyrolitic process) and long range effects mediated by radicals or ROS. Sonochemical reactions can be originated by pyrolytic like process, shock mechanical waves, thermal reactions and radical and ROS mediated reactions. Sonolysis of pure water can yield hydrogen or hydroxyl radicals and hydrogen peroxide (ROS). When DPAO2 in 1,4 dioxane solution is treated with 20 or 24kHz and different power intensity the production of molecular singlet oxygen is observed. Specific scavengers like tetracyclone (TC) are used to demonstrate it. The efficiency now is 0.85 showing that the sonochemical process is much more efficient that the thermal one. Another endoperoxide, artemisinin was also studied. Unlike the concept of photosensitizer of photodynamic therapy, in spite of large amount of reported results in literature, the term sonosensitizer and the sonosensitization process are not well defined. We define sonosensitized reaction as one in which a chemical species decompose as consequence of cavitation phenomena producing ROS or other radicals and some other target species does undergo a chemical reaction. The concept could be reach rapidly other peroxides which are now under experimental studies. For artemisinin, an important antimalarian and anticancer drug, was established that ultrasound irradiation increases the effectiveness of the treatment but without any explanation. We show that artemisinin is an endoperoxide and behaves as a sonosensitizer in the sense of our definition.

  19. Molecular mechanisms of the angiogenic effects of low-energy shock wave therapy: roles of mechanotransduction.

    Science.gov (United States)

    Hatanaka, Kazuaki; Ito, Kenta; Shindo, Tomohiko; Kagaya, Yuta; Ogata, Tsuyoshi; Eguchi, Kumiko; Kurosawa, Ryo; Shimokawa, Hiroaki

    2016-09-01

    We have previously demonstrated that low-energy extracorporeal cardiac shock wave (SW) therapy improves myocardial ischemia through enhanced myocardial angiogenesis in a porcine model of chronic myocardial ischemia and in patients with refractory angina pectoris. However, the detailed molecular mechanisms for the SW-induced angiogenesis remain unclear. In this study, we thus examined the effects of SW irradiation on intracellular signaling pathways in vitro. Cultured human umbilical vein endothelial cells (HUVECs) were treated with 800 shots of low-energy SW (1 Hz at an energy level of 0.03 mJ/mm(2)). The SW therapy significantly upregulated mRNA expression and protein levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS). The SW therapy also enhanced phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) and Akt. Furthermore, the SW therapy enhanced phosphorylation of caveolin-1 and the expression of HUTS-4 that represents β1-integrin activity. These results suggest that caveolin-1 and β1-integrin are involved in the SW-induced activation of angiogenic signaling pathways. To further examine the signaling pathways involved in the SW-induced angiogenesis, HUVECs were transfected with siRNA of either β1-integrin or caveolin-1. Knockdown of either caveolin-1 or β1-integrin suppressed the SW-induced phosphorylation of Erk1/2 and Akt and upregulation of VEGF and eNOS. Knockdown of either caveolin-1 or β1-integrin also suppressed SW-induced enhancement of HUVEC migration in scratch assay. These results suggest that activation of mechanosensors on cell membranes, such as caveolin-1 and β1-integrin, and subsequent phosphorylation of Erk and Akt may play pivotal roles in the SW-induced angiogenesis.

  20. Arterial stiffness as a risk factor for coronary artery disease.

    Science.gov (United States)

    Liao, Josh; Farmer, John

    2014-02-01

    Hypertension is a major modifiable risk factor, and clinical trials have demonstrated that successful reduction of elevated blood pressure to target levels translates into decreased risk for the development of coronary artery disease, stroke, heart failure, and renal failure. The arterial system had previously been regarded as a passive conduit for the transportation of arterial blood to peripheral tissues. The physiologic role the arterial system was greatly expanded by the recognition of the central role of the endothelial function in a variety of physiologic processes. The role of arterial function and structure in cardiovascular physiology was expanded with the development of a variety of parameters that evaluate arterial stiffness. Markers of arterial stiffness have been correlated with cardiovascular outcomes, and have been classified as an emerging risk factor that provides prognostic information beyond standard stratification strategies involving hypertension, diabetes, obesity, dyslipidemia and smoking. Multiple epidemiologic studies have correlated markers of arterial stiffness such as pulse-wave velocity, augmentation index and pulse pressure with risk for the development of fatal and nonfatal cardiovascular events. Additionally, measurements of arterial stiffness had clarified the results of clinical trials that demonstrated differing impacts on clinical outcomes, despite similar reductions in blood pressure, as measured by brachial and sphygmomanometry.

  1. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves

    Science.gov (United States)

    Restrepo, Simon; Basler, Konrad

    2016-08-01

    Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies.

  2. Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves.

    Science.gov (United States)

    Restrepo, Simon; Basler, Konrad

    2016-08-09

    Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies.

  3. Weak Equivalence Principle and Propagation of the Wave Function in Quantum Mechanics

    CERN Document Server

    de Matos, Clovis Jacinto

    2010-01-01

    The propagation of the wave function of a particle is characterised by a group and a phase velocity. The group velocity is associated with the particle's classical velocity, which is always smaller than the speed of light, and the phase velocity is associated with the propagation speed of the wave function phase and is treated as being unphysical, since its value is always greater than the speed of light. Here we show, using Sciama's Machian formulation of rest mass energy, that this physical interpretation, for the group and the phase velocity of the wave function, is only valid if the weak equivalence principle strictly holds for the propagating particle, except for the photon. In case this constraint is released the phase velocity of the wave function could acquire a physical meaning in quantum condensates.

  4. Revival of the Phase-Amplitude Description of a Quantum-Mechanical Wave Function

    Science.gov (United States)

    Rawitscher, George

    2017-01-01

    The phase-amplitude description of a wave function is formulated by means of a new linear differential-integral equation, which is valid in the region of turning points. A numerical example for a Coulomb potential is presented.

  5. Experimental study of mechanical properties of liquids under shock wave loading

    Science.gov (United States)

    Bannikova, I. A.; Uvarov, S. V.; Zubareva, A. N.; Utkin, A. V.; Naimark, O. B.

    2016-11-01

    Glycerol and silicone oil were studied experimentally under shock-wave loading conditions at different temperatures and strain rates. It was found that the temperature has a significant influence on the spall strength of glycerol near the point of phase transition and weak influence on the spall strength of silicone oil. The spall strength of the silicone oil does not depend on the strain rate also. Dynamic viscosity of glycerol measured at the wave front found to be strain rate sensitive.

  6. Asynchronous Superimposition Mechanisms of Concurrent Competitve Waves for Hyper-Distributed Hyper-Parallel Heuristic Problem Solving

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper presents a new approach to hyper-distributed hyper-parallel heuristic AI problem solving,which is based on asynchronous superimposition of synchronous homogeneous concurrent propagations of competitive waves.In comparison with synchronous homogeneous mechanism,the proposed approach shows better generality,suitability and feasibility for real-time AI processing,especially for the search of implicit AND/OR graphs.

  7. Exploring surface waves vortex interaction in deep water: a classical analog of the Quantum Mechanics Aharonov-Bohm effect

    CERN Document Server

    Vivanco, F

    2002-01-01

    We present a simple experiment to study the interaction of surface waves with a vertical vortex in the deep water regime. Similarly to what occurs in the Quantum Mechanics Aharonov-Bohm problem for electron interacting with a magnetic potential, the effect of the vortex circulation is to introduce dislocations in the wavefront. These defects are explained taken into account the effects of advection on the propagating wavefront, due to the fluid motion. (Author)

  8. New insights into the mechanisms of action of aspirin and its use in the prevention and treatment of arterial and venous thromboembolism

    Directory of Open Access Journals (Sweden)

    Mekaj YH

    2015-09-01

    Full Text Available Ymer H Mekaj,1,2 Fetije T Daci,2 Agon Y Mekaj3 1Institute of Pathophysiology, Faculty of Medicine, University of Prishtina, 2Department of Hemostasis and Thrombosis, National Blood Transfusion Center of Kosovo, 3Clinic of Neurosurgery, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo Abstract: The antithrombotic action of aspirin has long been recognized. Aspirin inhibits platelet function through irreversible inhibition of cyclooxygenase (COX activity. Until recently, aspirin has been mainly used for primary and secondary prevention of arterial antithrombotic events. The aim of this study was to review the literature with regard to the various mechanisms of the newly discovered effects of aspirin in the prevention of the initiation and development of venous thrombosis. For this purpose, we used relevant data from the latest numerous scientific studies, including review articles, original research articles, double-blinded randomized controlled trials, a prospective combined analysis, a meta-analysis of randomized trials, evidence-based clinical practice guidelines, and multicenter studies. Aspirin is used in the prevention of venous thromboembolism (VTE, especially the prevention of recurrent VTE in patients with unprovoked VTE who were treated with vitamin K antagonists (VKAs or with non-vitamin K antagonist oral anticoagulants (NOACs. Numerous studies have shown that aspirin reduces the rate of recurrent VTE in patients, following cessation of VKAs or NOACs. Furthermore, low doses of aspirin are suitable for long-term therapy in patients recovering from orthopedic or other surgeries. Aspirin is indicated for the primary and secondary prevention as well as the treatment of cardiovascular diseases, including acute coronary syndrome, myocardial infarction, peripheral artery disease, acute ischemic stroke, and transient ischemic attack (especially in atrial fibrillation or mechanical heart valves. Aspirin can prevent or treat

  9. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    CERN Document Server

    Yellin-Bergovoy, Ron; Umurhan, Orkan M

    2015-01-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealized two-dimensional model of a proto-stellar disc, characterized in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius r0. The fluid in basic state is prescribed to rotate with a Keplerian profile $\\Omega_k(r)\\sim r^{-3/2}$ modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabilizer irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of...

  10. An Obesity Paradox of Asian Body Mass Index after Cardiac Surgery: Arterial Oxygenations in Duration of Mechanic Ventilation

    Directory of Open Access Journals (Sweden)

    Chiu-Hsia Chang

    2013-01-01

    Full Text Available Background. Numerous studies have documented an obesity paradox that overweight of Caucasian patients has better prognosis after cardiac surgery. This study is to examine Asian patients’ BMI to see whether an obesity paradox exists in DMV after cardiac surgery. Methods. A retrospective study consisted of 428 patients after cardiac surgery from January 2006 to December 2010 in the medical center of Taiwan. The Asian BMI was divided into 3 groups: under-normal weight patients (; , overweight patients (BMI 24 to <27; , and obese patients (; . Multivariable analysis and paired were used to compare all variables. Results. Overweight patients were significantly associated with the shortest DMV. Under-normal weight patients had significantly better oxygenations of AaDO2 and P/F ratio in the DMV; however, they correlated with the longest DMV, older age, more female, lower LVSV, higher BUN, more dialysis-dependent, and poorer outcomes, namely, 1-year mortality, HAP, reintubation, tracheotomy, and LOS. Conclusions. Asian overweight patients after cardiac surgery have better prognosis. Under-normal weight patients have higher risk factors, longer DMV, and poorer outcomes; even though they have better arterial oxygenations, they seem to need better arterial oxygenations for successful weaning ventilator.

  11. Mechanism responsible for D-transposition of the great arteries: Is this part of the spectrum of right isomerism?

    Science.gov (United States)

    Nakajima, Yuji

    2016-09-01

    D-transposition of the great arteries (TGA) is one of the most common conotruncal heart defects at birth and is characterized by a discordant ventriculoarterial connection with a concordant atrioventricular connection. The morphological etiology of TGA is an inverted or arrested rotation of the heart outflow tract (OFT, conotruncus), by which the aorta is transposed in the right ventral direction to the pulmonary trunk. The rotational defect of the OFT is thought to be attributed to hypoplasia of the subpulmonic conus, which originates from the left anterior heart field (AHF) residing in the mesodermal core of the first and second pharyngeal arches. AHF, especially on the left, at the early looped heart stage (corresponding to Carnegie stage 10-11 in the human embryo) is one of the regions responsible for the impediment that causes TGA morphology. In human or experimentally produced right isomerism, malposition of the great arteries including D-TGA is frequently associated. Mutations in genes involving left-right (L-R) asymmetry, such as NODAL, ACTRIIB and downstream target FOXH1, have been found in patients with right isomerism as well as in isolated TGA. The downstream pathways of Nodal-Foxh1 play a critical role not only in L-R determination in the lateral plate mesoderm but also in myocardial specification and differentiation in the AHF, suggesting that TGA is a phenotype in heterotaxia as well as the primary developmental defect of the AHF.

  12. Experimental study and constitutive modelling of the passive mechanical properties of the porcine carotid artery and its relation to histological analysis: Implications in animal cardiovascular device trials.

    Science.gov (United States)

    García, A; Peña, E; Laborda, A; Lostalé, F; De Gregorio, M A; Doblaré, M; Martínez, M A

    2011-07-01

    The present study focusses on the determination, comparison and constitutive modelling of the passive mechanical properties of the swine carotid artery over very long stretches in both proximal and distal regions. Special attention is paid to the histological and mechanical variations of these properties depending on the proximity to the heart. The results can have clinical relevance, especially in the research field of intravascular device design. Before the final clinical trials on humans, research in the vascular area is conducted on animal models, swine being the most common due to the similarities between the human and swine cardiovascular systems as well as the fact that the swine size is suitable for testing devices, in this case endovascular carotid systems. The design of devices usually involves numerical techniques, and an important feature is the appropriate modelling of the mechanical properties of the vessel. Fourteen carotid swine arteries were harvested just after sacrifice and cyclic uniaxial tension tests in longitudinal and circumferential directions were performed for distal and proximal samples. The stress-stretch curves obtained were fitted with a hyperelastic anisotropic model. Stress-free configuration states were also analyzed. Finally, human and swine samples were processed in a histological laboratory and images were used to quantify their microconstituents. The statistical analysis revealed significant differences between the mechanical behavior of proximal and distal locations in the circumferential but not in the longitudinal direction. Circumferential direction samples show clear differences both in residual stretches and tensile curves between the two locations, while the features of longitudinal specimens are independent of the axial position. The statistical analysis provides significant evidence of changes depending on the position of the sample, mainly in elastin and SMC quantification.

  13. A New Derivation of the Time-Dependent Schr\\"odinger Equation from Wave and Matrix Mechanics

    CERN Document Server

    Nanni, Luca

    2015-01-01

    An alternative method is proposed for deriving the time dependent Schroedinger equation from the pictures of wave and matrix mechanics. The derivation is of a mixed classical quantum character, since time is treated as a classical variable, thus avoiding any controversy over its meaning in quantum mechanics. The derivation method proposed in this paper requires no ad hoc assumption and avoids going through a second-order differential equation that can be reduced to the well known time-dependent Schroedinger equation only postulating a complex wavefunction with an exponential time dependence, as did by Schroedinger in its original paper of 1926.

  14. Angiotensin II increases nerve-evoked contractions in mouse tail artery by a T-type Ca(2+) channel-dependent mechanism.

