WorldWideScience

Sample records for arterial endothelial cells

  1. Arterial identity of endothelial cells is controlled by local cues.

    Science.gov (United States)

    Othman-Hassan, K; Patel, K; Papoutsi, M; Rodriguez-Niedenführ, M; Christ, B; Wilting, J

    2001-09-15

    The ephrins and their Eph receptors comprise the largest family of receptor tyrosine kinases. Studies on mice have revealed an important function of ephrin-B2 and Eph-B4 for the development of the arterial and venous vasculature, respectively, but the mechanisms regulating their expression have not been studied yet. We have cloned a chick ephrin-B2 cDNA probe. Expression was observed in endothelial cells of extra- and intraembryonic arteries and arterioles in all embryos studied from day 2 (stage 10 HH, before perfusion of the vessels) to day 16. Additionally, expression was found in the somites and neural tube in early stages, and later also in the smooth muscle cells of the aorta, parts of the Müllerian duct, dosal neural tube, and joints of the limbs. We isolated endothelial cells from the internal carotid artery and the vena cava of 14-day-old quail embryos and grafted them separately into day-3 chick embryos. Reincubation was performed until day 6 and the quail endothelial cells were identified with the QH1 antibody. The grafted arterial and venous endothelial cells expressed ephrin-B2 when they integrated into the lining of arteries. Cells that were not integrated into vessels, or into vessels other than arteries, were ephrin-B2-negative. The studies show that the expression of the arterial marker ephrin-B2 is controlled by local cues in arterial vessels of older embryos. Physical forces or the media smooth muscle cells may be involved in this process.

  2. Galectin-3 induces pulmonary artery endothelial cell morphogenesis and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; LI Yu-mei; WANG Xiao-yan; ZHU Da-ling

    2016-01-01

    AIM:Increasing evidence suggests that carbohydrate-binding proteins play an essential role in tumor growth and metastasis .Ga-lectin-3, a multifunctional protein of an expanding family of β-galactoside-binding animal lectins , is the major nonintegrin cellular laminin-binding protein , and is implicated in a variety of biologic events , such as inflammation and angiogenesis .Because galectin-3 expression was shown to participate in mediating tumor angiogenesis and initiate signaling cascades in several diseases .We hypothe-sized that galectin-3 may promote pulmonary vascular endothelial neovascularization .METHODS:Hypoxic and MCT rat model of pul-monary artery remodeling was used .The mRNA and protein levels of galectin-3 in rats were measured by in situ hybrization and West-ern blot analysis.Endothelial cell (EC) proliferation, migration and tube formation were measured using MTT , cell scratch and Matri-gel assays, respectively.Protein expression was quantitated by Western blot analysis .LC 3A/B staining was detected with cellular im-munofluorescence staining .RESULTS:We found that galectin-3 was localized on the intima and adventitial wall .Galectin-3 was in-creased after rat hypoxia and MCT administration .Galectin-3 promoted EC proliferation , migration and tube formation , while its roles were reversed by RNA interference.Galectin-3 induced Atg 5, Beclin-1, LAMP-2, and LC 3A/B expression increases.Galectin-3 al-so increased LC 3A/B staining in ECs.Akt/mTOR and GSK-3βsignaling pathways were activated after galectin-3 treated ECs using its specific phosphorylation antibodies , while blocked it with LY294002 inhibited cell autophagy and EC dynamic alterations induced by galectin-3.CONCLUSION:These findings demonstrate that galectin-3 can induce an Akt signaling cascade leading to cell autoph-agy, and then the differentiation and angiogenesis of pulmonary artery endothelial cells .

  3. Isolation of Endothelial Cells and Vascular Smooth Muscle Cells from Internal Mammary Artery Tissue

    Science.gov (United States)

    Moss, Stephanie C.; Bates, Michael; Parrino, Patrick E.; Woods, T. Cooper

    2007-01-01

    Analyses of vascular smooth muscle cell and endothelial cell function through tissue culture techniques are often employed to investigate the underlying mechanisms regulating cardiovascular disease. As diseases such as diabetes mellitus and chronic kidney disease increase a patient's risk of cardiovascular disease, the development of methods for examining the effects of these diseases on vascular smooth muscle cells and endothelial cells is needed. Commercial sources of endothelial cells and vascular smooth muscle cells generally provide minimal donor information and are in limited supply. This study was designed to determine if vascular smooth muscle cells and endothelial cells could be isolated from human internal mammary arteries obtained from donors undergoing coronary artery bypass graft surgery. As coronary artery bypass graft surgery is a commonly performed procedure, this method would provide a new source for these cells that when combined with the donor's medical history will greatly enhance our studies of the effects of complicating diseases on vascular biology. Internal mammary artery tissue was obtained from patients undergoing coronary artery bypass graft surgery. Through a simple method employing two separate tissue digestions, vascular smooth muscle cells and endothelial cells were isolated and characterized. The isolated vascular smooth muscle cells and endothelial cells exhibited the expected morphology and were able to be passaged for further analysis. The vascular smooth muscle cells exhibited positive staining for α-smooth muscle actin and the endothelial cells exhibited positive staining for CD31. The overall purity of the isolations was > 95%. This method allows for the isolation of endothelial cells and vascular smooth muscle cells from internal mammary arteries, providing a new tool for investigations into the interplay of vascular diseases and complicating diseases such as diabetes and kidney disease. PMID:21603530

  4. Optical studies of oxidative stress in pulmonary artery endothelial cells

    Science.gov (United States)

    Ghanian, Zahra; Sepehr, Reyhaneh; Eis, Annie; Kondouri, Ganesh; Ranji, Mahsa

    2015-03-01

    Reactive oxygen species (ROS) play an essential role in facilitating signal transduction processes within the cell and modulating the injuries. However, the generation of ROS is tightly controlled both spatially and temporally within the cell, making the study of ROS dynamics particularly difficult. This study present a novel protocol to quantify the dynamic of the mitochondrial superoxide as a precursor of reactive oxygen species. To regulate the mitochondrial superoxide level, metabolic perturbation was induced by administration of potassium cyanide (KCN). The presented method was able to monitor and measure the superoxide production rate over time. Our results demonstrated that the metabolic inhibitor, potassium cyanide (KCN) induced a significant increase in the rate of superoxide production in mitochondria of fetal pulmonary artery endothelial cells (FPAEC). Presented method sets the stage to study different ROS mediated injuries in vitro.

  5. File list: Oth.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 TFs and others Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  6. File list: DNS.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 DNase-seq Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  7. File list: Pol.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 RNA polymerase Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  8. File list: InP.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 Input control Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  9. File list: Unc.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 Unclassified Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  10. File list: His.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 Histone Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  11. File list: His.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 Histone Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  12. File list: InP.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 Input control Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  13. File list: Pol.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 RNA polymerase Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  14. File list: Unc.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 Unclassified Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  15. File list: Unc.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 Unclassified Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  16. File list: Oth.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 TFs and others Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  17. File list: DNS.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 DNase-seq Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  18. File list: InP.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 Input control Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  19. File list: DNS.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 DNase-seq Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  20. File list: Oth.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 TFs and others Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  1. File list: His.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 Histone Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  2. File list: Unc.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 Unclassified Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  3. File list: Pol.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 RNA polymerase Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  4. File list: DNS.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 DNase-seq Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  5. File list: InP.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 Input control Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  6. File list: Pol.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 RNA polymerase Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  7. File list: Oth.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 TFs and others Cardiovascular Coronary arte...ry endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  8. Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury

    DEFF Research Database (Denmark)

    Hagensen, Mette; Raarup, Merete Krog; Mortensen, Martin Bødtker;

    2012-01-01

    into endothelial cells (ECs). We tested this theory in a murine arterial injury model using carotid artery transplants and fluorescent reporter mice. METHODS AND RESULTS: Wire-injured carotid artery segments from wild-type mice were transplanted into TIE2-GFP transgenic mice expressing green fluorescent protein......Z mice with endothelial β-galactosidase expression. These experiments indicated migration of flanking ECs rather than homing of circulating cells as the underlying mechanism. To confirm this, we interposed non-injured wild-type carotid artery segments between the denuded transplant and the TIE2-GFP...

  9. Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk.

    Science.gov (United States)

    Bussmann, Jeroen; Bos, Frank L; Urasaki, Akihiro; Kawakami, Koichi; Duckers, Henricus J; Schulte-Merker, Stefan

    2010-08-01

    The endothelial cells of the vertebrate lymphatic system assemble into complex networks, but local cues that guide the migration of this distinct set of cells are currently unknown. As a model for lymphatic patterning, we have studied the simple vascular network of the zebrafish trunk consisting of three types of lymphatic vessels that develop in close connection with the blood vasculature. We have generated transgenic lines that allow us to distinguish between arterial, venous and lymphatic endothelial cells (LECs) within a single zebrafish embryo. We found that LECs migrate exclusively along arteries in a manner that suggests that arterial endothelial cells serve as the LEC migratory substrate. In the absence of intersegmental arteries, LEC migration in the trunk is blocked. Our data therefore demonstrate a crucial role for arteries in LEC guidance.

  10. Endothelial cell death and intimal foam cell accumulation in the coronary artery of infected hypercholesterolemic minipigs

    DEFF Research Database (Denmark)

    Birck, Malene Muusfeldt; Saraste, Antti; Hyttel, Poul

    2013-01-01

    Apoptosis of endothelial cells (ECs) has been suggested to play a role in atherosclerosis. We studied the synergism of hypercholesterolemia with Chlamydia pneumoniae and influenza virus infections on EC morphology and intimal changes in a minipig model. The coronary artery was excised at euthanasia...

  11. Distribution of Cytoskeletal Components in Endothelial Cells in the Guinea Pig Renal Artery

    Directory of Open Access Journals (Sweden)

    Kazuo Katoh

    2012-01-01

    Full Text Available The cytoskeletal components of endothelial cells in the renal artery were examined by analysis of en face preparations under confocal laser scanning microscopy. Renal arterial endothelial cells were shown to be elongated along the direction of blood flow, while stress fibers ran perpendicular to the flow in the basal portion. Focal adhesions were observed along the stress fibers in dot-like configurations. On the other hand, stress fibers in the apical portion of cells ran along the direction of flow. The localizations of stress fibers and focal adhesions in endothelial cells in the renal artery differed from those of unperturbed aortic and venous endothelial cells. Tyrosine-phosphorylated proteins were mainly detected at the sites of cell-to-cell apposition, but not in focal adhesions. Pulsatile pressure and fluid shear stress applied over endothelial cells in the renal artery induce stress fiber organization and localization of focal adhesions. These observations suggest that the morphological alignment of endothelial cells along the direction of blood flow and the organization of cytoskeletal components are independently regulated.

  12. File list: ALL.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 All antigens Cardiovascular Coronary arte...RX014587,DRX014639,DRX014600,DRX014602 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  13. File list: NoD.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 No description Cardiovascular Coronary arte...,DRX014636,DRX014602,DRX014641,DRX014600 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  14. File list: ALL.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 All antigens Cardiovascular Coronary arte...RX014602,DRX014587,DRX014600,DRX014639 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  15. File list: ALL.CDV.05.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Coronary_artery_endothelial_cells hg19 All antigens Cardiovascular Coronary arte...RX014636,DRX014602,DRX014641,DRX014600 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Coronary_artery_endothelial_cells.bed ...

  16. File list: NoD.CDV.10.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Coronary_artery_endothelial_cells hg19 No description Cardiovascular Coronary arte...,DRX014602,DRX014587,DRX014600,DRX014639 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.10.AllAg.Coronary_artery_endothelial_cells.bed ...

  17. File list: ALL.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 All antigens Cardiovascular Coronary arte...RX014592,DRX014602,DRX014641,DRX014600 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  18. File list: NoD.CDV.50.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Coronary_artery_endothelial_cells hg19 No description Cardiovascular Coronary arte...,DRX014592,DRX014602,DRX014641,DRX014600 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.50.AllAg.Coronary_artery_endothelial_cells.bed ...

  19. File list: NoD.CDV.20.AllAg.Coronary_artery_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Coronary_artery_endothelial_cells hg19 No description Cardiovascular Coronary arte...,DRX014587,DRX014639,DRX014600,DRX014602 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.20.AllAg.Coronary_artery_endothelial_cells.bed ...

  20. Circulating endothelial cells in coronary artery disease and acute coronary syndrome

    NARCIS (Netherlands)

    Schmidt, David E; Manca, Marco; Höfer, Imo E

    2015-01-01

    Circulating endothelial cells (CECs) have been put forward as a promising biomarker for diagnosis and prognosis of coronary artery disease and acute coronary syndromes. This review entails current insights into the physiology and pathobiology of CECs, including their relationship with circulating en

  1. Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Mikkelsen, Lone; Folkmann, Janne K;

    2012-01-01

    Exposure to small size particulates is regarded as a risk factor for cardiovascular disease. We investigated effects of exposure to nanosized carbon black (CB) in human umbilical vein endothelial cells (HUVECs) and segments of arteries from rodents. The CB exposure was associated with increased...

  2. STAT6 mediates apoptosis of human coronary arterial endothelial cells by interleukin-13.

    Science.gov (United States)

    Nishimura, Yuki; Nitto, Takeaki; Inoue, Teruo; Node, Koichi

    2008-03-01

    Interleukin (IL)-13 is a cytokine produced by type 2 helper T cells that has pathophysiological roles in allergic inflammation and fibrosis formation. IL-13 shares many functional properties with IL-4, which promotes apoptosis of endothelial cells (ECs). We here investigated the effects of IL-13 on apoptosis using human coronary artery endothelial cells (HCAECs). Assessment by WST-1 assay demonstrated that IL-13 as well as IL-4 significantly inhibited cell growth. IL-13 significantly attenuated the cell viability and induced apoptosis of HCAECs as well. Expression of mRNA for vascular endothelial cell growth factor, which maintains survival of ECs, was significantly diminished by IL-13. The effects of IL-13 and IL-4 were abolished by depletion of STAT6 using RNA interference. These results suggest that IL-13 attenuates EC viability by inducing apoptosis, and that STAT6 plays pivotal roles on IL-13- and IL-4-induced apoptosis in ECs.

  3. Impaired endothelial progenitor cell activity is associated with reduced arterial elasticity in patients with essential hypertension.

    Science.gov (United States)

    Yang, Zhen; Chen, Long; Su, Chen; Xia, Wen-Hao; Wang, Yan; Wang, Jie-Mei; Chen, Fei; Zhang, Yuan-Yuan; Wu, Fang; Xu, Shi-Yue; Zhang, Xiao-Lin; Tao, Jun

    2010-01-01

    Endothelial dysfunction is related to reduced arterial elasticity in patients with essential hypertension. Circulating endothelial progenitor cells (EPCs), an important endogenous repair approach for endothelial injury, is altered in hypertensive patients. However, the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity has not been reported. The purpose of this study is to investigate the association between alteration in circulating EPCs and hypertension-related reduced arterial elasticity. We measured the artery elasticity profiles including brachial-ankle PWV (baPWV) and C1 large and C2 small artery elasticity indices in patients with essential hypertension (n = 20) and age-matched normotensive subjects (n = 21). The number and activity of circulating EPCs isolated from peripheral blood were determined. Compared to normotensive subjects, the patients with hypertension exhibited decreased C1 large and C2 small artery elasticity indices, as well as increased baPWV. The number of circulating EPCs did not differ between the two groups. The migratory and proliferative activities of circulating EPCs in hypertensive patients were lower than those in normotensive subjects. Both proliferatory and migratory activities of circulating EPCs closely correlated with arterial elasticity profiles, including baPWV and C1 large and C2 small artery elasticity indices. Multivariate analysis identified both proliferative and migratory activities of circulating EPCs as independent predictors of the artery elasticity profiles. The present study demonstrates for the first time that impaired activity of circulating EPCs is associated with reduced arterial elasticity in patients with hypertension. The fall in endogenous repair capacity of vascular endothelium may be involved in the pathogenesis of hypertension-related vascular injury.

  4. Effect of Nateglinide and Glibenclamide on Endothelial Cells and Smooth Muscle Cells from Human Coronary Arteries

    Directory of Open Access Journals (Sweden)

    Seeger H

    2004-01-01

    Full Text Available In the present work the effect of nateglinide and glibenclamide, two different substances used for therapy of diabetes mellitus type 2, were investigated on the synthesis of markers of endothelial function and on the proliferation of smooth muscle cells in vitro. As cell models endothelial and smooth muscle cells from human coronary arteries were used. Both substances were tested at concentrations of 0.1, 1 and 10 mmol/l. As markers of endothelial function prostacyclin, endothelin and plasminogen-activator-inhibitor-1 (PAI-1 were tested. Nateglinide and glibenclamide were similarly able to inhibit endothelial endothelin and PAI-1 synthesis, but only at the highest concentration tested. Endothelial prostacyclin synthesis and proliferation of smooth muscle cells were not significantly changed by both substances. These results indicate that both nateglinide and glibenclamide may have potential in reducing negative long-term effects of diabetes such as atherogenesis. Kurzfassung: Effekt von Nateglinid und Glibenclamid auf Endothel- und Muskelzellen humaner Koronararterien. In der vorliegenden Arbeit wurde die Wirkung von Nateglinid und Glibenclamid, zweier unterschiedlicher Substanzen zur Behandlung des Diabetes mellitus Typ 2, auf die Synthese von Markern der Endothelfunktion und auf die Proliferation glatter Muskelzellen untersucht. Als Zellmodell dienten Endothelzellen und glatte Muskelzellen menschlicher Koronararterien. Beide Substanzen wurden in den Konzentrationen 0,1, 1 und 10 mmol/l getestet. Als Marker der Endothelfunktion dienten Prostazyklin, Endothelin und Plasminogen-Aktivator-Inhibitor-1 (PAI-1. Sowohl Nateglinid als auch Glibenclamid konnten die endotheliale Endothelin- und PAI-1-Produktion in ähnlichem Ausmaß senken, allerdings nur in der höchsten Konzentration. Die Prostazyklinsynthese und die Muskelzellproliferation wurden nicht signifikant beeinflußt. Diese Ergebnisse deuten daraufhin, daß sowohl Nateglinid als auch

  5. ROCK2 mediates the proliferation of pulmonary arterial endothelial cells induced by hypoxia in the development of pulmonary arterial hypertension

    OpenAIRE

    Qiao, Feng; ZOU, ZHITIAN; Liu, Chunhui; Zhu, Xiaofeng; Wang, Xiaoqiang; YANG, CHENGPENG; JIANG, TENGJIAO; Chen, Ying

    2016-01-01

    It has been reported that RhoA activation and Rho-kinase (ROCK) expression are increased in chronic hypoxic lungs, and the long-term inhibition of ROCK markedly improves the survival of patients with pulmonary arterial hypertension (PAH). However, whether Rho-kinase α (ROCK2) participates in regulation of the growth of pulmonary arterial endothelial cells (PAECs) remains unknown. The aim of the present study was to investigate the effect of hypoxia on the proliferation of PAECs and the role o...

  6. Perturbation of human coronary artery endothelial cell redox state and NADPH generation by methylglyoxal.

    Directory of Open Access Journals (Sweden)

    Philip E Morgan

    Full Text Available Diabetes is associated with elevated plasma glucose, increased reactive aldehyde formation, oxidative damage, and glycation/glycoxidation of biomolecules. Cellular detoxification of, or protection against, such modifications commonly requires NADPH-dependent reducing equivalents (e.g. GSH. We hypothesised that reactive aldehydes may modulate cellular redox status via the inhibition of NADPH-generating enzymes, resulting in decreased thiol and NADPH levels. Primary human coronary artery endothelial cells (HCAEC were incubated with high glucose (25 mM, 24 h, 37°C, or methylglyoxal (MGO, glyoxal, or glycolaldehyde (100-500 µM, 1 h, 37°C, before quantification of intracellular thiols and NADPH-generating enzyme activities. Exposure to MGO, but not the other species examined, significantly (P<0.05 decreased total thiols (∼35%, further experiments with MGO showed significant losses of GSH (∼40% and NADPH (∼10%; these changes did not result in an immediate loss of cell viability. Significantly decreased (∼10% NADPH-producing enzyme activity was observed for HCAEC when glucose-6-phosphate or 2-deoxyglucose-6-phosphate were used as substrates. Cell lysate experiments showed significant MGO-dose dependent inhibition of glucose-6-phosphate-dependent enzymes and isocitrate dehydrogenase, but not malic enzyme. Analysis of intact cell or lysate proteins showed that arginine-derived hydroimidazolones were the predominant advanced glycation end-product (AGE formed; lower levels of N(ε-(carboxyethyllysine (CEL and N(ε-(carboxymethyllysine (CML were also detected. These data support a novel mechanism by which MGO exposure results in changes in redox status in human coronary artery endothelial cells, via inhibition of NADPH-generating enzymes, with resultant changes in reduced protein thiol and GSH levels. These changes may contribute to the endothelial cell dysfunction observed in diabetes-associated atherosclerosis.

  7. Kinetics of circulating endothelial progenitor cells in patients undergoing carotid artery surgery

    Directory of Open Access Journals (Sweden)

    Kalender G

    2016-12-01

    Full Text Available G Kalender,1 A Kornberger,2 M Lisy,1 Andres Beiras-Fernandez,2 UA Stock2 1Deparment of General, Thoracic and Vascular Surgery, Hoechst Hospital, 2Department of Thoracic and Cardiovascular Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany Aim: Endothelial progenitor cells (EPCs are primitive cells found in the bone marrow and peripheral blood (PB. In particular, the potential of EPCs to differentiate into mature endothelial cells remains of high interest for clinical applications such as bio-functionalized patches for autologous seeding after implantation. The objective of this study was to determine EPCs’ kinetics in patients undergoing carotid artery thromboendarterectomy (CTEA and patch angioplasty. Methods: Twenty CTEA patients were included (15 male, mean age 76 years. PB samples were taken at 1 day preoperatively, and at 1, 3, and 5 days postoperatively. Flow cytometric analysis was performed for CD34, CD133, KDR, and CD45. Expression of KDR, SDF-1α, and G-CSF was analyzed by means of enzyme-linked immunosorbent assay. Results: Fluorescence-activated cell sorting analysis revealed 0.031%±0.016% (% of PB mononuclear cells KDR+ cells and 0.052%±0.022% CD45-/CD34+/CD133+ cells, preoperatively. A 33% decrease of CD45–/CD34+/CD133+ cells was observed at day 1 after surgery. However, a relative number (compared to initial preoperative values of CD45-/CD34+/CD133+ cells was found on day 3 (82% and on day 5 (94% postoperatively. More profound upregulated levels of CD45–CD34+/CD133+ cells were observed for diabetic (+47% compared to nondiabetic and male (+38% compared to female patients. No significant postoperative time-dependent differences were found in numbers of KDR+ cells and the concentrations of the cytokines KDR and G-CSF. However, the SDF-1α levels decreased significantly on day 1 postoperatively but returned to preoperative levels by day 3. Conclusion: CTEA results in short-term downregulation of circulating

  8. Colocalization of Serum Amyloid A with Microtubules in Human Coronary Artery Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Katja Lakota

    2011-01-01

    Full Text Available Serum amyloid A (SAA acts as a major acute phase protein and represents a sensitive and accurate marker of inflammation. Besides its hepatic origin, as the main source of serum SAA, this protein is also produced extrahepatically. The mRNA levels of SAA become significantly elevated following proinflammatory stimuli, as well as, are induced through their own positive feedback in human primary coronary artery endothelial cells. However, the intracellular functions of SAA are so far unknown. Colocalization of SAA with cytoskeletal filaments has previously been proposed, so we analyzed the colocalization of SAA with all three cytoskeletal elements: actin filaments, vimentin filaments, and microtubules. Immunofluorescent double-labeling analyses confirmed by PLA method revealed a strict colocalization of SAA with microtubules and a very infrequent attachment to vimentin while the distribution of actin filaments appeared clearly separated from SAA staining. Also, no significant colocalization was found between SAA and endomembranes labeled with the fluorescent lipid stain DiO6. However, SAA appears to be located also unbound in the cytosol, as well as inside the nucleus and within nanotubes extending from the cells or bridging neighboring cells. These different locations of SAA in endothelial cells strongly indicate multiple potential functions of this protein.

  9. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Kristi M Porter

    Full Text Available Pulmonary Hypertension (PH is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5. While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC were cultured under normoxic (21% O2 or hypoxic (1% O2 conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2 release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.

  10. Influence of Carbon Monoxide on Growth and Apoptosis of Human Umbilical Artery Smooth Muscle Cells and Vein Endothelial Cells

    OpenAIRE

    2012-01-01

    Carbon monoxide (CO) is a vasoactive molecule that is generated by vascular cells as a byproduct of heme catabolism and it plays an important physiological role in circulation system. In order to investigate whether exogenous CO can mediate the growth and proliferation of vascular cells, in this study, we used 250 parts per million (ppm) of CO to treat human umbilical artery smooth muscle cell (hUASMC) and human umbilical vein endothelial cell (HuVEC) and further evaluated the growth and apop...

  11. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor.

    Science.gov (United States)

    Sivarapatna, Amogh; Ghaedi, Mahboobe; Le, Andrew V; Mendez, Julio J; Qyang, Yibing; Niklason, Laura E

    2015-01-01

    Endothelial cells (ECs) exist in different microenvironments in vivo, including under different levels of shear stress in arteries versus veins. Standard stem cell differentiation protocols to derive ECs and EC-subtypes from human induced pluripotent stem cells (hiPSCs) generally use growth factors or other soluble factors in an effort to specify cell fate. In this study, a biomimetic flow bioreactor was used to subject hiPSC-derived ECs (hiPSC-ECs) to shear stress to determine the impacts on phenotype and upregulation of markers associated with an anti-thrombotic, anti-inflammatory, arterial-like phenotype. The in vitro bioreactor system was able to efficiently mature hiPSC-ECs into arterial-like cells in 24 h, as demonstrated by qRT-PCR for arterial markers EphrinB2, CXCR4, Conexin40 and Notch1, as well protein-level expression of Notch1 intracellular domain (NICD). Furthermore, the exogenous addition of soluble factors was not able to fully recapitulate this phenotype that was imparted by shear stress exposure. The induction of these phenotypic changes was biomechanically mediated in the shear stress bioreactor. This biomimetic flow bioreactor is an effective means for the differentiation of hiPSC-ECs toward an arterial-like phenotype, and is amenable to scale-up for culturing large quantities of cells for tissue engineering applications.

  12. Role of Carnitine Acetyl Transferase in Regulation of Nitric Oxide Signaling in Pulmonary Arterial Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Stephen M. Black

    2012-12-01

    Full Text Available Congenital heart defects with increased pulmonary blood flow (PBF result in pulmonary endothelial dysfunction that is dependent, at least in part, on decreases in nitric oxide (NO signaling. Utilizing a lamb model with left-to-right shunting of blood and increased PBF that mimics the human disease, we have recently shown that a disruption in carnitine homeostasis, due to a decreased carnitine acetyl transferase (CrAT activity, correlates with decreased bioavailable NO. Thus, we undertook this study to test the hypothesis that the CrAT enzyme plays a major role in regulating NO signaling through its effect on mitochondrial function. We utilized the siRNA gene knockdown approach to mimic the effect of decreased CrAT activity in pulmonary arterial endothelial cells (PAEC. Our data indicate that silencing the CrAT gene disrupted cellular carnitine homeostasis, reduced the expression of mitochondrial superoxide dismutase-and resulted in an increase in oxidative stress within the mitochondrion. CrAT gene silencing also disrupted mitochondrial bioenergetics resulting in reduced ATP generation and decreased NO signaling secondary to a reduction in eNOS/Hsp90 interactions. Thus, this study links the disruption of carnitine homeostasis to the loss of NO signaling observed in children with CHD. Preserving carnitine homeostasis may have important clinical implications that warrant further investigation.

  13. Endothelial derived hyperpolarization in renal interlobar arteries

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Sørensen, Charlotte M.

    2015-01-01

    In small arteries, vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are connect by myoendothelial junctions (MEJ), usually extending from the EC. Ca2+ activated K+ channels (IKCa and SKCa) located in the MEJ are suggested to play a role in NO-independent endothelium derived...

  14. Influence of radiographic contrast media on the nitric oxide release from human arterial and venous endothelial cells on extracellular matrix.

    Science.gov (United States)

    Franke, R P; Fuhrmann, R; Jung, F

    2013-01-01

    Radiographic contrast media (RCM) can vary widely in their physicochemical properties, e.g. the iodine concentration, osmolality, molecule structure, chemotoxicity, hydrophilicity, electric charge and viscosity. Besides the necessary effect of Roentgen ray absorption, which provides contrast-rich images of vessels, RCMs can have varying adverse effects. As one possible cause of microcirculatory disorders, changes in morphology and function of endothelial cells are discussed. Therefore, RCM media-induced release of nitric oxide from arterial as well as from venous endothelial cells in contact with two commercially available RCMs (Iodixanol and Iomeprol) was investigated. NO concentrations started to increase slightly in the HUVEC control cultures after 3 min incubation time, however, NO concentrations in the cultures incubated with Iomeprol 350 and Iodixanol 320 did not change over time (Iomeprol 350: p = 0.4905; Iodixanol 320: p = 0.784). On the whole, the time-dependent NO release differed for the three groups (RCM × time: p = 0.00224). This difference was due to the fact that, after incubation with the two contrast agents (Iodixanol 320: p = 0.0003; Iomeprol 350: p = 0.0168), less NO was released by the exposed HUVEC at 3 minutes and after 12 hours than by the control cells. In the control cultures of arterial endothelial cells as well as in cultures incubated with 30% v/v Iodixanol supplemented culture medium the NO release did not change. In those cultures of arterial endothelial cells supplemented with 30% v/v Iomeprol the NO release was significantly less than in control cultures and in cultures supplemented with Iodixanol (p = 0.021; p = 0.043). Inspite of a missing shear stress in our static plane vessel wall model there was a RCM-dependent difference in NO release from endothelial cells in vitro. The NO release from venous endothelial cells differed significantly from the NO release from arterial endothelial cells. While the administration of Iomeprol

  15. Comparison between the Effects of Intraperitoneal Injection of LDL and Intravenous Injection of LDL on Arterial Endothelial Cells Apoptosis

    Institute of Scientific and Technical Information of China (English)

    王丽; 秦瑾; 刘正湘

    2003-01-01

    Summary: To observe the effect of oxidized low density lipoprotein (OxLDL) on arterial endothelialcells apoptosis in vivo, we established a model in which Sprague-Dawley rats were given intraperi-toneal and intravenous injection of unmodified LDL (8 mg/kg every day) via the tail vein. Sevendays after the injection, the aortic endothelial cells specimens were prepared by an en face preparationof rat aorta. The apoptotic cells were identified and counted by in situ nick and labelling (TUNEL)method and light microcopy. The numbers of the apoptotic cells were 12.52±4.71/field in the in-traperitoneal injection control group, 11.41±2.94/field in the intravenous injection control group,22.98±8. 01/field in the intraperitoneal injection LDL group and 103. 8 ± 11.5/field in the intra-venous injection LDL group, respectively. The difference was significant between injection LDLgroup and control (P<0. 01), and the difference was also significant between two LDL injectiongroups (P<0. 01). These findings suggest that injection of LDL can induce apoptosis in arterial en-dothelial cells and the effect is especially significant with intravenous injection LDL. After injection,oxidative modification of LDL may occur in local arteries and causes injury to the endothelial cells.

  16. Paracrine effects of bone marrow-derived endothelial progenitor cells: cyclooxygenase-2/prostacyclin pathway in pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Dong-Mei Jiang

    Full Text Available BACKGROUND: Endothelial dysfunction is the pathophysiological characteristic of pulmonary arterial hypertension (PAH. Some paracrine factors secreted by bone marrow-derived endothelial progenitor cells (BMEPCs have the potential to strengthen endothelial integrity and function. This study investigated whether BMEPCs have the therapeutic potential to improve monocrotaline (MCT-induced PAH via producing vasoprotective substances in a paracrine fashion. METHODS AND RESULTS: Bone marrow-derived mononuclear cells were cultured for 7 days to yield BMEPCs. 24 hours or 3 weeks after exposure to BMEPCs in vitro or in vivo, the vascular reactivity, cyclooxygenase-2 (COX-2 expression, prostacyclin (PGI2 and cAMP release in isolated pulmonary arteries were examined respectively. Treatment with BMEPCs could improve the relaxation of pulmonary arteries in MCT-induced PAH and BMEPCs were grafted into the pulmonary bed. The COX-2/prostacyclin synthase (PGIS and its progenies PGI2/cAMP were found to be significantly increased in BMEPCs treated pulmonary arteries, and this action was reversed by a selective COX-2 inhibitor, NS398. Moreover, the same effect was also observed in conditioned medium obtained from BMEPCs culture. CONCLUSIONS: Implantation of BMEPCs effectively ameliorates MCT-induced PAH. Factors secreted in a paracrine fashion from BMEPCs promote vasoprotection by increasing the release of PGI2 and level of cAMP.

  17. Disruption of Endothelial Cell Homeostasis Plays a Key Role in the Early Pathogenesis of Coronary Artery Abnormalities in Kawasaki Disease

    Science.gov (United States)

    Ueno, Kentaro; Ninomiya, Yumiko; Hazeki, Daisuke; Masuda, Kiminori; Nomura, Yuichi; Kawano, Yoshifumi

    2017-01-01

    Disruption of endothelial cell homeostasis may be associated with the pathogenesis of coronary artery abnormalities (CAA) in Kawasaki disease (KD). We sought to clarify the poorly understood pathogenic role of endothelial cell survival and death in KD vasculitis. Human umbilical vein endothelial cells (HUVECs) stimulated with sera from KD patients, compared with sera from patients with bacterial infections, exhibited significant increases in cytotoxicity, high mobility group box protein 1 (HMGB-1), and caspase-3/7 and a decrease in phosphorylated Akt/Akt (pAkt/Akt) ratios. HUVECs stimulated with sera from KD patients treated with immunoglobulin (IG) showed significantly decreased cytotoxicity, HMGB-1, and caspase-3/7 levels and increased pAkt/Akt ratios, as compared with results for untreated HUVECs (P < 0.001, P = 0.008, P = 0.040, and P < 0.001, respectively). In HUVECs stimulated with sera from KD patients, the increased cytotoxicity levels and the suppression of increased pAkt/Akt ratios after subsequent IG treatment were closely related to the development of CAA (P = 0.002 and P = 0.035). Our data reveal that shifting the balance toward cell death rather than survival appears to perturb endothelial cell homeostasis and is closely related to the development of CAA. The cytoprotective effects of IG treatment appear to ameliorate endothelial cell homeostasis. PMID:28255175

  18. Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function.

    Science.gov (United States)

    Burton, Victoria J; Ciuclan, Loredana I; Holmes, Alan M; Rodman, David M; Walker, Christoph; Budd, David C

    2011-01-06

    Mutations in bone morphogenetic protein receptor II (BMPR-II) underlie most heritable cases of pulmonary arterial hypertension (PAH). However, less than half the individuals who harbor mutations develop the disease. Interestingly, heterozygous null BMPR-II mice fail to develop PAH unless an additional inflammatory insult is applied, suggesting that BMPR-II plays a fundamental role in dampening inflammatory signals in the pulmonary vasculature. Using static- and flow-based in vitro systems, we demonstrate that BMPR-II maintains the barrier function of the pulmonary artery endothelial monolayer suppressing leukocyte transmigration. Similar findings were also observed in vivo using a murine model with loss of endothelial BMPR-II expression. In vitro, the enhanced transmigration of leukocytes after tumor necrosis factor α or transforming growth factor β1 stimulation was CXCR2 dependent. Our data define how loss of BMPR-II in the endothelial layer of the pulmonary vasculature could lead to a heightened susceptibility to inflammation by promoting the extravasation of leukocytes into the pulmonary artery wall. We speculate that this may be a key mechanism involved in the initiation of the disease in heritable PAH that results from defects in BMPR-II expression.

  19. H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension.

    Science.gov (United States)

    Feng, Shasha; Chen, Siyao; Yu, Wen; Zhang, Da; Zhang, Chunyu; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2017-03-01

    This study aimed to determine whether hydrogen sulfide (H2S) inhibits pulmonary arterial endothelial inflammation in rats with monocrotaline (MCT)-induced pulmonary hypertension and its possible mechanisms. Twenty-four male Wistar rats were divided randomly into control, MCT, and MCT+H2S treatment groups. Human pulmonary arterial endothelial cells (HPAEC) were cultured and divided into four groups: control, MCT, MCT+H2S, and H2S. Pulmonary artery pressure was determined using a right cardiac catheterization procedure 3 weeks after MCT administration. Pulmonary vascular morphological changes and inflammatory infiltration were measured. Endogenous H2S levels, cystathionine-γ-lyase (CSE) expression, and inflammatory cytokines were determined both in vivo and in vitro. In addition, phosphorylation of NF-κB p65 and IκBα was detected by western blotting, and NF-κB p65 nuclear translocation, as well as its DNA-binding activity, was determined. Pulmonary hypertension and vascular remolding developed 3 wks after MCT administration, with elevated lung tissue inflammatory infiltration and cytokine level associated with activation of the NF-κB pathway, both in vivo and in vitro. However, the endogenous H2S/CSE pathway was downregulated in MCT rats. By contrast, an H2S donor markedly reduced pulmonary artery pressure, pulmonary vascular structural remolding, and increased lung inflammatory infiltration and cytokine levels of MCT-treated rats. Meanwhile, H2S reversed the activation of the NF-κB pathway successfully. The downregulated pulmonary arterial endothelial H2S/CSE pathway is involved in the pulmonary inflammatory response in MCT-treated pulmonary hypertensive rats. H2S attenuated endothelial inflammation by inhibiting the NF-κB pathway.

  20. Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk

    NARCIS (Netherlands)

    Bussmann, J.; Bos, F.L.; Urasaki, A.; Kawakami, K.; Duckers, H.J.; Schulte-Merker, S.

    2010-01-01

    The endothelial cells of the vertebrate lymphatic system assemble into complex networks, but local cues that guide the migration of this distinct set of cells are currently unknown. As a model for lymphatic patterning, we have studied the simple vascular network of the zebrafish trunk consisting of

  1. Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk

    NARCIS (Netherlands)

    J. Bussmann (Jeroen); F.L. Bos (Frank); A. Urasaki (Akihiro); K. Kawakami (Koichi); H.J. Duckers (Henricus); S. Schulte-Merker (Stefan)

    2010-01-01

    textabstractThe endothelial cells of the vertebrate lymphatic system assemble into complex networks, but local cues that guide the migration of this distinct set of cells are currently unknown. As a model for lymphatic patterning, we have studied the simple vascular network of the zebrafish trunk co

  2. Enhanced cellular responses and distinct gene profiles in human fetoplacental artery endothelial cells under chronic low oxygen.

    Science.gov (United States)

    Jiang, Yi-Zhou; Wang, Kai; Li, Yan; Dai, Cai-Feng; Wang, Ping; Kendziorski, Christina; Chen, Dong-Bao; Zheng, Jing

    2013-12-01

    Fetoplacental endothelial cells are exposed to oxygen levels ranging from 2% to 8% in vivo. However, little is known regarding endothelial function within this range of oxygen because most laboratories use ambient air (21% O2) as a standard culture condition (SCN). We asked whether human umbilical artery endothelial cells (HUAECs) that were steadily exposed to the physiological chronic normoxia (PCN, 3% O2) for ∼20-25 days differed in their proliferative and migratory responses to FGF2 and VEGFA as well as in their global gene expression compared with those in the SCN. We observed that PCN enhanced FGF2- and VEGFA-stimulated cell proliferation and migration. In oxygen reversal experiments (i.e., when PCN cells were exposed to SCN for 24 h and vice versa), we found that preexposure to 21% O2 decreased the migratory ability, but not the proliferative ability, of the PCN-HUAECs in response to FGF2 and VEGFA. These PCN-enhanced cellular responses were associated with increased protein levels of HIF1A and NOS3, but not FGFR1, VEGFR1, and VEGFR2. Microarray analysis demonstrated that PCN up-regulated 74 genes and down-regulated 86, 14 of which were directly regulated by hypoxia-inducible factors as evaluated using in silico analysis. Gene function analysis further indicated that the PCN-regulated genes were highly related to cell proliferation and migration, consistent with the results from our functional assays. Given that PCN significantly alters cellular responses to FGF2 and VEGFA as well as transcription in HUAECs, it is likely that we may need to reexamine the current cellular and molecular mechanisms controlling fetoplacental endothelial functions, which were largely derived from endothelial models established under ambient O2.

  3. Influence of Carbon Monoxide on Growth and Apoptosis of Human Umbilical Artery Smooth Muscle Cells and Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Yajuan Li, Hai Wang, Bin Yang, Jichen Yang, Xiuyan Ruan, Yadong Yang, Edward K. Wakeland, Quanzhen Li, Xiangdong Fang

    2012-01-01

    Full Text Available Carbon monoxide (CO is a vasoactive molecule that is generated by vascular cells as a byproduct of heme catabolism and it plays an important physiological role in circulation system. In order to investigate whether exogenous CO can mediate the growth and proliferation of vascular cells, in this study, we used 250 parts per million (ppm of CO to treat human umbilical artery smooth muscle cell (hUASMC and human umbilical vein endothelial cell (HuVEC and further evaluated the growth and apoptosis status of SMC and HuVEC. After SMC and HuVEC were exposed to CO for 7-day, the growth of SMC and HuVEC was significantly inhibited by CO in vitro on day 5 of CO exposure. And CO blocked cell cycle progress of SMC and HuVEC, more SMC and HuVEC stagnated at G0/G1 phase by flow cytometric analysis. Moreover, CO treatment inhibited SMC and HuVEC apoptosis caused by hydrogen peroxide through decreasing caspase 3 and 9 activities. To confirm the molecular mechanism of CO effect on SMC and HuVEC growth, we compared the gene expression profile in SMC and CO-treated SMC, HuVEC and CO-treated HuVEC. By microarray analysis, we found the expression level of some genes which are related to cell cycle regulation, cell growth and proliferation, and apoptosis were changed during CO exposure. We further identified that the down-regulated CDK2 contributed to arresting cell growth and the down-regulated Caspase 3 (CASP3 and Caspase 9 (CASP9 were associated with the inhibition of cell apoptosis. Therefore, CO exerts a certain growth arrest on SMC and HuVEC by inhibiting cell cycle transition from G0/G1 phase to S phase and has regulatory effect on cell apoptosis by regulating the expression of apoptosis-associated genes.

  4. Binding of human coronary artery endothelial cells to plasma-treated titanium dioxide nanotubes of different diameters.

    Science.gov (United States)

    Flašker, Ajda; Kulkarni, Mukta; Mrak-Poljšak, Katjuša; Junkar, Ita; Čučnik, Saša; Žigon, Polona; Mazare, Anca; Schmuki, Patrik; Iglič, Aleš; Sodin-Semrl, Snezna

    2016-05-01

    Nanoscale topography in improving vascular response in vitro was established previously on various titanium surfaces. In the present study different surface nanotopographies that is different diameters of titanium dioxide (TiO2 ) nanotubes (NTs) were fabricated by electrochemical anodization and conditioned with highly reactive gaseous oxygen plasma. The morphology of different diameter NTs was studied by scanning electron microscopy and atomic force microscopy, while changes in chemical composition on the surface before and after plasma treatment were determined by X-ray photoelectron spectroscopy. Performance of human coronary artery endothelial cells (HCAEC) on those conditioned surfaces was studied in regard to cell proliferation, released IL-6 protein and immunofluorescence microscopy (IFM). We show that HCAEC function is dependent on the diameter of the TiO2 NTs, functioning far less optimally when bound to 100 nm TiO2 NTs as compared to Ti foil, 15 nm NTs or 50 nm NTs. There were improved, morphological cell shape changes, observed with IFM, between HCAEC growing on oxygen-rich plasma-treated versus nontreated 100 nm NTs. These endothelialized conditioned Ti nanosurfaces could elucidate optimization conditions necessary for vascular implants in coronary arteries.

  5. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    NARCIS (Netherlands)

    van Loon, Rosa Laura E; Bartelds, Beatrijs; Wagener, Frank A D T G; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W C; Takens, Janny; Berger, Rolf M F

    2015-01-01

    BACKGROUND: Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progeni

  6. Oxidation modifies the structure and function of the extracellular matrix generated by human coronary artery endothelial cells.

    Science.gov (United States)

    Chuang, Christine Y; Degendorfer, Georg; Hammer, Astrid; Whitelock, John M; Malle, Ernst; Davies, Michael J

    2014-04-15

    ECM (extracellular matrix) materials, such as laminin, perlecan, type IV collagen and fibronectin, play a key role in determining the structure of the arterial wall and the properties of cells that interact with the ECM. The aim of the present study was to investigate the effect of peroxynitrous acid, an oxidant generated by activated macrophages, on the structure and function of the ECM laid down by HCAECs (human coronary artery endothelial cells) in vitro and in vivo. We show that exposure of HCAEC-derived native matrix components to peroxynitrous acid (but not decomposed oxidant) at concentrations >1 μM results in a loss of antibody recognition of perlecan, collagen IV, and cell-binding sites on laminin and fibronectin. Loss of recognition was accompanied by decreased HCAEC adhesion. Real-time PCR showed up-regulation of inflammation-associated genes, including MMP7 (matrix metalloproteinase 7) and MMP13, as well as down-regulation of the laminin α2 chain, in HCAECs cultured on peroxynitrous acid-treated matrix compared with native matrix. Immunohistochemical studies provided evidence of co-localization of laminin with 3-nitrotyrosine, a biomarker of peroxynitrous acid damage, in type II-III/IV human atherosclerotic lesions, consistent with matrix damage occurring during disease development in vivo. The results of the present study suggest a mechanism through which peroxynitrous acid modifies endothelial cell-derived native ECM proteins of the arterial basement membrane in atherosclerotic lesions. These changes to ECM and particularly perlecan and laminin may be important in inducing cellular dysfunction and contribute to atherogenesis.

  7. Beta Blockers Suppress Dextrose-Induced Endoplasmic Reticulum Stress, Oxidative Stress, and Apoptosis in Human Coronary Artery Endothelial Cells.

    Science.gov (United States)

    Haas, Michael J; Kurban, William; Shah, Harshit; Onstead-Haas, Luisa; Mooradian, Arshag D

    Beta blockers are known to have favorable effects on endothelial function partly because of their capacity to reduce oxidative stress. To determine whether beta blockers can also prevent dextrose-induced endoplasmic reticulum (ER) stress in addition to their antioxidative effects, human coronary artery endothelial cells and hepatocyte-derived HepG2 cells were treated with 27.5 mM dextrose for 24 hours in the presence of carvedilol (a lipophilic beta blockers with alpha blocking activity), propranolol (a lipophilic nonselective beta blockers), and atenolol (a water-soluble selective beta blockers), and ER stress, oxidative, stress and cell death were measured. ER stress was measured using the placental alkaline phosphatase assay and Western blot analysis of glucose regulated protein 78, c-Jun-N-terminal kinase (JNK), phospho-JNK, eukaryotic initiating factor 2α (eIF2α), and phospho-eIF2α and measurement of X-box binding protein 1 (XBP1) mRNA splicing using reverse transcriptase-polymerase chain reaction. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. Cell viability was measured by propidium iodide staining method. The ER stress, SO production, and cell death induced by 27.5 mM dextrose were inhibited by all 3 beta blockers tested. The antioxidative and ER stress reducing effects of beta blockers were also observed in HepG2 cells. The salutary effects of beta blockers on endothelial cells in reducing both ER stress and oxidative stress may contribute to the cardioprotective effects of these agents.

  8. In situ expression of Bcl-2 in pulmonary artery endothelial cells associates with pulmonary arterial hypertension relative to heart failure with preserved ejection fraction

    Science.gov (United States)

    Benza, Raymond L.; Williams, Gretchen; Wu, Changgong; Shields, Kelly J.; Raina, Amresh; Murali, Srinivas

    2016-01-01

    Abstract We have previously reported that pulmonary artery endothelial cells (PAECs) can be harvested from the tips of discarded Swan-Ganz catheters after right heart catheterization (RHC). In this study, we tested the hypothesis that the existence of an antiapoptotic phenotype in PAECs obtained during RHC is a distinctive feature of pulmonary arterial hypertension (PAH; World Health Organization group 1) and might be used to differentiate PAH from other etiologies of pulmonary hypertension. Specifically, we developed a flow cytometry-based measure of Bcl-2 activity, referred to as the normalized endothelial Bcl-2 index (NEBI). We report that higher NEBI values are associated with PAH to the exclusion of heart failure with preserved ejection fraction (HFpEF) and that this simple diagnostic measurement is capable of differentiating PAH from HFpEF without presenting addition risk to the patient. If validated in a larger, multicenter study, the NEBI has the potential to assist physicians in the selection of appropriate therapeutic interventions in the common and dangerous scenario wherein patients present a clinical and hemodynamic phenotype that makes it difficult to confidently differentiate between PAH and HFpEF. PMID:28090298

  9. Inward Rectifier K+ Currents Are Regulated by CaMKII in Endothelial Cells of Primarily Cultured Bovine Pulmonary Arteries.

    Directory of Open Access Journals (Sweden)

    Lihui Qu

    Full Text Available Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs that was regulated by the Ca2+/calmodulin (CaM-dependent protein kinase II (CaMKII. In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-β-S and choleratoxin suggested that currents weren't determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems.

  10. Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells.

    Science.gov (United States)

    Lloyd, Mitchell M; Grima, Michael A; Rayner, Benjamin S; Hadfield, Katrina A; Davies, Michael J; Hawkins, Clare L

    2013-12-01

    In the immune response, hypohalous acids are generated by activated leukocytes via the release of myeloperoxidase and the formation of H2O2. Although these oxidants have important bactericidal properties, they have also been implicated in causing tissue damage in inflammatory diseases, including atherosclerosis. Hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) are the major oxidants formed by myeloperoxidase under physiological conditions, with the ratio of these oxidants dependent on diet and smoking status. HOCl is highly reactive and causes marked cellular damage, but few data are available on the effects of HOSCN on mammalian cells. In this study, we have compared the actions of HOCl and HOSCN on human coronary artery endothelial cells (HCAEC). HOCl reacts rapidly with the cells, resulting in extensive cell death by both apoptosis and necrosis, with necrosis dominating at higher oxidant doses. In contrast, HOSCN is consumed more slowly, with cell death occurring only by apoptosis. Exposure of HCAEC to HOCl and HOSCN induces changes in mitochondrial membrane permeability, which, in the case of HOSCN, is associated with mitochondrial release of proapoptotic factors, including cytochrome c, apoptosis-inducing factor, and endonuclease G. With each oxidant, apoptosis appears to be caspase-independent, with the inactivation of caspases 3/7 observed, and pretreatment of the cells with the caspase inhibitor Z-VAD-fmk having no effect on the extent of cell death. Loss of cellular thiols, depletion of glutathione, and the inactivation of thiol-dependent enzymes, including glyceraldehyde-3-phosphate dehydrogenase, were seen with both oxidants, though to a much greater extent with HOCl. The ability of myeloperoxidase-derived oxidants to induce endothelial cell apoptosis may contribute to the formation of unstable lesions in atherosclerosis. The results with HOSCN may be particularly significant for smokers, who have elevated plasma levels of SCN(-), the precursor

  11. Arterial endothelial function measurement method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Jonathan S; Budinger, Thomas F

    2014-03-04

    A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.

  12. Adiponectin levels are associated with the number and activity of circulating endothelial progenitor cells in patients with coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang YING; Dan-dan ZHONG; Geng XU; Miao-yan CHEN; Qing-yu CHEN

    2009-01-01

    Objective: To study the relationship between plasma adiponectin concentration and the functional activities of circulating endothelial progenitor cells (EPCs) in patients with coronary artery disease (CAD). Methods: Circulating EPCs were enumerated as AC133+/KDR+ cells via flow cytometry and identified by co-staining with Dii-acLDL and fluorescein isothiocy-anate (FITC)-conjugated lectin under a fluorescent microscope. The migratory capacity of EPCs was measured by modified Boyden chamber assay. Adhesion capacity was performed to count adherent cells after replating EPCs on six-well culture dishes coated with fibronectin. Results: The number of circulating EPCs (AC133+/KDR+ cells) decreased significantly in CAD patients, compared with control subjects [(74.2±12.3) vs (83.5±12.9) cells/ml blood, P<0.0\\]. In addition, the number of EPCs also decreased in CAD patients after ex vivo cultivation [(54.4±8.6) vs (71.9±11.6) EPCs/field, P<0.01]. Both circulating EPCs and differentiated EPCs were positively correlated with plasma adiponectin concentration. The functional activities of EPCs from CAD patients, such as migratory and adherent capacities, were also impaired, compared with control subjects, and positively correlated with plasma adiponectin concentration. Conclusion: The study demonstrates that the impairment of the number and functional activities of EPCs in CAD patients is correlated with their lower plasma adiponectin concentrations.

  13. Genetic engineering with endothelial nitric oxide synthase improves functional properties of endothelial progenitor cells from patients with coronary artery disease: an in vitro study.

    Science.gov (United States)

    Kaur, Savneet; Kumar, T R Santhosh; Uruno, Akira; Sugawara, Akira; Jayakumar, Karunakaran; Kartha, Chandrasekharan Cheranellore

    2009-11-01

    Recent studies have reported a marked impairment in the number and functions of endothelial progenitor cells (EPCs) in patients with coronary artery disease (CAD). In view of an important role of eNOS in angiogenesis, in the present study, we evaluated the effects of eNOS gene transfer in ex vivo expanded EPCs isolated from patients with CAD. The expanded EPCs were transfected with mammalian expression vector pcDNA3.1-eNOS containing the full-length human eNOS gene using lipofectamine. About 35-40% of the eNOS-EPCs had higher expression of eNOS as compared to untransfected EPCs. EPCs transfected with pcDNA3.0-EGFP, the plasmid vector expressing green fluorescent protein (GFP) were used as control. The untransfected, GFP-transfected and eNOS-transfected EPCs were compared in terms of important functional attributes of angiogenesis such as proliferation, migration, differentiation and adhesion/integration into tube-like structures in vitro. Functional studies revealed that in the presence of defined growth conditions, compared to the untransfected and GFP-transfected cells, eNOS-EPCs from patients with CAD have a significant increase in [3H] thymidine-labeled DNA (P < 0.01), migration (14.6 +/- 1.8 and 16.5 +/- 1.9 vs. 23.5 +/- 3.4 cells/field, P < 0.01), ability to differentiate into endothelial-like spindle-shaped cells (46 +/- 4.5 and 56.5 +/- 2.1 vs. 93.2 +/- 6.6 cells/field, P < 0.001) and also incorporation into tube-like structures on the matrigel (GFP-EPCs: 21.25 +/- 2.9 vs. GFP-eNOS-EPCs: 34.5 +/- 5.5 cells/field, P < 0.05). We conclude that eNOS gene transfection is a valuable approach to augment angiogenic properties of ex vivo expanded EPCs and eNOS-modified EPCs may offer significant advantages than EPCs alone in terms of their clinical use in patients with myocardial ischemia.

  14. Interruption of CD40 Pathway Improves Efficacy of Transplanted Endothelial Progenitor Cells in Monocrotaline Induced Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    YanYun Pan

    2015-05-01

    Full Text Available Background/Aims: Transplantation of endothelial progenitor cells (EPCs plays a therapeutic role in pulmonary arterial hypertension (PAH. Meanwhile, recruitment of progenitors has potential inflammatory effects and exaggerates vascular injury. CD40 pathway is identified as a major player in vascular inflammatory events. In this study, we investigated the role of CD40 pathway in regulating early outgrowth EPC functions, and searched for improvements in PAH cell therapy. Methods: EPCs were isolated from rat bone marrow and cultured for 7 days. After treatment with soluble CD40 ligand (sCD40L for 24 hours, EPC migration, adhesion, proliferation, paracrine and vasculogenesis functions were tested. Rat PAH model was founded by subcutaneous injection of monocrotaline (MCT. Control EPCs or lentivirus vectors (Lv-shRNA-CD40 EPCs were infused via tail vein at day 7, 14, and 21 after MCT injection. Therapeutic effects were evaluated at day 28. Results: sCD40L dose-dependently impaired EPC migration, adhesion, proliferation, and vasculogenesis functions. However, paracrine effects of soluble intercellular adhesion molecule-1, vascular endothelial growth factor and interleukin-6 were dose-dependently improved by sCD40L. Control EPC-derived conditioned medium protected endothelial cell in vitro vasculogenesis, while sCD40L-pretreated ones showed detrimental effects. After MCT injection, sCD40L levels in rat serum increased gradually. Other than in vitro results, benefits of both two EPC treatments were obvious, even taken at day 21. Benefits of control EPCs wore off over time, but those of Lv-shRNA-CD40 EPCs were more effective and enduring, as characterized by both ameliorated rat hemodynamic and reversed vascular remodeling. Furthermore, Lv-shRNA-CD40 EPCs integrated into endothelium better, rather than into adventitia and media. Conclusion: sCD40L impaired protective effects of EPCs. Traditional EPC treatments were limited in PAH, while interruption of CD

  15. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    Science.gov (United States)

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms

  16. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Dongmin [Section of Vascular Biology, National Heart and Lung Institute, Imperial College London, London (United Kingdom); Perros, Frédéric [Faculté de Médecine, Université Paris-Sud, Paris, Clamart (France); Caramori, Gaetano [Dipartimento di Scienze Mediche, Sezione di Medicina Interna e Cardiorespiratoria, Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate, University of Ferrara, Ferrara (Italy); Meng, Chao [Section of Vascular Biology, National Heart and Lung Institute, Imperial College London, London (United Kingdom); Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Dormuller, Peter [Faculté de Médecine, Université Paris-Sud, Paris, Clamart (France); Chou, Pai-Chien [Airways Disease, National Heart and Lung Institute (United Kingdom); Church, Colin [Scottish Pulmonary Vascular Unit, University of Glasgow (United Kingdom); Papi, Alberto; Casolari, Paolo [Dipartimento di Scienze Mediche, Sezione di Medicina Interna e Cardiorespiratoria, Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-Correlate, University of Ferrara, Ferrara (Italy); Welsh, David; Peacock, Andrew [Scottish Pulmonary Vascular Unit, University of Glasgow (United Kingdom); Humbert, Marc [Faculté de Médecine, Université Paris-Sud, Paris, Clamart (France); Adcock, Ian M. [Airways Disease, National Heart and Lung Institute (United Kingdom); Wort, Stephen J., E-mail: s.wort@imperial.ac.uk [Section of Vascular Biology, National Heart and Lung Institute, Imperial College London, London (United Kingdom)

    2014-08-15

    Highlights: • Nuclear IL-33 expression is reduced in vascular endothelial cells from PAH patients. • Knockdown of IL-33 leads to increased IL-6 and sST2 mRNA expression. • IL-33 binds homeobox motifs in target gene promoters and recruits repressor proteins. - Abstract: Idiopathic pulmonary arterial hypertension (IPAH) is an incurable condition leading to right ventricular failure and death and inflammation is postulated to be associated with vascular remodelling. Interleukin (IL)-33, a member of the “alarmin” family can either act on the membrane ST2 receptor or as a nuclear repressor, to regulate inflammation. We show, using immunohistochemistry, that IL-33 expression is nuclear in the vessels of healthy subjects whereas nuclear IL-33 is markedly diminished in the vessels of IPAH patients. This correlates with reduced IL-33 mRNA expression in their lung. In contrast, serum levels of IL-33 are unchanged in IPAH. However, the expression of the soluble form of ST2, sST2, is enhanced in the serum of IPAH patients. Knock-down of IL-33 in human endothelial cells (ECs) using siRNA is associated with selective modulation of inflammatory genes involved in vascular remodelling including IL-6. Additionally, IL-33 knock-down significantly increased sST2 release from ECs. Chromatin immunoprecipitation demonstrated that IL-33 bound multiple putative homeodomain protein binding motifs in the proximal and distal promoters of ST2 genes. IL-33 formed a complex with the histone methyltransferase SUV39H1, a transcriptional repressor. In conclusion, IL-33 regulates the expression of IL-6 and sST2, an endogenous IL-33 inhibitor, in primary human ECs and may play an important role in the pathogenesis of PAH through recruitment of transcriptional repressor proteins.

  17. Nitric oxide scavenging causes remodeling of the endoplasmic reticulum, Golgi apparatus and mitochondria in pulmonary arterial endothelial cells.

    Science.gov (United States)

    Lee, Jason E; Yuan, Huijuan; Liang, Feng-Xia; Sehgal, Pravin B

    2013-09-01

    The dependence of the structure and function of cytoplasmic organelles in endothelial cells on constitutively produced intracellular nitric oxide (NO) remains largely unexplored. We previously reported fragmentation of the Golgi apparatus in cells exposed to NO scavengers or after siRNA-mediated knockdown of eNOS. Others have reported increased mitochondrial fission in response to an NO donor. Functionally, we previously reported that bovine pulmonary arterial endothelial cells (PAECs) exposed to the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) developed a prosecretory phenotype characterized by prolonged secretion of soluble proteins. In the present study, we investigated whether NO scavenging led to remodeling of the endoplasmic reticulum (ER). Live-cell DAF-2DA imaging confirmed the presence of intracellular NO in association with the BODIPY C5-ceramide-labeled Golgi apparatus. Untreated human PAECs displayed a pattern of peripheral tubulo-reticular ER with a juxtanuclear accumulation of ER sheets. Cells exposed to c-PTIO showed a dramatic increase in ER sheets as assayed using immunofluorescence for the ER structural protein reticulon-4b/Nogo-B and the ER-resident GTPase atlastin-3, live-cell fluorescence assays using RTN4-GFP and KDEL-mCherry, and electron microscopy methods. These ER changes were inhibited by the NO donor diethylamine NONOate, and also produced by L-NAME, but not D-NAME or 8-br-cGMP. This ER remodeling was accompanied by Golgi fragmentation and increased fibrillarity and function of mitochondria (uptake of tetramethyl-rhodamine, TMRE). Despite Golgi fragmentation the functional ER/Golgi trafficking unit was preserved as seen by the accumulation of Sec31A ER exit sites adjacent to the dispersed Golgi elements and a 1.8-fold increase in secretion of soluble cargo. Western blotting and immunopanning data showed that RTN4b was increasingly ubiquitinated following c-PTIO exposure, especially in the

  18. A tissue engineered renovascular graft composed of proteins, polymers, smooth muscle and endothelial cells for renal artery stenosis.

    Science.gov (United States)

    Yin, Hao; Wang, Xiao-Hui; Zhu, Xiang-Dong; Han, Huifang; Guo, Wen-Yuan; Ful, Zhi-Ren

    2013-08-01

    Endarterectomy and bypass surgery to treat renal artery stenosis are increasingly shunned these days due to high risks of complications during and after the surgery. Striving to find a sound alternative solution, we pioneered the construction of a tissue engineered renovascular graft that could immediately restore the normal blood flow to kidneys and sustain renal functions without suffering restenosis after the surgery. A highly porous scaffold was first constructed by electrospinning polycaprolactone, poliglecaprone, gelatin and elastin, giving the vast majority of non-woven fibers in the scaffold a diameter below 1200 nm. To recapitulate the anatomical and functional signatures of renal arteries, a bi-layer vasculature comprising a smooth muscle layer topped by an endothelial layer was built on the scaffold. The vasculature witnessed a sustained proliferation for up to 10 days in vitro and robustly secreted prostacyclin and endothelin-1, evidencing that the vasculature was functionally comparable to native renal arteries. After 30 days as a renovascular graft in mice, the luminal diameter of the graft remained clear without a restenosis and an increased confluence of the endothelial layer was observed. The tensile test confirmed that the renovascular graft was mechanically superior to native renal arteries and retained this advantage within 30 days in vivo. Also, this renovascular graft sustained renal functions as evidenced by normal levels of serum creatinine, urine creatinine and serum urea nitrogen and the lack of edema in the kidney cortex. These results demonstrate that this renovascular graft holds a great therapeutic promise for renal artery stenosis.

  19. Healing arterial ulcers: Endothelial lining regeneration upon vascular denudation injury.

    Science.gov (United States)

    McDonald, Austin I; Iruela-Arispe, M Luisa

    2015-09-01

    Thrombosis and restenosis are the most prevalent late complications of coronary artery stenting. Current standards of clinical care focus on prevention of smooth muscle cell proliferation by the use of drug-eluting stents able to release anti-proliferative drugs. Unfortunately, these drugs also block endothelial cell proliferation and, in this manner, prevent recovery of endothelial cell coverage. Continued lack of endothelial repair leaves the root cause of thrombosis and restenosis unchanged, creating a vicious cycle where drug-mediated prevention of restenosis simultaneously implies promotion of thrombosis. In this issue of Vascular Pharmacology, Hussner and colleagues provide in vitro evidence and a mechanistic basis for the use of atorvastatin in stents as a way to bypass this roadblock. Here we review the pathological mechanisms and therapeutic approaches to restore flow in occluded arteries. We argue that rational design of drug eluting stents should focus on specific inhibition of smooth muscle cell proliferation with concurrent stimulation of endothelial regeneration. We comment on the current poor understanding of the cellular and molecular regulation of endothelial cell proliferation in the context of a functional artery, and on the pitfalls of extrapolating from the well-studied process of neovascularization by sprouting vessel formation.

  20. Activation of group IVC phospholipase A2 by polycyclic aromatic hydrocarbons induces apoptosis of human coronary artery endothelial cells

    Science.gov (United States)

    Richards, Sean M.; Elgayyar, Mona A.; Menn, Fu-Minn; Vulava, Vijay M.; McKay, Larry; Sanseverino, John; Sayler, Gary; Tucker, Dawn E.; Leslie, Christina C.; Lu, Kim P.; Ramos, Kenneth S.

    2016-01-01

    Exposure to environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs) found in coal tar mixtures and tobacco sources, is considered a significant risk factor for the development of heart disease in humans. The goal of this study was to determine the influence of PAHs present at a Superfund site on human coronary artery endothelial cell (HCAEC) phospholipase A2 (PLA2) activity and apoptosis. Extremely high levels of 12 out of 15 EPA high-priority PAHs were present in both the streambed and floodplain sediments at a site where an urban creek and its adjacent floodplain were extensively contaminated by PAHs and other coal tar compounds. Nine of the 12 compounds and a coal tar mixture (SRM 1597A) activated group IVC PLA2 in HCAECs, and activation of this enzyme was associated with histone fragmentation and poly (ADP) ribose polymerase (PARP) cleavage. Genetic silencing of group IVC PLA2 inhibited both 3H-fatty acid release and histone fragmentation by PAHs and SRM 1597A, indicating that individual PAHs and a coal tar mixture induce apoptosis of HCAECs via a mechanism that involves group IVC PLA2. Western blot analysis of aortas isolated from feral mice (Peromyscus leucopus) inhabiting the Superfund site showed increased PARP and caspase-3 cleavage when compared to reference mice. These data suggest that PAHs induce apoptosis of HCAECs via activation of group IVC PLA2. PMID:21132278

  1. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension.

    Science.gov (United States)

    Shao, Dongmin; Perros, Frédéric; Caramori, Gaetano; Meng, Chao; Dormuller, Peter; Chou, Pai-Chien; Church, Colin; Papi, Alberto; Casolari, Paolo; Welsh, David; Peacock, Andrew; Humbert, Marc; Adcock, Ian M; Wort, Stephen J

    2014-08-15

    Idiopathic pulmonary arterial hypertension (IPAH) is an incurable condition leading to right ventricular failure and death and inflammation is postulated to be associated with vascular remodelling. Interleukin (IL)-33, a member of the "alarmin" family can either act on the membrane ST2 receptor or as a nuclear repressor, to regulate inflammation. We show, using immunohistochemistry, that IL-33 expression is nuclear in the vessels of healthy subjects whereas nuclear IL-33 is markedly diminished in the vessels of IPAH patients. This correlates with reduced IL-33 mRNA expression in their lung. In contrast, serum levels of IL-33 are unchanged in IPAH. However, the expression of the soluble form of ST2, sST2, is enhanced in the serum of IPAH patients. Knock-down of IL-33 in human endothelial cells (ECs) using siRNA is associated with selective modulation of inflammatory genes involved in vascular remodelling including IL-6. Additionally, IL-33 knock-down significantly increased sST2 release from ECs. Chromatin immunoprecipitation demonstrated that IL-33 bound multiple putative homeodomain protein binding motifs in the proximal and distal promoters of ST2 genes. IL-33 formed a complex with the histone methyltransferase SUV39H1, a transcriptional repressor. In conclusion, IL-33 regulates the expression of IL-6 and sST2, an endogenous IL-33 inhibitor, in primary human ECs and may play an important role in the pathogenesis of PAH through recruitment of transcriptional repressor proteins.

  2. [Endothelial cell adhesion molecules].

    Science.gov (United States)

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  3. Endothelial Repair in Childhood Arterial Ischaemic Stroke with Cerebral Arteriopathy

    Directory of Open Access Journals (Sweden)

    Despina Eleftheriou

    2015-06-01

    Full Text Available Background: We have previously shown that recurrent arterial ischaemic stroke (AIS in children with cerebral arteriopathy is associated with increased circulating endothelial cells and endothelial microparticles, consistent with ongoing endothelial injury. To date, however, little is known about endothelial repair responses in childhood AIS. We examined the relationship between the number and function of circulating endothelial progenitor cells (EPC, the levels of brain-derived neurotrophic factor (BDNF and AIS recurrence. Methods: Flow cytometry was used to identify peripheral blood mononuclear cells positive for CD34/kinase insert domain-containing receptor (KDR. In a subgroup of patients (5 in each group selected at random, monocytic EPC function was assessed by colony-forming unit (EPC-CFU capacity and incorporation into endothelial cell networks in Matrigel. BDNF was measured using ELISA. Results: Thirty-five children, aged 12 years (range: 5-16.5; 9 males, with AIS and cerebral arteriopathy were studied; 10 had recurrent AIS. CD34+/KDR+ cells were significantly higher in recurrent AIS compared to non-recurrent AIS patients (p = 0.005 and controls (p = 0.0002. EPC-CFU and EPC incorporation into endothelial cell networks were significantly reduced in recurrent compared to non-recurrent AIS patients (p = 0.04 and p = 0.01, respectively. Levels of BDNF were significantly higher in recurrent compared to non-recurrent AIS patients (p = 0.0008 and controls (p = 0.0002. Conclusions: Children with recurrent AIS and cerebral arteriopathy had increased circulating CD34+/KDR+ cells and BDNF consistent with an endothelial repair response. However, EPC function was impaired. Future studies are needed to examine whether suboptimal endothelial repair contributes to childhood AIS recurrence.

  4. Erythropoietin attenuates pulmonary vascular remodeling in experimental pulmonary arterial hypertension through interplay between endothelial progenitor cells and heme-oxygenase

    Directory of Open Access Journals (Sweden)

    Rosa L.E. Loon

    2015-08-01

    Full Text Available BackgroundPulmonary arterial hypertension (PAH is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs and activation of the cytoprotective enzyme heme oxygenase-1 (HO1.MethodsRats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO in the presence or absence of the selective HO-activity-inhibitor tin-mesoporphyrin (SnMP. HO-activity, circulating EPCs and pulmonary vascular lesions were assessed after 3 weeks.ResultsIn PAH-rats, circulating EPCs were decreased and HO-activity was increased compared to control. EPO-treatment restored circulating EPCs and improved pulmonary vascular remodeling, as shown by a reduced wall thickness and occlusion rate of the intra-acinar vessels. Inhibition of HO-activity with SnMP aggravated PAH. Moreover, SnMP treatment abrogated EPO-induced amelioration of pulmonary vascular remodeling, while surprisingly further increasing circulating EPCs as compared with EPO alone.ConclusionsIn experimental PAH, EPO treatment restored the number of circulating EPC’s to control level, improved pulmonary vascular remodeling, and showed important interplay with HO-activity. Inhibition of increased HO-activity in PAH-rats exacerbated progression of pulmonary vascular remodeling, despite the presence of restored numbers of circulating EPC’s. We suggest that both EPO-induced HO1 and EPCs are promising targets to ameliorate the pulmonary vasculature in PAH.

  5. Anti-apoptotic effect of morphine-induced delayed preconditioning on pulmonary artery endothelial cells with anoxia/reoxygenation injury

    Institute of Scientific and Technical Information of China (English)

    DING Weng-ang; ZHOU Hua-cheng; CUI Xiao-guang; LI Wen-zhi; GUO Yue-ping; ZHANG Bing; LIU Wei

    2008-01-01

    Background Opioid preconditioning (PC) reduces anoxiaJreoxygenation (NR) injury to various cells. However, it remains unclear whether opioid-induced delayed PC would show anti-apoptotic effects on pulmonary artery endothelial cells (PAECs) suffering from A/R injury. The present study was conducted to elucidate this issue and to investigate the potential mechanism of opioid-induced delayed PC.Methods Cultured porcine PAECs underwent 16-hour anoxia followed by 1-hour reoxygenation 24 hours after pretreatment with saline (NaCI; 0.9%) or morphine (1 μmol/L). To determine the underlying mechanism, a non-selective KATP channel inhibitor glibenclamide (Glib; 10 μmol/L), a nitric oxide (NO) synthase blocker NG-nitro-L-arginine methyl ester (L-NAME; 100 μmol/L), and an opioid receptor antagonist naloxone (Nal; 10 pmol/L) were given 30 minutes before the A/R load. The percentage of apoptotic cells was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, eNOS mRNA level was measured by real-time polymerase chain reaction (PCR). NO content of PAECs supernatants was measured with the Griess reagent.Results Compared to the A/R PAECs, morphine-induced delayed PC significantly reduced PAECs apoptosis ((18.1±1.9)% vs (5.5±0.3)%; P <0.05), increased NO release ((11.4±1.3) μmol/L vs (20.5±2.1) μmol/L, P <0.05), and up-regulated eNOS gene expression nearly 9 times (P<0.05). The anti-apoptosis effect of morphine was abolished by pretreatment with Glib, L-NAME and Nal, but the three agent-selves did not aggravate the A/R injury. Furthermore, L-NAME and Nal offset the enhanced release of NO caused by pretreatment with morphine.Conclusions Morphine-induced delayed PC prevents A/R injury of PAECs. This effect may be mediated by activation of KATP channel via opioid receptor and NO signaling pathways.

  6. Knockout of CD8 delays reendothelialization and accelerates neointima formation in injured arteries of mouse via TNF-α inhibiting the endothelial cells migration.

    Directory of Open Access Journals (Sweden)

    Jun-Meng Zhang

    Full Text Available OBJECTIVE: Delayed or impaired reendothelialization is a major cause of stent thrombosis in the interventional treatment of coronary heart disease. T cells are involved in neointima formation of injured arteries. However, the regulated mechanism of reendothelialization and the role of CD8 T cell in reendothelialization are unclear. METHODS AND RESULTS: Immunofluorescence staining showed that CD8 positive cells were increased in wire injured femoral artery of mice. On day 21 after injury, elastin staining showed that knockout of CD8 (CD8(-/- significantly increased intimal thickness and a ratio of intima to media by 1.8 folds and 1.9 folds respectively in injured arteries. Evans blue staining showed that knockout of CD8 delayed the reendothelialization area on day 7 after injury (18.8±0.5% versus 42.1±5.6%, p<0.05. In vitro, a migration assay revealed that CD8(-/- T cells co-cultured with WT macrophages significantly inhibited the migration of the endothelial cells (ECs; compared to CD4(+ T cells, and CD8(+ T cells could promote the ECs migration. Furthermore, real-time PCR analysis showed that knockout of CD8 increased the level of tumor necrosis factor α (TNF-α in injured arteries and cytometric bead cytokine array showed that TNF-α was elevated in cultured CD8(-/- T cells. Finally, a wound-healing assay showed that recombinant TNF-α significantly inhibited the migration of ECs. CONCLUSION: Our study suggested that CD8(+ T cells could promote the reendothelialization and inhibit the neointima formation after the artery wire injury, and this effect is at least partly dependent on decreasing TNF-α production promoting ECs migration.

  7. Role of microparticles in endothelial dysfunction and arterial hypertension

    Institute of Scientific and Technical Information of China (English)

    Thomas; Helbing; Christoph; Olivier; Christoph; Bode; Martin; Moser; Philipp; Diehl

    2014-01-01

    Microparticles are small cell vesicles that can be released by almost all eukaryotic cells during cellular stress and cell activation. Within the last 1-2 decades it has been shown that microparticles are useful blood surrogate markers for different pathological conditions, such as vascular inflammation, coagulation and tumour diseases. Several studies have investigated the abundance of microparticles of different cellular origins in multiple cardiovascular diseases. It thereby has been shown that microparticles released by platelets, leukocytes and endothelial cells can be found in conditions of endothelial dysfunction, acute and chronic vascular inflammation and hypercoagulation. In addition to their function as surrogate markers, several studies indicate that circulating microparticles can fuse with distinct target cells, such as endothelial cells or leukocyte, and thereby deliver cellular components of their parental cells to the target cells. Hence, microparticles are a novel entity of circulating, paracrine, biological vectors which can influence the phenotype, the function and presumably even the transcriptome of their target cells.This review article aims to give a brief overview about the microparticle biology with a focus on endothelial activation and arterial hypertension. More detailed information about the role of microparticles in pathophysiology and disease can be found in already published work.

  8. Inhibitory Effect of a French Maritime Pine Bark Extract-Based Nutritional Supplement on TNF-α-Induced Inflammation and Oxidative Stress in Human Coronary Artery Endothelial Cells

    Science.gov (United States)

    McGrath, Kristine C. Y.; Li, Xiao-Hong; McRobb, Lucinda S.; Heather, Alison K.

    2015-01-01

    Oxidative stress and inflammation, leading to endothelial dysfunction, contribute to the pathogenesis of atherosclerosis. The popularity of natural product supplements has increased in recent years, especially those with purported anti-inflammatory and/or antioxidant effects. The efficacy and mechanism of many of these products are not yet well understood. In this study, we tested the antioxidant and anti-inflammatory effects of a supplement, HIPER Health Supplement (HIPER), on cytokine-induced inflammation and oxidative stress in human coronary artery endothelial cells (HCAECs). HIPER is a mixture of French maritime pine bark extract (PBE), honey, aloe vera, and papaya extract. Treatment for 24 hours with HIPER reduced TNF-α-induced reactive oxygen species (ROS) generation that was associated with decreased NADPH oxidase 4 and increased superoxide dismutase-1 expression. HIPER inhibited TNF-α induced monocyte adhesion to HCAECs that was in keeping with decreased expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1 and decreased nuclear factor-kappa B (NF-κB) activation. Further investigation of mechanism showed HIPER reduced TNF-α induced IκBα and p38 and MEK1/2 MAP kinases phosphorylation. Our findings show that HIPER has potent inhibitory effects on HCAECs inflammatory and oxidative stress responses that may protect against endothelial dysfunction that underlies early atherosclerotic lesion formation. PMID:26664450

  9. Tumor Necrosis Factor-Alpha and the ERK Pathway Drive Chemerin Expression in Response to Hypoxia in Cultured Human Coronary Artery Endothelial Cells

    Science.gov (United States)

    Chua, Su-Kiat; Shyu, Kou-Gi; Lin, Yuh-Feng; Lo, Huey-Ming; Wang, Bao-Wei

    2016-01-01

    Background Chemerin, a novel adipokine, plays a role in the inflammation status of vascular endothelial cells. Hypoxia causes endothelial-cell proliferation, migration, and angiogenesis. This study was aimed at evaluating the protein and mRNA expression of chemerin after exposure of human coronary artery endothelial cells (HCAECs) to hypoxia. Methods and Results Cultured HCAECs underwent hypoxia for different time points. Chemerin protein levels increased after 4 h of hypoxia at 2.5% O2, with a peak of expression of tumor necrosis factor-alpha (TNF-alpha) at 1 h. Both hypoxia and exogenously added TNF-alpha during normoxia stimulated chemerin expression, whereas an ERK inhibitor (PD98059), ERK small interfering RNA (siRNA), or an anti-TNF-alpha antibody attenuated the chemerin upregulation induced by hypoxia. A gel shift assay indicated that hypoxia induced an increase in DNA-protein binding between the chemerin promoter and transcription factor SP1. A luciferase assay confirmed an increase in transcriptional activity of SP1 on the chemerin promoter during hypoxia. Hypoxia significantly increased the tube formation and migration of HCAECs, whereas PD98059, the anti-TNF-alpha antibody, and chemerin siRNA each attenuated these effects. Conclusion Hypoxia activates chemerin expression in cultured HCAECs. Hypoxia-induced chemerin expression is mediated by TNF-alpha and at least in part by the ERK pathway. Chemerin increases early processes of angiogenesis by HCAECs after hypoxic treatment. PMID:27792771

  10. Endothelial GATA-6 Deficiency Promotes Pulmonary Arterial Hypertension

    Science.gov (United States)

    Ghatnekar, Angela; Chrobak, Izabela; Reese, Charlie; Stawski, Lukasz; Seta, Francesca; Wirrig, Elaine; Paez-Cortez, Jesus; Markiewicz, Margaret; Asano, Yoshihide; Harley, Russell; Silver, Richard; Feghali-Bostwick, Carol; Trojanowska, Maria

    2014-01-01

    Pulmonary arterial hypertension (PAH) is a chronic and progressive disease characterized by pulmonary vasculopathy with elevation of pulmonary artery pressure, often culminating in right ventricular failure. GATA-6, a member of the GATA family of zinc-finger transcription factors, is highly expressed in quiescent vasculature and is frequently lost during vascular injury. We hypothesized that endothelial GATA-6 may play a critical role in the molecular mechanisms underlying endothelial cell (EC) dysfunction in PAH. Here we report that GATA-6 is markedly reduced in pulmonary ECs lining both occluded and nonoccluded vessels in patients with idiopathic and systemic sclerosis-associated PAH. GATA-6 transcripts are also rapidly decreased in rodent PAH models. Endothelial GATA-6 is a direct transcriptional regulator of genes controlling vascular tone [endothelin-1, endothelin-1 receptor type A, and endothelial nitric oxide synthase (eNOS)], pro-inflammatory genes, CX3CL1 (fractalkine), 5-lipoxygenease-activating protein, and markers of vascular remodeling, including PAI-1 and RhoB. Mice with the genetic deletion of GATA-6 in ECs (Gata6-KO) spontaneously develop elevated pulmonary artery pressure and increased vessel muscularization, and these features are further exacerbated in response to hypoxia. Furthermore, innate immune cells including macrophages (CD11b+/F4/80+), granulocytes (Ly6G+/CD45+), and dendritic cells (CD11b+/CD11c+) are significantly increased in normoxic Gata6-KO mice. Together, our findings suggest a critical role of endothelial GATA-6 deficiency in development and disease progression in PAH. PMID:23583651

  11. Aspirin and pravastatin reduce lectin-like oxidized low density lipoprotein receptor-1 expression, adhesion molecules and oxidative stress in human coronary artery endothelial cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-wei; ZHOU Shi-bei; TAN Zhi-ming

    2010-01-01

    Background Oxidative stress and inflammation are important steps in the pathogenesis of atherosclerosis. We postulated that therapeutic concentrations of aspirin and pravastatin, especially in combination, may suppress oxidative stress and inflammation in endothelial cells, and this concept was examined in human coronary artery endothelial cells (HCAECs).Methods Human coronary artery endothelial cells were cultured and treated with oxidized-low density iipoprotein (ox-LDL, 60 μg/ml for 24 hours) alone, or pre-treated with aspirin (1, 2 or 5 mmol/L), pravastatin (1, 5 or 10 μmol/L) or their combination (1 mmol/L aspirin and 5 μmol/L pravastatin), followed by ox-LDL treatment. After respective treatment,superoxide anion production, p38 mitogen activated protein kinase and transcription factor NF-κB activation, protein expression of lectin-like ox-LDL receptor-1 (LOX-1) and adhesion molecules, and monocyte adhesion were measured.Results Ox-LDL treatment greatly elicited its receptor LOX-1 expression, superoxide anion production and inflammatory response, which were minimally affected by low concentration of aspidn (1 mmol/L) or pravastatin (5 μmol/L), but were markedly decreased by their combination. Activation of p38 mitogen activated protein kinase and NF-κB, the expression of intercellular adhesion molecule-1 and monocyte chemotactic protein-1, which were only mildly affected by aspirin or pravastatin alone, were significantly attenuated by their combination. As a consequence, monocyte adhesion to endothelial cells was markedly attenuated by the combination of the two agents. Well-known anti-oxidants α-tocopherol and γ-tocopherol had similar inhibitory effects on ox-LDL-mediated oxidative stress and LOX-1 expression as well as monocyte adhesion as did the combination of aspirin and pravastatin.Conclusions These studies point to a positive interaction between aspidn and pravastatin with regard to endothelial biology. Anti-oxidant and subsequent anti

  12. Flow Cytometric Quantification of Peripheral Blood Cell β-Adrenergic Receptor Density and Urinary Endothelial Cell-Derived Microparticles in Pulmonary Arterial Hypertension.

    Directory of Open Access Journals (Sweden)

    Jonathan A Rose

    Full Text Available Pulmonary arterial hypertension (PAH is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH.

  13. Northern contaminant mixtures induced morphological and functional changes in human coronary artery endothelial cells under culture conditions typifying high fat/sugar diet and ethanol exposure.

    Science.gov (United States)

    Florian, Maria; Yan, Jin; Ulhaq, Saad; Coughlan, Melanie; Laziyan, Mahemuti; Willmore, William; Jin, Xiaolei

    2013-11-16

    It has been reported that Northern populations are exposed to mixtures of various environmental contaminants unique to the Arctic (Northern contaminant mixtures - NCM) at a large range of concentrations, depending on their geological location, age, lifestyle and dietary habits. To determine if these contaminants may contribute to a cardiovascular health risk, especially when combined with a high fat and sugar diet and ethanol exposure, we treated human coronary artery endothelial cells (HCAEC) with two mixtures of 4 organic (NCM1) or 22 organic and inorganic (NCM2) chemicals detected in Northerners' blood during 2004-2005 in the presence or absence of low-density lipoprotein (1.5mg/ml), very-low-density lipoprotein (1.0mg/ml) and glucose (10mmol/L) (LVG), and in the absence or presence of 0.1% ethanol. After 24h of exposure, cell morphology and markers of cytotoxicity and endothelial function were examined. NCM1 treatment did not affect cell viability, but increased cell size, disrupted cell membrane integrity, and decreased cell density, uptake of small peptides, release of endothelin-1 (ET-1) and plasminogen activator inhibitor (PAI), while causing no changes in endothelial nitric oxide synthase (eNOS) protein expression and nitric oxide (NO) release. In contrast, NCM2 decreased cell viability, total protein yield, uptake of small peptides, eNOS protein expression, and NO release and caused membrane damage, but caused no changes in the secretion of ET-1, prostacyclin and PAI. The presence of LVG and/or alcohol did or did not influence the effects of NCM1 or NCM2 depending on the endpoint and the mixture examined. These results suggested that the effects of one or one group of contaminants may be altered by the presence of other contaminants, and that with or without the interaction of high fat and sugar diet and/or ethanol exposure, NCMs at the concentrations used caused endothelial dysfunction in vitro. It remains to be investigated if these effects of NCMs also

  14. The Collagen-Binding Protein Cnm Is Required for Streptococcus mutans Adherence to and Intracellular Invasion of Human Coronary Artery Endothelial Cells

    Science.gov (United States)

    Abranches, Jacqueline; Miller, James H.; Martinez, Alaina R.; Simpson-Haidaris, Patricia J.; Burne, Robert A.; Lemos, José A.

    2011-01-01

    Streptococcus mutans is considered the primary etiologic agent of dental caries, a global health problem that affects 60 to 90% of the population, and a leading causative agent of infective endocarditis. It can be divided into four different serotypes (c, e, f, and k), with serotype c strains being the most common in the oral cavity. In this study, we demonstrate that in addition to OMZ175 and B14, three other strains (NCTC11060, LM7, and OM50E) of the less prevalent serotypes e and f are able to invade primary human coronary artery endothelial cells (HCAEC). Invasive strains were also significantly more virulent than noninvasive strains in the Galleria mellonella (greater wax worm) model of systemic disease. Interestingly, the invasive strains carried an additional gene, cnm, which was previously shown to bind to collagen and laminin in vitro. Inactivation of cnm rendered the organisms unable to invade HCAEC and attenuated their virulence in G. mellonella. Notably, the cnm knockout strains did not adhere to HCAEC as efficiently as the parental strains did, indicating that the loss of the invasion phenotype observed for the mutants was linked to an adhesion defect. Comparisons of the invasive strains and their respective cnm mutants did not support a correlation between biofilm formation and invasion. Thus, Cnm is required for S. mutans invasion of endothelial cells and possibly represents an important virulence factor of S. mutans that may contribute to cardiovascular infections and pathologies. PMID:21422186

  15. The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells.

    Science.gov (United States)

    Abranches, Jacqueline; Miller, James H; Martinez, Alaina R; Simpson-Haidaris, Patricia J; Burne, Robert A; Lemos, José A

    2011-06-01

    Streptococcus mutans is considered the primary etiologic agent of dental caries, a global health problem that affects 60 to 90% of the population, and a leading causative agent of infective endocarditis. It can be divided into four different serotypes (c, e, f, and k), with serotype c strains being the most common in the oral cavity. In this study, we demonstrate that in addition to OMZ175 and B14, three other strains (NCTC11060, LM7, and OM50E) of the less prevalent serotypes e and f are able to invade primary human coronary artery endothelial cells (HCAEC). Invasive strains were also significantly more virulent than noninvasive strains in the Galleria mellonella (greater wax worm) model of systemic disease. Interestingly, the invasive strains carried an additional gene, cnm, which was previously shown to bind to collagen and laminin in vitro. Inactivation of cnm rendered the organisms unable to invade HCAEC and attenuated their virulence in G. mellonella. Notably, the cnm knockout strains did not adhere to HCAEC as efficiently as the parental strains did, indicating that the loss of the invasion phenotype observed for the mutants was linked to an adhesion defect. Comparisons of the invasive strains and their respective cnm mutants did not support a correlation between biofilm formation and invasion. Thus, Cnm is required for S. mutans invasion of endothelial cells and possibly represents an important virulence factor of S. mutans that may contribute to cardiovascular infections and pathologies.

  16. Quantifying mitochondrial and plasma membrane potentials in intact pulmonary arterial endothelial cells based on extracellular disposition of rhodamine dyes.

    Science.gov (United States)

    Gan, Zhuohui; Audi, Said H; Bongard, Robert D; Gauthier, Kathryn M; Merker, Marilyn P

    2011-05-01

    Our goal was to quantify mitochondrial and plasma potential (Δψ(m) and Δψ(p)) based on the disposition of rhodamine 123 (R123) or tetramethylrhodamine ethyl ester (TMRE) in the medium surrounding pulmonary endothelial cells. Dyes were added to the medium, and their concentrations in extracellular medium ([R(e)]) were measured over time. R123 [R(e)] fell from 10 nM to 6.6 ± 0.1 (SE) nM over 120 min. TMRE [R(e)] fell from 20 nM to a steady state of 4.9 ± 0.4 nM after ∼30 min. Protonophore or high K(+) concentration ([K(+)]), used to manipulate contributions of membrane potentials, attenuated decreases in [R(e)], and P-glycoprotein (Pgp) inhibition had the opposite effect, demonstrating the qualitative impact of these processes on [R(e)]. A kinetic model incorporating a modified Goldman-Hodgkin-Katz model was fit to [R(e)] vs. time data for R123 and TMRE, respectively, under various conditions to obtain (means ± 95% confidence intervals) Δψ(m) (-130 ± 7 and -133 ± 4 mV), Δψ(p) (-36 ± 4 and -49 ± 4 mV), and a Pgp activity parameter (K(Pgp), 25 ± 5 and 51 ± 11 μl/min). The higher membrane permeability of TMRE also allowed application of steady-state analysis to obtain Δψ(m) (-124 ± 6 mV). The consistency of kinetic parameter values obtained from R123 and TMRE data demonstrates the utility of this experimental and theoretical approach for quantifying intact cell Δψ(m) and Δψ(p.) Finally, steady-state analysis revealed that although room air- and hyperoxia-exposed (95% O(2) for 48 h) cells have equivalent resting Δψ(m), hyperoxic cell Δψ(m) was more sensitive to depolarization with protonophore, consistent with previous observations of pulmonary endothelial hyperoxia-induced mitochondrial dysfunction.

  17. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial.

    Science.gov (United States)

    Jeong, Han Saem; Kim, Sohyeon; Hong, Soon Jun; Choi, Seung Cheol; Choi, Ji-Hyun; Kim, Jong-Ho; Park, Chi-Yeon; Cho, Jae Young; Lee, Tae-Bum; Kwon, Ji-Wung; Joo, Hyung Joon; Park, Jae Hyoung; Yu, Cheol Woong; Lim, Do-Sun

    2016-04-01

    Administration of black raspberry (Rubus occidentalis) is known to improve vascular endothelial function in patients at a high risk for cardiovascular (CV) disease. We investigated short-term effects of black raspberry on circulating endothelial progenitor cells (EPCs) and arterial stiffness in patients with metabolic syndrome. Patients with metabolic syndrome (n = 51) were prospectively randomized into the black raspberry group (n = 26, 750 mg/day) and placebo group (n = 25) during the 12-week follow-up. Central blood pressure, augmentation index, and EPCs, such as CD34/KDR(+), CD34/CD117(+), and CD34/CD133(+), were measured at baseline and at 12-week follow-up. Radial augmentation indexes were significantly decreased in the black raspberry group compared to the placebo group (-5% ± 10% vs. 3% ± 14%, P raspberry group compared to the placebo group (19 ± 109/μL vs. -28 ± 57/μL, P raspberry group compared to the placebo group (-0.5 ± 1.4 pg/mL vs. -0.1 ± 1.1 pg/mL, P raspberry group. The use of black raspberry significantly lowered the augmentation index and increased circulating EPCs, thereby improving CV risks in patients with metabolic syndrome during the 12-week follow-up.

  18. LPS, but not Angiotensin ll, lnduces Direct Pro-lnflammatory Effects in Cultured Mouse Arteries and Human Endothelial and Vascular Smooth Muscle Cells

    DEFF Research Database (Denmark)

    Outzen, Emilie M; Zaki, Marina; Mehryar, Rahila;

    2016-01-01

    Angiotensin II (Ang II) might induce pro-inflammatory effects directly on the vascular wall independently of its hemodynamic effects. The aim of our study was to investigate the putative direct pro-inflammatory and vasomotor effects of Ang II and compare to those of LPS in mouse isolated mesenteric...... resistance-sized arteries (MRA) supported by experiments in cultured human primary endothelial and vascular smooth muscle cells. Results showed that 24-hr organ culture of mouse MRA with 10 nM Ang II had, unlike 100 ng/mL LPS, no effects on IL-6 or MCP-1 secretion, VCAM1 mRNA expression or endothelial...... function, while Ang II significantly decreased maximal vasomotor responses to phenylephrine. In support, 24-hr organ culture of mouse MRA significantly suppressed Agtr1a mRNA and augmented Tlr4 mRNA along with attenuated vasomotor responses to Ang II. Moreover, contrary to LPS and TNFα, Ang II and [Sar1...

  19. Mecanotransduction and Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    S.MULLER; JF.; STOLTZ2

    2005-01-01

    1 IntroductionAtherosclerosis preferentially occurs in areas of complex blood flow where there are disturbed flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective~([1]). Reports of others and our studies suggest a steady laminar flow decreases some molecules and genes expression of vascular endothelial cells (EC) that may promote atherosclerosis, as well as it can differentially regulate production of many vasoactive factors at the level of gene expression an...

  20. Isolation, Characterization, and Transplantation of Cardiac Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Busadee Pratumvinit

    2013-01-01

    due to difficulties in isolation, cell heterogeneity, lack of specific markers to identify myocardial endothelial cells, and inadequate conditions to maintain long-term cultures. Herein, we developed a method for isolation, characterization, and expansion of cardiac endothelial cells applicable to study endothelial cell biology and clinical applications such as neoangiogenesis. First, we dissociated the cells from murine heart by mechanical disaggregation and enzymatic digestion. Then, we used flow cytometry coupled with specific markers to isolate endothelial cells from murine hearts. CD45+ cells were gated out to eliminate the hematopoietic cells. CD31+/Sca-1+ cells were isolated as endothelial cells. Cells isolated from atrium grew faster than those from ventricle. Cardiac endothelial cells maintain endothelial cell function such as vascular tube formation and acetylated-LDL uptake in vitro. Finally, cardiac endothelial cells formed microvessels in dorsal matrigel plug and engrafted in cardiac microvessels following intravenous and intra-arterial injections. In conclusion, our multicolor flow cytometry method is an effective method to analyze and purify endothelial cells from murine heart, which in turn can be ex vivo expanded to study the biology of endothelial cells or for clinical applications such as therapeutic angiogenesis.

  1. Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR.

    Science.gov (United States)

    Liu, Yiwei; Zhang, Lingxin; Wang, Chuan; Roy, Shama; Shen, Jianzhong

    2016-01-22

    We recently reported that the P2Y2 receptor (P2Y2R) is the predominant nucleotide receptor expressed in human coronary artery endothelial cells (HCAEC) and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), a key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here, we report the role of a newly identified AP-1 consensus sequence in the TF gene promoter and its original binding components in P2Y2R regulation of TF transcription. Using bioinformatics tools, we found that a novel AP-1 site at -1363 bp of the human TF promoter region is highly conserved across multiple species. Activation of P2Y2R increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this distal AP-1 site all significantly suppressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2, and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2 but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation through Src, leading to Fra-1 activation, whereas Rho/JNK mediated P2Y2R-induced activation of c-Jun and ATF-2. These findings reveal the molecular basis for P2Y G protein-coupled receptor control of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy for controlling vascular inflammation and thrombogenicity associated with endothelial dysfunction.

  2. Upregulation of Steroidogenic Acute Regulatory Protein by Hypoxia Stimulates Aldosterone Synthesis in Pulmonary Artery Endothelial Cells to Promote Pulmonary Vascular Fibrosis

    Science.gov (United States)

    Maron, Bradley A.; Oldham, William M.; Chan, Stephen Y.; Vargas, Sara O.; Arons, Elena; Zhang, Ying-Yi; Loscalzo, Joseph; Leopold, Jane A.

    2014-01-01

    Background The molecular mechanism(s) regulating hypoxia-induced vascular fibrosis are unresolved. Hyperaldosteronism correlates positively with vascular remodeling in pulmonary arterial hypertension (PAH), suggesting that aldosterone may contribute to the pulmonary vasculopathy of hypoxia. The hypoxia-sensitive transcription factors c-Fos/c-Jun regulate steroidogenic acute regulatory protein (StAR), which facilitates the rate-limiting step of aldosterone steroidogenesis. We hypothesized that c-Fos/c-Jun upregulation by hypoxia activates StAR-dependent aldosterone synthesis in human pulmonary artery endothelial cells (HPAECs) to promote vascular fibrosis in PAH. Methods and Results Patients with PAH, rats with Sugen/hypoxia-PAH, and mice exposed to chronic hypoxia expressed increased StAR in remodeled pulmonary arterioles, providing a basis for investigating hypoxia-StAR signaling in HPAECs. Hypoxia (2.0% FiO2) increased aldosterone levels selectively in HPAECs, which was confirmed by liquid chromatography-mass spectrometry. Increased aldosterone by hypoxia resulted from enhanced c-Fos/c-Jun binding to the proximal activator protein (AP-1) site of the StAR promoter in HPAECs, which increased StAR expression and activity. In HPAECs transfected with StAR-siRNA or treated with the AP-1 inhibitor, SR-11302, hypoxia failed to increase aldosterone, confirming that aldosterone biosynthesis required StAR activation by c-Fos/c-Jun. The functional consequences of aldosterone were confirmed by pharmacological inhibition of the mineralocorticoid receptor with spironolactone or eplerenone, which attenuated hypoxia-induced upregulation of the fibrogenic protein connective tissue growth factor and collagen III in vitro, and decreased pulmonary vascular fibrosis to improve pulmonary hypertension in Conclusions Our findings identify autonomous aldosterone synthesis in HPAECs due to hypoxia-mediated upregulation of StAR as a novel molecular mechanism that promotes pulmonary vascular

  3. Activation of group IVC phospholipase A{sub 2} by polycyclic aromatic hydrocarbons induces apoptosis of human coronary artery endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tithof, Patricia K. [University of Tennessee, Department of Pathobiology, College of Veterinary Medicine, Knoxville, TN (United States); University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN (United States); Richards, Sean M. [University of Tennessee, Department of Biological and Environmental Sciences, Chattanooga, TN (United States); Elgayyar, Mona A. [University of Tennessee, Department of Pathobiology, College of Veterinary Medicine, Knoxville, TN (United States); Menn, Fu-Minn; Vulava, Vijay M.; McKay, Larry; Sanseverino, John; Sayler, Gary [University of Tennessee, Center for Environmental Biotechnology, Knoxville, TN (United States); Tucker, Dawn E.; Leslie, Christina C. [National Jewish Medical and Research Center, Department of Pediatrics, Denver, CO (United States); Lu, Kim P. [Texas A and M University, Department of Biology, College Station, TX (United States); Ramos, Kenneth S. [University of Louisville, Department of Biochemistry and Molecular Biology, Louisville, KY (United States)

    2011-06-15

    Exposure to environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs) found in coal tar mixtures and tobacco sources, is considered a significant risk factor for the development of heart disease in humans. The goal of this study was to determine the influence of PAHs present at a Superfund site on human coronary artery endothelial cell (HCAEC) phospholipase A{sub 2} (PLA{sub 2}) activity and apoptosis. Extremely high levels of 12 out of 15 EPA high-priority PAHs were present in both the streambed and floodplain sediments at a site where an urban creek and its adjacent floodplain were extensively contaminated by PAHs and other coal tar compounds. Nine of the 12 compounds and a coal tar mixture (SRM 1597A) activated group IVC PLA{sub 2} in HCAECs, and activation of this enzyme was associated with histone fragmentation and poly (ADP) ribose polymerase (PARP) cleavage. Genetic silencing of group IVC PLA{sub 2} inhibited both {sup 3}H-fatty acid release and histone fragmentation by PAHs and SRM 1597A, indicating that individual PAHs and a coal tar mixture induce apoptosis of HCAECs via a mechanism that involves group IVC PLA{sub 2}. Western blot analysis of aortas isolated from feral mice (Peromyscus leucopus) inhabiting the Superfund site showed increased PARP and caspase-3 cleavage when compared to reference mice. These data suggest that PAHs induce apoptosis of HCAECs via activation of group IVC PLA{sub 2}. (orig.)

  4. Heart-type fatty-acid-binding protein (FABP3 is a lysophosphatidic acid-binding protein in human coronary artery endothelial cells

    Directory of Open Access Journals (Sweden)

    Ryoko Tsukahara

    2014-01-01

    Full Text Available Fatty-acid-binding protein 3, muscle and heart (FABP3, also known as heart-type FABP, is a member of the family of intracellular lipid-binding proteins. It is a small cytoplasmic protein with a molecular mass of about 15 kDa. FABPs are known to be carrier proteins for transporting fatty acids and other lipophilic substances from the cytoplasm to the nucleus, where these lipids are released to a group of nuclear receptors such as peroxisome proliferator-activated receptors (PPARs. In this study, using lysophosphatidic acid (LPA-coated agarose beads, we have identified FABP3 as an LPA carrier protein in human coronary artery endothelial cells (HCAECs. Administration of LPA to HCAECs resulted in a dose-dependent increase in PPARγ activation. Furthermore, the LPA-induced PPARγ activation was abolished when the FABP3 expression was reduced using small interfering RNA (siRNA. We further show that the nuclear fraction of control HCAECs contained a significant amount of exogenously added LPA, whereas FABP3 siRNA-transfected HCAECs had a decreased level of LPA in the nucleus. Taken together, these results suggest that FABP3 governs the transcriptional activities of LPA by targeting them to cognate PPARγ in the nucleus.

  5. Hypoxia preconditioning increases survival and decreases expression of Toll-like receptor 4 in pulmonary artery endothelial cells exposed to lipopolysaccharide.

    Science.gov (United States)

    Ali, Irshad; Nanchal, Rahul; Husnain, Fouad; Audi, Said; Konduri, G Ganesh; Densmore, John C; Medhora, Meetha; Jacobs, Elizabeth R

    2013-09-01

    Abstract Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo.

  6. Salvianolic Acid B Down-regulates Matrix Metalloproteinase-9 Activity and Expression in Tumor Necrosis Factor-α-induced Human Coronary Artery Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Le Ma; Yun-Qian Guan; Zhong-Dong Du

    2015-01-01

    Background:Salvianolic acid B (Sal B) is a bioactive water-soluble compound of Salviae miltiorrhizae,a traditional herbal medicine that has been used clinically tor the treatment of cardiovascular diseases.This study sought to evaluate the effect of Sal B on matrix metalloproteinase-9 (MMP-9) and on the underlying mechanisms in tumor necrosis factor-α (TNF-α)-activated human coronary artery endothelial cells (HCAECs),a cell model of Kawasaki disease.Methods:HCAECs were pretreated with 1 l0 μmol/L of Sal B,and then stimulated by TNF-α at different time points.The protein expression and activity of MMP-9 were determined by Western blot assay and gelatin zymogram assay,respectively.Nuclear factor-κB (NF-κB) activation was detected with immunofluorescence,electrophoretic mobility shift assay,and Western blot assay.Protein expression levels of mitogen-activated protein kinase (c-Jun N-terminal kinase [JNK],extra-cellular signal-regulated kinase [ERK],and p38) were determined by Western blot assay.Results:After HCAECs were exposed to TNF-α,1-10 μtmol/L Sal B significantly inhibited TNF-α-induced MMP-9 expression and activity.Furthermore,Sal B significantly decreased IκBα phosphorylation and p65 nuclear translocation in HCAECs stimulated with TNF-α for 30 min.In addition,Sal B decreased the phosphorylation of JNK and ERK1/2 proteins in cells treated with TNF-α for 10 min.Conclusions:The data suggested that Sal B suppressed TNF-α-induced MMP-9 expression and activity by blocking the activation of NF-κB,JNK,and ERK1/2 signaling pathways.

  7. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1

    DEFF Research Database (Denmark)

    Bai, Bo; Man, Andy W C; Yang, Kangmin;

    2016-01-01

    for the prevention of vascular ageing. Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site...... association of LKB1 with the positive regulatory elements of TGFβ1 promoter. In mice without endothelial nitric oxide synthase, selective overexpression of human SIRT1 in endothelium prevents hypertension and age-related adverse arterial remodeling. Lentiviral-mediated knockdown of HERC2 abolishes...... the beneficial effects of endothelial SIRT1 on both arterial remodeling and arterial blood pressure control. Conclusion-By downregulating acetylated LKB1 protein via HERC2, SIRT1 fine-tunes the crosstalk between endothelial and vascular smooth muscle cells to prevent adverse arterial remodeling and maintain...

  8. Effect of Nuclear Factor-kappa B on Vascular Endothelial Growth Factor mRNA Expression of Human Pulmonary Artery Smooth Muscle Cells in Hypoxia

    Institute of Scientific and Technical Information of China (English)

    张焕萍; 徐永健; 张珍祥; 许淑云; 倪望; 陈士新

    2004-01-01

    Summary: In order to investigate the effect of nuclear factor-kappa B (NF-κB) on vascular endothelial growth factor (VEGF) mRNA expression of human pulmonary artery smooth muscle cells (HPASMCs) in hypoxia, the cultured HPASMCs in vitro were stimulated with pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB. The NF-κB p65 nuclei positive expression was detected by immunocytochemical technique. The IκBa protein expression was measured by Western blot.RT-PCR was used to detect the VEGF mRNA expression of HPASMCs. The results showed that no significant change was observed in the NF-κB p65 nuclei positive expression of cultured HPASMCs during 6 h-24 h in normoxia, but the levels of NF-κB p65 nuclei positive expression of cultured HPASMCs were significantly increased in hypoxia groups as compared with those in all normoxia groups (P<0.05). The IκBα protein expression of cultured HPASMCs showed no significant change during 6 h-24 h in normoxia, but significantly decreased in hypoxia as comapred with that in normoxia groups (P<0.05). PDTC (1 to 100 μmol/L) could inhibit the VEGF mRNA expression of HPASMCs in a concentration-dependent manner in hypoxia. In conclusion, NF-κB can be partly translocation activated from cytoplasm into nuclei in the cultured HPASMCs under hypoxia. The inhibition of NF-κB activation can decrease the VEGF mRNA expression. h is suggested that the activation of NF-κB is involved in the VEGFmRNA expression of HPASMCs under hypoxia.

  9. Endothelial progenitor cells with Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    KONG Xiao-dong; ZHANG Yun; LIU Li; SUN Ning; ZHANG Ming-yi; ZHANG Jian-ning

    2011-01-01

    Background Endothelial dysfunction is thought to be critical events in the pathogenesis of Alzheimer's disease (AD).Endothelial progenitor cells (EPCs) have provided insight into maintaining and repairing endothelial function. To study the relation between EPCs and AD, we explored the number of circulating EPCs in patients with AD.Methods A total of 104 patients were recruited from both the outpatients and inpatients of the geriatric neurology department at General Hospital, rianjin Medical University. Consecutive patients with newly diagnosed AD (n=30),patients with vascular dementia (VaD, n=34), and healthy elderly control subjects with normal cognition (n=40) were enrolled after matching for age, gender, body mass index, medical history, current medication and Mini Mental State Examination. Middle cerebral artery flow velocity was examined with transcranial Doppler. Endothelial function was evaluated according to the level of EPCs, and peripheral blood EPCs was counted by flow cytometry.Results There were no significant statistical differences of clinical data in AD, VaD and control groups (P >0.05). The patients with AD showed decreased CD34-positive (CD34+) or CD133-positive (CD133+) levels compared to the control subjects, but there were no significant statistical differences in patients with AD. The patients with AD had significantly lower CD34+CD133+ EPCs(CD34 and CD133 double positive endothelial progenitor cells) than the control subjects (P <0.05). In the patients with AD, a lower CD34+CD133+ EPCs count was independently associated with a lower Mini-Mental State Examination score (r=0.514, P=0.004). Patients with VaD also showed a significant decrease in CD34+CD133+ EPCs levels, but this was not evidently associated with the Mini-Mental State Examination score. The changes of middle cerebral artery flow velocity were similar between AD and VaD. Middle cerebral artery flow velocity was decreased in the AD and VaD groups and significantly lower than

  10. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    OpenAIRE

    Izuagie Attairu Ikhapoh; Pelham, Christopher J.; Agrawal, Devendra K

    2015-01-01

    Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs) differentiate into endothelial cells (ECs) in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, ...

  11. Measurement of endothelial dysfunction via peripheral arterial tonometry predicts vasculogenic erectile dysfunction

    Science.gov (United States)

    Kovac, Jason R.; Gomez, Lissette; Smith, Ryan P.; Coward, Robert M.; Gonzales, Marshall A.; Khera, Mohit; Lamb, Dolores J.; Lipshultz, Larry I.

    2014-01-01

    Introduction Endothelial cell dysfunction is associated with cardiovascular disease and vasculogenic erectile dysfunction (ED). Measured via Peripheral Artery Tonometry (PAT), endothelial dysfunction in the penis is an independent predictor of future cardiovascular events. Aim Determine whether measurement of endothelial dysfunction differentiates men with vasculogenic ED identified by duplex ultrasound from those without. Methods A total of 142 men were retrospectively assessed using patient history, penile duplex ultrasonography (US) and PAT (EndoPAT 2000). ED was self reported and identified on history. Vasculogenic ED was identified in men who exhibited a peak systolic velocity (PSV) of ≤25 cm/s obtained 15 minutes following vasodilator injection. The reactive hyperemia index (RHI), a measurement of endothelial dysfunction in medium/small arteries and the Augmentation Index (AI), a measurement of arterial stiffness, were recorded via PAT. Results Penile duplex US separated men into those with ED (n=111) and without (n=31). The cohort with ED had a PSV of 21±1 cm/s (left cavernous artery) and 22±1 cm/s (Right). The control group without ED had values of 39±2 cm/s (Left) and 39±2 (Right). Given the potential for altered endothelial function in diabetes mellitus, we confirmed that hemoglobin A1c, urinary microalbumin, and vibration pulse threshold were not different in men with vasculogenic ED and those without. RHI in patients with ED (1.85±0.06) was significantly decreased compared to controls (2.15±0.2) (p<0.05). The AI was unchanged when examined in isolation, and when standardized to heart rate. Conclusions Measurement of endothelial function with EndoPAT differentiates men with vasculogenic ED from those without. RHI could be used as a non-invasive surrogate in the assessment of vasculogenic ED and to identify those patients with higher cardiovascular risk. PMID:24784889

  12. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Ken Kono

    Full Text Available Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.

  13. Cellular and molecular biology of aging endothelial cells.

    Science.gov (United States)

    Donato, Anthony J; Morgan, R Garrett; Walker, Ashley E; Lesniewski, Lisa A

    2015-12-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a major risk factor for CVD development. One of the major age-related arterial phenotypes thought to be responsible for the development of CVD in older adults is endothelial dysfunction. Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing age is independently associated with the development of vascular endothelial dysfunction. This endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of endothelial oxidative stress and inflammation that can be further modulated by traditional CVD risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change and its activation induces transcription of pro-inflammatory cytokines that can further suppress endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial dysfunction with advancing age as well as the cellular and molecular events that lead to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage has been shown to trigger cell senescence via the p53/p21 pathway and result in increased inflammatory signaling in arteries from older adults. This review will discuss the current state

  14. RELATIONS OF ENDOTHELIAL FUNCTION AND BLOOD FLOW IN BRACHIAL ARTERY AND CORONARY ARTERY

    Institute of Scientific and Technical Information of China (English)

    孙寅光; 沈卫峰; 施仲伟; 张大东

    2003-01-01

    Objective To determine the relations between endothelium dependent vasodilator function and blood flow in the brachial and coronary arteries in patients with suspected coronary artery disease.MethodsTwenty eight patients with suspected coronary artery disease underwent brachial artery endothelial function test by using high resolution B mode ultrasound before coronary angiography (CAG) and coronary flow reserve (CFR) test by using intracoronary Doppler technique. The correlation of coronary artery dilatation induced by an increase in blood flow after intracoronary adenosine infusion and brachial artery flow mediated dilatation (FMD) following reactive hyperemia was evaluated. The relation between the change of brachial artery blood flow and CFR was also studied.ResultsThere was a positive correlation between brachial FMD and percent change of coronary diameter after adenosine infusion (12.50%±9.35% vs 11.38%±7.55%, r=0.425,P=0.02). There was also a weak negative relation between brachial flow change following reactive hyperemia and CFR (r=0.397, P=0.04).ConclusionThere is a correlation between the coronary endothelial function and the CFR by ultrasonic determination of brachial flow changes following reactive hyperemia.

  15. Variations in mass transfer to single endothelial cells.

    Science.gov (United States)

    Van Doormaal, Mark A; Zhang, Ji; Wada, Shigeo; Shaw, James E; Won, Doyon; Cybulsky, Myron I; Yip, Chris M; Ethier, C Ross

    2009-06-01

    Mass transfer between flowing blood and arterial mural cells (including vascular endothelial cells) may play an important role in atherogenesis. Endothelial cells are known to have an apical surface topography that is not flat, and hence mass transfer patterns to individual endothelial cells are likely affected by the local cellular topography. The purpose of this paper is to investigate the relationship between vascular endothelial cell surface topography and cellular level mass transfer. Confluent porcine endothelial monolayers were cultured under both shear and static conditions and atomic force microscopy was used to measure endothelial cell topography. Using finite element methods and the measured cell topography, flow and concentration fields were calculated for a typical, small, blood-borne solute. A relative Sherwood number was defined as the difference between the computed Sherwood number and that predicted by the Leveque solution for mass transfer over a flat surface: this eliminates the effects of axial location on mass transfer efficiency. The average intracellular relative Sherwood number range was found to be dependent on cell height and not dependent on cell elongation due to shear stress in culture. The mass flux to individual cells reached a maximum at the highest point on the endothelial cell surface, typically corresponding to the nucleus of the cell. Therefore, for small receptor-mediated solutes, increased solute uptake efficiency can be achieved by concentrating receptors near the nucleus. The main conclusion of the work is that although the rate of mass transfer varies greatly over an individual cell, the average mass transfer rate to a cell is close to that predicted for a flat cell. In comparison to other hemodynamic factors, the topography of endothelial cells therefore seems to have little effect on mass transfer rates and is likely physiologically insignificant.

  16. Impaired endothelial calcium signaling is responsible for the defective dilation of mesenteric resistance arteries from db/db mice to acetylcholine.

    Science.gov (United States)

    Chen, Hua; Kold-Petersen, Henrik; Laher, Ismael; Simonsen, Ulf; Aalkjaer, Christian

    2015-11-15

    We aimed at assessing the role of endothelial cell calcium for the endothelial dysfunction of mesenteric resistance arteries of db/db mice (a model of type 2 diabetes) and determine whether treatment with sulfaphenazole, improves endothelial calcium signaling and function. Pressure myography was used to study acetylcholine (ACh) -induced vasodilation. Intracellular calcium ([Ca(2+)]i) transients was measured by confocal laser scanning microscopy and smooth muscle membrane potential with sharp microelectrodes. The impaired dilation to ACh observed in mesenteric resistance arteries from db/db mice was improved by treatment of the mice with sulfaphenazole for 8 weeks. The impaired dilation to ACh was associated with decreased endothelial [Ca(2+)]i and smooth muscle hyperpolarization. Sulfaphenazole applied in vitro improved endothelial mediated dilation of arteries from db/db mice both in the absence and the presence of inhibitors of nitric oxide and cyclooxygenase. Sulfaphenazole also increased the percentage of endothelial cells with ACh induced increases of [Ca(2+)]i. The study shows that impaired endothelial [Ca(2+)]i control can explain the reduced endothelial function in arteries from diabetic mice and that sulfaphenazole treatment improves endothelial [Ca(2+)]i responses to ACh and consequently endothelium-dependent vasodilation. These observations provide mechanistic insight into endothelial dysfunction in diabetes.