    Science.gov (United States)

    Reardon, Trent F; Callaghan, Brid P; Brock, James A

    2015-08-15

    Angiotensin II (Ang II) increases sympathetic nerve-evoked contractions of arterial vessels. Here the mechanisms underlying this effect were investigated in mouse tail artery. Isometrically mounted segments of mouse distal tail artery were used to investigate the effects of endothelium denudation, blocking Ca(2+) channels and inhibiting superoxide signalling on Ang II-induced facilitation of nerve-evoked contractions. In addition, in situ amperometry was used to assess effects of Ang II on noradrenaline release. Ang II (0.1-1nM) increased nerve-evoked contractions but did not change noradrenaline release. Losartan (Ang II type 1 receptor antagonist), but not PD 123319 (Ang II type 2 receptor antagonist), blocked the facilitatory effect of Ang II on nerve-evoked contractions. Ang II increased vascular muscle reactivity to phenylephrine and UK-14304 (α1- and α2-adrenoceptor agonists, respectively). Endothelial denudation increased nerve-evoked contractions and reduced the facilitatory effect of Ang II on these responses. Efonidipine (L- and T-type Ca(2+) channel blocker) and NNC 55-0396 (T-type Ca(2+) channel blocker) also attenuated this effect of Ang II, while nifedipine (L-type Ca(2+) channel blocker) did not. Blockers of superoxide generation/signalling did not change the facilitatory effect of Ang II on nerve-evoked contractions. The findings indicate that Ang II increases the contribution of T-type Ca(2+) channels to neural activation of the vascular muscle. In addition, Ang II appears to reduce the inhibitory influence of the endothelium on nerve-evoked contractions.

  15. Use of Guided Acoustic Waves to Assess the Effects of Thermal-Mechanical Cycling on Composite Stiffness

    Science.gov (United States)

    Seale, Michael D.; Madaras, Eric I.

    2000-01-01

    The introduction of new, advanced composite materials into aviation systems requires it thorough understanding of the long-term effects of combined thermal and mechanical loading. As part of a study to evaluate the effects of thermal-mechanical cycling, it guided acoustic (Lamb) wave measurement system was used to measure the bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system uses a pulse/receive technique that excites an antisymmetric Lamb mode and measures the time-of-flight over a wide frequency range. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the velocity dispersion curve. A series of 16 and 32-ply composite laminates were subjected to it thermal-mechanical loading profile in load frames equipped with special environmental chambers. The composite systems studied were it graphite fiber reinforced amorphous thermoplastic polyimide and it graphite fiber reinforced bismaleimide thermoset. The samples were exposed to both high and low temperature extremes its well as high and low strain profiles. The bending and out-of-plane stiffnesses for composite sample that have undergone over 6,000 cycles of thermal-mechanical loading are reported. The Lamb wave generated elastic stiffness results have shown decreases of up to 20% at 4,936 loading cycles for the graphite/thermoplastic samples and up to 64% at 4,706 loading cycles for the graphite/thermoset samples.

  16. Velocidade da onda de pulso, pressão arterial e adipocitocinas em adultos jovens: estudo do Rio de Janeiro Pulse wave velocity, blood pressure and adipocytokines in young adults: the Rio de Janeiro study

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Pizzi

    2012-01-01

    Full Text Available FUNDAMENTO: Dados sobre a avaliação não invasiva vascular e suas relações com variáveis de risco cardiovascular são escassos em jovens. OBJETIVO: Avaliar a relação entre a velocidade de onda de pulso e a pressão arterial,variáveis antropométricas e metabólicas, incluindo as adipocitocinas, em indivíduos adultos jovens. MÉTODOS: Foram avaliados 96 indivíduos (51 homens do estudo do Rio de Janeiro, de 26 a 35 anos (média 30,09 ± 1,92. Foram obtidos a velocidade de onda de pulso (método Complior, pressão arterial, índice de massa corporal, glicose, perfil lipídico, leptina, insulina, adiponectina e o índice de resistência à insulina HOMA-IR. Os indivíduos foram estratificados em três grupos segundo o tercil da VOP para cada sexo. RESULTADOS: O grupo com maior tercil de VOP mostrou maiores médias de pressão arterial sistólica, pressão arterial diastólica, pressão arterial média, índice de massa corporal, insulina, HOMA-IR e menores médias de adiponectina, além de maiores prevalências de diabetes mellitus/intolerância à glicose e hiperinsulinemia. Houve correlação significativa e positiva da velocidade da onda de pulso com pressão arterial sistólica, pressão arterial diastólica, pressão de pulso e pressão arterial média, índice de massa corporal, e LDL-colesterol e negativa com HDL-colesterol e adiponectina. Em modelo de regressão múltipla, após ajuste do HDL-colesterol, LDL-colesterol e adiponectina para sexo, idade, índice de massa corporal e pressão arterial média, apenas o sexo masculino e a pressão arterial média mantiveram correlação significativa com a velocidade de onda de pulso. CONCLUSÃO: A velocidade de onda de pulso em adultos jovens mostrou relação significativa com variáveis de risco cardiovascular, destacando-se o sexo masculino e a pressão arterial média como importantes variáveis no seu determinismo. Os achados sugerem que a medida da VOP pode ser útil para a

  17. Velocidade da onda de pulso, pressão arterial e adipocitocinas em adultos jovens: estudo do Rio de Janeiro Pulse wave velocity, blood pressure and adipocytokines in young adults: the Rio de Janeiro study

    Directory of Open Access Journals (Sweden)

    Oswaldo Luiz Pizzi

    2013-01-01

    Full Text Available FUNDAMENTO: Dados sobre a avaliação não invasiva vascular e suas relações com variáveis de risco cardiovascular são escassos em jovens. OBJETIVO: Avaliar a relação entre a velocidade de onda de pulso e a pressão arterial,variáveis antropométricas e metabólicas, incluindo as adipocitocinas, em indivíduos adultos jovens. MÉTODOS: Foram avaliados 96 indivíduos (51 homens do estudo do Rio de Janeiro, de 26 a 35 anos (média 30,09 ± 1,92. Foram obtidos a velocidade de onda de pulso (método Complior, pressão arterial, índice de massa corporal, glicose, perfil lipídico, leptina, insulina, adiponectina e o índice de resistência à insulina HOMA-IR. Os indivíduos foram estratificados em três grupos segundo o tercil da VOP para cada sexo. RESULTADOS: O grupo com maior tercil de VOP mostrou maiores médias de pressão arterial sistólica, pressão arterial diastólica, pressão arterial média, índice de massa corporal, insulina, HOMA-IR e menores médias de adiponectina, além de maiores prevalências de diabetes mellitus/intolerância à glicose e hiperinsulinemia. Houve correlação significativa e positiva da velocidade da onda de pulso com pressão arterial sistólica, pressão arterial diastólica, pressão de pulso e pressão arterial média, índice de massa corporal, e LDL-colesterol e negativa com HDL-colesterol e adiponectina. Em modelo de regressão múltipla, após ajuste do HDL-colesterol, LDL-colesterol e adiponectina para sexo, idade, índice de massa corporal e pressão arterial média, apenas o sexo masculino e a pressão arterial média mantiveram correlação significativa com a velocidade de onda de pulso. CONCLUSÃO: A velocidade de onda de pulso em adultos jovens mostrou relação significativa com variáveis de risco cardiovascular, destacando-se o sexo masculino e a pressão arterial média como importantes variáveis no seu determinismo. Os achados sugerem que a medida da VOP pode ser útil para a

  18. The Hagen-Poiseuille, Plane Couette and Poiseuille Flows Linear Instability and Rogue Waves Excitation Mechanism

    Science.gov (United States)

    Chefranov, Sergey; Chefranov, Alexander

    2016-04-01

    Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A

  19. The predominant mechanism of intercellular calcium wave propagation changes during long-term culture of human osteoblast-like cells

    DEFF Research Database (Denmark)

    Henriksen, Zanne; Hiken, Jeffrey F; Steinberg, Thomas H;

    2006-01-01

    Intercellular calcium waves (ICW) are calcium transients that spread from cell to cell in response to different stimuli. We previously demonstrated that human osteoblast-like cells in culture propagate ICW in response to mechanical stimulation by two mechanisms. One mechanism involves autocrine...... assessed by video imaging of Fura-2 loaded cells after 1, 2 and 4 months culture. The P2Y2 receptor and the gap junction protein Cx43 were assessed by Western blot and real-time PCR. In resting conditions, P2Y mediated ICW prevailed and spread rapidly to about 13 cells. P2Y receptor desensitization by ATP......, but as cells differentiate in culture, gap-junction-mediated ICW become more prominent. These results suggest that P2Y receptor-mediated and gap junction-mediated mechanisms of intercellular calcium signaling may play different roles during differentiation of bone-forming cells....

  20. Influence of local mechanical properties of high strength steel from large size forged ingot on ultrasonic wave velocities

    Science.gov (United States)

    Dupont-Marillia, Frederic; Jahazi, Mohamad; Lafreniere, Serge; Belanger, Pierre

    2017-02-01

    In the metallurgical industry, ultrasonic inspection is routinely used for the detection of defects. For the non-destructive inspection of small high strength steel parts, the material can be considered isotropic. However, when the size of the parts under inspection is large, the isotropic material hypothesis does not necessarily hold. The aim of this study is to investigate the effect of the variation in mechanical properties such as grain size, Young's modulus, Poissons ratio, chemical composition on longitudinal and transversal ultrasonic wave velocities. A 2 cm thick slice cut from a 40-ton bainitic steel ingot that was forged and heat treated was divided into 875 parallelepiped samples of 2x4x7 cm3. A metallurgical study has been performed to identify the phase and measure the grain size. Ultrasonic velocity measurements at 2.25 MHz for longitudinal and transversal waves were performed. The original location of the parallelepiped samples in the large forged ingot, and the measured velocities were used to produce an ultrasonic velocity map. Using a local isotropy assumption as well as the local density of the parallelepiped samples calculated from the chemical composition of the ingot provided by a previously published study, Youngs modulus and Poissons ratio were calculated from the longitudinal and transversal wave velocities. Micro-tensile test was used to validate Youngs modulus obtained by the ultrasonic wave velocity and an excellent agreement was observed.

  1. Relation Between Parameters of Myocardial Mechanics and Ventricular Arterial Coupling: A Three-Dimensional Speckle-Tracking Study in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Esmaeilzadeh

    2015-08-01

    Full Text Available Background Understanding the relation between ventricular-arterial coupling (VAC and myocardial mechanical parameters could offer an adjunctive perspective on left ventricular function. Objectives Our aim was to study the relation between VAC and the parameters of myocardial mechanics using three-dimensional speckle-tracking echocardiography (3DSTE. Patients and Methods We studied 68 normal participants (mean age, 35 ± 12.2 y; 36 [53%] males. VAC was measured by the ratio of arterial elastance (Ea to ventricular elastance (Ees. The peak systolic value of longitudinal strain (LS, circumferential strain (CS, radial strain, three-dimensional global strain (3DGS, apical rotation, torsion, and twist and their time to peak were calculated. Results Almost all deformation indices were higher in the women than in the men. LS (r = -0.41, P < 0.01, twist (r = 0.26, P < 0.03, rotation (r = 0.41, P < 0.01, and 3DGS (r = - 0.39, P < 0.01 were associated with age. Although significant associations were found between VAC and Ea or Ees in the men and women, no relation was found between Ea and Ees in both sexes (r = 0.07 in men and r = 0.08 in women. Indeed, VAC had a stronger association with Ea than with Ees (r = 0.708 vs. r = -0.537. Ees and VAC were related to torsion (r = 0.30 vs. r = -0.37; both P < 0.05; and Ea, Ees, and VAC were also associated with CS (r = 0.64, r = -0.45, and r = 0.79; all P < 0.05 and 3DGS (r = -0.55, r = 0.38, and r = -0.64; all P < 0.01. Conclusions Amongst all myocardial mechanical parameters, VAC was related to CS and 3DGS as well as torsion.

  2. Hydrogen peroxide increases nerve-evoked contractions in mouse tail artery by an endothelium-dependent mechanism.

    Science.gov (United States)

    Reardon, Trent F; Brock, James A

    2013-01-05

    Reactive oxygen species contribute to regulating the excitability of vascular smooth muscle. This study investigated the actions of the relatively stable reactive oxygen species, H(2)O(2), on nerve-evoked contractions of mouse distal tail artery. H(2)O(2) (10-100 μM) increased nerve-evoked contractions of isometrically mounted segments of tail artery. Endothelium denudation increased nerve-evoked contractions and abolished the facilitatory effect of H(2)O(2). Inhibition of nitric oxide synthase with L-nitroarginine methyl ester (0.1mM) also increased nerve-evoked contractions and reduced the late phase of H(2)O(2)-induced facilitation. H(2)O(2)-induced facilitation of nerve-evoked contractions depended, in part, on synthesis of prostanoids and was reduced by the cyclooxygenase inhibitor indomethacin (1 μM) and the thromboxane A(2) receptor antagonist SQ 29548 (1 μM). H(2)O(2) increased sensitivity of nerve-evoked contractions to the α(2)-adrenoceptor antagonist idazoxan (0.1 μM) but not to the α(1)-adrenoceptor antagonist prazosin (10nM). Idazoxan and the α(2C)-adrenoceptor antagonist JP 1302 (0.5-1 μM) reduced H(2)O(2)-induced facilitation. H(2)O(2) induced facilitation of nerve-evoked contractions was abolished by the non-selective cation channel blocker SKF-96365 (10 μM), suggesting it depends on Ca(2+) influx. In conclusion, H(2)O(2)-induced increases in nerve-evoked contractions depended on an intact endothelium and were mediated by activating thromboxane A(2) receptors and by increasing the contribution of α(2)-adrenoceptors to these responses.

  3. Variations mechanism in entropy of wave height field and its relation with thermodynamic entropy

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper gives a brief description of annual period and seasonal variation in the wave height field entropy in the northeastern Pacific. A calculation of the quantity of the, received by lithosphere systems in the northern hemisphere is introduced. The wave heat field entropy is compared with the difference in the quantity of the sun's radiation heat. Analysis on the transfer method, period and lag of this seasonal variation led to the conclusion that the annual period and seasonal variation in the entropy of the wave height field in the Northwestern Pacific is due to the seasonal variation of the sun's radiation heat. Furthermore, the inconsistency between thermodynamic entropy and information entropy was studied.

  4. Alterations in vasomotor systems and mechanics of resistance-sized mesenteric arteries from SHR and WKY male rats following in vivo testosterone manipulation

    Directory of Open Access Journals (Sweden)

    Toot Jonathan D

    2012-01-01

    Full Text Available Abstract Background Testosterone (T and the sympathetic nervous system each contribute to the pathology of hypertension. Altered blood vessel reactivity is also associated with the pathology of high blood pressure. The purpose of this study was to examine the effects of T manipulation in the regulation of resistance-sized blood vessel reactivity. Methods Adult spontaneously hypertensive (SHR and Wistar Kyoto (WKY male rats at 8 weeks of age were used. The rats were divided into groups consisting of gonadally intact controls (CONT, castrate with sham implant (CAST and castrate with T implant (CAST + T (n = 6 to 12 per group. Following a short-term period of T treatment (approximately 4 weeks, plasma norepinephrine (NE and plasma T were assessed by performing high-performance liquid chromatography and RIA, respectively. Resistance-sized mesenteric artery reactivity was assessed on a pressurized arteriograph for myogenic reactivity (MYO, phenylephrine (PE responsiveness and passive structural mechanics. Results SHR and WKY males exhibited similar physiological trends in T manipulation, with castration significantly lowering plasma T and NE and T replacement significantly increasing plasma T and NE. T manipulation in general resulted in significant alterations in MYO of second-order mesenteric arteries, with T replacement decreasing MYO in SHR (P P P Conclusions These data suggest that T and NE are involved in a complex interaction with both myogenic reactivity and structural alterations of resistance-sized blood vessels and that these factors likely contribute to the development and maintenance of hypertension.