  17. Association between endothelial dysfunction and arterial stiffness in continuous ambulatory peritoneal dialysis patients

    Institute of Scientific and Technical Information of China (English)

    顾玥

    2014-01-01

    Objective To investigate the association between endothelial dysfunction and arterial stiffness in continuous ambulatory peritoneal dialysis(CAPD)patients.Methods Ninety-four stable CAPD patients from a single center were enrolled in this cross-sectional study.Ultrasound evaluation was conducted on brachial artery to estimate endothelial-dependent

  18. Traction Forces of Endothelial Cells under Slow Shear Flow

    Science.gov (United States)

    Perrault, Cecile M.; Brugues, Agusti; Bazellieres, Elsa; Ricco, Pierre; Lacroix, Damien; Trepat, Xavier

    2015-01-01

    Endothelial cells are constantly exposed to fluid shear stresses that regulate vascular morphogenesis, homeostasis, and disease. The mechanical responses of endothelial cells to relatively high shear flow such as that characteristic of arterial circulation has been extensively studied. Much less is known about the responses of endothelial cells to slow shear flow such as that characteristic of venous circulation, early angiogenesis, atherosclerosis, intracranial aneurysm, or interstitial flow. Here we used a novel, to our knowledge, microfluidic technique to measure traction forces exerted by confluent vascular endothelial cell monolayers under slow shear flow. We found that cells respond to flow with rapid and pronounced increases in traction forces and cell-cell stresses. These responses are reversible in time and do not involve reorientation of the cell body. Traction maps reveal that local cell responses to slow shear flow are highly heterogeneous in magnitude and sign. Our findings unveil a low-flow regime in which endothelial cell mechanics is acutely responsive to shear stress. PMID:26488643

  19. EETs Attenuate Ox-LDL-Induced LTB4 Production and Activity by Inhibiting p38 MAPK Phosphorylation and 5-LO/BLT1 Receptor Expression in Rat Pulmonary Arterial Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jun-xia Jiang

    Full Text Available Cytochrome P-450 epoxygenase (EPOX-derived epoxyeicosatrienoic acids (EETs, 5-lipoxygenase (5-LO, and leukotriene B4 (LTB4, the product of 5-LO, all play a pivotal role in the vascular inflammatory process. We have previously shown that EETs can alleviate oxidized low-density lipoprotein (ox-LDL-induced endothelial inflammation in primary rat pulmonary artery endothelial cells (RPAECs. Here, we investigated whether ox-LDL can promote LTB4 production through the 5-LO pathway. We further explored how exogenous EETs influence ox-LDL-induced LTB4 production and activity. We found that treatment with ox-LDL increased the production of LTB4 and further led to the expression and release of both monocyte chemoattractant protein-1 (MCP-1/CCL2 and intercellular adhesion molecule-1 (ICAM-1. All of the above ox-LDL-induced changes were attenuated by the presence of 11,12-EET and 14,15-EET, as these molecules inhibited the 5-LO pathway. Furthermore, the LTB4 receptor 1 (BLT1 receptor antagonist U75302 attenuated ox-LDL-induced ICAM-1 and MCP-1/CCL2 expression and production, whereas LY255283, a LTB4 receptor 2 (BLT2 receptor antagonist, produced no such effects. Moreover, in RPAECs, we demonstrated that the increased expression of 5-LO and BLT1 following ox-LDL treatment resulted from the activation of nuclear factor-κB (NF-κB via the p38 mitogen-activated protein kinase (MAPK pathway. Our results indicated that EETs suppress ox-LDL-induced LTB4 production and subsequent inflammatory responses by downregulating the 5-LO/BLT1 receptor pathway, in which p38 MAPK phosphorylation activates NF-κB. These results suggest that the metabolism of arachidonic acid via the 5-LO and EPOX pathways may present a mutual constraint on the physiological regulation of vascular endothelial cells.

  20. Changes of junctions of endothelial cells in coronary sclerosis:A review

    Institute of Scientific and Technical Information of China (English)

    Li-Zi Zhang; Sun Lei

    2016-01-01

    Atherosclerosis, the major cause of cardiovascular diseases, has been a leading contributor to morbidity and mortality in the United States and it has been on the rise globally. Endothelial cellecell junctions are critical for vascular integrity and maintenance of vascular function. Endothelial cell junctions dysfunction is the onset step of future coronary events and coronary artery dis-ease.

  1. Effects of cyclic intermittent hypoxia on ET-1 responsiveness and endothelial dysfunction of pulmonary arteries in rats.

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    Full Text Available Obstructive sleep apnoea (OSA is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk, and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1 and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.

  2. Contractile proteins of endothelial cells, platelets and smooth muscle.

    Science.gov (United States)

    Becker, C G; Nachman, R L

    1973-04-01

    In experiments described herein it was observed, by direct and indirect immunofluorescence technics, that rabbit antisera to human platelet actomyosin (thrombosthenin) stained mature megakaryocytes, blood platelets, endothelial cells and smooth muscle cells of arteries and veins, endothelial cells of liver sinusoids and certain capillaries, uterine smooth muscle cells, myoepithelial cells, perineurial cells of peripheral nerves and "fibroblastic" cells of granulation tissue. The specificity of immunohistologic staining was confirmed by appropriate absorption and blocking studies and immunodiffusional analysis in agarose gel. It was also observed by immunodiffusional analysis in agarose gel, electrophoresis of actomyosin fragments in polyacrylamide gels, immune inhibition of actomyosin ATPase activity and immune aggregation of platelets that uterine and platelet actomyosin are partially, but not completely, identical.

  3. The role of tissue renin angiotensin aldosterone system in the development of endothelial dysfunction and arterial stiffness

    Directory of Open Access Journals (Sweden)

    Annayya R Aroor

    2013-10-01

    Full Text Available Epidemiological studies support the notion that arterial stiffness is an independent predictor of adverse cardiovascular events contributing significantly to systolic hypertension, impaired ventricular-arterial coupling and diastolic dysfunction, impairment in myocardial oxygen supply and demand, and progression of kidney disease. Although arterial stiffness is associated with aging, it is accelerated in the presence of obesity and diabetes. The prevalence of arterial stiffness parallels the increase of obesity that is occurring in epidemic proportions and is partly driven by a sedentary life style and consumption of a high fructose, high salt and high fat western diet. Although the underlying mechanisms and mediators of arterial stiffness are not well understood, accumulating evidence supports the role of insulin resistance and endothelial dysfunction. The local tissue renin angiotensin aldosterone system (RAAS in the vascular tissue and immune cells and perivascular adipose tissue is recognized as an important element involved in endothelial dysfunction which contributes significantly to arterial stiffness. Activation of vascular RAAS is seen in humans and animal models of obesity and diabetes, and associated with enhanced oxidative stress and inflammation in the vascular tissue. The cross talk between angiotensin and aldosterone underscores the importance of mineralocorticoid receptors in modulation of insulin resistance, decreased bioavailability of nitric oxide, endothelial dysfunction and arterial stiffness. In addition, both innate and adaptive immunity are involved in this local tissue activation of RAAS. In this review we will attempt to present a unifying mechanism of how environmental and immunological factors are involved in this local tissue RAAS activation, and the role of this process in the development of endothelial dysfunction and arterial stiffness and targeting tissue RAAS activation.

  4. INSTRUMENTAL AND DIAGNOSTIC CRITERIA OF HEMODYNAMIC DISORDERS AND ENDOTHELIAL DYSFUNCTION CORRECTION IN PREGNANTS WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    S. M. Heryak

    2014-12-01

    Conclusions. It was found that the brachial artery ultrasound measuring and occlusive plethysmography procedure by Dietz is an early and safe method of endothelial dysfunction diagnostic in pregnants with hypertension. Doppler ultrasound of blood flow in uterine, umbilical arteries, and middle cerebral arteries of the fetus allows timely diagnosis of the side effect of antihypertensive drugs on the fetus. The therapy of choice for pregnants with Stage II Arterial Hypertension should be based on methyldopa and calcium channel antagonists or selective beta-blockers combination. Highly selective beta-blockers with vasodilative effect (nebivolol hydrochloride and L-arginine (Tivortin allow to prevent perinatal adverse effects of antihypertensive therapy, to correct hemodynamic disorders and endothelial dysfunction in pregnants with arterial hypertension. KEY WORDS: arterial hypertension, uterine-placental hemodynamics, endothelial dysfunction

  5. Subcellular characterization of glucose uptake in coronary endothelial cells.

    Science.gov (United States)

    Gaudreault, N; Scriven, D R L; Laher, I; Moore, E D W

    2008-01-01

    Despite all the evidence linking glucose toxicity to an increased risk of cardiovascular diseases, very little is known about the regulation of glucose uptake in endothelial cells. We have previously reported an asymmetric distribution of the GLUTs (1-5) and SGLT-1 in en face preparations of rat coronary artery endothelia [Gaudreault N., Scriven D.R., Moore E.D., 2004. Characterisation of glucose transporters in the intact coronary artery endothelium in rats: GLUT-2 upregulated by long-term hyperglycaemia. Diabetologia 47(12),2081-2092]. We assessed this time, through immunocytochemistry and wide field fluorescence microscopy coupled to deconvolution, the presence and subcellular distribution of glucose transporters in cultures of human coronary artery endothelial cells (HCAECs). HCAECs express GLUT-1 to 5 and SGLT-1, but their subcellular distribution lacks the luminal/abluminal asymmetry and the proximity to cell-to-cell junctions observed in intact endothelium. To determine the impact of the transporters' distribution on intracellular glucose accumulation, a fluorescent glucose analog (2-NBDG) was used in conjunction with confocal microscopy to monitor uptake in individual cells; the arteries were mounted in an arteriograph chamber with physiological flow rates. The uptake in both preparations was inhibited by cytochalasin-B and d-glucose and stimulated by insulin, but the distribution of the incorporated 2-NBDG mirrored that of the transporters. In HCAEC it was distributed throughout the cell and in the intact arterial endothelium it was restricted to the narrow cytosolic volume adjacent to the cell-to-cell junctions. We suggest that the latter subcellular organization and compartmentalization may facilitate transendothelial transport of glucose in intact coronary artery.

  6. Microvascular endothelial cells of the corpus luteum

    Directory of Open Access Journals (Sweden)

    Spanel-Borowski Katherina

    2003-11-01

    Full Text Available Abstract The cyclic nature of the capillary bed in the corpus luteum offers a unique experimental model to examine the life cycle of endothelial cells, involving discrete physiologically regulated steps of angiogenesis, blood vessel maturation and blood vessel regression. The granulosa cells and theca cells of the developing antral follicle and the steroidogenic cells of the corpus luteum produce and respond to angiogenic factors and vasoactive peptides. Following ovulation the neovascularization during the early stages of corpus luteum development has been compared to the rapid angiogenesis observed during tumor formation. On the other end of the spectrum, the microvascular endothelial cells are the first cells to undergo apoptosis at the onset of corpus luteum regression. Important insights on the morphology and function of luteal endothelial cells have been gained from a combination of in vitro and in vivo studies on endothelial cells. Endothelial cells communicate with cells comprising the functional unit of the corpus luteum, i.e., other vascular cells, steroidogenic cells, and immune cells. This review is designed to provide an overview of the types of endothelial cells present in the corpus luteum and their involvement in corpus luteum development and regression. Available evidence indicates that microvascular endothelial cells of the corpus luteum are not alike, and may differ during the process of angiogenesis and angioregression. The contributions of vasoactive peptides generated by the luteal endothelin-1 and the renin-angiotensin systems are discussed in context with the function of endothelial cells during corpus luteum formation and regression. The ability of two cytokines, tumor necrosis factor alpha and interferon gamma, are evaluated as paracrine mediators of endothelial cell function during angioregression. Finally, chemokines are discussed as a vital endothelial cell secretory products that contribute to the recruitment of

  7. Evaluation of endothelial function by peripheral arterial tonometry and relation with the nitric oxide pathway

    DEFF Research Database (Denmark)

    Hedetoft, Morten; Olsen, Niels Vidiendal

    2014-01-01

    Endothelial dysfunction is an important component in the development of cardiovascular diseases. Endothelial function may be evaluated by peripheral arterial tonometry (PAT) which measures the vasodilator function in the microvasculature of the fingertip during reactive hyperaemia. The reactive...... by flow-mediated dilation in the brachial artery, but the two methods are not interchangeable. We have reviewed the recent literature in an effort to evaluate peripheral arterial tonometry as a method to assess the function of the endothelium and additionally suggest directions for future research....... Special attention will be directed to the nitric oxide dependency of the reactive hyperaemia index obtained by peripheral arterial tonometry....

  8. Microvascular Coronary Artery Spasm Presents Distinctive Clinical Features With Endothelial Dysfunction as Nonobstructive Coronary Artery Disease

    Science.gov (United States)

    Ohba, Keisuke; Sugiyama, Seigo; Sumida, Hitoshi; Nozaki, Toshimitsu; Matsubara, Junichi; Matsuzawa, Yasushi; Konishi, Masaaki; Akiyama, Eiichi; Kurokawa, Hirofumi; Maeda, Hirofumi; Sugamura, Koichi; Nagayoshi, Yasuhiro; Morihisa, Kenji; Sakamoto, Kenji; Tsujita, Kenichi; Yamamoto, Eiichiro; Yamamuro, Megumi; Kojima, Sunao; Kaikita, Koichi; Tayama, Shinji; Hokimoto, Seiji; Matsui, Kunihiko; Sakamoto, Tomohiro; Ogawa, Hisao

    2012-01-01

    events over 47.8±27.5 months. Conclusions Microvascular CAS causes distinctive clinical features and endothelial dysfunction that are important to recognize as nonobstructive coronary artery disease so that optimal care with calcium channel blockers can be provided. Clinical Trial Registration URL: www.umin.ac.jp/ctr. Unique identifier: UMIN000003839. PMID:23316292

  9. Magnetizable stent-grafts enable endothelial cell capture

    Science.gov (United States)

    Tefft, Brandon J.; Uthamaraj, Susheil; Harburn, J. Jonathan; Hlinomaz, Ota; Lerman, Amir; Dragomir-Daescu, Dan; Sandhu, Gurpreet S.

    2017-04-01

    Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.

  10. Bmx tyrosine kinase has a redundant function downstream of angiopoietin and vascular endothelial growth factor receptors in arterial endothelium.

    Science.gov (United States)

    Rajantie, I; Ekman, N; Iljin, K; Arighi, E; Gunji, Y; Kaukonen, J; Palotie, A; Dewerchin, M; Carmeliet, P; Alitalo, K

    2001-07-01

    The Bmx gene, a member of the Tec tyrosine kinase gene family, is known to be expressed in subsets of hematopoietic and endothelial cells. In this study, mice were generated in which the first coding exon of the Bmx gene was replaced with the lacZ reporter gene by a knock-in strategy. The homozygous mice lacking Bmx activity were fertile and had a normal life span without an obvious phenotype. Staining of their tissues using beta-galactosidase substrate to assess the sites of Bmx expression revealed strong signals in the endothelial cells of large arteries and in the endocardium starting between days 10.5 and 12.5 of embryogenesis and continuing in adult mice, while the venular endothelium showed a weak signal only in the superior and inferior venae cavae. Of the five known endothelial receptor tyrosine kinases tested, activated Tie-2 induced tyrosyl phosphorylation of the Bmx protein and both Tie-2 and vascular endothelial growth factor receptor 1 (VEGFR-1) stimulated Bmx tyrosine kinase activity. Thus, the Bmx tyrosine kinase has a redundant role in arterial endothelial signal transduction downstream of the Tie-2 and VEGFR-1 growth factor receptors.

  11. Endothelial progenitor cells in cardiovascular diseases

    Institute of Scientific and Technical Information of China (English)

    Poay; Sian; Sabrina; Lee; Kian; Keong; Poh

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome.

  12. Hemodynamic evaluation of uterine artery and renal artery in preeclampsia patients and its relationship with endothelial function and invasive function

    Institute of Scientific and Technical Information of China (English)

    Ping-Feng Shu; Peng Wang

    2015-01-01

    Objective:To study the hemodynamic condition of uterine artery and renal artery in preeclampsia patients and its relationship with endothelial function and invasive function. Methods:Preeclampsia puerperas were enrolled in observation group of the research, including 20 cases each with mild preeclampsia, moderate preeclampsia and severe preeclampsia; healthy puerperas were enrolled in control group. Then color Doppler ultrasound was used to detect hemodynamic parameters of uterine spiral artery and bilateral renal interlobar artery, enzyme-linked immunosorbent assay was used to detect endothelial function indexes in serum, and PCR was used to detect invasive function parameters in placenta.Results: S/D, PI and RI of uterine spiral artery and bilateral renal interlobar artery in mild, moderate and severe preeclampsia patients were all higher than those of control group; the more severe the preeclampsia condition was, the higher the S/D, PI and RI of uterine spiral artery and bilateral renal interlobar artery were; mRNA contents of Cst L, Cst D and MMP-9 in placenta of mild, moderate and severe preeclampsia patients were lower than those of control group, and mRNA contents of RECK as well as serum sFlt-1, sEng, AT1-AA and AngII contents were higher than those of control group; the more severe the disease degree was, the lower the mRNA contents of Cst L, Cst D, and MMP-9 were, the higher the mRNA contents of RECK as well as serum sFlt-1, sEng, AT1-AA and AngII contents were.Conclusion:Resistance of uterine artery and renal artery in preeclampsia patients increases, and it is closely related to endothelial dysfunction and invasive function loss.

  13. 冠心病患者血浆循环miR-126的表达及其对血管内皮细胞的影响%Plasma circulating miR-126 in patients with coronary artery heart disease and its effect on vascular endothelial cells

    Institute of Scientific and Technical Information of China (English)

    郑志伟; 劳海燕; 余细勇; 陈纪言; 林秋雄; 麦丽萍; 钟诗龙

    2011-01-01

    AIM: To investigate the role of plasma circulating miR - 126 and miR - 16 in the patients with coronary artery heart disease and to explore the influence of miR - 126 on vascular endothelial cells. METHODS: Plasma total RNA was isolated from 52 patients with stable coronary artery disease and 52 healthy volunteers. The circulating miR -126 and miR -16 in those people were detected using specific primers. Endothelial cell line EA. Hy926 was transfected with a miR - 126 inhibitor, and total RNA of the cells was isolated 30 h after transfection to detect the expression level of vascular endothelial growth factor ( VEGF ). RESULTS: The expression of plasma circulating miR - 126 was significantly decreased in the patients with coronary artery heart disease compared with healthy controls ( P 0. 05 ). The expression of VEGF in the endothelial cell line EA. Hy926 transfected with miR - 126 inhibitor was 2.08 times higher than that in negative control cells 30 h after transfection ( P 0.05);(2)内皮细胞株EA.hy926中miR-126被抑制后,血管内皮生长因子的表达为对照组的2.08倍(P<0.05).结论:血浆循环miR-126在冠心病患者表达下降,血浆循环miR-16在人群中的表达较稳定;miR-126通过负性调节血管内皮生长因子的表达,对血管内皮细胞产生调节作用.

  14. The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease

    Directory of Open Access Journals (Sweden)

    Fraser Richard

    2009-10-01

    Full Text Available Abstract The response of the vascular endothelium to wall shear stress plays a central role in the development and progression of atherosclerosis. Current studies have investigated endothelial response using idealized in vitro flow chambers. Such cell culture models are unable to accurately replicate the complex in vivo wall shear stress patterns arising from anatomical geometries. To better understand this implication, we have created both simplified/tubular and anatomically realistic in vitro endothelial flow models of the human right coronary artery. A post-mortem vascular cast of the human left ventricular outflow tract was used to create geometrically accurate silicone elastomer models. Straight, tubular models were created using a custom made mold. Following the culture of human abdominal aortic endothelial cells within the inner lumen, cells were exposed to steady flow (Re = 233 for varying time periods. The resulting cell morphology was analyzed in terms of shape index and angle of orientation relative to the flow direction. In both models a progressive elongation and alignment of the endothelium in the flow direction was observed following 8, 12, and 24 hours. This change, however, was significantly less pronounced in the anatomical model (as observed from morphological variations indicative of localized flow features. Differences were also observed between the inner and outer walls at the disease-prone proximal region. Since morphological adaptation is a visual indication of endothelial shear stress activation, the use of anatomical models in endothelial genetic and biochemical studies may offer better insight into the disease process.

  15. The nanostructure of myoendothelial junctions contributes to signal rectification between endothelial and vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Jacobsen, Jens Christian Brings; von Holstein-Rathlou, Niels-Henrik

    2012-01-01

    Micro-anatomical structures in tissues have potential physiological effects. In arteries and arterioles smooth muscle cells and endothelial cells are separated by the internal elastic lamina, but the two cell layers often make contact through micro protrusions called myoendothelial junctions. Cross...

  16. 低切应力对动脉重构与内皮黏附分子表达的动态变化%Dynamic effects of low shear stress on arterial remodeling and expression of endothelial cell adhesion molecules

    Institute of Scientific and Technical Information of China (English)

    刘莹; 宾建平; 吴爵非; 李美瑜; 宾建国; 伍巍兰; 肖云彬; 廖旺军

    2011-01-01

    Objective To investigate the changes of vascular structure and expression of adhesion molecules in endothelial cell at different time points under low shear stress. Methods Thirty mice were equally randomized into four test groups(stenosis for 1,7,14 and 28 day groups) who underwent surgery of stenosis with an arterial silver clamp applied on abdominal aorta to create disfurbed flow, and one sham operation group without stenosis. The parameters of hemodynamics were measured by color Doppler flow imaging. The wall shear stress was calculated by Poiseiulle hydrodynamics formula. Pathological and immunohistochemical examinations were performed to analyze the morphological changes and the expression of endothelial P-selectin and VCAM-1 in abdominal aorta. Results Low shear stress was demonstrated at upstream of stenosis. Compared with the sham group, with the increase in observation time, the changes of both wall thickness and the ratio of wall thickness to inner diameter were gradually increased at the area of low shear stress (P < 0.05). The up-regulated expression of endothelial P-selectin was seen from 1 to 28 days at the area of low shear stress,the peak was on day 7 and after that the up-regulation attenuated (P < 0.05). The up-regulation of VCAM-1 was not noted until day 7 (P < 0.05) ,and the plateau was reached on day 14. Conclusion Vascular remodeling can occur in a relatively short time after exposure to low shear stress. The low shear stress may play significant initial roles in the pathological process of atherosclerosis resulting from endothelial inflammation.%目的 探讨低切应力作用下不同时间点小鼠腹主动脉形态学重构及内皮黏附分子表达的变化.方法 选择昆明小白鼠30只随机分为狭窄1、7、14、28 d组和假手术组,每组6只.用动脉银夹建立腹主动脉局部狭窄模型,彩色超声检测狭窄近心端血流动力学参数,计算切应力值;血管标本行HE染色和内皮P选择

  17. Endothelial cell cytotoxicity of cotton bracts tannin and aqueous cotton bracts extract

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.M.; Hanson, M.N.; Rohrbach, M.S.

    1986-04-01

    Using an in vitro cytotoxicity assay based on the release of /sup 51/Cr from cultured porcine thoracic aortic and pulmonary arterial endothelial cells, we have demonstrated that cotton bracts tannin is a potent endothelial cell cytotoxin. It produces dose-dependent lethal injury to both types of endothelial cells with the aortic cells, being somewhat more sensitive to tannin-mediated injury than the pulmonary arterial cells. Cytotoxic injury to the cells was biphasic. During the first 3 hr of exposure to tannin, no lethal injury was detected. However, during this period, profound changes in morphology were observed suggesting sublethal injury to the cells preceded the ultimate toxic damage. Comparison of the cytotoxicity dose curves for aqueous bracts extracts with those for tannin demonstrated that tannin was major cytotoxin present in bracts.

  18. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  19. Endothelial apoptosis in pulmonary hypertension is controlled by a microRNA/programmed cell death 4/caspase-3 axis

    NARCIS (Netherlands)

    White, Kevin; Dempsie, Yvonne; Caruso, Paola; Wallace, Emma; McDonald, Robert A; Stevens, Hannah; Hatley, Mark E; Van Rooij, Eva; Morrell, Nicholas W; MacLean, Margaret R; Baker, Andrew H

    2014-01-01

    Pulmonary endothelial cell apoptosis is a transient, yet defining pathogenic event integral to the onset of many pulmonary vascular diseases such as pulmonary hypertension (PH). However, there is a paucity of information concerning the molecular pathway(s) that control pulmonary arterial endothelial

  20. Neutrophil killing of human umbilical vein endothelial cells is oxygen radical-mediated and enhanced by TNF-. alpha

    Energy Technology Data Exchange (ETDEWEB)

    Dame, M.K.; Varani, J.; Weinberg, J.M.; Ward, P.A. (Univ. of Michigan, Ann Arbor (United States))

    1991-03-11

    Human umbilical vein endothelial cells are sensitive to killing by activated human neutrophils. Killing is inhibited in the presence of catalase and deferoxamine mesylate but not soybean trypsin inhibitor. Reagent hydrogen peroxide can substitute for activated neutrophils in producing endothelial cell injury. These data suggest that lethal injury is due to the production of oxygen radicals by activated neutrophils. In these respects, the human umbilical vein endothelial cells are similar to rat pulmonary artery endothelial cells in that pretreatment with TNF-{alpha} increases sensitivity to injury by activated neutrophils. In part, the increased endothelial cell sensitivity to killing by neutrophils may be due to up-regulation of surface adhesion molecules. However, it was observed that cells passaged more than two times in culture did not demonstrate increased killing after treatment with TNF-{alpha} while up-regulation of neutrophil adhesion could be detected through several additional passages. Although the human umbilical vein endothelial cells are qualitatively similar to rat pulmonary artery endothelial cells in their sensitivity to killing, they are quantitatively much more resistant. What accounts for the relative resistance of the human umbilical vein endothelial cells is not fully understood. In the rat pulmonary artery endothelial cells, killing is known to be dependent on an intraendothelial source of iron. Pre-treatment of the human umbilical vein endothelial cells with 8-hydroxyquinoline-bound iron increased their sensitivity to oxidant injury. These data suggest that the availability of iron within the human umbilical vein endothelial cells may be a limiting factor in sensitivity to oxygen radical-mediated injury.

  1. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    Science.gov (United States)

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  2. Relationship between dyslipidemia and vascular endothelial function in patients with coronary artery spasm

    Institute of Scientific and Technical Information of China (English)

    向定成

    2006-01-01

    Objectives To investigate the effects of dyslipidemia on vascular endothelial function in patients with coronary artery spasm. Methods Sixty-four patients with chest pain but without significant angiographic stenosis were divided into coronary spasm group (n=46 with coronary spasm) and control group (n=18 without coronary spasm) according to acetylcholine provoking test. Endothelin-1 (ET-1), nitric oxide (NO) and lipids were

  3. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodelling

    Science.gov (United States)

    Coll-Bonfill, Núria; Musri, Melina Mara; Ivo, Victor; Barberà, Joan Albert; Tura-Ceide, Olga

    2015-01-01

    Pulmonary artery remodelling it is a major feature of pulmonary hypertension (PH). It is characterised by cellular and structural changes of the pulmonary arteries causing higher pulmonar vascular resistance and right ventricular failure. Abnormal deposition of smooth muscle-like (SM-like) cells in normally non-muscular, small diameter vessels and a deregulated control of endothelial cells are considered pathological features of PH. The origin of the SM-like cells and the mechanisms underlying the development and progression of this remodelling process are not understood. Endothelial cells within the intima may migrate from their organised layer of cells and transition to mesenchymal or SM-like phenotype in a process called endothelial-mesenchymal transition (EnMT). Traditionally, Waddington’s epigenetic landscape illustrates that fates of somatic cells are progressively determined to compulsorily follow a downhill differentiation pathway. EnMT induces the transformation of cells with stem cell traits, therefore contrasting Waddington’s theory and confirming that cell fate seems to be far more flexible than previously thought. The prospect of therapeutic inhibition of EnMT to delay or prevent PH may represent a promising new treatment modality. PMID:25973327

  4. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodelling.

    Science.gov (United States)

    Coll-Bonfill, Núria; Musri, Melina Mara; Ivo, Victor; Barberà, Joan Albert; Tura-Ceide, Olga

    2015-01-01

    Pulmonary artery remodelling it is a major feature of pulmonary hypertension (PH). It is characterised by cellular and structural changes of the pulmonary arteries causing higher pulmonar vascular resistance and right ventricular failure. Abnormal deposition of smooth muscle-like (SM-like) cells in normally non-muscular, small diameter vessels and a deregulated control of endothelial cells are considered pathological features of PH. The origin of the SM-like cells and the mechanisms underlying the development and progression of this remodelling process are not understood. Endothelial cells within the intima may migrate from their organised layer of cells and transition to mesenchymal or SM-like phenotype in a process called endothelial-mesenchymal transition (EnMT). Traditionally, Waddington's epigenetic landscape illustrates that fates of somatic cells are progressively determined to compulsorily follow a downhill differentiation pathway. EnMT induces the transformation of cells with stem cell traits, therefore contrasting Waddington's theory and confirming that cell fate seems to be far more flexible than previously thought. The prospect of therapeutic inhibition of EnMT to delay or prevent PH may represent a promising new treatment modality.

  5. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells.

    Science.gov (United States)

    Nojiri, Takashi; Hosoda, Hiroshi; Tokudome, Takeshi; Miura, Koichi; Ishikane, Shin; Otani, Kentaro; Kishimoto, Ichiro; Shintani, Yasushi; Inoue, Masayoshi; Kimura, Toru; Sawabata, Noriyoshi; Minami, Masato; Nakagiri, Tomoyuki; Funaki, Soichiro; Takeuchi, Yukiyasu; Maeda, Hajime; Kidoya, Hiroyasu; Kiyonari, Hiroshi; Shioi, Go; Arai, Yuji; Hasegawa, Takeshi; Takakura, Nobuyuki; Hori, Megumi; Ohno, Yuko; Miyazato, Mikiya; Mochizuki, Naoki; Okumura, Meinoshin; Kangawa, Kenji

    2015-03-31

    Most patients suffering from cancer die of metastatic disease. Surgical removal of solid tumors is performed as an initial attempt to cure patients; however, surgery is often accompanied with trauma, which can promote early recurrence by provoking detachment of tumor cells into the blood stream or inducing systemic inflammation or both. We have previously reported that administration of atrial natriuretic peptide (ANP) during the perioperative period reduces inflammatory response and has a prophylactic effect on postoperative cardiopulmonary complications in lung cancer surgery. Here we demonstrate that cancer recurrence after curative surgery was significantly lower in ANP-treated patients than in control patients (surgery alone). ANP is known to bind specifically to NPR1 [also called guanylyl cyclase-A (GC-A) receptor]. In mouse models, we found that metastasis of GC-A-nonexpressing tumor cells (i.e., B16 mouse melanoma cells) to the lung was increased in vascular endothelium-specific GC-A knockout mice and decreased in vascular endothelium-specific GC-A transgenic mice compared with control mice. We examined the effect of ANP on tumor metastasis in mice treated with lipopolysaccharide, which mimics systemic inflammation induced by surgical stress. ANP inhibited the adhesion of cancer cells to pulmonary arterial and micro-vascular endothelial cells by suppressing the E-selectin expression that is promoted by inflammation. These results suggest that ANP prevents cancer metastasis by inhibiting the adhesion of tumor cells to inflamed endothelial cells.

  6. Endothelial cell promotion of early liver and pancreas development.

    Science.gov (United States)

    Freedman, Deborah A; Kashima, Yasushige; Zaret, Kenneth S

    2007-01-01

    Different steps of embryonic pancreas and liver development require inductive signals from endothelial cells. During liver development, interactions between newly specified hepatic endoderm cells and nascent endothelial cells are crucial for the endoderm's subsequent growth and morphogenesis into a liver bud. Reconstitution of endothelial cell stimulation of hepatic cell growth with embryonic tissue explants demonstrated that endothelial signalling occurs independent of the blood supply. During pancreas development, midgut endoderm interactions with aortic endothelial cells induce Ptf1a, a crucial pancreatic determinant. Endothelial cells also have a later effect on pancreas development, by promoting survival of the dorsal mesenchyme, which in turn produces factors supporting pancreatic endoderm. A major goal of our laboratory is to determine the endothelial-derived molecules involved in these inductive events. Our data show that cultured endothelial cells induce Ptf1a in dorsal endoderm explants lacking an endogenous vasculature. We are purifying endothelial cell line product(s) responsible for this effect. We are also identifying endothelial-responsive regulatory elements in genes such as Ptf1a by genetic mapping and chromatin-based assays. These latter approaches will allow us to track endothelial-responsive signal pathways from DNA targets within progenitor cells. The diversity of organogenic steps dependent upon endothelial cell signalling suggests that cross-regulation of tissue development with its vasculature is a general phenomenon.

  7. Endothelial Nitric Oxide Mediates Caffeine Antagonism of Alcohol-Induced Cerebral Artery Constriction.

    Science.gov (United States)

    Chang, Jennifer; Fedinec, Alexander L; Kuntamallappanavar, Guruprasad; Leffler, Charles W; Bukiya, Anna N; Dopico, Alex M

    2016-01-01

    Despite preventive education, the combined consumption of alcohol and caffeine (particularly from "energy drinks") continues to rise. Physiologic perturbations by separate intake of ethanol and caffeine have been widely documented. However, the biologic actions of the alcohol-caffeine combination and their underlying subcellular mechanisms have been scarcely studied. Using intravital microscopy on a closed-cranial window and isolated, pressurized vessels, we investigated the in vivo and in vitro action of ethanol-caffeine mixtures on cerebral arteries from rats and mice, widely recognized models to address cerebrovascular pathophysiology and pharmacology. Caffeine at concentrations found in human circulation after ingestion of one to two cups of coffee (10 µM) antagonized the endothelium-independent constriction of cerebral arteries evoked by ethanol concentrations found in blood during moderate-heavy alcohol intoxication (40-70 mM). Caffeine antagonism against alcohol was similar whether evaluated in vivo or in vitro, suggesting independence of systemic factors and drug metabolism, but required a functional endothelium. Moreover, caffeine protection against alcohol increased nitric oxide (NO•) levels over those found in the presence of ethanol alone, disappeared upon blocking NO• synthase, and could not be detected in pressurized cerebral arteries from endothelial nitric-oxide synthase knockout (eNOS(-/-)) mice. Finally, incubation of de-endothelialized cerebral arteries with the NO• donor sodium nitroprusside (10 µM) fully restored the protective effect of caffeine. This study demonstrates for the first time that caffeine antagonizes ethanol-induced cerebral artery constriction and identifies endothelial NO• as the critical caffeine effector on smooth muscle targets. Conceivably, situations that perturb endothelial function and/or NO• availability will critically alter caffeine antagonism of alcohol-induced cerebrovascular constriction without

  8. Effects of vascular endothelial growth factor on angiogenesis of the endothelial cells isolated from cavernous malformations

    Institute of Scientific and Technical Information of China (English)

    TAN YuZhen; ZHAO Yao; WANG HaiJie; ZHOU LiangFu; MAO Ying; LIU Rui; SHU Jia; WANG YongFei

    2008-01-01

    Human cerebral cavernous malformation (CM) is a common vascular malformation of the central nervous system. We have investigated the biological characteristics of CM endothelial cells and the cellular and molecular mechanisms of CM angiogenesis to offer new insights into exploring effective measures for treatment of this disease. The endothelial cells were isolated from CM tissue masses dissected during operation and expanded in vitro. Expression of VEGFR-1 and VEGFR-2 was examined with immunocytochemical staining. Proliferation, migration and tube formation of CM endothelial cells were determined using MTT, wounding and transmigration assays, and three-dimensional collagen type Ⅰ gel respectively. The endothelial cells were successfully isolated from the tissue specimens of 25 CMs dissected without dipolar electrocoagulation. The cells show the general characteristics of the vascular endothelial cells. Expression of VEGFR-1 and VEGFR-2 on the cells is higher than that on the normal cerebral microvascular endothelial cells. After treatment with VEGF, numbers of the proliferated and migrated cells, the maximal distance of cell migration and the length and area of capillary-like struc-tures formed in the three-dimensional collagen gel increase significantly. These results demonstrate that expression of VEGFR-1 and VEGFR-2 on CM endothelial cells is up-regulated. By binding to re-ceptors, VEGF may activate the downstream signaling pathways and promote proliferation, migration and tube formation of CM endothelial cells. VEGF/VEGFR signaling pathways play important regulating roles in CM angiogenesis.

  9. Transition of mesenchymal stem/stromal cells to endothelial cells

    NARCIS (Netherlands)

    M. Crisan (Mihaela)

    2013-01-01

    textabstractMesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cell

  10. Endothelial Dysfunction in Experimental Models of Arterial Hypertension: Cause or Consequence?

    Directory of Open Access Journals (Sweden)

    Iveta Bernatova

    2014-01-01

    Full Text Available Hypertension is a risk factor for other cardiovascular diseases and endothelial dysfunction was found in humans as well as in various commonly employed animal experimental models of arterial hypertension. Data from the literature indicate that, in general, endothelial dysfunction would not be the cause of experimental hypertension and may rather be secondary, that is, resulting from high blood pressure (BP. The initial mechanism of endothelial dysfunction itself may be associated with a lack of endothelium-derived relaxing factors (mainly nitric oxide and/or accentuation of various endothelium-derived constricting factors. The involvement and role of endothelium-derived factors in the development of endothelial dysfunction in individual experimental models of hypertension may vary, depending on the triggering stimulus, strain, age, and vascular bed investigated. This brief review was focused on the participation of endothelial dysfunction, individual endothelium-derived factors, and their mechanisms of action in the development of high BP in the most frequently used rodent experimental models of arterial hypertension, including nitric oxide deficient models, spontaneous (prehypertension, stress-induced hypertension, and selected pharmacological and diet-induced models.

  11. Endothelial dysfunction in experimental models of arterial hypertension: cause or consequence?

    Science.gov (United States)

    Bernatova, Iveta

    2014-01-01

    Hypertension is a risk factor for other cardiovascular diseases and endothelial dysfunction was found in humans as well as in various commonly employed animal experimental models of arterial hypertension. Data from the literature indicate that, in general, endothelial dysfunction would not be the cause of experimental hypertension and may rather be secondary, that is, resulting from high blood pressure (BP). The initial mechanism of endothelial dysfunction itself may be associated with a lack of endothelium-derived relaxing factors (mainly nitric oxide) and/or accentuation of various endothelium-derived constricting factors. The involvement and role of endothelium-derived factors in the development of endothelial dysfunction in individual experimental models of hypertension may vary, depending on the triggering stimulus, strain, age, and vascular bed investigated. This brief review was focused on the participation of endothelial dysfunction, individual endothelium-derived factors, and their mechanisms of action in the development of high BP in the most frequently used rodent experimental models of arterial hypertension, including nitric oxide deficient models, spontaneous (pre)hypertension, stress-induced hypertension, and selected pharmacological and diet-induced models.

  12. Amyloid β induces adhesion of erythrocytes to endothelial cells and affects endothelial viability and functionality.

    Science.gov (United States)

    Nakagawa, Kiyotaka; Kiko, Takehiro; Kuriwada, Satoko; Miyazawa, Taiki; Kimura, Fumiko; Miyazawa, Teruo

    2011-01-01

    It has been suggested that amyloid β-peptide (Aβ) might mediate the adhesion of erythrocytes to the endothelium which could disrupt the properties of endothelial cells. We provide evidence here that Aβ actually induced the binding of erythrocytes to endothelial cells and decreased endothelial viability, perhaps by the generation of oxidative and inflammatory stress. These changes are likely to contribute to the pathogenesis of Alzheimer's disease.

  13. Adhesion of endothelial cells and endothelial progenitor cells on peptide-linked polymers in shear flow.

    Science.gov (United States)

    Wang, Xin; Cooper, Stuart

    2013-05-01

    The initial adhesion of human umbilical vein endothelial cells (HUVECs), cord blood endothelial colony-forming cells (ECFCs), and human blood outgrowth endothelial cells (HBOECs) was studied under radial flow conditions. The surface of a variable shear-rate device was either coated with polymer films or covered by synthetic fibers. Spin-coating was applied to produce smooth polymer films, while fibrous scaffolds were generated by electrospinning. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate (PEGMA), and CGRGDS peptide. The peptide was incorporated into the polymer system by coupling to an acrylate-PEG-N-hydroxysuccinimide comonomer. A shear-rate-dependent increase of the attached cells with time was observed with all cell types. The adhesion of ECs increased on RGD-linked polymer surfaces compared to polymers without adhesive peptides. The number of attached ECFCs and HBOECs are significantly higher than that of HUVECs within the entire shear-rate range and surfaces examined, especially on RGD-linked polymers at low shear rates. Their superior adhesion ability of endothelial progenitor cells under flow conditions suggests they are a promising source for in vivo seeding of vascular grafts and shows the potential to be used for self-endothelialized implants.

  14. Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease.

    Directory of Open Access Journals (Sweden)

    Leanid Luksha

    Full Text Available The study focuses on the mechanisms of endothelial dysfunction in the uremic milieu. Subcutaneous resistance arteries from 35 end-stage renal disease (ESRD patients and 28 matched controls were studied ex-vivo. Basal and receptor-dependent effects of endothelium-derived factors, expression of endothelial NO synthase (eNOS, prerequisites for myoendothelial gap junctions (MEGJ, and associations between endothelium-dependent responses and plasma levels of endothelial dysfunction markers were assessed. The contribution of endothelium-derived hyperpolarizing factor (EDHF to endothelium-dependent relaxation was impaired in uremic arteries after stimulation with bradykinin, but not acetylcholine, reflecting the agonist-specific differences. Diminished vasodilator influences of the endothelium on basal tone and enhanced plasma levels of asymmetrical dimethyl L-arginine (ADMA suggest impairment in NO-mediated regulation of uremic arteries. eNOS expression and contribution of MEGJs to EDHF type responses were unaltered. Plasma levels of ADMA were negatively associated with endothelium-dependent responses in uremic arteries. Preserved responses of smooth muscle to pinacidil and NO-donor indicate alterations within the endothelium and tolerance of vasodilator mechanisms to the uremic retention products at the level of smooth muscle. We conclude that both EDHF and NO pathways that control resistance artery tone are impaired in the uremic milieu. For the first time, we validate the alterations in EDHF type responses linked to kinin receptors in ESRD patients. The association between plasma ADMA concentrations and endothelial function in uremic resistance vasculature may have diagnostic and future therapeutic implications.

  15. Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX.

    Science.gov (United States)

    Borst, Oliver; Abed, Majed; Alesutan, Ioana; Towhid, Syeda T; Qadri, Syed M; Föller, Michael; Gawaz, Meinrad; Lang, Florian

    2012-02-15

    Suicidal death of erythrocytes, or eryptosis, is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Eryptosis is triggered by increase of cytosolic Ca2+ activity, which may result from treatment with the Ca2+ ionophore ionomycin or from energy depletion by removal of glucose. The present study tested the hypothesis that phosphatidylserine exposure at the erythrocyte surface fosters adherence to endothelial cells of the vascular wall under flow conditions at arterial shear rates and that binding of eryptotic cells to endothelial cells is mediated by the transmembrane CXC chemokine ligand 16 (CXCL16). To this end, human erythrocytes were exposed to energy depletion (for 48 h) or treated with the Ca2+ ionophore ionomycin (1 μM for 30 min). Phosphatidylserine exposure was quantified utilizing annexin-V binding, cell volume was estimated from forward scatter in FACS analysis, and erythrocyte adhesion to human vascular endothelial cells (HUVEC) was determined in a flow chamber model. As a result, both, ionomycin and glucose depletion, triggered eryptosis and enhanced the percentage of erythrocytes adhering to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly blunted in the presence of erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml), of a neutralizing antibody against endothelial CXCL16 (4 μg/ml), and following silencing of endothelial CXCL16 with small interfering RNA. The present observations demonstrate that eryptotic erythrocytes adhere to endothelial cells of the vascular wall in part by interaction of phosphatidylserine exposed at the erythrocyte surface with endothelial CXCL16.

  16. Nicorandil attenuates monocrotaline-induced vascular endothelial damage and pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Makoto Sahara

    Full Text Available BACKGROUND: An antianginal K(ATP channel opener nicorandil has various beneficial effects on cardiovascular systems; however, its effects on pulmonary vasculature under pulmonary arterial hypertension (PAH have not yet been elucidated. Therefore, we attempted to determine whether nicorandil can attenuate monocrotaline (MCT-induced PAH in rats. MATERIALS AND METHODS: Sprague-Dawley rats injected intraperitoneally with 60 mg/kg MCT were randomized to receive either vehicle; nicorandil (5.0 mg·kg(-1·day(-1 alone; or nicorandil as well as either a K(ATP channel blocker glibenclamide or a nitric oxide synthase (NOS inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME, from immediately or 21 days after MCT injection. Four or five weeks later, right ventricular systolic pressure (RVSP was measured, and lung tissue was harvested. Also, we evaluated the nicorandil-induced anti-apoptotic effects and activation status of several molecules in cell survival signaling pathway in vitro using human umbilical vein endothelial cells (HUVECs. RESULTS: Four weeks after MCT injection, RVSP was significantly increased in the vehicle-treated group (51.0±4.7 mm Hg, whereas it was attenuated by nicorandil treatment (33.2±3.9 mm Hg; P<0.01. Nicorandil protected pulmonary endothelium from the MCT-induced thromboemboli formation and induction of apoptosis, accompanied with both upregulation of endothelial NOS (eNOS expression and downregulation of cleaved caspase-3 expression. Late treatment with nicorandil for the established PAH was also effective in suppressing the additional progression of PAH. These beneficial effects of nicorandil were blocked similarly by glibenclamide and l-NAME. Next, HUVECs were incubated in serum-free medium and then exhibited apoptotic morphology, while these changes were significantly attenuated by nicorandil administration. Nicorandil activated the phosphatidylinositol 3-kinase (PI3K/Akt and extracellular signal-regulated kinase (ERK

  17. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHEN XU; MIN XIONG SHEN; DONG ZHU MA; LI YING WANG; XI LIANG ZHA

    2003-01-01

    Endothelial cells (TEC3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 × l06 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6~8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.

  18. Can fish oil supplementation improve endothelial function in asymptomatic offspring of patients with peripheral arterial disease?

    Directory of Open Access Journals (Sweden)

    Spark JI

    2013-07-01

    Full Text Available J Ian Spark,1 Christopher L Delaney,1 Richard B Allan,1 Melissa HL Ho,2 Michelle D Miller21Department of Vascular Surgery, Flinders Medical Centre and Flinders University, 2Department of Nutrition and Dietetics, Flinders University, Bedford Park, Adelaide, South Australia, AustraliaBackground: Peripheral arterial disease affects 10%–25% of adults aged .55 years, and while a multitude of risk factors exist, one key influence is genetics. Rather than awaiting the onset of debilitating symptoms, interventions that target high-risk individuals and prevent or delay the onset of symptoms would have widespread impact. The aim of this study is to implement a 12-week fish oil intervention (10 mL/day containing approximately 1.5 g of eicosapentaenoic acid and 1 g of docosahexaenoic acid, with the intention of improving endothelial function, inflammation, and lipid status in a high-risk population, ie, those with impaired endothelial function and a parent with symptomatic peripheral arterial disease.Methods: This is a parallel-group, double-blind, randomized controlled trial involving administration of fish oil containing either about 1.5 g of docosahexaenoic acid and 1 g of docosahexaenoic acid (intervention or about 0.15 g of eicosapentaenoic acid and about 0.1 g of docosahexaenoic acid for 12 consecutive weeks (control. The participants are 100 offspring of adults with diagnosed peripheral arterial disease who themselves have an ankle-brachial pressure index ≥0.9 but impaired endothelial function according to peripheral arterial tonometry. Measures performed at baseline and at 6 and 12 weeks include flow-mediated dilatation, C-reactive protein, absolute neutrophil and lymphocyte counts, tumor necrosis factor-α, interleukin-1ß, and interleukin-6 levels, thromboxane and prostacyclin, lipid status, and homocysteine, nitrite, and nitrate levels. Participants will be phoned fortnightly to monitor adherence and side effects, while participants will

  19. Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells

    Science.gov (United States)

    Hakami, Nora Y.; Ranjan, Amaresh K.; Hardikar, Anandwardhan A.; Dusting, Greg J.; Peshavariya, Hitesh M.

    2017-01-01

    Introduction: Endothelial progenitor cells (EPCs) display a unique ability to promote angiogenesis and restore endothelial function in injured blood vessels. NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) serves as a signaling molecule and promotes endothelial cell proliferation and migration as well as protecting against cell death. However, the role of NOX4 in EPC function is not completely understood. Methods: EPCs were isolated from human saphenous vein and mammary artery discarded during bypass surgery. NOX4 gene and protein expression in EPCs were measured by real time-PCR and Western blot analysis respectively. NOX4 gene expression was inhibited using an adenoviral vector expressing human NOX4 shRNA (Ad-NOX4i). H2O2 production was measured by Amplex red assay. EPC migration was evaluated using a transwell migration assay. EPC proliferation and viability were measured using trypan blue counts. Results: Inhibition of NOX4 using Ad-NOX4i reduced Nox4 gene and protein expression as well as H2O2 formation in EPCs. Inhibition of NOX4-derived H2O2 decreased both proliferation and migration of EPCs. Interestingly, pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) decreased NOX4 expression and reduced survival of EPCs. However, the survival of EPCs was further diminished by TNF-α in NOX4-knockdown cells, suggesting that NOX4 has a protective role in EPCs. Conclusion: These findings suggest that NOX4-type NADPH oxidase is important for proliferation and migration functions of EPCs and protects against pro-inflammatory cytokine induced EPC death. These properties of NOX4 may facilitate the efficient function of EPCs which is vital for successful neovascularization.

  20. Endothelial dysfunction, carotid artery plaque burden, and conventional exercise-induced myocardial ischemia as predictors of coronary artery disease prognosis

    Directory of Open Access Journals (Sweden)

    Ishihara Masayuki

    2008-12-01

    Full Text Available Abstract Background While both flow-mediated vasodilation (FMD in the brachial artery (BA, which measures endothelium-dependent vasodilatation, and intima-media thickness (IMT in the carotid artery are correlated with the prognosis of coronary artery disease (CAD, it is not clear which modality is a better predictor of CAD. Furthermore, it has not been fully determined whether either of these modalities is superior to conventional ST-segment depression on exercise stress electrocardiogram (ECG as a predictor. Thus, the goal of the present study was to compare the predictive value of FMD, IMT, and stress ECG for CAD prognosis. Methods and Results A total of 103 consecutive patients (62 ± 9 years old, 79 men with clinically suspected CAD had FMD and nitroglycerin-induced dilation (NTG-D in the BA, carotid artery IMT measurement using high-resolution ultrasound, and exercise treadmill testing. The 73 CAD patients and 30 normal coronary patients were followed for 50 ± 15 months. Fifteen patients had coronary events during this period (1 cardiac death, 2 non-fatal myocardial infarctions, 3 acute heart failures, and 9 unstable anginas. On Kaplan-Meier analysis, only FMD and stress ECG were significant predictors for cardiac events. Conclusion Brachial endothelial function as reflected by FMD and conventional exercise stress testing has comparable prognostic value, whereas carotid artery plaque burden appears to be less powerful for predicting future cardiac events.

  1. Endothelial Function in Adolescents with a History of Premature Coronary Artery Disease in One Parent

    Directory of Open Access Journals (Sweden)

    M Hashemi

    2006-01-01

    Full Text Available Background: In young adults, a family history of premature coronary artery disease (CAD, as well as genetic and environmental factors are independent risk factors for coronary artery disease. Methods: Endothelial function was studied in 30 children (21 boys and 9 girls with mean age of 14.9 +/- 2.3 years old of patients with documented CAD (men 45 and women 50 years old. Chidren did not have any history of diabetes mellitus, dyslipidemia, hypertension, and smoking (active/passive. Using vascular ultrasound, we measured resting Basal Brachial artery Diameter (BBD and Endothelium-Dependent Dilatation (EDD in response to increased flow and sublingual glyceryltrinitrate (GTN, an Endothelium-Independent Dilation (EID. These parameters were also measured in 30 control subjects with normal parents (18 boys and 12 girls with mean age of 14.2 +/- 2/5years old and results were compared with each other. Results: Adolescents in CAD group had abnormal Endothelial Dependent Dilatation or EDD/BBD (8.5 +/- 3.4% vs 11.8 +/- 4.5% in control subjects; P= 0.003.Endothelial Independent Dilatation (EID/BBD in the positive fimily history group was significantly more than control subjects (18.5 +/- 6.7% vs 11.9 +/- 5.2%; P <0.001. EDD/EID or the index of endothelial function was significantly lower in the positive family history group (0.92 +/- 0.05 vs 1+/- 0.03; P<0.001. There was no difference in EDD/EID index between those with history of premature CAD in mother (7 cases and those with history of premature CAD in father (23 cases (0.92 +/- 0.04 vs 0.91+/- 0.05. Conclusion: Normal adolescents without any cardiovascular risk factors but a history of premature coronary artery disease in one parent may have endothelial dysfunction, and there is no difference whether the CAD is in mother or father. Keywords: Endothelial dependent dilation, family history, CAD risk factors, premature coronary artery disease

  2. Rosiglitazone reverses endothelial dysfunction but not remodeling of femoral artery in Zucker diabetic fatty rats

    Directory of Open Access Journals (Sweden)

    Onyia Jude E

    2010-05-01

    Full Text Available Abstract Objectives Endothelial dysfunction precedes atherogenesis and clinical complications in type 2 diabetes. The vascular dysfunction in Zucker diabetic fatty (ZDF rats was evaluated at different ages along with the effect of treatment with rosiglitazone (Rosi on endothelial function and mechanical remodeling. Methods The Rosi treatment was given to ZDF rats for 3 weeks. The endothelium-dependent vasodilation and α-adrenoceptor-dependent vasoconstriction of femoral arteries were studied using an ex-vivo isovolumic myograph. The biomechanical passive property of the arteries was studied in Ca2+-free condition. The expressions of endothelial nitric oxide synthase (eNOS, α-adrenoceptor, matrix metalloproteinase 9 (MMP9, and elastase were evaluated. Results Endothelium-dependent vasorelaxation of the femoral artery was blunted at low doses in ZDF rats at 11 weeks of age and attenuated at all doses in ZDF rats at 19 weeks of age. The expression of eNOS was consistent with the endothelium-dependent vasorelaxation. The α-adrenoceptor was activated and the mechanical elastic modulus was increased in ZDF rats at 19 weeks of age. The expressions of α-adrenoceptor, MMP9, and elastase were up regulated in ZDF rats at 19 weeks of age. Rosi treatment for 3 weeks restored endothelium-dependent vasorelaxation and the expression of eNOS and the adrenoceptor activation at the doses below 10-6 mole/L in ZDF rats at 19 weeks of age. Rosi treatment for 3 weeks did not, however, improve the mechanical properties of blood vessel, the expressions of α-adrenoceptor, MMP9, and elastase in ZDF rats. Conclusion The endothelial dysfunction and mechanical remodeling are observed as early as 19 weeks of age in ZDF rat. Rosi treatment for 3 weeks improves endothelial function but not mechanical properties.

  3. Arterial stiffness and endothelial dysfunction independently and synergistically predict cardiovascular and renal outcome in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Theilade, S; Lajer, Maria Stenkil; Jorsal, Anders;

    2012-01-01

    To evaluate whether pulse pressure alone or with placental growth factor as estimates of arterial stiffness and endothelial dysfunction, predicts mortality, cardiovascular disease and progression to end-stage renal disease in patients with Type 1 diabetes.......To evaluate whether pulse pressure alone or with placental growth factor as estimates of arterial stiffness and endothelial dysfunction, predicts mortality, cardiovascular disease and progression to end-stage renal disease in patients with Type 1 diabetes....

  4. High dose folic acid supplementation improves arterial endothelial function of coronary patients independent of homocysteine level

    Institute of Scientific and Technical Information of China (English)

    KS Woo; P Chook; M Qiao; AKY Chan; LLT Chan; WWM Chan; DS Celermajer

    2003-01-01

    @@ Background Hyperhomocysteinemia (prevalent in rural northern China)is an emerging risk factor for arterial endothelial dysfunction in CAD, which can be improved with folic acid supplementation. Such homocysteine-lowerying dosage of folio acid ( < 1 mg/d ) can reduce restenosis after PTCA, but not the cardiovascular events.Folic acid has additional vascular protection in antixidation, NO synthase protection, angiogenesis-promotion and cytokines reduction.

  5. Endothelial dysfunction and the occurrence of radial artery spasm during transradial coronary procedures: The ACRA-Spasm study

    NARCIS (Netherlands)

    Van Der Heijden, D.J. (Dirk J.); M.A.H. van Leeuwen (Maarten); G.N. Janssens (Gladys N.); Hermie, J. (Jailen); M.J. Lenzen (Mattie); M.J.P.F. Ritt; P.M. van de Ven (Peter); F. Kiemeneij (Ferdinand); N. van Royen (Niels)

    2016-01-01

    textabstractAims: The aim of this study was to analyse the relation between endothelial dysfunction (ED) and the occurrence of radial artery spasm (RAS) during transradial coronary procedures. Methods and results: From May 2014 to June 2015, endothelial function was assessed by EndoPAT and FMD befor

  6. Endovascular Biopsy: Evaluating the Feasibility of Harvesting Endothelial Cells Using Detachable Coils

    Science.gov (United States)

    Cooke, Daniel L.; Su, Hua; Sun, Zhengda; Guo, Yi; Guo, Diana; Saeed, Maythem M.; Hetts, Steven W.; Higashida, Randall T.; Dowd, Christopher F.; Young, William L.; Halbach, Van V.

    2013-01-01

    Summary The absence of safe and reliable methods to harvest vascular tissue in situ limits the discovery of the underlying genetic and pathophysiological mechanisms of many vascular disorders such as aneurysms. We investigated the feasibility and comparable efficacy of endothelial cell collection using a spectrum of endovascular coils. Nine detachable coils ranging in k coefficient (0.15-0.24), diameter (4.0 mm-16.0 mm), and length (8.0 cm-47.0 cm) were tested in pigs. All coils were deployed and retrieved within the iliac artery of pigs (three coils/pig). Collected coils were evaluated under light microscopy. The total and endothelial cells collected by each coil were quantified. The nucleated cells were identified by Wright-Giemsa and DAPI stains. Endothelial and smooth muscle cells were identified by CD31 and α-smooth muscle actin antibody staining. Coils were deployed and retrieved without technical difficulty. Light microscopy demonstrated sheets of cellular material concentrated within the coil winds. All coils collected cellular material while five of nine (55.6%) coils retrieved endothelial cells. Coils collected mean endothelial cell counts of 89.0±101.6. Regression analysis demonstrated a positive correlation between increasing coil diameter and endothelial cell counts (R2=0.52, p = 0.029). Conventional detachable coils can be used to harvest endothelial cells. The number of endothelial cells collected by a coil positively correlated with its diameter. Given the widespread use of coils and their well-described safety profile their potential as an endovascular biopsy device would expand the availability of tissue for cellular and molecular analysis. PMID:24355142

  7. Ovine carotid artery-derived cells as an optimized supportive cell layer in 2-D capillary network assays.

    Directory of Open Access Journals (Sweden)

    Stefan Weinandy

    Full Text Available BACKGROUND: Endothelial cell co-culture assays are differentiation assays which simulate the formation of capillary-like tubules with the aid of a supportive cell layer. Different cell types have been employed as a supportive cell layer, including human pulmonary artery smooth muscle cells (PASMCs and human mammary fibroblasts. However, these sources of human tissue-derived cells are limited, and more readily accessible human or animal tissue-derived cell sources would simplify the endothelial cell co-culture assay. In the present study, we investigated the potential use of alternative, accessible supportive cells for endothelial cell co-culture assay, including human umbilical cord and ovine carotid artery. METHODS AND RESULTS: Human umbilical artery SMCs (HUASMCs and ovine carotid artery-derived cells were seeded into 96-well plates, followed by addition of human umbilical vein endothelial cells (HUVECs. Nine days after co-culture, cells were fixed, immunostained and analysed using an in vitro angiogenesis quantification tool. Capillary-like structures were detected on ovine carotid artery-derived supportive cell layers. The initial cell number, as well as pro- and anti-angiogenic factors (VEGF, PDGF-BB and Bevacizumab, had a positive or negative influence on the number of capillary-like structures. Furthermore, HUVECs from different donors showed distinct levels of VEGF receptor-2, which correlated with the amount of capillary-like structures. In the case of HUASMC supportive cell layers, HUVECs detached almost completely from the surface. CONCLUSIONS: Cells of different origin have a varying applicability regarding the endothelial cell co-culture assay: under the conditions described here, ovine carotid artery-derived cells seem to be more suitable than HUASMCs for an endothelial co-culture assay. Furthermore, the ovine carotid artery-derived cells are easier to obtain and are in more abundant supply than the currently used dermal or breast

  8. Endothelial cells, tissue factor and infectious diseases

    Directory of Open Access Journals (Sweden)

    Lopes-Bezerra L.M.