  5. Anatomical variations in the origins of the celiac axis and the superior mesenteric artery: MDCT angiographic findings and their probable embryological mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Cheng, Cheng; Wang, Lu; Li, Ran; Chen, Jin-hua; Gong, Shui-gen [Institute of Surgery Research, Daping Hospital, Third Military Medical University, Department of Radiology, Chongqing (China)

    2014-08-15

    To identify the spectrum and prevalence of anatomical variations in the origin of the celiac axis (CA), the superior mesenteric artery (SMA) and their major branches by using multidetector computed tomographic (MDCT) angiography. A retrospective evaluation was carried out on 1,500 abdominal MDCT angiography images. The aortic origins of the CA, the SMA and their major branch patterns were investigated. Normal aortic origins of CA and SMA were noted in 1,347 (89.8 %) patients. Seven types of CA and SMA origin variants were identified in 153 (10.2 %) patients. The three most common variations were hepatomesenteric trunk (67 patients, 4.47 %), celiomesenteric trunk (CMT) (51 patients, 3.4 %) and splenomesenteric trunk (18 patients, 1.2 %). An evaluation of CMT was classified as long (34 patients, 66.7 %) or short (17 patients, 33.3 %) subtypes, compared with the length of the common trunk. Further CMT classification was based on the origin of the left gastric artery: subtype I, 26 patients (53.1 %); subtype II, 5 patients (10.2 %); subtype III, 15 patients (30.6 %); subtype IV, 3 patients (6.1 %). Dislocation interruption, incomplete interruption and persistence of the longitudinal anastomosis could be the embryological mechanisms of the variant origins of the CA, the SMA and their major branches. (orig.)

  6. Three-dimensional shear wave imaging based on full-field laser speckle contrast imaging with one-dimensional mechanical scanning.

    Science.gov (United States)

    Chao, Pei-Yu; Li, Pai-Chi

    2016-08-22

    The high imaging resolution and motion sensitivity of optical-based shear wave detection has made it an attractive technique in biomechanics studies with potential for improving the capabilities of shear wave elasticity imaging. In this study we implemented laser speckle contrast imaging for two-dimensional (X-Z) tracking of transient shear wave propagation in agarose phantoms. The mechanical disturbances induced by the propagation of the shear wave caused temporal and spatial fluctuations in the local speckle pattern, which manifested as local blurring. By mechanically moving the sample in the third dimension (Y), and performing two-dimensional shear wave imaging at every scan position, the three-dimensional shear wave velocity distribution of the phantom could be reconstructed. Based on comparisons with the reference shear wave velocity measurements obtained using a commercial ultrasound shear wave imaging system, the developed system can estimate the shear wave velocity with an error of less than 6% for homogeneous phantoms with shear moduli ranging from 1.52 kPa to 7.99 kPa. The imaging sensitivity of our system makes it capable of measuring small variations in shear modulus; the estimated standard deviation of the shear modulus was found to be less than 0.07 kPa. A submillimeter spatial resolution for three-dimensional shear wave imaging has been achieved, as demonstrated by the ability to detect a 1-mm-thick stiff plate embedded inside heterogeneous agarose phantoms.

  7. Impact cratering mechanics - Relationship between the shock wave and excavation flow

    Science.gov (United States)

    Melosh, H. J.

    1985-05-01

    This paper describes the relationship between the shock wave produced by an impact and the excavation flow that opens the crater. The excavation flow velocity is shown to be a nearly constant fraction of the peak particle velocity in the wave. The existence of an excavation flow is due to thermodynamically irreversible processes in the shock. The excavation flow velocity is thus very sensitive to nonideal constitutive effects such as porosity, plastic yielding, and unreversed phase transformations. Cratering computations that do not model these effects correctly may produce misleading results.

  8. Different quantization mechanisms in single-electron pumps driven by surface acoustic waves

    DEFF Research Database (Denmark)

    Utko, P.; Gloos, K.; Hansen, Jørn Bindslev

    2006-01-01

    We have studied the acoustoelectric current in single-electron pumps driven by surface acoustic waves. We have found that in certain parameter ranges two different sets of quantized steps dominate the acoustoelectric current versus gate-voltage characteristics. In some cases, both types of quanti......We have studied the acoustoelectric current in single-electron pumps driven by surface acoustic waves. We have found that in certain parameter ranges two different sets of quantized steps dominate the acoustoelectric current versus gate-voltage characteristics. In some cases, both types...

  9. Mechanical Stimulation (Pulsed Electromagnetic Fields "PEMF" and Extracorporeal Shock Wave Therapy "ESWT") and Tendon Regeneration: A Possible Alternative.

    Science.gov (United States)

    Rosso, Federica; Bonasia, Davide E; Marmotti, Antonio; Cottino, Umberto; Rossi, Roberto

    2015-01-01

    The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP), growth factors, such as vascular endothelial growth factor (VEGF) and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF) and extracorporeal shock wave therapy (ESWT) increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10). Moreover, ESWT increases the expression of growth factors, such as transforming growth factor β(TGF-β), (VEGF), and insulin-like growth factor 1 (IGF1), as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in vitro TGF-β production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW) and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  10. Short-term mechanical circulatory support by veno-arterial extracorporeal membrane oxygenation in the management of cardiogenic shock and end-stage heart failure.

    Science.gov (United States)

    Brugts, Jasper J; Caliskan, Kadir

    2014-02-01

    Despite modern treatment modalities, cardiogenic shock is associated with a very high risk of mortality and morbidity. The short- and long-term survival in patients with cardiogenic shock or end-stage heart failure has improved considerably by recent technological advances in short and long-term mechanical circulatory support devices. For short-term mechanical support, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) has been increasingly used as bridge-to-decision and bridge-to-recovery in cardiogenic shock patients. Long-term mechanical circulatory support devices such as left ventricular assist devices (LVADs) are widely available and play a central role in bridge-to-transplantation in those eligible for heart transplantation (HTX) and as destination therapy (DT) in those not eligible for heart transplantation. Nevertheless, patients with critical cardiogenic shock show a deleterious outcome after LVAD-implantation or HTX with higher mortality, more complications and higher burden on financial resources. These considerations underscore the importance of optimal timing and appropriate patient selection for eventual LVAD therapy. The current report will focus on the immediate management of patients with cardiogenic shock with inotropes, discuss the use of IABP and focus mainly on pivotal choices to be made in the period spanned by short term mechanical circulatory support in patients with refractory cardiogenic shock.

  11. Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices

    Science.gov (United States)

    Tahir, N.; Zelent, M.; Gieniusz, R.; Krawczyk, M.; Maziewski, A.; Wojciechowski, T.; Ding, J.; Adeyeye, A. O.

    2017-01-01

    The effects of shape and geometry of antidot (square, bi-component, and wave-like) lattices (ADLs) on the magnetization reversal processes and magnetic anisotropy has been systematically investigated by magneto-optical Kerr effect based microscopy. Our experimental results were reproduced by micromagnetic simulations, which highlight the qualitative agreement with the experimental results. We have demonstrated that a small antidot in the center of a unit cell in the square ADL is sufficient to induce additional easy axes with large coercive fields. In wave-like patterns, narrow channels connecting smaller and larger antidots (bi-component ADL) further drastically change the anisotropy map, creating the high coercive fields along a wide angular range (90°) of directions parallel to the channels. In simulated results, we have observed formation of periodic domain structures in all ADLs, however, in the case of a wave-like pattern it is most regular and moreover two different periodic patterns are stabilized at different applied magnetic field values. The formation of 360° domain walls were also observed in wave-like ADL where these domains are formed along the lines connecting adjacent larger and smaller antidots, perpendicular to the channels. These findings point out the possibility of exploiting ADLs with complex unit cells in magnonic or spintronic applications.

  12. The Relative Frequency of Rossby Wave Train Triggering Mechanisms Associated with Downstream Development Over Europe

    Science.gov (United States)

    2014-06-01

    diabatic Rossby vortices. 14. SUBJECT TERMS Rossby wave train, downstream development, tropopause polar vortex, warm conveyor belt, diabatic Rossby...extratropical transition of tropical cyclones, and six (16%) by diabatic Rossby vortices. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS...9  3.  Diabatic Rossby Vortex .....................................................................12  4.  Extratropical

  13. A solid-phase mechanism of shock-wave formation of dust particles of heavy metals

    Science.gov (United States)

    Lin, E. E.; Mikhailov, A. L.; Khvorostin, V. N.

    2016-08-01

    The possibility of formation of dust particles in solid as a result of shock-wave destruction of the initial crystalline material structure and subsequent coalescence of atomic clusters (nanoparticles), which leads to the aggregation of mesocrystalline particles (grains) in the shocked layer, is discussed.

  14. Burgulence and Alfv\\'en waves heating mechanism of solar corona

    CERN Document Server

    Mishonov, T M

    2006-01-01

    Heating of magnetized turbulent plasma is calculated in the framework of Burgers turbulence [A.M. Polyakov, Phys. Rev. E. 52, 6183, (1995)]. There is calculated the energy flux of Alfv\\'en waves along the magnetic field. The Alfven waves are considered as intermediary between the turbulent energy and the heat. The derived results are related to wave channel of the heating of solar corona. After incorporating dissipation of convective plasma waves instabilities [G.D. Chagelishvili, R.G. Chanishvili, T.S. Hristov, and J.G. Lominadze, Phys. Rev. E 47, 366 (1993)] and [A.D. Rogava, S.M. Mahajan, G. Bodo, and S. Marsaglia, Astronomy & Astrophysics, 399, 421-431 (2003)] the suggested model of heating can be applied to analysis of the missing viscosity of accretion discs and to reveal why the quasars are the most powerful sources of light in the universe. We suppose that applied Langevin-Burgers approach to turbulence can be helpful for other systems where we have intensive interaction between a stochastic turbu...

  15. Analyzing the Impact of Increasing Mechanical Index and Energy Deposition on Shear Wave Speed Reconstruction in Human Liver.

    Science.gov (United States)

    Deng, Yufeng; Palmeri, Mark L; Rouze, Ned C; Rosenzweig, Stephen J; Abdelmalek, Manal F; Nightingale, Kathryn R

    2015-07-01

    Shear wave elasticity imaging (SWEI) has found success in liver fibrosis staging. This work evaluates hepatic SWEI measurement success as a function of push pulse energy using two mechanical index (MI) values (1.6 and 2.2) over a range of pulse durations. Shear wave speed (SWS) was measured in the livers of 26 study subjects with known or potential chronic liver diseases. Each measurement consisted of eight SWEI sequences, each with different push energy configurations. The rate of successful SWS estimation was linearly proportional to the push energy. SWEI measurements with higher push energy were successful in patients for whom standard push energy levels failed. The findings also suggest that liver capsule depth could be used prospectively to identify patients who would benefit from elevated output. We conclude that there is clinical benefit to using elevated acoustic output for hepatic SWS measurement in patients with deeper livers.

  16. The Effect of Fluid Thermal Expansivity on Thermo-mechanical Solitary Shock Waves in the Underground of Volcanic Domains

    Science.gov (United States)

    Natale, G.

    This work is a further development of the modern thermo-poro-elasticity theory which has recently been applied to understand how fluid-rock coupling dynamics related to unrest episodes in volcanic domains can both determine, and occur with, ground deformation and rock fracturing processes. In particular by reformulating the energy equation, one of the two nonlinear heat-like equations upon which the thermo-poroelasticity theory is based, it is shown here how fluid thermal expansivity may influence fluid migration during its movement through subsurface volcanic porous-per meable horizons. With these new considerations it is found that a recent theory in which fluid-rock coupling dynamics is interpreted in terms of thermal and mechanical solitary shock wave propagation remains valid. However, the natural time scale of the propagating wave is reduced and consequently Darcy's velocity is increased as a result of fluid thermal expansivity.

  17. Speeding up social waves. Propagation mechanisms of shimmering in giant honeybees.

    Directory of Open Access Journals (Sweden)

    Gerald Kastberger

    Full Text Available Shimmering is a defence behaviour in giant honeybees (Apis dorsata, whereby bees on the nest surface flip their abdomen upwards in a Mexican wave-like process. However, information spreads faster than can be ascribed to bucket bridging, which is the transfer of information from one individual to an adjacent one. We identified a saltatoric process that speeds up shimmering by the generation of daughter waves, which subsequently merge with the parental wave, producing a new wave front. Motion patterns of individual "focus" bees (n = 10,894 and their shimmering-active neighbours (n = 459,558 were measured with high-resolution video recording and stereoscopic imaging. Three types of shimmering-active surface bees were distinguished by their communication status, termed "agents": "Bucket-bridging" agents comprised 74.98% of all agents, affected 88.17% of their neighbours, and transferred information at a velocity of v = 0.317±0.015 m/s. "Chain-tail" agents comprised 9.20% of the agents, were activated by 6.35% of their neighbours, but did not motivate others to participate in the wave. "Generator agents" comprised 15.82% of agents, showed abdominal flipping before the arrival of the main wave front, and initiated daughter waves. They affected 6.75% of their neighbourhood and speeded up the compound shimmering process compared to bucket bridging alone by 41.5% to v = 0.514±0.019 m/s. The main direction of shimmering was reinforced by 35.82% of agents, whereas the contribution of the complementing agents was fuzzy. We discuss that the saltatoric process could enable the bees to instantly recruit larger cohorts to participate in shimmering and to respond rapidly to changes in flight direction of preying wasps. A third, non-exclusive explanation is that at a distance of up to three metres from the nest the acceleration of shimmering could notably contribute to the startle response in mammals and birds.

  18. Current status of high on-treatment platelet reactivity in patients with coronary or peripheral arterial disease:Mechanisms,evaluation and clinical implications

    Institute of Scientific and Technical Information of China (English)

    Stavros Spiliopoulos; Georgios Pastromas

    2015-01-01

    Antiplatelet therapy with aspirin or clopidogrel or both is the standard care for patients with proven coronary or peripheral arterial disease,especially those undergoing endovascular revascularization procedures. However,despite the administration of the antiplatelet regiments,some patients still experience recurrent cardiovascular ischemic events. So far,it is well documented by several studies that in vitro response of platelets may be extremely variable. Poor antiplatelet effect of clopidogrel or high on-treatment platelet reactivity(HTPR) is under investigation by numerous recent studies. This review article focuses on methods used for the ex vivo evaluation of HTPR,as well as on the possible underlying mechanisms and the clinical consequences of this entity. Alternative therapeutic options and future directions are also addressed.

  19. Age, hypertension and arterial function.

    Science.gov (United States)

    McEniery, Carmel M; Wilkinson, Ian B; Avolio, Albert P

    2007-07-01

    1. Ageing exerts a marked effect on the cardiovascular system and, in particular, the large arteries. Using a variety of techniques to assess arterial stiffness, many cross-sectional studies have demonstrated a significant relationship between age and aortic stiffness, although the age-related changes observed in peripheral arteries appear to be less marked. 2. The relationship between arterial stiffness and hypertension is more complex. The distending, or mean arterial, pressure is an important confounder of measurements of arterial stiffness and, therefore, must be taken into consideration when assessing arterial stiffness in hypertensive subjects or investigating the effect of antihypertensive agents. Current methods for correcting for differences in distending pressure involve pharmacological manipulation, statistical correction or mathematical manipulation of stiffness indices. 3. Many studies have provided evidence that both peripheral (muscular) and central (elastic) arteries are stiffer in subjects with mixed (systolic/diastolic) hypertension compared with normotensive subjects. However, it is unclear to what extent differences in mean arterial pressure explain the observed differences in hypertensive subjects. In contrast, isolated systolic hypertension is associated with increased aortic, but not peripheral artery, stiffness, although the underlying mechanisms are somewhat unclear. 4. Traditional antihypertensive agents appear to reduce arterial stiffness, but mostly via an indirect effect of lowering mean pressure. Therefore, therapies that target the large arteries to reduce stiffness directly are urgently required. Agents such as nitric oxide donors and phosphodiesterase inhibitors may be useful in reducing stiffness via functional mechanisms. In addition, inhibitors or breakers of advanced glycation end-product cross-links between proteins, such as collagen and elastin, hold substantial promise.

  20. Comparing overflow and wave-overtopping induced breach initiation mechanisms in an embankment breach experiment

    Directory of Open Access Journals (Sweden)

    van Damme Myron

    2016-01-01

    Full Text Available As part of the SAFElevee project Delft University of Technology collabored with Flanders Hydraulics Research, and Infram B.V. in the preperation and execution of a full scale embankment breach experiment in November 2015. This breach experiment was performed on an 3.5m high embankment with a sand core and clay outer layer situated along the tidal river Scheldt in Belgium near Schellebelle. During the experiment a wave overtopping simulator and overflow simulator were used to initiate a breach. Both simulators were placed near the top of the waterside slope. The use of the simulators facilitated comparison between the effects of continueous overflow and the effects of intermittent wave overtopping. This paper presents the data collected during the experiment, describe the development of hypotheses on the failure processes using the latest insights, and comment on the failure initiation process of a grass covered flood embankment with a clay outer layer and a sandy core.

  1. Source mechanisms and near-source wave propagation from broadband seismograms

    Directory of Open Access Journals (Sweden)

    J. Perrot

    1994-06-01

    Full Text Available Recording seismic events at teleseismic distances with broadband and high dynamic range instruments provides new high-quality data that allow us to interpret in more detail the complexity of seismic rupture as well as the heterogeneous structure of the medium surrounding the source where waves are initially propagating. Wave propagation analysis is performed by ray tracing in a local cartesian coordinate system near the source and in a global spherical coordinate system when waves enter the mantle. Seismograms are constructed at each station for a propagation in a 2.5-D medium. Many phases can be included and separately analyzed; this is one of the major advantages of ray tracing compared to other wave propagation techniques. We have studied four earthquakes, the 1988 Spitak Armenia Earthquake (Ms = 6.9, the 1990 Iran earthquake (Ms = 7.7, the 1990 romanian earthquake (Ms = 5.8 and the 1992 Erzincan, Turkey earthquake (Ms = 6.8. These earthquakes exhibit in different ways the complexity of the rupture and the signature of the medium surrounding the source. The use of velocity seismograms, the time derivative of displacement, increases the difficulty of the fit between synthetic seismograms and real seismograms but provides clear evidence for a need of careful time delay estimations of the different converted phases. We find that understanding of the seismic rupture as well as the influence of the medium surrounding the source for teleseismically recorded earthquakes requires a multi-stop procedure: starting with ground displacement seismograms, one is able to give a first description of the rupture as well as of the first-order influence of the medium. Then, considering the ground velocity seismograms makes the fit more difficult to obtain but increases our sensitivity to the rupture process and early converted phases. With increasing number of worldwide broadband stations, a complex rupture description is possible independently of field

  2. Mechanical balance laws for fully nonlinear and weakly dispersive water waves

    Science.gov (United States)

    Kalisch, Henrik; Khorsand, Zahra; Mitsotakis, Dimitrios

    2016-10-01

    The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is known to describe accurately the wave motion at the surface of an incompressible inviscid fluid in the case when the fluid flow is irrotational and two-dimensional. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected. In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence of the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically by approximating solutions of the Serre-Green-Naghdi equations using a finite-element discretization coupled with an adaptive Runge-Kutta time integration scheme, and it is found that the energy is indeed conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane beach is analyzed. It appears that the Serre-Green-Naghdi equations are capable of predicting both the shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early stages of shoaling.

  3. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    Science.gov (United States)

    Ginzburg, N. S.; Zotova, I. V.; Sergeev, A. S.; Zaslavsky, V. Yu.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V.

    2015-11-01

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by "fresh" electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  4. Mechanical energy fluctuations in granular chains: the possibility of rogue fluctuations or waves.

    Science.gov (United States)

    Han, Ding; Westley, Matthew; Sen, Surajit

    2014-09-01

    The existence of rogue or freak waves in the ocean has been known for some time. They have been reported in the context of optical lattices and the financial market. We ask whether such waves are generic to late time behavior in nonlinear systems. In that vein, we examine the dynamics of an alignment of spherical elastic beads held within fixed, rigid walls at zero precompression when they are subjected to sufficiently rich initial conditions. Here we define such waves generically as unusually large energy fluctuations that sustain for short periods of time. Our simulations suggest that such unusually large fluctuations ("hot spots") and occasional series of such fluctuations through space and time ("rogue fluctuations") are likely to exist in the late time dynamics of the granular chain system at zero dissipation. We show that while hot spots are common in late time evolution, rogue fluctuations are seen in purely nonlinear systems (i.e., no precompression) at late enough times. We next show that the number of such fluctuations grows exponentially with increasing nonlinearity whereas rogue fluctuations decrease superexponentially with increasing precompression. Dissipation-free granular alignment systems may be possible to realize as integrated circuits and hence our observations may potentially be testable in the laboratory.

  5. Mechanisms of amplification of ultrashort electromagnetic pulses in gyrotron traveling wave tube with helically corrugated waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Zaslavsky, V. Yu. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul' yanov Str., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University, 23 Gagarin Ave., 603950 Nizhny Novgorod (Russian Federation); Zotova, I. V.; Sergeev, A. S.; Zheleznov, I. V.; Samsonov, S. V.; Mishakin, S. V. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ul' yanov Str., 603950 Nizhny Novgorod (Russian Federation)

    2015-11-15

    A time-domain self consistent theory of a gyrotron traveling wave tube with a helically corrugated operating waveguide has been developed. Based on this model, the process of short pulse amplification was studied in regimes of grazing and intersection of the dispersion curves of the electromagnetic wave and the electron beam. In the first case, the possibility of amplification without pulse form distortion was demonstrated for the pulse spectrum width of the order of the gain bandwidth. In the second case, when the electrons' axial velocity was smaller than the wave's group velocity, it was shown that the slippage of the incident signal with respect to the electron beam provides feeding of the signal by “fresh” electrons without initial modulation. As a result, the amplitude of the output pulse can exceed the amplitude of its saturated value for the case of the grazing regime, and, for optimal parameters, the peak output power can be even larger than the kinetic power of the electron beam.

  6. Physical and Mechanical Properties of Plasticized HMX under Effect of Mechanical Loadings, Temperature Drops and Shock Waves

    Institute of Scientific and Technical Information of China (English)

    E.N. Kostyukov; L.V. Fomicheva; Yu. A. Vlasov; E.A.Pazhina

    2004-01-01

    @@ During their life cycles, energetic materials (EM) can be subjected to various external effects, including non-authorized effects. Due to these effects, irreversible changes can occur in EM structures that, in turn, can be the reason for change of their physical and mechanical properties.

  7. A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes

    Science.gov (United States)

    Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.

    1992-01-01

    Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.

  8. Techniques for predicting the lifetimes of wave-swept macroalgae: a primer on fracture mechanics and crack growth.

    Science.gov (United States)

    Mach, Katharine J; Nelson, Drew V; Denny, Mark W

    2007-07-01

    Biomechanical analyses of intertidal and shallow subtidal seaweeds have elucidated ways in which these organisms avoid breakage in the presence of exceptional hydrodynamic forces imposed by pounding surf. However, comparison of algal material properties to maximum hydrodynamic forces predicts lower rates of breakage and dislodgment than are actually observed. Why the disparity between prediction and reality? Most previous research has measured algal material properties during a single application of force, equivalent to a single wave rushing past an alga. In contrast, intertidal macroalgae may experience more than 8000 waves a day. This repeated loading can cause cracks - introduced, for example, by herbivory or abrasion - to grow and eventually cause breakage, yet fatigue crack growth has not previously been taken into account. Here, we present methods from the engineering field of fracture mechanics that can be used to assess consequences of repeated force imposition for seaweeds. These techniques allow quantification of crack growth in wave-swept macroalgae, a first step towards considering macroalgal breakage in the realistic context of repeated force imposition. These analyses can also be applied to many other soft materials.

  9. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.

    Science.gov (United States)

    Ferenczy, György G

    2013-04-05

    Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods.

  10. Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amit Modgil

    Full Text Available Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+-activated K(+ (BKCa channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BK(Ca channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM caused concentration-dependent inhibition of BK(Ca in VSM cells. Apelin-13 (0.1 µM significantly decreased BK(Ca current density from 71.25 ± 8.14 pA/pF to 44.52 ± 7.10 pA/pF (n=14 cells, P<0.05. This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM decreased the open-state probability (NPo of BK(Ca channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1 µM did not alter the NPo of BK(Ca channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BK(Ca. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BK(Ca current density. In addition, treatment of arteries with apelin-13 (0.1 µM significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BK(Ca channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.

  11. 脉搏波速度、动脉弹性与冠心病影响因素的相关性%Correlation between pulse wave velocity, arterial elastic function and influencing factors of coronary heart disease

    Institute of Scientific and Technical Information of China (English)

    石姗姗; 李保应; 于飞; 王茜; 张志勉; 高海青

    2011-01-01

    目的 研究颈-股脉搏波速度(CFPWV)、大动脉弹性指数(C1)、小动脉弹性指数(C2)和冠心病影响因素的相关性,并探讨CFFWV、C1、C2在冠心病早期诊断中的价值.方法 将131名受检者分为高血压组和高血压合并冠心病组,应用康普乐( Complior)动脉脉搏波速度测定仪(Artech,France)测定CFPWV,CV Profilor DO-2020型动脉弹性功能测定仪测定C1、C2.结果 ①与单纯高血压组相比,合并冠心病组的CFPWV、C1、C2均明显增高(P<0.01);②CFPWV与年龄、腔腹血糖(FPG)、甘油三酯(TG)、收缩压(SBP)、脉压(PP)呈正相关(r=0.475,0.186,0.183,0.360,0.455,P<0.05),C1与年龄、SBP、PP呈负相关(r=-0.391,-0.247,-0.283,P<0.01),C2与年龄、BMI、TG、SBP、PP、平均动脉压(MAP)呈负相关(r=-0.365,-0.126,-0.198,-0.340,-0.355,-0.210,P<0.05).结论 CFPWV和C1、C2可作为早期预测冠心病的无创性敏感性指标.%Objective To analyze the relationship between pulse wave velocity, arterial elastic indexes and cardiovascular risk factors in patients with coronary heart disease, and to find the value of carotid-femoral pulse wave velocity(CF-PWV) , large arteria elastic indexes(Cl) and small arterial elastic indexes(C2) in early diagnosis of coronary heart disease. Methods 131 subjects were divided into two groups;the hypertension group and the hypertension with coronary heart disease group. CFPWV, Cl and C2 were measured by the pulse wave velocity measurement system (Complior) and the artery elasticity function measurement system(CV Profilor DO-2020). Results ① The CFPWV, Cl and C2 of the coronary heart disease group were significantly higher than those of the hypertension group (P < 0.01). ② In multiple regression analysis, CFPWV was correlated with age, fasting blood sugar(FPG) , triglycerides(TG) , systolic blood pressure( SBP) and pulse pressure( PP) (r = 0.475, 0.186, 0.183, 0.360, 0.455, P <0.05 ). Cl was negatively correlated with age, SBP and PP

  12. Earliest effects of sudden occlusions on pressure profiles in selected locations of the human systemic arterial system

    Science.gov (United States)

    Majka, Marcin; Gadda, Giacomo; Taibi, Angelo; Gałązka, Mirosław; Zieliński, Piotr

    2017-03-01

    We have developed a numerical simulation method for predicting the time dependence (wave form) of pressure at any location in the systemic arterial system in humans. The method uses the matlab-Simulink environment. The input data include explicitly the geometry of the arterial tree, treated up to an arbitrary bifurcation level, and the elastic properties of arteries as well as rheological parameters of blood. Thus, the impact of anatomic details of an individual subject can be studied. The method is applied here to reveal the earliest stages of mechanical reaction of the pressure profiles to sudden local blockages (thromboses or embolisms) of selected arteries. The results obtained with a purely passive model provide reference data indispensable for studies of longer-term effects due to neural and humoral mechanisms. The reliability of the results has been checked by comparison of two available sets of anatomic, elastic, and rheological data involving (i) 55 and (ii) 138 arterial segments. The remaining arteries have been replaced with the appropriate resistive elements. Both models are efficient in predicting an overall shift of pressure, whereas the accuracy of the 55-segment model in reproducing the detailed wave forms and stabilization times turns out dependent on the location of the blockage and the observation point.

  13. Evading the Vainshtein Mechanism with Anomalous Gravitational Wave Speed: Constraints on Modified Gravity from Binary Pulsars

    Science.gov (United States)

    Beltrán Jiménez, Jose; Piazza, Federico; Velten, Hermano

    2016-02-01

    By using observations of the Hulse-Taylor pulsar, we constrain the gravitational wave (GW) speed to the level of 1 0-2 . We apply this result to scalar-tensor theories that generalize Galileon 4 and 5 models, which display anomalous propagation speed and coupling to matter for GWs. We argue that this effect survives conventional screening due to the persistence of a scalar field gradient inside virialized overdensities, which effectively "pierces" the Vainshtein screening. In specific branches of solutions, our result allows us to directly constrain the cosmological couplings in the effective field theory of dark energy formalism.

  14. The Blowup Mechanism of Small Data Solutions for the Quasilinear Wave Equations in Three Space Dimensions

    Institute of Scientific and Technical Information of China (English)

    Hui Cheng YIN

    2001-01-01

    For a class of three-dimensional quasilinear wave equations with small initial data, we givea complete asymptotic expansion of the lifespan of classical solutions, that is, we solve a conjectureposed by John and Hormander. As an application of our result, we show that the solution of three-dimensional isentropic compressible Euler equations with irrotational initial data which are a smallperturbation from a constant state will develop singularity in the first-order derivatives in finite timewhile the solution itself is continuous. Furthermore, for this special case, we also solve a conjecture ofAlinhac.

  15. Statistical mechanics of magnetic excitations from spin waves to stripes and checkerboards

    CERN Document Server

    Rastelli, Enrico

    2013-01-01

    The aim of this advanced textbook is to provide the reader with a comprehensive explanation of the ground state configurations, the spin wave excitations and the equilibrium properties of spin lattices described by the Ising-Heisenberg Hamiltonians in the presence of short (exchange) and long range (dipole) interactions.The arguments are presented in such detail so as to enable advanced undergraduate and graduate students to cross the threshold of active research in magnetism by using both analytic calculations and Monte Carlo simulations.Recent results about unorthodox spin configurations suc

  16. The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, P H [Institute for Gravitational Research, Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Bull, S [School of Chemical Engineering and Advanced Materials, University of Newcastle, Newcastle NE1 7RU (United Kingdom); Cagnoli, G [Institute for Gravitational Research, Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Crooks, D R M [Institute for Gravitational Research, Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Elliffe, E J [Institute for Gravitational Research, Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Faller, J E [JILA, NIST and University of Colorado, Boulder, CO 80309 (United States); Fejer, M M [Edward L Ginzton Laboratory, Stanford University, Stanford, CA 94305-4088 (United States); Hough, J [Institute for Gravitational Research, Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Rowan, S [Institute for Gravitational Research, Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2003-12-07

    This paper describes investigations into the mechanical losses of bonds created by hydroxy-catalysis bonding. Evaluation of the magnitude of such losses is important for determining thermal noise levels in bonded suspensions for gravitational wave detectors. Three samples were investigated with bonds of varying geometries and surface areas. In two cases, the bonds were between two pieces of fused silica, whilst in the third a fused silica piece was attached to a sapphire substrate. In each case sodium silicate solution was used as the bonding agent. The thickness and Young's modulus of the bond material were evaluated enabling values for the intrinsic mechanical loss factor of the bonding material to be obtained.