    2003-01-01

    Full Text Available Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.

  9. Production of soluble Neprilysin by endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuruppu, Sanjaya, E-mail: Sanjaya.Kuruppu@monash.edu [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Rajapakse, Niwanthi W. [Department of Physiology, Building 13F, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia); Minond, Dmitriy [Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987 (United States); Smith, A. Ian [Department of Biochemistry and Molecular Biology, Building 77, Monash University, Wellington Rd, Clayton, Vic 3800 (Australia)

    2014-04-04

    Highlights: • A soluble full-length form of Neprilysin exists in media of endothelial cells. • Exosomal release is the key mechanism for the production of soluble Neprilysin. • Inhibition of ADAM-17 by specific inhibitors reduce Neprilysin release. • Exosome mediated release of Neprilysin is dependent on ADAM-17 activity. - Abstract: A non-membrane bound form of Neprilysin (NEP) with catalytic activity has the potential to cleave substrates throughout the circulation, thus leading to systemic effects of NEP. We used the endothelial cell line Ea.hy926 to identify the possible role of exosomes and A Disintegrin and Metalloprotease 17 (ADAM-17) in the production of non-membrane bound NEP. Using a bradykinin based quenched fluorescent substrate (40 μM) assay, we determined the activity of recombinant human NEP (rhNEP; 12 ng), and NEP in the media of endothelial cells (10% v/v; after 24 h incubation with cells) to be 9.35 ± 0.70 and 6.54 ± 0.41 μmols of substrate cleaved over 3 h, respectively. The presence of NEP in the media was also confirmed by Western blotting. At present there are no commercially available inhibitors specific for ADAM-17. We therefore synthesised two inhibitors TPI2155-14 and TPI2155-17, specific for ADAM-17 with IC{sub 50} values of 5.36 and 4.32 μM, respectively. Treatment of cells with TPI2155-14 (15 μM) and TPI2155-17 (4.3 μM) resulted in a significant decrease in NEP activity in media (62.37 ± 1.43 and 38.30 ± 4.70, respectively as a % of control; P < 0.0001), implicating a possible role for ADAM-17 in NEP release. However, centrifuging media (100,000g for 1 h at 4 °C) removed all NEP activity from the supernatant indicating the likely role of exosomes in the release of NEP. Our data therefore indicated for the first time that NEP is released from endothelial cells via exosomes, and that this process is dependent on ADAM-17.

  10. Endothelial Progenitor Cells Enter the Aging Arena.

    Directory of Open Access Journals (Sweden)

    Kate eWilliamson

    2012-02-01

    Full Text Available Age is a significant risk factor for the development of vascular diseases, such as atherosclerosis. Although pharmacological treatments, including statins and anti-hypertensive drugs, have improved the prognosis for patients with cardiovascular disease, it remains a leading cause of mortality in those aged 65 years and over. Furthermore, given the increased life expectancy of the population in developed countries, there is a clear need for alternative treatment strategies. Consequently, the relationship between aging and progenitor cell-mediated repair is of great interest. Endothelial progenitor cells (EPCs play an integral role in the cellular repair mechanisms for endothelial regeneration and maintenance. However, EPCs are subject to age-associated changes that diminish their number in circulation and function, thereby enhancing vascular disease risk. A great deal of research is aimed at developing strategies to harness the regenerative capacity of these cells.In this review, we discuss the current understanding of the cells termed ‘EPCs’, examine the impact of age on EPC-mediated repair and identify therapeutic targets with potential for attenuating the age-related decline in vascular health via beneficial actions on EPCs.

  11. Enhancing endothelial progenitor cell for clinical use

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Circulating endothelial progenitor cells (EPCs) havebeen demonstrated to correlate negatively with vascularendothelial dysfunction and cardiovascular risk factors.However, translation of basic research into the clinicalpractice has been limited by the lack of unambiguousand consistent definitions of EPCs and reduced EPCcell number and function in subjects requiring them forclinical use. This article critically reviews the definitionof EPCs based on commonly used protocols, their valueas a biomarker of cardiovascular risk factor in subjectswith cardiovascular disease, and strategies to enhanceEPCs for treatment of ischemic diseases.

  12. Imbalance of mitochondrial-nuclear cross talk in isocyanate mediated pulmonary endothelial cell dysfunction

    Directory of Open Access Journals (Sweden)

    Hariom Panwar

    2013-01-01

    Full Text Available Mechanistic investigations coupled with epidemiology, case-control, cohort and observational studies have increasingly linked isocyanate exposure (both chronic and acute with pulmonary morbidity and mortality. Though ascribed for impairment in endothelial cell function, molecular mechanisms of these significant adverse pulmonary outcomes remains poorly understood. As preliminary studies conducted in past have failed to demonstrate a cause-effect relationship between isocyanate toxicity and compromised pulmonary endothelial cell function, we hypothesized that direct exposure to isocyanate may disrupt endothelial structural lining, resulting in cellular damage. Based on this premise, we comprehensively evaluated the molecular repercussions of methyl isocyanate (MIC exposure on human pulmonary arterial endothelial cells (HPAE-26. We examined MIC-induced mitochondrial oxidative stress, pro-inflammatory cytokine response, oxidative DNA damage response and apoptotic index. Our results demonstrate that exposure to MIC, augment mitochondrial reactive oxygen species production, depletion in antioxidant defense enzymes, elevated pro-inflammatory cytokine response and induced endothelial cell apoptosis via affecting the balance of mitochondrial-nuclear cross talk. We herein delineate the first and direct molecular cascade of isocyanate-induced pulmonary endothelial cell dysfunction. The results of our study might portray a connective link between associated respiratory morbidities with isocyanate exposure, and indeed facilitate to discern the exposure-phenotype relationship in observed deficits of pulmonary endothelial cell function. Further, understanding of inter- and intra-cellular signaling pathways involved in isocyanate-induced endothelial damage would not only aid in biomarker identification but also provide potential new avenues to target specific therapeutic interventions.

  13. Differentiation state determines neural effects on microvascular endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Muffley, Lara A., E-mail: muffley@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Pan, Shin-Chen, E-mail: pansc@mail.ncku.edu.tw [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Smith, Andria N., E-mail: gnaunderwater@gmail.com [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Ga, Maricar, E-mail: marga16@uw.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Hocking, Anne M., E-mail: ahocking@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States); Gibran, Nicole S., E-mail: nicoleg@u.washington.edu [University of Washington, Campus Box 359796, 300 9th Avenue, Seattle, WA 98104 (United States)

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  14. Influence of curvature on the morphology of brain microvascular endothelial cells

    Science.gov (United States)

    Ye, Mao; Yang, Zhen; Wong, Andrew; Searson, Peter; Searson Group Team

    2013-03-01

    There are hundreds or thousands of endothelial cells around the perimeter of a single artery or vein, and hence an individual cell experiences little curvature. In contrast, a single endothelial cell may wrap around itself to form the lumen of a brain capillary. Curvature plays a key role in many biological, chemical and physical processes, however, its role in dictating the morphology and polarization of brain capillary endothelial cells has not been investigated. We hypothesize that curvature and shear flow play a key role in determining the structure and function of the blood-brain barrier (BBB). We have developed the ``rod'' assay to study the influence of curvature on the morphology of confluent monolayers of endothelial cells. In this assay cells are plated onto glass rods pulled down to the desired diameter in the range from 5 - 500 μm and coated with collagen. We show that curvature has a significant influence on the morphology of endothelial cells and may have an important role in blood-brain barrier function.

  15. Asiaticoside Inhibits TNF-α-Induced Endothelial Hyperpermeability of Human Aortic Endothelial Cells.

    Science.gov (United States)

    Fong, Lai Yen; Ng, Chin Theng; Zakaria, Zainul Amiruddin; Baharuldin, Mohamad Taufik Hidayat; Arifah, Abdul Kadir; Hakim, Muhammad Nazrul; Zuraini, Ahmad

    2015-10-01

    The increase in endothelial permeability often promotes edema formation in various pathological conditions. Tumor necrosis factor-alpha (TNF-α), a pro-atherogenic cytokine, impairs endothelial barrier function and causes endothelial dysfunction in early stage of atherosclerosis. Asiaticoside, one of the triterpenoids derived from Centella asiatica, is known to possess antiinflammatory activity. In order to examine the role of asiaticoside in preserving the endothelial barrier, we assessed its effects on endothelial hyperpermeability and disruption of actin filaments evoked by TNF-α in human aortic endothelial cells (HAEC). TNF-α caused an increase in endothelial permeability to fluorescein isothiocyanate (FITC)-dextran. Asiaticoside pretreatment significantly suppressed TNF-α-induced increased permeability. Asiaticoside also prevented TNF-α-induced actin redistribution by suppressing stress fiber formation. However, the increased F to G actin ratio stimulated by TNF-α was not changed by asiaticoside. Cytochalasin D, an actin depolymerizing agent, was used to correlate the anti-hyperpermeability effect of asiaticoside with actin cytoskeleton. Surprisingly, asiaticoside failed to prevent cytochalasin D-induced increased permeability. These results suggest that asiaticoside protects against the disruption of endothelial barrier and actin rearrangement triggered by TNF-α without a significant change in total actin pool. However, asiaticoside seems to work by other mechanisms to maintain the integrity of endothelial barrier rather than stabilizing the F-actin organization.

  16. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells.

    Science.gov (United States)

    Yang, Guanghua; Kramer, M Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-11-27

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties.

  17. Characterization of endothelial function in the brachial artery via affine registration of ultrasonographic image sequences

    Science.gov (United States)

    Lamata, Pablo; Laclaustra, Martin; Frangi, Alejandro F.

    2003-05-01

    The assessment and characterization of the endothelial function is a current research topic as it may play an important role in the diagnosis of cardiovascular diseases. Flow mediated dilatation may be used to investigate endothelial function, and B-mode ultrasonography is a cheap and non-invasive way to assess the vasodilation response. Computerized analysis techniques are very desirable to give higher accuracy and objectivity to the measurements. A new method is presented that solves some limitations of existing methods, which in general depend on accurate edge detection of the arterial wall. This method is based on a global image analysis strategy. The arterial vasodilation between two frames is modeled by a superposition of a rigid motion model and a stretching perpendicular to the artery. Both transformation models are recovered using an image registration algorithm based on normalized mutual information and a multi-resolution search framework. Temporal continuity of in the variation of the registration parameters is enforced with a Kalman filter, since the dilation process is known to be a gradual and continuous physiological phenomenon. The proposed method presents a negligible bias when compared with manual assessment. It also eliminates artifacts introduced by patient and probe motion, thus improving the accuracy of the measurements. Finally, it is also robust to typical problems of ultrasound, like speckle noise and poor image quality.

  18. Enhanced External Counterpulsation Inducing Arterial Hemodynamic Variations and Its Chronic Effect on Endothelial Function

    Institute of Scientific and Technical Information of China (English)

    DU Jian-hang; WU Gui-fu; ZHENG Zhen-sheng; DAI Gang; FENG Ming-zhe

    2014-01-01

    To make clear the precise hemodynamic mechanism underlying the anti-atherogenesis benefit of enhanced external couterpulsation(EECP) treatment, and to investigate the proper role of some important hemodynamic factors during the atherosclerotic progress, a comprehensive study combining long-term animal experiment and numerical solving was conducted in this paper. An experimentally induced hypercholesterolemic porcine model was developed and the chronic EECP intervention was subjected. Basic hemodynamic measurement was performed in vivo, as well as the arterial endothelial samples were extracted for physiological examination. Meanwhile, a numerical model was introduced to solve the complex hemodynamic factors such as WSS and OSI. The results show that EECP treatment resulted in significant increase of the instant levels of arterial WSS, blood pressure, and OSI. During EECP treatment, the instant OSI level of the common carotid arteries over cardiac cycles raised to a mean value of 8.58 ×10-2 ±2.13 ×10-2. Meanwhile, the chronic intervention of EECP treatment significantly reduced the atherosclerotic lesions in abdominal aortas and the endothelial cellular adherence. The present study suggests that the unique blood flow pattern induced by EECP treatment and the augmentation of WSS level in cardiac cycles may be the most important hemodynamic mechanism that contribute to its anti-atherogenesis effect. And as one of the indices that cause great concern in current hemodynamic study, OSI may not play a key role during the initiation of atherosclerosis.

  19. Optical Investigations of Endothelial Cell Motility

    DEFF Research Database (Denmark)

    Rossen, Ninna Struck

    of tissues and holds great promises for treatments and regenerative therapies. It faces an important obstacle before such promises can be realized, the engineered tissues needs to be of a size large enough to function and to relieve the damaged bodily functions. The current state of the art in tissue......A monolayer of endothelial cells lines the entire circulatory system and create a barrier between the circulatory system and the tissues. To create and maintain an intact barrier, the individual cells have to connect tightly with their neighbors, which causes a highly correlated motion between...... are fascinating from a biophysical point of view. The vasculature also plays a signi cant role in many pathologies. In diabetic blindness or ischemic diseases the ow of blood is insucient to sustain certain tissues or whole limbs. The creation of new blood vessels can relieve or treat such diseases. In other...

  20. Endothelial progenitor cells and integrins: adhesive needs

    Directory of Open Access Journals (Sweden)

    Caiado Francisco

    2012-03-01

    Full Text Available Abstract In the last decade there have been multiple studies concerning the contribution of endothelial progenitor cells (EPCs to new vessel formation in different physiological and pathological settings. The process by which EPCs contribute to new vessel formation in adults is termed postnatal vasculogenesis and occurs via four inter-related steps. They must respond to chemoattractant signals and mobilize from the bone marrow to the peripheral blood; home in on sites of new vessel formation; invade and migrate at the same sites; and differentiate into mature endothelial cells (ECs and/or regulate pre-existing ECs via paracrine or juxtacrine signals. During these four steps, EPCs interact with different physiological compartments, namely bone marrow, peripheral blood, blood vessels and homing tissues. The success of each step depends on the ability of EPCs to interact, adapt and respond to multiple molecular cues. The present review summarizes the interactions between integrins expressed by EPCs and their ligands: extracellular matrix components and cell surface proteins present at sites of postnatal vasculogenesis. The data summarized here indicate that integrins represent a major molecular determinant of EPC function, with different integrin subunits regulating different steps of EPC biology. Specifically, integrin α4β1 is a key regulator of EPC retention and/or mobilization from the bone marrow, while integrins α5β1, α6β1, αvβ3 and αvβ5 are major determinants of EPC homing, invasion, differentiation and paracrine factor production. β2 integrins are the major regulators of EPC transendothelial migration. The relevance of integrins in EPC biology is also demonstrated by many studies that use extracellular matrix-based scaffolds as a clinical tool to improve the vasculogenic functions of EPCs. We propose that targeted and tissue-specific manipulation of EPC integrin-mediated interactions may be crucial to further improve the usage of

  1. Increased endothelial cell-leukocyte interaction in murine schistosomiasis: possible priming of endothelial cells by the disease.

    Directory of Open Access Journals (Sweden)

    Suellen D S Oliveira

    Full Text Available BACKGROUND AND AIMS: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. METHODOLOGY AND PRINCIPAL FINDINGS: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF. Nitric oxide (NO donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. CONCLUSION/SIGNIFICANCE: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially

  2. Effects of Panax notoginseng saponins on vascular endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    關超然; 關加荤

    2000-01-01

    AIM: To investigate the inhibition of endothelium-dependent in vitro vascular relaxation induced by the total saponins (gensenosides) from Panax notoginseng ( PNS ) and the effect of PNS on the cytosolic Ca2 + concentration on cultured bovine pulmonary artery endothelial cells.METHODS: The endothelial-dependent vascular relaxation was assessed using acetylcholine (ACh) or cyclopiazonic acid (CPA) induced relaxation in endothelium-intact rat aorta. Cytosolic Caa + level was assessed in real time using dynamic digital fluorescence ratio imaging.RESULTS: In addition to its direct relaxation of the smooth muscle cells at high concentrations, PNS, at 100 mg/L having little effect on smooth muscle, caused a marked inhibition of endothelium-dependent relaxation brought about by PNS. This inhibitory effect was due to its inhibition of elevation of cytosolic Ca2 + , which is required for the activation of NO generation and release from the vascular endothelial cells. Nifedipine has no effect on either the endothelium-dependent relaxation or the cytosolic Ca2 + level in the cultured endothelial cells.CONCLUSION: Our findings are consistent with the known action of PNS on receptor-operated Ca2 + channels and support our contention that PNS inhibits endotheliumdependent relaxation by preventing the increase of Ca2 + level in endothelial cells via the receptor-operated Ca2 + channels in the presence of ACh or the non-selective cation channels opened by CPA.

  3. Pericyte NF-κB activation enhances endothelial cell proliferation and proangiogenic cytokine secretion in vitro

    Science.gov (United States)

    LaBarbera, Katherine E; Hyldahl, Robert D; O'Fallon, Kevin S; Clarkson, Priscilla M; Witkowski, Sarah

    2015-01-01

    Pericytes are skeletal muscle resident, multipotent stem cells that are localized to the microvasculature. In vivo, studies have shown that they respond to damage through activation of nuclear-factor kappa-B (NF-κB), but the downstream effects of NF-κB activation on endothelial cell proliferation and cell–cell signaling during repair remain unknown. The purpose of this study was to examine pericyte NF-κB activation in a model of skeletal muscle damage; and use genetic manipulation to study the effects of changes in pericyte NF-κB activation on endothelial cell proliferation and cytokine secretion. We utilized scratch injury to C2C12 cells in coculture with human primary pericytes to assess NF-κB activation and monocyte chemoattractant protein-1 (MCP-1) secretion from pericytes and C2C12 cells. We also cocultured endothelial cells with pericytes that expressed genetically altered NF-κB activation levels, and then quantified endothelial cell proliferation and screened the conditioned media for secreted cytokines. Pericytes trended toward greater NF-κB activation in injured compared to control cocultures (P = 0.085) and in comparison to C2C12 cells (P = 0.079). Second, increased NF-κB activation in pericytes enhanced the proliferation of cocultured endothelial cells (1.3-fold, P = 0.002). Finally, we identified inflammatory signaling molecules, including MCP-1 and interleukin 8 (IL-8) that may mediate the crosstalk between pericytes and endothelial cells. The results of this study show that pericyte NF-κB activation may be an important mechanism in skeletal muscle repair with implications for the development of therapies for musculoskeletal and vascular diseases, including peripheral artery disease. PMID:25911453

  4. Apoptosis of bovine neutrophils following diapedesis through a monolayer of endothelial and mammary epithelial cells.

    OpenAIRE

    Van Oostveldt, K; Paape, Max; Burvenich, Christian

    2002-01-01

    In a two-chamber system, isolated blood polymorphonuclear neutrophil leukocytes (PMN) were allowed to migrate (5 h, 37 C) in response to bovine complement component C5a across calfskin and rat-tail type I collagen-coated micropore membranes, arterial endothelial, or mammary epithelial cell monolayer on calfskin and rat-tail collagen-coated membranes, respectively. Migration through calfskin collagen-coated membranes resulted in 14.5% +/- 3.4% apoptotic PMN, which was significantly higher than...

  5. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro.

    Science.gov (United States)

    Sternberg, Katrin; Gratz, Matthias; Koeck, Kathleen; Mostertz, Joerg; Begunk, Robert; Loebler, Marian; Semmling, Beatrice; Seidlitz, Anne; Hildebrandt, Petra; Homuth, Georg; Grabow, Niels; Tuemmler, Conny; Weitschies, Werner; Schmitz, Klaus-Peter; Kroemer, Heyo K

    2012-01-01

    Magnesium-based bioabsorbable cardiovascular stents have been developed to overcome limitations of permanent metallic stents, such as late stent thrombosis. During stent degradation, endothelial and smooth muscle cells will be exposed to locally high magnesium concentrations with yet unknown physiological consequences. Here, we investigated the effects of elevated magnesium concentrations on human coronary artery endothelial and smooth muscle cell (HCAEC, HCASMC) growth and gene expression. In the course of 24 h after incubation with magnesium chloride solutions (1 or 10 mM) intracellular magnesium level in HCASMC raised from 0.55 ± 0.25 mM (1 mM) to 1.38 ± 0.95 mM (10 mM), while no increase was detected in HCAEC. Accordingly, a DNA microarray-based study identified 69 magnesium regulated transcripts in HCAEC, but 2172 magnesium regulated transcripts in HCASMC. Notably, a significant regulation of various growth factors and extracellular matrix components was observed. In contrast, viability and proliferation of HCAEC were increased at concentrations of up to 25 mM magnesium chloride, while in HCASMC viability and proliferation appeared to be unaffected. Taken together, our data indicate that magnesium halts smooth muscle cell proliferation and stimulates endothelial cell proliferation, which might translate into a beneficial effect in the setting of stent associated vascular injury.

  6. Endothelial directed collective migration depends on substrate stiffness via localized myosin contractility and cell-matrix interactions.

    Science.gov (United States)

    Canver, Adam Charles; Ngo, Olivia; Urbano, Rebecca Lownes; Clyne, Alisa Morss

    2016-05-24

    Macrovascular endothelial injury, which may be caused by percutaneous intervention, requires endothelial cell directed collective migration to restore an intact endothelial monolayer. While interventions are often performed in arteries stiffened by cardiovascular disease, the effect of substrate stiffness on endothelial cell collective migration has not been examined. We studied porcine aortic endothelial cell directed collective migration using a modified cage assay on 4, 14, and 50kPa collagen-coated polyacrylamide gels. Total cell migration distance was measured over time, as were nuclear alignment and nuclear:total β-catenin as measures of cell directedness and cell-cell junction integrity, respectively. In addition, fibronectin fibers were examined as a measure of extracellular matrix deposition and remodeling. We now show that endothelial cells collectively migrate farther on stiffer substrates by 24h. Cells were more directed in the migration direction on intermediate stiffness substrates from 12 to 24h, with an alignment peak 400-700µm back from the migratory interface. However, cells on the softest substrates had the highest cell-cell junction integrity. Cells on all substrates deposited fibronectin, however fibronectin fibers were most linear and aligned on the stiffer substrates. When Rho kinase (ROCK) was inhibited with Y27632, cells on soft substrates migrated farther and cells on both soft and stiff substrates were more directed. When α5 integrin was knocked down with siRNA, cells on stiffer substrates did not migrate as far and were less directed. These data suggest that ROCK-mediated myosin contractility inhibits endothelial cell collective migration on soft substrates, while cell-matrix interactions are critical to endothelial cell collective migration on stiff substrates.

  7. Silencing of directional migration in roundabout4 knockdown endothelial cells

    Directory of Open Access Journals (Sweden)

    Roberts David D

    2008-11-01

    Full Text Available Abstract Background Roundabouts are axon guidance molecules that have recently been identified to play a role in vascular guidance as well. In this study, we have investigated gene knockdown analysis of endothelial Robos, in particular roundabout 4 (robo4, the predominant Robo in endothelial cells using small interfering RNA technology in vitro. Results Robo1 and Robo4 knockdown cells display distinct activity in endothelial cell migration assay. The knockdown of robo4 abrogated the chemotactic response of endothelial cells to serum but enhanced a chemokinetic response to Slit2, while robo1 knockdown cells do not display chemotactic response to serum or VEGF. Robo4 knockdown endothelial cells unexpectedly show up regulation of Rho GTPases. Zebrafish Robo4 rescues both Rho GTPase homeostasis and serum reduced chemotaxis in robo4 knockdown cells. Robo1 and Robo4 interact and share molecules such as Slit2, Mena and Vilse, a Cdc42-GAP. In addition, this study mechanistically implicates IRSp53 in the signaling nexus between activated Cdc42 and Mena, both of which have previously been shown to be involved with Robo4 signaling in endothelial cells. Conclusion This study identifies specific components of the Robo signaling apparatus that work together to guide directional migration of endothelial cells.

  8. Development of new therapeutic modalities for corneal endothelial disease focused on the proliferation of corneal endothelial cells using animal models.

    Science.gov (United States)

    Koizumi, Noriko; Okumura, Naoki; Kinoshita, Shigeru

    2012-02-01

    This review describes our recent attempts to develop new therapeutic modalities for corneal endothelial disease using animal models including non-human primate model in which the proliferative ability of corneal endothelial cells is severely limited, as is the case in humans. First, we describe our attempt to develop new surgical treatments using cultivated corneal endothelial cells for advanced corneal endothelial dysfunction. It includes two different approaches; a "corneal endothelial cell sheet transplantation" with cells grown on a type-I collagen carrier, and a "cell-injection therapy" combined with the application of Rho-kinase (ROCK) inhibitor. Recently, it was reported that the selective ROCK inhibitor, Y-27632, promotes cell adhesion and proliferation and inhibits the apoptosis of primate corneal endothelial cells in culture. When cultivated corneal endothelial cells were injected into the anterior chamber of animal eyes in the presence of ROCK inhibitor, endothelial cell adhesion was promoted and the cells achieved a high cell density and a morphology similar to corneal endothelial cells in vivo. We are also trying to develop a novel medical treatment for the early phase of corneal endothelial disease by the use of ROCK inhibitor eye drops. In rabbit and monkey experiments using partial endothelial dysfunction models, corneal endothelial wound healing was accelerated by the topical application of ROCK inhibitor to the ocular surface, and resulted in the regeneration of a corneal endothelial monolayer with a high endothelial cell density. We are now trying to advance the clinical application of these new therapies for patients with corneal endothelial dysfunction.

  9. Caspases and p38 MAPK regulate endothelial cell adhesiveness for mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Irina A Potapova

    Full Text Available Mesenchymal stem cells natively circulating or delivered into the blood stream home to sites of injury. The mechanism of mesenchymal stem cell homing to sites of injury is poorly understood. We have shown that the development of apoptosis in endothelial cells stimulates endothelial cell adhesiveness for mesenchymal stem cells. Adhesion of mesenchymal stem cells to apoptotic endothelial cells depends on the activation of endothelial caspases and p38 MAPK. Activation of p38 MAPK in endothelial cells has a primary effect while the activation of caspases potentiates the mesenchymal stem cell adhesion. Overall, our study of the mesenchymal stem cell interaction with endothelial cells indicates that mesenchymal stem cells recognize and specifically adhere to distressed/apoptotic endothelial cells.

  10. Genipin inhibits endothelial exocytosis via nitric oxide in cultured human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Guang-fa WANG; Shao-yu WU; Jin-jun RAO; Lin L(U); Wei XU; Jian-xin PANG; Zhong-qiu LIU; Shu-guang WU; Jia-jie ZHANG

    2009-01-01

    Aim: Exocytosis of endothelial Weibel-Palade bodies, which contain von Willebrand factor (VWF), P-selectin and other modulators, plays an important role in both inflammation and thrombosis. The present study investigates whether genipin,an aglycon of geniposide, inhibits endothelial exocytosis.Methods: Human umbilical vein endothelial cells (HUVECs) were isolated from umbilical cords and cultured. The concentration of VWF in cell supernatants was measured using an ELISA Kit. P-selectin translocation on the cell surface was analyzed by cell surface ELISA. Cell viability was measured using a Cell Counting Kit-8. Mouse bleeding times were measured by amputating the tail tip. Western blot analysis was used to determine the amount of endothelial nitric oxide synthase (eNOS) and phospho-eNOS present. Nitric oxide (NO) was measured in the cell supernatants as nitrite using an NO Colorimetric Assay.Results: Genipin inhibited thrombin-induced VWF release and P-selectin translocation in HUVECs in a dose- and time-dependent manner. The drug had no cytotoxic effect on the cells at the same doses that were able to inhibit exocytosis. The functional study that demonstrated that genipin inhibited exocytosis in vivo also showed that genipin prolonged the mouse bleeding time. Furthermore, genipin activated eNOS phosphorylation, promoted enzyme activation and increased NO production. L-NAME, an inhibitor of NOS, reversed the inhibitory effects of genipin on endothelial exocytosis.Conclusion: Genipin inhibits endothelial exocytosis in HUVECs. The mechanism by which this compound inhibits exocytosis may be related to its ability to stimulate eNOS activation and NO production. Our findings suggest a novel antiinflammatory mechanism for genipin. This compound may represent a new treatment for inflammation and/or thrombosis in which excess endothelial exocytosis plays a pathophysiological role.

  11. Angiogenic potential of endothelial progenitor cells and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Rae Peter C

    2011-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPCs are implicated in a range of pathological conditions, suggesting a natural therapeutic role for EPCs in angiogenesis. However, current angiogenic therapies involving EPC transplantation are inefficient due to rejection of donor EPCs. One solution is to derive an expanded population of EPCs from stem cells in vitro, to be re-introduced as a therapeutic transplant. To demonstrate the therapeutic potential of EPCs we performed in vitro transplantation of EPCs into endothelial cell (EC tubules using a gel-based tubule formation assay. We also described the production of highly angiogenic EPC-comparable cells from pluripotent embryonic stem cells (ESCs by direct differentiation using EC-conditioned medium (ECCM. Results The effect on tubule complexity and longevity varied with transplantation quantity: significant effects were observed when tubules were transplanted with a quantity of EPCs equivalent to 50% of the number of ECs originally seeded on to the assay gel but not with 10% EPC transplantation. Gene expression of the endothelial markers VEGFR2, VE-cadherin and CD31, determined by qPCR, also changed dynamically during transplantation. ECCM-treated ESC-derived progenitor cells exhibited angiogenic potential, demonstrated by in vitro tubule formation, and endothelial-specific gene expression equivalent to natural EPCs. Conclusions We concluded the effect of EPCs is cumulative and beneficial, relying on upregulation of the angiogenic activity of transplanted cells combined with an increase in proliferative cell number to produce significant effects upon transplantation. Furthermore, EPCs derived from ESCs may be developed for use as a rapidly-expandable alternative for angiogenic transplantation therapy.

  12. Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model.

    Science.gov (United States)

    Neuhaus, Winfried; Samwer, Fabian; Kunzmann, Steffen; Muellenbach, Ralf M; Wirth, Michael; Speer, Christian P; Roewer, Norbert; Förster, Carola Y

    2012-11-01

    The blood-air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighbored cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood-air barrier.

  13. JNK2 promotes endothelial cell alignment under flow.

    Directory of Open Access Journals (Sweden)

    Cornelia Hahn

    Full Text Available Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways.

  14. Enterococcus faecalis internalization in human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Millán, Diana; Chiriboga, Carlos; Patarroyo, Manuel A; Fontanilla, Marta R

    2013-04-01

    Initial Enterococcus faecalis-endothelial cell molecular interactions which lead to enterococci associating in the host endothelial tissue, colonizing it and proliferating there can be assessed using in vitro models. Cultured human umbilical vein endothelial cells (HUVEC) have been used to study other Gram-positive bacteria-cell interactions; however, few studies have been aimed at establishing the relationship of E. faecalis with endothelial cells. The aggregation substance (AS) family of adhesins represents an E. faecalis virulence factor which has been implicated in endocarditis severity and bacterial persistence. The Asc10 protein (a member of this family) promotes bacterium-bacterium aggregation and bacterium-host cell binding. Evaluating Asc10 role in bacterial internalization by cultured enterocytes has shown that this adhesin facilitates E. faecalis endocytosis by HT-29 cells. A few eukaryotic cell structural components, such as cytoskeletal proteins, have been involved in E. faecalis entry into cell-lines; it is thus relevant to determine whether Asc10, as well as microtubules and actin microfilaments, play a role in E. faecalis internalization by cultured endothelial cells. The role of Asc10 and cytoskeleton proteins in E. faecalis ability to enter HUVEC was assessed in the present study, as well as cell apoptosis induction by enterococcal internalization by HUVEC; the data indicated increased cell apoptosis and that cytoskeleton components were partially involved in E. faecalis entry to endothelial cells, thereby suggesting that E. faecalis Asc10 protein would not be a critical factor for bacterial entry to cultured HUVEC.

  15. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B

    2013-11-30

    This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids.

  16. Cilostazol activates function of bone marrow-derived endothelial progenitor cell for re-endothelialization in a carotid balloon injury model.

    Directory of Open Access Journals (Sweden)

    Rie Kawabe-Yako

    Full Text Available BACKGROUND: Cilostazol(CLZ has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM-derived endothelial progenitor cell (EPC contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs. METHODOLOGY/PRINCIPAL FINDINGS: Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2 weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury. CONCLUSIONS/SIGNIFICANCE: CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for

  17. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior.

    Science.gov (United States)

    Kohn, Julie C; Zhou, Dennis W; Bordeleau, François; Zhou, Allen L; Mason, Brooke N; Mitchell, Michael J; King, Michael R; Reinhart-King, Cynthia A

    2015-02-03

    Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm(2). Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.

  18. Sodium renders endothelial cells sticky for red blood cells

    Directory of Open Access Journals (Sweden)

    Hans eOberleithner

    2015-06-01

    Full Text Available Negative charges in the glycocalyx of red blood cells (RBC and vascular endothelial cells (EC facilitate frictionless blood flow through blood vessels. Na+ selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na+ concentration controls RBC-EC interaction. Using atomic force microscopy (AFM adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i after enzymatic removal of negative charges in the glycocalyx, (ii under different ambient Na+ and (iii after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na+ from 133 to 140 mM does not affect them. However, beyond 140 mM Na+ adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na+. Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na+ concentration determines the availability of free negative charges. Na+ concentrations in the low physiological range (below 140 mM allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na+ in the high physiological range (beyond 140 mM saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na+ induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  19. Sodium renders endothelial cells sticky for red blood cells.

    Science.gov (United States)

    Oberleithner, Hans; Wälte, Mike; Kusche-Vihrog, Kristina

    2015-01-01

    Negative charges in the glycocalyx of red blood cells (RBC) and vascular endothelial cells (EC) facilitate frictionless blood flow through blood vessels. Na(+) selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na(+) concentration controls RBC-EC interaction. Using atomic force microscopy (AFM) adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i) after enzymatic removal of negative charges in the glycocalyx, (ii) under different ambient Na(+) and (iii) after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na(+) from 133 to 140 mM does not affect them. However, beyond 140 mM Na(+) adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na(+)). Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na(+) concentration determines the availability of free negative charges. Na(+) concentrations in the low physiological range (below 140 mM) allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na(+) in the high physiological range (beyond 140 mM) saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na(+) induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  20. Biophysical Cueing and Vascular Endothelial Cell Behavior

    Directory of Open Access Journals (Sweden)

    Joshua A. Wood

    2010-03-01

    Full Text Available Human vascular endothelial cells (VEC line the vessels of the body and are critical for the maintenance of vessel integrity and trafficking of biochemical cues. They are fundamental structural elements and are central to the signaling environment. Alterations in the normal functioning of the VEC population are associated with a number of vascular disorders among which are some of the leading causes of death in both the United States and abroad. VECs attach to their underlying stromal elements through a specialization of the extracellular matrix, the basement membrane. The basement membrane provides signaling cues to the VEC through its chemical constituents, by serving as a reservoir for cytoactive factors and through its intrinsic biophysical properties. This specialized matrix is composed of a topographically rich 3D felt-like network of fibers and pores on the nano (1–100 nm and submicron (100–1,000 nm size scale. The basement membrane provides biophysical cues to the overlying VECs through its intrinsic topography as well as through its local compliance (relative stiffness. These biophysical cues modulate VEC adhesion, migration, proliferation, differentiation, and the cytoskeletal signaling network of the individual cells. This review focuses on the impact of biophysical cues on VEC behaviors and demonstrates the need for their consideration in future vascular studies and the design of improved prosthetics.

  1. Inhibitory effects of isoproterenol on PAF-induced endothelial cell permeability and morphological changes

    Institute of Scientific and Technical Information of China (English)

    丁自强; 李少华; 吴中立

    1996-01-01

    Using a model to study vascular permeability under hydrostatically perfused bovine pulmonary artery endothelial cell (EC) monolayers and a software to automatically analyse cell morphological parameters in a computer image workstation, the effects of isoproterenol (IPN) on platelet-activating factor (PAF)-induced changes in EC monolayer permeability and cell morphological parameters were studied. Albumin has the fortifying effect on endothelial barrier function. After treatment of EC monolayer with 10-8mol/L PAF, trans-monolayer permeability increased, cell surface area decreased, and intercellular space enlarged. As pretreatment with 10-4mol/L IPN, PAF-induced EC permeability increment and morphological changes were blocked. The results suggest that EC contraction and intercellular gap expansion are important mechanisms for PAF-induced high vascular permeability. IPN inhibits the effects of PAF via stabilization of EC morphology and prevention of intercellular gap formation.

  2. Activation of Endothelial Nitric Oxide (eNOS Occurs through Different Membrane Domains in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jason Tran

    Full Text Available Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC with cholesterol and the oxysterol 7-ketocholesterol (7KC. Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1 colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  3. Endothelial cell tumor growth is Ape/ref-1 dependent.

    Science.gov (United States)

    Biswas, Ayan; Khanna, Savita; Roy, Sashwati; Pan, Xueliang; Sen, Chandan K; Gordillo, Gayle M

    2015-09-01

    Tumor-forming endothelial cells have highly elevated levels of Nox-4 that release H2O2 into the nucleus, which is generally not compatible with cell survival. We sought to identify compensatory mechanisms that enable tumor-forming endothelial cells to survive and proliferate under these conditions. Ape-1/ref-1 (Apex-1) is a multifunctional protein that promotes DNA binding of redox-sensitive transcription factors, such as AP-1, and repairs oxidative DNA damage. A validated mouse endothelial cell (EOMA) tumor model was used to demonstrate that Nox-4-derived H2O2 causes DNA oxidation that induces Apex-1 expression. Apex-1 functions as a chaperone to keep transcription factors in a reduced state. In EOMA cells Apex-1 enables AP-1 binding to the monocyte chemoattractant protein-1 (mcp-1) promoter and expression of that protein is required for endothelial cell tumor formation. Intraperitoneal injection of the small molecule inhibitor E3330, which specifically targets Apex-1 redox-sensitive functions, resulted in a 50% decrease in tumor volume compared with mice injected with vehicle control (n = 6 per group), indicating that endothelial cell tumor proliferation is dependent on Apex-1 expression. These are the first reported results to establish Nox-4 induction of Apex-1 as a mechanism promoting endothelial cell tumor formation.

  4. High-density lipoprotein endocytosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Stefanie; Fruhwürth; Margit; Pavelka; Robert; Bittman; Werner; J; Kovacs; Katharina; M; Walter; Clemens; Rhrl; Herbert; Stangl

    2013-01-01

    AIM: To describe the way stations of high-density lipoprotein(HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescencemicroscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type Ⅰ mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrincoated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis.

  5. Acidosis activation of the proton-sensing GPR4 receptor stimulates vascular endothelial cell inflammatory responses revealed by transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Lixue Dong

    Full Text Available Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2 and stress response genes such as ATF3 and DDIT3 (CHOP. Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be

  6. Impaired Arterial Elasticity Identified by Pulse Waveform Analysis is a Non- invasive Measure for Early Detection of Endothelial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    Tao Jun; Wang Yan; Yang Zhen; Tu Chang; Xu Mingguo; Wang Jiemei

    2004-01-01

    Objectives Endothelial dysfunction is the earliest marker for atherosclerosis and plays key role in the pathogenesis of cardiovascular diseases. The present study was performed to evaluate effect of aging on arterial elasticity by using pulse waveform analysis and investigate whether the changes in arterial elasticity can be used as a non - invasive measure for early detection of endothelial dysfunction.Methods Using modified Windkessel model of the circulation and pulse waveform analysis, C1 large artery and C2 small artery elasticity indices of 204 normal healthy subjects ( age 15 -80 years) were measured.Among them twenty - four male healthy subjects were divided into both the young (age 20 -30 years, n =12) and elderly (age 60 - 70 years, n = 12) groups.We delivered acethycholine (Ach), an endotheliumdependent vasodilator, and sodium nitroprusside(SNP), an endothelium- independent vasodilator, to dermal vessels of the forearm using iontophoresis, respectively, and measured basal and peak blood flow using laser doppler fluximetry. Results C1 large artery and C2 small artery elasticity indices were reduced with advancing age. C 1 large artery and C2 small artery elasticity indices were negatively correlated with age (r= -0.628, p<0.001; r= -0.595, p <0.001).Basal blood flow was similar between the young and elderly groups ( 14.58 ± 3.4 vs 13.52 ± 3.41 PU, p =NS). Peak blood flow induced by Ach was significantly reduced in the elderly group compared with the young group (83.4 ± 11.9 vs 93.75 ± 10. 87 PU, p < 0. 05 ).However, peak blood flow induced by SNP was similar in the two groups ( 119. 17 ± 16.76 vs 128.33 ± 21.29 PU,p = NS). Ach - induced peak blood flow correlated positively with C1 large artery and C2 small artery elasticity indices( r=0.56, p <0.01; r =0.53, p <0.01).Conclusions Advancing age leads to impaired artery elasticity and endothelial dysfun ction. Reduced arterial elasticity is, in parallel, associated with diminished

  7. 5-Hydroxytryptamine 4 Receptor in the Endothelial Cells

    DEFF Research Database (Denmark)

    Profirovic, Jasmina; Vardya, Irina; Voyno-Yasenetskaya, Tatyana

    2006-01-01

    in the CNS, none of the studies showed its expression and function in the endothelial cells. In the present study, we provide evidence for the first time that 5-HT4 receptor is expressed in the human umbilical vein endothelial cells (HUVECs). We demonstrate the transcription of 5-HT4 mRNA in the HUVECs using...... reverse transcription polimerase chain reaction. Additionally, we show 5- HT4 receptor expression in HUVECs by immunoblotting and immunofluorescent analysis with 5-HT4 specific antibody. Importantly, we determine that overexpression of 5-HT4 receptor leads to a pronounced cell rounding and intercellular...... gap formation in HUVECs. We are currently investigating the mechanism underlying 5-HT4 receptor-induced actin cytoskeleton changes in the endothelial cells. These data suggest that by activating 5-HT4 receptor, serotonin could be involved in regulation of actin cytoskeleton dynamics in the endothelial...

  8. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  9. Lack of association between Chlamydia Pneumoniae serology and endothelial dysfunction of coronary arteries

    Directory of Open Access Journals (Sweden)

    Oehme Albrecht

    2005-04-01

    Full Text Available Abstract Background Recent publications brought up the hypothesis that an infection with Chlamydia Pneumoniae (CP might be a major cause of coronary artery disease (CAD. Therefore, we investigated whether endothelial dysfunction (ED as a precursor of atherosclerosis might be detectable in patients with previous infection with CP but without angiographic evidence of CAD. Methods We included 16 patients (6 male / 10 female of 52 consecutive patients with normal coronary angiography who had typical angina pectoris and pathologic findings in the stress test. Exclusion criteria were: active smoker, elevated cholesterol, hypertension, age > 65 years, diabetes mellitus, treatment with ACE-inhibitors, or known CAD. Blood sample analysis for serum titer against CP (aCP-IgG was performed after coronary angiography. We looked for endothelial dysfunction analyzing the diameter of the left anterior descending coronary artery (LAD before and after acetylcholine (ACh i. c. Quantitative analysis of luminal diameter (LD was performed in at least two planes during baseline conditions and after ACh for 2 minutes in dosages of 7.2 μg/min and 36 μg/min with an infusion speed of 2 ml/min. Using Doppler guide wire, the coronary flow velocity was measured continuously in the LAD. The coronary flow velocity reserve (CFVR was measured after 20 μg adenosine i. c. Results 10 patients had an elevated aCP-IgG (> 1:8. 6 patients with negative titers (aCP-IgG ≤ 1:8 served as control (CTRL. Both groups were comparable in age, gender, angina class, results of non-invasive stress-test and the baseline values of LD and flow. In the CP positive group 3 patients (30% did not show an increase of LD after ACh as evidence of ED. In the CTRL group 4 patients (67 % had ED. There was no association between aCP-IgG and changes of coronary blood flow after ACh. All patients showed normal CFVR (3.0 ± 0.27 irrespective of their aCP-IgG values. Conclusion In patients with typical

  10. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  11. Endothelial cell proliferation in swine experimental aneurysm after coil embolization.

    Directory of Open Access Journals (Sweden)

    Yumiko Mitome-Mishima

    Full Text Available After coil embolization, recanalization in cerebral aneurysms adversely influences long-term prognosis. Proliferation of endothelial cells on the coil surface may reduce the incidence of recanalization and further improve outcomes after coil embolization. We aimed to map the expression of proliferating tissue over the aneurysmal orifice and define the temporal profile of tissue growth in a swine experimental aneurysm model. We compared the outcomes after spontaneous thrombosis with those of coil embolization using histological and morphological techniques. In aneurysms that we not coiled, spontaneous thrombosis was observed, and weak, easily detachable proliferating tissue was evident in the aneurysmal neck. In contrast, in the coil embolization group, histological analysis showed endothelial-like cells lining the aneurysmal opening. Moreover, immunohistochemical and morphological analysis suggested that these cells were immature endothelial cells. Our results indicated the existence of endothelial cell proliferation 1 week after coil embolization and showed immature endothelial cells in septal tissue between the systemic circulation and the aneurysm. These findings suggest that endothelial cells are lead to and proliferate in the former aneurysmal orifice. This is the first examination to evaluate the temporal change of proliferating tissue in a swine experimental aneurysm model.

  12. Uptake of gold nanoparticles in primary human endothelial cells

    DEFF Research Database (Denmark)

    Klingberg, Henrik; Oddershede, Lene B.; Löschner, Katrin

    2015-01-01

    Gold nanoparticles (AuNPs) are relevant in nanomedicine for drug delivery in the vascular system, where endothelial cells are the first point of contact. We investigated the uptake of 80 nm AuNPs in primary human umbilical vein endothelial cells (HUVECs) by flow cytometry, 3D confocal microscopy....... Uptake of AuNPs in HUVECs occurred mainly by clathrin-mediated endocytosis and trafficking to membrane enclosures in the form of single particles and agglomerates of 2–3 particles....

  13. Breast cancer cells stimulate osteoprotegerin (OPG production by endothelial cells through direct cell contact

    Directory of Open Access Journals (Sweden)

    Holen Ingunn

    2009-07-01

    Full Text Available Abstract Background Angiogenesis, the sprouting of capillaries from existing blood vessels, is central to tumour growth and progression, however the molecular regulation of this process remains to be fully elucidated. The secreted glycoprotein osteoprotegerin (OPG is one potential pro-angiogenic factor, and clinical studies have demonstrated endothelial cells within a number of tumour types to express high levels of OPG compared to those in normal tissue. Additionally, OPG can increase endothelial cell survival, proliferation and migration, as well as induce endothelial cell tube formation in vitro. This study aims to elucidate the processes involved in the pro-angiogenic effects of OPG in vitro, and also how OPG levels may be regulated within the tumour microenvironment. Results It has previously been demonstrated that OPG can induce tube formation on growth factor reduced matrigel. In this study, we demonstrate that OPG enhances the pro-angiogenic effects of VEGF and that OPG does not stimulate endothelial cell tube formation through activation of the VEGFR2 receptor. We also show that cell contact between HuDMECs and the T47D breast cancer cell line increases endothelial cell OPG mRNA and protein secretion levels in in vitro co-cultures. These increases in endothelial cell OPG secretion were dependent on ανβ3 ligation and NFκB activation. In contrast, the pro-angiogenic factors VEGF, bFGF and TGFβ had no effect on HuDMEC OPG levels. Conclusion These findings suggest that the VEGF signalling pathway is not involved in mediating the pro-angiogenic effects of OPG on endothelial cells in vitro. Additionally, we show that breast cancer cells cause increased levels of OPG expression by endothelial cells, and that direct contact between endothelial cells and tumour cells is required in order to increase endothelial OPG expression and secretion. Stimulation of OPG secretion was shown to involve ανβ3 ligation and NFκB activation.

  14. Amino acids and metal ions protect endothelial cells from lethal injury

    Energy Technology Data Exchange (ETDEWEB)

    Varani, J.; Ginsburg, I.; Johnson, K.J.; Gibbs, D.F.; Weinberg, J.M.; Ward, P.A. (Univ. of Michigan, Ann Arbor (United States))

    1991-03-11

    Killing of rat pulmonary artery endothelial cells by activated neutrophils is dependent on generation of hydrogen peroxide and its conversion to a highly toxic radical (presumably the hydroxyl radical) in a ferrous iron-dependent reaction. Glycine (as well as several other amino acids) is capable of inhibiting endothelial cell killing in vitro by either activated neutrophils or reagent hydrogen peroxide. Inhibition of killing is enhanced in the presence of micromolar concentrations of manganous ion (Mn2+). The combined effects of glycine and Mn2+ require concomitant presence of bicarbonate ion and is inhibited by high phosphate levels. Glycine can also protect endothelial cells from lethal injury inducted by ionomycin. There appears to be no enhancement with Mn2+, however against this form of lethal injury. The protective effects of glycine, Mn2+ and bicarbonate ion against injury by hydrogen peroxide is associated with a direct disproportionation of the hydrogen peroxide to water with little generation of molecular oxygen. Either glycine or Mn2+ alone does not have this effect. In addition to protecting endothelial cells from hydrogen peroxide-mediated injury, glycine or MN2+ is almost completely protective. Additionally, treatment of rats with concentrations of EDTA that do not by themselves induce injury greatly accentuates lung injury induced by glucose oxidase. These findings suggest that circulating amino acids in combination with Mn2+ and bicarbonate ions may contribute to the normal anti-oxidant barrier. These findings may also form the basis for a possible new therapeutic approach to oxygen radical-mediated injury.

  15. ROS-related Enzyme Expressions in Endothelial Cells Regulated by Tea Polyphenols

    Institute of Scientific and Technical Information of China (English)

    CHEN-JIANG YING; XIU-FA SUN; SHU-LIN ZHANG; XI-PING ZHANG; LI-MEI MAO; XUE-ZHI ZUO; AND PING YAO

    2004-01-01

    Objective Elevation of reactive oxygen species (ROS), especially the level of superoxide is a key event in many forms of cardiovascular diseases. To study the mechanism of tea polyphenols against cardiovascular diseases, we observed the expressions of ROS-related enzymes in endothelial cells. Methods Tea polyphenols were co-incubated with bovine carotid artery endothelial cells (BCAECs) in vitro and intracellular NADPH oxidase subunits p22phox and p67phox, SOD-1, and catalase protein were detected using Western blot method. Results Tea polyphenols of 0.4 μg/mL and 4.0 μg/mL (from either green tea or black tea) down-regulated NADPH oxidase p22phox and p67phox expressions in a dose-negative manner (P<0.05), and up-regulated the expressions of catalase (P<0.05). Conclusions Tea polyphenols regulate the enzymes involved in ROS production and elimination in endothelial cells, and may be beneficial to the prevention of endothelial cell dysfunction and the development of cardiovascular diseases.

  16. Cell-to-cell contact of human monocytes with infected arterial smooth-muscle cells enhances growth of Chlamydia pneumoniae.

    Science.gov (United States)

    Puolakkainen, Mirja; Campbell, Lee Ann; Lin, Tsun-Mei; Richards, Theresa; Patton, Dorothy L; Kuo, Cho-Chou

    2003-02-01

    Chlamydia pneumoniae can infect arterial cells. It has been shown that coculture of human monocytes (U937) and endothelial cells promotes infection of C. pneumoniae in endothelial cells and that the enhancement was mediated by a soluble factor (insulin-like growth factor 2) secreted by monocytes. In this study, it is shown that coculture of monocytes with C. pneumoniae enhances infection of C. pneumoniae in arterial smooth-muscle cells 5.3-fold at a monocyte-to-smooth-muscle cell ratio of 5. However, unlike endothelial cells, no enhancement was observed if monocytes were placed in cell culture inserts or if conditioned medium from monocyte cultures was used, which suggests that cell-to-cell contact is critical. The addition of mannose 6-phosphate or octyl glucoside, a nonionic detergent containing a sugar group, to cocultures inhibited the enhancement. These findings suggest that the monocyte-smooth-muscle cell interaction may be mediated by mannose 6-phosphate receptors present on monocytes.

  17. Effects of dark chocolate and cocoa consumption on endothelial function and arterial stiffness in overweight adults.

    Science.gov (United States)

    West, Sheila G; McIntyre, Molly D; Piotrowski, Matthew J; Poupin, Nathalie; Miller, Debra L; Preston, Amy G; Wagner, Paul; Groves, Lisa F; Skulas-Ray, Ann C

    2014-02-01

    The consumption of cocoa and dark chocolate is associated with a lower risk of CVD, and improvements in endothelial function may mediate this relationship. Less is known about the effects of cocoa/chocolate on the augmentation index (AI), a measure of vascular stiffness and vascular tone in the peripheral arterioles. We enrolled thirty middle-aged, overweight adults in a randomised, placebo-controlled, 4-week, cross-over study. During the active treatment (cocoa) period, the participants consumed 37 g/d of dark chocolate and a sugar-free cocoa beverage (total cocoa = 22 g/d, total flavanols (TF) = 814 mg/d). Colour-matched controls included a low-flavanol chocolate bar and a cocoa-free beverage with no added sugar (TF = 3 mg/d). Treatments were matched for total fat, saturated fat, carbohydrates and protein. The cocoa treatment significantly increased the basal diameter and peak diameter of the brachial artery by 6% (+2 mm) and basal blood flow volume by 22%. Substantial decreases in the AI, a measure of arterial stiffness, were observed in only women. Flow-mediated dilation and the reactive hyperaemia index remained unchanged. The consumption of cocoa had no effect on fasting blood measures, while the control treatment increased fasting insulin concentration and insulin resistance (P= 0·01). Fasting blood pressure (BP) remained unchanged, although the acute consumption of cocoa increased resting BP by 4 mmHg. In summary, the high-flavanol cocoa and dark chocolate treatment was associated with enhanced vasodilation in both conduit and resistance arteries and was accompanied by significant reductions in arterial stiffness in women.

  18. Mechanism of Corneal Endothelial Cells Lesion during Phacoemulsification and Aspiration

    Institute of Scientific and Technical Information of China (English)

    Songtao Yuan; Lina Xie; Qinghuai Liu; Nanrong Yuan

    2003-01-01

    Purpose: To evaluate the proportions of corneal endothelial lesion caused by differentfactors during phacoemulsification and aspiration.Methods: Fourteen cats (twenty eight eyes) were divided into four groups. The processedfactors were ultrasonic power, lens extraction by phacoemulsification or not, and lensextraction using different levels of ultrasonic power. The density of central cornealendothelial cells was measured before and after operation.Results: There is no statistic difference between pre-operation density and post-operationdensity for releasing ultrasonic power only without lens extraction group. But for the lensextraction group, there is difference in density of central corneal endothelial cells andthe higher level of ultrasonic power, the more the central corneal endothelial cells densitydecreased through operation.Conclusion: The primary factor that causes corneal endothelial lesion duringphacoemulsification and aspiration procedure is debris of lens nucleus, and the otherfactors cause the lesion of corneal endothelium in normal operations just in very smalldegree.

  19. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    Science.gov (United States)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  20. Endothelial cell processing and alternatively spliced transcripts of factor VIII: potential implications for coagulation cascades and pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Claire L Shovlin

    Full Text Available BACKGROUND: Coagulation factor VIII (FVIII deficiency leads to haemophilia A. Conversely, elevated plasma levels are a strong predictor of recurrent venous thromboemboli and pulmonary hypertension phenotypes in which in situ thromboses are implicated. Extrahepatic sources of plasma FVIII are implicated, but have remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemistry of normal human lung tissue, and confocal microscopy, flow cytometry, and ELISA quantification of conditioned media from normal primary endothelial cells were used to examine endothelial expression of FVIII and coexpression with von Willebrand Factor (vWF, which protects secreted FVIII heavy chain from rapid proteloysis. FVIII transcripts predicted from database mining were identified by RT-PCR and sequencing. FVIII mAb-reactive material was demonstrated in CD31+ endothelial cells in normal human lung tissue, and in primary pulmonary artery, pulmonary microvascular, and dermal microvascular endothelial cells. In pulmonary endothelial cells, this protein occasionally colocalized with vWF, centered on Weibel Palade bodies. Pulmonary artery and pulmonary microvascular endothelial cells secreted low levels of FVIII and vWF to conditioned media, and demonstrated cell surface expression of FVIII and vWF Ab-reacting proteins compared to an isotype control. Four endothelial splice isoforms were identified. Two utilize transcription start sites in alternate 5' exons within the int22h-1 repeat responsible for intron 22 inversions in 40% of severe haemophiliacs. A reciprocal relationship between the presence of short isoforms and full-length FVIII transcript suggested potential splice-switching mechanisms. CONCLUSIONS/SIGNIFICANCE: The pulmonary endothelium is confirmed as a site of FVIII secretion, with evidence of synthesis, cell surface expression, and coexpression with vWF. There is complex alternate transcription initiation from the FVIII gene. These findings provide a

  1. Polyethylene terephthalate membrane grafted with peptidomimetics: endothelial cell compatibility and retention under shear stress.

    Science.gov (United States)

    Rémy, Murielle; Bareille, Reine; Rerat, Vincent; Bourget, Chantal; Marchand-Brynaert, Jacqueline; Bordenave, Laurence

    2013-01-01

    The present work aimed to treat a polyethylene terephthalate (PET) surface to make the biomaterial more 'attractive' in terms of attachment and shear stress response to endothelial cells with a view to possible applications in vascular grafting. A surface wet-chemistry protocol was applied to graft track-etched PET membranes with RGD peptidomimetics based on the tyrosine template and active at the nano-level vs. isolated human αvβ3 receptor, which was monitored by X-ray photoelectron spectroscopy, contact angle measurement and atomic force microscopy for characterization. A primary culture of human saphenous vein endothelial cells was used before and after sterilization of the membranes (heat treatment or γ-ray irradiation) to test the benefit of grafting. The optimal surface concentrations of grafted molecules were around 50 pmol/cm². Compared to GRGDS, the peptidomimetics promoted cell attachment with similar or slightly better performances. Endothelialized grafted supports were further exposed to 2 h of shear stress mimicking arterial conditions. Cells were lost on non-grafted PET whereas cells on grafted polymers sterilized by γ-ray irradiation withstood forces with no significant difference in focal contacts. At the mRNA level, cells on functionalized PET were able to respond to shear stress with NFkB upregulation. Thus, grafting of peptidomimetics as ligands of the αvβ3 integrin could be a relevant strategy to improve the adhesion of human endothelial cells and to obtain an efficient endothelialized PET for the surgery of small-diameter vascular prostheses.

  2. Aldosterone Inactivates the Endothelin-B Receptor via a Cysteinyl Thiol Redox Switch to Decrease Pulmonary Endothelial Nitric Oxide Levels and Modulate Pulmonary Arterial Hypertension

    Science.gov (United States)

    Maron, Bradley A.; Zhang, Ying-Yi; White, Kevin; Chan, Stephen Y.; Handy, Diane E.; Mahoney, Christopher E.; Loscalzo, Joseph; Leopold, Jane A.