  17. Ambulatory ECG-based T-wave alternans monitoring for risk assessment and guiding medical therapy: mechanisms and clinical applications.

    Science.gov (United States)

    Verrier, Richard L; Ikeda, Takanori

    2013-01-01

    Identification of individuals at risk for sudden cardiac death (SCD), the main cause of adult mortality in developed countries, remains a major challenge. The main contemporary noninvasive marker, left ventricular ejection fraction (LVEF), has not proved adequately reliable, as the majority of individuals who die suddenly have relatively preserved cardiac mechanical function. Monitoring of T-wave alternans (TWA), a beat-to-beat fluctuation in ST-segment or T-wave morphology, on ambulatory electrocardiogram (AECG) is an attractive approach on both scientific and clinical grounds. Specifically, TWA's capacity to assess risk for malignant arrhythmias has been shown to rest on sound electrophysiologic principles and AECG-based TWA monitoring can be performed in the flow of routine clinical evaluation. This review addresses: (1) electrophysiologic and ionic mechanisms underlying TWA's predictivity, (2) principles and practical aspects of AECG-based TWA monitoring, (3) clinical evidence supporting this approach to SCD risk stratification, and (4) current and potential applications in guiding medical therapy.

  18. Mechanical stimulation (pulsed electromagnetic fields "PEMF" and extracorporeal shock wave therapy "ESWT" and tendon regeneration: a possible alternative.

    Directory of Open Access Journals (Sweden)

    Federica eRosso

    2015-11-01

    Full Text Available The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP, growth factors, such as vascular endothelial growth factor (VEGF and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF and extracorporeal shock wave therapy (ESWT increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10. Moreover ESWT increases the expression of growth factors, such as transforming growth factor beta (TGF-beta, Vascular Endothelial Growth Factor (VEGF, and insulin-like growth factor 1 (IGF1, as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in-vitro TGF-beta production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation.

  19. Mechanism of operation and design considerations for surface acoustic wave device vapor sensors

    Science.gov (United States)

    Wohltjen, H.

    1984-04-01

    Surface acoustic wave (SAW) devices offer many attractive features for application as vapor phase chemical microsensors. This paper describes the characteristics of SAW devices and techniques by which they can be employed as vapor sensors. The perturbation of SAW amplitude and velocity by polymeric coating films was investigated both theoretically and experimentally. High sensitivity can be achieved when the device is used as the resonating element in a delay line oscillator circuit. A simple equation has been developed from theoretical considerations which offers reasonably accurate quantitative predictions of SAW Device frequency shifts when subjected to a given mass loading. In this mode the SAW device behaves in a fashion very similar to conventional bulk wave quartz crystal microbalance except that the sensitivity can be several orders of magnitude higher and the device size can be several orders of magnitude smaller. Detection of mass changes of less than 1 femtogram by a SAW device having a surface area of 0.0001 square cm. is theoretically possible.

  20. Mechanical balance laws for fully nonlinear and weakly dispersive water waves

    CERN Document Server

    Kalisch, Henrik; Mitsotakis, Dimitrios

    2015-01-01

    The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected. In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence o...

  1. Arterial hypertension and cancer.

    Science.gov (United States)

    Milan, Alberto; Puglisi, Elisabetta; Ferrari, Laura; Bruno, Giulia; Losano, Isabel; Veglio, Franco

    2014-05-15

    Arterial hypertension and cancer are two of the most important causes of mortality in the world; correlations between these two clinical entities are complex and various. Cancer therapy using old (e.g., mitotic spindle poisons) as well as new (e.g., monoclonal antibody) drugs may cause arterial hypertension through different mechanisms; sometimes the increase of blood pressure levels may be responsible for chemotherapy withdrawal. Among newer cancer therapies, drugs interacting with the VEGF (vascular endothelial growth factors) pathways are the most frequently involved in hypertension development. However, many retrospective studies have suggested a relationship between antihypertensive treatment and risk of cancer, raising vast public concern. The purposes of this brief review have then been to analyse the role of chemotherapy in the pathogenesis of hypertension, to summarize the general rules of arterial hypertension management in this field and finally to evaluate the effects of antihypertensive therapy on cancer disease.

  2. Carotid artery surgery

    Science.gov (United States)

    Carotid endarterectomy; CAS surgery; Carotid artery stenosis - surgery; Endarterectomy - carotid artery ... through the catheter around the blocked area during surgery. Your carotid artery is opened. The surgeon removes ...

  3. Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: object-oriented and acausal approach.

    Science.gov (United States)

    Kulhánek, Tomáš; Kofránek, Jiří; Mateják, Marek

    2014-11-01

    This letter introduces an alternative approach to modeling the cardiovascular system with a short-term control mechanism published in Computers in Biology and Medicine, Vol. 47 (2014), pp. 104-112. We recommend using abstract components on a distinct physical level, separating the model into hydraulic components, subsystems of the cardiovascular system and individual subsystems of the control mechanism and scenario. We recommend utilizing an acausal modeling feature of Modelica language, which allows model variables to be expressed declaratively. Furthermore, the Modelica tool identifies which are the dependent and independent variables upon compilation. An example of our approach is introduced on several elementary components representing the hydraulic resistance to fluid flow and the elastic response of the vessel, among others. The introduced model implementation can be more reusable and understandable for the general scientific community.

  4. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  5. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: Mechanisms for the pathogenesis of syringomyelia.

    Science.gov (United States)

    Carpenter, P W; Berkouk, K; Lucey, A D

    2003-12-01

    Our aim in this paper is to use a simple theoretical model of the intraspinal cerebrospinal-fluid system to investigate mechanisms proposed for the pathogenesis of syringomyelia. The model is based on an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. According to this model, the leading edge of a pressure pulse tends to steepen and form an elastic jump, as it propagates up the intraspinal cerebrospinal-fluid system. We show that when an elastic jump is incident on a stenosis of the spinal subarachnoid space, it reflects to form a transient, localized region of high pressure within the spinal cord that for a cough-induced pulse is estimated to be 50 to 70 mm Hg or more above the normal level in the spinal subarachnoid space. We propose this as a new mechanism whereby pressure pulses created by coughing or sneezing can generate syrinxes. We also use the same analysis to investigate Williams' suck mechanism. Our results do not support his concept, nor, in cases where the stenosis is severe, the differential-pressure-propagation mechanism recently proposed by Greitz et al. Our analysis does provide some support for the piston mechanism recently proposed by Oldfield et al. and Heiss et al. For instance, it shows clearly how the spinal cord is compressed by the formation of elastic jumps over part of the cardiac cycle. What appears to be absent for this piston mechanism is any means whereby the elastic jumps can be focused (e.g., by reflecting from a stenosis) to form a transient, localized region of high pressure within the spinal cord. Thus it would seem to offer a mechanism for syrinx progression, but not for its formation.

  6. Skull Flexure from Blast Waves: A New Mechanism for Brain Injury with Implications for Helmet Design

    CERN Document Server

    Moss, William C; Blackman, Eric G

    2008-01-01

    Traumatic brain injury [TBI] has become the signature injury of current military conflicts. The debilitating effects of TBI on society are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various mechanisms, including impacts caused by the blast, have been investigated, but blast-induced deformation of the skull has been neglected. Through the use of hydrodynamical numerical simulations, we have discovered that non-lethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. This mechanism has implications for the diagnosis of TBI in soldiers and the design of protective equipment such as helmets.

  7. CSL Wave Function Collapse Model as a Mechanism for the Emergence of Cosmological Asymmetries in Inflation

    CERN Document Server

    Cañate, Pedro; Sudarsky, Daniel

    2012-01-01

    As previously discussed in (D. Sudarsky, Int.J.Mod.Phys.D20:509-552, (2011); [arXiv:0906.0315]), the inflationary account for the emergence of the seeds of cosmic structure falls short of actually explaining the generation of primordial anisotropies and inhomogeneities. This description starts from a symmetric background, and invokes symmetric dynamics, so it cannot explain asymmetries. To generate asymmetries, we present an application of the Continuous Spontaneous Localization (CSL) model of wave function collapse (P. Pearle, Phys. Rev. A 39, 2277, (1989); G. C. Ghirardi, P. Pearle and A. Rimini, Phys. Rev. A42, 78 (1990)) in the context of inflation. This modification of quantum dynamics introduces a stochastic non-unitary component to the evolution of the inflaton field perturbations. This leads to passage from a homogeneous and isotropic stage to another, where the quantum uncertainties in the initial state of inflation transmute into the primordial inhomogeneities and anisotropies. We examine requiremen...

  8. Direct path from microscopic mechanics to Debye shielding, Landau damping, and wave-particle interaction

    CERN Document Server

    Escande, Dominique F; Doveil, Fabrice

    2014-01-01

    The derivation of Debye shielding and Landau damping from the $N$-body description of plasmas is performed directly by using Newton's second law for the $N$-body system. This is done in a few steps with elementary calculations using standard tools of calculus, and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. Shielding and collisional transport are found to be two related aspects of the repulsive deflections of electrons, in such a way that each particle is shielded by all other ones while keeping in uninterrupted motion.

  9. Direct path from microscopic mechanics to Debye shielding, Landau damping and wave-particle interaction

    Science.gov (United States)

    Escande, D. F.; Elskens, Yves; Doveil, F.

    2015-02-01

    The derivation of Debye shielding and Landau damping from the N-body description of plasmas is performed directly by using Newton’s second law for the N-body system. This is done in a few steps with elementary calculations using standard tools of calculus and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. On top of their well-known production of collisional transport, the repulsive deflections of electrons are shown to produce shielding, in such a way that each particle is shielded by all other ones, while keeping in uninterrupted motion.

  10. Mechanical Yielding and Strength Behaviour of OFHC Copper in Planar Shock Waves

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-Nian; FAN Chun-Lei; HU Jin-Wei; WU Shan-Xing; WANG Huan-Ran; TAN Hua; YU Yu-Ying

    2007-01-01

    It is necessary to study the validation of strength models under planar shock loading in view of the fact that strength models for metals obtained at moderate strain rates are often used in the numerical simulations of shock wave phenomena. The variations of longitudinal stress, transverse stress and yield strength of oxygen-free high conductance (OFHC) copper with time under planar shock loading are obtained by using the manganin stress gauges and compared with the predicted results by the constructed seven constitutive models based on Y/G=constant and on G/B=constant (Y the yield strength, G the shear modulus, B the bulk modulus), respectively. It seems that the pressure, density, temperature and plastic strain dependence of the yield strength for OFHC copper under planar shock loading is essential to the constitutive description.

  11. High accuracy solution of bi-directional wave propagation in continuum mechanics

    Science.gov (United States)

    Mulloth, Akhil; Sawant, Nilesh; Haider, Ijlal; Sharma, Nidhi; Sengupta, Tapan K.

    2015-10-01

    Solution of partial differential equations by numerical method is strongly affected due to numerical errors, which are caused mainly by deviation of numerical dispersion relation from the physical dispersion relation. To quantify and control such errors and obtain high accuracy solutions, we consider a class of problems which involve second derivative of unknowns with respect to time. Here, we analyse numerical metrics such as the numerical group velocity, numerical phase speed and the numerical amplification factor for different methods in solving the model bi-directional wave equation (BDWE). Such equations can be solved directly, for example, by Runge-Kutta-Nyström (RKN) method. Alternatively, the governing equation can be converted to a set of first order in time equations and then using four-stage fourth order Runge-Kutta (RK4) method for time integration. Spatial discretisation considered are the classical second and fourth order central difference schemes, along with Lele's central compact scheme for evaluating second derivatives. In another version, we have used Lele's scheme for evaluating first derivatives twice to obtain the second derivative. As BDWE represents non-dissipative, non-dispersive dynamics, we also consider the canonical problem of linearised rotating shallow water equation (LRSWE) in a new formulation involving second order derivative in time, which represents dispersive waves along with a stationary mode. The computations of LRSWE with RK4 and RKN methods for temporal discretisation and Lele's compact schemes for spatial discretisation are compared with computations performed with RK4 method for time discretisation and staggered compact scheme (SCS) for spatial discretisation by treating it as a set of three equations as reported in Rajpoot et al. (2012) [1].

  12. A Renal Perforating Artery Mistaken for Arterial Bleeding after Percutaneous Renal Biopsy: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ye Lim; Lee, Chang Hee; Kim, Kyeong Ah; Park, Cheol Min [Korea University College of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    Perirenal hematoma after a renal biopsy is a common complication that usually resolves spontaneously, but this rarely requires transfusions or surgical/radiological intervention. We report here on a case of a renal perforating artery that was mistaken for renal arterial bleeding in a 53-year-old woman who was complicated with perirenal hematoma after undergoing a percutaneous renal biopsy. On the color and pulsed wave Doppler ultrasonography, linear blood flow was seen in the perirenal hematoma, which extended perpendicularly from the renal parenchyma into the perirenal space, and this linear blood flow exhibited an arterial pulse wave. On CT angiography, the renal perforating artery was demonstrated as a curvilinear vessel coursing tangentially to the renal margin and we decided that it was a pseudolesion caused by the renal perforating artery. A renal perforating artery may be mistaken for renal arterial bleeding after a percutaneous renal biopsy. A renal perforating artery and arterial bleeding can be differentiated by the location and shape seen on a color Doppler examination and the pulse waves characteristics

  13. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-14

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts. The debilitating effects of TBI are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various possibilities have been investigated, but blast-induced deformation of the skull has been neglected. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. The possibility that this mechanism may contribute to TBI has implications for the diagnosis of soldiers and the design of protective equipment such as helmets.

  14. Coronary artery fistula

    Science.gov (United States)

    Congenital heart defect - coronary artery fistula; Birth defect heart - coronary artery fistula ... A coronary artery fistula is often congenital, meaning that it is present at birth. It generally occurs when one of the coronary arteries ...

  15. Making waves

    Science.gov (United States)

    Kruse, Karsten

    2017-01-01

    Traveling waves propagating along surfaces play an important role for intracellular organization. Such waves can appear spontaneously in reaction-diffusion systems, but only few general criteria for their existence are known. Analyzing the dynamics of the Min proteins in Escherichia coli, Levine and Kessler (2016 New J. Phys. 18 122001) now identified a new mechanism for the emergence of traveling waves that relies on conservation laws. From their analysis one can expect traveling waves to be a generic feature of systems made of proteins that have a cytoplasmic and a membrane-bound state.

  16. Reduced Mechanical Stretch Induces Enhanced Endothelin B Receptor-mediated Contractility via Activation of Focal Adhesion Kinase and Extra Cellular-regulated Kinase 1/2 in Cerebral Arteries from Rat

    DEFF Research Database (Denmark)

    Rasmussen, Marianne N P; Spray, Stine; Skovsted, Gry F

    2016-01-01

    that rapid and sustained reduction in wall tension/stretch is a possible trigger mechanism for this vascular remodelling. Isolated rat middle cerebral artery (MCA) segments were incubated in a wire-myograph with or without mechanical stretch, prior to assessment of their contractile response to the selective......Cerebral ischaemia results in enhanced endothelin B (ETB ) receptor-mediated contraction and receptor protein expression in the affected cerebrovascular smooth muscle cells (SMC). Organ culture of cerebral arteries is a method to induce similar alterations in ETB receptor expression. We hypothesize...... expression to SMC expression and 2) an increased calcium sensitivity of the SMCs due to an increased expression of the calcium channel transient receptor potential canonical 1. Collectively, our results present a possible mechanism linking lack of vessel wall stretch/tension to changes in ETB receptor...

  17. Dissipative Bohmian mechanics within the Caldirola–Kanai framework: A trajectory analysis of wave-packet dynamics in viscid media

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A.S., E-mail: asanz@iff.csic.es [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain); Martínez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G. [Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Miret-Artés, S. [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain)

    2014-08-15

    Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.

  18. The reservoir-wave approach to characterize pulmonary vascular-right ventricular interactions in humans.

    Science.gov (United States)

    Ghimire, Anukul; Andersen, Mads J; Burrowes, Lindsay M; Bouwmeester, J Christopher; Grant, Andrew D; Belenkie, Israel; Fine, Nowell M; Borlaug, Barry A; Tyberg, John V

    2016-12-01

    Using the reservoir-wave approach (RWA) we previously characterized pulmonary vasculature mechanics in a normal canine model. We found reflected backward-traveling waves that decrease pressure and increase flow in the proximal pulmonary artery (PA). These waves decrease right ventricular (RV) afterload and facilitate RV ejection. With pathological alterations to the pulmonary vasculature, these waves may change and impact RV performance. Our objective in this study was to characterize PA wave reflection and the alterations in RV performance in cardiac patients, using the RWA. PA pressure, Doppler-flow velocity, and pulmonary arterial wedge pressure were measured in 11 patients with exertional dyspnea. The RWA was employed to analyze PA pressure and flow; wave intensity analysis characterized PA waves. Wave-related pressure was partitioned into two components: pressures due to forward-traveling and to backward-traveling waves. RV performance was assessed by examining the work done in raising reservoir pressure and that associated with the wave components of systolic PA pressure. Wave-related work, the mostly nonrecoverable energy expended by the RV to eject blood, tended to vary directly with mean PA pressure. Where PA pressures were lower, there were pressure-decreasing/flow-increasing backward waves that aided RV ejection. Where PA pressures were higher, there were pressure-increasing/flow-decreasing backward waves that impeded RV ejection. Pressure-increasing/flow-decreasing backward waves were responsible for systolic notches in the Doppler flow velocity profiles in patients with the highest PA pressure. Pulmonary hypertension is characterized by reflected waves that impede RV ejection and an increase in wave-related work. The RWA may facilitate the development of therapeutic strategies.

  19. The ent-15α-Acetoxykaur-16-en-19-oic Acid Relaxes Rat Artery Mesenteric Superior via Endothelium-Dependent and Endothelium-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Êurica Adélia Nogueira Ribeiro

    2012-01-01

    Full Text Available The objective of the study was to investigate the mechanism of the relaxant activity of the ent-15α-acetoxykaur-16-en-19-oic acid (KA-acetoxy. In rat mesenteric artery rings, KA-acetoxy induced a concentration-dependent relaxation in vessels precontracted with phenylephrine. In the absence of endothelium, the vasorelaxation was significantly shifted to the right without reduction of the maximum effect. Endothelium-dependent relaxation was significantly attenuated by pretreatment with L-NAME, an inhibitor of the NO-synthase (NOS, indomethacin, an inhibitor of the cyclooxygenase, L-NAME + indomethacin, atropine, a nonselective antagonist of the muscarinic receptors, ODQ, selective inhibitor of the guanylyl cyclase enzyme, or hydroxocobalamin, a nitric oxide scavenger. The relaxation was completely reversed in the presence of L-NAME + 1 mM L-arginine or L-arginine, an NO precursor. Diterpene-induced relaxation was not affected by TEA, a nonselective inhibitor of K+ channels. The KA-acetoxy antagonized CaCl2-induced contractions in a concentration-dependent manner and also inhibited an 80 mM KCl-induced contraction. The KA-acetoxy did not interfere with Ca2+ release from intracellular stores. The vasorelaxant induced by KA-acetoxy seems to involve the inhibition of the Ca2+ influx and also, at least in part, by endothelial muscarinic receptors activation, NO and PGI2 release.

  20. Design of a microelectronic circuit to amplify and modulate the signal of a micro-electro-mechanical systems arterial pressure sensor

    Science.gov (United States)

    Vela-Peóa, E.; Quiñones-Urióstegui, I.; Martínez-Piñon, F.; Álvarez-Chávez, J. A.

    2010-04-01

    In the article, the design and stimulation is presented of an integrated circuit for the amplification and modulation of an electrical signal proceeding from a Micro-Electro-Mechanical Systems (MEMS) arterial pressure sensor. The signal consists of voltage ranking from 0-10 mV, 1 mA and frequency of 50- 500 Hz. This simple but effective design consists of an operational amplifier (op-amp) configured as a differential amplifier, which amplifies the signal (up to 1V and 10 mA), originating from a Wheatstone bridge in the MEMS sensor, and then this signal is modulated by Pulse width modulation (PWM). The technology employed in this circuit is MOSIS AMIS 1.5 um. The circuit was designed with a two-state op-amp, which is utilized in diverse stages of the system. The use of a differential amplifier, the op-amp, and PWM simplifies the design and renders this compact due to the employment of few components (40 transistors). The use of the PWM facilitates the signaling process at later stages. Results comprise the design of the circuit and the simulation. This consists of a schematic diagram of the layers of all the rules specified in the MOSIS AMIS 1.5 um. Electric and LTSpice software was employed for the design and simulation of the circuit. We present a complete description of the design philosophy, design criteria, figures, and final results.

  1. Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields

    Science.gov (United States)

    Smirnov, I. N.; Speranskiy, A. A.

    2015-11-01

    It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.

  2. A Novel Analytical Approach to Pulsatile Blood Flow in the Arterial Network.

    Science.gov (United States)

    Flores, Joaquín; Alastruey, Jordi; Corvera Poiré, Eugenia

    2016-10-01

    Haemodynamic simulations using one-dimensional (1-D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. We propose a novel linear 1-D dynamical theory of blood flow in networks of flexible vessels that is based on a generalized Darcy's model and for which a full analytical solution exists in frequency domain. We assess the accuracy of this formulation in a series of benchmark test cases for which computational 1-D and 3-D solutions are available. Accordingly, we calculate blood flow and pressure waves, and velocity profiles in the human common carotid artery, upper thoracic aorta, aortic bifurcation, and a 20-artery model of the aorta and its larger branches. Our analytical solution is in good agreement with the available solutions and reproduces the main features of pulse waveforms in networks of large arteries under normal physiological conditions. Our model reduces computational time and provides a new approach for studying arterial pulse wave mechanics; e.g.,  the analyticity of our model allows for a direct identification of the role played by physical properties of the cardiovascular system on the pressure waves.

  3. Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas

    CERN Document Server

    Dolgov, A; Rachimova, T; Kovalev, A; Vasilyeva, A; Lee, C J; Krivtsun, V M; Yakushev, O; Bijkerk, F

    2013-01-01

    Cleaning of contamination of optical surfaces by amorphous carbon (a-C) is highly relevant for extreme ultraviolet (EUV) lithography. We have studied the mechanisms for a-C removal from a Si surface. By comparing a-C removal in a surface wave discharge (SWD) plasma and an EUV-induced plasma, the cleaning mechanisms for hydrogen and helium gas environments were determined. The C-atom removal per incident ion was estimated for different sample bias voltages and ion fluxes. It was found that H2 plasmas generally had higher cleaning rates than He plasmas: up to seven times higher for more negatively biased samples in EUV induced plasma. Moreover, for H2, EUV induced plasma was found to be 2-3 times more efficient at removing carbon than the SWD plasma. It was observed carbon removal during exposure to He is due to physical sputtering by He+ ions. In H2, on the other hand, the increase in carbon removal rates is due to chemical sputtering. This is a new C cleaning mechanism for EUV-induced plasma, which we call "E...

  4. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    Science.gov (United States)

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem.

  5. Development of a Wave Energy -Responsive Self-Actuated Blade Articulation Mechanism for an OWC Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Francis A. Di Bella

    2010-06-01

    The Phase I SBIR effort completed the feasibility design, fabrication, and wind tunnel testing of a self-actuated blade articulation mechanism that uses a torsion bar and a lightweight airfoil to affect the articulation of the Wells airfoil. The articulation is affected only by the air stream incident on the airfoil. The self-actuating blade eliminates the complex and costly linkage mechanism that is now needed to perform this function on either a variable pitch Wells-type or Dennis-Auld air turbine. Using the results reported by independent researchers, the projected improvement in the Wells-type turbine efficiency is 20-40%, in addition to an increase in the operating air flow range by 50-100%, therefore enabling a smaller or slower single turbine to be used.

  6. Determination of arterial wall shear stress

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The arteries can remodel their structure and function to adapt themselves to the mechanical environment. In various factors that lead to vascular remodeling, the shear stress on the arterial wall induced by the blood flow is of great importance. However, there are many technique difficulties in measuring the wall shear stress directly at present. In this paper, through analyzing the pulsatile blood flow in arteries, a method has been proposed that can determine the wall shear stress quantitatively by measuring the velocity on the arterial axis, and that provides a necessary means to discuss the influence of arterial wall shear stress on vascular remodeling.

  7. The Arabidopsis Wave Complex: Mechanisms Of Localized Actin Polymerization And Growth

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Szymanski

    2012-10-23

    The objective of this project was to discover the protein complexes and control mechanisms that determine the location of actin filament roadways in plant cells. Our work provided the first molecular description of protein complexes that are converted from inactive complexes to active actin filament nucleators in the cell. These discoveries provided a conceptual framework to control to roadways in plant cells that determine the location and delivery of plant metabolites and storage molecules that are relevant to the bioenergy economy.

  8. Assessment of conduit artery vasomotion using photoplethysmography

    Science.gov (United States)

    Kanders, Karlis; Grabovskis, Andris; Marcinkevics, Zbignevs; Aivars, Juris Imants

    2013-11-01

    Vasomotion is a spontaneous oscillation of vascular tone. The phenomenon has been observed in small arterioles and capillaries as well as in the large conduit arteries. The layer of smooth muscle cells that surrounds a blood vessel can spontaneously and periodically change its tension and thereby the arterial wall stiffness also changes. As the understanding of the phenomenon is still rather obscure, researchers would benefit from a low-cost and reliable investigation technique such as photoplethysmography (PPG). PPG is an optical blood pulsation measurement technique that can offer substantial information about the arterial stiffness. The aims of this pilot study were to evaluate the usefulness of the PPG technique in the research of vasomotion and to investigate vasomotion in the relatively large conduit arteries. Continuous 15 minute long measurements of posterior tibial artery wall stiffness were taken. Artery diameter, electrocardiogram, blood pressure and respiration were also simultaneously registered. Fast Fourier Transform power spectra were calculated to identify unique stiffness oscillations that did not correspond to fluctuations in the systemic parameters and thus would indicate vasomotion. We concluded that photoplethysmography is a convenient method for the research of the vasomotion in large arteries. Local stiffness parameter b/a is more accurate to use and easier to measure than the pulse wave velocity which describes stiffness of a segment of an artery. Conduit arteries might exhibit a low amplitude high frequency vasomotion ( 9 to 27 cycles per minute). Low frequency vasomotion is problematic to distinguish from the passive oscillations imposed by the arterial pressure.

  9. Feasibility Study on Determining Focal Mechanism Solutions of Small Earthquakes Using the Velocity Amplitude Ratio of P-and S-Waves

    Institute of Scientific and Technical Information of China (English)

    Zhang Yongjiu; Cheng Wanzheng

    2008-01-01

    The focal mechanism parameters of small earthquakes are determined by the maximum velocity and displacement amplitude ratio of the direct P-and S-waves recorded by digital stations. The displacement is obtained from the velocity by emulation, and the two results are compared and analyzed. Results of the oretical analysis and practical measurement indicate that the two results of velocity and displacement are consistent, and it is feasible that the maximum displacement amplitude ratio be replaced by the maximum velocity amplitude ratio of the direct P-and S-waves recorded by regional seismic networks when determining focal mechanism solutions of small earthquakes.

  10. [Fractional flow reserve and instantaneous wave-free ratio for the physiological assessment of coronary artery stenosis in the catheterization laboratory: Practical tips].

    Science.gov (United States)

    Picard, F; Tadros, V X; Pighi, M; Spagnoli, V; De Hemptinne, Q; Ly, H Q

    2017-02-01

    In recent years, a large body of evidence has revealed the limitations of angiographic evaluation in determining the physiological significance of coronary stenosis, particularly when these are intermediate lesions. Percutaneous coronary interventions (PCI) guided by physiological assessment using fractional flow reserve (FFR) have been shown to reduce cardiovascular events when compared to angiography alone. Recently, another coronary physiologic parameter has been introduced: the "instantaneous wave-free ratio" (iFR). In this review, we will discuss the FFR, the iFR, and their use in the functional assessment of coronary stenosis in the cardiac catheterization laboratory. This review will cover theoretical aspects for non-interventional cardiologists, as well as practice points and common pitfalls related to coronary physiological assessment for interventional cardiologists.

  11. Understanding inhibitory mechanisms of lumbar spinal manipulation using H-reflex and F-wave responses: a methodological approach.

    Science.gov (United States)

    Dishman, J Donald; Weber, Kenneth A; Corbin, Roger L; Burke, Jeanmarie R

    2012-09-30

    The purpose of this research was to characterize unique neurophysiologic events following a high velocity, low amplitude (HVLA) spinal manipulation (SM) procedure. Descriptive time series analysis techniques of time plots, outlier detection and autocorrelation functions were applied to time series of tibial nerve H-reflexes that were evoked at 10-s intervals from 100 s before the event until 100 s after three distinct events L5-S1 HVLA SM, or a L5-S1 joint pre-loading procedure, or the control condition. Sixty-six subjects were randomly assigned to three procedures, i.e., 22 time series per group. If the detection of outliers and correlograms revealed a pattern of non-randomness that was only time-locked to a single, specific event in the normalized time series, then an experimental effect would be inferred beyond the inherent variability of H-reflex responses. Tibial nerve F-wave responses were included to determine if any new information about central nervous function following a HVLA SM procedure could be ascertained. Time series analyses of H(max)/M(max) ratios, pre-post L5-S1 HVLA SM, substantiated the hypothesis that the specific aspects of the manipulative thrust lead to a greater attenuation of the H(max)/M(max) ratio as compared to the non-specific aspects related to the postural perturbation and joint pre-loading. The attenuation of the H(max)/M(max) ratio following the HVLA SM procedure was reliable and may hold promise as a translational tool to measure the consistency and accuracy of protocol implementation involving SM in clinical trials research. F-wave responses were not sensitive to mechanical perturbations of the lumbar spine.