    2012-01-01

    Background Pulmonary arterial hypertension (PAH) is characterized, in part, by decreased endothelial nitric oxide (NO•) production and elevated levels of endothelin-1. Endothelin-1 is known to stimulate endothelial nitric oxide synthase (eNOS) via the endothelin-B receptor (ETB), suggesting that this signaling pathway is perturbed in PAH. Endothelin-1 also stimulates adrenal aldosterone synthesis; in systemic blood vessels, hyperaldosteronism induces vascular dysfunction by increasing endothelial reactive oxygen species (ROS) generation and decreasing NO• levels. We hypothesized that aldosterone modulates PAH by disrupting ETB-eNOS signaling through a mechanism involving increased pulmonary endothelial oxidant stress. Methods and Results In rats with PAH, elevated endothelin-1 levels were associated with elevated aldosterone levels in plasma and lung tissue and decreased lung NO• metabolites in the absence of left heart failure. In human pulmonary artery endothelial cells (HPAECs), endothelin-1 increased aldosterone levels via PGC-1α/steroidogenesis factor-1-dependent upregulation of aldosterone synthase. Aldosterone also increased ROS production, which oxidatively modified cysteinyl thiols in the eNOS-activating region of ETB to decrease endothelin-1-stimulated eNOS activity. Substitution of ETB-Cys405 with alanine improved ETB-dependent NO• synthesis under conditions of oxidant stress, confirming that Cys405 is a redox sensitive thiol that is necessary for ETB-eNOS signaling. In HPAECs, mineralocorticoid receptor antagonism with spironolactone decreased aldosterone-mediated ROS generation and restored ETB-dependent NO• production. Spironolactone or eplerenone prevented or reversed pulmonary vascular remodeling and improved cardiopulmonary hemodynamics in two animal models of PAH in vivo. Conclusions Our findings demonstrate that aldosterone modulates an ETB cysteinyl thiol redox switch to decrease pulmonary endothelium-derived NO• and promote PAH

  3. The Effects of Arterial Blood Pressure Reduction on Endocan and Soluble Endothelial Cell Adhesion Molecules (CAMs and CAMs Ligands Expression in Hypertensive Patients on Ca-Channel Blocker Therapy

    Directory of Open Access Journals (Sweden)

    Refmir Tadzic

    2013-04-01

    Full Text Available Background/Aims: To determine the effect of arterial blood pressure (BP reduction on endocan and soluble cell adhesion molecules' (sCAM plasma concentration and expression of their ligands on circulatory leukocyte subpopulations. Methods: 24 hypertensive subjects of both sexes (age: 53±8 yrs were treated with Ca-channel blocker, amlodipin (5-10 mg/day for 8 weeks; to reach BP≤139/89mmHg. The serum sCAMs and endocan concentrations were determined by ELISA kits. Level of ICAM/VCAM ligands on leukocytes was assessed by flow cytometry. Paired t-test, or t-test were used as appropriate, with Pearson's correlation calculated; pResults: sICAM-1 and sVCAM-1 were decreased (p≤0.001 and p=0.002, respectively, while E-selectin concentration was increased after amlodipin treatment (P=0.014. CD11a/LFA-1 (ICAM-1 and endocan ligand was significantly increased in all three cell types with BP decrease. CD15 and CD49d/VLA-4 (VCAM-1 ligand did not change after the treatment. There was significant positive correlation of systolic and diastolic BP with ICAM-1 and VCAM-1, and significant negative correlation of systolic BP with CD11a/LFA-1. Endocan significantly positively correlated with ICAM-1. Conclusions: The increased expression of ICAM/VACM ligands, together with decrease of sCAMs and endocan suggests the de-activation of endothelium with reduction in BP, decreasing the adherence of circulatory leukocytes to endothelium; subsequently decreasing the risk for development of atherosclerosis.

  4. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    Science.gov (United States)

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  5. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization

    NARCIS (Netherlands)

    Westenbrink, B. Daan; Lipsic, Erik; van der Meer, Peter; van der Harst, Pirn; Oeseburg, Hisko; Sarvaas, Gideon J. Du Marchie; Koster, Johan; Voors, Adriaan A.; van Veldhuisen, Dirk J.; van Gilst, Wiek H.; Schoemaker, Regien G.

    2007-01-01

    Aims Erythropoietin (EPO) improves cardiac function and induces neovascutarization in chronic heart failure (CHF), although the exact mechanism has not been elucidated. We studied the effects of EPO on homing and incorporation of endothelial progenitor cells (EPC) into the myocardial microvasculatur

  6. Human iPSC-Derived Endothelial Cell Sprouting Assay in ...

    Science.gov (United States)

    Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can recapitulate one or more aspects of angiogenesis in vitro, they are often limited by a lack of definition to the substratum and lack of dependence on key angiogenic signaling axes. Here, we designed and characterized a chemically-defined model of endothelial sprouting behavior in vitro using human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs). Thiol-ene photopolymerization was used to rapidly encapsulate iPSC-ECs at high density in poly(ethylene glycol) (PEG) hydrogel spheres and subsequently to rapidly encapsulate iPSC-EC-containing hydrogel spheres in a cell-free over-layer. The hydrogel sprouting array here maintained pro-angiogenic phenotype of iPSC-ECs and supported growth factor-dependent proliferation and sprouting behavior. The sprouting model responded appropriately to several reference pharmacological angiogenesis inhibitors, which suggests the functional role of vascular endothelial growth factor, NF-κB, matrix metalloproteinase-2/9, protein kinase activity, and β-tubulin in endothelial sprouting. A blinded screen of 38 putative vascular disrupting compounds (pVDCs) from the US Environmental Protection Agency’s ToxCast library identified five compounds th

  7. Metformin improves endothelial function in aortic tissue and microvascular endothelial cells subjected to diabetic hyperglycaemic conditions.

    Science.gov (United States)

    Ghosh, Suparna; Lakshmanan, Arun P; Hwang, Mu Ji; Kubba, Haidar; Mushannen, Ahmed; Triggle, Chris R; Ding, Hong

    2015-12-01

    The cellular mechanisms whereby metformin, the first line drug for type 2 diabetes (T2DM), mediates its antidiabetic effects remain elusive, particularly as to whether metformin has a direct protective action on the vasculature. This study was designed to determine if a brief 3-h exposure to metformin protects endothelial function against the effects of hyperglycaemia. We investigated the protective effects of metformin on endothelial-dependent vasodilatation (EDV) in thoracic aortae from T2DM db/db mice and on high glucose (HG, 40 mM) induced changes in endothelial nitric oxide synthase (eNOS) signaling in mouse microvascular endothelial cells (MMECs) in culture. Exposure of aortae from db+/? non-diabetic control mice to high glucose (HG, 40 mM) containing Krebs for 3-h significantly (Pmetformin; metformin also improved ACh-induced EDV in aortae from diabetic db/db mice. Immunoblot analysis of MMECs cultured in HG versus NG revealed a significant reduction of the ratio of phosphorylated (p-eNOS)/eNOS and p-Akt/Akt, but not the expression of total eNOS or Akt. The 3-h exposure of MMECs to metformin significantly (Pmetformin can reverse/reduce the impact of HG on endothelial function, via mechanisms linked to increased phosphorylation of eNOS and Akt.

  8. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    OpenAIRE

    2015-01-01

    Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs) in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina p...

  9. The Influence of Endothelial Function and Myocardial Ischemia on Peak Oxygen Consumption in Patients with Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Simon L. Bacon

    2012-01-01

    Full Text Available Impaired endothelial function has been shown to limit exercise in coronary artery disease (CAD patients and has been implicated in myocardial ischemia. However, the association of endothelial function and ischemia on peak exercise oxygen consumption (VO2 has not been previously reported. A total of 116 CAD patients underwent standard exercise stress testing, during which VO2 was measured. On a separate day, endothelial-dependent and -independent function were assessed by ultrasound using flow-mediated arterial vasodilation (FMD and sublingual glyceryl trinitrate administration (GTNMD of the brachial artery. Patients with exercise-induced myocardial ischemia had lower FMD than nonischemic patients (3.64±0.57 versus 4.98±0.36, P=.050, but there was no difference in GTNMD (14.11±0.99 versus 15.47±0.63, P=.249. Analyses revealed that both FMD (P=.006 and GTNMD (P=.019 were related to peak VO2. However, neither the presence of ischemia (P=.860 nor the interaction of ischemia with FMD (P=.382 and GTNMD (P=.151 was related to peak VO2. These data suggest that poor endothelial function, potentially via impaired NO production and smooth muscle dysfunction, may be an important determinant of exercise capacity in patients with CAD, independent of myocardial ischemia.

  10. PRIMING EFFECT OF HOMOCYSTEINE ON INDUCIBLE VASCULAR CELL ADHESION MOLECULE-1 EXPRESSION IN ENDOTHELIAL CELLS

    Science.gov (United States)

    Séguin, Chantal; Abid, Md. Ruhul; Spokes, Katherine C.; Schoots, Ivo G; Brkovic, Alexandre; Sirois, Martin G.; Aird, William C.

    2017-01-01

    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis, as well as for arterial and venous thrombosis. However, the mechanisms through which elevated circulating levels of homocysteine cause vascular injury and promote thrombosis remain unclear. Here, we tested the hypothesis that homocysteine (Hcy) sensitizes endothelial cells to the effect of inflammatory mediators. Human umbilical vein endothelial cells (HUVEC) were incubated with Hcy 1.0 mM for varying time points, and then treated in the absence or presence of 1.5 U/ml thrombin or 10 ng/ml lipopolysaccharide (LPS). Hcy alone had no effect on the expression of vascular cell adhesion molecule (VCAM)-1. However, Hcy enhanced thrombin- and LPS-mediated induction of VCAM-1 mRNA and protein levels. Consistent with these results, pretreatment of HUVEC with Hcy resulted in a two-fold increase in LSP-mediated induction of leukocyte adhesion. The latter effect was significantly inhibited by anti-VCAM-1 antibodies. Together, these findings suggest that Hcy sensitizes HUVEC to the effect of inflammatory mediators thrombin and LPS, at least in part through VCAM-1 expression and function. PMID:18406566

  11. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Science.gov (United States)

    Ikhapoh, Izuagie Attairu; Pelham, Christopher J.; Agrawal, Devendra K.

    2015-01-01

    Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs) differentiate into endothelial cells (ECs) in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II) on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45−) were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL) demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin), VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention. PMID:26106428

  12. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Izuagie Attairu Ikhapoh

    2015-01-01

    Full Text Available Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs differentiate into endothelial cells (ECs in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II on EC differentiation and function. MSCs (CD44+, CD73+, CD90+, CD14−, and CD45− were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin, VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention.

  13. Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish.

    Science.gov (United States)

    Ando, Koji; Fukuhara, Shigetomo; Izumi, Nanae; Nakajima, Hiroyuki; Fukui, Hajime; Kelsh, Robert N; Mochizuki, Naoki

    2016-04-15

    Mural cells (MCs) consisting of vascular smooth muscle cells and pericytes cover the endothelial cells (ECs) to regulate vascular stability and homeostasis. Here, we clarified the mechanism by which MCs develop and cover ECs by generating transgenic zebrafish lines that allow live imaging of MCs and by lineage tracing in vivo To cover cranial vessels, MCs derived from either neural crest cells or mesoderm emerged around the preformed EC tubes, proliferated and migrated along EC tubes. During their migration, the MCs moved forward by extending their processes along the inter-EC junctions, suggesting a role for inter-EC junctions as a scaffold for MC migration. In the trunk vasculature, MCs derived from mesoderm covered the ventral side of the dorsal aorta (DA), but not the posterior cardinal vein. Furthermore, the MCs migrating from the DA or emerging around intersegmental vessels (ISVs) preferentially covered arterial ISVs rather than venous ISVs, indicating that MCs mostly cover arteries during vascular development. Thus, live imaging and lineage tracing enabled us to clarify precisely how MCs cover the EC tubes and to identify the origins of MCs.

  14. Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish

    Science.gov (United States)

    Ando, Koji; Fukuhara, Shigetomo; Izumi, Nanae; Nakajima, Hiroyuki; Fukui, Hajime; Kelsh, Robert N.; Mochizuki, Naoki

    2016-01-01

    Mural cells (MCs) consisting of vascular smooth muscle cells and pericytes cover the endothelial cells (ECs) to regulate vascular stability and homeostasis. Here, we clarified the mechanism by which MCs develop and cover ECs by generating transgenic zebrafish lines that allow live imaging of MCs and by lineage tracing in vivo. To cover cranial vessels, MCs derived from either neural crest cells or mesoderm emerged around the preformed EC tubes, proliferated and migrated along EC tubes. During their migration, the MCs moved forward by extending their processes along the inter-EC junctions, suggesting a role for inter-EC junctions as a scaffold for MC migration. In the trunk vasculature, MCs derived from mesoderm covered the ventral side of the dorsal aorta (DA), but not the posterior cardinal vein. Furthermore, the MCs migrating from the DA or emerging around intersegmental vessels (ISVs) preferentially covered arterial ISVs rather than venous ISVs, indicating that MCs mostly cover arteries during vascular development. Thus, live imaging and lineage tracing enabled us to clarify precisely how MCs cover the EC tubes and to identify the origins of MCs. PMID:26952986

  15. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  16. Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope.

    Science.gov (United States)

    Wang, Han-Wei; Le, Thuc T; Cheng, Ji-Xin

    2008-04-01

    A multimodal nonlinear optical imaging system that integrates coherent anti-Stokes Raman scattering (CARS), sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on the same platform was developed and applied to visualize single cells and extracellular matrix in fresh carotid arteries. CARS signals arising from CH(2)-rich membranes allowed visualization of endothelial cells and smooth muscle cells of the arterial wall. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are also rich in CH(2) bonds. The extracellular matrix organization were further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. Label-free imaging of significant components of arterial tissues suggests the potential application of multimodal nonlinear optical microscopy to monitor onset and progression of arterial diseases.

  17. Circulating Endothelial Cells and Endothelial Function predict Major Adverse Cardiac Events and Early Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction

    Science.gov (United States)

    Magdy, Abdel Hamid; Bakhoum, Sameh; Sharaf, Yasser; Sabry, Dina; El-Gengehe, Ahmed T; Abdel-Latif, Ahmed

    2016-01-01

    Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) are mobilized from the bone marrow and increase in the early phase after ST-elevation myocardial infarction (STEMI). The aim of this study was to assess the prognostic significance of CECs and indices of endothelial dysfunction in patients with STEMI. In 78 patients with acute STEMI, characterization of CD34+/VEGFR2+ CECs, and indices of endothelial damage/dysfunction such as brachial artery flow mediated dilatation (FMD) were determined. Blood samples for CECs assessment and quantification were obtained within 24 hours of admission and FMD was assessed during the index hospitalization. At 30 days follow up, the primary composite end point of major cardiac adverse events (MACE) consisting of all-cause mortality, recurrent non-fatal MI, or heart failure and the secondary endpoint of early adverse left ventricular (LV) remodeling were analyzed. The 17 patients (22%) who developed MACE had significantly higher CEC level (P = 0.004), vWF level (P =0.028), and significantly lower FMD (P = 0.006) compared to the remaining patients. Logistic regression analysis showed that CECs level and LV ejection fraction were independent predictors of MACE. The areas under the receiver operating characteristic curves (ROC) for CEC level, FMD, and the logistic model with both markers were 0.73, 0.75, and 0.82 respectively for prediction of the MACE. The 16 patients who developed the secondary endpoint had significantly higher CEC level compared to remaining patients (p =0.038). In conclusion, increased circulating endothelial cells and endothelial dysfunction predicted the occurrence of major adverse cardiac events and adverse cardiac remodeling in patients with STEMI. PMID:26864952

  18. Fibroblast nemosis induces angiogenic responses of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Enzerink, Anna, E-mail: anna.enzerink@helsinki.fi [Haartman Institute, University of Helsinki, P.O. BOX 21, FIN-00014 Helsinki (Finland); Rantanen, Ville, E-mail: ville.rantanen@helsinki.fi [Computational Systems Biology Laboratory, Institute of Biomedicine and Genome-Scale Biology Research Program, University of Helsinki, P.O. BOX 63, 00014 Helsinki (Finland); Vaheri, Antti, E-mail: antti.vaheri@helsinki.fi [Haartman Institute, University of Helsinki, P.O. BOX 21, FIN-00014 Helsinki (Finland)

    2010-03-10

    Increasing evidence points to a central link between inflammation and activation of the stroma, especially of fibroblasts therein. However, the mechanisms leading to such activation mostly remain undescribed. We have previously characterized a novel type of fibroblast activation (nemosis) where clustered fibroblasts upregulated the production of cyclooxygenase-2, secretion of prostaglandins, proteinases, chemotactic cytokines, and hepatocyte growth factor (HGF), and displayed activated nuclear factor-{kappa}B. Now we show that nemosis drives angiogenic responses of endothelial cells. In addition to HGF, nemotic fibroblasts secreted vascular endothelial growth factor (VEGF), and conditioned medium from spheroids promoted sprouting and networking of human umbilical venous endothelial cells (HUVEC). The response was partly inhibited by function-blocking antibodies against HGF and VEGF. Conditioned nemotic fibroblast medium promoted closure of HUVEC and human dermal microvascular endothelial cell monolayer wounds, by increasing the motility of the endothelial cells. Wound closure in HUVEC cells was partly inhibited by the antibodies against HGF. The stromal microenvironment regulates wound healing responses and often promotes tumorigenesis. Nemosis offers clues to the activation process of stromal fibroblasts and provides a model to study the part they play in angiogenesis-related conditions, as well as possibilities for therapeutical approaches desiring angiogenesis in tissue.

  19. Endothelial cells regulate neural crest and second heart field morphogenesis.

    Science.gov (United States)

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-07-04

    Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio-craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio-craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio-craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  20. Endothelial cells regulate neural crest and second heart field morphogenesis

    Directory of Open Access Journals (Sweden)

    Michal Milgrom-Hoffman

    2014-07-01

    Full Text Available Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1 in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1 along with changes in the extracellular matrix (ECM composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  1. Acrylamide induces accelerated endothelial aging in a human cell model.

    Science.gov (United States)

    Sellier, Cyril; Boulanger, Eric; Maladry, François; Tessier, Frédéric J; Lorenzi, Rodrigo; Nevière, Rémi; Desreumaux, Pierre; Beuscart, Jean-Baptiste; Puisieux, François; Grossin, Nicolas

    2015-09-01

    Acrylamide (AAM) has been recently discovered in food as a Maillard reaction product. AAM and glycidamide (GA), its metabolite, have been described as probably carcinogenic to humans. It is widely established that senescence and carcinogenicity are closely related. In vitro, endothelial aging is characterized by replicative senescence in which primary cells in culture lose their ability to divide. Our objective was to assess the effects of AAM and GA on human endothelial cell senescence. Human umbilical vein endothelial cells (HUVECs) cultured in vitro were used as model. HUVECs were cultured over 3 months with AAM or GA (1, 10 or 100 μM) until growth arrest. To analyze senescence, β-galactosidase activity and telomere length of HUVECs were measured by cytometry and semi-quantitative PCR, respectively. At all tested concentrations, AAM or GA reduced cell population doubling compared to the control condition (p < 0.001). β-galactosidase activity in endothelial cells was increased when exposed to AAM (≥10 μM) or GA (≥1 μM) (p < 0.05). AAM (≥10 μM) or GA (100 μM) accelerated telomere shortening in HUVECs (p < 0.05). In conclusion, in vitro chronic exposure to AAM or GA at low concentrations induces accelerated senescence. This result suggests that an exposure to AAM might contribute to endothelial aging.

  2. Characterization and comparison of embryonic stem cell-derived KDR+ cells with endothelial cells.

    Science.gov (United States)

    Sun, Xuan; Cheng, Lamei; Duan, Huaxin; Lin, Ge; Lu, Guangxiu

    2012-09-01

    Growing interest in utilizing endothelial cells (ECs) for therapeutic purposes has led to the exploration of human embryonic stem cells (hESCs) as a potential source for endothelial progenitors. In this study, ECs were induced from hESC lines and their biological characteristics were analyzed and compared with both cord blood endothelial progenitor cells (CBEPCs) and human umbilical vein endothelial cells (HUVECs) in vitro. The results showed that isolated embryonic KDR+ cells (EC-KDR+) display characteristics that were similar to CBEPCs and HUVECs. EC-KDR+, CBEPCs and HUVECs all expressed CD31 and CD144, incorporated DiI-Ac-LDL, bound UEA1 lectin, and were able to form tube-like structures on Matrigel. Compared with CBEPCs and HUVECs, the expression level of endothelial progenitor cell markers such as CD133 and KDR in EC-KDR+ was significantly higher, while the mature endothelial marker vWF was lowly expressed in EC-KDR+. In summary, the study showed that EC-KDR+ are primitive endothelial-like progenitors and might be a potential source for therapeutic vascular regeneration and tissue engineering.

  3. Infection of hepatitis B virus in extrahepatic endothelial tissues mediated by endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Zhang Lili

    2007-04-01

    Full Text Available Abstract Background Hepatitis B virus (HBV replication has been reported to be involved in many extrahepatic viral disorders; however, the mechanism by which HBV is trans-infected into extrahepatic tissues such as HBV associated myocarditis remains largely unknown. Results In this study, we showed that human cord blood endothelial progenitor cells (EPCs, but not human umbilical vein endothelial cells (HUVECs could be effectively infected by uptake of HBV in vitro. Exposure of EPCs with HBV resulted in HBV DNA and viral particles were detected in EPCs at day 3 after HBV challenge, which were peaked around day 7 and declined in 3 weeks. Consistently, HBV envelope surface and core antigens were first detected in EPCs at day 3 after virus challenge and were retained to be detectable for 3 weeks. In contrast, HBV covalently closed circular DNA was not detected in EPCs at any time after virus challenge. Intravenous transplantation of HBV-treated EPCs into myocardial infarction and acute renal ischemia mouse model resulted in incorporation of HBV into injured heart, lung, and renal capillary endothelial tissues. Conclusion These results strongly support that EPCs serve as virus carrier mediating HBV trans-infection into the injured endothelial tissues. The findings might provide a novel mechanism for HBV-associated myocarditis and other HBV-related extrahepatic diseases as well.

  4. Isolation and culture of human umbilical vein endothelial cells (HUVEC).

    Science.gov (United States)

    Cheung, Ambrose L

    2007-02-01

    Human-derived endothelial cells can now be routinely harvested from human umbilical veins. Studies with human umbilical vein endothelial cells (HUVEC) have been conducted with cells from passage 2 to 5. It is now also possible to cryopreserve primary and early-passaged HUVEC for future propagation and for forwarding to an end user by express courier. Stored HUVEC have been stably retrieved even after several years. These retrieval techniques have facilitated the deployment of HUVEC for many studies, including those for homeostasis, inflammatory disorders, atherosclerosis, cancer, and microbial adhesion and invasion. In this unit, we will delineate the procedure for harvesting, propagation, and storage of HUVEC.

  5. Nanofiber density determines endothelial cell behavior on hydrogel matrix

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Fernanda V., E-mail: fernanda@intelab.ufsc.br [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Rambo, Carlos R. [Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dias, Paulo F. [Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Porto, Luismar M. [Department of Chemical and Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2013-12-01

    When cultured under static conditions, bacterial cellulose pellicles, by the nature of the polymer synthesis that involves molecular oxygen, are characterized by two distinct surface sides. The upper surface is denser in fibers (entangled) than the lower surface that shows greater surface porosity. Human umbilical vein endothelial cells (HUVECs) were used to exploit how the microarchitecture (i.e., surface porosity, fiber network structure, surface topology, and fiber density) of bacterial cellulose pellicle surfaces influence cell–biomaterial interaction and therefore cell behavior. Adhesion, cell ingrowth, proliferation, viability and cell death mechanisms were evaluated on the two pellicle surface sides. Cell behavior, including secondary necrosis, is influenced only by the microarchitecture of the surface, since the biomaterial is extremely pure (constituted of cellulose and water only). Cell–cellulose fiber interaction is the determinant signal in the cell–biomaterial responses, isolated from other frequently present interferences such as protein and other chemical traces usually present in cell culture matrices. Our results suggest that microarchitecture of hydrogel materials might determine the performance of biomedical products, such as bacterial cellulose tissue engineering constructs (BCTECs). - Highlights: • Topography of BC pellicle is relevant to determine endothelial cells' fate. • Cell–biomaterial response is affected by the topography of BC-pellicle surface. • Endothelial cells exhibit different behavior depending on the BC topography. • Apoptosis and necrosis of endothelial cells were affected by the BC topography.

  6. In vitro behaviour of endothelial cells on a titanium surface

    Directory of Open Access Journals (Sweden)

    Oliveira-Filho Ricardo

    2008-07-01

    Full Text Available Abstract Background Endothelial cells play an important role in the delivery of cells to the inflammation site, chemotaxis, cell adhesion and extravasation. Implantation of a foreign material into the human body determines inflammatory and repair reactions, involving different cell types with a plethora of released chemical mediators. The evaluation of the interaction of endothelial cells and implanted materials must take into account other parameters in addition to the analysis of maintenance of cell viability. Methods In the present investigation, we examined the behavior of human umbilical vein endothelial cells (HUVECs harvested on titanium (Ti, using histological and immunohistochemical methods. The cells, after two passages, were seeded in a standard density on commercially plate-shaped titanium pieces, and maintained for 1, 7 or 14 days. Results After 14 days, we could observe a confluent monolayer of endothelial cells (ECs on the titanium surface. Upon one-day Ti/cell contact the expression of fibronectin was predominantly cytoplasmatic and stronger than on the control surface. It was observed strong and uniform cell expression along the time of α5β1 integrin on the cells in contact with titanium. Conclusion The attachment of ECs on titanium was found to be related to cellular-derived fibronectin and the binding to its specific receptor, the α5β1 integrin. It was observed that titanium effectively serves as a suitable substrate for endothelial cell attachment, growth and proliferation. However, upon a 7-day contact with Ti, the Weibel-Palade bodies appeared to be not fully processed and exhibited an anomalous morphology, with corresponding alterations of PECAM-1 localization.

  7. Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells

    Science.gov (United States)

    Shen, Qin; Goderie, Susan K.; Jin, Li; Karanth, Nithin; Sun, Yu; Abramova, Natalia; Vincent, Peter; Pumiglia, Kevin; Temple, Sally

    2004-05-01

    Neural stem cells are reported to lie in a vascular niche, but there is no direct evidence for a functional relationship between the stem cells and blood vessel component cells. We show that endothelial cells but not vascular smooth muscle cells release soluble factors that stimulate the self-renewal of neural stem cells, inhibit their differentiation, and enhance their neuron production. Both embryonic and adult neural stem cells respond, allowing extensive production of both projection neuron and interneuron types in vitro. Endothelial coculture stimulates neuroepithelial cell contact, activating Notch and Hes1 to promote self-renewal. These findings identify endothelial cells as a critical component of the neural stem cell niche.

  8. The Neurorepellent Slit2 Inhibits Postadhesion Stabilization of Monocytes Tethered to Vascular Endothelial Cells.

    Science.gov (United States)

    Mukovozov, Ilya; Huang, Yi-Wei; Zhang, Qiuwang; Liu, Guang Ying; Siu, Allan; Sokolskyy, Yaroslav; Patel, Sajedabanu; Hyduk, Sharon J; Kutryk, Michael J B; Cybulsky, Myron I; Robinson, Lisa A

    2015-10-01

    The secreted neurorepellent Slit2, acting through its transmembrane receptor, Roundabout (Robo)-1, inhibits chemotaxis of varied cell types, including leukocytes, endothelial cells, and vascular smooth muscle cells, toward diverse attractants. The role of Slit2 in regulating the steps involved in recruitment of monocytes in vascular inflammation is not well understood. In this study, we showed that Slit2 inhibited adhesion of monocytic cells to activated human endothelial cells, as well as to immobilized ICAM-1 and VCAM-1. Microfluidic live cell imaging showed that Slit2 inhibited the ability of monocytes tethered to endothelial cells to stabilize their actin-associated anchors and to resist detachment in response to increasing shear forces. Transfection of constitutively active plasmids revealed that Slit2 inhibited postadhesion stabilization of monocytes on endothelial cells by preventing activation of Rac1. We further found that Slit2 inhibited chemotaxis of monocytes toward CXCL12 and CCL2. To determine whether Slit2 and Robo-1 modulate pathologic monocyte recruitment associated with vascular inflammation and cardiovascular disease, we tested PBMC from patients with coronary artery disease. PBMC from these patients had reduced surface levels of Robo-1 compared with healthy age- and sex-matched subjects, and Slit2 failed to inhibit chemotaxis of PBMC of affected patients, but not healthy control subjects, toward CCL2. Furthermore, administration of Slit2 to atherosclerosis-prone LDL receptor-deficient mice inhibited monocyte recruitment to nascent atherosclerotic lesions. These results demonstrate that Slit2 inhibits chemotaxis of monocytes, as well as their ability to stabilize adhesions and resist detachment forces. Slit2 may represent a powerful new tool to inhibit pathologic monocyte recruitment in vascular inflammation and atherosclerosis.

  9. Experiment Study of Effect of Perfiuorohexyloctane on Corneal Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoyan Ding; Chunfang Li; Lin Lu; Guanguang Feng; Huling Zheng

    2001-01-01

    Purpose: To investigate the effect of Perfluorohexyloctane (F6H8)on corneal endothelial celIs(CEC) of rabbit eyes. Methods: Fifteen New Zealand white rabbits were devided into two groups:experimental group(F6H8) and control group(BSS) . All rabbits underwent anterior chamber injection of 0. 15ml F6H8 or BSS. Slit-lamp biomicroscopy and corneal endothelium photography were performed pre-operatively and postoperatively. Histopathological examination and Transmission electron microscopy(TEM) were done after the rabbits were sacrificed. Results: All the corneas were clear. Since 4 weeks after operation, the endothelial cells were markedly irregular in size and shape and the number of endothelial cells was markedly decreased. Multilayered retrocorneal membranes (RCM)grew gradually 2 weeks after surgery. Vacuolar degeneration was seen in some endothelial cells. Nuclear degeneration and edema of plasma were seen in TEM. Conclusion: Corneal endothelial cell degenerated after contacting with F6H8 for 2 ~4weeks. As a silicone solvent, it should be removed completely after injection. We don't recommend it to be used as a new intraocular temponade. Eye Science 2001: 17:21 ~ 26.

  10. Opioid-induced proliferation of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Sandra Leo

    2009-05-01

    Full Text Available Sandra Leo1,2, Rony Nuydens1, Theo F Meert11Pain and Neurology, CNS Department, Johnson and Johnson Pharmaceutical Research and Development, a division of Janssen Pharmaceutica N.V, Beerse, Belgium; 2Laboratory of Biological Psychology, University of Leuven, Leuven, BelgiumAbstract: Angiogenesis is an important issue in cancer research and opioids are often used to treat pain in cancer patients. Therefore it is important to know if the use of opioids is associated with an aberrant stimulation of tumor growth triggered by the stimulation of angiogenesis in cancer patients. Some studies in the literature have suggested the presence of the μ3 opioid receptor, known as the receptor for many opioids, on endothelial cells, which are key players in the process of angiogenesis. In this study we used endothelial cells known to express the μ3 opioid receptor (MOR3, to evaluate the effects of morphine on angiogenesis. We first investigated the effect of morphine on the proliferation of endothelial cells. We showed that morphine is able to stimulate vascular endothelial cell proliferation in vitro. This effect of morphine is mediated by the mitogen-activated protein kinase (MAPK pathway as pre-treatment with PD98059 inhibited this excessive proliferation. Because previous studies indicated nitric oxide (NO as a downstream messenger we investigated the role of NO in the aberrant proliferation of endothelial cells. Our data could not confirm these findings using intracellular NO measurements and quantitative fluorescence microscopy. The potential use and pitfalls of opioids in cancer patients is discussed in light of these negative findings. Keywords: endothelial cells, morphine, cell proliferation, MAPK, nitric oxide, μ3 opioid receptor, angiogenesis

  11. Tumor endothelial cells express high pentraxin 3 levels.

    Science.gov (United States)

    Hida, Kyoko; Maishi, Nako; Kawamoto, Taisuke; Akiyama, Kosuke; Ohga, Noritaka; Hida, Yasuhiro; Yamada, Kenji; Hojo, Takayuki; Kikuchi, Hiroshi; Sato, Masumi; Torii, Chisaho; Shinohara, Nobuo; Shindoh, Masanobu

    2016-12-01

    It has been described that tumor progression has many similarities to inflammation and wound healing in terms of the signaling processes involved. Among biological responses, angiogenesis, which is necessary for tumor progression and metastasis, is a common hallmark; therefore, tumor blood vessels have been considered as important therapeutic targets in anticancer therapy. We focused on pentraxin 3 (PTX3), which is a marker of cancer-related inflammation, but we found no reports on its expression and function in tumor blood vessels. Here we showed that PTX3 is expressed in mouse and human tumor blood vessels based on immunohistochemical analysis. We found that PTX3 is upregulated in primary mouse and human tumor endothelial cells compared to normal endothelial cells. We also showed that PTX3 plays an important role in the proliferation of the tumor endothelial cells. These results suggest that PTX3 is an important target for antiangiogenic therapy.

  12. Treponema pallidum Invades Intercellular Junctions of Endothelial Cell Monolayers

    Science.gov (United States)

    Thomas, D. Denee; Navab, Mahamad; Haake, David A.; Fogelman, Alan M.; Miller, James N.; Lovett, Michael A.

    1988-05-01

    The pathogenesis of syphilis reflects invasive properties of Treponema pallidum, but the actual mode of tissue invasion is unknown. We have found two in vitro parallels of treponemal invasiveness. We tested whether motile T. pallidum could invade host cells by determining the fate of radiolabeled motile organisms added to a HeLa cell monolayer; 26% of treponemes associated with the monolayer in a trypsin-resistant niche, presumably between the monolayer and the surface to which it adhered, but did not attain intracellularity. Attachment of T. pallidum to cultured human and rabbit aortic and human umbilical vein endothelial cells was 2-fold greater than to HeLa cells. We added T. pallidum to aortic endothelial cells grown on membrane filters under conditions in which tight intercellular junctions had formed. T. pallidum was able to pass through the endothelial cell monolayers without altering tight junctions, as measured by electrical resistance. In contrast, heat-killed T. pallidum and the nonpathogen Treponema phagedenis biotype Reiter failed to penetrate the monolayer. Transmission electron micrographs of sections of the monolayer showed T. pallidum in intercellular junctions. Our in vitro observations suggest that these highly motile spirochetes may leave the circulation by invading the junctions between endothelial cells.

  13. Amygdalin inhibits angiogenesis in the cultured endothelial cells of diabetic rats

    Directory of Open Access Journals (Sweden)

    Hossein Mirmiranpour

    2012-01-01

    Full Text Available Background: Angiogenesis contributes to different physiological and pathological conditions. The aim of this study was to investigate for the first time the antiangiogenic effects of amygdalin on the cultured endothelial cells of diabetic rats. Materials and Methods: A total of 20 streptozotocin-induced diabetic rats were divided into two equal groups of control and amygdalin-treated animals. Eight weeks after the induction of diabetes, amygdalin was injected intraperitoneally (3 mg/kg to the rats of the treatment group. One day later, rats were sacrificed; the aortic arteries were excised and cut as 2 mm rings. Each aortic ring was incubated in a cell-culture well for 7 days. The process of angiogenesis was monitored by counting the number of microvessels and primary microtubules in each well. Results: Optic microscopy showed proliferation and migration of new endothelial cells to the fibrin gels. The endothelial cells produced primary microtubules which gradually made several branches and finally made a vascular matrix. The number of the primary microtubules and microvessels were significantly lower in the amygdalin-treated vs. control group (P < 0.01. Conclusion: Therefore, amygdalin exerts inhibitory effects on angiogenesis in aortic rings of diabetic rats and may pave a new way for treatment of unfavorable angiogenic conditions.

  14. Differential effect of amylin on endothelial-dependent vasodilation in mesenteric arteries from control and insulin resistant rats.

    Directory of Open Access Journals (Sweden)

    Mariam El Assar

    Full Text Available Insulin resistance (IR is frequently associated with endothelial dysfunction and has been proposed to play a major role in cardiovascular disease (CVD. On the other hand, amylin has long been related to IR. However the role of amylin in the vascular dysfunction associated to IR is not well addressed. Therefore, the aim of the study was to assess the effect of acute treatment with amylin on endothelium-dependent vasodilation of isolated mesenteric arteries from control (CR and insulin resistant (IRR rats and to evaluate the possible mechanisms involved. Five week-old male Wistar rats received 20% D-fructose dissolved in drinking water for 8 weeks and were compared with age-matched CR. Plasmatic levels of glucose, insulin and amylin were measured. Mesenteric microvessels were dissected and mounted in wire myographs to evaluate endothelium-dependent vasodilation to acetylcholine. IRR displayed a significant increase in plasmatic levels of glucose, insulin and amylin and reduced endothelium-dependent relaxation when compared to CR. Acute treatment of mesenteric arteries with r-amylin (40 pM deteriorated endothelium-dependent responses in CR. Amylin-induced reduction of endothelial responses was unaffected by the H2O2 scavenger, catalase, but was prevented by the extracellular superoxide scavenger, superoxide dismutase (SOD or the NADPH oxidase inhibitor (VAS2870. By opposite, amylin failed to further inhibit the impaired relaxation in mesenteric arteries of IRR. SOD, or VAS2870, but not catalase, ameliorated the impairment of endothelium-dependent relaxation in IRR. At concentrations present in insulin resistance conditions, amylin impairs endothelium-dependent vasodilation in mircrovessels from rats with preserved vascular function and low levels of endogenous amylin. In IRR with established endothelial dysfunction and elevated levels of amylin, additional exposure to this peptide has no effect on endothelial vasodilation. Increased superoxide

  15. Increased brachial-ankle pulse wave velocity is associated with impaired endothelial function in patients with coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    LIU Dong-hong; TAO Jun; WANG Yan; LIAO Xin-xue; XU Ming-guo; WANG Jie-mei; YANG Zhen; CHEN Long; L(U) Ming-de; LU Kun

    2006-01-01

    Background Pulse wave velocity and flow-mediated vasodilation (FMD) are widely used as noninvasive modalities for evaluating atherosclerosis. However, it is not known whether pulse wave velocity is related to FMD in patients with coronary artery disease (CAD). Therefore, the present study was designed to investigate the alteration in brachial-ankle pulse wave velocity (baPWV) and endothelial function in CAD patients.Methods Thirty-three patients with CAD and thirty control subjects were recruited for this study. baPWV was measured non-invasively using a VP 1000 automated PWV/ABI analyzer (PWV/ABI, Colin Co. Ltd., Komaki,Japan). Endothelial function as reflected by FMD in the brachial artery was assessed with a high-resolution ultrasound device.Results baPWV was increased in CAD patients compared with control subjects [(1756.1±253.1) cm/s vs(1495.3 ± 202.3) cm/s, P<0.01]. FMD was significantly reduced in CAD patients compared with control subjects[(5.2±2.1) % vs (11.1 ±4.4) %, P<0.01]. baPWV correlated with FMD (r =-0.68, P<0.001). The endothelium-independent vasodilation induced by sublingual nitroglycerin in the brachial artery was similar in the CAD group compared with the control group.Conclusions CAD is associated with increased baPWV and endothelial dysfunction. Increased baPWV parallels diminished endothelial function. Our data therefore suggest that baPWV can be used as a noninvasive surrogate index in clinical evaluation of endothelial function.

  16. Endothelial apoptosis in pulmonary hypertension is controlled by a microRNA/programmed cell death 4/caspase-3 axis.

    Science.gov (United States)

    White, Kevin; Dempsie, Yvonne; Caruso, Paola; Wallace, Emma; McDonald, Robert A; Stevens, Hannah; Hatley, Mark E; Van Rooij, Eva; Morrell, Nicholas W; MacLean, Margaret R; Baker, Andrew H

    2014-07-01

    Pulmonary endothelial cell apoptosis is a transient, yet defining pathogenic event integral to the onset of many pulmonary vascular diseases such as pulmonary hypertension (PH). However, there is a paucity of information concerning the molecular pathway(s) that control pulmonary arterial endothelial cell apoptosis. Here, we introduce a molecular axis that when functionally active seems to induce pulmonary arterial endothelial cell apoptosis in vitro and PH in vivo. In response to apoptotic stimuli, human pulmonary arterial endothelial cells exhibited robust induction of a programmed cell death 4 (PDCD4)/caspase-3/apoptotic pathway that was reversible by direct PDCD4 silencing. Indirectly, this pathway was also repressed by delivery of a microRNA-21 mimic. In vivo, genetic deletion of microRNA-21 in mice (miR-21(-/-) mice) resulted in functional activation of the PDCD4/caspase-3 axis in the pulmonary tissues, leading to the onset of progressive PH. Conversely, microRNA-21-overexpressing mice (CAG-microRNA-21 mice) exhibited reduced PDCD4 expression in pulmonary tissues and were partially resistant to PH in response to chronic hypoxia plus SU 5416 injury. Furthermore, direct PDCD4 knockout in mice (PDCD4(-/-) mice) potently blocked pulmonary caspase-3 activation and the development of chronic hypoxia plus SU 5416 PH, confirming its importance in disease onset. Broadly, these findings support the existence of a microRNA-21-responsive PDCD4/caspase-3 pathway in the pulmonary tissues that when active serves to promote endothelial apoptosis in vitro and PH in vivo.

  17. The effects of different exercise modes for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats

    OpenAIRE

    Park,Jonghoon; Omi, Naomi

    2014-01-01

    [Purpose] Several epidemiological studies have demonstrated that there are positive correlations between vascular disorders and bone loss in postmenopausal women. The aim of the present study was to examine the effect of different types of exercise (e.g., climbing and swimming) for preventing endothelial dysfunction of arteries and bone loss in ovariectomized rats. [Methods] Twenty Sprague-Dawley female rats were randomly divided into three groups: ovariectomy (OVX) plus treatment with vitami...

  18. Effect of Antioxidants on Endothelial Cell Reactive Oxygen Species (ROI) Generation and Adhesion of Leukocytes to Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Huang Qian; Michael Grafe; Kristoph Graf; Hans Lehmkuhl; Eckart Fleck

    2000-01-01

    Objective To investigate whether antioxidants inhibit adhesion of leukocytes to endothelium and furthermore, whether all antioxidants regulate NF-κB activation through a redox sensitive mechanism. Methods The effect of the antioxidative substances pyrrolidin dithiocarbamat (PDTC),dichloroisocumarin (DCI), chrysin and probucol on the endothelial leukocyte adhesion were examined under near physiological flow conditions. The antioxidative activity of antioxidants was measured in a DCF fluorescence assay with flow cytometry. The activation of NF-κB in endothelial cells was investigated in a gel shift assay. Results PDTC and probucol did not show an inhibitory effect to the formation of intracellular H2O2 in TNFct activated human vascular endothelial cells (HUVEC) . Chrysin showed a moderate effect.DCI showed a strong antioxidative effect. In contrast,PDTC and chrysin inhibited the adhesion of HL 60 cells to TNFa-stimulated HUVEC. DCI and probucol did not have influence on the adhesion within the area of the examined shear stresses. Only PDTC inhibited the TNFα-induced activation of NF-kB in endothelial cells.Conclusion The inhibition of the endothelial leukocyte adhesion by antioxidative substances is not to be explained by its antioxidative characteristics only. The inhibitory effect of PDTC on NF-kB activation was probably not related to its antioxidative properties.

  19. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    Energy Technology Data Exchange (ETDEWEB)

    Arbeitman, Claudia R.; Grosso, Mariela F. del [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Behar, Moni [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); García Bermúdez, Gerardo, E-mail: ggb@tandar.cnea.gov.ar [CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Gerencia de Investigación y Aplicaciones, TANDAR-CNEA (Argentina); Escuela de Ciencia y Tecnología, UNSAM (Argentina)

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  20. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Natalia I Dmitrieva

    Full Text Available Cardiovascular diseases (CVDs are a leading health problem worldwide. Epidemiologic studies link high salt intake and conditions predisposing to dehydration such as low water intake, diabetes and old age to increased risk of CVD. Previously, we demonstrated that elevation of extracellular sodium, which is a common consequence of these conditions, stimulates production by endothelial cells of clotting initiator, von Willebrand Factor, increases its level in blood and promotes thrombogenesis. In present study, by PCR array, using human umbilical vein endothelial cells (HUVECs, we analyzed the effect of high NaCl on 84 genes related to endothelial cell biology. The analysis showed that the affected genes regulate many aspects of endothelial cell biology including cell adhesion, proliferation, leukocyte and lymphocyte activation, coagulation, angiogenesis and inflammatory response. The genes whose expression increased the most were adhesion molecules VCAM1 and E-selectin and the chemoattractant MCP-1. These are key participants in the leukocyte adhesion and transmigration that play a major role in the inflammation and pathophysiology of CVD, including atherosclerosis. Indeed, high NaCl increased adhesion of mononuclear cells and their transmigration through HUVECs monolayers. In mice, mild water restriction that elevates serum sodium by 5 mmol/l, increased VCAM1, E-selectin and MCP-1 expression in mouse tissues, accelerated atherosclerotic plaque formation in aortic root and caused thickening or walls of coronary arteries. Multivariable linear regression analysis of clinical data from the Atherosclerosis Risk in Communities Study (n=12779 demonstrated that serum sodium is a significant predictor of 10 Years Risk of coronary heart disease. These findings indicate that elevation of extracellular sodium within the physiological range is accompanied by vascular changes that facilitate development of CVD. The findings bring attention to serum sodium as a

  1. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis.

    Science.gov (United States)

    Dmitrieva, Natalia I; Burg, Maurice B

    2015-01-01

    Cardiovascular diseases (CVDs) are a leading health problem worldwide. Epidemiologic studies link high salt intake and conditions predisposing to dehydration such as low water intake, diabetes and old age to increased risk of CVD. Previously, we demonstrated that elevation of extracellular sodium, which is a common consequence of these conditions, stimulates production by endothelial cells of clotting initiator, von Willebrand Factor, increases its level in blood and promotes thrombogenesis. In present study, by PCR array, using human umbilical vein endothelial cells (HUVECs), we analyzed the effect of high NaCl on 84 genes related to endothelial cell biology. The analysis showed that the affected genes regulate many aspects of endothelial cell biology including cell adhesion, proliferation, leukocyte and lymphocyte activation, coagulation, angiogenesis and inflammatory response. The genes whose expression increased the most were adhesion molecules VCAM1 and E-selectin and the chemoattractant MCP-1. These are key participants in the leukocyte adhesion and transmigration that play a major role in the inflammation and pathophysiology of CVD, including atherosclerosis. Indeed, high NaCl increased adhesion of mononuclear cells and their transmigration through HUVECs monolayers. In mice, mild water restriction that elevates serum sodium by 5 mmol/l, increased VCAM1, E-selectin and MCP-1 expression in mouse tissues, accelerated atherosclerotic plaque formation in aortic root and caused thickening or walls of coronary arteries. Multivariable linear regression analysis of clinical data from the Atherosclerosis Risk in Communities Study (n=12779) demonstrated that serum sodium is a significant predictor of 10 Years Risk of coronary heart disease. These findings indicate that elevation of extracellular sodium within the physiological range is accompanied by vascular changes that facilitate development of CVD. The findings bring attention to serum sodium as a risk factor for

  2. Endothelial progenitor cells induce a phenotype shift in differentiated endothelial cells towards PDGF/PDGFRβ axis-mediated angiogenesis.

    Directory of Open Access Journals (Sweden)

    Moritz Wyler von Ballmoos

    Full Text Available BACKGROUND: Endothelial Progenitor Cells (EPC support neovascularization and regeneration of injured endothelium both by providing a proliferative cell pool capable of differentiation into mature vascular endothelial cells and by secretion of angiogenic growth factors. OBJECTIVE: The aim of this study was to investigate the role of PDGF-BB and PDGFRβ in EPC-mediated angiogenesis of differentiated endothelial cells. METHODS AND RESULTS: Conditioned medium from human EPC (EPC-CM cultured in hypoxic conditions contained substantially higher levels of PDGF-BB as compared to normoxic conditions (P<0.01. EPC-CM increased proliferation (1.39-fold; P<0.001 and migration (2.13-fold; P<0.001 of isolated human umbilical vein endothelial cells (HUVEC, as well as sprouting of vascular structures from ex vivo cultured aortic rings (2.78-fold increase; P = 0.01. The capacity of EPC-CM to modulate the PDGFRβ expression in HUVEC was assessed by western blot and RT-PCR. All the pro-angiogenic effects of EPC-CM on HUVEC could be partially inhibited by inactivation of PDGFRβ (P<0.01. EPC-CM triggered a distinct up-regulation of PDGFRβ (2.5±0.5; P<0.05 and its phosphorylation (3.6±0.6; P<0.05 in HUVEC. This was not observed after exposure of HUVEC to recombinant human PDGF-BB alone. CONCLUSION: These data indicate that EPC-CM sensitize endothelial cells and induce a pro-angiogenic phenotype including the up-regulation of PDGFRβ, thereby turning the PDGF/PDGFRβ signaling-axis into a critical element of EPC-induced endothelial angiogenesis. This finding may be utilized to enhance EPC-based therapy of ischemic tissue in future.

  3. Myocardial regeneration by transplantation of modified endothelial progenitor cells expressing SDF-1 in a rat model

    DEFF Research Database (Denmark)

    Schuh, A.; Kroh, A.; Konschalla, S.

    2012-01-01

    Cell based therapy has been shown to attenuate myocardial dysfunction after myocardial infarction (MI) in different acute and chronic animal models. It has been further shown that stromal-cell derived factor-1a (SDF-1a) facilitates proliferation and migration of endogenous progenitor cells...... into injured tissue. The aim of the present study was to investigate the role of exogenously applied and endogenously mobilized cells in a regenerative strategy for MI therapy. Lentivirally SDF-1a-infected endothelial progenitor cells (EPCs) were injected after 90 min. of ligation and reperfusion of the left...... anterior descending artery (LAD) intramyocardial and intracoronary using a new rodent catheter system. Eight weeks after transplantation, echocardiography and isolated heart studies revealed a significant improvement of LV function after intramyocardial application of lentiviral with SDF-1 infected EPCs...

  4. Growth-limiting role of endothelial cells in endoderm development.

    Science.gov (United States)

    Sand, Fredrik Wolfhagen; Hörnblad, Andreas; Johansson, Jenny K; Lorén, Christina; Edsbagge, Josefina; Ståhlberg, Anders; Magenheim, Judith; Ilovich, Ohad; Mishani, Eyal; Dor, Yuval; Ahlgren, Ulf; Semb, Henrik

    2011-04-15

    Endoderm development is dependent on inductive signals from different structures in close vicinity, including the notochord, lateral plate mesoderm and endothelial cells. Recently, we demonstrated that a functional vascular system is necessary for proper pancreas development, and that sphingosine-1-phosphate (S1P) exhibits the traits of a blood vessel-derived molecule involved in early pancreas morphogenesis. To examine whether S1P(1)-signaling plays a more general role in endoderm development, S1P(1)-deficient mice were analyzed. S1P(1) ablation results in compromised growth of several foregut-derived organs, including the stomach, dorsal and ventral pancreas and liver. Within the developing pancreas the reduction in organ size was due to deficient proliferation of Pdx1(+) pancreatic progenitors, whereas endocrine cell differentiation was unaffected. Ablation of endothelial cells in vitro did not mimic the S1P(1) phenotype, instead, increased organ size and hyperbranching were observed. Consistent with a negative role for endothelial cells in endoderm organ expansion, excessive vasculature was discovered in S1P(1)-deficient embryos. Altogether, our results show that endothelial cell hyperplasia negatively influences organ development in several foregut-derived organs.

  5. Ex Vivo Behaviour of Human Bone Tumor Endothelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Infante, Teresa [SDN-Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, 80143 Naples (Italy); Cesario, Elena [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy); Gallo, Michele; Fazioli, Flavio [Division of Skeletal Muscles Oncology Surgery, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); De Chiara, Annarosaria [Anatomic Pathology Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Tutucci, Cristina; Apice, Gaetano [Medical Oncology of Bone and Soft Sarcoma tissues Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Nigris, Filomena de, E-mail: filomena.denigris@unina2.it [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy)

    2013-04-11

    Cooperation between endothelial cells and bone in bone remodelling is well established. In contrast, bone microvasculature supporting the growth of primary tumors and metastasis is poorly understood. Several antiangiogenic agents have recently been undergoing trials, although an extensive body of clinical data and experimental research have proved that angiogenic pathways differ in each tumor type and stage. Here, for the first time, we characterize at the molecular and functional level tumor endothelial cells from human bone sarcomas at different stages of disease and with different histotypes. We selected a CD31{sup +} subpopulation from biopsies that displayed the capability to grow as adherent cell lines without vascular endothelial growth factor (VEGF). Our findings show the existence in human primary bone sarcomas of highly proliferative endothelial cells expressing CD31, CD44, CD105, CD146 and CD90 markers. These cells are committed to develop capillary-like structures and colony formation units, and to produce nitric oxide. We believe that a better understanding of tumor vasculature could be a valid tool for the design of an efficacious antiangiogenic therapy as adjuvant treatment of sarcomas.

  6. Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Jun-ho JANG; Hugh C KIM; Sun-kyung KIM; Jeong-eun CHOI; Young-jin KIM; Hyun-woo LEE; Seok-yun KANG; Joon-seong PARK; Jin-hyuk CHOI; Ho-yeong LIM

    2007-01-01

    Aim: To investigate the endothelial differentiation potentiality of umbilical cord blood (UCB), we induced the differentiation of endothelial progenitor cells (EPC)from cryopreserved UCB-derived mononuclear cells (MNC). Methods: MNC from cryopreserved UCB and peripheral blood (PB) were cultured in M199 medium with endothelial cell growth supplements for 14 d. EPC were characterized by RT-PCR,flow cytometry, and immunocytochemistry analysis. The proliferation of differen-tiated EPC was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTI') assay, and vascular endothelial growth factor (VEGF) concentra-tion was measured using an ELISA kit. Characteristics of UCB-derived EPC were compared with those of PB-derived EPC. Results: A number of round-shaped cells were loosely attached to the bottom after 24 h culture, and numerous spindle-shaped cells began to appear from the round-shaped ones on d 7. Those cells expressed endothelial markers such as, Fit-1/VEGFR-1, ecNOS, VE-cadherin, yon Willebrand factor, and secreted VEGF. The patterns of endothelial markers of EPC from PB and UCB did not show striking differences. The results of the prolifera-tion and secretion of VEGF were also similar. Conclusion: We successfully cul-tured UCB cells stored at -196 ℃ into cells with the quality of endothelial cells.Those EPC could be used for angiogenic therapeutics by activating adjacent endothelial cells and enhancing angiogenesis.

  7. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  8. Biomechanical changes in endothelial cells result from an inflammatory response

    Science.gov (United States)

    Vaitkus, Janina; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    During periods of infection and disease, the immune system induces the release of TNF-α, an inflammatory cytokine, from a variety of cell types, such as macrophages. TNF-α, while circulating in the vasculature, binds to the apical surface of endothelial cells and causes a wide range of biological and mechanical changes to the endothelium. While the biological changes have been widely studied, the biomechanical aspects have been largely unexplored. Here, we investigated the biomechanical changes of the endothelium as a function of TNF-α treatment. First, we studied the traction forces applied by the endothelium, an effect that is much less studied than others. Through the use of traction force microscopy, we found that TNF-α causes an increase in traction forces applied by the endothelial cells as compared to non-treated cells. Then, we investigated cell morphology, cell mechanics, migration, and cytoskeletal dynamics. We found that in addition to increasing applied traction forces, TNF-α causes an increase in cell area and aspect ratio on average, as well as a shift in the organization of F-actin filaments within the cell. Combining these findings together, our results show that an inflammatory response heavily impacts the morphology, cell mechanics, migration, cytoskeletal dynamics, and applied traction forces of endothelial cells.

  9. High glucose mediates endothelial-to-chondrocyte transition in human aortic endothelial cells

    Directory of Open Access Journals (Sweden)

    Tang Rining

    2012-09-01

    Full Text Available Abstract Background Vascular calcification is one of the common complications in diabetes mellitus. Many studies have shown that high glucose (HG caused cardiovascular calcification, but its underlying mechanism is not fully understood. Recently, medial calcification has been most commonly described in the vessels of patients with diabetes. Chondrocytes were involved in the medial calcification. Recent studies have shown that the conversion into mesenchymal stem cells (MSCs via the endothelial-to-mesenchymal transition (EndMT could be triggered in chondrocytes. Our previous research has indicated that HG induced EndMT in human aortic endothelial cells (HAECs. Therefore, we addressed the question of whether HG-induced EndMT could be transitioned into MSCs and differentiated into chondrocytes. Methods HAECs were divided into three groups: a normal glucose (NG group, HG group (30 mmol/L, and mannitol (5.5 mmol/L NG + 24.5 mmol/L group. Pathological changes were investigated using fluorescence microscopy and electron microscopy. Immunofluorescence staining was performed to detect the co-expression of endothelial markers, such as CD31, and fibroblast markers, such as fibroblast-specific protein 1 (FSP-1. The expression of FSP-1 was detected by real time-PCR and western blots. Endothelial-derived MSCs were grown in MSC medium for one week. The expression of the MSCs markers STRO-1, CD44, CD10 and the chondrocyte marker SOX9 was detected by immunofluorescence staining and western blots. Chondrocyte expression was detected by alcian blue staining. Calcium deposits were analyzed by alizarin red staining. Results The incubation of HAECs exposed to HG resulted in a fibroblast-like phenotype. Double staining of the HAECs indicated a co-localization of CD31 and FSP-1. The expression of FSP-1 was significantly increased in the HG group, and the cells undergoing EndMT also expressed STRO-1, CD44 and SOX9 compared with the controls (P  Conclusions Our

  10. Effect of propionyl-L-carnitine on human endothelial cells

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Scheffer, M.A.

    1991-01-01

    A possible protective effect of propionyl-L-carnitine on human endothelial cells was studied both under basal culture conditions and in the presence of agents capable of influencing oxidative damage, such as glucose/glucose oxidase and oxidized low-density lipoproteins. Propionyl-L-carnitine had no

  11. METABOLIC CAPACITY REGULATES IRON HOMEOSTATIS IN ENDOTHELIAL CELLS

    Science.gov (United States)

    The sensitivity of endothelial cells to oxidative stress and the high concentrations of iron in mitochondria led us to test the hypotheses that (1) changes in respiratory capacity alter iron homeostasis, and (2) lack of aerobic metabolism decreases labile iron stores and attenuat...

  12. Are endothelial cell bioeffects from acoustic droplet vaporization proximity dependent?

    Science.gov (United States)

    Seda, Robinson; Li, David; Fowlkes, J. Brian; Bull, Joseph

    2013-11-01

    Acoustic droplet vaporization (ADV) produces gas microbubbles that provide a means of selective occlusion in gas embolotherapy. Vaporization and subsequent occlusion occur inside blood vessels supplying the targeted tissue, such as tumors. Theoretical and computational studies showed that ADV within a vessel can impart high fluid mechanical stresses on the vessel wall. Previous in vitro studies have demonstrated that vaporization at an endothelial layer may affect cell attachment and viability. The current study is aimed at investigating the role of vaporization distance away from the endothelial layer. HUVECs were cultured in OptiCell™ chambers until reaching confluence. Dodecafluoropentane microdroplets were added, attaining a 10:1 droplet to cell ratio. A single ultrasound pulse (7.5 MHz) consisting of 16 cycles (~ 2 μs) and a 5 MPa peak rarefactional pressure was used to produce ADV while varying the vaporization distance from the endothelial layer (0 μm, 500 μm, 1000 μm). Results indicated that cell attachment and viability was significantly different if the distance was 0 μm (at the endothelial layer). Other distances were not significantly different from the control. ADV will significantly affect the endothelium if droplets are in direct contact with the cells. Droplet concentration and flow conditions inside blood vessels may play an important role. This work was supported by NIH grant R01EB006476.

  13. Cartographic system for spatial distribution analysis of corneal endothelial cells.

    Science.gov (United States)

    Corkidi, G; Márquez, J; García-Ruiz, M; Díaz-Cintra, S; Graue, E

    1994-07-01

    A combined cartographic and morphometric endothelium analyser has been developed by integrating the HISTO 2000 histological imaging and analysis system with a prototype human corneal endothelium analyser. The complete system allows the elaboration and analysis of cartographies of corneal endothelial tissue, and hence the in vitro study of the spatial distribution of corneal endothelial cells, according to their regional morphometric characteristics (cell size and polygonality). The global cartographic reconstruction is obtained by sequential integration of the data analysed for each microscopic field. Subsequently, the location of each microscopically analysed field is referred to its real position on the histologic preparation by means of X-Y co-ordinates; both are provided by micrometric optoelectronic sensors installed on the optical microscope stage. Some cartographies of an excised human corneal keratoconus button in vitro are also presented. These cartographic images allow a macroscopic view of endothelial cells analysed microscopically. Parametric colour images show the spatial distribution of endothelial cells, according to their specific morphometric parameters, and exhibit the variability in size and cellular shape which depend on the analysed area.