  12. A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae.

    Science.gov (United States)

    Hehemann, Jan-Hendrik; Boraston, Alisdair B; Czjzek, Mirjam

    2014-10-01

    Marine algae contribute approximately half of the global primary production. The large amounts of polysaccharides synthesized by these algae are degraded and consumed by microbes that utilize carbohydrate-active enzymes (CAZymes), thus creating one of the largest and most dynamic components of the Earth's carbon cycle. Over the last decade, structural and functional characterizations of marine CAZymes have revealed a diverse set of scaffolds and mechanisms that are used to degrade agars, carrageenan, alginate and ulvan-polysaccharides from red, brown and green seaweeds, respectively. The analysis of these CAZymes is not only expanding our understanding of their functions but is enabling the enhanced annotation of (meta)-genomic data sets, thus promoting an improved understanding of microbes that drive this marine component of the carbon cycle. Furthermore, this information is setting a foundation that will enable marine algae to be harnessed as a novel resource for biorefineries. In this review, we cover the most recent structural and functional analyses of marine CAZymes that are specialized in the digestion of macro-algal polysaccharides.

  13. Wave Solutions

    CERN Document Server

    Christov, Ivan C

    2012-01-01

    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  14. Mechanical effects induced by shock waves generated by high energy laser pulses

    Science.gov (United States)

    Fournier, J.; Ballard, P.; Merrien, P.; Barralis, J.; Castex, L.; Fabbro, R.

    1991-09-01

    Specimens made of low alloy and non alloyed medium carbon steels were subjected to high energy laser pulses. Direct ablation and confined plasma procedures were both investigated. An optimum impulse momentum transfer to the material is attained with a pulse duration of 30 ns and a power density of 10 GW .cm^2. Fatigue testing shows that the fatigue strengths of the selected materials are significantly increased. This can be related to the fact that laser shock processing generates an appropriate residual compressive stress field in a sufficiently thick layer and does not alter the initial surface roughness. In addition, the use of cumulative laser impacts and of dual treatment combining thermal and mechanical effects of the laser beam have been investigated and shown to result in an enhanced fatigue strength. Des échantillons d'acier éventuellement faiblement allié sont irradiés par un ou plusieurs pulses laser ayant une intensité comprise entre 1 et 100 GW/cm^2 et une durée d'émission laser de 3 ou 30 ns, les deux configurations d'ablation directe ou de plasma confiné étant utilisées. Les contraintes résiduelles résultant du passage de l'onde de choc sont analysées à l'aide de la technique de diffraction de rayons X. D'après cette étude, il apparaît clairement que les valeurs d'intensité et de durée d'émission laser les plus appropriées sont respectivement 10 GW/cm^2 et 30 ns. Ces valeurs correspondent à l'optimum de transfert d'impulsion. De plus, l'influence du nombre d'impacts laser utilisés est discuté et un essai de fatigue montre que ce traitement mécanique de surface augmente de manière significative la limite d'endurance du matériau étudié.

  15. Mechanisms Underlying Enhanced Noradrenaline-Induced Femoral Arterial Contractions of Spontaneously Hypertensive Rats: Involvement of Endothelium-Derived Factors and Cyclooxygenase-Derived Prostanoids.

    Science.gov (United States)

    Matsumoto, Takayuki; Watanabe, Shun; Iguchi, Maika; Ando, Makoto; Oda, Mirai; Nagata, Mako; Yamada, Kosuke; Taguchi, Kumiko; Kobayashi, Tsuneo

    2016-01-01

    We investigated the relationship between noradrenaline (NAd)-induced contractions, endothelial function, and hypertension in femoral arteries isolated from spontaneously hypertensive rats (SHR). In the femoral arteries of SHR, vs. age-matched control Wistar Kyoto (WKY) rats, contractions induced by NAd were increased. These effects were enhanced by endothelial denudation, which abolished the differences between the two groups. NAd-induced contractions were enhanced by nitric oxide (NO) synthase inhibition, and further increased by the blockade of endothelium-derived hyperpolarizing factor (EDHF). Conversely, NAd-induced contractions were inhibited by cyclooxygenase (COX) inhibition. In addition, in SHR arteries, acetylcholine-induced relaxation was reduced, and components of endothelium-derived factors were altered, such as increased COX-derived vasoconstrictor prostanoids, reduced EDHF, and preserved NO-mediated relaxation. In the femoral arteries of SHR, the production of prostanoids [6-keto prostaglandin (PG)F1α (a metabolite of prostacyclin (PGI2), PGE2, and PGF2α] and COX-2 protein were increased compared with that in WKY rats. By contrast, contractions induced by beraprost (a stable PGI2 analogue), PGE2, and U46619 (thromboxane/prostanoid receptor agonist) were similar between the SHR and WKY groups. Thus, NAd-induced femoral arterial contractions are augmented in SHR resulting from endothelial dysfunction and increased COX-derived vasoconstrictor prostanoid levels.

  16. Earthquake focal mechanisms and stress field in Si-chuan-Yunnan area determined using P wave po-larity and short period P and S waveform data

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Based on waveform data, several methods to determine focal mechanisms of small earthquakes were developed since 1980. Kisslinger (1980) and Julian, Foulger (1996) proposed an approach to determine solution by using amplitude ratio of P and S wave. Schwartz (1995) devised a method to determine solutions by the use of polarity data and amplitudes of seismogram envelopes. Amplitudes of short period seismic waves propagating in an inhomogene-ous medium are sensitive to the variation in velocity and Q structure. Nakamura, et al (1999) took medium inhomo-geneity into account in determining focal mechanisms of small earthquakes using waveform data. If the locations of small earthquakes are concentrated in a small region, we can assume that the raypaths from the events to a given station are almost the same. So P and S wave attenuations are independent of event locations. In this case it is con-venient to determine focal mechanisms of these events by using short period P and S wave dataj. Focal mechanism solutions of small earthquakes in 5 regions, i.e., Rongchang, Mabian-Muchuan, Ya¢an, Baoxing and Mianzhu, which are covered by the Chengdu Telemetered Network, are obtained by analyzing the P polarity and short body wave amplitude data recorded in the network since 1992. According to the method proposed by Gephart and Forsyth (1984), based on well determined focal mechanism solutions in 15 sub-zones of Sichuan and Yunnan area, three principal stress tensors s1, s2, and s3, instead of averages of P, B, and T axis of the solutions, are determined to represent the regional stress field distribution.

  17. Porcine radial artery decellularization by high hydrostatic pressure.

    Science.gov (United States)

    Negishi, Jun; Funamoto, Seiichi; Kimura, Tsuyoshi; Nam, Kwangoo; Higami, Tetsuya; Kishida, Akio

    2015-11-01

    Many types of decellularized tissues have been studied and some have been commercially used in clinics. In this study, small-diameter vascular grafts were made using HHP to decellularize porcine radial arteries. One decellularization method, high hydrostatic pressure (HHP), has been used to prepare the decellularized porcine tissues. Low-temperature treatment was effective in preserving collagen and collagen structures in decellularized porcine carotid arteries. The collagen and elastin structures and mechanical properties of HHP-decellularized radial arteries were similar to those of untreated radial arteries. Xenogeneic transplantation (into rats) was performed using HHP-decellularized radial arteries and an untreated porcine radial artery. Two weeks after transplantation into rat carotid arteries, the HHP-decellularized radial arteries were patent and without thrombosis. In addition, the luminal surface of each decellularized artery was covered by recipient endothelial cells and the arterial medium was fully infiltrated with recipient cells.

  18. Arf6 coordinates actin assembly through the WAVE complex, a mechanism usurped by Salmonella to invade host cells

    Science.gov (United States)

    Humphreys, Daniel; Davidson, Anthony C.; Hume, Peter J.; Makin, Laura E.; Koronakis, Vassilis

    2013-01-01

    ADP ribosylation factor (Arf) 6 anchors to the plasma membrane, where it coordinates membrane trafficking and cytoskeleton remodelling, but how it assembles actin filaments is unknown. By reconstituting membrane-associated actin assembly mediated by the WASP family veroprolin homolog (WAVE) regulatory complex (WRC), we recapitulated an Arf6-driven actin polymerization pathway. We show that Arf6 is divergent from other Arf members, as it was incapable of directly recruiting WRC. We demonstrate that Arf6 triggers actin assembly at the membrane indirectly by recruiting the Arf guanine nucleotide exchange factor (GEF) ARNO that activates Arf1 to enable WRC-dependent actin assembly. The pathogen Salmonella usurped Arf6 for host cell invasion by recruiting its canonical GEFs EFA6 and BRAG2. Arf6 and its GEFs facilitated membrane ruffling and pathogen invasion via ARNO, and triggered actin assembly by generating an Arf1–WRC signaling hub at the membrane in vitro and in cells. This study reconstitutes Arf6-dependent actin assembly to reveal a mechanism by which related Arf GTPases orchestrate distinct steps in the WRC cytoskeleton remodelling pathway. PMID:24085844

  19. On the Effects of Viscosity on the Shock Waves for a Hydrodynamical Case—Part I: Basic Mechanism

    Directory of Open Access Journals (Sweden)

    Huseyin Cavus

    2013-01-01

    Full Text Available The interaction of shock waves with viscosity is one of the central problems in the supersonic regime of compressible fluid flow. In this work, numerical solutions of unmagnetised fluid equations, with the viscous stress tensor, are investigated for a one-dimensional shock wave. In the algorithm developed the viscous stress terms are expressed in terms of the relevant Reynolds number. The algorithm concentrated on the compression rate, the entropy change, pressures, and Mach number ratios across the shock wave. The behaviour of solutions is obtained for the Reynolds and Mach numbers defining the medium and shock wave in the supersonic limits.

  20. Quantified Mechanical Properties of the Deltoid Muscle Using the Shear Wave Elastography: Potential Implications for Reverse Shoulder Arthroplasty.

    Directory of Open Access Journals (Sweden)

    Taku Hatta

    Full Text Available The deltoid muscle plays a critical role in the biomechanics of shoulders undergoing reverse shoulder arthroplasty (RSA. However, both pre- and postoperative assessment of the deltoid muscle quality still remains challenging. The purposes of this study were to establish a novel methodology of shear wave elastography (SWE to quantify the mechanical properties of the deltoid muscle, and to investigate the reliability of this technique using cadaveric shoulders for the purpose of RSA. Eight fresh-frozen cadaveric shoulders were obtained. The deltoid muscles were divided into 5 segments (A1, A2, M, P1 and P2 according to the muscle fiber orientation and SWE values were measured for each segment. Intra- and inter-observer reliability was evaluated using intraclass correlation coefficient (ICC. To measure the response of muscle tension during RSA, the humeral shaft was osteotomized and subsequently elongated by an external fixator (intact to 15 mm elongation. SWE of the deltoid muscle was measured under each stretch condition. Intra- and inter-observer reliability of SWE measurements for all regions showed 0.761-0.963 and 0.718-0.947 for ICC(2,1. Especially, SWE measurements for segments A2 and M presented satisfactory repeatability. Elongated deltoid muscles by the external fixator showed a progressive increase in passive stiffness for all muscular segments. Especially, SWE outcomes of segments A2 and M reliably showed an exponential growth upon stretching (R2 = 0.558 and 0.593. Segmental measurements using SWE could be reliably and feasibly used to quantitatively assess the mechanical properties of the deltoid muscle, especially in the anterior and middle portions. This novel technique based on the anatomical features may provide helpful information of the deltoid muscle properties during treatment of RSA.

  1. Peripheral arterial line (image)

    Science.gov (United States)

    A peripheral arterial line is a small, short plastic catheter placed through the skin into an artery of the arm or leg. The purpose of a peripheral arterial line is to allow continuous monitoring of ...

  2. [A mathematical model of hemodynamic processes for distal pulse wave formation].

    Science.gov (United States)

    Fedotov, A A

    2015-01-01

    A mathematical model of the formation of distal arterial pulse wave signal in the blood vessels of the upper limbs was considered. The formation of distal arterial pulse wave is represented as a composition of forward and reverse pulse waves propagating along the human arterial system. The system of formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.

  3. A LINEAR THEORY FOR DISTURBANCE OF COHERENT STRUCTURE AND MECHANISM OF SAND WAVES IN OPEN-CHANNEL FLOW

    Institute of Scientific and Technical Information of China (English)

    Yuchuan BAI; Andreas MALCHEREK; Changbo JIANG

    2001-01-01

    The formation of sand wave is such a process in which the roughness and discontinuity of the original bed surface cause the disturbance of the bottom laminar flow in an open channel,and the development of the disturbance in turn leads to instability of the flow and the appearance of the coherent structure. The evolution and development of the coherent structure further promote the undulations of bed surface and sand waves rise finally. The sand wave is explained as a result of action that the bed sediment particles are disturbed by the coherent structure. This study shows that the sand wave formation is the result of disturbance action of neutral coherent structure, and the sand wave shape obtained in computations is identical to the practical one.

  4. Conjunction of standing wave and resonance in asymmetric nanowires: a mechanism for thermal rectification and remote energy accumulation.

    Science.gov (United States)

    Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2015-12-02

    As an important way to control and manage heat transport, thermal rectification has become an elementary issue in the field of phononics and plays a key role in the designing of thermal devices. Here we investigate systematically the standing wave and the accompanying resonance process in asymmetric nanowires to understand the standing wave itself and its great effect on thermal rectification. Results show that the standing wave is sensitive to both the structural and thermal properties of the material, and its great effect on enhancing the thermal rectification is realized not only by the energy-localization nature of the standing wave, but also by the resonance-caused large amplitude and high energy of the standing wave.

  5. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells

    DEFF Research Database (Denmark)

    Talib, Jihan; Davies, Michael Jonathan

    2016-01-01

    Smokers have an elevated risk of cardiovascular disease, but the origin(s) of this increased risk are incompletely defined. Evidence supports an accumulation of the oxidant-generating enzyme myeloperoxidase (MPO) in the inflamed artery wall, and smokers have high levels of SCN−, a preferred MPO...

  6. Arterial stiffness: pathophysiology and clinical impact.

    Science.gov (United States)

    London, Gérard M; Marchais, Sylvain J; Guerin, Alain P; Pannier, Bruno

    2004-01-01

    The ill effects of hypertension are usually attributed to a reduction in the caliber or the number of arterioles, resulting in an increase in total peripheral resistance (TPR). This definition does not take into account the fact that BP is a cyclic phenomenon with systolic and diastolic BP being the limits of these oscillations. The appropriate term to define the arterial factor(s) opposing LV ejection is aortic input impedance which depends on TPR, arterial distensibility (D), and wave reflections (WR). D defines the capacitive properties of arterial stiffness, whose role is to dampen pressure and flow oscillations and to transform pulsatile flow and pressure in arteries into a steady flow and pressure in peripheral tissues. Stiffness is the reciprocal value of D. These parameters are BP dependent, and arteries become stiffer at high pressure. In to D which provides information about the elasticity> of artery as a hollow structure, the elastic incremental modulus (Einc) characterizes the properties of the arterial wall biomaterials, independently of vessel geometry. As an alternative, arterial D can be evaluated by measuring the pulse wave velocity (PWV) which increases with the stiffening of arteries. Arterial stiffening increases left ventricular (LV) afterload and alters the coronary perfusion. With increased PWV, the WR impacts on the aorta during systole, increasing systolic pressures and myocardial oxygen consumption, and decreasing diastolic BP and coronary flow. The arterial stiffness is altered primarily in association with increased collagen content and alterations of extracellular matrix (arteriosclerosis) as classically observed during aging or in arterial hypertension. The arterial stiffening estimated by changes in aortic PWV and intensity of WR are independent predictors of survival in end stage renal disease (ESRD) and general population. Improvement of arterial stiffening could be obtained by antihypertensive treatmen as observed with the calcium

  7. [Internal carotid artery dissection after Heimlich maneuver].