  14. Effects of hypergravity on the angiogenic potential of endothelial cells

    NARCIS (Netherlands)

    Costa-Almeida, R. (Raquel); Carvalho, D.T.O. (Daniel T.O.); Ferreira, M.J.S. (Miguel J.S.); Aresta, G. (Guilherme); Gomes, M.E. (Manuela E.); Van Loon, J.J.W.A. (Jack J.W.A.); K. van der Heiden (Kim); Granja, P.L. (Pedro L.)

    2016-01-01

    textabstractAngiogenesis, the formation of blood vessels from pre-existing ones, is a key event in pathology, including cancer progression, but also in homeostasis and regeneration. As the phenotype of endothelial cells (ECs) is continuously regulated by local biomechanical forces, studying endothel

  15. Endothelial progenitor cell-based neovascularization : implications for therapy

    NARCIS (Netherlands)

    Krenning, Guido; van Luyn, Marja J. A.; Harmsen, Martin C.

    2009-01-01

    Ischemic cardiovascular events are a major cause of death globally. Endothelial progenitor cell (EPC)-based approaches can result in improvement of vascular perfusion and might offer clinical benefit. However, although functional improvement is observed, the lack of long-term engraftment of EPCs int

  16. High glucose augments stress-induced apoptosis in endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Wenwen Zhong; Yang Liu; Hui Tian

    2009-01-01

    Hyperglycemia has been identified as one of the important factors involved in the microvascular complications of diabetes, and has been related to increased cardiovascular mortality. Endothelial damage and dysfunction result from diabetes; therefore, the aim of this study was to determine the response of endothelial cells to stressful stimuli, modelled in normal and high glucose concentrations in vitro. Eahy 926 endothelial cells were cultured in 5 mmol/L or 30 mmol/L glucose conditions for a 24 hour period and oxidative stress was induced by exposure to hydrogen peroxide (H2O2) or tumour necrosis factor- α (TNF- α ), following which the protective effect of the glucocorticoid dexamethasone was assessed. Apoptosis, necrosis and cell viability were determined using an ELISA for DNA fragmentation, an enzymatic lactate dehydrogenase assay and an MTT assay, respectively. High glucose significantly increased the susceptibility of Eahy 926 cells to apoptosis in the presence of 500 μmol/L H2O2, above that induced in normal glucose (P<0.02). A reduction of H2O2- and TNF- α -induced apoptosis occurred in both high and low glucose after treatment with dexametha-sone (P<0.05). Conclusion high glucose is effective in significantly augmenting stress caused by H2O2, but not in causing stress alone. These findings suggest a mechanism by which short term hyperglycemia may facilitate and augment endothelial damage.

  17. Nanoparticle accumulation and transcytosis in brain endothelial cell layers

    NARCIS (Netherlands)

    Ye, Dong; Raghnaill, Michelle Nic; Bramini, Mattia; Mahon, Eugene; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A

    2013-01-01

    The blood-brain barrier (BBB) is a selective barrier, which controls and limits access to the central nervous system (CNS). The selectivity of the BBB relies on specialized characteristics of the endothelial cells that line the microvasculature, including the expression of intercellular tight juncti

  18. Thrombospondin type I domain containing 7A (THSD7A) mediates endothelial cell migration and tube formation.

    Science.gov (United States)

    Wang, Chieh-Huei; Su, Pei-Tsu; Du, Xiao-Yan; Kuo, Meng-Wei; Lin, Chia-Yi; Yang, Chung-Chi; Chan, Hau-Shien; Chang, Shing-Jyh; Kuo, Calvin; Seo, Kyunga; Leung, Lawrence L; Chuang, Yung-Jen

    2010-03-01

    Angiogenesis is a highly organized process controlled by a series of molecular events. While much effort has been devoted to identifying angiogenic factors and their reciprocal receptors, far less information is available on the molecular mechanisms underlying directed endothelial cell migration. To search for novel proteins that participate in this process, we used the serial analysis of gene expression (SAGE) transcript profiling approach to identify genes that are selectively expressed in endothelial cells (ECs). Two EC SAGE libraries were constructed from human umbilical vein and artery ECs to enable data-mining against other non-ECs. A novel endothelial protein, Thrombospondin Type I Domain Containing 7A (THSD7A), with preferential expression in placenta vasculature and in human umbilical vein endothelial cells (HUVECs) was identified and targeted for further characterization. Overexpression of a THSD7A carboxyl-terminal fragment in HUVECs inhibited cell migration and disrupted tube formation, while suppression of THSD7A expression enhanced HUVEC migration and tube formation. Immunohistological analysis revealed that THSD7A was expressed at the leading edge of migrating HUVECs, and it co-localized with alpha(V)beta(3) integrin and paxillin. This distribution was dispersed from focal adhesions after disruption of the actin cytoskeleton, suggesting the involvement of THSD7A in cytoskeletal organization. Our results show that THSD7A is a novel placenta endothelial protein that mediates EC migration and tube formation, and they highlight its potential as a new target for anti-angiogenic therapy.

  19. File list: Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachio...cephalic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  20. File list: ALL.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachio...cephalic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  1. File list: His.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephalic endothelial... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  2. File list: DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephalic endothelial... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  3. File list: His.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephalic endothelial... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  4. File list: Oth.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 TFs and others Cardiovascular Brachiocephalic endoth...elial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  5. File list: Oth.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 TFs and others Cardiovascular Brachiocephalic endoth...elial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  6. File list: Pol.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephalic endoth...elial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  7. File list: DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephalic endothelial... cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  8. File list: Pol.CDV.10.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Primary_endothelial_cells hg19 RNA polymerase Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.AllAg.Primary_endothelial_cells.bed ...

  9. File list: His.CDV.50.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Primary_endothelial_cells hg19 Histone Cardiovascular Primary endo...thelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.50.AllAg.Primary_endothelial_cells.bed ...

  10. File list: Oth.CDV.50.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Primary_endothelial_cells hg19 TFs and others Cardiovascular Primary... endothelial cells SRX393516,SRX244128,SRX393518 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.AllAg.Primary_endothelial_cells.bed ...

  11. File list: Pol.CDV.50.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Primary_endothelial_cells hg19 RNA polymerase Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.50.AllAg.Primary_endothelial_cells.bed ...

  12. File list: Oth.CDV.05.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Primary_endothelial_cells hg19 TFs and others Cardiovascular Primary... endothelial cells SRX393518,SRX393516,SRX244128 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.05.AllAg.Primary_endothelial_cells.bed ...

  13. File list: DNS.CDV.20.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Primary_endothelial_cells hg19 DNase-seq Cardiovascular Primary en...dothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Primary_endothelial_cells.bed ...

  14. File list: His.CDV.20.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Primary_endothelial_cells hg19 Histone Cardiovascular Primary endo...thelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.AllAg.Primary_endothelial_cells.bed ...

  15. File list: Oth.CDV.20.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Primary_endothelial_cells hg19 TFs and others Cardiovascular Primary... endothelial cells SRX393516,SRX393518,SRX244128 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.20.AllAg.Primary_endothelial_cells.bed ...

  16. File list: DNS.CDV.50.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Primary_endothelial_cells hg19 DNase-seq Cardiovascular Primary en...dothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Primary_endothelial_cells.bed ...

  17. File list: Pol.CDV.20.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Primary_endothelial_cells hg19 RNA polymerase Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.20.AllAg.Primary_endothelial_cells.bed ...

  18. File list: Unc.CDV.50.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Primary_endothelial_cells hg19 Unclassified Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.50.AllAg.Primary_endothelial_cells.bed ...

  19. File list: His.CDV.10.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Primary_endothelial_cells hg19 Histone Cardiovascular Primary endo...thelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.10.AllAg.Primary_endothelial_cells.bed ...

  20. File list: DNS.CDV.10.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.10.AllAg.Primary_endothelial_cells hg19 DNase-seq Cardiovascular Primary en...dothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.10.AllAg.Primary_endothelial_cells.bed ...

  1. File list: Unc.CDV.20.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Primary_endothelial_cells hg19 Unclassified Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.20.AllAg.Primary_endothelial_cells.bed ...

  2. File list: Oth.CDV.10.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Primary_endothelial_cells hg19 TFs and others Cardiovascular Primary... endothelial cells SRX393516,SRX393518,SRX244128 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.AllAg.Primary_endothelial_cells.bed ...

  3. File list: Unc.CDV.05.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Primary_endothelial_cells hg19 Unclassified Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.05.AllAg.Primary_endothelial_cells.bed ...

  4. File list: DNS.CDV.05.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Primary_endothelial_cells hg19 DNase-seq Cardiovascular Primary en...dothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Primary_endothelial_cells.bed ...

  5. File list: Pol.CDV.05.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Primary_endothelial_cells hg19 RNA polymerase Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.05.AllAg.Primary_endothelial_cells.bed ...

  6. File list: Unc.CDV.10.AllAg.Primary_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Primary_endothelial_cells hg19 Unclassified Cardiovascular Primary... endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.10.AllAg.Primary_endothelial_cells.bed ...

  7. File list: ALL.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachiocephal...ic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  8. File list: Pol.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  9. File list: Unc.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  10. File list: Oth.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 TFs and others Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  11. File list: Unc.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  12. File list: His.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  13. File list: ALL.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachiocephal...ic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  14. File list: DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 DNase-seq Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  15. File list: ALL.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 All antigens Cardiovascular Brachiocephal...ic endothelial cells DRX014747 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  16. File list: His.CDV.10.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Brachiocephalic_endothelial_cells hg19 Histone Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.10.AllAg.Brachiocephalic_endothelial_cells.bed ...

  17. File list: Oth.CDV.20.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Brachiocephalic_endothelial_cells hg19 TFs and others Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.20.AllAg.Brachiocephalic_endothelial_cells.bed ...

  18. File list: Pol.CDV.05.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.05.AllAg.Brachiocephalic_endothelial_cells.bed ...

  19. File list: Pol.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 RNA polymerase Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  20. File list: Unc.CDV.50.AllAg.Brachiocephalic_endothelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Brachiocephalic_endothelial_cells hg19 Unclassified Cardiovascular Brachiocephal...ic endothelial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.50.AllAg.Brachiocephalic_endothelial_cells.bed ...

  1. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10.

    Science.gov (United States)

    Lin, Jibin; He, Shaolin; Sun, Xinghui; Franck, Gregory; Deng, Yihuan; Yang, Dafeng; Haemmig, Stefan; Wara, A K M; Icli, Basak; Li, Dazhu; Feinberg, Mark W

    2016-09-01

    Thrombogenic and inflammatory mediators, such as thrombin, induce NF-κB-mediated endothelial cell (EC) activation and dysfunction, which contribute to pathogenesis of arterial thrombosis. The role of anti-inflammatory microRNA-181b (miR-181b) on thrombosis remains unknown. Our previous study demonstrated that miR-181b inhibits downstream NF-κB signaling in response to TNF-α. Here, we demonstrate that miR-181b uniquely inhibits upstream NF-κB signaling in response to thrombin. Overexpression of miR-181b inhibited thrombin-induced activation of NF-κB signaling, demonstrated by reduction of phospho-IKK-β, -IκB-α, and p65 nuclear translocation in ECs. MiR-181b also reduced expression of NF-κB target genes VCAM-1, intercellular adhesion molecule-1, E-selectin, and tissue factor. Mechanistically, miR-181b targets caspase recruitment domain family member 10 (Card10), an adaptor protein that participates in activation of the IKK complex in response to signals transduced from protease-activated receptor-1. miR-181b reduced expression of Card10 mRNA and protein, but not protease-activated receptor-1. 3'-Untranslated region reporter assays, argonaute-2 microribonucleoprotein immunoprecipitation studies, and Card10 rescue studies revealed that Card10 is a bona fide direct miR-181b target. Small interfering RNA-mediated knockdown of Card10 expression phenocopied effects of miR-181b on NF-κB signaling and targets. Card10 deficiency did not affect TNF-α-induced activation of NF-κB signaling, which suggested stimulus-specific regulation of NF-κB signaling and endothelial responses by miR-181b in ECs. Finally, in response to photochemical injury-induced arterial thrombosis, systemic delivery of miR-181b reduced thrombus formation by 73% in carotid arteries and prolonged time to occlusion by 1.6-fold, effects recapitulated by Card10 small interfering RNA. These data demonstrate that miR-181b and Card10 are important regulators of thrombin-induced EC activation and

  2. Positive Feedback Regulation of Agonist-Stimulated Endothelial Ca2+ Dynamics by KCa3.1 Channels in Mouse Mesenteric Arteries

    DEFF Research Database (Denmark)

    Qian, Xun; Francis, Michael; Köhler, Ralf;

    2014-01-01

    Intermediate and small conductance KCa channels IK1 (KCa3.1) and SK3 (KCa2.3) are primary targets of endothelial Ca(2+) signals in the arterial vasculature, and their ablation results in increased arterial tone and hypertension. Activation of IK1 channels by local Ca(2+) transients from internal...

  3. Vascular endothelial cells and dysfunctions: role of melatonin.

    Science.gov (United States)

    Rodella, Luigi Fabrizio; Favero, Gaia; Foglio, Eleonora; Rossini, Claudia; Castrezzati, Stefania; Lonati, Claudio; Rezzani, Rita

    2013-01-01

    Several pathological conditions, including hypertension, atherosclerosis, diabetes, ischemia/reperfusion injury and nicotine-induced vasculopathy, are associated with vascular endothelial dysfunction characterized by altered secretory output of endothelial cells. Therefore there is a search for molecules and interventions that could restore endothelial function, in particular augmenting NO production, reducing the generation of free radicals and vasoconstrictors and preventing undesired inflammation. The pineal hormone melatonin exhibits several endothelium protective properties: it scavenges free radicals, activates antioxidant defence enzymes, normalizes lipid and blood pressure profile and increases NO bioavailability. Melatonin improved vascular function in experimental hypertension, reducing intimal infiltration and restoring NO production. Melatonin improved the NO pathway also in animal models for the study of diabetes and prevented NO down-regulation and adhesive molecules up-regulation in nicotine-induced vasculopathy. The protection against endothelial damage, vasoconstriction, platelet aggregation and leukocyte infiltration might contribute to the beneficial effects against ischemia-reperfusion injury by melatonin. Therefore, melatonin administration has endothelium-protective potential in several pathological conditions. Nevertheless, it still needs to be established, whether melatonin is able to revert already established endothelial dysfunction in these conditions.

  4. Smooth muscle cell proliferation in the occluded rat carotid artery: lack of requirement for luminal platelets.

    Science.gov (United States)

    Guyton, J. R.; Karnovsky, M. J.

    1979-01-01

    The relationship of intimal smooth muscle cell proliferation in the permanently occluded rat carotid artery to the presence or absence of luminal platelets was examined. Blood was rinsed from the arterial lumen immediately after occlusion and was replaced by autologous, citrated platelet-rich plasma (PRP, 6 to 20 X 10(5) platelets/microliter) or filtered platelet-poor plasma (PPP, less than 100 platelets/microliter). Occluded arteries were studied after 1 to 28 days by light and electron microscopy. Events occurring within the first 2 days included fibrin clot formation, endothelial degeneration and denudation, transmural migration of polymorphonucelar leukocytes and monocytes, and, in PRP-filled arteries, degranulation and disappearance of platelets. By 7 days a neointima was formed by macrophages and undifferentiated cells. The latter cells had some features of vascular smooth muscle cells and were apparently derived from medial cells which traversed the internal elastic lamina. After 14 days, identifiable smooth muscle cells emerged as the predominant cell type in a rapidly growing intimal plaque. No differences could be discerned between arteries originally filled with PRP or PPP. This experimental model is similar to atherosclerosis in dimensions of avascular area and in coexistence of degenerative, inflammatory, and proliferative processes. Cell proliferation deep within an atherosclerotic plaque could be initiated by factors other than platelets, perhaps by products of inflammatory cells. Images Figure 4 Figure 7 Figure 6 Figure 1 Figure 2 Figure 3 Figure 8 Figure 5 PMID:426040

  5. CLINICAL IMPORTANCE OF ENDOTHELIAL DYSFUNCTION AND INSULIN RESISTANCE SYNDROME IN PATIENTS WITH GOUT ASSOCIATED WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2013-01-01

    Full Text Available Aim. To study the endothelium status and determine the correlation between endothelial dysfunction and glucose metabolism in men with gout associated with arterial hypertension (HT.Material and methods. Patients (n=175, all are males with gout were enrolled into the study. Ambulatory blood pressure monitoring (ABPM was performed in all patients. Endothelial function was studied in tests with reactive hyperemia (endothelium-dependent reaction and nitroglycerin (endothelium independent reaction in brachial artery by ultrasonic Doppler examination. The level of nitrite-nitrate and endothelin-1 in blood serum was determined by ELISA technique. Fasting blood glucose and oral glucose tolerance tests were performed as well as fasting insulin blood level was determined by immunoenzyme method. Insulin-resistance index (HOMA-IR was calculated. Patients with HOMA- IR>2.77 were considered as insulin-resistant.Results. Patients with gout demonstrated endothelial deterioration associated with activation of nitroxid producing function, elevation in endothelin-1 serum level (1.36 fmol/ml [0.91; 2.32 fmol/ml] vs 0.19 fmol/ml [0.16; 0.27 fmol/ml] in controls, p<0.05 and impairments of endothelium-dependent vasodilation (6.4% [3.3; 7.3%] vs 17.8% [12.7; 23.9%] in controls, p<0.05. The revealed changes were the most marked in patients with gout associated with HT. The correlation between some endothelial dysfunction in- dices and glucose metabolism was observed.Conclusion. ABPM, brachial artery endothelium-dependent vasodilation and glucose metabolism status should be studied in patients with gout. Complex treatment of cardiovascular diseases in patients with gout should include ω-3 polyunsaturated fatty acids, angiotensin receptor antagonists should be used for antihypertensive therapy.

  6. CLINICAL IMPORTANCE OF ENDOTHELIAL DYSFUNCTION AND INSULIN RESISTANCE SYNDROME IN PATIENTS WITH GOUT ASSOCIATED WITH ARTERIAL HYPERTENSION

    Directory of Open Access Journals (Sweden)

    N. N. Kushnarenko

    2015-09-01

    Full Text Available Aim. To study the endothelium status and determine the correlation between endothelial dysfunction and glucose metabolism in men with gout associated with arterial hypertension (HT.Material and methods. Patients (n=175, all are males with gout were enrolled into the study. Ambulatory blood pressure monitoring (ABPM was performed in all patients. Endothelial function was studied in tests with reactive hyperemia (endothelium-dependent reaction and nitroglycerin (endothelium independent reaction in brachial artery by ultrasonic Doppler examination. The level of nitrite-nitrate and endothelin-1 in blood serum was determined by ELISA technique. Fasting blood glucose and oral glucose tolerance tests were performed as well as fasting insulin blood level was determined by immunoenzyme method. Insulin-resistance index (HOMA-IR was calculated. Patients with HOMA- IR>2.77 were considered as insulin-resistant.Results. Patients with gout demonstrated endothelial deterioration associated with activation of nitroxid producing function, elevation in endothelin-1 serum level (1.36 fmol/ml [0.91; 2.32 fmol/ml] vs 0.19 fmol/ml [0.16; 0.27 fmol/ml] in controls, p<0.05 and impairments of endothelium-dependent vasodilation (6.4% [3.3; 7.3%] vs 17.8% [12.7; 23.9%] in controls, p<0.05. The revealed changes were the most marked in patients with gout associated with HT. The correlation between some endothelial dysfunction in- dices and glucose metabolism was observed.Conclusion. ABPM, brachial artery endothelium-dependent vasodilation and glucose metabolism status should be studied in patients with gout. Complex treatment of cardiovascular diseases in patients with gout should include ω-3 polyunsaturated fatty acids, angiotensin receptor antagonists should be used for antihypertensive therapy.

  7. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Petri, Marcelo H. [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Tellier, Céline; Michiels, Carine [NARILIS, URBC, University of Namur, Namur (Belgium); Ellertsen, Ingvill [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden); Dogné, Jean-Michel [Department of Pharmacy, Namur Thrombosis and Hemostasis Center, University of Namur, Namur (Belgium); Bäck, Magnus, E-mail: Magnus.Back@ki.se [Department of Medicine, Karolinska Institutet and Center for Molecular Medicine, Karolinska University Hospital, Stockholm (Sweden)

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.

  8. Involvement of Rab28 in NF-κB nuclear transport in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    Full Text Available Our previous proteomic analysis revealed the expression of Rab28 in arteries of rats. However, the function of Rab28 in mammalian cells, and its role in vessels are still unknown. Coarctation of abdominal aorta above left kidney artery in rat was used as hypertensive animal model. FX-4000 cyclic strain loading system was used to mimic the mechanical condition on vascular cells during hypertension in vitro. Immunofluorescence and co-immunoprecipitation (Co-IP were used to identify distribution and interaction of Rab28 and nuclear factor kappa B (NF-κB. Rab28 expression was significantly increased in carotid arteries of hypertensive rats. High cyclic strain induced Rab28 expression of endothelial cells (ECs through a paracrine control of vascular smooth muscles cells (VSMCs, which at least partly via angiotensin II (Ang II. Rab28 knockdown decreased proliferation of ECs, while increased apoptosis and migration. Immunofluorescence revealed that Ang II stimulated the co-translocation of Rab28 and NF-κB from cytoplasm into nucleus. Knockdown of Rab28 attenuated NF-κB activation. Co-IP of NF-κB p65 and Rab28 indicated their interaction. Our results revealed that Rab28, as a novel regulator of NF-κB nuclear transport, might participate in the disturbance of EC homeostasis.

  9. Effect of Excessive Potassium Iodide on Rat Aorta Endothelial Cells.

    Science.gov (United States)

    Zhang, Man; Zou, Xiaoyan; Lin, Xinying; Bian, Jianchao; Meng, Huicui; Liu, Dan

    2015-08-01

    The aim of the current study was to investigate the effect of excess iodine on rat aorta endothelial cells and the potential underlying mechanisms. Rat aorta endothelial cells were cultured with iodide ion (3506, 4076, 4647, 5218, 5789, 6360, 6931, and 7512 mg/L) for 48 h. Morphological changes of cells were observed with microscope after Wright-Giemsa staining and acridine orange staining. Cell proliferation was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cell apoptosis was assessed with flow cytometry. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), endothelial nitric oxide synthase (eNOS), induced nitric oxide synthase (iNOS), and concentrations of malondialdehyde (MDA), glutathione (GSH), and protein carbonyl in culture medium were determined with colorimetric method. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was detected by enzyme linked immunosorbent assay. The results showed that excess iodine induced abnormal morphologic changes of cells, inhibited cell proliferation, and increased apoptosis rate. Iodine also reduced the activity of SOD, GSH-Px, and concentrations of GSH and increased the concentrations of MDA and protein carbonyl in a dose-dependent manner. Moreover, excess iodine decreased the activity of eNOS and increased the activity of iNOS and the expression of ICAM-1 and VCAM-1 in culture medium. Our results suggested that excess iodine exposure increased oxidative stress, caused damage of vascular endothelial cells, and altered the expression of adhesion factors and the activity of NOS. These changes may explain the mechanisms underlying excess iodine-induced vascular injury.

  10. Vascular endothelial dysfunction in β-thalassemia occurs despite increased eNOS expression and preserved vascular smooth muscle cell reactivity to NO.

    Directory of Open Access Journals (Sweden)

    Ekatherina Stoyanova

    Full Text Available AIMS: The hereditary β-thalassemia major condition requires regular lifelong blood transfusions. Transfusion-related iron overloading has been associated with the onset of cardiovascular complications, including cardiac dysfunction and vascular anomalies. By using an untransfused murine model of β-thalassemia major, we tested the hypothesis that vascular endothelial dysfunction, alterations of arterial structure and of its mechanical properties would occur despite the absence of treatments. METHODS AND RESULTS: Vascular function and structure were evaluated ex vivo. Compared to the controls, endothelium-dependent vasodilation with acetylcholine was blunted in mesenteric resistance arteries of β-thalassemic mice while the endothelium-independent vasodilator (sodium nitroprusside produced comparable vessel dilation, indicating endothelial cell impairment with preserved smooth muscle cell reactivity to nitric oxide (NO. While these findings suggest a decrease in NO bioavailability, Western blotting showed heightened expression of aortic endothelial NO synthase (eNOS in β-thalassemia. Vascular remodeling of the common carotid arteries revealed increased medial elastin content. Under isobaric conditions, the carotid arteries of β-thalassemic mice exhibited decreased wall stress and softening due to structural changes of the vessel wall. CONCLUSIONS: A complex vasculopathy was identified in untransfused β-thalassemic mice characterized by altered carotid artery structure and endothelial dysfunction of resistance arterioles, likely attributable to reduced NO bioavailability despite enhanced vascular eNOS expression.

  11. Brown spider venom toxins interact with cell surface and are endocytosed by rabbit endothelial cells.

    Science.gov (United States)

    Nowatzki, Jenifer; de Sene, Reginaldo Vieira; Paludo, Katia Sabrina; Veiga, Silvio Sanches; Oliver, Constance; Jamur, Maria Célia; Nader, Helena Bonciani; Trindade, Edvaldo S; Franco, Célia Regina C

    2010-09-15

    Bites from the Loxosceles genus (brown spiders) cause severe clinical symptoms, including dermonecrotic injury, hemorrhage, hemolysis, platelet aggregation and renal failure. Histological findings of dermonecrotic lesions in animals exposed to Loxosceles intermedia venom show numerous vascular alterations. Study of the hemorrhagic consequences of the venom in endothelial cells has demonstrated that the degeneration of blood vessels results not only from degradation of the extracellular matrix molecule or massive leukocyte infiltration, but also from a direct and primary activity of the venom on endothelial cells. Exposure of an endothelial cell line in vitro to L. intermedia venom induce morphological alterations, such as cell retraction and disadhesion to the extracellular matrix. The aim of the present study was to investigate the interaction between the venom toxins and the endothelial cell surface and their possible internalization, in order to illuminate the information about the deleterious effect triggered by venom. After treating endothelial cells with venom toxins, we observed that the venom interacts with cell surface. Venom treatment also can cause a reduction of cell surface glycoconjugates. When cells were permeabilized, it was possible to verify that some venom toxins were internalized by the endothelial cells. The venom internalization involves endocytic vesicles and the venom was detected in the lysosomes. However, no damage to lysosomal integrity was observed, suggesting that the cytotoxic effect evoked by L. intermedia venom on endothelial cells is not mediated by venom internalization.

  12. The chemotactic activity of beta-carotene in endothelial cell progenitors and human umbilical vein endothelial cells: A microarray analysis

    NARCIS (Netherlands)

    Polus, A.; Kiec-wilk, B.; Hartwich, J.; Balwierz, A.; Stachura, J.; Dyduch, G.; Laidler, P.; Zagajewski, J.; Langman, T.; Schmitz, G.; Goralcsky, R.; Wertz, K.; Riss, G.; Keijer, J.; Dembinska-Kiec, A.

    2006-01-01

    Objectives: Endothelial cells and their progenitors play an important role in angiogenesis that is essential for organogenesis and tissue remodelling, as well as for inflammatory responses and carcinogenesis in all periods of life. In the present study, the authors concentrated on the direct effect

  13. ANTIBODIES DEFINING RAT ENDOTHELIAL-CELLS - RECA-1, A PAN-ENDOTHELIAL CELL-SPECIFIC MONOCLONAL-ANTIBODY

    NARCIS (Netherlands)

    DUIJVESTIJN, AM; VANGOOR, H; KLATTER, F; MAJOOR, GD; VANBUSSEL, E; VRIESMAN, PJCV

    1992-01-01

    We have been searching for antibodies reactive with rat endothelial cells. Two monoclonal antibodies (mAb), named RECA-1 and RECA-2 were produced and tested in immunoperoxidase staining on frozen sections of various rat tissues. Staining patterns were compared to those obtained with the mAbs OX-2, O

  14. Changes of Number and Function of Late Endothelial Progenitor Cells in Peripheral Blood of COPD Patients Combined with Pulmonary Hypertension.

    Science.gov (United States)

    Liu, Pei; Zhang, Hongmei; Liu, Jianxin; Sheng, Chunfeng; Zhang, Linlin; Zeng, Yanjun

    2016-06-01

    Objective The objective of this study was to investigate the changes of number and function of late endothelial progenitor cells (EPCs) in peripheral blood of chronic obstructive pulmonary disease (COPD) patients combined with pulmonary hypertension. Subjects and Methods The study enrolled 120 cases including 40 non-COPD and pulmonary arterial hypertension (PAH) patients (non-COPD group), 40 COPD non-PAH patients (COPD group), and 40 COPD patients combined with PAH (COPD + PAH group). Peripheral blood mononuclear cells were separated by density gradient centrifugation, cultured for 21 days, and then identified as late endothelial progenitor cells. The cell colonies were counted. MTT assay, modified Boyden chamber assay, and human fibronectin plates were used to measure the proliferation, migration, and adhesion functions of the late endothelial progenitor cells, respectively. Results Compared with non-COPD and COPD groups, the number of peripheral blood late EPCs in COPD + PAH group was significantly reduced, and the proliferation, adhesion, and migration capacities were significantly lowered; the differences were statistically significant (p number and function of late EPCs decreased with the increase of pulmonary artery pressure (p number of late EPCs in COPD patients combined with pulmonary hypertension was reduced, which implies the impaired cell functions. The changes of number and function were negatively correlated with the severity of pulmonary hypertension.

  15. The effects of TSH on human vascular endothelial cells and smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    田利民

    2014-01-01

    Objective To study the effect of thyroid-stimulating hormone(TSH)on human vascular endothelial cells and smooth muscle cells and to explore the roles of TSH in the development of atherosclerosis.Methods Human vascular endothelial cells and smooth muscle cells were cultured in vitro.MTT method was used to assay the effect of TSH on cell viability.Real-time PCR was used

  16. Characterization of Bioeffects on Endothelial Cells under Acoustic Droplet Vaporization.

    Science.gov (United States)

    Seda, Robinson; Li, David S; Fowlkes, J Brian; Bull, Joseph L

    2015-12-01

    Gas embolotherapy is achieved by locally vaporizing microdroplets through acoustic droplet vaporization, which results in bubbles that are large enough to occlude blood flow directed to tumors. Endothelial cells, lining blood vessels, can be affected by these vaporization events, resulting in cell injury and cell death. An idealized monolayer of endothelial cells was subjected to acoustic droplet vaporization using a 3.5-MHz transducer and dodecafluoropentane droplets. Treatments included insonation pressures that varied from 2 to 8 MPa (rarefactional) and pulse lengths that varied from 4 to 16 input cycles. The bubble cloud generated was directly dependent on pressure, but not on pulse length. Cellular damage increased with increasing bubble cloud size, but was limited to the bubble cloud area. These results suggest that vaporization near the endothelium may impact the vessel wall, an effect that could be either deleterious or beneficial depending on the intended overall therapeutic application.

  17. Nylon-3 polymers that enable selective culture of endothelial cells.

    Science.gov (United States)

    Liu, Runhui; Chen, Xinyu; Gellman, Samuel H; Masters, Kristyn S

    2013-11-06

    Substrates that selectively encourage the growth of specific cell types are valuable for the engineering of complex tissues. Some cell-selective peptides have been identified from extracellular matrix proteins; these peptides have proven useful for biomaterials-based approaches to tissue repair or regeneration. However, there are very few examples of synthetic materials that display selectivity in supporting cell growth. We describe nylon-3 polymers that support in vitro culture of endothelial cells but do not support the culture of smooth muscle cells or fibroblasts. These materials may be promising for vascular biomaterials applications.

  18. Propofol protects against high glucose-induced endothelial adhesion molecules expression in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Zhu Minmin

    2013-01-01

    Full Text Available Abstract Background Hyperglycemia could induce oxidative stress, activate transcription factor nuclear factor kappa B (NF-κB, up-regulate expression of endothelial adhesion molecules, and lead to endothelial injury. Studies have indicated that propofol could attenuate oxidative stress and suppress NF-κB activation in some situations. In the present study, we examined whether and how propofol improved high glucose-induced up-regulation of endothelial adhesion molecules in human umbilical vein endothelial cells (HUVECs. Methods Protein expression of endothelial adhesion molecules, NF-κB, inhibitory subunit of NF-κBα (IκBα, protein kinase Cβ2 (PKCβ2, and phosphorylation of PKCβ2 (Ser660 were measured by Western blot. NF-κB activity was measured by electrophoretic mobility shift assay. PKC activity was measured with SignaTECT PKC assay system. Superoxide anion (O2.- accumulation was measured with the reduction of ferricytochrome c assay. Human peripheral mononuclear cells were prepared with Histopaque-1077 solution. Results High glucose induced the expression of endothelial selectin (E-selectin, intercellular adhesion molecule 1 (ICAM-1, vascular cell adhesion molecule 1 (VCAM-1, and increased mononuclear-endothelial adhesion. High glucose induced O2.- accumulation, PKCβ2 phosphorylation and PKC activation. Further, high glucose decreased IκBα expression in cytoplasm, increased the translocation of NF-κB from cytoplasm to nuclear, and induced NF-κB activation. Importantly, we found these high glucose-mediated effects were attenuated by propofol pretreatment. Moreover, CGP53353, a selective PKCβ2 inhibitor, decreased high glucose-induced NF-κB activation, adhesion molecules expression, and mononuclear-endothelial adhesion. Conclusion Propofol, via decreasing O2.- accumulation, down-regulating PKCβ2 Ser660 phosphorylation and PKC as well as NF-κB activity, attenuated high glucose-induced endothelial adhesion molecules expression

  19. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells.

    Science.gov (United States)

    Headley, Colwyn A; DiSilvestro, David; Bryant, Kelsey E; Hemann, Craig; Chen, Chun-An; Das, Amlan; Ziouzenkova, Ouliana; Durand, Grégory; Villamena, Frederick A

    2016-03-15

    Hyperglycemia has been implicated in the development of endothelial dysfunction through heightened ROS production. Since nitrones reverse endothelial nitric oxide synthase (eNOS) dysfunction, increase antioxidant enzyme activity, and suppress pro-apoptotic signaling pathway and mitochondrial dysfunction from ROS-induced toxicity, the objective of this study was to determine whether nitrone spin traps DMPO, PBN and PBN-LA were effective at duplicating these effects and improving glucose uptake in an in vitro model of hyperglycemia-induced dysfunction using bovine aortic endothelial cells (BAEC). BAEC were cultured in DMEM medium with low (5.5mM glucose, LG) or high glucose (50mM, HG) for 14 days to model in vivo hyperglycemia as experienced in humans with metabolic disease. Improvements in cell viability, intracellular oxidative stress, NO and tetrahydrobiopterin (BH4)​ levels, mitochondrial membrane potential, glucose transport, and activity of antioxidant enzymes were measured from single treatment of BAEC with nitrones for 24h after hyperglycemia. Chronic hyperglycemia significantly increased intracellular ROS by 50%, decreased cell viability by 25%, reduced NO bioavailability by 50%, and decreased (BH4) levels by 15% thereby decreasing NO production. Intracellular glucose transport and superoxide dismutase (SOD) activity were also decreased by 50% and 25% respectively. Nitrone (PBN and DMPO, 50 μM) treatment of BAEC grown in hyperglycemic conditions resulted in the normalization of outcome measures except for SOD and catalase activities. Our findings demonstrate that the nitrones reverse the deleterious effects of hyperglycemia in BAEC. We believe that in vivo testing of these nitrone compounds in models of cardiometabolic disease is warranted.

  20. β-Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells

    Science.gov (United States)

    Coisne, Caroline; Hallier-Vanuxeem, Dorothée; Boucau, Marie-Christine; Hachani, Johan; Tilloy, Sébastien; Bricout, Hervé; Monflier, Eric; Wils, Daniel; Serpelloni, Michel; Parissaux, Xavier; Fenart, Laurence; Gosselet, Fabien

    2016-01-01

    Atherosclerosis is an inflammatory disease that leads to an aberrant accumulation of cholesterol in vessel walls forming atherosclerotic plaques. During this process, the mechanism regulating complex cellular cholesterol pools defined as the reverse cholesterol transport (RCT) is altered as well as expression and functionality of transporters involved in this process, namely ABCA1, ABCG1, and SR-BI. Macrophages, arterial endothelial and smooth muscle cells (SMCs) have been involved in the atherosclerotic plaque formation. As macrophages are widely described as the major cell type forming the foam cells by accumulating intracellular cholesterol, RCT alterations have been poorly studied at the arterial endothelial cell and SMC levels. Amongst the therapeutics tested to actively counteract cellular cholesterol accumulation, the methylated β-cyclodextrin, KLEPTOSE® CRYSMEβ, has recently shown promising effects on decreasing the atherosclerotic plaque size in atherosclerotic mouse models. Therefore we investigated in vitro the RCT process occurring in SMCs and in arterial endothelial cells (ABAE) as well as the ability of some modified β-CDs with different methylation degree to modify RCT in these cells. To this aim, cells were incubated in the presence of different methylated β-CDs, including KLEPTOSE® CRYSMEβ. Both cell types were shown to express basal levels of ABCA1 and SR-BI whereas ABCG1 was solely found in ABAE. Upon CD treatments, the percentage of membrane-extracted cholesterol correlated to the methylation degree of the CDs independently of the lipid composition of the cell membranes. Decreasing the cellular cholesterol content with CDs led to reduce the expression levels of ABCA1 and ABCG1. In addition, the cholesterol efflux to ApoA-I and HDL particles was significantly decreased suggesting that cells forming the blood vessel wall are able to counteract the CD-induced loss of cholesterol. Taken together, our observations suggest that methylated

  1. Signal transduction pathways in mast cell granule-mediated endothelial cell activation

    Directory of Open Access Journals (Sweden)

    Luqi Chi

    2003-01-01

    Full Text Available Background: We have previously shown that incubation of human endothelial cells with mast cell granules results in potentiation of lipopolysaccharide-induced production of interleukin-6 and interleukin-8.

  2. Leptin-induced transphosphorylation of vascular endothelial growth factor receptor increases Notch and stimulates endothelial cell angiogenic transformation.

    Science.gov (United States)

    Lanier, Viola; Gillespie, Corey; Leffers, Merle; Daley-Brown, Danielle; Milner, Joy; Lipsey, Crystal; Webb, Nia; Anderson, Leonard M; Newman, Gale; Waltenberger, Johannes; Gonzalez-Perez, Ruben Rene

    2016-10-01

    Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin's actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin's actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin's effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.

  3. Suprabasin as a novel tumor endothelial cell marker

    Science.gov (United States)

    Alam, Mohammad T; Nagao-Kitamoto, Hiroko; Ohga, Noritaka; Akiyama, Kosuke; Maishi, Nako; Kawamoto, Taisuke; Shinohara, Nobuo; Taketomi, Akinobu; Shindoh, Masanobu; Hida, Yasuhiro; Hida, Kyoko

    2014-01-01

    Recent studies have reported that stromal cells contribute to tumor progression. We previously demonstrated that tumor endothelial cells (TEC) characteristics were different from those of normal endothelial cells (NEC). Furthermore, we performed gene profile analysis in TEC and NEC, revealing that suprabasin (SBSN) was upregulated in TEC compared with NEC. However, its role in TEC is still unknown. Here we showed that SBSN expression was higher in isolated human and mouse TEC than in NEC. SBSN knockdown inhibited the migration and tube formation ability of TEC. We also showed that the AKT pathway was a downstream factor of SBSN. These findings suggest that SBSN is involved in the angiogenic potential of TEC and may be a novel TEC marker. PMID:25283635

  4. Antiproliferative Effects of Drugs on Endothelial and Osteoblastic Cells and Altered Release of Angioregulatory Mediators by Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Hilde Kvestad

    2014-01-01

    Full Text Available The combined use of the histone deacetylase inhibitor valproic acid (VPA, the retinoic acid receptor-α agonist all-trans retinoic acid (ATRA, and the deoxyribonucleic acid polymerase-α inhibitor cytarabine (Ara-C is now considered for disease-stabilizing treatment of acute myeloid leukemia (AML. Leukemogenesis and leukemia cell chemoresistance seem to be supported by neighbouring stromal cells in the bone marrow, and we have therefore investigated the effects of these drugs on primary human endothelial cells and the osteoblastic Cal72 cell line. The results show that VPA and Ara-C have antiproliferative effects, and the antiproliferative/cytotoxic effect of Ara-C was seen at low concentrations corresponding to serum levels found during low-dose in vivo treatment. Furthermore, in functional assays of endothelial migration and tube formation VPA elicited an antiangiogenic effect, whereas ATRA elicited a proangiogenic effect. Finally, VPA and ATRA altered the endothelial cell release of angiogenic mediators; ATRA increased levels of CXCL8, PDGF-AA, and VEGF-D, while VPA decreased VEGF-D and PDGF-AA/BB levels and both drugs reduced MMP-2 levels. Several of these mediators can enhance AML cell proliferation and/or are involved in AML-induced bone marrow angiogenesis, and direct pharmacological effects on stromal cells may thus indirectly contribute to the overall antileukemic activity of this triple drug combination.

  5. Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality

    Science.gov (United States)

    Simard, Trevor; Jung, Richard G.; Motazedian, Pouya; Di Santo, Pietro; Ramirez, F. Daniel; Russo, Juan J.; Labinaz, Alisha; Yousef, Altayyeb; Anantharam, Brijesh; Pourdjabbar, Ali

    2017-01-01

    Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation. PMID:28232850

  6. Doppler assessment of brachial artery flow as a measure of endothelial dysfunction in pediatric chronic renal failure.

    Science.gov (United States)

    Hussein, Gehan; Bughdady, Yasser; Kandil, Manal E; Bazaraa, Hafez M; Taher, Heba

    2008-11-01

    Cardiovascular morbidity and mortality are highly prevalent among patients with chronic renal failure (CRF). Endothelial dysfunction is regarded as the initial reversible step in the development of atherosclerosis and has been demonstrated in all stages of renal failure. Non-invasive techniques to assess endothelial function have been recently developed and have been proven to predict future mortality in adults. We aimed to assess endothelial function in children with stage 4 chronic kidney disease (CKD 4) on conservative treatment, using a-non invasive, high-resolution, ultrasound Doppler study of the brachial artery flow, correlating it with other clinical and laboratory parameters. This study included 34 children with CKD 4 on conservative treatment who were compared with 30 healthy controls. Flow-mediated dilatation (FMD), nitroglycerin-mediated dilatation (NTG-MD) and FMD/NTG-MD ratio were estimated. FMD was abnormal (< 5%) in 24 patients (71%). FMD and FMD/NTG-MD ratio were significantly lower in patients than in controls (P = 0.001 and P = 0.01, respectively). FMD correlated positively with serum calcium and negatively with alkaline phosphatase. We concluded that endothelial dysfunction is present in children with CKD 4 on conservative treatment and may reflect increased atherogenic and thrombogenic properties of the endothelium, contributing to subsequent adverse cardiovascular outcome.

  7. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  8. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    Science.gov (United States)

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.

  9. Pharmacologically active microcarriers for endothelial progenitor cell support and survival.

    Science.gov (United States)

    Musilli, Claudia; Karam, Jean-Pierre; Paccosi, Sara; Muscari, Claudio; Mugelli, Alessandro; Montero-Menei, Claudia N; Parenti, Astrid

    2012-08-01

    The regenerative potential of endothelial progenitor cell (EPC)-based therapies is limited due to poor cell viability and minimal retention following application. Neovascularization can be improved by means of scaffolds supporting EPCs. The aim of the present study was to investigate whether human early EPCs (eEPCs) could be efficiently cultured on pharmacologically active microcarriers (PAMs), made with poly(d,l-lactic-coglycolic acid) and coated with adhesion/extracellular matrix molecules. They may serve as a support for stem cells and may be used as cell carriers providing a controlled delivery of active protein such as the angiogenic factor, vascular endothelial growth factor-A (VEGF-A). eEPC adhesion to fibronectin-coated PAMs (FN-PAMs) was assessed by means of microscopic evaluation and by means of Alamar blue assay. Phospho ERK(1/2) and PARP-1 expression was measured by means of Western blot to assess the survival effects of FN-PAMs releasing VEGF-A (FN-VEGF-PAMs). The Alamar blue assay or a modified Boyden chamber assay was employed to assess proliferative or migratory capacity, respectively. Our data indicate that eEPCs were able to adhere to empty FN-PAMs within a few hours. FN-VEGF-PAMs increased the ability of eEPCs to adhere to them and strongly supported endothelial-like phenotype and cell survival. Moreover, the release of VEGF-A by FN-PAMs stimulated in vitro HUVEC migration and proliferation. These data strongly support the use of PAMs for supporting eEPC growth and survival and for stimulating resident mature human endothelial cells.

  10. Effect of Mitomycin-C augmented trabeculectomy on corneal endothelial cells

    Directory of Open Access Journals (Sweden)

    Reza Zarei

    2015-01-01

    Conclusion: MMC application in trabeculectomy seems to cause a small but significant corneal endothelial loss. Most of the damage occurs intraoperatively, or in the early postoperative period, however progressive endothelial cell loss is not a major concern.

  11. Protection of Candida parapsilosis from neutrophil killing through internalization by human endothelial cells.

    Science.gov (United States)

    Glass, Kyle A; Longley, Sarah J; Bliss, Joseph M; Shaw, Sunil K

    2015-01-01

    Candida parapsilosis is a fungal pathogen that is associated with hematogenously disseminated disease in premature neonates, acutely ill or immunocompromised patients. In cell culture, C. parapsilosis cells are actively and avidly endocytosed by endothelial cells via actin polymerization mediated by N-WASP. Here we present evidence that C. parapsilosis that were internalized by endothelial cells remained alive, and avoided being acidified or otherwise damaged via the host cell. Internalized fungal cells reproduced intracellularly and eventually burst out of the host endothelial cell. When neutrophils were added to endothelium and C. parapsilosis, they patrolled the endothelial surface and efficiently killed most adherent fungal cells prior to endocytosis. But after endocytosis by endothelial cells, internalized fungal cells evaded neutrophil killing. Silencing endothelial N-WASP blocked endocytosis of C. parapsilosis and left fungal cells stranded on the cell surface, where they were susceptible to neutrophil killing. These observations suggest that for C. parapsilosis to escape from the bloodstream, fungi may adhere to and be internalized by endothelial cells before being confronted and phagocytosed by a patrolling leukocyte. Once internalized by endothelial cells, C. parapsilosis may safely replicate to cause further rounds of infection. Immunosurveillance of the intravascular lumen by leukocytes crawling on the endothelial surface and rapid killing of adherent yeast may play a major role in controlling C. parapsilosis dissemination and infected endothelial cells may be a significant reservoir for fungal persistence.

  12. Wall shear stress effects on endothelial-endothelial and endothelial-smooth muscle cell interactions in tissue engineered models of the vascular wall.

    Directory of Open Access Journals (Sweden)

    Dalit Shav

    Full Text Available Vascular functions are affected by wall shear stresses (WSS applied on the endothelial cells (EC, as well as by the interactions of the EC with the adjacent smooth muscle cells (SMC. The present study was designed to investigate the effects of WSS on the endothelial interactions with its surroundings. For this purpose we developed and constructed two co-culture models of EC and SMC, and compared their response to that of a single monolayer of cultured EC. In one co-culture model the EC were cultured on the SMC, whereas in the other model the EC and SMC were cultured on the opposite sides of a membrane. We studied EC-matrix interactions through focal adhesion kinase morphology, EC-EC interactions through VE-Cadherin expression and morphology, and EC-SMC interactions through the expression of Cx43 and Cx37. In the absence of WSS the SMC presence reduced EC-EC connectivity but produced EC-SMC connections using both connexins. The exposure to WSS produced discontinuity in the EC-EC connections, with a weaker effect in the co-culture models. In the EC monolayer, WSS exposure (12 and 4 dyne/cm(2 for 30 min increased the EC-EC interaction using both connexins. WSS exposure of 12 dyne/cm(2 did not affect the EC-SMC interactions, whereas WSS of 4 dyne/cm(2 elevated the amount of Cx43 and reduced the amount of Cx37, with a different magnitude between the models. The reduced endothelium connectivity suggests that the presence of SMC reduces the sealing properties of the endothelium, showing a more inflammatory phenotype while the distance between the two cell types reduced their interactions. These results demonstrate that EC-SMC interactions affect EC phenotype and change the EC response to WSS. Furthermore, the interactions formed between the EC and SMC demonstrate that the 1-side model can simulate better the arterioles, while the 2-side model provides better simulation of larger arteries.

  13. A microarray analysis of two distinct lymphatic endothelial cell populations

    Directory of Open Access Journals (Sweden)

    Bernhard Schweighofer

    2015-06-01

    Full Text Available We have recently identified lymphatic endothelial cells (LECs to form two morphologically different populations, exhibiting significantly different surface protein expression levels of podoplanin, a major surface marker for this cell type. In vitro shockwave treatment (IVSWT of LECs resulted in enrichment of the podoplaninhigh cell population and was accompanied by markedly increased cell proliferation, as well as 2D and 3D migration. Gene expression profiles of these distinct populations were established using Affymetrix microarray analyses. Here we provide additional details about our dataset (NCBI GEO accession number GSE62510 and describe how we analyzed the data to identify differently expressed genes in these two LEC populations.

  14. Interleukin 3 stimulates proliferation and triggers endothelial-leukocyte adhesion molecule 1 gene activation of human endothelial cells.

    Science.gov (United States)

    Brizzi, M F; Garbarino, G; Rossi, P R; Pagliardi, G L; Arduino, C; Avanzi, G C; Pegoraro, L

    1993-06-01

    Proliferation and functional activation of endothelial cells within a tissue site of inflammation are regulated by humoral factors released by cells, such as T lymphocytes and monocytes, infiltrating the perivascular space. In the present study we investigated the effects of interleukin 3 (IL-3), an activated T lymphocyte-derived cytokine, on cultured human umbilical vein endothelial cells (HUVEC). Proliferative activity, evaluated both by estimation of the fraction of cells in the S phase and by direct cell count demonstrated that IL-3, at the dose of 25 ng/ml, enhances more than threefold both DNA synthesis and cell proliferation above baseline control conditions. Binding studies with radioiodinated ligand demonstrated that HUVEC constitutively express a smaller number of IL-3 binding sites (approximately 99 binding sites per cell, with an apparent Kd of 149 pM). Accordingly, molecular analysis showed the presence of transcripts for both alpha and beta subunits of the IL-3 receptor. Functional activation of endothelial cells was evaluated by the expression of the endothelial-leukocyte adhesion molecule 1 (ELAM-1) transcript and by leukocyte adhesion. The ELAM-1 gene transcript was clearly detectable 4 h after IL-3 addition and started to decrease after 12 h. Moreover, IL-3-induced ELAM-1 transcription was followed by enhanced adhesion of neutrophils and CD4+ T cells to HUVEC. The findings that IL-3 can stimulate both proliferation and functional activation of endothelial cells suggest that this cytokine can be involved in sustaining the process of chronic inflammation.

  15. A novel polymer-free ciglitazone-coated vascular stent: in vivo and ex vivo analysis of stent endothelialization in a rabbit iliac artery model

    Science.gov (United States)

    Otto, Sylvia; Jaeger, Kristin; Kolodgie, Frank D.; Muehlstaedt, Diana; Franz, Marcus; Bischoff, Sabine; Schubert, Harald; Figulla, Hans R.; Virmani, Renu; Poerner, Tudor C.

    2016-01-01

    Aim Peroxisome proliferator-activated receptor-gamma (PPARg) agonists have known pleiotropic cardiovascular effects with favourable properties in vascular remodeling, and specifically in suppression of vascular smooth muscle cell proliferation. A novel vascular stent coating using the PPARg ligand ciglitazone (CCS) was investigated regarding its effects on endothelialization after 7 and 28 days. Methods Microporous bare metal stents (BMS) were coated with ciglitazone by ultrasonic flux with a load of 255 μg ciglitazone/stent. SixteenNew Zealand white rabbits, fed a with high cholesterol diet, underwent stent implantation in both iliac arteries. Everolimus-eluting stents (EES) and BMS were comparators. Histology (CD 31 immunostaining, confocal and scanning electron microscopy, morphometry) was performed after 7 and 28 days and by OCT (optical coherence tomography) in vivo after 28 days. Results Microscopy showed comparable results with near complete endothelialization in CCS and BMS (%CD31 above stent struts after 7 days: 67.92±36.35 vs. 84.48±23.86; p = 0.55; endothel % above stent struts: 77.22±27.9 vs. 83.89±27.91; p = 0.78). EES were less endothelialized with minimal fibrin deposition, not found in BMS and CCS (% CD 31 above struts after 28 days, BMS: 100.0±0.0 vs. EES: 95.9±3.57 vs. CCS: 100.0±0.0; p = 0.0292). OCT revealed no uncovered struts in all stents after 28 days. Conclusions Polymer-free coating with ciglitazone, a PPARg agonist is feasible and stable over time. Our data prove unimpaired endothelial coverage of a ciglitazone-coated vascular stent system by histology and OCT. Thus, this PPARg agonist coating deserves further investigation to evaluate its potency on local neointimal suppression. PMID:27613845

  16. The Glycoprofile Patterns of Endothelial Cells in Usual Interstitial Pneumonia

    Directory of Open Access Journals (Sweden)

    A Barkhordari

    2014-09-01

    Full Text Available [THIS ARTICLE HAS BEEN RETRACTED FOR DUPLICATE PUBLICATION] Background: The pathological classification of cryptogenic fibrosing alveolitis has been a matter of debate and controversy for histopathologists.Objective: To identify and specify the glycotypes of capillary endothelial cells in usual interstitial pneumonia (UIP compared to those found in normal tissue.Methods: Sections of formalin-fixed, paraffin-embedded blocks from 16 cases of UIP were studied by lectin histochemistry with a panel of 27 biotinylated lectins and an avidin-peroxidase revealing system.Results: High expression of several classes of glycan was seen de novo in capillary endothelial cells from patients with UIP including small complex and bi/tri-antennary bisected complex N-linked sequences bolund by Concanavalin A and erythro-phytohemagglutinin, respectively, GalNAca1 residues bound by Helix pomatia and Maclura pomifera agglutinins, and L-fucosylated derivatives of type II glycan chains recognized by Ulex europaeus agglutinin-I. Glycans bound by agglutinins from Lycopersicon esculentum (β1,4GlcNAc and Wisteria floribunda (GalNAc as well as GlcNAc oligomers bound by Phytolacca americana and succinylated Wheat Germ agglutinin were also seen in the capillary endothelial cells of UIP. In contrast, L-fucosylated derivatives of type I glycan chains were absent in cells from cases of UIP when Anguilla anguilla agglutinin was applied, unlike the situation in normal tissue.Conclusion: These results may indicate existence of two distinct populations of endothelial cell in UIP with markedly different patterns of glycosylation, reflecting a pattern of differentiation and angiogenesis, which is not detectable morphologically.

  17. ET-1 deletion from endothelial cells protects the kidney during the extension phase of ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Arfian, Nur [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Vignon-Zellweger, Nicolas; Nakayama, Kazuhiko; Yagi, Keiko [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Hirata, Ken-ichi [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ischemia/reperfusion injury (IRI) induced increased endothelin-1 (ET-1) expression. Black-Right-Pointing-Pointer IRI was accompanied by tubular injury and remodeling of renal arteries. Black-Right-Pointing-Pointer IRI increased oxidative stress and inflammation. Black-Right-Pointing-Pointer Genetic suppression of ET-1 in endothelial cells attenuates IRI in the kidney. Black-Right-Pointing-Pointer The mechanisms include the inhibition of oxidative stress and inflammation. -- Abstract: Background: The prognosis of patients after acute kidney injury (AKI) is poor and treatment is limited. AKI is mainly caused by renal ischemia/reperfusion injury (IRI). During the extension phase of IRI, endothelial damage may participate in ischemia and inflammation. Endothelin-1 (ET-1) which is mostly secreted by endothelial cells is an important actor of IRI, particularly through its strong vasoconstrictive properties. We aimed to analyze the specific role of ET-1 from the endothelial cells in AKI. Methods: We used mice lacking ET-1 in the vascular endothelial cells (VEETKO). We induced IRI in VEETKO mice and wild type controls by clamping both kidneys for 30 min. Sham operated mice were used as controls. Mice were sacrificed one day after IRI in order to investigate the extension phase of IRI. Kidney function was assessed based on serum creatinine concentration. Levels of expression of ET-1, its receptor ET{sub A}, protein kinase C, eNOS, E-Cadherin and inflammation markers were evaluated by real time PCR or western blot. Tubular injury was scored on periodic acid Schiff stained kidney preparations. Lumen and wall area of small intrarenal arteries were measured on kidney slices stained for alpha smooth muscle cell actin. Oxidative stress, macrophage infiltration and cell proliferation was evaluated on slices stained for 8-hydroxy-2 Prime -deoxyguanosine, F4/80 and PCNA, respectively. Results: IRI induced kidney failure and increased ET-1 and

  18. Antiproliferative effect of elevated glucose in human microvascular endothelial cells

    Science.gov (United States)

    Kamal, K.; Du, W.; Mills, I.; Sumpio, B. E.

    1998-01-01

    Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P diabetic microangiopathy.

  19. Differences in Cell Activation by Chlamydophila pneumoniae and Chlamydia trachomatis Infection in Human Endothelial Cells

    Science.gov (United States)

    Krüll, M.; Kramp, J.; Petrov, T.; Klucken, A. C.; Hocke, A. C.; Walter, C.; Schmeck, B.; Seybold, J.; Maass, M.; Ludwig, S.; Kuipers, Jens G.; Suttorp, N.; Hippenstiel, S.

    2004-01-01

    Seroepidemiological studies and demonstration of viable bacteria in atherosclerotic plaques have linked Chlamydophila pneumoniae infection to the development of chronic vascular lesions and coronary heart disease. In this study, we characterized C. pneumoniae-mediated effects on human endothelial cells and demonstrated enhanced phosphorylation and activation of the endothelial mitogen-activated protein kinase (MAPK) family members extracellular receptor kinase (ERK1/2), p38-MAPK, and c-Jun-NH2 kinase (JNK). Subsequent interleukin-8 (IL-8) expression was dependent on p38-MAPK and ERK1/2 activation as demonstrated by preincubation of endothelial cells with specific inhibitors for the p38-MAPK (SB202190) or ERK (U0126) pathway. Inhibition of either MAPK had almost no effect on intercellular cell adhesion molecule 1 (ICAM-1) expression. While Chlamydia trachomatis was also able to infect endothelial cells, it did not induce the expression of endothelial IL-8 or ICAM-1. These effects were specific for a direct stimulation with viable C. pneumoniae and independent of paracrine release of endothelial cell-derived mediators like platelet-activating factor, NO, prostaglandins, or leukotrienes. Thus, C. pneumoniae triggers an early signal transduction cascade in target cells that could lead to endothelial cell activation, inflammation, and thrombosis, which in turn may result in or promote atherosclerosis. PMID:15501794

  20. Histone Deacetylase (HDAC Inhibitors Down-Regulate Endothelial Lineage Commitment of Umbilical Cord Blood Derived Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Horia Maniu

    2012-11-01

    Full Text Available To test the involvement of histone deacetylases (HDACs activity in endothelial lineage progression, we investigated the effects of HDAC inhibitors on endothelial progenitors cells (EPCs derived from umbilical cord blood (UCB. Adherent EPCs, that expressed the endothelial marker proteins (PCAM-1, CD105, CD133, and VEGFR2 revealed by flow cytometry were treated with three HDAC inhibitors: Butyrate (BuA, Trichostatin A (TSA, and Valproic acid (VPA. RT-PCR assay showed that HDAC inhibitors down-regulated the expression of endothelial genes such as VE-cadherin, CD133, CXCR4 and Tie-2. Furthermore, flow cytometry analysis illustrated that HDAC inhibitors selectively reduce the expression of VEGFR2, CD117, VE-cadherin, and ICAM-1, whereas the expression of CD34 and CD45 remained unchanged, demonstrating that HDAC is involved in endothelial differentiation of progenitor cells. Real-Time PCR demonstrated that TSA down-regulated telomerase activity probably via suppression of hTERT expression, suggesting that HDAC inhibitor decreased cell proliferation. Cell motility was also decreased after treatment with HDAC inhibitors as shown by wound-healing assay. The balance of acethylation/deacethylation kept in control by the activity of HAT (histone acetyltransferases/HDAC enzymes play an important role in differentiation of stem cells by regulating proliferation and endothelial lineage commitment.

  1. Two-year follow-up of the Genous™ endothelial progenitor cell capturing stent versus the Taxus Liberté stent in patients with de novo coronary artery lesions with a high-risk of restenosis: a randomized, single-center, pilot study

    NARCIS (Netherlands)

    M.A.M. Beijk; M. Klomp; N. van Geloven; K.T. Koch; J.P.S. Henriques; J. Baan; M.M. Vis; J.G.P. Tijssen; J.J. Piek; R.J. de Winter

    2011-01-01

    In the prospective randomized TRIAS pilot study, the bio-engineered Genous™ endothelial progenitor cell capturing stent was compared with the Taxus Liberté™ SR paclitaxel-eluting stent. At 1 yr, a statistically nonsignificant difference in the rates of target vessel failure (cardiac death, myocardia

  2. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology

    DEFF Research Database (Denmark)

    Fens, Marcel H A M; van Wijk, Richard; Andringa, Grietje

    2012-01-01

    Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells gener...... cells play a role in red blood cell clearance in vivo. Significant erythrophagocytosis can induce endothelial cell loss, which may contribute to vasopathological effects as seen, for instance, in sickle cell disease.......Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells...... generally occurs by macrophages in the spleen and liver. Previously, however, we have shown that endothelial cells are also capable of erythrophagocytosis. Key players in the erythrophagocytosis by endothelial cells appeared to be lactadherin and αv-integrin. Phagocytosis via the phosphatidylserine...

  3. Endothelial cells of intramuscular (infantile) hemangioma express glut1.

    Science.gov (United States)

    Drut, Ricardo; Altamirano, Eugenia

    2007-04-01

    Glut1 is a marker of infantile hemangioma, and its positivity has resulted in defining this tumor at several sites (eg, skin, breast, salivary glands, liver, and placenta). We herein report on the presence of Glut1 positivity in the endothelial cells of 2 examples of intramuscular hemangioma, a peculiar tumor considered to be most probably congenital. The finding expands the sites where infantile hemangioma may be recognized and suggests that this intramuscular variety should be renamed intramuscular infantile hemangioma. An additional previously unreported finding was the presence of a strong membranous pattern of staining for Glut1 in the intralesional fat cells, a known component of the tumor, which parallels that of another endothelial marker, namely CD34. These findings could prove useful for diagnostic purposes in small biopsies.

  4. Endothelial progenitor cells: Exploring the pleiotropic effects of statins

    Science.gov (United States)

    Sandhu, Kully; Mamas, Mamas; Butler, Robert

    2017-01-01

    Statins have become a cornerstone of risk modification for ischaemic heart disease patients. A number of studies have shown that they are effective and safe. However studies have observed an early benefit in terms of a reduction in recurrent infarct and or death after a myocardial infarction, prior to any significant change in lipid profile. Therefore, pleiotropic mechanisms, other than lowering lipid profile alone, must account for this effect. One such proposed pleiotropic mechanism is the ability of statins to augment both number and function of endothelial progenitor cells. The ability to augment repair and maintenance of a functioning endothelium may have profound beneficial effect on vascular repair and potentially a positive impact on clinical outcomes in patients with cardiovascular disease. The following literature review will discuss issues surrounding endothelial progenitor cell (EPC) identification, role in vascular repair, factors affecting EPC numbers, the role of statins in current medical practice and their effects on EPC number. PMID:28163831

  5. “Decoding” angiogenesis: new facets controlling endothelial cell behavior

    Directory of Open Access Journals (Sweden)

    Massimo Mattia Santoro

    2016-07-01

    Full Text Available Angiogenesis, the formation of new blood vessels, is a unique and crucial biological process occurring during both development and adulthood. A better understanding of the mechanisms that regulates such process is mandatory to intervene in pathophysiological conditions. Here we highlight some recent argument on new players that are critical in endothelial cells, by summarizing novel discoveries that regulate notorious vascular pathways such as Vascular Endothelial Growth Factor (VEGF, Notch and Planar Cell Polarity, and by discussing more recent findings that put metabolism, redox signaling and hemodynamic forces as novel unforeseen facets in angiogenesis. These new aspects, that critically regulate angiogenesis and vascular homeostasis in health and diseased, represent unforeseen new ground to develop anti-angiogenic therapies.

  6. Human Brain Microvascular Endothelial Cells and Umbilical Vein Endothelial Cells Differentially Facilitate Leukocyte Recruitment and Utilize Chemokines for T Cell Migration

    Directory of Open Access Journals (Sweden)

    Shumei Man

    2008-01-01

    Full Text Available Endothelial cells that functionally express blood brain barrier (BBB properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs and human umbilical vein endothelial cells (HUVECs. With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.

  7. Endothelial progenitor cell transplantation ameliorates elastin breakdown in a Kawasaki disease mouse model

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi; DU Zhong-dong; LIU Jun-feng; LU Dun-xiang; LI Li; GUAN Yun-qian; WAN Sui-gui

    2012-01-01

    Background Coronary artery damage from Kawasaki disease (KD) is closely linked to the dysfunction of endothelial progenitor cells (EPCs).The aim of the present study was to evaluate the therapeutic effect of EPCs transplantation in KD model.Methods Lactobacillus casei cell wall extract (LCWE)-induced KD model in C57BL/6 mice was established.The model mice were injected intravenously with bone marrow-derived in vitro expanded EPCs.Histological evaluation,number of circulating EPCs and the function of bone marrow EPCs were examined at day 56.Results Inflammation was found around the coronary artery of the model mice after 14 days,Elastin breakdown was observed after 56 days.CM-Dil labeled EPCs incorporated into vessel repairing foci was found.At day 56,the number of peripheral EPCs in the KD model group was lower than in EPCs transplanted and control group.The functional index of bone marrow EPCs from the KD model group decreased in proliferation,adhesion and migration.Increased number of circulating EPCs and improved function were observed on the EPCs transplanted group compared with model group.Conclusion Exogenously administered EPCs,which represent a novel strategy could prevent the dysfunction of EPCs,accelerate the repair of coronary artery endothelium lesion and decrease the occurrence of aneurysm.

  8. Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1/CD31): A Multifunctional Vascular Cell Adhesion Molecule.

    Science.gov (United States)

    Delisser, H M; Baldwin, H S; Albelda, S M

    1997-08-01

    PECAM-1/CD31 is a member of the immunoglobulin gene superfamily found on platelets, leukocytes, and endothelial cells, where it concentrates at cell-cell borders. It has been shown to both mediate cell-cell adhesion through homophilic and heterophilic interactions and to transduce intracellular signals that upregulate the function of integrins on leukocytes. Its cellular distribution and ability to mediate adhesive and signaling phenomena suggested that PECAM-1 was a multifunctional vascular cell adhesion molecule involved in leukocyte-endothelial and endothelial-endothelial interactions. These initial suggestions have been largely confirmed as recent studies have implicated PECAM-1 in the inflammatory process and in the formation of blood vessels. As our understanding of the molecular and functional properties of PECAM-1 grows, new insights will be gained that may have therapeutic implications for cardiovascular development and disease. (Trends Cardiovasc Med 1997;7:203-210). © 1997, Elsevier Science Inc.

  9. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    Science.gov (United States)

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  10. Tissue engineering of urethra using human vascular endothelial growth factor gene-modified bladder urothelial cells.

    Science.gov (United States)

    Guan, Yong; Ou, Lailiang; Hu, Gang; Wang, Hongjun; Xu, Yong; Chen, Jiatong; Zhang, Jun; Yu, Yaoting; Kong, Deling

    2008-02-01

    Acquired or congenital abnormalities may lead to urethral damage or loss, often requiring surgical reconstruction. Urethrocutaneous fistula and strictures are common complications, due to inadequate blood supply. Thus, adequate blood supply is a key factor for successful urethral tissue reconstruction. In this study, urethral grafts were prepared by seeding rabbit bladder urothelial cells (UCs) modified with human vascular endothelial growth factor (VEGF(165)) gene in the decellularized artery matrix. A retroviral pMSCV-VEGF(165)-GFP vector was cloned by insertion of VEGF open reading frame into the vector pMSCV-GFP (murine stem cell virus [MSCV]; green fluorescent protein [GFP]). Retrovirus was generated using package cell line 293T. Rabbit UCs were expanded ex vivo and modified with either MSCV-VEGF(165)-GFP or control MSCV-GFP retrovirus. Transduction efficiency was analyzed by fluorescence-activated cell sorting. The expression of VEGF(165) was examined by immunofluorescence, reverse transcript-polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay (ELISA). Decellularized rabbit artery matrix was seeded with genetically modified UCs and was subsequently cultured for 1 week prior to subcutaneous implantation into nude mice. Four weeks after implantation, the implants were harvested and analyzed by fluorescence microscopy, and by histologic and immunohistochemical staining. Ex vivo transduction efficiency of UCs was greater than 50% when concentrated retrovirus was used. The modified cells expressed both VEGF and GFP protein. Furthermore, the VEGF-modified UCs secreted VEGF in a time-dependent manner. Scanning electron microscopy and histochemical analysis of cross sections of the cultured urethral grafts showed that the seeded cells were attached and proliferated on the luminal surface of the decellularized artery matrix. In the subcutaneously implanted vessels, VEGF-modified cells significantly enhanced neovascularization and the

  11. ENDOTHELIAL PROGENITOR CELLS AS SHUTTLE OF ANTICANCER AGENTS.

    Science.gov (United States)

    Laurenzana, Anna; Margheri, Francesca; Chilla', Anastasia; Biagioni, Alessio; Margheri, Giancarlo; Calorini, Lido; Fibbi, Gabriella; Del Rosso, Mario

    2016-08-08

    Cell therapies are treatments in which stem or progenitor cells are induced to differentiate into the specific cell type required to repair damaged or destroyed tissues. Following their discovery, endothelial progenitor cells (EPCs) have stimulated a worldwide interest as possible vehicles to perform an autologous cell-therapy of tumors. Taking into account the tumor-homing properties of EPCs, two different approaches to control cancer progression have been pursued by combining the cell-based therapy with gene therapy or with nanomedicine. The first one is based on the possibility to engineer EPCs to express different transgenes, the second one on the capacity of EPCs to uptake nanomaterials. Here we will review the most important progresses covering the following issues: the characterization of bona fide endothelial progenitor cells, their role in tumor vascularisation and metastasis, and preclinical data about their use in cell-based tumor therapy, considering anti-angiogenic, suicide, immune-stimulating and oncolytic virus gene-therapy. The mixed approach of EPC cell therapy and nanomedicine will be discussed in terms of plasmonic-dependent thermoablation and molecular imaging.

  12. Adherence of human basophils to cultured umbilical vein endothelial cells.

    OpenAIRE

    1988-01-01

    The mechanism by which circulating human basophils adhere to vascular endothelium and migrate to sites of allergic reactions is unknown. Agents have been identified which stimulate the adherence of purified basophils to cultured human umbilical vein vascular endothelial cells (HuVEC). Treatment of HuVEC with interleukin 1, tumor necrosis factor (TNF), bacterial endotoxin, and 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in time and dose-dependent increases of adhesiveness for basophils...

  13. Directionally Solidified Biopolymer Scaffolds: Mechanical Properties and Endothelial Cell Responses

    OpenAIRE

    Meghri, Nichols W.; Donius, Amalie E.; Riblett, Benjamin W.; Martin, Elizabeth J.; Clyne, Alisa Morss; Wegst, Ulrike G.K.

    2010-01-01

    Vascularization is a primary challenge in tissue engineering. To achieve it in a tissue scaffold, an environment with the appropriate structural, mechanical, and biochemical cues must be provided enabling endothelial cells to direct blood vessel growth. While biochemical stimuli such as growth factors can be added through the scaffold material, the culture medium, or both, a well-designed tissue engineering scaffold is required to provide the necessary local structural and mechanical cues. As...

  14. Corneal endothelial cell density and morphology in Phramongkutklao Hospital

    Directory of Open Access Journals (Sweden)

    Narumon Sopapornamorn

    2008-03-01

    Full Text Available Narumon Sopapornamorn1, Manapon Lekskul1, Suthee Panichkul21Department of Ophthalmology, Phramongkutklao Hospital, Bangkok, Thailand; 2Department of Obstetrics and Gynecology, Phramongkutklao College of Medicine, Bangkok, ThailandObjective: To describe the corneal endothelial density and morphology in patients of Phramongkutklao Hospital and the relationship between endothelial cell parameters and other factors.Methods: Four hundred and four eyes of 202 volunteers were included. Noncontact specular microscopy was performed after taking a history and testing the visual acuity, intraocular pressure measurement, Schirmer’s test and routine eye examination by slit lamp microscope. The studied parameters included mean endothelial cell density (MCD, coefficient of variation (CV, and percentage of hexagonality.Results: The mean age of volunteers was 45.73 years; the range being 20 to 80 years old. Their MCD (SD, mean percentage of CV (SD and mean (SD percentage of hexagonality were 2623.49(325 cell/mm2, 39.43(8.23% and 51.50(10.99%, respectively. Statistically, MCD decreased significantly with age (p < 0.01. There was a significant difference in the percentage of CV between genders. There was no statistical significance between parameters and other factors.Conclusion: The normative data of the corneal endothelium of Thai eyes indicated that, statistically, MCD decreased significantly with age. Previous studies have reported no difference in MCD, percentage of CV, and percentage of hexagonality between gender. Nevertheless, significantly different percentages of CV between genders were presented in this study.Keywords: Corneal endothelial cell, parameters, age, gender, smoking, Thailand

  15. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Directory of Open Access Journals (Sweden)

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  16. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells.

    Science.gov (United States)

    Mutin, M; Canavy, I; Blann, A; Bory, M; Sampol, J; Dignat-George, F

    1999-05-01

    Circulating endothelial cells (CECs) have been detected in association with endothelial injury and therefore represent proof of serious damage to the vascular tree. Our aim was to investigate, using the technique of immunomagnetic separation, whether the pathological events in unstable angina (UA) or acute myocardial infarction (AMI) could cause desquamation of endothelial cells in circulating blood compared with effort angina (EA) and noncoronary chest pain. A high CEC count was found in AMI (median, 7.5 cells/mL; interquartile range, 4.1 to 43.5, P chest pain as compared with controls (0; 0 to 0 cells/mL) and stable angina (0; 0 to 0 cells/mL). CEC levels in serial samples peaked at 15.5 (2.7 to 39) cells/mL 18 to 24 hours after AMI (P angina, confirming that these diseases have different etiopathogenic mechanisms.

  17. The soyabean isoflavone genistein modulates endothelial cell behaviour.

    Science.gov (United States)

    Sandoval, Marisa J; Cutini, Pablo H; Rauschemberger, María Belén; Massheimer, Virginia L

    2010-07-01

    The aim of the present study was to investigate the direct action of the phyto-oestrogen genistein (Gen) on vascular endothelial behaviour, either in the presence or absence of proinflammatory agents. In rat aortic endothelial cell (EC) cultures, 24 h of treatment with Gen significantly increased cell proliferation in a wide range of concentration (0.001-10 nm). This mitogenic action was prevented by the oestrogen receptor (ER) antagonist ICI 182780 or by the presence of the specific NO synthase inhibitor l-nitro-arginine methyl ester. When monocytes adhesion to EC was measured, Gen partially attenuated leucocyte adhesion not only under basal conditions, but also in the presence of bacterial lipopolysaccharides (LPS). The effect of the phyto-oestrogen on the expression of EC adhesion molecules was evaluated. Gen down-regulated the enhancement in mRNA levels of E-selectin, vascular cell adhesion molecule-1 and P-selectin elicited by the proinflammatory agent bacterial LPS. The regulation of EC programmed death induced by the isoflavone was also demonstrated. Incubation with 10 nm Gen prevented DNA fragmentation induced by the apoptosis inductor H2O2. The results presented suggest that Gen would exert a protective effect on vascular endothelium, due to its regulatory action on endothelial proliferation, apoptosis and leucocyte adhesion, events that play a critical role in vascular diseases. The molecular mechanism displayed by the phyto-oestrogen involved the participation of the ER and the activation of the NO pathway.

  18. Proteomic profiling of endorepellin angiostatic activity on human endothelial cells

    Directory of Open Access Journals (Sweden)

    Iozzo Renato V

    2008-02-01

    Full Text Available Abstract Background Endorepellin, the C-terminal domain V of the heparan sulfate proteoglycan perlecan, exhibits powerful and targeted anti-angiogenic activity on endothelial cells. To identify proteins involved with endorepellin anti-angiogenic action, we performed an extensive comparative proteomic analysis between vehicle- and endorepellin-treated human endothelial cells. Results Proteomic analysis of endorepellin influence on human umbilical vein endothelial cells identified five differentially expressed proteins, three of which (β-actin, calreticulin, and chaperonin/Hsp60 were down-regulated and two of which (vimentin and the β subunit of prolyl 4-hydroxylase also known as protein disulfide isomerase were up-regulated in response to endorepellin treatment—and associated with a fold change (endorepellin/control ≤ 0.75 and ≥ 2.00, and a statistically significant p-value as determined by Student's t test. Conclusion The proteins identified represent potential target areas involved with endorepellin anti-angiogenic mechanism of action. Further elucidation as such will ultimately provide useful in utilizing endorepellin as an anti-angiogenic therapy in humans.

  19. Interaction of recombinant octameric hemoglobin with endothelial cells.

    Science.gov (United States)

    Gaucher, Caroline; Domingues-Hamdi, Élisa; Prin-Mathieu, Christine; Menu, Patrick; Baudin-Creuza, Véronique

    2015-02-01

    Hemoglobin-based oxygen carriers (HBOCs) may generate oxidative stress, vasoconstriction and inflammation. To reduce these undesirable vasoactive properties, we increased hemoglobin (Hb) molecular size by genetic engineering with octameric Hb, recombinant (r) HbβG83C. We investigate the potential side effects of rHbβG83C on endothelial cells. The rHbβG83C has no impact on cell viability, and induces a huge repression of endothelial nitric oxide synthase gene transcription, a marker of vasomotion. No induction of Intermolecular-Adhesion Molecule 1 and E-selectin (inflammatory markers) transcription was seen. In the presence of rHbβG83C, the transcription of heme oxygenase-1 (oxidative stress marker) is weakly increased compared to the two other HBOCs (references) or Voluven (control). This genetically engineered octameric Hb, based on a human Hb βG83C mutant, leads to little impact at the level of endothelial cell inflammatory response and thus appears as an interesting molecule for HBOC development.

  20. Endothelial cells downregulate apolipoprotein D expression in mural cells through paracrine secretion and Notch signaling.

    Science.gov (United States)

    Pajaniappan, Mohanasundari; Glober, Nancy K; Kennard, Simone; Liu, Hua; Zhao, Ning; Lilly, Brenda

    2011-09-01

    Endothelial and mural cell interactions are vitally important for proper formation and function of blood vessels. These two cell types communicate to regulate multiple aspects of vessel function. In studying genes regulated by this interaction, we identified apolipoprotein D (APOD) as one gene that is downregulated in mural cells by coculture with endothelial cells. APOD is a secreted glycoprotein that has been implicated in governing stress response, lipid metabolism, and aging. Moreover, APOD is known to regulate smooth muscle cells and is found in abundance within atherosclerotic lesions. Our data show that the regulation of APOD in mural cells is bimodal. Paracrine secretion by endothelial cells causes partial downregulation of APOD expression. Additionally, cell contact-dependent Notch signaling plays a role. NOTCH3 on mural cells promotes the downregulation of APOD, possibly through interaction with the JAGGED-1 ligand on endothelial cells. Our results show that NOTCH3 contributes to the downregulation of APOD and by itself is sufficient to attenuate APOD transcript expression. In examining the consequence of decreased APOD expression in mural cells, we show that APOD negatively regulates cell adhesion. APOD attenuates adhesion by reducing focal contacts; however, it has no effect on stress fiber formation. These data reveal a novel mechanism in which endothelial cells control neighboring mural cells through the downregulation of APOD, which, in turn, influences mural cell function by modulating adhesion.

  1. Regulation and function of TRPM7 in human endothelial cells: TRPM7 as a potential novel regulator of endothelial function.

    Directory of Open Access Journals (Sweden)

    Erika Baldoli

    Full Text Available TRPM7, a cation channel of the transient receptor potential channel family, has been identified as a ubiquitous magnesium transporter. We here show that TRPM7 is expressed in endothelial cells isolated from the umbilical vein (HUVEC, widely used as a model of macrovascular endothelium. Quiescence and senescence do not modulate TRPM7 amounts, whereas oxidative stress generated by the addition of hydrogen peroxide increases TRPM7 levels. Moreover, high extracellular magnesium decreases the levels of TRPM7 by activating calpains, while low extracellular magnesium, known to promote endothelial dysfunction, stimulates TRPM7 accumulation partly through the action of free radicals. Indeed, the antioxidant trolox prevents TRPM7 increase by low magnesium. We also demonstrate the unique behaviour of HUVEC in responding to pharmacological and genetic inhibition of TRPM7 with an increase of cell growth and migration. Our results indicate that TRPM7 modulates endothelial behavior and that any condition leading to TRPM7 upregulation might impair endothelial function.

  2. Oxidized extracellular DNA suppresses nitric oxide production by endothelial NO synthase (eNOS) in human endothelial cells (HUVEC).

    Science.gov (United States)

    Kostyuk, S V; Alekseeva, A Yu; Kon'kova, M S; Glebova, K V; Smirnova, T D; Kameneva, L V; Izhevskaya, V L; Veiko, N N

    2014-06-01

    Circulating DNA from patients with cardiovascular diseases reduce the synthesis of NO in endothelial cells, which is probably related to oxidative modification of DNA. To test this hypothesis, HUVEC cells were cultured in the presence of DNA containing ~1 (nonoxidized DNA), 700, or 2100 8-oxodG/10(6) nucleosides. Nonoxidized DNA stimulated the synthesis of NO, which was associated with an increase in the expression of endothelial NO synthase. Oxidized NO decreased the amount of mRNA and protein for endothelial NO synthase, but increased the relative content of its low active form. These changes were accompanied by reduction of NO production. These findings suggest that oxidative modification of circulating extracellular DNA contributes to endothelial dysfunction manifested in suppression of NO production.

  3. Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy

    Institute of Scientific and Technical Information of China (English)

    DONG Fang; HA Xiao-qin

    2010-01-01

    Objective To review the effect of endothelial progenitor cells in neovascularization as well as their application to the therapy of tumors.Data sources The data used in this review were mainly from PubMed for relevant English language articles published from 1997 to 2009. The search term was "endothelial progenitor cells".Study selection Articles regarding the role of endothelial progenitor cells in neovascularization and their application to the therapy of tumors were selected.Results Endothelial progenitor cells isolated from bone marrow, umbilical cord blood and peripheral blood can proliferate, mobilize and differentiate into mature endothelial cells. Experiments suggest endothelial progenitor cells take part in forming the tumor vascular through a variety of mechanisms related to vascular endothelial growth factor, matrix metalloproteinases, chemokine stromal cell-derived factor 1 and its receptor C-X-C receptor-4, erythropoietin, Notchsignal pathway and so on. Evidence demonstrates that the number and function change of endothelial progenitor cells in peripheral blood can be used as a biomarker of the response of cancer patients to anti-tumor therapy and predict the prognosis and recurrence. In addition, irradiation temporarily increased endothelial cells number and decreased the endothelial progenitor cell counts in animal models. Meanwhile, in preclinical experiments, therapeutic gene-modified endothelial progenitor cells have been approved to attenuate tumor growth and offer a novel strategy for cell therapy and gene therapy of cancer.Conclusions Endothelial progenitor cells play a particular role in neovascularization and have attractively potential prognostic and therapeutic applications to malignant tumors. However, a series of problems, such as the definitive biomarkers of endothelial progenitor cells, their interrelationship with radiotherapy and their application in cell therapy and gene therapy of tumors, need further investigation.

  4. Endothelial Cell Toxicity of Vancomycin Infusion Combined with Other Antibiotics.

    Science.gov (United States)

    Drouet, Maryline; Chai, Feng; Barthélémy, Christine; Lebuffe, Gilles; Debaene, Bertrand; Décaudin, Bertrand; Odou, Pascal

    2015-08-01

    French guidelines recommend central intravenous (i.v.) infusion for high concentrations of vancomycin, but peripheral intravenous (p.i.v.) infusion is often preferred in intensive care units. Vancomycin infusion has been implicated in cases of phlebitis, with endothelial toxicity depending on the drug concentration and the duration of the infusion. Vancomycin is frequently infused in combination with other i.v. antibiotics through the same administrative Y site, but the local toxicity of such combinations has been poorly evaluated. Such an assessment could improve vancomycin infusion procedures in hospitals. Human umbilical vein endothelial cells (HUVEC) were challenged with clinical doses of vancomycin over 24 h with or without other i.v. antibiotics. Cell death was measured with the alamarBlue test. We observed an excess cellular death rate without any synergistic effect but dependent on the numbers of combined infusions when vancomycin and erythromycin or gentamicin were infused through the same Y site. Incompatibility between vancomycin and piperacillin-tazobactam was not observed in our study, and rinsing the cells between the two antibiotic infusions did not reduce endothelial toxicity. No endothelial toxicity of imipenem-cilastatin was observed when combined with vancomycin. p.i.v. vancomycin infusion in combination with other medications requires new recommendations to prevent phlebitis, including limiting coinfusion on the same line, reducing the infusion rate, and choosing an intermittent infusion method. Further studies need to be carried out to explore other drug combinations in long-term vancomycin p.i.v. therapy so as to gain insight into the mechanisms of drug incompatibility under multidrug infusion conditions.

  5. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Miyako Kondoh

    Full Text Available There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment.

  6. Hypoxia-Induced Reactive Oxygen Species Cause Chromosomal Abnormalities in Endothelial Cells in the Tumor Microenvironment

    Science.gov (United States)

    Hida, Yasuhiro; Maishi, Nako; Towfik, Alam Mohammad; Inoue, Nobuo; Shindoh, Masanobu; Hida, Kyoko

    2013-01-01

    There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment. PMID:24260373

  7. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Claudia, E-mail: Claudia.Strobel@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany); Oehring, Hartmut [Jena University Hospital – Friedrich Schiller University Jena, Institute of Anatomy II (Germany); Herrmann, Rudolf [University of Augsburg, Department of Physics (Germany); Förster, Martin [Jena University Hospital – Friedrich Schiller University Jena, Department of Internal Medicine I, Division of Pulmonary Medicine and Allergy/Immunology (Germany); Reller, Armin [University of Augsburg, Department of Physics (Germany); Hilger, Ingrid, E-mail: ingrid.hilger@med.uni-jena.de [Jena University Hospital – Friedrich Schiller University Jena, Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology (Germany)

    2015-05-15

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO{sub 2}) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO{sub 2} nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO{sub 2} nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  8. Caveolae-dependent and -independent uptake of albumin in cultured rodent pulmonary endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hui-Hua Li

    Full Text Available Although a critical role for caveolae-mediated albumin transcytosis in pulmonary endothelium is well established, considerably less is known about caveolae-independent pathways. In this current study, we confirmed that cultured rat pulmonary microvascular (RPMEC and pulmonary artery (RPAEC endothelium endocytosed Alexa488-labeled albumin in a saturable, temperature-sensitive mode and internalization resulted in co-localization by fluorescence microscopy with cholera B toxin and caveolin-1. Although siRNA to caveolin-1 (cav-1 in RPAEC significantly inhibited albumin uptake, a remnant portion of albumin uptake was cav-1-independent, suggesting alternative pathways for albumin uptake. Thus, we isolated and cultured mouse lung endothelial cells (MLEC from wild type and cav-1(-/- mice and noted that ~ 65% of albumin uptake, as determined by confocal imaging or live cell total internal reflectance fluorescence microscopy (TIRF, persisted in total absence of cav-1. Uptake of colloidal gold labeled albumin was evaluated by electron microscopy and demonstrated that albumin uptake in MLEC from cav-1(-/- mice was through caveolae-independent pathway(s including clathrin-coated pits that resulted in endosomal accumulation of albumin. Finally, we noted that albumin uptake in RPMEC was in part sensitive to pharmacological agents (amiloride [sodium transport inhibitor], Gö6976 [protein kinase C inhibitor], and cytochalasin D [inhibitor of actin polymerization] consistent with a macropinocytosis-like process. The amiloride sensitivity accounting for macropinocytosis also exists in albumin uptake by both wild type and cav-1(-/- MLEC. We conclude from these studies that in addition to the well described caveolar-dependent pulmonary endothelial cell endocytosis of albumin, a portion of overall uptake in pulmonary endothelial cells is cav-1 insensitive and appears to involve clathrin-mediated endocytosis and macropinocytosis-like process.

  9. Overexpression of Ref-1 Inhibits Lead-induced Endothelial Cell Death via the Upregulation of Catalase.

    Science.gov (United States)

    Lee, Kwon Ho; Lee, Sang Ki; Kim, Hyo Shin; Cho, Eun Jung; Joo, Hee Kyoung; Lee, Eun Ji; Lee, Ji Young; Park, Myoung Soo; Chang, Seok Jong; Cho, Chung-Hyun; Park, Jin Bong; Jeon, Byeong Hwa

    2009-12-01

    The role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the lead (Pb)-induced cellular response was investigated in the cultured endothelial cells. Pb caused progressive cellular death in endothelial cells, which occurred in a concentration- and time-dependent manner. However, Ref-1 overexpression with AdRef-1 significantly inhibited Pb-induced cell death in the endothelial cells. Also the overexpression of Ref-1 significantly suppressed Pb-induced superoxide and hydrogen peroxide elevation in the endothelial cells. Pb exposure induced the downregulation of catalase, it was inhibited by the Ref-1 overexpression in the endothelial cells. Taken together, our data suggests that the overexpression of Ref-1 inhibited Pb-induced cell death via the upregulation of catalase in the cultured endothelial cells.

  10. [Brachial artery endothelial function in teenagers with obesity depending on severity of clinical, trophological and metabolic disorders].

    Science.gov (United States)

    Maskova, G S; Chernaia, N L; Nagornova, E Iu; Fomina, O V; Byteva, T A

    2014-01-01

    We carried out complex examination of 68 adolescents aged 11-17 years with primary obesity which in addition to assessment of clinical-anamnestic, laboratory data and functional parameters of cardiovascular system included registration of reaction of brachial artery endothelium to reactive hyperemia. Vascular endothelial dysfunction (VED) was found in 66% of obese teenagers. Obesity in adolescents with VED was characterized by aggravated course with higher fat mass index (36.8 +/- 4.39%) and prevalence of hypothalamic (42%) and metabolic (8.8%) syndromes. Stable arterial hypertension (AH) found in 37% of examined adolescents was 1.5 times more often registered in those with VED. We distinguished 4 groups of adolescents with various degree of risk of development of cardiovascular disorders: with stable AH and VED (group I), with stable AH and normal function of vascular endothelium (group II), with normal or labile arterial pressure with VED (group III), with normal or labile arterial pressure with normal function of vascular endothelium. It is expedient to supplement examination of obese adolescents with assessment of the state of vascular endothelium aiming at determination of degree of risk of development of atherosclerosis and/or stable AH.

  11. Association among circulating endothelial progenitor cells, insulin resistance and severity of coronary lesions in patients with coronary artery disease%冠心病患者胰岛素水平与内皮祖细胞及冠状动脉病变的相关性

    Institute of Scientific and Technical Information of China (English)

    钱德慧; 黄岚; 赵晓辉; 周音频; 崔斌; 宋耀明; 李爱民; 付晓岚

    2008-01-01

    目的 探讨冠心病患者不同胰岛素水平与循环内皮祖细胞(EPC)数量、功能及冠状动脉病变程度的关系并探讨相关临床意义.方法 69例经选择性冠状动脉造影证实的冠心病患者,按胰岛素水平高低分为胰岛素抵抗(IR)组和胰岛素敏感(IS)组,另设25例健康对照者.采集研究对象外周血以激酶插入区域受体(KDR)和CD133双阳性为循环EPC标记行流式细胞分析,同时采血进行EPC的分离培养,7 d后鉴定并检测增殖及迁移能力,将各组的一般临床资料,循环EPC数量、迁移、增殖能力指标、稳态模型胰岛素抵抗指数(HOMA-IR)及冠状动脉病变Gensini评分进行统计学分析.结果 IR组循环EPC数量明显少于IS组[(0.34±0.08)‰比(0.47±0.09)‰,P<0.01],HOMA-IR自然对数与循环EPC数量呈负相关(r=-0.291,P=0.01),循环EPC数量与Gensini评分呈负相关(r=-0.3984,P=0.006).IR组的增殖能力和迁移能力均低于IS组减弱(P<0.05).结论 冠心病患者血清胰岛素水平与循环EPC数量呈负相关.循环EPC数量及功能与冠状动脉病变程度呈负相关;IR或高胰岛素血症可能部分通过损害循环EPC的数量及功能,从而影响冠状动脉病变程度.%Objective To investigate the correlation between the number and activity of circulating endothelial progenitor cells (EPCs), insulin resistance and severity of coronary lesions in patients with coronary artery disease (CAD). Methods Patients with coronary angiography evidenced CAD were divided in insulin resistance group ( IR, n = 25 ) and insulin sensitive group ( IS, n = 44) according to insulin level, 25 health volunteers served as control. Circulating EPCs were marked as KDR/CD133<'+ cells via fluorescence- activated cell sorter analysis. EPCs were also isolated from peripheral blood and cultured in vitro for 7 days, identified by DiI-acLDL uptake and lectin staining methods. EPCs migration activities were determined by modified Boyden chamber assay

  12. An Endothelial Planar Cell Model for Imaging Immunological Synapse Dynamics.

    Science.gov (United States)

    Martinelli, Roberta; Carman, Christopher V

    2015-12-24

    Adaptive immunity is regulated by dynamic interactions between T cells and antigen presenting cells ('APCs') referred to as 'immunological synapses'. Within these intimate cell-cell interfaces discrete sub-cellular clusters of MHC/Ag-TCR, F-actin, adhesion and signaling molecules form and remodel rapidly. These dynamics are thought to be critical determinants of both the efficiency and quality of the immune responses that develop and therefore of protective versus pathologic immunity. Current understanding of immunological synapses with physiologic APCs is limited by the inadequacy of the obtainable imaging resolution. Though artificial substrate models (e.g., planar lipid bilayers) offer excellent resolution and have been extremely valuable tools, they are inherently non-physiologic and oversimplified. Vascular and lymphatic endothelial cells have emerged as an important peripheral tissue (or stromal) compartment of 'semi-professional APCs'. These APCs (which express most of the molecular machinery of professional APCs) have the unique feature of forming virtually planar cell surface and are readily transfectable (e.g., with fluorescent protein reporters). Herein a basic approach to implement endothelial cells as a novel and physiologic 'planar cellular APC model' for improved imaging and interrogation of fundamental antigenic signaling processes will be described.

  13. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  14. Endothelial progenitor cell down-regulation in a mouse model of Kawasaki disease

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-feng; DU Zhong-dong; CHEN Zhi; LU Dun-xiang; LI Li; GUAN Yun-qian; WAN Sui-gui

    2012-01-01

    Background Cardiovascular complications of Kawasaki disease (KD) are a common cause of heart disease in pediatric populations.Previous studies have suggested a role for endothelial progenitor cells (EPCs) in coronary artery lesions associated with KD.However,long-term observations of EPCs during the natural progression of this disorder are lacking.Using an experimental model of KD,we aimed to determine whether the coronary artery lesions are associated with down-regulation of EPCs.Methods To induce KD,C57BL/6 mice were administered an intraperitoneal injection of Lactobacillus casei cell wall extract (LCWE; phosphate buffered saline used as control vehicle).Study groups included:group A (14 days following LCWE injection),group B (56 days following LCWE injection) and group C (controls).Numbers of circulating EPCs (positively staining for both CD34 and FIk-1 while staining negative for CD45) were evaluated using flow cytometry.Bone marrow mononuclear cells were cultured in vitro to expand EPCs for functional analysis.In vitro EPC proliferation,adhesion and migration were assessed.Results The model was shown to exhibit similar coronary artery lesions to KD patients with coronary aneurysms.Numbers of circulating EPCs decreased significantly in the KD models (groups A and B) compared to controls ((0.017±0.008)% VS.(0.028±0.007)%,P<0.05 and (0.016±0.007)% vs.(0.028±0.007)%,P <0.05).Proliferative,adhesive and migratory properties of EPCs were markedly impaired in groups A and B.Conclusion Coronary artery lesions in KD occur as a consequence of impaired vascular injury repair,resulting from excess consumption of EPCs together with a functional impairment of bone marrow EPCs and their precursors.

  15. Antioxidant Effects of Sheep Whey Protein on Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Efthalia Kerasioti

    2016-01-01

    Full Text Available Excessive production of reactive oxygen species (ROS may cause endothelial dysfunction and consequently vascular disease. In the present study, the possible protective effects of sheep whey protein (SWP from tert-butyl hydroperoxide- (tBHP- induced oxidative stress in endothelial cells (EA.hy926 were assessed using oxidative stress biomarkers. These oxidative stress biomarkers were glutathione (GSH and ROS levels determined by flow cytometry. Moreover, thiobarbituric acid-reactive substances (TBARS, protein carbonyls (CARB, and oxidized glutathione (GSSG were determined spectrophotometrically. The results showed that SWP at 0.78, 1.56, 3.12, and 6.24 mg of protein mL−1 increased GSH up to 141%, while it decreased GSSG to 46.7%, ROS to 58.5%, TBARS to 52.5%, and CARB to 49.0%. In conclusion, the present study demonstrated for the first time that SWP protected endothelial cells from oxidative stress. Thus, SWP may be used for developing food supplements or biofunctional foods to attenuate vascular disturbances associated with oxidative stress.

  16. Response of the sensorimotor cortex of cerebral palsy rats receiving transplantation of vascular endothelial growth factor 165-transfected neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Jielu Tan; Xiangrong Zheng; Shanshan Zhang; Yujia Yang; Xia Wang; Xiaohe Yu; Le Zhong

    2014-01-01

    Neural stem cells are characterized by the ability to differentiate and stably express exogenous ge-nes. Vascular endothelial growth factor plays a role in protecting local blood vessels and neurons of newborn rats with hypoxic-ischemic encephalopathy. Transplantation of vascular endothelial growth factor-transfected neural stem cells may be neuroprotective in rats with cerebral palsy. In this study, 7-day-old Sprague-Dawley rats were divided into ifve groups: (1) sham operation (control), (2) cerebral palsy model alone or with (3) phosphate-buffered saline, (4) vascular en-dothelial growth factor 165 + neural stem cells, or (5) neural stem cells alone. hTe cerebral palsy model was established by ligating the letf common carotid artery followed by exposure to hypox-ia. Phosphate-buffered saline, vascular endothelial growth factor + neural stem cells, and neural stem cells alone were administered into the sensorimotor cortex using the stereotaxic instrument and microsyringe. Atfer transplantation, the radial-arm water maze test and holding test were performed. Immunohistochemistry for vascular endothelial growth factor and histology using hematoxylin-eosin were performed on cerebral cortex. Results revealed that the number of vas-cular endothelial growth factor-positive cells in cerebral palsy rats transplanted with vascular endothelial growth factor-transfected neural stem cells was increased, the time for ifnding water and the ifnding repetitions were reduced, the holding time was prolonged, and the degree of cell degeneration or necrosis was reduced. hTese ifndings indicate that the transplantation of vascu-lar endothelial growth factor-transfected neural stem cells alleviates brain damage and cognitive deifcits, and is neuroprotective in neonatal rats with hypoxia ischemic-mediated cerebral palsy.

  17. Lipopolysaccharide-induced apoptosis in transformed bovine brain endothelial cells and human dermal microvessel endothelial cells: the role of JNK.

    Science.gov (United States)

    Karahashi, Hisae; Michelsen, Kathrin S; Arditi, Moshe

    2009-06-01

    Stimulation of transformed bovine brain endothelial cells (TBBEC) with LPS leads to apoptosis while human microvessel endothelial cells (HMEC) need the presence of cycloheximide (CHX) with LPS to induce apoptosis. To investigate the molecular mechanism of LPS-induced apoptosis in HMEC or TBBEC, we analyzed the involvement of MAPK and PI3K in TBBEC and HMEC. LPS-induced apoptosis in TBBEC was hallmarked by the activation of caspase 3, caspase 6, and caspase 8 after the stimulation of LPS, followed by poly(ADP-ribose) polymerase cleavage and lactate dehydrogenase release. We also observed DNA cleavage determined by TUNEL staining in TBBEC treated with LPS. Herbimycin A, a tyrosine kinase inhibitor, and SP600125, a JNK inhibitor, suppressed the activation of caspases and lactate dehydrogenase release. Moreover, a PI3K inhibitor (LY294002) suppressed activation of caspases and combined treatment with both SP600125 and LY294002 completely inhibited the activation of caspases. These results suggest that the JNK signaling pathway through the tyrosine kinase and PI3K pathways is involved in the induction of apoptosis in LPS-treated TBBEC. On the other hand, we observed sustained JNK activation in HMEC treated with LPS and CHX, and neither ERK1/2 nor AKT were activated. The addition of SP600125 suppressed phosphorylation of JNK and the activation of caspase 3 in HMEC treated with LPS and CHX. These results suggest that JNK plays an important role in the induction of apoptosis in endothelial cells.

  18. Inhibitory Effects of Luofengning-0 Formula on the Growth and Prolifer-ation of Human Coronary Artery Smooth Muscle Cells and Endothelial Cells in Vitro%络风宁0号方对体外培养的人冠状动脉平滑肌细胞和内皮细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    李红梅; 王显

    2016-01-01

    目的:探讨络风宁0号方不同配比对体外培养的人冠状动脉平滑肌细胞( HCASMC)和内皮细胞( HCAEC)生长的影响及剂量依赖关系,明确中药复合物抗再狭窄的有效性和可行性,为中药药物涂层支架的研发提供实验数据支持。方法用体外培养的HCASMC和HCAEC 3~5代,加入96孔细胞培养板,选择抑制HCASMC生长,而对HCAEC无抑制作用的浓度范围(0.2~3.13 mg/ml)作为最佳的水蛭素浓度与1μmol/L紫杉醇组成复合物干预两种细胞,培养48 h后用噻唑蓝比色试验( MTT法)测定各孔吸光值( A值),选择对HCASMC抑制程度最大,而对HCAEC抑制程度最小且与单用紫杉醇比较能最大程度减轻对HCAEC抑制作用的浓度作为络风宁0号方的最佳配比。结果在对HCAEC增殖的影响方面,复合药物组与单药紫杉醇组比较,差异无统计学意义( P﹥0.05),而对HCASMC的抑制率明显高于单药紫杉醇组( P﹤0.05),且1μmol/L紫杉醇+0.39 mg/ml水蛭素组可明显降低单药紫杉醇对HCAEC的抑制率。结论选择1μmol/L紫杉醇+0.39 mg/ml水蛭素作为络风宁0号方的最佳配比,可最大限度抑制HCASMC增殖的同时对HCAEC有最小的抑制作用,具备抗再狭窄的有效性和可行性,为新型中药药物涂层支架的研发提供新的思路。%Objective To prove the efficacy of Luofengning-0 complexes and provide the experi-mental data for preventing restenosis,we investigated the inhibitory effects of different ratios of Luofengning-0 complexes on the growth of human coronary artery smooth muscle cells( HCASMC )and endothelial cells ( HCAEC)cultivated in vitro. Methods The 3~5 generations of HCASMC and HCAEC were respectively seeded onto 96-well plates,1 μmol/L paclitaxel was added into hirudin of various concentrations to prepare different ratios of Luofengning-0 complexes. Then HCASMC and HCAEC cells were co-incubated with dif-ferent ratios

  19. Salvianolic acid B improves vascular endothelial function in diabetic rats with blood glucose fluctuations via suppression of endothelial cell apoptosis.

    Science.gov (United States)

    Ren, Younan; Tao, Shanjun; Zheng, Shuguo; Zhao, Mengqiu; Zhu, Yuanmei; Yang, Jieren; Wu, Yuanjie

    2016-11-15

    Vascular endothelial cell injury is an initial event in atherosclerosis. Salvianolic acid B (Sal B), a main bioactive component in the root of Salvia miltiorrhiza, has vascular protective effect in diabetes, but the underlying mechanisms remain unclear. The present study investigated the effect of Sal B on vascular endothelial function in diabetic rats with blood glucose fluctuations and the possible mechanisms implicated. The results showed that diabetic rats developed marked endothelial dysfunction as exhibited by impaired acetylcholine induced vasodilation. Supplementation with Sal B resulted in an evident improvement of endothelial function. Phosphorylation (Ser 1177) of endothelial nitric oxide synthase (eNOS) was significantly restored in Sal B treated diabetic rats, accompanied by an evident recovery of NO metabolites. Sal B effectively reduced vascular endothelial cell apoptosis, with Bcl-2 protein up-regulated and Bax protein down-regulated markedly. Treatment with Sal B led to an evident amelioration of oxidative stress in diabetic rats as manifested by enhanced antioxidant capacity and decreased contents of malondialdehyde in aortas. Protein levels of NOX2 and NOX4, two main isoforms of NADPH oxidase known as the major source of reactive oxygen species in the vasculature, were markedly decreased in Sal B treated groups. In addition, treatment with Sal B led to an evident decrease of serum lipids. Taken together, this study indicates that Sal B is capable of improving endothelial function in diabetic rats with blood glucose fluctuations, of which the underlying mechanisms might be related to suppression of endothelial cell apoptosis and stimulation of eNOS phosphorylation (Ser 1177).

  20. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1

    DEFF Research Database (Denmark)

    Bai, Bo; Man, Andy W C; Yang, Kangmin;

    2016-01-01

    for the prevention of vascular ageing. Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site...

  1. The influence of propofol on P-selectin expression and nitric oxide production in re-oxygenated human umbilical vein endothelial cells.

    LENUS (Irish Health Repository)

    Corcoran, T B

    2012-02-03

    BACKGROUND: Reperfusion injury is characterized by free radical production and endothelial inflammation. Neutrophils mediate much of the end-organ injury that occurs, requiring P-selectin-mediated neutrophil-endothelial adhesion, and this is associated with decreased endothelial nitric oxide production. Propofol has antioxidant properties in vitro which might abrogate this inflammation. METHODS: Cultured human umbilical vein endothelial cells were exposed to 20 h of hypoxia and then returned to normoxic conditions. Cells were treated with saline, Diprivan 5 microg\\/l or propofol 5 microg\\/l for 4 h after re-oxygenation and were then examined for P-selectin expression and supernatant nitric oxide concentrations for 24 h. P-selectin was determined by flow cytometry, and culture supernatant nitric oxide was measured as nitrite. RESULTS: In saline-treated cells, a biphasic increase in P-selectin expression was demonstrated at 30 min (P = 0.01) and 4 h (P = 0.023) after re-oxygenation. Propofol and Diprivan prevented these increases in P-selectin expression (P < 0.05). Four hours after re-oxygenation, propofol decreased endothelial nitric oxide production (P = 0.035). CONCLUSION: This is the first study to demonstrate an effect of propofol upon endothelial P-selectin expression. Such an effect may be important in situations of reperfusion injury such as cardiac transplantation and coronary artery bypass surgery. We conclude that propofol attenuates re-oxygenation-induced endothelial inflammation in vitro.

  2. Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes.

    Science.gov (United States)

    Jumabay, Medet; Abdmaulen, Raushan; Urs, Sumithra; Heydarkhan-Hagvall, Sepideh; Chazenbalk, Gregorio D; Jordan, Maria C; Roos, Kenneth P; Yao, Yucheng; Boström, Kristina I

    2012-12-01

    White mature adipocytes give rise to multipotent cells, so-called de-differentiated fat (DFAT) cells, when losing their fat in culture. The objective of this study was to examine the ability of DFAT cells to give rise to endothelial cells (ECs) in vitro and vivo. We demonstrate that mouse and human DFAT cells, derived from adipose tissue and lipospirate, respectively, initially lack expression of CD34, CD31, CD146, CD45 and pericyte markers, distinguishing them from progenitor cells previously identified in adipose stroma. The DFAT cells spontaneously differentiate into vascular ECs in vitro, as determined by real-time PCR, fluorescence activated cell sorting, immunostaining, and formation of tube structures. Treatment with bone morphogenetic protein (BMP)4 and BMP9, important in regulating angiogenesis, significantly enhances the EC differentiation. Furthermore, adipocyte-derived cells from Green Fluorescent Protein-transgenic mice were detected in the vasculature of infarcted myocardium up to 6 weeks after ligation of the left anterior descending artery in mice. We conclude that adipocyte-derived multipotent cells are able to spontaneously give rise to ECs, a process that is promoted by BMPs and may be important in cardiovascular regeneration and in physiological and pathological changes in fat and other tissues.

  3. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  4. Endothelial cell compatibility of trovafloxacin and levofloxacin for intravenous use.

    Science.gov (United States)

    Armbruster, C; Robibaro, B; Griesmacher, A; Vorbach, H

    2000-04-01

    Levofloxacin and trovafloxacin have excellent activity against a variety of Gram-positive and Gram-negative organisms resistant to the established agents. One local side-effect closely related to the use of parenteral fluoroquinolones is phlebitis. To evaluate the effect of trovafloxacin and levofloxacin on endothelial cell viability, intracellular levels of adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), guanosine 5'-triphosphate (GTP) and guanosine 5'-diphosphate (GDP) levels were measured using high-performance liquid chromatography. Trovafloxacin at concentrations of 2 and 1 mg/mL reduced the intracellular ATP content from 12.5 +/- 1.7 to 1.9 +/- 0.3 nmol/10(6) cells and 9.3 +/- 0.8 nmol/10(6) cells, respectively, within 60 min. In addition, ADP, GTP and GDP levels were extensively depleted. Levofloxacin at concentrations of 5 and 2.5 mg/mL led to a significant ATP decline from 12.5 +/- 1.7 to 2.3 +/- 0.2 nmol/10(6) cells and 10.3 +/- 0.9 nmol/10(6) cells, respectively, within 60 min. These data indicate that infusions of high doses of trovafloxacin or levofloxacin are not compatible with maintenance of endothelial cell function. Commercial preparations have to be diluted and should be administered into large veins.

  5. SECs (Sinusoidal Endothelial Cells), Liver Microenvironment, and Fibrosis

    Science.gov (United States)

    Natarajan, Vaishaali; Harris, Edward N.

    2017-01-01

    Liver fibrosis is a wound-healing response to chronic liver injury such as alcoholic/nonalcoholic fatty liver disease and viral hepatitis with no FDA-approved treatments. Liver fibrosis results in a continual accumulation of extracellular matrix (ECM) proteins and paves the way for replacement of parenchyma with nonfunctional scar tissue. The fibrotic condition results in drastic changes in the local mechanical, chemical, and biological microenvironment of the tissue. Liver parenchyma is supported by an efficient network of vasculature lined by liver sinusoidal endothelial cells (LSECs). These nonparenchymal cells are highly specialized resident endothelial cell type with characteristic morphological and functional features. Alterations in LSECs phenotype including lack of LSEC fenestration, capillarization, and formation of an organized basement membrane have been shown to precede fibrosis and promote hepatic stellate cell activation. Here, we review the interplay of LSECs with the dynamic changes in the fibrotic liver microenvironment such as matrix rigidity, altered ECM protein profile, and cell-cell interactions to provide insight into the pivotal changes in LSEC physiology and the extent to which it mediates the progression of liver fibrosis. Establishing the molecular aspects of LSECs in the light of fibrotic microenvironment is valuable towards development of novel therapeutic and diagnostic targets of liver fibrosis. PMID:28293634

  6. In-vivo cell tracking to quantify endothelial cell migration during zebrafish angiogenesis

    Science.gov (United States)

    Menon, Prahlad G.; Rochon, Elizabeth R.; Roman, Beth L.

    2016-03-01

    The mechanism of endothelial cell migration as individual cells or collectively while remaining an integral component of a functional blood vessel has not been well characterized. In this study, our overarching goal is to define an image processing workflow to facilitate quantification of how endothelial cells within the first aortic arch and are proximal to the zebrafish heart behave in response to the onset of flow (i.e. onset of heart beating). Endothelial cell imaging was conducted at this developmental time-point i.e. ~24-28 hours post fertilization (hpf) when flow first begins, using 3D+time two-photon confocal microscopy of a live, wild-type, transgenic, zebrafish expressing green fluorescent protein (GFP) in endothelial cell nuclei. An image processing pipeline comprised of image signal enhancement, median filtering for speckle noise reduction, automated identification of the nuclei positions, extraction of the relative movement of nuclei between consecutive time instances, and finally tracking of nuclei, was designed for achieving the tracking of endothelial cell nuclei and the identification of their movement towards or away from the heart. Pilot results lead to a hypothesis that upon the onset of heart beat and blood flow, endothelial cells migrate collectively towards the heart (by 21.51+/-10.35 μm) in opposition to blood flow (i.e. subtending 142.170+/-21.170 with the flow direction).

  7. (−)-Epicatechin activation of endothelial cell eNOS, NO and related signaling pathways

    Science.gov (United States)

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo; Villarreal, Francisco

    2010-01-01

    Recent reports indicate that (−)-epicatechin can exert cardioprotective actions, which may involve eNOS-mediated nitric oxide production in endothelial cells. However, the mechanism by which (−)-epicatechin activates eNOS remains unclear. In this study, we proposed to identify the intracellular pathways involved in (−)-epicatechin-induced effects on eNOS, utilizing human coronary artery endothelial cells in culture. Treatment of cells with (−)-epicatechin leads to time- and dose-dependent effects, which peaked at 10 min at 1 μmol/L. (−)-Epicatechin treatment activates eNOS via serine-633 and serine-1177 phosphorylation and threonine-495 dephosphorylation. Using specific inhibitors, we have established the participation of the PI3K pathway in eNOS activation. (−)-Epicatechin induces eNOS uncoupling from caveolin-1 and its association with calmodulin-1, suggesting the involvement of intracellular calcium. These results allowed us to propose that (−) epicatechin effects may be dependent on actions exerted at the cell membrane level. To test this hypothesis, cells were treated with the phospholipase C inhibitor U73122, which blocked (−)-epicatechin-induced eNOS activation. We also demonstrated inositol phosphate accumulation in (−)-epicatechin-treated cells. The inhibitory effects of the pre-incubation of cells with the CaMKII inhibitor KN-93 indicate that (−)-epicatechin-induced eNOS activation is at least partially mediated via the Ca2+/CaMKII pathway. The (−)-epicatechin stereoisomer catechin was only able to partially stimulate nitric oxide production in cells. Altogether, these results strongly suggest the presence of a cell surface acceptor-effector for the cacao flavanol (−)-epicatechin, which may mediate its cardiovascular effects. PMID:20404222

  8. Flow-induced Expression and Phosphorylation of VASPin Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    Muller; SYLYAINE; Jean-FranoisSYOLTZ

    2005-01-01

    1 Introduction It is well known that mechanical forces have important influence on endothelial cells, in particular, on cytoskeleton reorganization. VASP (vasodilator stimulated phosphoprotein) is a 46 KD actin associated protein. It is a member of Ena/VASP protein family and composed of EVH1, proline-rich and EVH2 domains. It is considered as an important component of the sub-cellular regions where remodelling of the actin cytoskeleton takes place, such as the front of spreading lamellipodia in motile cell...

  9. [Comparison of adhesion of different endothelial cells under shear stress load in the flow field in vitro].

    Science.gov (United States)

    Xiao, Zhenghua; Zhang, Bengui; Zhang, Eryong; Xu, Weilin; Shi, Yingkang; Guo, Yingqiang

    2011-02-01

    This study was aimed to compare the differences of adhesion properties of endothelial cells (EC) from arteries (AEC), veins (VEC) and capillaries (MVEC) under shear stress condition, and to explore whether they can get the same adhesive ability as graft in similar shear stress conditions. With mended parallel plate flow apparatus and peristalsis pump providing fluid shear stress used, endothelial culture models were established in vitro with the same environmental factors as steady culture. To compare the adhesion among three kinds of endothelial cells under dynamic condition and static condition, the dynamic change of cytoskeletal actin filaments and the effects of different adhesive proteins coated on the adhesion of EC to the glass were studied. The cultured endothelial cells under flow conditions were extended and arranged along the direction of flow. The adhesive ability from high to low under static condition were AEC, MVEC and VEC (VEC compared with AEC or MVEC, P different between AEC and MVEC. But VEC was significantly different (P stress fibers were formed, which even interconnected to form a whole in the MVEC. The adhesion of AEC, VEC and MVEC under shear stress conditions are more significantly increased than those under the static culture conditions, and the MVEC can achieve the same adhesion as AEC.

  10. Inflammatory cytokines regulate endothelial cell survival and tissue repair functions via NF-κB signaling

    Directory of Open Access Journals (Sweden)

    Kanaji N

    2011-09-01

    Full Text Available Nobuhiro Kanaji1, Tadashi Sato2, Amy Nelson3, Xingqi Wang3, YingJi Li4, Miok Kim5, Masanori Nakanishi6, Hesham Basma3, Joel Michalski3, Maha Farid3, Michael Chandler3, William Pease3, Amol Patil3, Stephen I Rennard3, Xiangde Liu31Division of Hematology, Rheumatology and Respiratory Medicine, Kagawa University, Kagawa, Japan; 2Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan; 3Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Omaha, Nebraska; 4Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan; 5Third Department of Internal Medicine, Wakayama Medical University School of Medicine, Wakayama, Japan; 6Department of Internal Medicine, Jeju Medical College, Jeju, Republic of KoreaAbstract: Inflammation contributes to the development of fibrotic and malignant diseases. We assessed the ability of inflammatory cytokines to modulate endothelial cell survival and functions related to tissue repair/remodeling. Treatment with interleukin (IL-1ß or tumor necrosis factor (TNF-α (2 ng/mL led to human pulmonary artery endothelial cells becoming spindle-shaped fibroblast-like cells. However, immunoblot and DNA microarray showed no change in most endothelial and mesenchymal markers. In the presence of IL-1ß or TNF-α, cells were resistant to apoptosis induced by deprivation of serum and growth factor, and were more migratory. In addition, cells treated with IL-1ß or TNF-α contracted collagen gels more robustly. In contrast, transforming growth factor-ß1 did not induce these responses. RNA interference targeting nuclear factor (NF- κB p65 blocked the effects of IL-1ß or TNF-α on cell morphologic change, survival, migration, and collagen gel contraction. These results suggest that endothelial cells may contribute to tissue repair/remodeling via the NF-κB signaling in a milieu of airway inflammation.Keywords: NF-κB, IL-1ß, TNF-α, apoptosis, tissue repair

  11. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing

    OpenAIRE

    Okuno, Yuji; Nakamura-Ishizu, Ayako; Kishi,Kazuo; Suda, Toshio; Kubota, Yoshiaki

    2011-01-01

    Bone marrow-derived cells (BMDCs) contribute to postnatal vascular growth by differentiating into endothelial cells or secreting angiogenic factors. However, the extent of their endothelial differentiation highly varies according to the angiogenic models used. Wound healing is an intricate process in which the skin repairs itself after injury. As a process also observed in cancer progression, neoangiogenesis into wound tissues is profoundly involved in this healing process, suggesting the con...