    Science.gov (United States)

    Rakotoharinandrasana, H; Petit, E; Dumas, P; Vandermarcq, P; Gil, R; Neau, J-Ph

    2003-01-01

    We report a case of cervical artery dissection following a Heimlich maneuver. Cervical artery dissections are at the present time well known and are sometimes associated with trivial traumas. However, to our knowledge, this complication of such maneuver was never reported in the literature. Pathophysiological mechanisms are discussed.

  8. Low velocity crustal flow and crust-mantle coupling mechanism in Yunnan, SE Tibet, revealed by 3D S-wave velocity and azimuthal anisotropy

    Science.gov (United States)

    Chen, Haopeng; Zhu, Liangbao; Su, Youjin

    2016-08-01

    We used teleseismic data recorded by a permanent seismic network in Yunnan, SE Tibet, and measured the interstation Rayleigh wave phase velocity between 10 and 60 s. A two-step inversion scheme was used to invert for the 3D S-wave velocity and azimuthal anisotropy structure of 10-110 km. The results show that there are two low velocity channels between depths of 20-30 km in Yunnan and that the fast axes are sub-parallel to the strikes of the low velocity channels, which supports the crustal flow model. The azimuthal anisotropy pattern is quite complicated and reveals a complex crust-mantle coupling mechanism in Yunnan. The N-S trending Lüzhijiang Fault separates the Dianzhong Block into two parts. In the western Dianzhong Block, the fast axis of the S-wave changes with depth, which indicates that the crust and the lithospheric mantle are decoupled. In the eastern Dianzhong Block and the western Yangtze Craton, the crust and the lithospheric mantle may be decoupled because of crustal flow, despite a coherent S-wave fast axis at depths of 10-110 km. In addition, the difference between the S-wave fast axis in the lithosphere and the SKS splitting measurement suggests that the lithosphere and the upper mantle are decoupled there. In the Baoshan Block, the stratified anisotropic pattern suggests that the crust and the upper mantle are decoupled.

  9. Propagation Mechanisms of Incident Tsunami Wave in Jiangsu Coastal Area, Caused by Eastern Japan Earthquake on March 11, 2011

    Institute of Scientific and Technical Information of China (English)

    袁春光; 王义刚; 黄惠明; 陈橙; 陈大可

    2016-01-01

    At 13:46 on March 11, 2011 (Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal area of China, it was evident that, only in Guanhekou, the position of the maximum wave height appeared in the middle part rather than in the front of the tsunami wave train. A numerical model of tsunami propagation based on 2-D nonlinear shallow water equations was built to study the impact range and main causes of the special tsunami waveform discovered in Jiangsu coastal area. The results showed that nearly three-quarters of the Jiangsu coastal area, mainly comprised the part north of the radial sand ridges, reached its maximum tsunami wave height in the middle part of the wave train. The main cause of the special waveform was the special underwater topography condition of the Yellow Sea and the East China Sea area, which influenced the tsunami propagation and waveform significantly. Although land boundary reflection brought an effect on the position of the maximum wave height to a certain extent, as the limits of the incident waveform and distances between the observation points and shore, it was not the dominant influence factor of the special waveform. Coriolis force’s impact on the tsunami waves was so weak that it was not the main cause for the special phenomenon in Jiangsu coastal area. The study reminds us that the most destructive wave might not appear in the first one in tsunami wave train.

  10. Propagation mechanisms of incident tsunami wave in Jiangsu coastal area, caused by eastern Japan earthquake on March 11, 2011

    Science.gov (United States)

    Yuan, Chun-guang; Wang, Yi-gang; Huang, Hui-ming; Chen, Cheng; Chen, Da-ke

    2016-03-01

    At 13:46 on March 11, 2011 (Beijing time), an earthquake of Mw=9.0 occurred in Japan. By comparing the tsunami data from Guanhekou marine station with other tsunami wave observation gathered from southeast coastal area of China, it was evident that, only in Guanhekou, the position of the maximum wave height appeared in the middle part rather than in the front of the tsunami wave train. A numerical model of tsunami propagation based on 2-D nonlinear shallow water equations was built to study the impact range and main causes of the special tsunami waveform discovered in Jiangsu coastal area. The results showed that nearly three-quarters of the Jiangsu coastal area, mainly comprised the part north of the radial sand ridges, reached its maximum tsunami wave height in the middle part of the wave train. The main cause of the special waveform was the special underwater topography condition of the Yellow Sea and the East China Sea area, which influenced the tsunami propagation and waveform significantly. Although land boundary reflection brought an effect on the position of the maximum wave height to a certain extent, as the limits of the incident waveform and distances between the observation points and shore, it was not the dominant influence factor of the special waveform. Coriolis force's impact on the tsunami waves was so weak that it was not the main cause for the special phenomenon in Jiangsu coastal area. The study reminds us that the most destructive wave might not appear in the first one in tsunami wave train.

  11. The mechanical response of piles with consideration of pile-soil interactions under a periodic wave pressure

    Institute of Scientific and Technical Information of China (English)

    朱峰; 徐卫亚; 王环玲

    2014-01-01

    The pile-soil interaction under wave loads is an extremely complex and difficult issue in engineering. In this study, a physical model test is designed based on the principle of the gravity similarity to obtain time histories of wave forces of unsteady regular waves, and to measure the magnitude and the distribution of wave forces acting on the piles. A numerical model and relevant numerical methods for the pile-soil contact surface are adopted based on the principles of elastic dynamics. For a practical project, the time histories of wave forces on the piles are obtained through physical model tests. The deformations of the piles in the pile-soil interactions and the distribution of the bending moment on the piles are studied. It is shown that, with the increase of the period of wave pressures, the absolute value of the horizontal displacement of the piles increases, the embedment depth of the piles increases, and the scope of influence of soils increases. The change of the bending moment on the piles is consistent with that of its theoretical results, and the proposed numerical method can very well simulate the properties of the piles.

  12. Relation between central artery pressure and pulse wave conduction in aged patients with masked hypertension%老年隐性高血压患者中心动脉压与脉搏波传导速度的相关性研究

    Institute of Scientific and Technical Information of China (English)

    寇学俊; 邢艳秋; 路方红; 刘振东; 胡小亮

    2012-01-01

    Objective To study the relation of central artery pressure and its augmentation index with pulse wave velocity(PWV) in aged patients with masked hypertension. Methods Two hundred and fifty individuals were divided into normal blood pressure group(? = 169) ,masked hypertension group(n = 81) ,and hypertension group(w=150) according to their blood pressure. Their 24 h dynamic blood pressure was monitored. Central artery pressure and its reflected wave were measured with a conductive artery device and carotid-radial pulse wave velocity (crPWV) was measured with a PWV device. Results The central artery systolic and diastolic pressure, central, pulse pressure(CPP) ,mean central systolic and diastolic pressure,end systolic pressure,augmented pressure and crPWV were significantly higher in masked hypertension group than in normal blood pressure group and significantly lower in masked hypertension group than in hypertension group(P<0. 05, P<0. 01). Multiple linear regression analysis showed that the central artery pressure,CPP,and LDL-C were the major risk factors for crPWV((3 = 0. 268,0. 313, 0. 311, P< 0. 01). Conclusion The central artery pressure and its augmentation index are significantly higher in aged patients with masked hypertension, indicating that decreased artery elasticity, central artery systolic pressure,CPP,and LDL-C are the major risk factors for arterial stiffness.%目的 探讨老年隐性高血压患者中心动脉压及增强指数与脉搏波传导速度(PWV)的相关性.方法 选择临床诊断血压正常者250例,根据血压诊断标准分为血压正常(正常组)169例和隐性高血压(隐性组)81例,及高血压患者(高血压组)150例.监测24 h动态血压.并采用大动脉测量仪测量中心动脉压及其反射波;采用PWV测定仪测量颈-桡动脉PWV(crPWV).结果 隐性组中心动脉收缩压、中心动脉舒张压、中心脉压、平均收缩压、平均舒张压、收缩末压、增强压、crPWV明显高于正常

  13. [Studies on the mechanism of action of vascular spasmolytics. 3. Effect of nitroprusside sodium, nitroglycerin, prenylamine and verapamil on the fluoride-induced contracture of the isolated coronary artery].

    Science.gov (United States)

    Fermum, R; Meisel, P; Klinner, U

    1977-01-01

    On isolated coronary arteries of cattle, nitroprusside-sodium, nitroglycerol, prenylamine, and verapamil were studied for their spasmolytic effects on a contracture induced by fluoride ions. With this contracture model, which is independent of extracellular calcium, nitroprosside-sodium and nitroglycerol showed strong spasmolytic action. Verapamil proved ineffective, and the effectiveness of prenylamine was strongly reduced. The results lend support to earlier findings suggesting that nitroglycerol and nitroprusside-sodium are endowed with a relaxation mechanism different from that of verapamil and analogously acting compounds.

  14. Does Preinterventional Flat-Panel Computer Tomography Pooled Blood Volume Mapping Predict Final Infarct Volume After Mechanical Thrombectomy in Acute Cerebral Artery Occlusion?

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Marlies, E-mail: marlies.wagner@kgu.de [Hospital of Goethe University, Institute of Neuroradiology (Germany); Kyriakou, Yiannis, E-mail: yiannis.kyriakou@siemens.com [Siemens AG, Health Care Sector (Germany); Mesnil de Rochemont, Richard du, E-mail: mesnil@em.uni-frankfurt.de [Hospital of Goethe University, Institute of Neuroradiology (Germany); Singer, Oliver C., E-mail: o.singer@em.uni-frankfurt.de [Hospital of Goethe University, Department of Neurology (Germany); Berkefeld, Joachim, E-mail: berkefeld@em.uni-frankfurt.de [Hospital of Goethe University, Institute of Neuroradiology (Germany)

    2013-08-01

    PurposeDecreased cerebral blood volume is known to be a predictor for final infarct volume in acute cerebral artery occlusion. To evaluate the predictability of final infarct volume in patients with acute occlusion of the middle cerebral artery (MCA) or the distal internal carotid artery (ICA) and successful endovascular recanalization, pooled blood volume (PBV) was measured using flat-panel detector computed tomography (FPD CT).Materials and MethodsTwenty patients with acute unilateral occlusion of the MCA or distal ACI without demarcated infarction, as proven by CT at admission, and successful Thrombolysis in cerebral infarction score (TICI 2b or 3) endovascular thrombectomy were included. Cerebral PBV maps were acquired from each patient immediately before endovascular thrombectomy. Twenty-four hours after recanalization, each patient underwent multislice CT to visualize final infarct volume. Extent of the areas of decreased PBV was compared with the final infarct volume proven by follow-up CT the next day.ResultsIn 15 of 20 patients, areas of distinct PBV decrease corresponded to final infarct volume. In 5 patients, areas of decreased PBV overestimated final extension of ischemia probably due to inappropriate timing of data acquisition and misery perfusion.ConclusionPBV mapping using FPD CT is a promising tool to predict areas of irrecoverable brain parenchyma in acute thromboembolic stroke. Further validation is necessary before routine use for decision making for interventional thrombectomy.

  15. Local effects of atherosclerotic plaque on arterial distensibility.

    Science.gov (United States)

    Giannattasio, C; Failla, M; Emanuelli, G; Grappiolo, A; Boffi, L; Corsi, D; Mancia, G

    2001-11-01

    common carotid artery. This provides evidence that the effect of a plaque on arterial mechanical properties is not limited to the actual plaque site but rather extends to a considerable degree in a proximal direction.

  16. Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium statistical mechanics and Bernstein-Greene-Kruskal waves.

    Science.gov (United States)

    Yamaguchi, Yoshiyuki Y

    2011-07-01

    Traveling clusters are ubiquitously observed in the Hamiltonian mean-field model for a wide class of initial states, which are not predicted to become spatially inhomogeneous states by nonequilibrium statistical mechanics and by nonlinear Landau damping. To predict such a cluster state from a given initial state, we combine nonequilibrium statistical mechanics and a construction method of Bernstein-Greene-Kruskal (BGK) waves with the aid of phenomenological assumptions. The phenomenological theory is partially successful, and the theoretically constructed cluster states are in good agreement with N-body simulations. Robustness of the theory is also discussed for unsuccessful initial states.

  17. Multilocular True Ulnar Artery Aneurysm in a Pediatric Patient

    OpenAIRE

    Stalder, Mark W.; Sanders, Christopher; Lago, Mary; Hilaire, Hugo St.

    2016-01-01

    Summary: Ulnar artery aneurysms are an exceedingly rare entity in the pediatric population and have no consistent etiologic mechanism. We present the case of a 15-year-old male with a multilocular ulnar artery aneurysm in the setting of no antecedent history of trauma, no identifiable connective tissue disorders, and no other apparent etiological factors. Furthermore, the patient’s arterial palmar arch system was absent. The aneurysm was resected, and arterial reconstruction was successfully ...

  18. Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. Part I: Theoretical formulation and Numerical Investigation

    CERN Document Server

    Bouscasse, Benjamin; Souto-Iglesias, Antonio; Pita, José Luis Cercós

    2013-01-01

    A single degree of freedom angular motion dynamical system involving the coupling of a moving mass that creates an external torque, a rigid tank, driven by this torque, and fluid which partially fills the tank, is analyzed in the present paper series. The analysis of such a system is relevant for understanding the energy dissipation mechanisms resulting from fluid sloshing and wave breaking. Understanding such mechanisms poses open problems in the fluid mechanics field, and they are relevant for the design of a wide range of Tuned Liquid Damper devices of substantial industrial applicability. In Part I the dynamical system is described in detail to show its nonlinear features both in terms of mechanical and fluid dynamical aspects. A semi-analytical model of the energy dissipated by the fluid, based on a hydraulic jump solution and valid for small oscillation angles, is developed. In order to extend the analysis to large oscillation angles, a Smoothed Particle Hydrodynamics solver is also developed, adapting ...

  19. Research on a tensegrity parallel mechanism for wave energy harvesting%张拉整体并联机构波浪能采集研究

    Institute of Scientific and Technical Information of China (English)

    纪志飞; 李团结; 林敏

    2015-01-01

    To solve the problem that the conventional floating wave power device can not transform the rotational kinetic energy into electric energy , a novel wave energy harvesting device based on tensegrity parallel mechanisms is proposed . The dynamic model of the novel device is developed on the basis of Airy's linear wave theory and Lagrange's equation . Then , the kinematic and dynamic analyses of the float are made . Afterwards , the efficiency of the novel wave energy harvesting device and conventional floating wave power device is computed and compared . The results indicate that the efficiency of energy harvesting of the proposed device is higher than that of the conventional floating wave power device . Moreover , the ability of the proposed device to resist destructive water waves is better than that of the conventional floating wave power device .%针对传统浮子式波浪能采集装置无法将浮子转动动能转化为电能的问题,提出了一种张拉整体并联机构波浪能采集装置。基于线性波理论和拉格朗日方程,建立了张拉整体并联机构波浪能采集装置的动力学模型,分析了此装置的浮子在线性波浪作用下的位移和速度,对比研究了该装置和传统浮子式波浪能采集装置的能量采集效率。仿真结果表明,张拉整体并联机构波浪能采集装置比传统浮子式装置能量的采集效率高;