  12. Microvascular endothelial cell heterogeneity : general concepts and pharmacological consequences for anti-angiogenic therapy of cancer

    NARCIS (Netherlands)

    Langenkamp, Elise; Molema, Grietje

    2009-01-01

    Microvascular endothelial cells display a large degree of heterogeneity in function depending on their location in the vascular tree. The existence of organ-specific, microvascular-bed-specific, and even intravascular variations in endothelial cell gene expression emphasizes their high cell-to-cell

  13. Tie-1-directed expression of Cre recombinase in endothelial cells of embryoid bodies and transgenic mice

    DEFF Research Database (Denmark)

    Gustafsson, E; Brakebusch, C; Hietanen, K

    2001-01-01

    the production and screening of multiple transgenic lines we used embryonic stem cell and embryoid body technology to identify recombinant embryonic stem cell clones with high, endothelial-specific Cre activity. One embryonic stem cell clone that showed high Cre activity in endothelial cells was used to generate...

  14. Differences in the primary culture, purification and biological characteristics between endothelial cells and smooth muscle cells from rat aorta

    Institute of Scientific and Technical Information of China (English)

    Shaobo Hu; Zifang Song; Qichang Zheng; Jun Nie

    2009-01-01

    Objective: To investigate the differences of primary culture, purification and biological characteristics between endothelial cells and smooth muscle cells from rat aorta. Methods: Endothelial cells were obtained using the vascular ring adherence, collagenase digestion method and an improved vascular ring adherence method, while smooth muscle cells were separated from tissue sections of rat aorta. Clones of endothelial cells were selected by limiting dilution assay. Both cell types were identified using specific cell immunofluorescent markers,and phase contrast microscopy was used to observe the morphological disparity between endothelial cells and smooth muscle cells at the single cell and colony level. Cell proliferation was determined by the cell counting kit-8. Differences between endothelial cells and smooth muscle cells were evaluated in trypsin digestion 6me, attachment time and recovery after cryopreservation. Results: Endothelial cells were obtained by all three methods. The improved vascular ring method provided the most reproducible results. Cells were in good condition, and of high purity. Smooth muscle cells were cultured successfully by the tissue fragment culture method. Clonal expansion of singleendothelial cells was attained. The two cell types expressed their respective specific markers, and the rate of proliferation of smooth muscle cells exceeded that of endothelial cells. Endothelial cells were more sensitive to trypsin digestion than smooth muscle cells. In addition, they had a shorter adherence time and better recovery following cryopreservation than smooth muscle cells. Conclusion: The improved vascular ring method was optimal for yielding endothelial cells. Limiting dilution is a novel and valid method for purifying primary endothelial cells from rat aorta. Primary rat endothelial cell and vascular smooth muscle cell cultures exhibited different morphological characteristics, proliferation rate, adherence time, susceptibility to trypsin

  15. Chronic treatment with N-acetyl-cystein delays cellular senescence in endothelial cells isolated from a subgroup of atherosclerotic patients.

    Science.gov (United States)

    Voghel, Guillaume; Thorin-Trescases, Nathalie; Farhat, Nada; Mamarbachi, Aida M; Villeneuve, Louis; Fortier, Annik; Perrault, Louis P; Carrier, Michel; Thorin, Eric

    2008-05-01

    Endothelial senescence may contribute to the pathogenesis of age-related vascular disorders. Furthermore, chronic exposure to risk factors for cardiovascular disease (CVD) accelerates the effects of chronological aging by generating stress-dependent damages, including oxidative stress, therefore promoting stress-induced premature senescence. Our objective was to determine whether a chronic treatment with an antioxidant (N-acetyl-cystein, NAC) could delay senescence of endothelial cells (EC) isolated and cultured from arterial segments of patients with severe coronary artery disease. If EC were considered as one population (n=26), chronic NAC treatment slightly shortened telomere attrition rate associated with senescence but did not significantly delay the onset of endothelial senescence. However, in a subgroup of NAC-treated EC (n=15) cellular senescence was significantly delayed, NAC decreased lipid peroxidation (HNE), activated the catalytic subunit of telomerase (hTERT) and inhibited telomere attrition. In contrast, in another subgroup of EC (n=11) characterized by initial short telomeres, no effect of NAC on HNE and high levels of DNA damages, the antioxidant was not beneficial on senescence, suggesting an irreversible stress-dependent damage. In conclusion, chronic exposure to NAC can delay senescence of diseased EC via hTERT activation and transient telomere stabilization, unless oxidative stress-associated cell damage has become irreversible.

  16. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer.

    Directory of Open Access Journals (Sweden)

    Rui-Li Zhang

    Full Text Available The recombinant Treponema pallidum protein Tp0965 (rTp0965, one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.

  17. Prune melanoidins protect against oxidative stress and endothelial cell death.

    Science.gov (United States)

    Posadino, Anna Maria; Cossu, Annalisa; Piga, Antonio; Madrau, Monica Assunta; Del Caro, Alessandra; Colombino, Maria; Paglietti, Bianca; Rubino, Salvatore; Iaccarino, Ciro; Crosio, Claudia; Sanna, Bastiano; Pintus, Gianfranco

    2011-06-01

    The health-promoting effects of fruit and vegetable consumption are thought to be due to phytochemicals contained in fresh plant material. Whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed plums (prunes) were isolated and their presence confirmed by hydroxymethylfurfural content and browning index. Oxidative-induced endothelial cell (EC) damage is the trigger for the development of cardiovascular diseases (CVD); therefore the potential protective effect of prune melanoidins on hydrogen peroxide-induced oxidative cell damage was investigated on human endothelial ECV304 cells. Cytoplasmic and mitochondrial redox status was assessed by using the novel, redox-sensitive, ratiometric fluorescent protein sensor (roGFP), while mitochondrial membrane potential (MMP) was investigated with the fluorescent dye, JC-1. Treatment of ECV304 cells with hydrogen peroxide dose-dependently induced both mitochondrial and cytoplasmic oxidation, in addition to MMP dissipation, with ensuing cell death. Pretreatment of ECV304 with prune melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide elicited phenomena, clearly indicating that these polymers protect human EC against oxidative stress.

  18. Growth factor-and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization

    Institute of Scientific and Technical Information of China (English)

    Philip V.Peplow

    2014-01-01

    Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where they differentiate into endothelial cells. Activation and mobilization of endothelial progenitor cells from the bone marrow is induced via the production and release of endothelial progenitor cell-activating factors and includes speciifc growth factors and cytokines in response to peripheral tissue hypoxia such as after acute ischemic stroke or trauma. Endotheli-al progenitor cells migrate and home to speciifc sites following ischemic stroke via growth factor/cytokine gradients. Some growth factors are less stable under acidic conditions of tissue isch-emia, and synthetic analogues that are stable at low pH may provide a more effective therapeutic approach for inducing endothelial progenitor cell mobilization and promoting cerebral neovas-cularization following ischemic stroke.

  19. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    Science.gov (United States)

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern.

  20. Point-of-care seeding of nitinol stents with blood-derived endothelial cells.

    Science.gov (United States)

    Jantzen, Alexandra E; Noviani, Maria; Mills, James S; Baker, Katherine M; Lin, Fu-Hsiung; Truskey, George A; Achneck, Hardean E

    2016-11-01

    Nitinol-based vascular devices, for example, peripheral and intracranial stents, are limited by thrombosis and restenosis. To ameliorate these complications, we developed a technology to promote vessel healing by rapidly seeding (QuickSeeding) autologous blood-derived endothelial cells (ECs) onto modified self-expanding nitinol stent delivery systems immediately before implantation. Several thousand micropores were laser-drilled into a delivery system sheath surrounding a commercial nitinol stent to allow for exit of an infused cell suspension. As suspension medium flowed outward through the micropores, ECs flowed through the delivery system attaching to the stent surface. The QuickSeeded ECs adhered to and spread on the stent surface following 24-h in vitro culture under static or flow conditions. Further, QuickSeeded ECs on stents that were deployed into porcine carotid arteries spread to endothelialize stent struts within 48 h (n = 4). The QuickSeeded stent struts produced significantly more nitric oxide in ex vivo flow circuits after 24 h, as compared to static conditions (n = 5). In conclusion, ECs QuickSeeded onto commercial nitinol stents within minutes of implantation spread to form a functional layer in vitro and in vivo, providing proof of concept that the novel QuickSeeding method with modified delivery systems can be used to seed functional autologous endothelium at the point of care. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1658-1665, 2016.

  1. Levamisole induced apoptosis in cultured vascular endothelial cells

    Science.gov (United States)

    Artwohl, Michaela; Hölzenbein, Thomas; Wagner, Ludwig; Freudenthaler, Angelika; Waldhäusl, Werner; Baumgartner-Parzer, Sabina M

    2000-01-01

    To better understand the anticancer activity of Levamisole (LMS), which serves as an adjuvant in colon cancer therapy in combination with 5-Fluorouracil, this study analyses LMS' ability to induce apoptosis and growth arrest in cultured human micro- and macrovascular endothelial cells (ECs) and fibroblasts. Cells exposed (24 h) to Levamisole (range: 0.5–2 mmol l−1) alone or in combination with antioxidants (10 mmol l−1 glutathione or 5 mmol l−1 N-Acetylcysteine or 0.1 mmol l−1 Tocopherol) were evaluated for apoptosis (3H-thymidine assays, in situ staining), mRNA/protein expression (Northern/Western blot), and proliferation (3H-thymidine incorporation). Levamisole dose-dependently increased apoptosis in ECs to 230% (HUVECs-human umbilical vein ECs), 525% (adult human venous ECs) and 600% (human uterine microvascular ECs) but not in fibroblasts compared to control cells (set as 100%). Levamisole increased in ECs integrin-dependent matrix adhesion, inhibited proliferation (−70%), reduced expression of survival factors such as clusterin (−30%), endothelin-1 (−43%), bcl-2 (−34%), endothelial NO-synthase (−32%) and pRb (Retinoblastoma protein: −89%), and increased that of growth arrest/death signals such as p21 (+73%) and bak (+50%). LMS (2 mmol l−1)-induced apoptosis was inhibited by glutathione (−50%) and N-Acetylcysteine (−36%), which also counteracted reduction by Levamisole of pRb expression, suggesting reactive oxygen species and pRb play a role in these processes. The ability of LMS to selectively induce apoptosis and growth arrest in endothelial cells potentially hints at vascular targeting to contribute to Levamisole's anticancer activity. PMID:11139434

  2. Surface-mediated functional gene delivery: an effective strategy for enhancing competitiveness of endothelial cells over smooth muscle cells.

    Science.gov (United States)

    Chang, Hao; Ren, Ke-feng; Wang, Jin-Lei; Zhang, He; Wang, Bai-liang; Zheng, Shan-mei; Zhou, Yuan-yuan; Ji, Jian

    2013-04-01

    The non-biorecognition of general biomaterials and inherent biospecificity of biological systems pose key challenges to the optimal functions of medical devices. In this study, we constructed the surface-mediated functional gene delivery through layer-by-layer self-assembly of protamine sulfate (PrS) and plasmid DNA encoding hepatocyte growth factor (HGF), aiming at specific enhancing endothelial cells (EC) compeititiveness over smooth muscle cells (SMC). Characterizations of the (PrS/HGF-pDNA) multilayered films present the linear buildup with homogeneous and flat topographical feature. The amount of DNA can be easily controlled. By using these multilayered films, both human umbilical vein endothelial cells (HUVEC) and human umbilical artery smooth muscle cells (HUASMC) can be directly transfected when they contact with the multilayered films. On transfection, increasing secretion of HGF has been detected in both HUVEC and HUASMC culture, which leads to selective promotion of HUVEC proliferation. In the co-culture experiment, we also exhibit the promoted and hindered growth of HUVEC and HUASMC, respectively, which could be attributed to the inverse influence of HUVEC on HUASMC. These results collectively demonstrate that our system can be served as a powerful tool for enhancing competitiveness of EC over SMC, which opens perspectives for the regulation of intercellular competitiveness in the field of interventional therapy.

  3. Endothelial RhoGEFs: A systematic analysis of their expression profiles in VEGF-stimulated and tumor endothelial cells.

    Science.gov (United States)

    Hernández-García, Ricardo; Iruela-Arispe, M Luisa; Reyes-Cruz, Guadalupe; Vázquez-Prado, José

    2015-11-01

    Rho guanine nucleotide exchange factors (RhoGEFs) integrate cell signaling inputs into morphological and functional responses. However, little is known about the endothelial repertoire of RhoGEFs and their regulation. Thus, we assessed the expression of 81 RhoGEFs (70 homologous to Dbl and 11 of the DOCK family) in endothelial cells. Further, in the case of DH-RhoGEFs, we also determined their responses to VEGF exposure in vitro and in the context of tumors. A phylogenetic analysis revealed the existence of four groups of DH-RhoGEFs and two of the DOCK family. Among them, we found that the most abundant endothelial RhoGEFs were: Tuba, FGD5, Farp1, ARHGEF17, TRIO, P-Rex1, ARHGEF15, ARHGEF11, ABR, Farp2, ARHGEF40, ALS, DOCK1, DOCK7 and DOCK6. Expression of RASGRF2 and PREX2 increased significantly in response to VEGF, but most other RhoGEFs were unaffected. Interestingly murine endothelial cells isolated from tumors showed that all four phylogenetic subgroups of DH-RhoGEFs were altered when compared to non-tumor endothelial cells. In summary, our results provide a detailed assessment of RhoGEFs expression profiles in the endothelium and set the basis to systematically address their regulation in vascular signaling.

  4. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  5. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  6. Perioperative iloprost and endothelial progenitor cells in uremic patients with severe limb ischemia undergoing peripheral revascularization.

    Science.gov (United States)

    Coppolino, Giuseppe; Buemi, Antoine; Bolignano, Davide; Lacquaniti, Antonio; La Spada, Michele; Stilo, Francesco; De Caridi, Giovanni; Benedetto, Francesco; Loddo, Saverio; Buemi, Michele; Spinelli, Francesco

    2009-11-01

    The incidence of severe limb ischemia (SLI) is high among haemodialysis (HD) patients. Limb rescue rate after surgical revascularization is relatively poor compared with patients with normal renal function. Prostanoids are an interesting category as adjuvants to revascularization. New vessel growth develops not exclusively by proliferation of endothelial cells in vascular extremities but also by cells mobilized from the bone marrow (HSC), transformed into endothelial progenitor cells (EPC) contributing to both re-endothelialization and neovascularization. Basal number of HSC and EPC is significantly reduced in HD patients and correlated with a subsequent defective neovascularization. The aim of this study was to evaluate the effects of perioperative treatment with iloprost in uremic patients with acute ischemia of lower limbs, undergoing surgical revascularization, on endothelial progenitor cells, hypothesizing a possible biological mechanism induced by the prostanoids. A search was also made for vascular remodeling processes through the analysis of the concentrations of soluble adhesion molecules (i-CAM, v-CAM, e-selectin), biochemical markers of endothelial activation. Thirty HD patients with SLI undergoing peripheral revascularization were enrolled (15 were treated with iloprost and 15 with a placebo). Iloprost was administered as an intra-arterial bolus of 3000 ng over 1 to 3 min immediately after revascularization and in the same affected artery. Serum samples were taken before revascularization (T0), at 6 (T6) and 24 h (T24) after infusion to measure sICAM-1, sE-selectin, and sVCAM-1, and for quantification of HSC and EPC. Progenitors were identified by specific surface markers CD34+, CD133+ and VEGFR2+. Count was conducted using PROCOUNT performed in a TRUCOUNT tube and with a FACSort flow cytometer. Before revascularization, all patients showed a decreased number of HSC and EPC. After 6 h, HSC augmented significantly compared with T0 in both groups. The

  7. A novel minimally-invasive method to sample human endothelial cells for molecular profiling.

    Directory of Open Access Journals (Sweden)

    Stephen W Waldo

    Full Text Available The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity.Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34/CD105/CD146 with the concomitant absence of leukocyte and platelet specific markers (CD11b/CD45. Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR.A median of 4,212 (IQR: 2161-6583 endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001, nitric oxide synthase 3 (NOS3, P<0.001 and vascular cell adhesion molecule 1 (VCAM-1, P<0.003 in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001.This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets.

  8. A Novel Minimally-Invasive Method to Sample Human Endothelial Cells for Molecular Profiling

    Science.gov (United States)

    Waldo, Stephen W.; Brenner, Daniel A.; McCabe, James M.; Dela Cruz, Mark; Long, Brian; Narla, Venkata A.; Park, Joseph; Kulkarni, Ameya; Sinclair, Elizabeth; Chan, Stephen Y.; Schick, Suzaynn F.; Malik, Namita; Ganz, Peter; Hsue, Priscilla Y.

    2015-01-01

    Objective The endothelium is a key mediator of vascular homeostasis and cardiovascular health. Molecular research on the human endothelium may provide insight into the mechanisms underlying cardiovascular disease. Prior methodology used to isolate human endothelial cells has suffered from poor yields and contamination with other cell types. We thus sought to develop a minimally invasive technique to obtain endothelial cells derived from human subjects with higher yields and purity. Methods Nine healthy volunteers underwent endothelial cell harvesting from antecubital veins using guidewires. Fluorescence-activated cell sorting (FACS) was subsequently used to purify endothelial cells from contaminating cells using endothelial surface markers (CD34 / CD105 / CD146) with the concomitant absence of leukocyte and platelet specific markers (CD11b / CD45). Endothelial lineage in the purified cell population was confirmed by expression of endothelial specific genes and microRNA using quantitative polymerase chain reaction (PCR). Results A median of 4,212 (IQR: 2161 – 6583) endothelial cells were isolated from each subject. Quantitative PCR demonstrated higher expression of von Willebrand Factor (vWF, P<0.001), nitric oxide synthase 3 (NOS3, P<0.001) and vascular cell adhesion molecule 1 (VCAM-1, P<0.003) in the endothelial population compared to similarly isolated leukocytes. Similarly, the level of endothelial specific microRNA-126 was higher in the purified endothelial cells (P<0.001). Conclusion This state-of-the-art technique isolates human endothelial cells for molecular analysis in higher purity and greater numbers than previously possible. This approach will expedite research on the molecular mechanisms of human cardiovascular disease, elucidating its pathophysiology and potential therapeutic targets. PMID:25679506

  9. Barrier Functionality of Porcine and Bovine Brain Capillary Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-09-01

    Full Text Available Introduction: To date, isolated cell based blood-brain barrier (BBB models have been widely used for brain drug delivery and targeting, due to their relatively proper bioelectrical and permeability properties. However, primary cultures of brain capillary endothelial cells (BCECs isolated from different species vary in terms of bioelectrical and permeability properties. Methods: To pursue this, in the current investigation, primary porcine and bovine BCECs (PBCECs and BBCECs, respectively were isolated and used as an in vitro BBB model. The bioelectrical and permeability properties were assessed in BCECs co-cultured with C6 cells with/without hydrocortisone (550 nM. The bioelectrical properties were further validated by means of the permeability coefficients of transcellular and paracellular markers. Results: The primary PBCECs displayed significantly higher trans-endothelial electrical resistance (~900 W.cm2 than BBCECs (~700 W.cm2 - both co-cultured with C6 cells in presence of hydrocortisone. Permeability coefficients of propranolol/diazepam and mannitol/sucrose in PBCECs were ~21 and ~2 (×10-6 cm.sec-1, where these values for BBCECs were ~25 and ~5 (×10-6 cm.sec-1. Conclusion: Upon our bioelectrical and permeability findings, both models display discriminative barrier functionality but porcine BCECs seem to provide a better platform than bovine BCECs for drug screening and brain targeting.

  10. Ginsenoside Rg1 promotes endothelial progenitor cell migration and proliferation

    Institute of Scientific and Technical Information of China (English)

    Ai-wu SHI; Xiao-bin WANG; Feng-xiang LU; Min-min ZHU; Xiang-qing KONG; Ke-jiang CAO

    2009-01-01

    Aim: To investigate the effect of ginsenoside Rgl on the migration, adhesion, proliferation, and VEGF expression of endothe-lial progenitor cells (EPCs).Methods: EPCs were isolated from human peripheral blood and incubated with different concentrations of ginsenoside Rgl (0.1, 0.5, 1.0, and 5.0 μmol/L) and vehicle controls. EPC migration was detected with a modified Boyden chamber assay. EPC adhesion was determined by counting adherent cells on fibronectin-coated culture dishes. EPC proliferation was analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In vitro vasculogenesis was assayed using an in vitro vasculogenesis detection kit. A VEGF-ELISA kit was used to measure the amount of VEGF protein in the cell culture medium.Results: Ginsenoside Rgl promoted EPC adhesionp proliferation, migration and in vitro vasculogenesis in a dose- and time-dependent manner. Cell cycle analysis showed that 5.0 μmol/L of ginsenoside Rgl significantly increased the EPC prolifera-tive phase (S phase) and decreased the resting phase (G0/G1 phase). Ginsenoside Rgl increased vascular endothelial growth factor production.Conclusion: The results indicate that ginsenoside Rgl promotes proliferation, migration, adhesion and in vitro vasculogen-esis.

  11. SIRT1 inhibits inflammatory response partly through regulation of NLRP3 inflammasome in vascular endothelial cells.

    Science.gov (United States)

    Li, Yanxiang; Wang, Ping; Yang, Xiaofeng; Wang, Weirong; Zhang, Jiye; He, Yanhao; Zhang, Wei; Jing, Ting; Wang, Bo; Lin, Rong

    2016-09-01

    Emerging evidence has indicated that vascular endothelial cells (ECs) not only form the barrier between blood and the vessel wall but also serve as conditional innate immune cells. Our previous study found that SIRT1, a class III histone deacetylase, inhibits the inflammatory response in ECs. Recent studies revealed that SIRT1 also participates in the modulation of immune responses. Although the NLRP3 inflammasome is known to be a crucial component of the innate immune system, there is no direct evidence demonstrating the anti-inflammatory effect of SIRT1 on ECs through the NLRP3 inflammasome. In this study, we observed that lipopolysaccharide (LPS) and adenosine triphosphate (ATP) triggered the activation of NLRP3 inflammasome in human umbilical vein ECs (HUVECs). Moreover, SIRT1 expression was reduced in HUVECs stimulated with LPS and ATP. SIRT1 activator inhibited the expression of monocyte chemotactic protein-1 (MCP-1) and C-reactive protein (CRP), whereas SIRT1 knockdown resulted in significant increases in MCP-1 and CRP levels in HUVECs stimulated with LPS and ATP. Importantly, the lack of SIRT1 enhanced NLRP3 inflammasome activation and subsequent caspase-1 cleavage. On the other hand, NLRP3 siRNA blocked the activation of the NLRP3 inflammasome in HUVECs stimulated with LPS plus ATP. Further study revealed that NLRP3 inflammasome blockade significantly reduced MCP-1 and CRP production in HUVECs. In vivo studies indicated that implantation of the periarterial carotid collar inhibited arterial SIRT1 expression in rabbits. Meanwhile, treatment with a SIRT1 activator decreased the expression levels of MCP-1 and CRP in collared arteries and the interleukin (IL)-1β level in serum. Taken together, these findings indicate that NLRP3 inflammasome activation promoted endothelial inflammation and that SIRT1 inhibits the inflammatory response partly through regulation of the NLRP3 inflammasome in ECs.

  12. Study of the Mechanism of Essential Garlic Oil Inhibiting Interleukin-1α-Induced Monocyte Adhesion to Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    葛璐璐; 张薇; 戴云; 臧燕; 黄纯洁

    2001-01-01

    To observe the effects of essential garlic oil (EGO) on vascular cell adhesive molecule-1 (VCAM-1) expression of endothelial cells and monocyte-endothelial cell adhesion rate induced by interleukin-1α (IL-1α). Methods: Human umbilical vein endothelial cells (HUVEC) were isolated by trypsin digestion method and co-cultured with IL-1α or EGO+IL-1α in the absence or presence of U937 monocyte. Monocyte-endothelial cell adhesion rate was examined with reverted microscope. VCAM-1 expression of endothelial cells was measured by ACAS 570 confocal microscope, and the data were presented as mean fluorescent intensity. Results: EGO significantly inhibited IL-1α-induced endothelial expression of VCAM-1, and thus markedly decreased monocyte-endothelial cell adhesion rate. Conclusion: EGO has the effect on antagonizing adhesion of monocyte and vascular endothelial cell, which might be due to its inhibition on adhesive molecular expression on the surface of endothelial cells.

  13. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration.

    Science.gov (United States)

    Wingate, Kathryn; Floren, Michael; Tan, Yan; Tseng, Pi Ou Nancy; Tan, Wei

    2014-09-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate. This study examines the combined effects of matrix elasticity and vascular endothelial growth factor (VEGF) on both MSC differentiation into endothelial lineage and MSC paracrine signaling. MSCs were seeded in soft nanofibrous matrices with or without VEGF, and in Petri dishes with or without VEGF. Only MSCs seeded in three-dimensional soft matrices with VEGF showed significant increases in the expression of endothelial markers (vWF, eNOS, Flt-1, and Flk-1), while eliminating the expression of smooth muscle marker (SM-α-actin). MSCs cultured in VEGF alone on two-dimensional dishes showed increased expression of both early-stage endothelial and smooth muscle markers, indicating immature vascular differentiation. Furthermore, MSCs cultured in soft matrices with VEGF showed faster upregulation of endothelial markers compared with MSCs cultured in VEGF alone. Paracrine signaling studies found that endothelial cells cultured in the conditioned media from MSCs differentiated in the soft matrix and VEGF condition exhibited increased migration and formation of capillary-like structures. These results demonstrate that VEGF and soft matrix elasticity act synergistically to guide MSC differentiation into mature endothelial phenotype while enhancing paracrine signaling. Therefore, it is critical to control both mechanical and biochemical factors to safely regenerate vascular tissues with MSCs.

  14. In Vivo Vascularization of Endothelial Cells Derived from Bone Marrow Mesenchymal Stem Cells in SCID Mouse Model

    Directory of Open Access Journals (Sweden)

    Allameh Abdolamir

    2016-07-01

    Full Text Available Objective In vivo and in vitro stem cell differentiation into endothelial cells is a promising area of research for tissue engineering and cell therapy. Materials and Methods We induced human mesenchymal stem cells (MSCs to differentiate to endothelial cells that had the ability to form capillaries on an extracellular matrix (ECM gel. Thereafter, the differentiated endothelial cells at early stage were characterized by expression of specific markers such as von Willebrand factor (vWF, vascular endothelial growth factor (VEGF receptor 2, and CD31. In this experimental model, the endothelial cells were transplanted into the groins of severe combined immunodeficiency (SCID mice. After 30 days, we obtained tissue biopsies from the transplantation sites. Biopsies were processed for histopathological and double immunohistochemistry (DIHC staining. Results Endothelial cells at the early stage of differentiation expressed endothelial markers. Hematoxylin and eosin (H&E staining, in addition to DIHC demonstrated homing of the endothelial cells that underwent vascularization in the injected site. Conclusion The data clearly showed that endothelial cells at the early stage of differentiation underwent neovascularization in vivo in SCID mice. Endothelial cells at their early stage of differentiation have been proven to be efficient for treatment of diseases with impaired vasculogenesis.

  15. Arginine deiminase modulates endothelial tip cells via excessive synthesis of reactive oxygen species.

    Science.gov (United States)

    Zhuo, Wei; Song, Xiaomin; Zhou, Hao; Luo, Yongzhang

    2011-10-01

    ADI (arginine deiminase), an enzyme that hydrolyses arginine, has been reported as an anti-angiogenesis agent. However, its molecular mechanism is unclear. We have demonstrated for the first time that ADI modulates the angiogenic activity of endothelial tip cells. By arginine depletion, ADI disturbs actin filament in endothelial tip cells, causing disordered migratory direction and decreased migration ability. Furthermore, ADI induces excessive synthesis of ROS (reactive oxygen species), and activates caspase 8-, but not caspase 9-, dependent apoptosis in endothelial cells. These findings provide a novel mechanism by which ADI inhibits tumour angiogenesis through modulating endothelial tip cells.

  16. Effects of blood products on inflammatory response in endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martin Urner

    Full Text Available BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC, platelet concentrates (PC and fresh frozen plasma (FFP was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells.

  17. Glycoconjugates and Related Molecules in Human Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Norihiko Sasaki

    2013-01-01

    Full Text Available Vascular endothelial cells (ECs form the inner lining of blood vessels. They are critically involved in many physiological functions, including control of vasomotor tone, blood cell trafficking, hemostatic balance, permeability, proliferation, survival, and immunity. It is considered that impairment of EC functions leads to the development of vascular diseases. The carbohydrate antigens carried by glycoconjugates (e.g., glycoproteins, glycosphingolipids, and proteoglycans mainly present on the cell surface serve not only as marker molecules but also as functional molecules. Recent studies have revealed that the carbohydrate composition of the EC surface is critical for these cells to perform their physiological functions. In this paper, we consider the expression and functional roles of endogenous glycoconjugates and related molecules (galectins and glycan-degrading enzymes in human ECs.

  18. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    Directory of Open Access Journals (Sweden)

    Mizer J

    2012-11-01

    Full Text Available Abstract Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a ability to regulate secretion of cytokines based on biological need; b long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.

  19. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Li DING; Jin ZHANG

    2012-01-01

    To investigate the effects of glucagon-like peptide-1 (GLP-1) on endothelial NO synthase (eNOS) in human umbilical vein endothelial cells (HUVECs),and elucidate whether GLP-1 receptor (GLP-1R) and GLP-1(9-36) are involved in these effects.Methods:HUVECs were used.The activity of eNOS was measured with NOS assay kit.Phosphorylated and total eNOS proteins were detected using Western blot analysis.The level of eNOS mRNA was quantified with real-time RT-PCR.Results:Incubation of HUVECs with GLP-1 (50-5000 pmol/L) for 30 min significantly increased the activity of eNOS.Incubation of HUVECs with GLP-1 (500-5000 pmol/L) for 5 or 10 min increased eNOS phosphorylated at ser-1177.Incubation with GLP-1 (5000 pmol/L) for 48 h elevated the level of eNOS protein,did not affect the level of eNOS mRNA.GLP-1R agonists exenatide and GLP-1(9-36) at the concentration of 5000 pmol/L increased the activity,phosphorylation and protein level of eNOS.GLP-1R antagonist exendin(9-39) or DPP-4 inhibitor sitagliptin,which abolished GLP-1(9-36) formation,at the concentration of 5000 pmol/L partially blocked the effects of GLP-1 on eNOS.Conclusion:GLP-1 upregulated the activity and protein expression of eNOS in HUVECs through the GLP-1R-dependent and GLP-1(9-36)-related pathways.GLP-1 may prevent or delay the formation of atherosclerosis in diabetes mellitus by improving the function of eNOS.

  20. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes.

    Science.gov (United States)

    Maezawa, Yoshiro; Takemoto, Minoru; Yokote, Koutaro

    2015-01-01

    Diabetic nephropathy is the major cause of end-stage renal failure throughout the world in both developed and developing countries. Diabetes affects all cell types of the kidney, including endothelial cells, tubulointerstitial cells, podocytes and mesangial cells. During the past decade, the importance of podocyte injury in the formation and progression of diabetic nephropathy has been established and emphasized. However, recent findings provide additional perspectives on pathogenesis of diabetic nephropathy. Glomerular endothelial damage is already present in the normoalbuminuric stage of the disease when podocyte injury starts. Genetic targeting of mice that cause endothelial injury leads to accelerated diabetic nephropathy. Tubulointerstitial damage, previously considered to be a secondary effect of glomerular protein leakage, was shown to have a primary significance in the progression of diabetic nephropathy. Emerging evidence suggests that the glomerular filtration barrier and tubulointerstitial compartment is a composite, dynamic entity where any injury of one cell type spreads to other cell types, and leads to the dysfunction of the whole apparatus. Accumulation of novel knowledge would provide a better understanding of the pathogenesis of diabetic nephropathy, and might lead to a development of a new therapeutic strategy for the disease.

  1. Effect of Cytokines Secreted by Human Adipose Stromal Cells on Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    LI Bingong; ZENG Qiutang; WANG Hongxiang; MAO Xiaobo

    2006-01-01

    To isolate and culture adipose stromal cells (ASCs), and study the effect of cytokines secreted by ASCs on endothelial cells, human adipose tissue was digested with collagenase type Ⅰ solution and ASCs were derived by culture. The cells surface phenotype was examined by flow cytometry. ELISA was used to detect the secretion of VEGF, HGF, SDF-1 α and RT-PCR was employed to detect the expression of their mRNA. Then the ASC medium was utilized to culture human umbilical vein endothelial cells ECV304. Cells were counted by hemacytometer to determine the proliferation and Annexin V/PI was employed for the examination of the apoptosis rate of ECV304. ASCs were derived by culture and expressed CD34, CD105 while they did not express CD31 or CD45. ASCs secreted cytokines such as VEGF, HGF and SDF-1 α so the ASC medium could stimulate proliferation and counteract apoptosis of endothelial cells (P<0.05). Bcl-2 mRNA was also found to be up-regulated in the endothelial cells. It is concluded that ASCs can secrete cytokines and has significant effect on the proliferation of endothelial cells and apoptosis.

  2. 25-Hydroxycholesterol exerts both a cox-2-dependent transient proliferative effect and cox-2-independent cytotoxic effect on bovine endothelial cells in a time- and cell-type-dependent manner

    Directory of Open Access Journals (Sweden)

    Cantarutti Alyssa

    2010-11-01

    Full Text Available Abstract Background 25-hydroxycholesterol (25-OHC is a product of oxidation of dietary cholesterol present in human plasma. 25-OHC and other oxidized forms of cholesterol are implicated in modulating inflammatory responses involved in development of atherosclerosis and colon carcinogenesis. Methods Primary lymphatic, venous and arterial endothelial cells isolated from bovine mesentery (bmLEC, bmVEC, bmAEC were treated with 25-OHC and tested for several different cellular parameters. Results We found 25-OHC to be a potent inducer of cyclooxygenase-2 (Cox-2, prostaglandin G-H synthase-2 expression in bovine mesenteric lymphatic, venous, and arterial endothelial cells. The induction of Cox-2 expression in endothelial cells by 25-OHC led to an initial increase in cellular proliferation that was inhibited by the Cox-2 selective inhibitor celecoxib (Celebrex. Prolonged exposure to 25-OHC was cytotoxic. Furthermore, endothelial cells induced to express Cox-2 by 25-OHC were more sensitive to the effects of the Cox-2 selective inhibitor celecoxib (Celebrex. These results suggest that some effects of 25-OHC on cells may be dependent on Cox-2 enzymatic activity. Conclusions Cox-2 dependent elevating effects of 25-OHC on endothelial cell proliferation was transient. Prolonged exposure to 25-OHC caused cell death and enhanced celecoxib-induced cell death in a cell-type dependent manner. The lack of uniform response by the three endothelial cell types examined suggests that our model system of primary cultures of bmLECs, bmVECs, and bmAECs may aid the evaluation of celecoxib in inhibiting proliferation of different types of tumour-associated endothelial cells.

  3. Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.

    NARCIS (Netherlands)

    Paleolog, E.M.; Delasalle, S.A.; Buurman, W.A.; Feldmann, M.

    1994-01-01

    Tumor necrosis factor-alpha (TNF-alpha) plays a critical role in the control of endothelial cell function and hence in regulating traffic of circulating cells into tissues in vivo. Stimulation of endothelial cells in vitro by TNF-alpha increases the surface expression of leukocyte adhesion molecules

  4. Directionally solidified biopolymer scaffolds: Mechanical properties and endothelial cell responses

    Science.gov (United States)

    Meghri, Nicholas W.; Donius, Amalie E.; Riblett, Benjamin W.; Martin, Elizabeth J.; Clyne, Alisa Morss; Wegst, Ulrike G. K.

    2010-07-01

    Vascularization is a primary challenge in tissue engineering. To achieve it in a tissue scaffold, an environment with the appropriate structural, mechanical, and biochemical cues must be provided enabling endothelial cells to direct blood vessel growth. While biochemical stimuli such as growth factors can be added through the scaffold material, the culture medium, or both, a well-designed tissue engineering scaffold is required to provide the necessary local structural and mechanical cues. As chitosan is a well-known carrier for biochemical stimuli, the focus of this study was on structure-property correlations, to evaluate the effects of composition and processing conditions on the three-dimensional architecture and properties of freeze-cast scaffolds; to establish whether freeze-east scaffolds are promising candidates as constructs promoting vascularization; and to conduct initial tissue culture studies with endothelial cells on flat substrates of identical compositions as those of the scaffolds to test whether these are biocompatible and promote cell attachment and proliferation.

  5. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Caterina Oriana Aragona

    2016-01-01

    Full Text Available Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”. Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.

  6. Cationic Nanocylinders Promote Angiogenic Activities of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jung Bok Lee

    2016-01-01

    Full Text Available Polymers have been used extensively taking forms as scaffolds, patterned surface and nanoparticle for regenerative medicine applications. Angiogenesis is an essential process for successful tissue regeneration, and endothelial cell–cell interaction plays a pivotal role in regulating their tight junction formation, a hallmark of angiogenesis. Though continuous progress has been made, strategies to promote angiogenesis still rely on small molecule delivery or nuanced scaffold fabrication. As such, the recent paradigm shift from top-down to bottom-up approaches in tissue engineering necessitates development of polymer-based modular engineering tools to control angiogenesis. Here, we developed cationic nanocylinders (NCs as inducers of cell–cell interaction and investigated their effect on angiogenic activities of human umbilical vein endothelial cells (HUVECs in vitro. Electrospun poly (l-lactic acid (PLLA fibers were aminolyzed to generate positively charged NCs. The aninolyzation time was changed to produce two different aspect ratios of NCs. When HUVECs were treated with NCs, the electrostatic interaction of cationic NCs with negatively charged plasma membranes promoted migration, permeability and tubulogenesis of HUVECs compared to no treatment. This effect was more profound when the higher aspect ratio NC was used. The results indicate these NCs can be used as a new tool for the bottom-up approach to promote angiogenesis.

  7. Fullerene derivatives protect endothelial cells against NO-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Lao Fang; Han Dong; Qu Ying; Liu Ying; Zhao Yuliang; Chen Chunying [CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190 (China); Li Wei [CAS Key Laboratory for Nuclear Analytical Techniques, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: chenchy@nanoctr.cn

    2009-06-03

    Functional fullerene derivatives have been demonstrated with potent antioxidation properties. Nitric oxide (NO) is a free radical that plays a part in leading to brain damage when it is accumulated to a high concentration. The possible scavenging activity of NO by the hydroxylated fullerene derivative C{sub 60}(OH){sub 22} and malonic acid derivative C{sub 60}(C(COOH){sub 2}){sub 2} was investigated using primary rat brain cerebral microvessel endothelial cells (CMECs). Results demonstrate that sodium nitroprusside (SNP), used as an NO donor, caused a marked decrease in cell viability and an increase in apoptosis. However, fullerene derivatives can remarkably protect against the apoptosis induced by NO assault. In addition, fullerene derivatives can also prevent NO-induced depolymerization of cytoskeleton and damage of the nucleus and accelerate endothelial cell repair. Further investigation shows that the sudden increase of the intercellular reactive oxygen species (ROS) induced by NO was significantly attenuated by post-treatment with fullerene derivatives. Our results suggest that functional fullerene derivatives are potential applications for NO-related disorders.

  8. The targeting expression of the vascular endothelial growth factor gene in endothelial cells regulated by HRE.ppET-1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The success of gene therapy depends largely on the efficacy of gene delivery vector systems that can deliver genes to target organs or cells selectively and efficiently with minimal toxicity. Here, we show that by using the HRE.ppET-1 regulatory element, we were able to restrict expression of the transgene of vascular endothelial growth factor (VEGF) to endothelial cells exclusively in hypoxic conditions. Eukaryotic expression vectors such as pEGFP-HRE.ppET-1, pcDNA3.1-VEGF+Pa, pcDNA3.1-ppET-1+ EGF+Pa, and pcDNA3.1-HRE.ppET-1+VEGF+Pa were constructed by using a series of nuclear molecule handling methods like PCR, enzyme digestion. The recombinant vectors were transfected into HUVEC cells and HL7702 cells by the lipofectin method. GFP expression was observed with a fluorescence microscope to validate the specificity of expression in endothelial cells under the regulation of HRE.ppET-1 element. Cobalt chloride (final concentration 100 μmol/L) was added to the medium to mimic hypoxia in vitro. After transfection of vectors, the expression of VEGF mRNA was detected by RT-PCR, and the expression of VEGF was detected by Western blotting and ELISA methods under normoxia and hypoxia, respectively. The cell proliferation rate was detected by the MTT test. The ex- pression of GFP revealed that the exterior gene was transcripted effectively in endothelial cells regu- lated by the HRE.ppET-1 element, while the expression of GFP was very weak in nonendothelial cells. The results of RT-PCR, Western blotting and ELISA showed that VEGF gene expression in the pcDNA3.1-HRE.ppET-1+VEGF+Pa group and in the pcDNA3.1-ppET-1+VEGF+Pa group was higher in hypoxia than it was in normoxia (P<0.05). The MTT test showed that the proliferation rate of HUVEC transfected with HPVA under hypoxia exceeded that of the control group. We conclude that the HRE.ppET-1 element was expressed specifically in endothelial cells, and can increase the expression of VEGF in hypoxia and stimulate proliferation

  9. Extracellular DNA affects NO content in human endothelial cells.

    Science.gov (United States)

    Efremova, L V; Alekseeva, A Yu; Konkova, M S; Kostyuk, S V; Ershova, E S; Smirnova, T D; Konorova, I L; Veiko, N N

    2010-08-01

    Fragments of extracellular DNA are permanently released into the blood flow due to cell apoptosis and possible de novo DNA synthesis. To find out whether extracellular DNA can affect the synthesis of nitric oxide (NO), one of key vascular tone regulators, we studied in vitro effects of three artificial DNA probes with different sequences and 10 samples of extracellular DNA (obtained from healthy people and patients with hypertension and atherosclerosis) on NO synthesis in endothelial cell culture (HUVEC). For detection of NO in live cells and culture medium, we used a NO-specific agent CuFL penetrating into the cells and forming a fluorescent product FL-NO upon interaction with NO. Human genome DNA fragments affected the content of NO in endothelial cells; this effect depended on both the base sequence and concentration of DNA fragments. Addition of artificial DNA and extracellular DNA from healthy people into the cell culture in a low concentration (5 ng/ml) increased the detected NO concentration by 4-fold at most. Cytosine-guanine (CG)-rich fragment of the transcribed sequence of ribosomal repeat was the most powerful NO-inductor. The effect of DNA fragments on NO synthesis was comparable with that of low doses of oxidizing agents, H(2)O(2) and 17β-estradiol. Extracellular DNA samples obtained from patients with hypertension and atherosclerosis decreased NO content in cells and medium by 1.3-28 times compared to the control; the effect correlated with the content of CG-rich sequences.

  10. Glioblastoma cell-secreted interleukin-8 induces brain endothelial cell permeability via CXCR2.

    Directory of Open Access Journals (Sweden)

    Julie Dwyer

    Full Text Available Glioblastoma constitutes the most aggressive and deadly of brain tumors. As yet, both conventional and molecular-based therapies have met with limited success in treatment of this cancer. Among other explanations, the heterogeneity of glioblastoma and the associated microenvironment contribute to its development, as well as resistance and recurrence in response to treatments. Increased vascularity suggests that tumor angiogenesis plays an important role in glioblastoma progression. However, the molecular crosstalk between endothelial and glioblastoma cells requires further investigation. To examine the effects of glioblastoma-derived signals on endothelial homeostasis, glioblastoma cell secretions were collected and used to treat brain endothelial cells. Here, we present evidence that the glioblastoma secretome provides pro-angiogenic signals sufficient to disrupt VE-cadherin-mediated cell-cell junctions and promote endothelial permeability in brain microvascular endothelial cells. An unbiased angiogenesis-specific antibody array screen identified the chemokine, interleukin-8, which was further demonstrated to function as a key factor involved in glioblastoma-induced permeability, mediated through its receptor CXCR2 on brain endothelia. This underappreciated interface between glioblastoma cells and associated endothelium may inspire the development of novel therapeutic strategies to induce tumor regression by preventing vascular permeability and inhibiting angiogenesis.

  11. Curcumin Attenuates Rapamycin-induced Cell Injury of Vascular Endothelial Cells.

    Science.gov (United States)

    Guo, Ning; Chen, Fangyuan; Zhou, Juan; Fang, Yuan; Li, Hongbing; Luo, Yongbai; Zhang, Yong

    2015-10-01

    Although drug-eluting stents (DES) effectively improve the clinical efficacy of percutaneous coronary intervention, a high risk of late stent thrombosis and in-stent restenosis also exists after DES implantation. Anti-smooth muscle proliferation drugs, such as rapamycin, coating stents, not only inhibit the growth of vascular smooth muscle cells but also inhibit vascular endothelial cells and delay the reendothelialization. Therefore, the development of an ideal agent that protects vascular endothelial cells from rapamycin-eluting stents is of great importance for the next generation of DES. In this study, we demonstrated that rapamycin significantly inhibited the growth of rat aortic endothelial cells in both dose- and time-dependent manner in vitro. Cell apoptosis was increased and migration was decreased by rapamycin treatments in rat aortic endothelial cells in vitro. Surprisingly, treatment with curcumin, an active ingredient of turmeric, significantly reversed these detrimental effects of rapamycin. Moreover, curcumin increased the expression of vascular nitric oxide synthases (eNOS), which was decreased by rapamycin. Furthermore, caveolin-1, the inhibitor of eNOS, was decreased by curcumin. Knockdown of eNOS by small interfering RNA significantly abrogated the protective effects of curcumin. Taken together, our results suggest that curcumin antagonizes the detrimental effect of rapamycin on aortic endothelial cells in vitro through upregulating eNOS. Therefore, curcumin is a promising combined agent for the rescue of DES-induced reendothelialization delay.

  12. Thalidomide effect in endothelial cell of acute radiation proctitis

    Institute of Scientific and Technical Information of China (English)

    Ki-Tae Kim; Hiun-Suk Chae; Jin-Soo Kim; Hyung-Keun Kim; Young-Seok Cho; Whang Choi; Kyu-Yong Choi; Sang-Young Rho; Suk-Jin Kang

    2008-01-01

    AIM: To determine whether thalidomide prevents microvascular injury in acute radiation proctitis in white rats. METHODS: Fourteen female Wistar rats were used:six in the radiation group,six in the thalidomide group,and two in normal controls.The radiation and thalidomide groups were irradiated at the pelvic area using a single 30 Gy exposure.The thalidomide (150 mg/kg) was injected into the peritoneum for 7 d from the day of irradiation.All animals were sacrificed and the rectums were removed on day 8 after irradiation.The microvessels of resected specimens were immunohistochemically stained with thrombomodulin (TM),yon Willebrand Factor (vWF),and vascular endothelial growth factor (VEGF).RESULTS: The microscopic scores did not differ significantly between the radiation and thalidomide groups,but both were higher than in the control group.Expression of TM was significantly lower in the endothelial cells (EC) of the radiation group than in the control and thalidomide groups (P < 0.001).The number of capillaries expressing vWF in the EC was higher in the radiation group (15.3 ± 6.8) than in the control group (3.7 ± 1.7),and the number of capillaries expressing vWF was attenuated by thalidomide (10.8 ± 3.5,P < 0.001).The intensity of VEGF expression in capillaries was greater in the radiation group than in the control group and was also attenuated by thalidomide (P = 0.003).CONCLUSION: The mechanisms of acute radiationinduced proctitis in the rats are related to endothelial cell injury of microvessel,which may be attenuated with thalidomide.

  13. Purification of c-phycocyanin from Spirulina fusiformis and its effect on the induction of urokinase-type plasminogen activator from calf pulmonary endothelial cells.

    Science.gov (United States)

    Madhyastha, H K; Radha, K S; Sugiki, M; Omura, S; Maruyama, M

    2006-09-01

    c-Phycocyanin (c-pc), a blue coloured, fluorescent protein was purified from blue-green alga, Spirulina fusiformis and its effect on fibrinolytic system in vascular endothelial cells was investigated. The c-pc consisted of two subunits, alpha and beta, whose molecular masses were 16 and 17 kDa, respectively. N-terminal sequences of both subunits were well conserved compared with other blue green algal phycobiliproteins. Fibrinolytic activity in the medium conditioned by calf pulmonary arterial endothelial cells was measured by the fibrin plate method. The c-pc increased the fibrinolytic activity in dose- and time-dependent manners. Fibrin zymographic studies indicated that c-pc-induced urokinase-type plasminogen activator in the cells. These in vitro results suggest that c-pc from S. fusiformis is a potent profibrinolytic protein in the vascular endothelial system.

  14. Endothelial cell chimerism by fluorescence in situ hybridization in gender mismatched renal allograft biopsies

    Institute of Scientific and Technical Information of China (English)

    BAI Hong-wei; SHI Bing-yi; QIAN Ye-yong; NA Yan-qun; ZENG Xuan; ZHONG Ding-rong; LU Min; ZOU Wan-zhong; WU Shi-fei

    2007-01-01

    Background The blood vessels of a transplanted organ are the interface between donor and recipient. The endothelium in the blood vessels is thought to be the major target for graft rejection. Endothelial cells of a transplanted organ can be of recipient origin after transplantation. In this study, we tested whether endothelial chimerism correlated with the graft rejection and cold ischemia.Methods We studied the biopsy samples from 34 renal transplants of female recipients who received the kidney from a male donor for the presence of endothelial cells of recipient origin. We examined the tissue sections of renal biopsy samples by fluorescence in situ hybridization (FISH) for the presence of endothelial cells containing two X chromosomes using a biotinylated Y chromosome probe and digoxigenin labelled X chromosome probe, and then analyzed the relationship between the endothelial cell chimerism and the rejection and cold ischemia.Results Endothelial chimerism was common and irrespective of rejections (P>0.05). The cold ischemic time of chimerism group was longer than no chimerism group ((14.83±4.03) hours vs (11.27±3.87) hours, P<0.05).Conclusions There is no correlation between the percentage of recipient endothelial cells in vascular endothelial cells and the type of graft rejection. The endothelium damaged by ischemic injury might be repaired by the endothelial cells from the recipient.

  15. Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein.

    Science.gov (United States)

    Koenig, Andrew L; Baltrunaite, Kristina; Bower, Neil I; Rossi, Andrea; Stainier, Didier Y R; Hogan, Benjamin M; Sumanas, Saulius

    2016-03-01

    The mechanisms underlying organ vascularization are not well understood. The zebrafish intestinal vasculature forms early, is easily imaged using transgenic lines and in-situ hybridization, and develops in a stereotypical pattern thus making it an excellent model for investigating mechanisms of organ specific vascularization. Here, we demonstrate that the sub-intestinal vein (SIV) and supra-intestinal artery (SIA) form by a novel mechanism from angioblasts that migrate out of the posterior cardinal vein and coalesce to form the intestinal vasculature in an anterior to posterior wave with the SIA forming after the SIV. We show that vascular endothelial growth factor aa (vegfaa) is expressed in the endoderm at the site where intestinal vessels form and therefore likely provides a guidance signal. Vegfa/Vegfr2 signaling is required for early intestinal vasculature development with mutation in vegfaa or loss of Vegfr2 homologs causing nearly complete inhibition of the formation of the intestinal vasculature. Vegfc and Vegfr3 function, however, are dispensable for intestinal vascularization. Interestingly, ubiquitous overexpression of Vegfc resulted in an overgrowth of the SIV, suggesting that Vegfc is sufficient to induce SIV development. These results argue that Vegfa signaling directs endothelial cells to migrate out of existing vasculature and coalesce to form the intestinal vessels. It is likely that a similar mechanism is utilized during vascularization of other organs.

  16. Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells.

    Science.gov (United States)

    Antoine, M; Wirz, W; Tag, C G; Mavituna, M; Emans, N; Korff, T; Stoldt, V; Gressner, A M; Kiefer, P

    2005-06-01

    Fibroblast growth factors (FGFs) are important angiogenic growth factors. While basic FGF (FGF2) is well established as a potent inducer of angiogenesis much less is known about other FGFs possibly expressed by EC. We investigated the expression of all known FGFs, their main tyrosine kinase receptors and antagonists by RT-PCR analysis in human umbilical vascular endothelial cells (HUVECs) to obtain a complete expression profile of this important growth factor system in model endothelial cells (EC). In addition to FGFR1IIIc, which is considered as the major FGF receptor in EC, HUVECs express similar levels of FGFR3IIIc, detectable amounts of FGFR2IIIc and a new FGF receptor without an intracellular kinase domain (FGFR5). HUVECs express several secreted FGFs, including FGF5, 7, 8, 16 and 18 and two members of the fibroblast growth factor homologous factors (FHFs), not yet reported to be expressed in EC. The expression panel was compared with that obtained from human vascular smooth muscle cells (VSMCs) and human aortic tissue. Human umbilical artery smooth muscle cells (HUASMCs) and HUVECs express the identical FGF receptor and ligand panel implicating that both cell types act, according the FGF signals more as an entity than as individual cell types. Expression of Fgf1, 2, 7, 16 and 18 and the antagonists Sprouty 2,3 and 4 was demonstrated for all analysed cDNAs. The IIIc isoforms of FGFR1 and 2 and the novel FGFR5 were expressed in the aorta, but expression of the FGF receptor 3 was not detected in cDNAs derived from aortic tissue. In the VSMC of rat aortic tissue and in HUASM cultured cells we could demonstrate FGF18 immunoreactivity in the nucleus of the cells. The expression of several secreted FGFs by EC may focus the view more on their paracrine effects on neighbouring cells during tissue regeneration or tumor formation.

  17. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Vallon, Mario, E-mail: m.vallon@arcor.de [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany); Rohde, Franziska; Janssen, Klaus-Peter [Chirurgische Klinik und Poliklinik, Technische Universitaet Muenchen, Munich (Germany); Essler, Markus [Nuklearmedizinische Klinik und Poliklinik, Technische Universitaet Muenchen, Ismaninger Strasse 22, 81675 Munich (Germany)

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  18. Non-endothelial endothelin counteracts hypoxic vasodilation in porcine large coronary arteries

    DEFF Research Database (Denmark)

    Hedegaard, Elise Røge; Stankevicius, Edgaras; Simonsen, Ulf

    2011-01-01

    of large coronary arteries. RESULTS: In prostaglandin F2α (PGF2α, 10 μM)-contracted segments with endothelium, gradual lowering of oxygen tension from 95 to 1% O2 resulted in vasodilation. The vasodilation to O2 lowering was rightward shifted in segments without endothelium at all O2 concentrations except...... at 1% O2. The endothelin receptor antagonist SB217242 (10 μM) markedly increased hypoxic dilation despite the free tissue ET-1 concentration in the arterial wall was unchanged in 1% O2 versus 95% O2. Exogenous ET-1 reversed hypoxic dilation in segments with and without endothelium, and the hypoxic...... arteries showed an increased sensitivity towards ET-1 compared to the normoxic controls. Without affecting basal NO, hypoxia increased NO concentration in PGF2α-contracted arteries, and an NO synthase inhibitor, L-NOARG,(300 μM, NG-nitro-L-Arginine) reduced hypoxic vasodilation. NO-induced vasodilation...

  19. Endothelial-mural cell signaling in vascular development and angiogenesis.

    Science.gov (United States)

    Gaengel, Konstantin; Genové, Guillem; Armulik, Annika; Betsholtz, Christer

    2009-05-01

    Mural cells are essential components of blood vessels and are necessary for normal development, homeostasis, and organ function. Alterations in mural cell density or the stable attachment of mural cells to the endothelium is associated with several human diseases such as diabetic retinopathy, venous malformation, and hereditary stroke. In addition mural cells are implicated in regulating tumor growth and have thus been suggested as potential antiangiogenic targets in tumor therapy. In recent years our knowledge of mural cell function and endothelial-mural cell signaling has increased dramatically, and we now begin to understand the mechanistic basis of the key signaling pathways involved. This is mainly thanks to sophisticated in vivo experiments using a broad repertoire of genetic technologies. In this review, we summarize the five currently best understood signaling pathways implicated in mural cell biology. We discuss PDGFB/PDGFRbeta- dependent pericyte recruitment, as well as the role of angiopoietins and Tie receptors in vascular maturation. In addition, we highlight the effects of sphingosine-1-phosphate signaling on adherens junction assembly and vascular stability, as well as the role of TGF-beta-signaling in mural cell differentiation. We further reflect recent data suggesting an important function for Notch3 signaling in mural cell maturation.

  20. Modulation of the sis Gene Transcript during Endothelial Cell Differentiation in vitro

    Science.gov (United States)

    Jaye, Michael; McConathy, Evelyn; Drohan, William; Tong, Benton; Deuel, Thomas; Maciag, Thomas

    1985-05-01

    Endothelial cells, which line the interior walls of blood vessels, proliferate at the site of blood vessel injury. Knowledge of the factors that control the proliferation of these cells would help elucidate the role of endothelial cells in wound healing, tumor growth, and arteriosclerosis. In vitro, endothelial cells organize into viable, three-dimensional tubular structures in environments that limit cell proliferation. The process of endothelial cell organization was found to result in decreased levels of the sis messenger RNA transcript and increased levels of the messenger RNA transcript for fibronectin. This situation was reversed on transition from the organized structure to a proliferative monolayer. These results suggest a reciprocity for two biological response modifiers involved in the regulation of endothelial cell proliferation and differentiation in vitro.

  1. Endothelial reconstitution by CD34+ progenitors derived from baboon embryonic stem cells.

    Science.gov (United States)

    Shi, Qiang; Schatten, Gerald; Hodara, Vida; Simerly, Calvin; VandeBerg, John L

    2013-02-01

    In this study, we used a large non-human primate model, the baboon, to establish a step-wise protocol to generate CD34+ endothelial progenitor cells (EPCs) from embryonic stem cells (ESCs) and to demonstrate their reparative effects. Baboon ESCs were sequentially differentiated from embryoid body cultures for 9 days and then were specified into EPCs by culturing them in monolayer for 12 days. The resulting EPCs expressed CD34, CXCR4 and UEA-1, but neither CD31 nor CD117. The EPCs were able to form intact lumen structures when seeded on Matrigel, took up Dil-LDL, and responded to TNF-α. Angioblasts specified in EGM-2 medium and ECGS medium had 6.41 ± 1.16% (n = 3) and 9.32 ± 3.73% CD34+ cells (n = 3). The efficiency of generating CD34+ EPCs did not differ significantly from ECGS to EGM-2 culture media, however, angioblasts specified in ECGS medium expressed a higher percentage of CD34+/CXCR4+ cells (3.49 ± 1.32%, n = 3) than those specified in EGM-2 medium (0.49 ± 0.52%, n = 3). To observe their reparative capacity, we purified CD34+ progenitors after specification by EGM-2 medium; inoculated fluorescently labelled CD34+ EPCs into an arterial segment denuded of endothelium in an ex vivo system. After 14 days of ex vivo culture, the grafted cells had attached and integrated to the denuded surface; in addition, they had matured further and expressed terminally differentiated endothelial markers including CD31 and CD146. In conclusion, we have proved that specified CD34+ EPCs are promising therapeutic agents for repairing damaged vasculature.

  2. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    Science.gov (United States)

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadhe