WorldWideScience

Sample records for arsr repressor mediates

  1. Regulatory Activities of Four ArsR Proteins in Agrobacterium tumefaciens 5A.

    Science.gov (United States)

    Kang, Yoon-Suk; Brame, Keenan; Jetter, Jonathan; Bothner, Brian B; Wang, Gejiao; Thiyagarajan, Saravanamuthu; McDermott, Timothy R

    2016-06-15

    ArsR is a well-studied transcriptional repressor that regulates microbe-arsenic interactions. Most microorganisms have an arsR gene, but in cases where multiple copies exist, the respective roles or potential functional overlap have not been explored. We examined the repressors encoded by arsR1 and arsR2 (ars1 operon) and by arsR3 and arsR4 (ars2 operon) in Agrobacterium tumefaciens 5A. ArsR1 and ArsR4 are very similar in their primary sequences and diverge phylogenetically from ArsR2 and ArsR3, which are also quite similar to one another. Reporter constructs (lacZ) for arsR1, arsR2, and arsR4 were all inducible by As(III), but expression of arsR3 (monitored by reverse transcriptase PCR) was not influenced by As(III) and appeared to be linked transcriptionally to an upstream lysR-type gene. Experiments using a combination of deletion mutations and additional reporter assays illustrated that the encoded repressors (i) are not all autoregulatory as is typically known for ArsR proteins, (ii) exhibit variable control of each other's encoding genes, and (iii) exert variable control of other genes previously shown to be under the control of ArsR1. Furthermore, ArsR2, ArsR3, and ArsR4 appear to have an activator-like function for some genes otherwise repressed by ArsR1, which deviates from the well-studied repressor role of ArsR proteins. The differential regulatory activities suggest a complex regulatory network not previously observed in ArsR studies. The results indicate that fine-scale ArsR sequence deviations of the reiterated regulatory proteins apparently translate to different regulatory roles. Given the significance of the ArsR repressor in regulating various aspects of microbe-arsenic interactions, it is important to assess potential regulatory overlap and/or interference when a microorganism carries multiple copies of arsR This study explores this issue and shows that the four arsR genes in A. tumefaciens 5A, associated with two separate ars operons, encode

  2. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  3. Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori fur repressor.

    NARCIS (Netherlands)

    A.H.M. van Vliet (Arnoud); J. Stoof (Jeroen); S.W. Poppelaars (Sophie); S. Bereswill (Stefan); G. Homuth (Georg); M. Kist (Manfred); E.J. Kuipers (Ernst); J.G. Kusters (Johannes)

    2003-01-01

    textabstractThe production of high levels of ammonia allows the human gastric pathogen Helicobacter pylori to survive the acidic conditions in the human stomach. H. pylori produces ammonia through urease-mediated degradation of urea, but it is also able to convert a range of amide

  4. Mediation of suppression of c-fos transcription in rasT24-transformed rat cells by a cis-acting repressor element.

    Science.gov (United States)

    Osei-Frimpong, J; Sepulveda, J; Rangdaeng, S; Lebovitz, R M

    1994-06-01

    Prolonged expression of activated ras mutants resulted in both neoplastic transformation and suppression of serum-induced c-fos expression in Rat1 fibroblasts. Expression of other serum-inducible genes, including c-jun and beta-actin, was not suppressed in ras-transformed Rat1 cells, indicating that these effects are specific for c-fos and that growth-factor signal transduction pathways remain essentially intact. Run-on transcription studies indicated that c-fos transcription was blocked at the level of initiation in these cells. Transient transfection studies using 360 bp from the wild-type c-fos promoter as well as a series of mutated c-fos promoter fragments linked to the chloramphenicol acetyltransferase gene indicated that repression of c-fos was mediated by approximately 49 bp immediately upstream of the dyad symmetry element (DSE). Deletion of this region, referred to as the upstream repressor region (URR), restored serum inducibility to the c-fos promoter in ras-transformed cells. In contrast, suppression of c-fos transcription was not affected by either deletion of 240 bp between the DSE and the TATA element or by base-substitution mutations that inactive the ternary complex factor and fos-AP-1-like binding sites. In addition, in vitro competition studies indicated that ras-transformed cells express one or more repressor factors that interact with as-yet-unidentified elements within the c-fos promoter (possibly the URR) and block serum induction of c-fos. These findings suggest that prolonged expression of activated ras results in the activation of one or more as-yet-unidentified proteins that suppress transcription of the c-fos gene by interacting with the URR.

  5. REPRESSOR OF ULTRAVIOLET-B PHOTOMORPHOGENESIS function allows efficient phototropin mediated ultraviolet-B phototropism in etiolated seedlings.

    Science.gov (United States)

    Vanhaelewyn, Lucas; Schumacher, Paolo; Poelman, Dirk; Fankhauser, Christian; Van Der Straeten, Dominique; Vandenbussche, Filip

    2016-11-01

    Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Wnt-mediated down-regulation of Sp1 target genes by a transcriptional repressor Sp5

    Czech Academy of Sciences Publication Activity Database

    Fujimura, Naoko; Vacík, Tomáš; Machoň, Ondřej; Vlček, Čestmír; Scalabrin, S.; Speth, M.; Diep, D.; Krauss, S.; Kozmik, Zbyněk

    2007-01-01

    Roč. 282, č. 2 (2007), s. 1225-1237 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z50520514 Keywords : Wnt -mediated signaling * Sp5 transcription factor * Sp1 target genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.581, year: 2007

  7. Long Noncoding RNA lncARSR Promotes Doxorubicin Resistance in Hepatocellular Carcinoma via Modulating PTEN-PI3K/Akt Pathway.

    Science.gov (United States)

    Li, Yaling; Ye, Yun; Feng, Bimin; Qi, Yan

    2017-12-01

    Hepatocellular carcinoma (HCC) is generally resistant to chemotherapy due to intrinsic or acquired drug resistances. Many molecules and signaling pathways are involved in chemo-resistance of HCC cells. However, the contribution of long noncoding RNA (lncRNA) to chemo-resistance of HCC cells is still largely unknown. In this study, we revealed the critical roles of long noncoding RNA lncARSR in chemo-resistance of HCC cells. lncARSR is upregulated in HCC, associated with large tumor size and advanced BCLC stage, and indicts poor prognosis. Functional assays showed that overexpression of lncARSR enhances doxorubicin resistance of HCC cells in vitro and in vivo. And while knockdown of lncARSR increases sensitivity of HCC cells to doxorubicin in vitro and in vivo. Mechanistically, we found that lncARSR physically associates with PTEN mRNA, promotes PTEN mRNA degradation, decreases PTEN expression, and activates PI3K/Akt pathway. PTEN is downregulated in HCC, and the expression of PTEN is negatively correlated with lncARSR in HCC tissues. Furthermore, the effects of lncARSR overexpression on doxorubicin resistance could be reversed by PI3K/Akt pathway inhibitor, and lncARSR knockdown-induced doxorubicin sensitivity could be reversed by PTEN depletion. Taken together, our results showed that upregulated lncARSR promotes doxorubicin resistance in HCC via modulating PTEN-PI3K/Akt pathway, and implied that lncARSR may serve as a promising prognostic biomarker and therapeutic target for HCC chemo-resistance. J. Cell. Biochem. 118: 4498-4507, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Phosphorylation-dependent and Phosphorylation-independent Regulation of Helicobacter pylori Acid Acclimation by the ArsRS Two-component System.

    Science.gov (United States)

    Marcus, Elizabeth A; Sachs, George; Wen, Yi; Scott, David R

    2016-02-01

    The pH-sensitive Helicobacter pylori ArsRS two-component system (TCS) aids survival of this neutralophile in the gastric environment by directly sensing and responding to environmental acidity. ArsS is required for acid-induced trafficking of urease and its accessory proteins to the inner membrane, allowing rapid, urea-dependent cytoplasmic and periplasmic buffering. Expression of ArsR, but not its phosphorylation, is essential for bacterial viability. The aim of this study was to characterize the roles of ArsS and ArsR in the response of H. pylori to acid. Wild-type H. pylori and an arsR(D52N) phosphorylation-deficient strain were incubated at acidic or neutral pH. Gene and protein expression, survival, membrane trafficking of urease proteins, urease activity, and internal pH were studied. Phosphorylation of ArsR is not required for acid survival. ArsS-driven trafficking of urease proteins to the membrane in acid, required for recovery of internal pH, is independent of ArsR phosphorylation. ArsR phosphorylation increases expression of the urease gene cluster, and the loss of negative feedback in a phosphorylation-deficient mutant leads to an increase in total urease activity. ArsRS has a dual function in acid acclimation: regulation of urease trafficking to UreI at the cytoplasmic membrane, driven by ArsS, and regulation of urease gene cluster expression, driven by phosphorylation of ArsR. ArsS and ArsR work through phosphorylation-dependent and phosphorylation-independent regulatory mechanisms to impact acid acclimation and allow gastric colonization. Furthering understanding of the intricacies of acid acclimation will impact the future development of targeted, nonantibiotic treatment regimens. © 2015 John Wiley & Sons Ltd.

  9. Induction of Pseudomonas syringae pv. tomato DC3000 MexAB-OprM multidrug efflux pump by flavonoids is mediated by the repressor PmeR.

    Science.gov (United States)

    Vargas, Paola; Felipe, Antonia; Michán, Carmen; Gallegos, María-Trinidad

    2011-10-01

    In this study, we have analyzed the expression of the Pseudomonas syringae pv. tomato DC3000 mexAB-oprM efflux pump operon and of the regulatory gene pmeR, and we have investigated the role of the PmeR protein on transcription from both promoters. We demonstrate that mexAB-oprM and pmeR are expressed in vivo at a relatively high and moderate basal level, respectively, which, in both cases, increases in the presence of different flavonoids and other compounds, such as butyl and methylparaben. We show that PmeR is the local repressor of the mexAB-oprM promoter and is able to regulate its own expression. The mechanism for this regulation includes binding to a pseudopalindromic operator site which overlaps both mexAB-oprM and pmeR promoters. We have also proven that flavonoids are able to interact with PmeR and induce a conformational change that interferes with the DNA binding ability of PmeR, thereby modulating mexAB-oprM and pmeR expression. Finally, we demonstrate by in vivo experiments that the PmeR/MexAB-OprM system contributes to the colonization of tomato plants. These results provide new insight into a transcriptional regulator and a transport system that play essential roles in the ability of P. syringae pv. tomato DC3000 to resist the action of flavonoids produced by the host.

  10. PTB-associated splicing factor (PSF) functions as a repressor of STAT6-mediated IG{epsilon} gene transcription by recruitment of HDAC1

    DEFF Research Database (Denmark)

    Dong, Lijie; Zhang, Xinyu; Fu, Xiao

    2010-01-01

    of phosphorylation, and IL-4 stimulation increased tyrosine phosphorylation of PSF and STAT6. Functional analysis demonstrated that ectopic expression of PSF resulted in inhibition of STAT6-mediated gene transcriptional activation and mRNA expression of Ig heavy chain germline Ig ε, while knockdown of PSF increased......Regulation of transcription requires cooperation between sequence specific transcription factors and numerous coregulatory proteins. In IL-4/IL-13 signaling several coactivators for STAT6 have been identified, but the molecular mechanisms of STAT6-mediated gene transcription are still not fully...... understood. Here we identified by proteomic approach that PTB-associated splicing factor (PSF) interacts with STAT6. In cells the interaction required IL-4 stimulation and was observed both with endogenous and ectopically expressed proteins. The ligand dependency of the interaction suggested involvement...

  11. 1H, 13C and 15N backbone resonance assignment of the arsenate reductase from Staphylococcus aureus in its reduced state

    NARCIS (Netherlands)

    Jacobs, D.M.; Messens, J.; Wechselberger, R.W.|info:eu-repo/dai/nl/304829005; Brosens, E.; Willem, R.; Wyns, L.; Martins, J.C.

    2001-01-01

    In S. aureus, resistance to the metal(III)oxyanions arsenite As(III)O− 2 and antimonite Sb(III)O− 2 is mediated by two proteins, ArsB and ArsR, encoded in the ars operon of plasmid pI258 (Silver, 1999). ArsR acts as the transcription repressor, which is de-repressed in the presence of intracellular

  12. Groucho corepressor functions as a cofactor for the Knirps short-range transcriptional repressor.

    Science.gov (United States)

    Payankaulam, Sandhya; Arnosti, David N

    2009-10-13

    Despite the pervasive roles for repressors in transcriptional control, the range of action of these proteins on cis regulatory elements remains poorly understood. Knirps has essential roles in patterning the Drosophila embryo by means of short-range repression, an activity that is essential for proper regulation of complex transcriptional control elements. Short-range repressors function in a local fashion to interfere with the activity of activators or basal promoters within approximately 100 bp. In contrast, long-range repressors such as Hairy act over distances >1 kb. The functional distinction between these two classes of repressors has been suggested to stem from the differential recruitment of the CtBP corepressor to short-range repressors and Groucho to long-range repressors. Contrary to this differential recruitment model, we report that Groucho is a functional part of the Knirps short-range repression complex. The corepressor interaction is mediated via an eh-1 like motif present in the N terminus and a conserved region present in the central portion of Knirps. We also show that this interaction is important for the CtBP-independent repression activity of Knirps and is required for regulation of even-skipped. Our study uncovers a previously uncharacterized interaction between proteins previously thought to function in distinct repression pathways, and indicates that the Groucho corepressor can be differentially harnessed to execute short- and long-range repression.

  13. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  14. A novel GDNF-inducible gene, BMZF3, encodes a transcriptional repressor associated with KAP-1

    International Nuclear Information System (INIS)

    Suzuki, Chikage; Murakumo, Yoshiki; Kawase, Yukari; Sato, Tomoko; Morinaga, Takatoshi; Fukuda, Naoyuki; Enomoto, Atsushi; Ichihara, Masatoshi; Takahashi, Masahide

    2008-01-01

    The Krueppel-associated box (KRAB)-containing zinc finger proteins (ZFPs) comprise the largest family of zinc finger transcription factors that function as transcriptional repressors. In the study of glial cell line-derived neurotrophic factor (GDNF)-RET signaling, we have identified bone marrow zinc finger 3 (BMZF3), encoding a KRAB-ZFP, as a GDNF-inducible gene by differential display analysis. The expression of BMZF3 transcripts in the human neuroblastoma cell line TGW increased 1 h after GDNF stimulation, as determined by Northern blotting and quantitative reverse-transcriptase polymerase chain reaction. The BMZF3 possesses transcriptional repressor activity in the KRAB domain. BMZF3 interacts with a co-repressor protein, KRAB-associated protein 1 (KAP-1), through the KRAB domain and siRNA-mediated knockdown of KAP-1 abolished the transcriptional repressor activity of BMZF3, indicating that KAP-1 is necessary for BMZF3 function. Furthermore, siRNA-mediated silencing of BMZF3 inhibited cell proliferation. These findings suggest that BMZF3 is a transcriptional repressor induced by GDNF that plays a role in cell proliferation

  15. A single mutation in the core domain of the lac repressor reduces leakiness

    NARCIS (Netherlands)

    Gatti-Lafranconi, Pietro; Dijkman, Willem; Devenish, Sean RA; Hollfelder, Florian

    2013-01-01

    The lac operon provides cells with the ability to switch from glucose to lactose metabolism precisely when necessary. This metabolic switch is mediated by the lac repressor (LacI), which in the absence of lactose binds to the operator DNA sequence to inhibit transcription. Allosteric rearrangements

  16. TauCstF-64 Mediates Correct mRNA Polyadenylation and Splicing of Activator and Repressor Isoforms of the Cyclic AMP-Responsive Element Modulator (CREM) in Mouse Testis.

    Science.gov (United States)

    Grozdanov, Petar N; Amatullah, Atia; Graber, Joel H; MacDonald, Clinton C

    2016-02-01

    Spermatogenesis is coordinated by the spatial and temporal expression of many transcriptional and posttranscriptional factors. The cyclic AMP-responsive element modulator (CREM) gene encodes both activator and repressor isoforms that act as transcription factors to regulate spermiogenesis. We found that the testis-expressed paralog of CstF-64, tauCstF-64 (gene symbol Cstf2t), is involved in a polyadenylation site choice switch of Crem mRNA and leads to an overall decrease of the Crem mRNAs that are generated from internal promoters in Cstf2t(-/-) mice. More surprisingly, loss of tauCstF-64 also leads to alternative splicing of Crem exon 4, which contains an important activation domain. Thus, testis-specific CREMtau2 isoform protein levels are reduced in Cstf2t(-/-) mice. Consequently, expression of 15 CREM-regulated genes is decreased in testes of Cstf2t(-/-) mice at 25 days postpartum. These effects might further contribute to the infertility phenotype of these animals. This demonstrates that tauCstF-64 is an important stage-specific regulator of Crem mRNA processing that modulates the spatial and temporal expression of downstream stage-specific genes necessary for the proper development of sperm in mice. © 2016 by the Society for the Study of Reproduction, Inc.

  17. The transcriptional repressor domain of Gli3 is intrinsically disordered

    DEFF Research Database (Denmark)

    Tsanev, Robert; Vanatalu, Kalju; Jarvet, Jüri

    2013-01-01

    The transcription factor Gli3 is acting mainly as a transcriptional repressor in the Sonic hedgehog signal transduction pathway. Gli3 contains a repressor domain in its N-terminus from residue G106 to E236. In this study we have characterized the intracellular structure of the Gli3 repressor doma...

  18. The transcriptional repressor domain of Gli3 is intrinsically disordered.

    Directory of Open Access Journals (Sweden)

    Robert Tsanev

    Full Text Available The transcription factor Gli3 is acting mainly as a transcriptional repressor in the Sonic hedgehog signal transduction pathway. Gli3 contains a repressor domain in its N-terminus from residue G106 to E236. In this study we have characterized the intracellular structure of the Gli3 repressor domain using a combined bioinformatics and experimental approach. According to our findings the Gli3 repressor domain while being intrinsically disordered contains predicted anchor sites for partner interactions. The obvious interaction partners to test were Ski and DNA; however, with both of these the structure of Gli3 repressor domain remained disordered. To locate residues important for the repressor function we mutated several residues within the Gli3 repressor domain. Two of these, H141A and H157N, targeting predicted helical regions, significantly decreased transcriptional repression and thus identify important functional parts of the domain.

  19. Mouse Hobit is a homolog of the transcriptional repressor Blimp-1 that regulates NKT cell effector differentiation

    NARCIS (Netherlands)

    van Gisbergen, Klaas P. J. M.; Kragten, Natasja A. M.; Hertoghs, Kirsten M. L.; Wensveen, Felix M.; Jonjic, Stipan; Hamann, Jörg; Nolte, Martijn A.; van Lier, Rene A. W.

    2012-01-01

    The transcriptional repressor Blimp-1 mediates the terminal differentiation of many cell types, including T cells. Here we identified Hobit (Znf683) as a previously unrecognized homolog of Blimp-1 that was specifically expressed in mouse natural killer T cells (NKT cells). Through studies of

  20. DWARF 53 acts as a repressor of strigolactone signalling in rice

    Science.gov (United States)

    Jiang, Liang; Liu, Xue; Xiong, Guosheng; Liu, Huihui; Chen, Fulu; Wang, Lei; Meng, Xiangbing; Liu, Guifu; Yu, Hong; Yuan, Yundong; Yi, Wei; Zhao, Lihua; Ma, Honglei; He, Yuanzheng; Wu, Zhongshan; Melcher, Karsten; Qian, Qian; Xu, H. Eric; Wang, Yonghong; Li, Jiayang

    2013-12-01

    Strigolactones (SLs) are a group of newly identified plant hormones that control plant shoot branching. SL signalling requires the hormone-dependent interaction of DWARF 14 (D14), a probable candidate SL receptor, with DWARF 3 (D3), an F-box component of the Skp-Cullin-F-box (SCF) E3 ubiquitin ligase complex. Here we report the characterization of a dominant SL-insensitive rice (Oryza sativa) mutant dwarf 53 (d53) and the cloning of D53, which encodes a substrate of the SCFD3 ubiquitination complex and functions as a repressor of SL signalling. Treatments with GR24, a synthetic SL analogue, cause D53 degradation via the proteasome in a manner that requires D14 and the SCFD3 ubiquitin ligase, whereas the dominant form of D53 is resistant to SL-mediated degradation. Moreover, D53 can interact with transcriptional co-repressors known as TOPLESS-RELATED PROTEINS. Our results suggest a model of SL signalling that involves SL-dependent degradation of the D53 repressor mediated by the D14-D3 complex.

  1. Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling

    NARCIS (Netherlands)

    Nauta, A; vandenBurg, B; Karsens, H; Venema, G; Kok, J; Burg, Bertus van den

    1997-01-01

    Comparative molecular modeling was performed with repressor protein Rro of the temperate Lactococcus lactis bacteriophage r1t using the known 3D-structures of related repressors in order to obtain thermolabile derivatives of Rro. Rro residues presumed to stabilize a nonhomologous but structurally

  2. An Unusual Phage Repressor Encoded by Mycobacteriophage BPs.

    Directory of Open Access Journals (Sweden)

    Valerie M Villanueva

    Full Text Available Temperate bacteriophages express transcription repressors that maintain lysogeny by down-regulating lytic promoters and confer superinfection immunity. Repressor regulation is critical to the outcome of infection-lysogenic or lytic growth-as well as prophage induction into lytic replication. Mycobacteriophage BPs and its relatives use an unusual integration-dependent immunity system in which the phage attachment site (attP is located within the repressor gene (33 such that site-specific integration leads to synthesis of a prophage-encoded product (gp33103 that is 33 residues shorter at its C-terminus than the virally-encoded protein (gp33136. However, the shorter form of the repressor (gp33103 is stable and active in repression of the early lytic promoter PR, whereas the longer virally-encoded form (gp33136 is inactive due to targeted degradation via a C-terminal ssrA-like tag. We show here that both forms of the repressor bind similarly to the 33-34 intergenic regulatory region, and that BPs gp33103 is a tetramer in solution. The BPs gp33103 repressor binds to five regulatory regions spanning the BPs genome, and regulates four promoters including the early lytic promoter, PR. BPs gp33103 has a complex pattern of DNA recognition in which a full operator binding site contains two half sites separated by a variable spacer, and BPs gp33103 induces a DNA bend at the full operator site but not a half site. The operator site structure is unusual in that one half site corresponds to a 12 bp palindrome identified previously, but the other half site is a highly variable variant of the palindrome.

  3. Structure and dynamics in Lac repressor-DNA interactions

    NARCIS (Netherlands)

    Kaptein, R.

    2013-01-01

    The E. coli lac operon is the classical model for gene regulation in bacteria. An overview will be given of our work on the lac repressor-operator system. An early result was the 3D structure of lac headpiece in 1985, one of the first protein structures determined by NMR. Our studies of the

  4. NMR studies on DNA binding specificity of the lac repressor

    NARCIS (Netherlands)

    Kopke Salinas, Roberto

    2005-01-01

    The thesis describes NMR structures of two protein-DNA complexes. The first structure shows how the protein, the DNA binding domain of lac repressor, recognizes its natural DNA binding site, by adaptation and read out of the nucleotide sequence. The second one shows how the DNA binding specificity

  5. Crystal Structure of the CLOCK Transactivation Domain Exon19 in Complex with a Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhiqiang; Su, Lijing; Pei, Jimin; Grishin, Nick V.; Zhang, Hong (UTSMC)

    2017-08-01

    In the canonical clock model, CLOCK:BMAL1-mediated transcriptional activation is feedback regulated by its repressors CRY and PER and, in association with other coregulators, ultimately generates oscillatory gene expression patterns. How CLOCK:BMAL1 interacts with coregulator(s) is not well understood. Here we report the crystal structures of the mouse CLOCK transactivating domain Exon19 in complex with CIPC, a potent circadian repressor that functions independently of CRY and PER. The Exon19:CIPC complex adopts a three-helical coiled-coil bundle conformation containing two Exon19 helices and one CIPC. Unique to Exon19:CIPC, three highly conserved polar residues, Asn341 of CIPC and Gln544 of the two Exon19 helices, are located at the mid-section of the coiled-coil bundle interior and form hydrogen bonds with each other. Combining results from protein database search, sequence analysis, and mutagenesis studies, we discovered for the first time that CLOCK Exon19:CIPC interaction is a conserved transcription regulatory mechanism among mammals, fish, flies, and other invertebrates.

  6. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2.

    Science.gov (United States)

    Zuo, Tao; Liu, Runhua; Zhang, Huiming; Chang, Xing; Liu, Yan; Wang, Lizhong; Zheng, Pan; Liu, Yang

    2007-12-01

    S-phase kinase-associated protein 2 (SKP2) is a component of the E3 ubiquitin ligase SKP1-Cul1-Fbox complex. Overexpression of SKP2 results in cell cycle dysregulation and carcinogenesis; however, the genetic lesions that cause this upregulation are poorly understood. We recently demonstrated that forkhead box P3 (FOXP3) is an X-linked breast cancer suppressor and an important repressor of the oncogene ERBB2/HER2. Since FOXP3 suppresses tumor growth regardless of whether the tumors overexpress ERBB2/HER2, additional FOXP3 targets may be involved in its tumor suppressor activity. Here, we show that mammary carcinomas from mice heterozygous for a Foxp3 mutation exhibited increased Skp2 expression. Ectopic expression of FOXP3 in mouse mammary cancer cells repressed SKP2 expression with a corresponding increase in p27 and polyploidy. Conversely, siRNA silencing of the FOXP3 gene in human mammary epithelial cells increased SKP2 expression. We also show that Foxp3 directly interacted with and repressed the Skp2 promoter. Moreover, the analysis of over 200 primary breast cancer samples revealed an inverse correlation between FOXP3 and SKP2 levels. Finally, we demonstrated that downregulation of SKP2 was critical for FOXP3-mediated growth inhibition in breast cancer cells that do not overexpress ERBB2/HER2. Our data provide genetic, biochemical, and functional evidence that FOXP3 is a novel transcriptional repressor for the oncogene SKP2.

  7. Crystal Structure of the Lactose Operon Repressor and Its Complexes with DNA and Inducer

    Science.gov (United States)

    Lewis, Mitchell; Chang, Geoffrey; Horton, Nancy C.; Kercher, Michele A.; Pace, Helen C.; Schumacher, Maria A.; Brennan, Richard G.; Lu, Ponzy

    1996-03-01

    The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor, a product of the lacI gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-β-D-1-thiogalactoside (IPTG) and the lac repressor complexed with a 21-base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in a stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quaternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites on the genomic DNA.

  8. Specific defects in different transcription complexes compensate for the requirement of the negative cofactor 2 repressor in Saccharomyces cerevisiae.

    Science.gov (United States)

    Peiró-Chova, Lorena; Estruch, Francisco

    2007-05-01

    Negative cofactor 2 (NC2) has been described as an essential and evolutionarily conserved transcriptional repressor, although in vitro and in vivo experiments suggest that it can function as both a positive and a negative effector of transcription. NC2 operates by interacting with the core promoter and components of the basal transcription machinery, like the TATA-binding protein (TBP). In this work, we have isolated mutants that suppress the growth defect caused by the depletion of NC2. We have identified mutations affecting components of three different complexes involved in the control of basal transcription: the mediator, TFIIH, and RNA pol II itself. Mutations in RNA pol II include both overexpression of truncated forms of the two largest subunits (Rpb1 and Rpb2) and reduced levels of these proteins. Suppression of NC2 depletion was also observed by reducing the amounts of the mediator essential components Nut2 and Med7, as well as by deleting any of the nonessential mediator components, except Med2, Med3, and Gal11 subunits. Interestingly, the Med2/Med3/Gal11 triad forms a submodule within the mediator tail. Our results support the existence of different components within the basic transcription complexes that antagonistically interact with the NC2 repressor and suggest that the correct balance between the activities of specific positive and negative components is essential for cell growth.

  9. Chemical modification of arginine residues in the lactose repressor

    International Nuclear Information System (INIS)

    Whitson, P.A.; Matthews, K.S.

    1987-01-01

    The lactose repressor protein was chemically modified with 2,3-butanedione and phenylglyoxal. Arginine reaction was quantitated by either amino aced analysis or incorporation of 14 C-labeled phenylglyoxal. Inducer binding activity was unaffected by the modification of arginine residues, while both operator and nonspecific DNA binding activities were diminished, although to differing degrees. The correlation of the decrease in DNA binding activities with the modification of ∼ 1-2 equiv of arginine per monomer suggests increased reactivity of a functionally essential residue(s). For both reagents, operator DNA binding activity was protected by the presence of calf thymus DNA, and the extent of reaction with phenylglyoxal was simultaneously diminished. This protection presumably results from steric restriction of reagent access to an arginine(s) that is (are) essential for DNA binding interactions. These experiments suggest that there is (are) an essential reactive arginine(s) critical for repressor binding to DNA

  10. Regulator of G-protein signaling - 5 (RGS5 is a novel repressor of hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    William M Mahoney

    Full Text Available Hedgehog (Hh signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc and smoothened (Smo. Recent studies identify Smo as a G-protein coupled receptor (GPCR-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP, we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.

  11. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction....... From the perspective of mediatization research, the most important effect of the media stems from their embeddedness in culture and society....

  12. Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component.

    Science.gov (United States)

    Kadener, Sebastian; Stoleru, Dan; McDonald, Michael; Nawathean, Pipat; Rosbash, Michael

    2007-07-01

    Many organisms use circadian clocks to keep temporal order and anticipate daily environmental changes. In Drosophila, the master clock gene Clock promotes the transcription of several key target genes. Two of these gene products, PER and TIM, repress CLK-CYC-mediated transcription. To recognize additional direct CLK target genes, we designed a genome-wide approach and identified clockwork orange (cwo) as a new core clock component. cwo encodes a transcriptional repressor that synergizes with PER and inhibits CLK-mediated activation. Consistent with this function, the mRNA profiles of CLK direct target genes in cwo mutant flies manifest high trough values and low amplitude oscillations. Because behavioral rhythmicity fails to persist in constant darkness (DD) with little or no effect on average mRNA levels in flies lacking cwo, transcriptional oscillation amplitude appears to be linked to rhythmicity. Moreover, the mutant flies are long period, consistent with the late repression indicated by the RNA profiles. These findings suggest that CWO acts preferentially in the late night to help terminate CLK-CYC-mediated transcription of direct target genes including cwo itself. The presence of mammalian homologs with circadian expression features (Dec1 and Dec2) suggests that a similar feedback mechanism exists in mammalian clocks.

  13. Radiation-induced tetramer-to-dimer transition of Escherichia coli lactose repressor

    International Nuclear Information System (INIS)

    Goffinont, S.; Davidkova, M.; Spotheim-Maurizot, M.

    2009-01-01

    The wild type lactose repressor of Escherichia coli is a tetrameric protein formed by two identical dimers. They are associated via a C-terminal 4-helix bundle (called tetramerization domain) whose stability is ensured by the interaction of leucine zipper motifs. Upon in vitro γ-irradiation the repressor losses its ability to bind the operator DNA sequence due to damage of its DNA-binding domains. Using an engineered dimeric repressor for comparison, we show here that irradiation induces also the change of repressor oligomerisation state from tetramer to dimer. The splitting of the tetramer into dimers can result from the oxidation of the leucine residues of the tetramerization domain.

  14. Conscious and Unconscious Emotions in Alexithymics and Repressors

    Directory of Open Access Journals (Sweden)

    Tsvetelina Slavchova Hadzhieva

    2017-04-01

    Full Text Available In this article, the nature, evolution and characteristics of conscious and unconscious emotions which determine the internal regulation of behavior are traced. Definitions of the nature of emotions and feelings of other authors are presented, and studies which reflect the cognitive relationship of emotional processes are cited. A classification of two different personality types has been considered (alexithymic and repressor, who differently express their emotions, because of their cognitive peculiarities. The main idea of ​​the article is based on tracing the specifics of emotional expression and intensity.

  15. 5'-UTR G-quadruplex structures acting as translational repressors.

    Science.gov (United States)

    Beaudoin, Jean-Denis; Perreault, Jean-Pierre

    2010-11-01

    Given that greater than 90% of the human genome is expressed, it is logical to assume that post-transcriptional regulatory mechanisms must be the primary means of controlling the flow of information from mRNA to protein. This report describes a robust approach that includes in silico, in vitro and in cellulo experiments permitting an in-depth evaluation of the impact of G-quadruplexes as translational repressors. Sequences including potential G-quadruplexes were selected within nine distinct genes encoding proteins involved in various biological processes. Their abilities to fold into G-quadruplex structures in vitro were evaluated using circular dichroism, thermal denaturation and the novel use of in-line probing. Six sequences were observed to fold into G-quadruplex structures in vitro, all of which exhibited translational inhibition in cellulo when linked to a reporter gene. Sequence analysis, direct mutagenesis and subsequent experiments were performed in order to define the rules governing the folding of G-quadruplexes. In addition, the impact of single-nucleotide polymorphism was shown to be important in the formation of G-quadruplexes located within the 5'-untranslated region of an mRNA. In light of these results, clearly the 5'-UTR G-quadruplexes represent a class of translational repressors that is broadly distributed in the cell.

  16. Activating PER repressor through a DBT-directed phosphorylation switch.

    Directory of Open Access Journals (Sweden)

    Saul Kivimäe

    2008-07-01

    Full Text Available Protein phosphorylation plays an essential role in the generation of circadian rhythms, regulating the stability, activity, and subcellular localization of certain proteins that constitute the biological clock. This study examines the role of the protein kinase Doubletime (DBT, a Drosophila ortholog of human casein kinase I (CKIepsilon/delta. An enzymatically active DBT protein is shown to directly phosphorylate the Drosophila clock protein Period (PER. DBT-dependent phosphorylation sites are identified within PER, and their functional significance is assessed in a cultured cell system and in vivo. The per(S mutation, which is associated with short-period (19-h circadian rhythms, alters a key phosphorylation target within PER. Inspection of this and neighboring sequence variants indicates that several DBT-directed phosphorylations regulate PER activity in an integrated fashion: Alternative phosphorylations of two adjoining sequence motifs appear to be associated with switch-like changes in PER stability and repressor function.

  17. ROG, repressor of GATA, regulates the expression of cytokine genes.

    Science.gov (United States)

    Miaw, S C; Choi, A; Yu, E; Kishikawa, H; Ho, I C

    2000-03-01

    GATA-3 is a T cell-specific transcription factor and is essential for the development of the T cell lineage. Recently, it was shown that the expression of GATA-3 is further induced in CD4+ helper T cells upon differentiation into type 2 but not type 1 effector cells. Here, we report the molecular cloning of a GATA-3 interacting protein, repressor of GATA (ROG). ROG is a lymphoid-specific gene and is rapidly induced in Th cells upon stimulation with anti-CD3. In in vitro assays, ROG represses the GATA-3-induced transactivation. Furthermore, overexpression of ROG in Th clones inhibits the production of Th cytokines. Taken together, our results suggest that ROG might play a critical role in regulating the differentiation and activation of Th cells.

  18. The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening.

    Science.gov (United States)

    Fan, Zhong-Qi; Kuang, Jian-Fei; Fu, Chang-Chun; Shan, Wei; Han, Yan-Chao; Xiao, Yun-Yi; Ye, Yu-Jie; Lu, Wang-Jin; Lakshmanan, Prakash; Duan, Xue-Wu; Chen, Jian-Ye

    2016-01-01

    Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs) are key transcription factors (TFs) involved in ethylene perception and are divided into AP2, RAV, ERF, and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor. Expression analysis indicated that MaDEAR1 expression was repressed by ethylene, with reduced levels of histone H3 and H4 acetylation at its regulatory regions during fruit ripening. In addition, MaDEAR1 promoter activity was also suppressed in response to ethylene treatment. More importantly, MaDEAR1 directly binds to the DRE/CRT motifs in promoters of several cell wall-modifying genes including MaEXP1/3, MaPG1, MaXTH10, MaPL3, and MaPME3 associated with fruit softening during ripening and represses their activities. These data suggest that MaDEAR1 acts as a transcriptional repressor of cell wall-modifying genes, and may be negatively involved in ethylene-mediated ripening of banana fruit. Our findings provide new insights into the involvement of DREB TFs in the regulation of fruit ripening.

  19. The banana transcriptional repressor MaDEAR1 negatively regulates cell wall-modifying genes involved in fruit ripening

    Directory of Open Access Journals (Sweden)

    Zhong-qi Fan

    2016-07-01

    Full Text Available Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs are key transcription factors (TFs involved in ethylene perception and are divided into AP2, RAV, ERF and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor. Expression analysis indicated that MaDEAR1 expression was repressed by ethylene, with reduced levels of histone H3 and H4 acetylation at its regulatory regions during fruit ripening. In addition, MaDEAR1 promoter activity was also suppressed in response to ethylene treatment. More importantly, MaDEAR1 directly binds to the DRE/CRT motifs in promoters of several cell wall-modifying genes including MaEXP1/3, MaPG1, MaXTH10, MaPL3 and MaPME3 associated with fruit softening during ripening and represses their activities. These data suggest that MaDEAR1 acts as a transcriptional repressor of cell wall-modifying genes, and may be negatively involved in ethylene-mediated ripening of banana fruit. Our findings provide new insights into the involvement of DREB TFs in the regulation of fruit ripening.

  20. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M.; Chang, G. [Johnson Research Foundation, Philadelphia, PA (United States); Horton, N.C. [Univ. of Pennsylvania, Philadelphia, PA (United States)] [and others

    1996-03-01

    The lac operon of Escherichia coli is the paradigm for gene regulation. Its key component is the lac repressor a product of the lacl gene. The three-dimensional structures of the intact lac repressor, the lac repressor bound to the gratuitous inducer isopropyl-B-D-1thiogalactoside (IPTG) and the lac repressor complexed with a 21 base pair symmetric operator DNA have been determined. These three structures show the conformation of the molecule in both the induced and the repressed states and provide a framework for understanding a wealth of biochemical and genetic information. The DNA sequence of the lac operon has three lac repressor recognition sites in stretch of 500 base pairs. The crystallographic structure of the complex with DNA suggests that the tetrameric repressor functions synergistically with catabolite gene activator protein (CAP) and participates in the quarternary formation of repression loops in which one tetrameric repressor interacts simultaneously with two sites in the genomic DNA. 76 refs., 11 figs., 1 tab.

  1. Transcriptional repressor NIR interacts with the p53-inhibiting ubiquitin ligase MDM2.

    Science.gov (United States)

    Heyne, Kristina; Förster, Juliane; Schüle, Roland; Roemer, Klaus

    2014-04-01

    NIR (novel INHAT repressor) can bind to p53 at promoters and inhibit p53-mediated gene transactivation by blocking histone acetylation carried out by p300/CBP. Like NIR, the E3 ubiquitin ligase MDM2 can also bind and inhibit p53 at promoters. Here, we present data indicating that NIR, which shuttles between the nucleolus and nucleoplasm, not only binds to p53 but also directly to MDM2, in part via the central acidic and zinc finger domain of MDM2 that is also contacted by several other nucleolus-based MDM2/p53-regulating proteins. Like some of these, NIR was able to inhibit the ubiquitination of MDM2 and stabilize MDM2; however, unlike these nucleolus-based MDM2 regulators, NIR did not inhibit MDM2 to activate p53. Rather, NIR cooperated with MDM2 to repress p53-induced transactivation. This cooperative repression may at least in part involve p300/CBP. We show that NIR can block the acetylation of p53 and MDM2. Non-acetylated p53 has been documented previously to more readily associate with inhibitory MDM2. NIR may thus help to sustain the inhibitory p53:MDM2 complex, and we present evidence suggesting that all three proteins can indeed form a ternary complex. In sum, our findings suggest that NIR can support MDM2 to suppress p53 as a transcriptional activator.

  2. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction.

    Science.gov (United States)

    Winkler, Martin; Niemeyer, Michael; Hellmuth, Antje; Janitza, Philipp; Christ, Gideon; Samodelov, Sophia L; Wilde, Verona; Majovsky, Petra; Trujillo, Marco; Zurbriggen, Matias D; Hoehenwarter, Wolfgang; Quint, Marcel; Calderón Villalobos, Luz Irina A

    2017-06-07

    Auxin is a small molecule morphogen that bridges SCF TIR1/AFB -AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCF TIR1 -IAA6 and SCF TIR1 -IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA. We establish a system to track AUX/IAA ubiquitylation in IAA6 and IAA19 in vitro and show that it occurs in flexible hotspots in degron-flanking regions adorned with specific Lys residues. We propose that this signature is exploited during auxin-mediated SCF TIR1 -AUX/IAA interactions. We present evidence for an evolving AUX/IAA repertoire, typified by the IAA6/IAA19 ohnologues, that discriminates the range of auxin concentrations found in plants. We postulate that the intrinsic flexibility of AUX/IAAs might bias their ubiquitylation and destruction kinetics enabling specific auxin responses.

  3. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53

    DEFF Research Database (Denmark)

    Wienken, Magdalena; Dickmanns, Antje; Nemajerova, Alice

    2016-01-01

    in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically...... associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell...... proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53....

  4. Ni2+-based immobilized metal ion affinity chromatography of lactose operon repressor protein from Escherichia coli.

    Science.gov (United States)

    Velkov, Tony; Jones, Alun; Lim, Maria L R

    2008-01-01

    A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni(2+)-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor.

  5. Novel INHAT repressor (NIR) is required for early lymphocyte development.

    Science.gov (United States)

    Ma, Chi A; Pusso, Antonia; Wu, Liming; Zhao, Yongge; Hoffmann, Victoria; Notarangelo, Luigi D; Fowlkes, B J; Jain, Ashish

    2014-09-23

    Novel inhibitor of histone acetyltransferase repressor (NIR) is a transcriptional corepressor with inhibitor of histone acetyltransferase activity and is a potent suppressor of p53. Although NIR deficiency in mice leads to early embryonic lethality, lymphoid-restricted deletion resulted in the absence of double-positive CD4(+)CD8(+) thymocytes, whereas bone-marrow-derived B cells were arrested at the B220(+)CD19(-) pro-B-cell stage. V(D)J recombination was preserved in NIR-deficient DN3 double-negative thymocytes, suggesting that NIR does not affect p53 function in response to physiologic DNA breaks. Nevertheless, the combined deficiency of NIR and p53 provided rescue of DN3L double-negative thymocytes and their further differentiation to double- and single-positive thymocytes, whereas B cells in the marrow further developed to the B220(+)CD19(+) pro-B-cell stage. Our results show that NIR cooperate with p53 to impose checkpoint for the generation of mature B and T lymphocytes.

  6. Repressors benefit from reappraising a threatening emotional event.

    Science.gov (United States)

    Mendolia, Marilyn

    2016-01-01

    The malleability of emotion-focused coping was investigated by manipulating the situational context so that dispositional repressors, who typically utilize an avoidant strategy when confronted with a stressor, were led to use reappraisal and then were reexposed to the stressor. A mixed design with one measured between-subjects factor (dispositional repression), two randomized between-subjects factors (performance feedback and coping strategy), and multimodal assessments across phases of the experiment was used. During a face-perception task, participants (170 female and 120 male university students) received bogus performance feedback that was inconsistent with and thus threatening to self-concept. Participants then completed a writing activity encouraging them to perceive a face-perception task as either an invalid (reappraisal) or a valid (control) assessment tool. Afterward, participants continued with the task. A repressive disposition was associated with a defense response (decreased perceived emotion to actors' expressions, increased skin conductance levels, and increased heart rates) during the face-perception task that participants perceived as threatening, but not during reexposure to the event after they had reappraised it as nonthreatening. This research provides a more detailed understanding of the dynamic nature of emotion-focused coping by exploring how the disposition-situation interaction affects self-regulation of emotion.

  7. Fur is a repressor of biofilm formation in Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Fengjun Sun

    Full Text Available BACKGROUND: Yersinia pestis synthesizes the attached biofilms in the flea proventriculus, which is important for the transmission of this pathogen by fleas. The hmsHFRS operons is responsible for the synthesis of exopolysaccharide (the major component of biofilm matrix, which is activated by the signaling molecule 3', 5'-cyclic diguanylic acid (c-di-GMP synthesized by the only two diguanylate cyclases HmsT, and YPO0449 (located in a putative operonYPO0450-0448. METHODOLOGY/PRINCIPAL FINDINGS: The phenotypic assays indicated that the transcriptional regulator Fur inhibited the Y. pestis biofilm production in vitro and on nematode. Two distinct Fur box-like sequences were predicted within the promoter-proximal region of hmsT, suggesting that hmsT might be a direct Fur target. The subsequent primer extension, LacZ fusion, electrophoretic mobility shift, and DNase I footprinting assays disclosed that Fur specifically bound to the hmsT promoter-proximal region for repressing the hmsT transcription. In contrast, Fur had no regulatory effect on hmsHFRS and YPO0450-0448 at the transcriptional level. The detection of intracellular c-di-GMP levels revealed that Fur inhibited the c-di-GMP production. CONCLUSIONS/SIGNIFICANCE: Y. pestis Fur inhibits the c-di-GMP production through directly repressing the transcription of hmsT, and thus it acts as a repressor of biofilm formation. Since the relevant genetic contents for fur, hmsT, hmsHFRS, and YPO0450-0448 are extremely conserved between Y. pestis and typical Y. pseudotuberculosis, the above regulatory mechanisms can be applied to Y. pseudotuberculosis.

  8. Alanine screening mutagenesis establishes the critical inactivating damage of irradiated E. coli lactose repressor.

    Science.gov (United States)

    Goffinont, Stephane; Villette, Sandrine; Spotheim-Maurizot, Melanie

    2012-06-01

    The function of the E. coli lactose operon requires the binding of lactose repressor to operator DNA. We have previously shown that γ rradiation destabilizes the repressor-operator complex because the repressor loses its DNA-binding ability. It was suggested that the observed oxidation of the four tyrosines (Y7, Y12, Y17, Y47) and the concomitant structural changes of the irradiated DNA-binding domains (headpieces) could be responsible for the inactivation. To pinpoint the tyrosine whose oxidation has the strongest effect, four headpieces containing the product of tyrosine oxidation, 3,4-dihydroxyphenylalanine (DOPA), were simulated by molecular dynamics. We have observed that replacing Y47 by DOPA triggers the largest change of structure and stability of the headpiece and have concluded that Y47 oxidation is the greatest contributor to the decrease of repressor binding to DNA. To experimentally verify this conclusion, we applied the alanine screening mutagenesis approach. Tetrameric mutated repressors bearing an alanine instead of each one of the tyrosines were prepared and their binding to operator DNA was checked. Their binding ability is quite similar to that of the wild-type repressor, except for the Y47A mutant whose binding is strongly reduced. Circular dichroism determinations revealed small reductions of the proportion of α helices and of the melting temperature for Y7A, Y12A and Y17A headpieces, but much larger ones were revealed for Y47A headpiece. These results established the critical role of Y47 oxidation in modifying the structure and stability of the headpiece, and in reduction of the binding ability of the whole lactose repressor.

  9. Equilibrium stability and sub-millisecond refolding of a designed single-chain Arc repressor.

    Science.gov (United States)

    Robinson, C R; Sauer, R T

    1996-11-05

    Arc-L1-Arc is a single-chain variant of bacteriophage P22 Arc repressor in which a 15 residue linker joins the C-terminus of one subunit to the N-terminus of an otherwise identical subunit. Spectroscopic probes indicate that the native and denatured state of the single-chain protein are similar to those of the unlinked Arc dimer. In equilibrium experiments, Arc-L1-Arc denatures in a reaction without populated intermediate states as judged by the fits of the denaturation isotherms to a two-state model and by the coincidence of denaturation curves monitored by fluorescence and circular dichroism. Comparison of the equilibrium stabilities of Arc-L1-Arc and unlinked Arc gives an effective concentration of subunits in the denatured single-chain variant of 2.7 (+/- 0.7) mM. The kinetic refolding and unfolding reactions of Arc-L1-Arc also appear to proceed without populated intermediates. The rate constant for Arc-L1-Arc unfolding is about 2-fold faster than that of unlinked Arc, indicating that the linker mediates no significant contacts in the native structure that need to be broken to allow unfolding. As expected, the major effect of the linker occurs during the refolding reaction, where the effective subunit concentration calculated from the bimolecular and unimolecular refolding rate constants is 4.5 (+/- 1.8) mM. The transition states for the unfolding and refolding reactions of Arc-L1-Arc and wild-type Arc have similar solvent exposures as measured by the urea dependencies of the equilibrium and rate constants. In the absence of urea, the single-chain protein refolds very rapidly (kf approximately 10(4) s-1) in a reaction that is essentially complete in the sub-millisecond time regime.

  10. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.

    Science.gov (United States)

    Shi, Zi; Zhang, Yufan; Maximova, Siela N; Guiltinan, Mark J

    2013-12-06

    Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.

  11. Comparing native and irradiated E. coli lactose repressor-operator complex by molecular dynamics simulation.

    Science.gov (United States)

    Aci-Sèche, Samia; Garnier, Norbert; Goffinont, Stéphane; Genest, Daniel; Spotheim-Maurizot, Mélanie; Genest, Monique

    2010-09-01

    The function of the E. coli lactose operon requires the binding of the tetrameric repressor protein to the operator DNA. We have previously shown that gamma-irradiation destabilises the repressor-operator complex because the repressor gradually loses its DNA-binding ability (Radiat Res 170:604-612, 2008). It was suggested that the observed oxidation of tyrosine residues and the concomitant structural changes of irradiated headpieces (DNA-binding domains of repressor monomers) could be responsible for the inactivation. To unravel the mechanisms that lead to repressor-operator complex destabilisation when tyrosine oxidation occurs, we have compared by molecular dynamic simulations two complexes: (1) the native complex formed by two headpieces and the operator DNA, and (2) the damaged complex, in which all tyrosines are replaced by their oxidation product 3,4-dihydroxyphenylalanine (DOPA). On a 20 ns time scale, MD results show effects consistent with complex destabilisation: increased flexibility, increased DNA bending, modification of the hydrogen bond network, and decrease of the positive electrostatic potential at the protein surface and of the global energy of DNA-protein interactions.

  12. Lactose repressor protein modified with dansyl chloride: activity effects and fluorescence properties

    International Nuclear Information System (INIS)

    Hsieh, W.T.; Matthews, K.S.

    1985-01-01

    Chemical modification using 5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl chloride) has been used to explore the importance of lysine residues involved in the binding activities of the lactose repressor and to introduce a fluorescent probe into the protein. Dansyl chloride modification of lac repressor resulted in loss of operator DNA binding at low molar ratios of reagent/monomer. Loss of nonspecific DNA binding was observed only at higher molar ratios, while isopropyl beta-D-thiogalactoside binding was not affected at any of the reagent levels studied. Lysine residues were the only modified amino acids detected. Protection of lysines-33 and -37 from modification by the presence of nonspecific DNA correlated with maintenance of operator DNA binding activity, and reaction of lysine-37 paralleled operator binding activity loss. Energy transfer between dansyl incorporated in the core region of the repressor protein and tryptophan-201 was observed, with an approximate distance of 23 A calculated between these two moieties

  13. Lysogenic induction in Lex Al Escherichia coli mutants: characterization of the induction and prophage repressor influence

    International Nuclear Information System (INIS)

    Carvalho, R.E.S.

    1982-01-01

    SOS functions require new synthesis of protein and have been described as dependent on both the rec A and lex A genes. The induction of prophage was studied in bacterial strains lysogenic for a series of phages which synthesize different levels of repressor (λ, λ i m m 4 3 4 J and λ i m m 4 3 4 T ) and was compared to W-reactivation. Prophage induction was detected in lex Al mutants although at a slightly lower level and requiring two times longer when compared with wild-type. The optimum UV-dose for induction differed for each lysogenic strain and correlated with the level of repressor

  14. REST-mediated recruitment of polycomb repressor complexes in mammalian cells

    DEFF Research Database (Denmark)

    Dietrich, Nikolaj; Lerdrup, Mads; Landt, Eskild

    2012-01-01

    Polycomb Repressive Complex (PRC) 1 and PRC2 regulate genes involved in differentiation and development. However, the mechanism for how PRC1 and PRC2 are recruited to genes in mammalian cells is unclear. Here we present evidence for an interaction between the transcription factor REST, PRC1......, and increased gene expression. Genome-wide analysis of Polycomb binding in Rest¿/¿ and Eed¿/¿ mouse embryonic stem (mES) cells showed that Rest was required for PRC1 recruitment to a subset of Polycomb regulated neuronal genes. Furthermore, we found that PRC1 can be recruited to Rest binding sites independently...... of CpG islands and the H3K27Me3 mark. Surprisingly, PRC2 was frequently increased around Rest binding sites located in CpG-rich regions in the Rest¿/¿ mES cells, indicating a more complex interplay where Rest also can limit PRC2 recruitment. Therefore, we propose that Rest has context...

  15. RecA-mediated cleavage reaction of Lambda repressor and DNA ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... 00237 77 05 25 11. Accepted 4 January, 2010. DNA pairing and strand exchange activities are essential for genetic recombination. When DNA is damaged, RecA ... and the ability of RecA to promote DNA strand exchange. It was observed ..... hydrolyze the half of ATP after 6 min (t1) and 12 min (t2) after.

  16. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    Czech Academy of Sciences Publication Activity Database

    Gillard, N.; Goffinont, S.; Buré, C.; Davídková, Marie; Maurizot, J. C.; Cadene, M.; Spotheim-Maurizot, M.

    2007-01-01

    Roč. 403, part 3 (2007), s. 463-472 ISSN 0264-6021 R&D Projects: GA MŠk 1P05OC085 Institutional research plan: CEZ:AV0Z10480505 Keywords : ionizing radiation * oxidative damage * DNA binding domain * lac repressor Subject RIV: CE - Biochemistry Impact factor: 4.009, year: 2007

  17. Radiation-induced tetramer-to-dimer transition of Esterichia coli lactose repressor

    Czech Academy of Sciences Publication Activity Database

    Goffinont, S.; Davídková, Marie; Spotheim-Maurizot, M.

    2009-01-01

    Roč. 386, č. 2 (2009), s. 300-304 ISSN 0006-291X R&D Projects: GA MŠk OC09012 Institutional research plan: CEZ:AV0Z10480505 Keywords : protein * DNA * radiation * oxidation * tetramer * dimer * lactose repressor Subject RIV: BO - Biophysics Impact factor: 2.548, year: 2009

  18. In vitro transcription accurately predicts lac repressor phenotype in vivo in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Matthew Almond Sochor

    2014-07-01

    Full Text Available A multitude of studies have looked at the in vivo and in vitro behavior of the lac repressor binding to DNA and effector molecules in order to study transcriptional repression, however these studies are not always reconcilable. Here we use in vitro transcription to directly mimic the in vivo system in order to build a self consistent set of experiments to directly compare in vivo and in vitro genetic repression. A thermodynamic model of the lac repressor binding to operator DNA and effector is used to link DNA occupancy to either normalized in vitro mRNA product or normalized in vivo fluorescence of a regulated gene, YFP. An accurate measurement of repressor, DNA and effector concentrations were made both in vivo and in vitro allowing for direct modeling of the entire thermodynamic equilibrium. In vivo repression profiles are accurately predicted from the given in vitro parameters when molecular crowding is considered. Interestingly, our measured repressor–operator DNA affinity differs significantly from previous in vitro measurements. The literature values are unable to replicate in vivo binding data. We therefore conclude that the repressor-DNA affinity is much weaker than previously thought. This finding would suggest that in vitro techniques that are specifically designed to mimic the in vivo process may be necessary to replicate the native system.

  19. Whi7 is an unstable cell-cycle repressor of the Start transcriptional program.

    Science.gov (United States)

    Gomar-Alba, Mercè; Méndez, Ester; Quilis, Inma; Bañó, M Carmen; Igual, J Carlos

    2017-08-24

    Start is the main decision point in eukaryotic cell cycle in which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional program by G1 CDK-cyclin complexes through the inactivation of Start transcriptional repressors, Whi5 in yeast or Rb in mammals. Here we provide novel keys of how Whi7, a protein related at sequence level to Whi5, represses Start. Whi7 is an unstable protein, degraded by the SCF Grr1 ubiquitin-ligase, whose stability is cell cycle regulated by CDK1 phosphorylation. Importantly, Whi7 associates to G1/S gene promoters in late G1 acting as a repressor of SBF-dependent transcription. Our results demonstrate that Whi7 is a genuine paralog of Whi5. In fact, both proteins collaborate in Start repression bringing to light that yeast cells, as occurs in mammalian cells, rely on the combined action of multiple transcriptional repressors to block Start transition.The commitment of cells to a new cycle of division involves inactivation of the Start transcriptional repressor Whi5. Here the authors show that the sequence related protein Whi7 associates to G1/S gene promoters in late G1 and collaborates with Whi5 in Start repression.

  20. Processing bias in anxious subjects and repressors, measured by emotional Stroop interference and attentional allocation.

    NARCIS (Netherlands)

    Brosschot, J.F.; de Ruiter, C.; Kindt, M.

    1999-01-01

    Hypothesized that repressors (Ss high in defensiveness with low trait anxiety) would show cognitive avoidance of threatening information in an attention deployment task, but an attentional bias for the same information in an emotional interference task, while Ss high in anxiety would show a

  1. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  2. An Autocrine Proliferation Repressor Regulates Dictyostelium discoideum Proliferation and Chemorepulsion Using the G Protein-Coupled Receptor GrlH

    Directory of Open Access Journals (Sweden)

    Yu Tang

    2018-02-01

    Full Text Available In eukaryotic microbes, little is known about signals that inhibit the proliferation of the cells that secrete the signal, and little is known about signals (chemorepellents that cause cells to move away from the source of the signal. Autocrine proliferation repressor protein A (AprA is a protein secreted by the eukaryotic microbe Dictyostelium discoideum. AprA is a chemorepellent for and inhibits the proliferation of D. discoideum. We previously found that cells sense AprA using G proteins, suggesting the existence of a G protein-coupled AprA receptor. To identify the AprA receptor, we screened mutants lacking putative G protein-coupled receptors. We found that, compared to the wild-type strain, cells lacking putative receptor GrlH (grlH{macron} cells show rapid proliferation, do not have large numbers of cells moving away from the edges of colonies, are insensitive to AprA-induced proliferation inhibition and chemorepulsion, and have decreased AprA binding. Expression of GrlH in grlH{macron} cells (grlH{macron}/grlHOE rescues the phenotypes described above. These data indicate that AprA signaling may be mediated by GrlH in D. discoideum.

  3. High-throughput cell-based screening reveals a role for ZNF131 as a repressor of ERalpha signaling

    Directory of Open Access Journals (Sweden)

    Du Peige

    2008-10-01

    Full Text Available Abstract Background Estrogen receptor α (ERα is a transcription factor whose activity is affected by multiple regulatory cofactors. In an effort to identify the human genes involved in the regulation of ERα, we constructed a high-throughput, cell-based, functional screening platform by linking a response element (ERE with a reporter gene. This allowed the cellular activity of ERα, in cells cotransfected with the candidate gene, to be quantified in the presence or absence of its cognate ligand E2. Results From a library of 570 human cDNA clones, we identified zinc finger protein 131 (ZNF131 as a repressor of ERα mediated transactivation. ZNF131 is a typical member of the BTB/POZ family of transcription factors, and shows both ubiquitous expression and a high degree of sequence conservation. The luciferase reporter gene assay revealed that ZNF131 inhibits ligand-dependent transactivation by ERα in a dose-dependent manner. Electrophoretic mobility shift assay clearly demonstrated that the interaction between ZNF131 and ERα interrupts or prevents ERα binding to the estrogen response element (ERE. In addition, ZNF131 was able to suppress the expression of pS2, an ERα target gene. Conclusion We suggest that the functional screening platform we constructed can be applied for high-throughput genomic screening candidate ERα-related genes. This in turn may provide new insights into the underlying molecular mechanisms of ERα regulation in mammalian cells.

  4. The transcriptional repressor DREAM is involved in thyroid gene expression

    International Nuclear Information System (INIS)

    D'Andrea, Barbara; Di Palma, Tina; Mascia, Anna; Motti, Maria Letizia; Viglietto, Giuseppe; Nitsch, Lucio; Zannini, Mariastella

    2005-01-01

    Downstream regulatory element antagonistic modulator (DREAM) was originally identified in neuroendocrine cells as a calcium-binding protein that specifically binds to downstream regulatory elements (DRE) on DNA, and represses transcription of its target genes. To explore the possibility that DREAM may regulate the endocrine activity of the thyroid gland, we analyzed its mRNA expression in undifferentiated and differentiated thyroid cells. We demonstrated that DREAM is expressed in the normal thyroid tissue as well as in differentiated thyroid cells in culture while it is absent in FRT poorly differentiated cells. In the present work, we also show that DREAM specifically binds to DRE sites identified in the 5' untranslated region (UTR) of the thyroid-specific transcription factors Pax8 and TTF-2/FoxE1 in a calcium-dependent manner. By gel retardation assays we demonstrated that thapsigargin treatment increases the binding of DREAM to the DRE sequences present in Pax8 and TTF-2/Foxe1 5' UTRs, and this correlates with a significant reduction of the expression of these genes. Interestingly, in poorly differentiated thyroid cells overexpression of exogenous DREAM strongly inhibits Pax8 expression. Moreover, we provide evidence that a mutated form of DREAM unable to bind Ca 2+ interferes with thyroid cell proliferation. Therefore, we propose that in thyroid cells DREAM is a mediator of the calcium-signaling pathway and it is involved in the regulation of thyroid cell function

  5. The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding.

    Science.gov (United States)

    Wilson, C J; Zhan, H; Swint-Kruse, L; Matthews, K S

    2007-01-01

    In 1961, Jacob and Monod proposed the operon model for gene regulation based on metabolism of lactose in Escherichia coli. This proposal was followed by an explication of allosteric behavior by Monod and colleagues. The operon model rationally depicted how genetic mechanisms can control metabolic events in response to environmental stimuli via coordinated transcription of a set of genes with related function (e.g. metabolism of lactose). The allosteric response found in the lactose repressor and many other proteins has been extended to a variety of cellular signaling pathways in all organisms. These two models have shaped our view of modern molecular biology and captivated the attention of a surprisingly broad range of scientists. More recently, the lactose repressor monomer was used as a model system for experimental and theoretical explorations of protein folding mechanisms. Thus, the lac system continues to advance our molecular understanding of genetic control and the relationship between sequence, structure and function.

  6. Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor.

    Science.gov (United States)

    Matsui, Kyoko; Tanaka, Hideo; Ohme-Takagi, Masaru

    2004-11-01

    Flavonoids are secondary metabolites that are specific to higher plants. PAP1, a member of the family of MYB domain transcription factors in Arabidopsis, is a positive regulator of the biosynthesis of anthocyanin. We show here that a chimeric PAP1 repressor, in which the EAR-motif repression domain from SUPERMAN was fused to PAP1, suppressed the expression of four flavonoid biosynthetic genes, namely CHS, DFR, LDOX, and BAN, in siliques, and inhibited the accumulation of proanthocyanidin, even in the presence of an endogenous positive regulator, such as TT2. This suppression resulted in the formation of light yellow seeds in 35S::PAP1SRDX transgenic plants. Our results indicate that PAP1 has the potential ability to regulate the biosynthesis not only of anthocyanin but also of proanthocyanidin. Our gene silencing system, using chimeric repressors, appears to be a useful tool for the manipulation of the biosynthesis of secondary metabolites in plants.

  7. Lac repressor: Crystallization of intact tetramer and its complexes with inducer and operator DNA

    International Nuclear Information System (INIS)

    Pace, H.C.; Lu, P.; Lewis, M.

    1990-01-01

    The intact lac repressor tetramer, which regulates expression of the lac operon in Escherichia coli, has been crystallized in the native form, with an inducer, and in a ternary complex with operator DNA and an anti-inducer. The crystals without DNA diffract to better than 3.5 angstrom. They belong to the monoclinic space group C2 and have cell dimensions a = 164.7 angstrom, b = 75.6 angstrom, and c = 161.2 angstrom, with α = γ = 90 degree and β = 125.5 degree. Cocrystals have been obtained with a number of different lac operator-related DNA fragments. The complex with a blunt-ended 16-base-pair strand yielded tetragonal bipyramids that diffract to 6.5 angstrom. These protein-DNA cocrystals crack upon exposure to the gratuitous inducer isopropyl β-D-thiogalactoside, suggesting a conformational change in the repressor-operator complex

  8. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein

    KAUST Repository

    Mahfouz, Magdy M.

    2011-12-14

    Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3. SRDX protein efficiently repressed the transcription of the RD29A

  9. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation.

    Science.gov (United States)

    Corduan, Aurélie; Plé, Hélène; Laffont, Benoit; Wallon, Thérèse; Plante, Isabelle; Landry, Patricia; Provost, Patrick

    2015-05-01

    Platelets play an important role in haemostasis, as well as in thrombosis and coagulation processes. They harbour a wide variety of messenger RNAs (mRNAs), that can template de novo protein synthesis, and an abundant array of microRNAs, which are known to mediate mRNA translational repression through proteins of the Argonaute (Ago) family. The relationship between platelet microRNAs and proteins capable of mediating translational repression, however, remains unclear. Here, we report that half of platelet microRNAs is associated to mRNA-regulatory Ago2 protein complexes, in various proportions. Associated to these Ago2 complexes are platelet mRNAs known to support de novo protein synthesis. Reporter gene activity assays confirmed the capacity of the platelet microRNAs, found to be associated to Ago2 complexes, to regulate translation of these platelet mRNAs through their 3'UTR. Neither the microRNA repertoire nor the microRNA composition of Ago2 complexes of human platelets changed upon activation with thrombin. However, under conditions favoring de novo synthesis of Plasminogen Activator Inhibitor-1 (PAI-1) protein, we documented a rapid dissociation of the encoding platelet SERPINE1 mRNA from Ago2 protein complexes as well as from the translational repressor protein T-cell-restricted intracellular antigen-1 (TIA-1). These findings are consistent with a scenario by which lifting of the repressive effects of Ago2 and TIA-1 protein complexes, involving a rearrangement of proteinmRNA complexes rather than disassembly of Ago2microRNA complexes, would allow translation of SERPINE1 mRNA into PAI-1 in response to platelet activation.

  10. An Autocrine Proliferation Repressor Regulates Dictyostelium discoideum Proliferation and Chemorepulsion Using the G Protein-Coupled Receptor GrlH.

    Science.gov (United States)

    Tang, Yu; Wu, Yuantai; Herlihy, Sarah E; Brito-Aleman, Francisco J; Ting, Jose H; Janetopoulos, Chris; Gomer, Richard H

    2018-02-13

    In eukaryotic microbes, little is known about signals that inhibit the proliferation of the cells that secrete the signal, and little is known about signals (chemorepellents) that cause cells to move away from the source of the signal. Autocrine proliferation repressor protein A (AprA) is a protein secreted by the eukaryotic microbe Dictyostelium discoideum AprA is a chemorepellent for and inhibits the proliferation of D. discoideum We previously found that cells sense AprA using G proteins, suggesting the existence of a G protein-coupled AprA receptor. To identify the AprA receptor, we screened mutants lacking putative G protein-coupled receptors. We found that, compared to the wild-type strain, cells lacking putative receptor GrlH ( grlH¯ cells) show rapid proliferation, do not have large numbers of cells moving away from the edges of colonies, are insensitive to AprA-induced proliferation inhibition and chemorepulsion, and have decreased AprA binding. Expression of GrlH in grlH¯ cells ( grlH¯/grlH OE ) rescues the phenotypes described above. These data indicate that AprA signaling may be mediated by GrlH in D. discoideum IMPORTANCE Little is known about how eukaryotic cells can count themselves and thus regulate the size of a tissue or density of cells. In addition, little is known about how eukaryotic cells can sense a repellant signal and move away from the source of the repellant, for instance, to organize the movement of cells in a developing embryo or to move immune cells out of a tissue. In this study, we found that a eukaryotic microbe uses G protein-coupled receptors to mediate both cell density sensing and chemorepulsion. Copyright © 2018 Tang et al.

  11. Hydrogen exchange in hydrated films of proteins. Application to the E. coli lac repressor core

    International Nuclear Information System (INIS)

    Pilet, J.; Szabo, A.G.; Maurizot, J.-C.

    1980-01-01

    An original easy method of hydrogen to deuterium exchange in hydrated films of proteins, followed by infrared absorption measurements, is described and applied to films of the E. coli lac repressor core, in order to examine the effect of isopropyl-β-D-thiogalactoside (IPTG) binding. An estimation of about 25% α helical structure in this protein fragment is deduced from the exchange curve. The binding of IPTG to the core does not affect the exchange curve within the experimental error limits. (Auth.)

  12. Modular organisation of inducer recognition and allostery in the tetracycline repressor.

    Science.gov (United States)

    Werten, Sebastiaan; Schneider, Julia; Palm, Gottfried Julius; Hinrichs, Winfried

    2016-06-01

    Induction of the tetracycline repressor (TetR) results from antibiotic-dependent changes in the relative positioning of the DNA-binding domains within the promoter-associated repressor dimer, but the key determinants of this allosteric effect remain poorly characterised. Intriguingly, previous mutational analyses of the tetracycline-interacting site revealed a lack of correlation between residual affinity and induction propensity, suggesting that some of the residues in contact with the antibiotic primarily act in ligand recognition and retention, whereas others are required to transmit the allosteric signal. Here, we provide a structural basis for these observations via crystallographic analysis of the point mutants N82A, H100A, T103A and E147A in complex with the inducer 5a,6-anhydrotetracycline. In conjunction with the available functional data, the four structures demonstrate that a trigger-like movement of the region between helices α6 and α7 towards and into the binding site plays a decisive role in the intramolecular communication process. In sharp contrast, residues lining the binding cavity proper have little or no influence on the allosteric mechanism as such. This nearly complete physical separation of ligand recognition and allostery will have allowed diverging TetR-like repressors to bind novel effectors while the existing induction mechanism remained intact. Consequently, the modularity described here may have been a key factor in the evolutionary success of the widespread and highly diversified repressor class. Structural data are available in the Protein Data Bank under the accession numbers 5FKK, 5FKL, 5FKM, 5FKN and 5FKO. © 2016 Federation of European Biochemical Societies.

  13. Histone deacetylase inhibitor trichostatin A enhances myogenesis by coordinating muscle regulatory factors and myogenic repressors

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Hiroki [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Department of Medical Science, Teikyo University of Science, 2-2-1 Senjusakuragi, Adachi-ku, Tokyo 120-0045 (Japan); Saito, Fumiaki, E-mail: f-saito@med.teikyo-u.ac.jp [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Masaki, Toshihiro [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan); Department of Medical Science, Teikyo University of Science, 2-2-1 Senjusakuragi, Adachi-ku, Tokyo 120-0045 (Japan); Ikeda, Miki; Nakamura-Ohkuma, Ayami; Shimizu, Teruo; Matsumura, Kiichiro [Department of Neurology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605 (Japan)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of TSA, one of most potent HDACIs, on myogenesis using the C2C12 skeletal muscle cell line. Black-Right-Pointing-Pointer TSA enhances the expression of myosin heavy chain without affecting DAPC expression. Black-Right-Pointing-Pointer TSA enhances the expression of the early MRFs, Myf5 and MEF2, and suppresses the late MRF, myogenin, after 24 h treatment. Black-Right-Pointing-Pointer TSA enhances the expression of the myogenic repressors, Ids, which inhibit myogenic differentiation. Black-Right-Pointing-Pointer TSA promotes myogenesis by coordinating the expression of MRFs and myogenic repressors. -- Abstract: Histone deacetylase inhibitors (HDACIs) are known to promote skeletal muscle formation. However, their mechanisms that include effects on the expression of major muscle components such as the dystrophin-associated proteins complex (DAPC) or myogenic regulatory factors (MRFs) remain unknown. In this study, we investigated the effects of HDACIs on skeletal muscle formation using the C2C12 cell culture system. C2C12 myoblasts were exposed to trichostatin A (TSA), one of the most potent HDACIs, and differentiation was subsequently induced. We found that TSA enhances the expression of myosin heavy chain without affecting DAPC expression. In addition, TSA increases the expression of the early MRFs, Myf5 and MEF2, whereas it suppresses the expression of the late MRF, myogenin. Interestingly, TSA also enhances the expression of Id1, Id2, and Id3 (Ids). Ids are myogenic repressors that inhibit myogenic differentiation. These findings suggest that TSA promotes gene expression in proliferation and suppresses it in the differentiation stage of muscle formation. Taken together, our data demonstrate that TSA enhances myogenesis by coordinating the expression of MRFs and myogenic repressors.

  14. Regulation of gene expression by manipulating transcriptional repressor activity using a novel CoSRI technology.

    Science.gov (United States)

    Xu, Yue; Li, Song Feng; Parish, Roger W

    2017-07-01

    Targeted gene manipulation is a central strategy for studying gene function and identifying related biological processes. However, a methodology for manipulating the regulatory motifs of transcription factors is lacking as these factors commonly possess multiple motifs (e.g. repression and activation motifs) which collaborate with each other to regulate multiple biological processes. We describe a novel approach designated conserved sequence-guided repressor inhibition (CoSRI) that can specifically reduce or abolish the repressive activities of transcription factors in vivo. The technology was evaluated using the chimeric MYB80-EAR transcription factor and subsequently the endogenous WUS transcription factor. The technology was employed to develop a reversible male sterility system applicable to hybrid seed production. In order to determine the capacity of the technology to regulate the activity of endogenous transcription factors, the WUS repressor was chosen. The WUS repression motif could be inhibited in vivo and the transformed plants exhibited the wus-1 phenotype. Consequently, the technology can be used to manipulate the activities of transcriptional repressor motifs regulating beneficial traits in crop plants and other eukaryotic organisms. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. The Multitalented MEDIATOR25

    Directory of Open Access Journals (Sweden)

    Kemal Kazan

    2017-06-01

    Full Text Available The multi-subunit Mediator complex, which links DNA-bound transcription factors to RNA Pol II during transcription, is an essential regulator of gene expression in all eukaryotes. Individual subunits of the Mediator complex integrate numerous endogenous and exogenous signals. In this paper, diverse regulatory functions performed by MEDIATOR25 (MED25, one of the subunits of the plant Mediator complex are reviewed. MED25 was first identified as a regulator of flowering time and named PHYTOCHROME AND FLOWERING TIME1 (PFT1. Since then, MED25 has been implicated in a range of other plant functions that vary from hormone signaling (JA, ABA, ethylene, and IAA to biotic and abiotic stress tolerance and plant development. MED25 physically interacts with transcriptional activators (e.g., AP2/ERFs, MYCs, and ARFs, repressors (e.g., JAZs and Aux/IAAs, and other Mediator subunits (MED13 and MED16. In addition, various genetic and epigenetic interactions involving MED25 have been reported. These features make MED25 one of the most multifunctional Mediator subunits and provide new insights into the transcriptional control of gene expression in plants.

  16. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    Science.gov (United States)

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  17. The Viral Gene ORF79 Encodes a Repressor Regulating Induction of the Lytic Life Cycle in the Haloalkaliphilic Virus ϕCh1.

    Science.gov (United States)

    Selb, Regina; Derntl, Christian; Klein, Reinhard; Alte, Beatrix; Hofbauer, Christoph; Kaufmann, Martin; Beraha, Judith; Schöner, Léa; Witte, Angela

    2017-05-01

    In this study, we describe the construction of the first genetically modified mutant of a halovirus infecting haloalkaliphilic Archaea By random choice, we targeted ORF79, a currently uncharacterized viral gene of the haloalkaliphilic virus ϕCh1. We used a polyethylene glycol (PEG)-mediated transformation method to deliver a disruption cassette into a lysogenic strain of the haloalkaliphilic archaeon Natrialba magadii bearing ϕCh1 as a provirus. This approach yielded mutant virus particles carrying a disrupted version of ORF79. Disruption of ORF79 did not influence morphology of the mature virions. The mutant virus was able to infect cured strains of N. magadii , resulting in a lysogenic, ORF79-disrupted strain. Analysis of this strain carrying the mutant virus revealed a repressor function of ORF79. In the absence of gp79, onset of lysis and expression of viral proteins occurred prematurely compared to their timing in the wild-type strain. Constitutive expression of ORF79 in a cured strain of N. magadii reduced the plating efficiency of ϕCh1 by seven orders of magnitude. Overexpression of ORF79 in a lysogenic strain of N. magadii resulted in an inhibition of lysis and total absence of viral proteins as well as viral progeny. In further experiments, gp79 directly regulated the expression of the tail fiber protein ORF34 but did not influence the methyltransferase gene ORF94. Further, we describe the establishment of an inducible promoter for in vivo studies in N. magadii IMPORTANCE Genetic analyses of haloalkaliphilic Archaea or haloviruses are only rarely reported. Therefore, only little insight into the in vivo roles of proteins and their functions has been gained so far. We used a reverse genetics approach to identify the function of a yet undescribed gene of ϕCh1. We provide evidence that gp79, a currently unknown protein of ϕCh1, acts as a repressor protein of the viral life cycle, affecting the transition from the lysogenic to the lytic state of the virus

  18. The switch from fermentation to respiration in Saccharomyces cerevisiae is regulated by the Ert1 transcriptional activator/repressor.

    Science.gov (United States)

    Gasmi, Najla; Jacques, Pierre-Etienne; Klimova, Natalia; Guo, Xiao; Ricciardi, Alessandra; Robert, François; Turcotte, Bernard

    2014-10-01

    In the yeast Saccharomyces cerevisiae, fermentation is the major pathway for energy production, even under aerobic conditions. However, when glucose becomes scarce, ethanol produced during fermentation is used as a carbon source, requiring a shift to respiration. This adaptation results in massive reprogramming of gene expression. Increased expression of genes for gluconeogenesis and the glyoxylate cycle is observed upon a shift to ethanol and, conversely, expression of some fermentation genes is reduced. The zinc cluster proteins Cat8, Sip4, and Rds2, as well as Adr1, have been shown to mediate this reprogramming of gene expression. In this study, we have characterized the gene YBR239C encoding a putative zinc cluster protein and it was named ERT1 (ethanol regulated transcription factor 1). ChIP-chip analysis showed that Ert1 binds to a limited number of targets in the presence of glucose. The strongest enrichment was observed at the promoter of PCK1 encoding an important gluconeogenic enzyme. With ethanol as the carbon source, enrichment was observed with many additional genes involved in gluconeogenesis and mitochondrial function. Use of lacZ reporters and quantitative RT-PCR analyses demonstrated that Ert1 regulates expression of its target genes in a manner that is highly redundant with other regulators of gluconeogenesis. Interestingly, in the presence of ethanol, Ert1 is a repressor of PDC1 encoding an important enzyme for fermentation. We also show that Ert1 binds directly to the PCK1 and PDC1 promoters. In summary, Ert1 is a novel factor involved in the regulation of gluconeogenesis as well as a key fermentation gene. Copyright © 2014 by the Genetics Society of America.

  19. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation

    Directory of Open Access Journals (Sweden)

    Seiboth Bernhard

    2011-05-01

    Full Text Available Abstract Background The identification and characterization of the transcriptional regulatory networks governing the physiology and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR: it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. In lower multicellular fungi, the C2H2 zinc finger CreA/CRE1 protein has been shown to act as the transcriptional repressor in this process. However, the complete list of its gene targets is not known. Results Here, we deciphered the CRE1 regulatory range in the model cellulose and hemicellulose-degrading fungus Trichoderma reesei (anamorph of Hypocrea jecorina by profiling transcription in a wild-type and a delta-cre1 mutant strain on glucose at constant growth rates known to repress and de-repress CCR-affected genes. Analysis of genome-wide microarrays reveals 2.8% of transcripts whose expression was regulated in at least one of the four experimental conditions: 47.3% of which were repressed by CRE1, whereas 29.0% were actually induced by CRE1, and 17.2% only affected by the growth rate but CRE1 independent. Among CRE1 repressed transcripts, genes encoding unknown proteins and transport proteins were overrepresented. In addition, we found CRE1-repression of nitrogenous substances uptake, components of chromatin remodeling and the transcriptional mediator complex, as well as developmental processes. Conclusions Our study provides the first global insight into the molecular physiological response of a multicellular fungus to carbon catabolite regulation and identifies several not yet known targets in a growth-controlled environment.

  20. Regulation of nif expression in Methanococcus maripaludis: roles of the euryarchaeal repressor NrpR, 2-oxoglutarate, and two operators.

    Science.gov (United States)

    Lie, Thomas J; Wood, Gwendolyn E; Leigh, John A

    2005-02-18

    The methanogenic archaean Methanococcus maripaludis can use ammonia, alanine, or dinitrogen as a nitrogen source for growth. The euryarchaeal nitrogen repressor NrpR controls the expression of the nif (nitrogen fixation) operon, resulting in full repression with ammonia, intermediate repression with alanine, and derepression with dinitrogen. NrpR binds to two tandem operators in the nif promoter region, nifOR(1) and nifOR(2). Here we have undertaken both in vivo and in vitro approaches to study the way in which NrpR, nifOR(1), nifOR(2), and the effector 2-oxoglutarate (2OG) combine to regulate nif expression, leading to a comprehensive understanding of this archaeal regulatory system. We show that NrpR binds as a dimer to nifOR(1) and cooperatively as two dimers to both operators. Cooperative binding occurs only with both operators present. nifOR(1) has stronger binding and by itself can mediate the repression of nif transcription during growth on ammonia, unlike the weakly binding nifOR(2). However, nifOR(2) in combination with nifOR(1) is critical for intermediate repression during growth on alanine. Accordingly, NrpR binds to both operators together with higher affinity than to nifOR(1) alone. NrpR responds directly to 2OG, which weakens its binding to the operators. Hence, 2OG is an intracellular indicator of nitrogen deficiency and acts as an inducer of nif transcription via NrpR. This model is upheld by the recent finding (J. A. Dodsworth and J. A. Leigh, submitted for publication) in our laboratory that 2OG levels in M. maripaludis vary with growth on different nitrogen sources.

  1. Disruption of a Transcriptional Repressor by an Insertion Sequence Element Integration Leads to Activation of a Novel Silent Cellobiose Transporter in Lactococcus lactis MG1363.

    Science.gov (United States)

    Solopova, Ana; Kok, Jan; Kuipers, Oscar P

    2017-12-01

    Lactococcus lactis subsp. cremoris strains typically carry many dairy niche-specific adaptations. During adaptation to the milk environment these former plant strains have acquired various pseudogenes and insertion sequence elements indicative of ongoing genome decay and frequent transposition events in their genomes. Here we describe the reactivation of a silenced plant sugar utilization cluster in an L. lactis MG1363 derivative lacking the two main cellobiose transporters, PtcBA-CelB and PtcBAC, upon applying selection pressure to utilize cellobiose. A disruption of the transcriptional repressor gene llmg_1239 by an insertion sequence (IS) element allows expression of the otherwise silent novel cellobiose transporter Llmg_1244 and leads to growth of mutant strains on cellobiose. Llmg_1239 was labeled CclR, for c ellobiose cl uster r epressor. IMPORTANCE Insertion sequences (ISs) play an important role in the evolution of lactococci and other bacteria. They facilitate DNA rearrangements and are responsible for creation of new genetic variants with selective advantages under certain environmental conditions. L. lactis MG1363 possesses 71 copies in a total of 11 different types of IS elements. This study describes yet another example of an IS-mediated adaptive evolution. An integration of IS 981 or IS 905 into a gene coding for a transcriptional repressor led to activation of the repressed gene cluster coding for a plant sugar utilization pathway. The expression of the gene cluster allowed assembly of a novel cellobiose-specific transporter and led to cell growth on cellobiose. Copyright © 2017 American Society for Microbiology.

  2. H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Dongsheng eZhou

    2014-12-01

    Full Text Available Vibrio parahaemolyticus, a leading cause of seafood-associated diarrhea and gastroenteritis, harbors three major virulence gene loci T3SS1, Vp-PAI (T3SS1+tdh2 and T6SS2. As showing is this study, the nucleoid-associated DNA-binding regulator H-NS binds to multiple promoter-proximal regions in each of the above three loci to repress their transcription, and moreover H-NS inhibits the cytotoxicitiy, enterotoxicity, hemolytic activity, and mouse lethality of V. parahaemolyticus. H-NS appears to act as a major repressor of the virulence of this pathogen.

  3. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2

    OpenAIRE

    Zuo, Tao; Liu, Runhua; Zhang, Huiming; Chang, Xing; Liu, Yan; Wang, Lizhong; Zheng, Pan; Liu, Yang

    2007-01-01

    S-phase kinase-associated protein 2 (SKP2) is a component of the E3 ubiquitin ligase SKP1-Cul1-Fbox complex. Overexpression of SKP2 results in cell cycle dysregulation and carcinogenesis; however, the genetic lesions that cause this upregulation are poorly understood. We recently demonstrated that forkhead box P3 (FOXP3) is an X-linked breast cancer suppressor and an important repressor of the oncogene ERBB2/HER2. Since FOXP3 suppresses tumor growth regardless of whether the tumors overexpres...

  4. The homeobox gene Mohawk represses transcription by recruiting the sin3A/HDAC co-repressor complex.

    Science.gov (United States)

    Anderson, Douglas M; Beres, Brian J; Wilson-Rawls, Jeanne; Rawls, Alan

    2009-03-01

    Mohawk is an atypical homeobox gene expressed in embryonic progenitor cells of skeletal muscle, tendon, and cartilage. We demonstrate that Mohawk functions as a transcriptional repressor capable of blocking the myogenic conversion of 10T1/2 fibroblasts. The repressor activity is located in three small, evolutionarily conserved domains (MRD1-3) in the carboxy-terminal half of the protein. Point mutation analysis revealed six residues in MRD1 are sufficient for repressor function. The carboxy-terminal half of Mohawk is able to recruit components of the Sin3A/HDAC co-repressor complex (Sin3A, Hdac1, and Sap18) and a subset of Polymerase II general transcription factors (Tbp, TFIIA1 and TFIIB). Furthermore, Sap18, a protein that bridges the Sin3A/HDAC complex to DNA-bound transcription factors, is co-immunoprecipitated by MRD1. These data predict that Mohawk can repress transcription through recruitment of the Sin3A/HDAC co-repressor complex, and as a result, repress target genes required for the differentiation of cells to the myogenic lineage. (c) 2009 Wiley-Liss, Inc.

  5. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec

    Energy Technology Data Exchange (ETDEWEB)

    Safo, Martin K., E-mail: msafo@vcu.edu [Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Ko, Tzu-Ping [Institute of Biological Chemistry, Academia Sinica, Taipei 11529,Taiwan (China); Musayev, Faik N. [Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Zhao, Qixun [Department of Medicine and Department of Microbiology/Immunology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Wang, Andrew H.-J. [Institute of Biological Chemistry, Academia Sinica, Taipei 11529,Taiwan (China); Archer, Gordon L. [Department of Medicine and Department of Microbiology/Immunology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States); Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2006-04-01

    The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.

  6. Dynamic allostery in the methionine repressor revealed by force distribution analysis.

    Directory of Open Access Journals (Sweden)

    Wolfram Stacklies

    2009-11-01

    Full Text Available Many fundamental cellular processes such as gene expression are tightly regulated by protein allostery. Allosteric signal propagation from the regulatory to the active site requires long-range communication, the molecular mechanism of which remains a matter of debate. A classical example for long-range allostery is the activation of the methionine repressor MetJ, a transcription factor. Binding of its co-repressor SAM increases its affinity for DNA several-fold, but has no visible conformational effect on its DNA binding interface. Our molecular dynamics simulations indicate correlated domain motions within MetJ, and quenching of these dynamics upon SAM binding entropically favors DNA binding. From monitoring conformational fluctuations alone, it is not obvious how the presence of SAM is communicated through the largely rigid core of MetJ and how SAM thereby is able to regulate MetJ dynamics. We here directly monitored the propagation of internal forces through the MetJ structure, instead of relying on conformational changes as conventionally done. Our force distribution analysis successfully revealed the molecular network for strain propagation, which connects collective domain motions through the protein core. Parts of the network are directly affected by SAM binding, giving rise to the observed quenching of fluctuations. Our results are in good agreement with experimental data. The force distribution analysis suggests itself as a valuable tool to gain insight into the molecular function of a whole class of allosteric proteins.

  7. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    Science.gov (United States)

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  8. Transcriptional Co-repressor Function of the Hippo Pathway Transducers YAP and TAZ

    Directory of Open Access Journals (Sweden)

    Minchul Kim

    2015-04-01

    Full Text Available YAP (yes-associated protein and TAZ are oncogenic transcriptional co-activators downstream of the Hippo tumor-suppressor pathway. However, whether YAP and/or TAZ (YAP/TAZ engage in transcriptional co-repression remains relatively unexplored. Here, we directly demonstrated that YAP/TAZ represses numerous target genes, including tumor-suppressor genes such as DDIT4 (DNA-damage-inducible transcript 4 and Trail (TNF-related apoptosis-inducing ligand. Mechanistically, the repressor function of YAP/TAZ requires TEAD (TEA domain transcription factors. A YAP/TAZ-TEAD complex recruits the NuRD complex to deacetylate histones and alters nucleosome occupancy at target genes. Functionally, repression of DDIT4 and Trail by YAP/TAZ is required for mTORC1 (mechanistic target of rapamycin complex 1 activation and cell survival, respectively. Our demonstration of the transcriptional co-repressor activity of YAP/TAZ opens a new avenue for understanding the Hippo signaling pathway.

  9. DAX1 suppresses FXR transactivity as a novel co-repressor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin; Lu, Yan; Liu, Ruya; Xiong, Xuelian; Zhang, Zhijian; Zhang, Xianfeng [Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025 (China); Ning, Guang, E-mail: guangning@gmail.com.cn [Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025 (China); The Key Laboratory of Endocrine Tumors and The Division of Endocrine and Metabolic Diseases, E-Institute of Shanghai Universities, Shanghai 200025 (China); Li, Xiaoying, E-mail: lixy@sibs.ac.cn [Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025 (China); The Key Laboratory of Endocrine Tumors and The Division of Endocrine and Metabolic Diseases, E-Institute of Shanghai Universities, Shanghai 200025 (China)

    2011-09-09

    Highlights: {yields} DAX1 is co-localized with FXR and interacts with FXR. {yields} DAX1 acts as a negative regulator of FXR. {yields} Three LXXLL motifs in the N-terminus of DAX1 were required. {yields} DAX1 suppresses FXR transactivation by competing with co-activators. -- Abstract: Bile acid receptor FXR (farnesoid X receptor) is a key regulator of hepatic bile acid, glucose and lipid homeostasis through regulation of numerous genes involved in the process of bile acid, triglyceride and glucose metabolism. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is an atypical member of the nuclear receptor family due to lack of classical DNA-binding domains and acts primarily as a co-repressor of many nuclear receptors. Here, we demonstrated that DAX1 is co-localized with FXR in the nucleus and acted as a negative regulator of FXR through a physical interaction with FXR. Our study showed that over-expression of DAX1 down-regulated the expression of FXR target genes, whereas knockdown of DAX1 led to their up-regulation. Furthermore, three LXXLL motifs in the N-terminus of DAX1 were required for the full repression of FXR transactivation. In addition, our study characterized that DAX1 suppresses FXR transactivation via competing with co-activators such as SRC-1 and PGC-1{alpha}. In conclusion, DAX1 acts as a co-repressor to negatively modulate FXR transactivity.

  10. DAX1 suppresses FXR transactivity as a novel co-repressor

    International Nuclear Information System (INIS)

    Li, Jin; Lu, Yan; Liu, Ruya; Xiong, Xuelian; Zhang, Zhijian; Zhang, Xianfeng; Ning, Guang; Li, Xiaoying

    2011-01-01

    Highlights: → DAX1 is co-localized with FXR and interacts with FXR. → DAX1 acts as a negative regulator of FXR. → Three LXXLL motifs in the N-terminus of DAX1 were required. → DAX1 suppresses FXR transactivation by competing with co-activators. -- Abstract: Bile acid receptor FXR (farnesoid X receptor) is a key regulator of hepatic bile acid, glucose and lipid homeostasis through regulation of numerous genes involved in the process of bile acid, triglyceride and glucose metabolism. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) is an atypical member of the nuclear receptor family due to lack of classical DNA-binding domains and acts primarily as a co-repressor of many nuclear receptors. Here, we demonstrated that DAX1 is co-localized with FXR in the nucleus and acted as a negative regulator of FXR through a physical interaction with FXR. Our study showed that over-expression of DAX1 down-regulated the expression of FXR target genes, whereas knockdown of DAX1 led to their up-regulation. Furthermore, three LXXLL motifs in the N-terminus of DAX1 were required for the full repression of FXR transactivation. In addition, our study characterized that DAX1 suppresses FXR transactivation via competing with co-activators such as SRC-1 and PGC-1α. In conclusion, DAX1 acts as a co-repressor to negatively modulate FXR transactivity.

  11. GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells.

    Directory of Open Access Journals (Sweden)

    Jason E Cain

    Full Text Available Truncating GLI3 mutations in Pallister-Hall Syndrome with renal malformation suggests a requirement for Hedgehog signaling during renal development. HH-dependent signaling increases levels of GLI transcriptional activators and decreases processing of GLI3 to a shorter transcriptional repressor. Previously, we showed that Shh-deficiency interrupts early inductive events during renal development in a manner dependent on GLI3 repressor. Here we identify a novel function for GLI3 repressor in controlling nephron number. During renal morphogenesis, HH signaling activity, assayed by expression of Ptc1-lacZ, is localized to ureteric cells of the medulla, but is undetectable in the cortex. Targeted inactivation of Smo, the HH effector, in the ureteric cell lineage causes no detectable abnormality in renal morphogenesis. The functional significance of absent HH signaling activity in cortical ureteric cells was determined by targeted deletion of Ptc1, the SMO inhibitor, in the ureteric cell lineage. Ptc1(-/-UB mice demonstrate ectopic Ptc1-lacZ expression in ureteric branch tips and renal hypoplasia characterized by reduced kidney size and a paucity of mature and intermediate nephrogenic structures. Ureteric tip cells are remarkable for abnormal morphology and impaired expression of Ret and Wnt11, markers of tip cell differentiation. A finding of renal hypoplasia in Gli3(-/- mice suggests a pathogenic role for reduced GLI3 repressor in the Ptc1(-/-UB mice. Indeed, constitutive expression of GLI3 repressor via the Gli3(Delta699 allele in Ptc1(-/-UB mice restores the normal pattern of HH signaling, and expression of Ret and Wnt11 and rescued the renal phenotype. Thus, GLI3 repressor controls nephron number by regulating ureteric tip cell expression of Wnt11 and Ret.

  12. Drosophila brakeless interacts with atrophin and is required for tailless-mediated transcriptional repression in early embryos.

    Directory of Open Access Journals (Sweden)

    Achim Haecker

    2007-06-01

    Full Text Available Complex gene expression patterns in animal development are generated by the interplay of transcriptional activators and repressors at cis-regulatory DNA modules (CRMs. How repressors work is not well understood, but often involves interactions with co-repressors. We isolated mutations in the brakeless gene in a screen for maternal factors affecting segmentation of the Drosophila embryo. Brakeless, also known as Scribbler, or Master of thickveins, is a nuclear protein of unknown function. In brakeless embryos, we noted an expanded expression pattern of the Krüppel (Kr and knirps (kni genes. We found that Tailless-mediated repression of kni expression is impaired in brakeless mutants. Tailless and Brakeless bind each other in vitro and interact genetically. Brakeless is recruited to the Kr and kni CRMs, and represses transcription when tethered to DNA. This suggests that Brakeless is a novel co-repressor. Orphan nuclear receptors of the Tailless type also interact with Atrophin co-repressors. We show that both Drosophila and human Brakeless and Atrophin interact in vitro, and propose that they act together as a co-repressor complex in many developmental contexts. We discuss the possibility that human Brakeless homologs may influence the toxicity of polyglutamine-expanded Atrophin-1, which causes the human neurodegenerative disease dentatorubral-pallidoluysian atrophy (DRPLA.

  13. nalD Encodes a Second Repressor of the mexAB-oprM Multidrug Efflux Operon of Pseudomonas aeruginosa▿

    OpenAIRE

    Morita, Yuji; Cao, Lily; Gould, Virginia C.; Avison, Matthew B.; Poole, Keith

    2006-01-01

    The Pseudomonas aeruginosa nalD gene encodes a TetR family repressor with homology to the SmeT and TtgR repressors of the smeDEF and ttgABC multidrug efflux systems of Stenotrophomonas maltophilia and Pseudomonas putida, respectively. A sequence upstream of mexAB-oprM and overlapping a second promoter for this efflux system was very similar to the SmeT and TtgR operator sequences, and NalD binding to this region was, in fact, demonstrated. Moreover, increased expression from this promoter was...

  14. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells.

    Science.gov (United States)

    Benitz, Simone; Regel, Ivonne; Reinhard, Tobias; Popp, Anna; Schäffer, Isabell; Raulefs, Susanne; Kong, Bo; Esposito, Irene; Michalski, Christoph W; Kleeff, Jörg

    2016-03-08

    Acinar-to-ductal metaplasia (ADM) occurring in cerulein-mediated pancreatitis or in oncogenic Kras-driven pancreatic cancer development is accompanied by extensive changes in the transcriptional program. In this process, acinar cells shut down the expression of acinar specific differentiation genes and re-express genes usually found in embryonic pancreatic progenitor cells. Previous studies have demonstrated that a loss of acinar-specific transcription factors sensitizes the cells towards oncogenic transformation, ultimately resulting in cancer development. However, the mechanism behind the transcriptional silencing of acinar cell fate genes in ADM and pancreatic cancer is largely unknown. Here, we analyzed whether elevated levels of the polycomb repressor complex 1 (PRC1) components Bmi1 and Ring1b and their catalyzed histone modification H2AK119ub in ADMs and tumor cells, are responsible for the mediation of acinar gene silencing. Therefore, we performed chromatin-immunoprecipitation in in vitro generated ADMs and isolated murine tumor cells against the repressive histone modifications H3K27me3 and H2AK119ub. We established that the acinar transcription factor complex Ptf1-L is epigenetically silenced in ADMs as well as in pancreatic tumor cells. For the first time, this work presents a possible mechanism of acinar gene silencing, which is an important prerequisite in the initiation and maintenance of a dedifferentiated cell state in ADMs and tumor cells.

  15. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    DEFF Research Database (Denmark)

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego

    2014-01-01

    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...

  16. Novel strategies to overcome expression problems encountered with toxic proteins: application to the production of Lac repressor proteins for NMR studies

    NARCIS (Netherlands)

    Romanuka, J.; van den Bulke, H.; Kaptein, R.; Boelens, R.; Folkers, G.E.

    2009-01-01

    NMR studies of structural aspects of allosteric regulation by the Lac repressor requires overexpression and isotope labeling of the protein. The size of the repressor makes it a challenging target, putting constraints on both expression conditions and sample preparation methods to overcome problems

  17. Potential role for Id myogenic repressors in apoptosis and attenuation of hypertrophy in muscles of aged rats.

    NARCIS (Netherlands)

    Alway, S.E.; Degens, H.; Krishnamurthy, G.; Smith, C.A.

    2002-01-01

    Aging attenuates the overload-induced increase in myogenic regulatory transcription factor (MRF) expression and the extent of muscle enlargement. To identify whether mRNA levels of repressors of the MRFs are greater in overloaded muscles from aged animals, overload was achieved in plantaris muscle

  18. Identification of PNG kinase substrates uncovers interactions with the translational repressor TRAL in the oocyte-to-embryo transition.

    Science.gov (United States)

    Hara, Masatoshi; Lourido, Sebastian; Petrova, Boryana; Lou, Hua Jane; Von Stetina, Jessica R; Kashevsky, Helena; Turk, Benjamin E; Orr-Weaver, Terry L

    2018-02-26

    The Drosophila Pan Gu (PNG) kinase complex regulates hundreds of maternal mRNAs that become translationally repressed or activated as the oocyte transitions to an embryo. In a previous paper (Hara et al., 2017), we demonstrated PNG activity is under tight developmental control and restricted to this transition. Here, examination of PNG specificity showed it to be a Thr-kinase yet lacking a clear phosphorylation site consensus sequence. An unbiased biochemical screen for PNG substrates identified the conserved translational repressor Trailer Hitch (TRAL). Phosphomimetic mutation of the PNG phospho-sites in TRAL reduced its ability to inhibit translation in vitro. In vivo, mutation of tral dominantly suppressed png mutants and restored Cyclin B protein levels. The repressor Pumilio (PUM) has the same relationship with PNG, and we also show that PUM is a PNG substrate. Furthermore, PNG can phosphorylate BICC and ME31B, repressors that bind TRAL in cytoplasmic RNPs. Therefore, PNG likely promotes translation at the oocyte-to-embryo transition by phosphorylating and inactivating translational repressors. © 2018, Hara et al.

  19. Genetic Deletion of the Transcriptional Repressor NFIL3 Enhances Axon Growth In Vitro but Not Axonal Repair In Vivo

    NARCIS (Netherlands)

    van der Kallen, Loek R; Eggers, Ruben; Ehlert, Erich M; Verhaagen, J.; Smit, August B; van Kesteren, Ronald E

    2015-01-01

    Axonal regeneration after injury requires the coordinated expression of genes in injured neurons. We previously showed that either reducing expression or blocking function of the transcriptional repressor NFIL3 activates transcription of regeneration-associated genes Arg1 and Gap43 and strongly

  20. Identification of operator sites of the CI repressor of phage TP901-1: evolutionary link to other phages

    International Nuclear Information System (INIS)

    Johansen, Annette H.; Broendsted, Lone; Hammer, Karin

    2003-01-01

    The repressor encoded by the cI gene of the temperate Lactococcus lactis subsp. cremoris bacteriophage TP901-1 has been purified. Gel-retardation and footprinting analyses identified three palindromic operator sites (O R , O L , and O D ). The operator site O R is located between the two divergent early promoters P R and P L , O L overlaps the transcriptional start of the lytic P L promoter, and O D is located downstream of the mor gene, the first gene in the lytic gene cluster. The function of O L was verified by mutational analysis. Binding was found to be specific and cooperative. Multimeric forms of the repressor were observed, thus indicating that the repressor may bind simultaneously to all three operator sites. Inverted repeats with homology to the operator sites of TP901-1 were identified in phage genomes encoding repressors homologous to CI of TP901-1. Interestingly, the locations of these repeats on the phage genomes correspond to those found in TP901-1, indicating that the same system of cooperative repression of early phage promoters has been inherited by modular evolution

  1. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr; Sieglová, Irena; Fábry, Milan; Otwinowski, Z.; Řezáčová, Pavlína

    2012-01-01

    Roč. 68, č. 2 (2012), s. 176-185 ISSN 0907-4449 R&D Projects: GA MŠk ME08016 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : repressor * dimerization * effector binding * isothermal titration calorimetry Subject RIV: CE - Biochemistry Impact factor: 14.103, year: 2012

  2. Structure of the Mecl Repressor from Staphylococcus aureus in Complex with the Cognate DNA Operator of mec

    Energy Technology Data Exchange (ETDEWEB)

    Safo,M.; Ko, T.; Musayev, F.; Zhao, Q.; Wang, A.; Archer, G.

    2006-01-01

    The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of {beta}-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Angstroms resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.

  3. Structural and dynamics studies of a truncated variant of CI repressor from bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Rasmussen, Kim Krighaar; Frandsen, Kristian E. H.; Erba, Elisabetta Boeri

    2016-01-01

    The CI repressor from the temperate bacteriophage TP901-1 consists of two folded domains, an N-terminal helix-turn-helix DNA-binding domain (NTD) and a C-terminal oligomerization domain (CTD), which we here suggest to be further divided into CTD1 and CTD2. Full-length CI is a hexameric protein...

  4. Overlapping repressor binding sites regulate expression of the Methanococcus maripaludis glnK1 operon

    Science.gov (United States)

    Lie, Thomas J.; Hendrickson, Erik L.; Niess, Ulf M.; Moore, Brian C.; Haydock, Andrew K.; Leigh, John A.

    2011-01-01

    The euryarchaeal transcriptional repressor NrpR regulates a variety of nitrogen assimilation genes by 2-oxoglutarate-reversible binding to conserved palindromic operators. The number and positioning of these operators varies among promoter regions of regulated genes, suggesting NrpR can bind in different patterns. Particularly intriguing is the contrast between the nif and glnK1 promoter regions of Methanococcus maripaludis, where two operators are present but with different configurations. Here we study NrpR binding and regulation at the glnK1 promoter, where the two operator sequences overlap and occur on opposite faces of the double helix. We find that both operators function in binding, with a dimer of NrpR binding simultaneously to each overlapping operator. We show in vivo that the first operator plays a primary role in regulation and the second operator plays an enhancing role. This is the first demonstration of overlapping operators functioning in Archaea. PMID:20025661

  5. Overlapping repressor binding sites regulate expression of the Methanococcus maripaludis glnK(1) operon.

    Science.gov (United States)

    Lie, Thomas J; Hendrickson, Erik L; Niess, Ulf M; Moore, Brian C; Haydock, Andrew K; Leigh, John A

    2010-02-01

    The euryarchaeal transcriptional repressor NrpR regulates a variety of nitrogen assimilation genes by 2-oxoglutarate-reversible binding to conserved palindromic operators. The number and positioning of these operators varies among promoter regions of regulated genes, suggesting NrpR can bind in different patterns. Particularly intriguing is the contrast between the nif and glnK(1) promoter regions of Methanococcus maripaludis, where two operators are present but with different configurations. Here we study NrpR binding and regulation at the glnK(1) promoter, where the two operator sequences overlap and occur on opposite faces of the double helix. We find that both operators function in binding, with a dimer of NrpR binding simultaneously to each overlapping operator. We show in vivo that the first operator plays a primary role in regulation and the second operator plays an enhancing role. This is the first demonstration of overlapping operators functioning in Archaea.

  6. Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila.

    Science.gov (United States)

    Lim, Chunghun; Chung, Brian Y; Pitman, Jena L; McGill, Jermaine J; Pradhan, Suraj; Lee, Jongbin; Keegan, Kevin P; Choe, Joonho; Allada, Ravi

    2007-06-19

    Gene transcription is a central timekeeping process in animal clocks. In Drosophila, the basic helix-loop helix (bHLH)-PAS transcription-factor heterodimer, CLOCK/CYCLE (CLK/CYC), transcriptionally activates the clock components period (per), timeless (tim), Par domain protein 1 (Pdp1), and vrille (vri), which feed back and regulate distinct features of CLK/CYC function. Microarray studies have identified numerous rhythmically expressed transcripts, some of which are potential direct CLK targets. Here we demonstrate a circadian function for one such target, a bHLH-Orange repressor, CG17100/CLOCKWORK ORANGE (CWO). cwo is rhythmically expressed, and levels are reduced in Clk mutants, suggesting that cwo is CLK activated in vivo. cwo mutants display reduced-amplitude molecular and behavioral rhythms with lengthened periods. Molecular analysis suggests that CWO acts, in part, by repressing CLK target genes. We propose that CWO acts as a transcriptional and behavioral rhythm amplifier.

  7. clockwork orange encodes a transcriptional repressor important for circadian clock amplitude in Drosophila

    Science.gov (United States)

    Lim, Chunghun; Chung, Brian Y.; Pitman, Jena L.; McGill, Jermaine J.; Pradhan, Suraj; Lee, Jongbin; Keegan, Kevin P.; Choe, Joonho; Allada, Ravi

    2007-01-01

    Summary Gene transcription is a central timekeeping process in animal clocks. In Drosophila, the basic helix-loop helix (bHLH)-PAS transcription factor heterodimer, CLOCK (CLK)/CYCLE(CYC) transcriptionally activates the clock components period (per), timeless (tim), Par domain protein 1 (Pdp1), and vrille (vri) that feedback and regulate distinct features of CLK/CYC function [1]. Microarray studies have identified numerous rhythmically expressed transcripts [2-7], some of which are potential direct CLK targets [7]. Here we demonstrate a circadian function for one such target, a bHLH-Orange repressor CG17100/CLOCKWORK ORANGE (CWO). cwo is rhythmically expressed and levels are reduced in Clk mutants, suggesting that cwo is CLK-activated in vivo. cwo mutants display reduced amplitude molecular and behavioral rhythms with lengthened periods. Molecular analysis suggests CWO acts, in part, by repressing CLK target genes. We propose that CWO acts as a transcriptional and behavioral rhythm amplifier. PMID:17555964

  8. Tyrosine binding and promiscuity in the arginine repressor from the pathogenic bacterium Corynebacterium pseudotuberculosis.

    Science.gov (United States)

    Mariutti, Ricardo Barros; Ullah, Anwar; Araujo, Gabriela Campos; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy

    2016-07-08

    The arginine repressor (ArgR) regulates arginine biosynthesis in a number of microorganisms and consists of two domains interlinked by a short peptide; the N-terminal domain is involved in DNA binding and the C-terminal domain binds arginine and forms a hexamer made-up of a dimer of trimers. The crystal structure of the C-terminal domain of ArgR from the pathogenic Corynebacterium pseudotuberculosis determined at 1.9 Å resolution contains a tightly bound tyrosine at the arginine-binding site indicating hitherto unobserved promiscuity. Structural analysis of the binding pocket displays clear molecular adaptations to accommodate tyrosine binding suggesting the possible existence of an alternative regulatory process in this pathogenic bacterium. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Female Infertility Caused by Mutations in the Oocyte-Specific Translational Repressor PATL2

    KAUST Repository

    Maddirevula, Sateesh

    2017-09-29

    Infertility is a relatively common disorder of the reproductive system and remains unexplained in many cases. In vitro fertilization techniques have uncovered previously unrecognized infertility phenotypes, including oocyte maturation arrest, the molecular etiology of which remains largely unknown. We report two families affected by female-limited infertility caused by oocyte maturation failure. Positional mapping and whole-exome sequencing revealed two homozygous, likely deleterious variants in PATL2, each of which fully segregates with the phenotype within the respective family. PATL2 encodes a highly conserved oocyte-specific mRNP repressor of translation. Previous data have shown the strict requirement for PATL2 in oocyte-maturation in model organisms. Data gathered from the families in this study suggest that the role of PATL2 is conserved in humans and expand our knowledge of the factors that are necessary for female meiosis.

  10. Brain REST/NRSF Is Not Only a Silent Repressor but Also an Active Protector.

    Science.gov (United States)

    Zhao, Yangang; Zhu, Min; Yu, Yanlan; Qiu, Linli; Zhang, Yuanyuan; He, Li; Zhang, Jiqiang

    2017-01-01

    During neurogenesis, specific transcription factors are needed to repress neuronal genes in nonneuronal cells to ensure precise development. Repressor element-1 binding transcription factor (REST), or neuron-restrictive silencer factor (NRSF), has been shown to be an important regulator for the establishment of neuronal specificity. It restricts the expression of neuronal genes by binding to the neuron-restrictive silencer element (NRSE/RE1) domain in neuron-specific genes. REST/NRSF regulates many target genes in stem cells, nonneural cells, and neurons, which are involved in neuronal differentiation, axonal growth, vesicular transport, and release as well as ionic conductance. However, it is also regulated by some cytokines/regulators such as epigenetic factors (microRNAs) and even its truncated isoform. REST/NRSF is widely detected in brain regions and has been shown to be highly expressed in nonneuronal cells, but current findings also reveal that, at least in the human brain, it is also highly expressed in neurons and increases with ageing. However, its loss in expression and cytoplasmic translocation seems to play a pivotal role in several human dementias. Additionally, REST/NRSF knockdown leads to malformations in nerve and nonneural tissues and embryonic lethality. Altered REST/NRSF expression has been not only related to deficient brain functions such as neurodegenerative diseases, mental disorders, brain tumors, and neurobehavioral disorders but also highly correlated to brain injuries such as alcoholism and stroke. Encouragingly, several compounds such as valproic acid and X5050 that target REST/NRSF have been shown to be clinically effective at rescuing seizures or Niemann-Pick type C disease. Surprisingly, studies have also shown that REST/NRSF can function as an activator to induce neuronal differentiation. These findings strongly indicate that REST/NRSF is not only a classical repressor to maintain normal neurogenesis, but it is also a fine

  11. Oct-1 acts as a transcriptional repressor on the C-reactive protein promoter

    Science.gov (United States)

    Voleti, Bhavya; Hammond, David J.; Thirumalai, Avinash; Agrawal, Alok

    2012-01-01

    C-reactive protein (CRP), a plasma protein of the innate immune system, is produced by hepatocytes. A critical regulatory region (−42 to −57) on the CRP promoter contains binding site for the IL-6-activated transcription factor C/EBPβ. The IL-1β-activated transcription factor NF-κB binds to a κB site located nearby (−63 to −74). The κB site overlaps an octamer motif (−59 to −66) which is the binding site for the constitutively active transcription factor Oct-1. Oct-1 is known to function both as a transcriptional repressor and as an activator depending upon the promoter context. Also, Oct-1 can regulate gene expression either by binding directly to the promoter or by interacting with other transcription factors bound to the promoter. The aim of this study was to investigate the functions of Oct-1 in regulating CRP expression. In luciferase transactivation assays, overexpressed Oct-1 inhibited (IL-6+IL-1β)-induced CRP expression in Hep3B cells. Deletion of the Oct-1 site from the promoter drastically reduced the cytokine response because the κB site was altered as a consequence of deleting the Oct-1 site. Surprisingly, overexpressed Oct-1 inhibited the residual (IL-6+IL-1β)-induced CRP expression through the promoter lacking the Oct-1 site. Similarly, deletion of the Oct-1 site reduced the induction of CRP expression in response to overexpressed C/EBPβ, and overexpressed Oct-1 inhibited C/EBPβ-induced CRP expression through the promoter lacking the Oct-1 site. We conclude that Oct-1 acts as a transcriptional repressor of CRP expression and it does so by occupying its cognate site on the promoter and also via other transcription factors by an as yet undefined mechanism. PMID:22750226

  12. Transcriptional Repressor NIR Functions in the Ribosome RNA Processing of Both 40S and 60S Subunits

    Science.gov (United States)

    Wang, Yingshuang; Kong, Ruirui; Hu, Lelin; Schuele, Roland; Du, Xiaojuan; Ke, Yang

    2012-01-01

    Background NIR was identified as an inhibitor of histone acetyltransferase and it represses transcriptional activation of p53. NIR is predominantly localized in the nucleolus and known as Noc2p, which is involved in the maturation of the 60S ribosomal subunit. However, how NIR functions in the nucleolus remains undetermined. In the nucleolus, a 47S ribosomal RNA precursor (pre-rRNA) is transcribed and processed to produce 18S, 5.8S and 28S rRNAs. The 18S rRNA is incorporated into the 40S ribosomal subunit, whereas the 28S and 5.8S rRNAs are incorporated into the 60S subunit. U3 small nucleolar RNA (snoRNA) directs 18S rRNA processing and U8 snoRNA mediates processing of 28S and 5.8 S rRNAs. Functional disruption of nucleolus often causes p53 activation to inhibit cell proliferation. Methodology/Principal Findings Western blotting showed that NIR is ubiquitously expressed in different human cell lines. Knock-down of NIR by siRNA led to inhibition of the 18S, 28S and 5.8S rRNAs evaluated by pulse-chase experiment. Pre-rRNA particles (pre-rRNPs) were fractionated from the nucleus by sucrose gradient centrifugation and analysis of the pre-RNPs components showed that NIR existed in the pre-RNPs of both the 60S and 40S subunits and co-fractionated with 32S and 12S pre-rRNAs in the 60S pre-rRNP. Protein-RNA binding experiments demonstrated that NIR is associated with the 32S pre-rRNA and U8 snoRNA. In addition, NIR bound U3 snoRNA. It is a novel finding that depletion of NIR did not affect p53 protein level but de-repressed acetylation of p53 and activated p21. Conclusions We provide the first evidence for a transcriptional repressor to function in the rRNA biogenesis of both the 40S and 60S subunits. Our findings also suggested that a nucleolar protein may alternatively signal to p53 by affecting the p53 modification rather than affecting p53 protein level. PMID:22363708

  13. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    International Nuclear Information System (INIS)

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-01-01

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway

  14. The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1.

    Directory of Open Access Journals (Sweden)

    Nadine Born

    Full Text Available The Krüppel-associated box (KRAB domain interacts with the nuclear hub protein TRIM28 to initiate or mediate chromatin-dependent processes like transcriptional repression, imprinting or suppression of endogenous retroviruses. The prototype KRAB domain initially identified in ZNF10/KOX1 encompasses two subdomains A and B that are found in hundreds of zinc finger transcription factors studied in human and murine genomes. Here we demonstrate for the first time transcriptional repressor activity of an amphibian KRAB domain. After sequence correction, the updated KRAB-AB domain of zinc finger protein XFIN from the frog Xenopus laevis was found to confer transcriptional repression in reporter assays in Xenopus laevis A6 kidney cells as well as in human HeLa, but not in the minnow Pimephales promelas fish cell line EPC. Binding of the XFIN KRAB-AB domain to human TRIM28 was demonstrated in a classical co-immunoprecipitation approach and visualized in a single-cell compartmentalization assay. XFIN-AB displayed reduced potency in repression as well as lower strength of interaction with TRIM28 compared to ZNF10 KRAB-AB. KRAB-B subdomain swapping between the two KRAB domains indicated that it was mainly the KRAB-B subdomain of XFIN that was responsible for its lower capacity in repression and binding to human TRIM28. In EPC fish cells, ZNF10 and XFIN KRAB repressor activity could be partially restored to low levels by adding exogenous human TRIM28. In contrast to XFIN, we did not find any transcriptional repression activity for the KRAB-like domain of human PRDM9 in HeLa cells. PRDM9 is thought to harbor an evolutionary older domain related to KRAB whose homologs even occur in invertebrates. Our results support the notion that functional bona fide KRAB domains which confer transcriptional repression and interact with TRIM28 most likely co-evolved together with TRIM28 at the beginning of tetrapode evolution.

  15. Multi‐layered inhibition of Streptomyces development: BldO is a dedicated repressor of whiB

    Science.gov (United States)

    Chandra, Govind; Findlay, Kim C.; Buttner, Mark J.

    2017-01-01

    Summary BldD‐(c‐di‐GMP) sits on top of the regulatory network that controls differentiation in Streptomyces, repressing a large regulon of developmental genes when the bacteria are growing vegetatively. In this way, BldD functions as an inhibitor that blocks the initiation of sporulation. Here, we report the identification and characterisation of BldO, an additional developmental repressor that acts to sustain vegetative growth and prevent entry into sporulation. However, unlike the pleiotropic regulator BldD, we show that BldO functions as the dedicated repressor of a single key target gene, whiB, and that deletion of bldO or constitutive expression of whiB is sufficient to induce precocious hypersporulation. PMID:28271577

  16. Identification of Quaternary Structure and Functional Domains of the CI Repressor from Bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Pedersen, Margit; Lo Leggio, Leila; Grossmann, J. Günter

    2008-01-01

    -L and the lysogenic promoter PR by binding to multiple operator sites on the DNA. In this study, we used a small bistable genetic switch element from phage TP901-1 to study the effect of cI deletions in vivo and showed that 43 amino acids could be removed from the C-terminal end of Cl without destroying the ability......The bacteriophage-encoded repressor protein plays a key role in determining the life cycle of a temperate phage following infection of a sensitive host. The repressor protein Cl, which is encoded by the temperate lactococcal phage TP901-1, represses transcription from both the lytic promoter P...

  17. nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa.

    Science.gov (United States)

    Morita, Yuji; Cao, Lily; Gould, Virginia C; Avison, Matthew B; Poole, Keith

    2006-12-01

    The Pseudomonas aeruginosa nalD gene encodes a TetR family repressor with homology to the SmeT and TtgR repressors of the smeDEF and ttgABC multidrug efflux systems of Stenotrophomonas maltophilia and Pseudomonas putida, respectively. A sequence upstream of mexAB-oprM and overlapping a second promoter for this efflux system was very similar to the SmeT and TtgR operator sequences, and NalD binding to this region was, in fact, demonstrated. Moreover, increased expression from this promoter was seen in a nalD mutant, consistent with NalD directly controlling mexAB-oprM expression from a second promoter.

  18. Loss of the Caenorhabditis elegans pocket protein LIN-35 reveals MuvB's innate function as the repressor of DREAM target genes.

    Science.gov (United States)

    Goetsch, Paul D; Garrigues, Jacob M; Strome, Susan

    2017-11-01

    The DREAM (Dp/Retinoblastoma(Rb)-like/E2F/MuvB) transcriptional repressor complex acts as a gatekeeper of the mammalian cell cycle by establishing and maintaining cellular quiescence. How DREAM's three functional components, the E2F-DP heterodimer, the Rb-like pocket protein, and the MuvB subcomplex, form and function at target gene promoters remains unknown. The current model invokes that the pocket protein links E2F-DP and MuvB and is essential for gene repression. We tested this model by assessing how the conserved yet less redundant DREAM system in Caenorhabditis elegans is affected by absence of the sole C. elegans pocket protein LIN-35. Using a LIN-35 protein null mutant, we analyzed the assembly of E2F-DP and MuvB at promoters that are bound by DREAM and the level of expression of those "DREAM target genes" in embryos. We report that LIN-35 indeed mediates the association of E2F-DP and MuvB, a function that stabilizes DREAM subunit occupancy at target genes. In the absence of LIN-35, the occupancy of E2F-DP and MuvB at most DREAM target genes decreases dramatically and many of those genes become upregulated. The retention of E2F-DP and MuvB at some target gene promoters in lin-35 null embryos allowed us to test their contribution to DREAM target gene repression. Depletion of MuvB, but not E2F-DP, in the sensitized lin-35 null background caused further upregulation of DREAM target genes. We conclude that the pocket protein functions primarily to support MuvB-mediated repression of DREAM targets and that transcriptional repression is the innate function of the evolutionarily conserved MuvB complex. Our findings provide important insights into how mammalian DREAM assembly and disassembly may regulate gene expression and the cell cycle.

  19. Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Austin, Mark C; Szewczyk, Bernadeta; Daigle, Mireille; Stockmeier, Craig A; Albert, Paul R

    2009-08-01

    Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and post-synaptic in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene, a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor. Freud-2 distribution was examined with Northern and Western blot, reverse transcriptase polymerase chain reaction, and immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay, and Western blot. Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5' or 3' human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK-293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of postsynaptic 5-HT1A receptor-positive cells. Furthermore, small interfering RNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells. Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.

  20. Inhibition of Snail Family Transcriptional Repressor 2 (SNAI2 Enhances Multidrug Resistance of Hepatocellular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Xin-Yu Zhao

    Full Text Available China accounts for almost half of the total number of liver cancer cases and deaths worldwide, and hepatocellular carcinoma (HCC is the most primary liver cancer. Snail family transcriptional repressor 2 (SNAI2 is known as an epithelial to mesenchymal transition-inducing transcription factor that drives neoplastic epithelial cells into mesenchymal phenotype. However, the roles of endogenous SNAI2 remain controversial in different types of malignant tumors. Herein, we surprisingly identify that anchorage-independent growth, including the formation of tumor sphere and soft agar colony, is significantly increased when SNAI2 expression is inhibited by shRNAs in HCC cells. Suppression of SNAI2 suffices to up-regulate several cancer stem genes. Although unrelated to the metastatic ability, SNAI2 inhibition does increase the efflux of Hoechst 33342 and enhance multidrug resistance in vitro and in vivo. In agreement with this data, we demonstrate for the first time that decreasing SNAI2 level can transcriptionally upregulate several ATP binding cassette (ABC transporter genes such as ABCB1. Moreover, ABC transporters' inhibitor verapamil can rescue the multidrug resistance induced by SNAI2 inhibition. Our results implicate that SNAI2 behaves as a tumor suppressor by inhibiting multidrug resistance via suppressing ABC transporter genes in HCC cells.

  1. SarT, a Repressor of α-Hemolysin in Staphylococcus aureus

    Science.gov (United States)

    Schmidt, Katherine A.; Manna, Adhar C.; Gill, Steven; Cheung, Ambrose L.

    2001-01-01

    In searching the Staphylococcus aureus genome, we found several homologs to SarA. One of these genes, sarT, codes for a basic protein with 118 residues and a predicted molecular size of 16,096 Da. Northern blot analysis revealed that the expression of sarT was repressed by sarA and agr. An insertion sarT mutant generated in S. aureus RN6390 and 8325-4 backgrounds revealed minimal effect on the expression of sarR and sarA. The RNAIII level was notably increased in the sarT mutant, particularly in postexponential-phase cells, while the augmentative effect on RNAII was less. SarT repressed the expression of α-hemolysin, as determined by Northern blotting, Western blotting, and a rabbit erythrocyte hemolytic assay. This repression was relieved upon complementation. Similar to agr and sarA mutants, which predictably displayed a reduction in hla expression, the agr sarT mutant exhibited a lower level of hla transcription than the sarT mutant. In contrast, hla transcription was enhanced in the sarA sarT mutant compared with the single sarA mutant. Collectively, these results indicated that the sarA locus, contrary to the regulatory action of agr, induced α-hemolysin production by repressing sarT, a repressor of hla transcription. PMID:11447147

  2. Activation of pur Gene Expression by a Homologue of the Bacillus subtilis PurR repressor:

    DEFF Research Database (Denmark)

    Kilstrup, Mogens; Martinussen, Jan

    1998-01-01

    A purR::pGh9:Iss1 mutant was obtained in Lactococcus lactis following transposon mutagenesis of strain MG1363 and selection for purine auxotrophs. After determination of the nucleotide sequence and deduction of the purR reading frame, the PurR product was found to be highly similar to the pur......R encoded repressor from Bacillus subtilis. The wildtype purR gene complements the purine auxotrophy of a purR::Iss1mutant, and it was shown that the purR::Iss1 mutation lowers transcription from the purine regulated L. lactis purD promoter. In a parallel study on the regulation of purC and purD expression...... in L. lactis (Accompanying report) we identified regions (PurBox sequences: AwwwCCGAACwwT) upstream of the promoters, with the central G-residue at exactly position –76 relative to the transcriptional start site. The PurBox’es were found to be required for high promoter activity and purine regulation...

  3. The cytidine repressor participates in the regulatory pathway of indole in Pantoea agglomerans.

    Science.gov (United States)

    Jia, Mengqi; Yu, Xuemei; Jiang, Jing; Li, Zihua; Feng, Yongjun

    2017-09-01

    Indole, an important signal molecule in both intraspecies and interspecies, regulates a variety of bacterial behaviors, but its regulatory mechanism is still unknown. Pantoea agglomerans YS19, a preponderant endophytic bacterium isolated from rice, does not produce indole, yet it senses exogenous indole. In this study, a mutant of YS19-Rp r whose target gene expression was downregulated by indole was selected through mTn5 transposon mutagenesis. Using the TAIL-PCR technique, the mutation gene was identified as a cytR homologue, which encodes a cytidine repressor (CytR) protein, a bacterial transcription factor involved in a complex regulation scheme. The negative regulation of indole in cytR, which is equivalent to the mutation in cytR, promotes the expression of a downstream gene deoC, which encodes the key enzyme deoxyribose-phosphate aldolase in participating in pentose metabolism. We found that DeoC is one of the regulatory proteins of P. agglomerans that is involved in counteracting starvation. Furthermore, the expression of deoC was induced by starvation conditions, accompanied by a decrease in cytR expression. This finding suggests that the indole signal and the mutation of cytR relieve inhibition of CytR in the transcription of deoC, facilitating better adaptation of the bacterium to the adverse conditions of the environment. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus.

    Science.gov (United States)

    Wang, H H; Tang, R J; Liu, H; Chen, H Y; Liu, J Y; Jiang, X N; Zhang, H X

    2013-08-01

    NAC domain transcription factors are important regulators that activate the secondary wall biosynthesis in wood formation. In this work, we investigated the possible functions of an NAC family member SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN2 (PtSND2) using chimeric repressor silencing technology. Reverse transcription-polymerase chain reaction, subcellular localization and transcriptional activation analyses indicated that PtSND2 is a wood-associated transcriptional factor with the predicted transcriptional activation activity, which could be inhibited by the repression domain SUPERMAN REPRESSION DOMAIN X (SRDX) in yeast. Wood formation was severely repressed in transgenic poplar plants overexpressing PtSND2-SRDX. Meanwhile, the secondary cell wall thickness of xylem fibers was restrained, and the contents of cellulose and lignin were obviously decreased in the stems of transgenic plants. Further studies indicated that expressions of a number of wood-associated genes were down-regulated in the stems of transgenic plants. Our results suggest that PtSND2 may play important roles during the secondary growth of stems in poplar.

  5. Backbone Dynamics of the Monomeric λ Repressor Denatured State Ensemble under Nondenaturing Conditions†

    Science.gov (United States)

    Chugha, Preeti; Oas, Terrence G.

    2014-01-01

    Oxidizing two native methionine residues predominantly populates the denatured state of monomeric λ repressor (MetO-λLS) under nondenaturing conditions. NMR was used to characterize the secondary structure and dynamics of MetO-λLS in standard phosphate buffer. 13Cα and 1Hα chemical shift indices reveal a region of significant helicity between residues 9 and 29. This helical content is further supported by the observation of medium-range amide NOEs. The remaining residues do not exhibit significant helicity as determined by NMR. We determined 15N relaxation parameters for 64 of 85 residues at 600 and 800 MHz. There are two distinct regions of reduced flexibility, residues 8–32 in the N-terminal third and residues 50–83 in the C-terminal third. The middle third, residues 33–50, has greater flexibility. We have analyzed the amplitude of the backbone motions in terms of the physical properties of the amino acids and conclude that conformational restriction of the backbone MetO-λLS is due to nascent helix formation in the region corresponding to native helix 1. The bulkiness of amino acid residues in the C-terminal third leads to the potential for hydrophobic interactions, which is suggested by chemical exchange detected by the difference in spectral density J(0) at the two static magnetic fields. The more flexible middle region is the result of a predominance of small side chains in this region. PMID:17260944

  6. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  7. Proline dehydrogenase activity of the transcriptional repressor PutA is required for induction of the put operon by proline.

    Science.gov (United States)

    Muro-Pastor, A M; Maloy, S

    1995-04-28

    The proline utilization (put) operon from Salmonella typhimurium consists of the putP gene, encoding a proline transporter, and the putA gene, encoding an enzyme with both proline dehydrogenase and 1-pyrroline-5-carboxylate dehydrogenase activities. In addition to these two enzymatic activities, the PutA protein is a transcriptional repressor that regulates the expression of putP and putA in response to the availability of proline. We report the isolation of super-repressor mutants of PutA that decrease expression from the putA promoter in the presence or absence of proline. None of the mutants exhibited increased affinity for the DNA in the put regulatory region in vitro. Although DNA binding by wild-type PutA was prevented by the addition of proline and an artificial electron acceptor, DNA binding by the two strongest super-repressors was not prevented under identical conditions. The proline dehydrogenase activity of the purified mutant proteins showed altered kinetic properties (increased Km(Pro), reduced Vmax, or a completely null phenotype). The observation that these mutations simultaneously affect induction by proline and proline dehydrogenase activity suggests that a single proline-binding site is involved in both proline dehydrogenase activity and induction of the expression of the put operon. Furthermore, the results indicate that the proline dehydrogenase activity of PutA is essential for induction of the put operon by proline.

  8. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis.

    Science.gov (United States)

    Hiratsu, Keiichiro; Matsui, Kyoko; Koyama, Tomotsugu; Ohme-Takagi, Masaru

    2003-06-01

    The redundancy of genes for plant transcription factors often interferes with efforts to identify the biologic functions of such factors. We show here that four different transcription factors fused to the EAR motif, a repression domain of only 12 amino acids, act as dominant repressors in transgenic Arabidopsis and suppress the expression of specific target genes, even in the presence of the redundant transcription factors, with resultant dominant loss-of-function phenotypes. Chimeric EIN3, CUC1, PAP1, and AtMYB23 repressors that included the EAR motif dominantly suppressed the expression of their target genes and caused insensitivity to ethylene, cup-shaped cotyledons, reduction in the accumulation of anthocyanin, and absence of trichomes, respectively. This chimeric repressor silencing technology (CRES-T), exploiting the EAR-motif repression domain, is simple and effective and can overcome genetic redundancy. Thus, it should be useful not only for the rapid analysis of the functions of redundant plant transcription factors but also for the manipulation of plant traits via the suppression of gene expression that is regulated by specific transcription factors.

  9. NMR assignments for the amino-terminal residues of trp repressor and their role in DNA binding

    International Nuclear Information System (INIS)

    Arrowsmith, C.H.; Carey, J.; Treat-Clemons, L.; Jardetzky, O.

    1989-01-01

    The trp repressor of Escherichia coli specifically binds to operator DNAs in three operons involved in tryptophan metabolism. The NMR spectra of repressor and a chymotryptic fragment lacking the six amino-terminal residues are compared. Two-dimensional J-correlated spectra of the two forms of the protein are superimposable except for cross-peaks that are associated with the N-terminal region. The chemical shifts and relaxation behavior of the N-terminal resonances suggest mobile arms. Spin-echo experiments on a ternary complex of repressor with L-tryptophan and operator DNA indicate that the termini are also disordered in the complex, although removal of the arms reduces the DNA binding energy. Relaxation measurements on the armless protein show increased mobility for several residues, probably due to helix fraying in the newly exposed N-terminal region. DNA binding by the armless protein does not reduce the mobility of these residues. Thus, it appears that the arms serve to stabilize the N-terminal helix but that this structural role does not explain their contribution to the DNA binding energy. These results suggest that the promiscuous DNA binding by the arms seen in the X-ray crystal structure is found in solution as well

  10. Molecular Binding Mechanism of TtgR Repressor to Antibiotics and Antimicrobials.

    Directory of Open Access Journals (Sweden)

    Ana Maria Fernandez-Escamilla

    Full Text Available A disturbing phenomenon in contemporary medicine is the prevalence of multidrug-resistant pathogenic bacteria. Efflux pumps contribute strongly to this antimicrobial drug resistance, which leads to the subsequent failure of clinical treatments. The TtgR protein of Pseudomonas putida is a HTH-type transcriptional repressor that controls expression of the TtgABC efflux pump, which is the main contributor to resistance against several antimicrobials and toxic compounds in this microbe. One of the main strategies to modulate the bacterial resistance is the rational modification of the ligand binding target site. We report the design and characterization of four mutants-TtgRS77A, TtgRE78A, TtgRN110A and TtgRH114A - at the active ligand binding site. The biophysical characterization of the mutants, in the presence and in the absence of different antimicrobials, revealed that TtgRN110A is the variant with highest thermal stability, under any of the experimental conditions tested. EMSA experiments also showed a different dissociation pattern from the operator for TtgRN110A, in the presence of several antimicrobials, making it a key residue in the TtgR protein repression mechanism of the TtgABC efflux pump. We found that TtgRE78A stability is the most affected upon effector binding. We also probe that one mutation at the C-terminal half of helix-α4, TtgRS77A, provokes a severe protein structure distortion, demonstrating the important role of this residue in the overall protein structure and on the ligand binding site. The data provide new information and deepen the understanding of the TtgR-effector binding mechanism and consequently the TtgABC efflux pump regulation mechanism in Pseudomonas putida.

  11. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background.

    Science.gov (United States)

    Méndez-Vigo, Belén; Martínez-Zapater, José M; Alonso-Blanco, Carlos

    2013-01-01

    The timing of flowering initiation is a fundamental trait for the adaptation of annual plants to different environments. Large amounts of intraspecific quantitative variation have been described for it among natural accessions of many species, but the molecular and evolutionary mechanisms underlying this genetic variation are mainly being determined in the model plant Arabidopsis thaliana. To find novel A. thaliana flowering QTL, we developed introgression lines from the Japanese accession Fuk, which was selected based on the substantial transgression observed in an F(2) population with the reference strain Ler. Analysis of an early flowering line carrying a single Fuk introgression identified Flowering Arabidopsis QTL1 (FAQ1). We fine-mapped FAQ1 in an 11 kb genomic region containing the MADS transcription factor gene SHORT VEGETATIVE PHASE (SVP). Complementation of the early flowering phenotype of FAQ1-Fuk with a SVP-Ler transgen demonstrated that FAQ1 is SVP. We further proved by directed mutagenesis and transgenesis that a single amino acid substitution in SVP causes the loss-of-function and early flowering of Fuk allele. Analysis of a worldwide collection of accessions detected FAQ1/SVP-Fuk allele only in Asia, with the highest frequency appearing in Japan, where we could also detect a potential ancestral genotype of FAQ1/SVP-Fuk. In addition, we evaluated allelic and epistatic interactions of SVP natural alleles by analysing more than one hundred transgenic lines carrying Ler or Fuk SVP alleles in five genetic backgrounds. Quantitative analyses of these lines showed that FAQ1/SVP effects vary from large to small depending on the genetic background. These results support that the flowering repressor SVP has been recently selected in A. thaliana as a target for early flowering, and evidence the relevance of genetic interactions for the intraspecific evolution of FAQ1/SVP and flowering time.

  12. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background.

    Directory of Open Access Journals (Sweden)

    Belén Méndez-Vigo

    Full Text Available The timing of flowering initiation is a fundamental trait for the adaptation of annual plants to different environments. Large amounts of intraspecific quantitative variation have been described for it among natural accessions of many species, but the molecular and evolutionary mechanisms underlying this genetic variation are mainly being determined in the model plant Arabidopsis thaliana. To find novel A. thaliana flowering QTL, we developed introgression lines from the Japanese accession Fuk, which was selected based on the substantial transgression observed in an F(2 population with the reference strain Ler. Analysis of an early flowering line carrying a single Fuk introgression identified Flowering Arabidopsis QTL1 (FAQ1. We fine-mapped FAQ1 in an 11 kb genomic region containing the MADS transcription factor gene SHORT VEGETATIVE PHASE (SVP. Complementation of the early flowering phenotype of FAQ1-Fuk with a SVP-Ler transgen demonstrated that FAQ1 is SVP. We further proved by directed mutagenesis and transgenesis that a single amino acid substitution in SVP causes the loss-of-function and early flowering of Fuk allele. Analysis of a worldwide collection of accessions detected FAQ1/SVP-Fuk allele only in Asia, with the highest frequency appearing in Japan, where we could also detect a potential ancestral genotype of FAQ1/SVP-Fuk. In addition, we evaluated allelic and epistatic interactions of SVP natural alleles by analysing more than one hundred transgenic lines carrying Ler or Fuk SVP alleles in five genetic backgrounds. Quantitative analyses of these lines showed that FAQ1/SVP effects vary from large to small depending on the genetic background. These results support that the flowering repressor SVP has been recently selected in A. thaliana as a target for early flowering, and evidence the relevance of genetic interactions for the intraspecific evolution of FAQ1/SVP and flowering time.

  13. EBF1 acts as a powerful repressor of Blimp-1 gene expression in immature B cells.

    Science.gov (United States)

    Kikuchi, Hidehiko; Nakayama, Masami; Takami, Yasunari; Kuribayashi, Futoshi; Nakayama, Tatsuo

    2012-06-15

    The transcription factor, early B cell factor 1 (EBF1) with an atypical zinc-finger and helix-loop-helix motif, is essential for development and differentiation of lymphocytes. In mice, EBF1 is involved in the generation of pre-pro B cells (the first specified progenitors of B cells) from common lymphoid progenitors (CLPs) and transcription regulations of various genes involved in B cell-development, for instance, mb-1 and Pax5. During B lymphopoiesis, interestingly, EBF1 is detected throughout from CLPs to mature B cells. However, in immature B cells, the physiological role of EBF1 remains to be elucidated. Here, by analyzing EBF1-deficient DT40 cells, EBF1(-/-), generated by us, we show that EBF1-deficiency caused significant increases (to ∼800%) in both mRNA and protein levels of B lymphocyte-induced maturation protein-1 (Blimp-1), the master gene for plasma cell differentiation. In addition, both transcription and protein synthesis of Blimp-1 were remarkably down-regulated (to ∼20%) by re-expression (over-expression) of EBF1. Chromatin immunoprecipitation assay revealed that EBF1 binds to proximal 5'-upstream regions around two putative EBF1 binding motifs of the gene in vivo. These results suggest that EBF1 takes part in transcriptional regulations of the Blimp-1 gene in immature B cells, and may play a key role in B cell differentiation. This is the first report on a novel EBF1 function in immature B cells as a powerful repressor of Blimp-1 gene expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium.

    Directory of Open Access Journals (Sweden)

    Kamini Kunasegaran

    Full Text Available The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production. Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells.

  15. JAZ repressors: Possible Involvement in Nutrients Deficiency Response in Rice and Chickpea

    Directory of Open Access Journals (Sweden)

    Ajit P. Singh

    2015-11-01

    Full Text Available Jasmonates (JA are well-known phytohormones which play important roles in plant development and defence against pathogens. Jasmonate ZIM domain (JAZ proteins are plant-specific proteins and act as transcriptional repressors of JA-responsive genes. JA regulates both biotic and abiotic stress responses in plants; however, its role in nutrient deficiency responses is very elusive. Although, JA is well-known for root growth inhibition, little is known about behaviour of JAZ genes in response to nutrient deficiencies, under which root architectural alteration is an important adaptation. Using protein sequence homology and a conserved-domains approach, here we identify ten novel JAZ genes from the recently sequenced Chickpea genome, which is one of the most nutrient efficient crops. Both rice and chickpea JAZ genes express in tissue- and stimuli-specific manners. Many of which are preferentially expressed in root. Our analysis further showed differential expression of JAZ genes under macro (NPK and micronutrients (Zn, Fe deficiency in rice and chickpea roots. While both rice and chickpea JAZ genes showed a certain level of specificity towards type of nutrient deficiency, generally majority of them showed induction under K deficiency. Generally, JAZ genes showed an induction at early stages of stress and expression declined at later stages of macro-nutrient deficiency. Our results suggest that JAZ genes might play a role in early nutrient deficiency response both in monocot and dicot roots, and information generated here can be further used for understanding the possible roles of JA in root architectural alterations for nutrient deficiency adaptations

  16. Plasticity in Repressor-DNA Interactions Neutralizes Loss of Symmetry in Bipartite Operators.

    Science.gov (United States)

    Jain, Deepti; Narayanan, Naveen; Nair, Deepak T

    2016-01-15

    Transcription factor-DNA interactions are central to gene regulation. Many transcription factors regulate multiple target genes and can bind sequences that do not conform strictly to the consensus. To understand the structural mechanism utilized by the transcription regulators to bind diverse target sequences, we have employed the repressor AraR from Bacillus subtilis as a model system. AraR is known to bind to eight different operator sites in the bacterial genome. Although there are differences in the sequences of four of these operators, ORE1, ORX1, ORA1, and ORR3, the AraR-DNA binding domain (AraR-DBD) as well as full-length AraR unexpectedly binds to each of these sequences with similar affinities as measured by fluorescence anisotropy experiments. We have determined crystal structures of AraR-DBD in complex with two different natural operators ORE1 and ORX1 up to 2.07 and 1.97 Å resolution, respectively. These structures were compared with the previously reported structures of AraR-DBD bound to two other natural operators (ORA1 and ORR3). Interactions of two molecules of AraR-DBD with the symmetric operator, ORE1, are identical, but their interaction with the non-symmetric operator ORX1 results in breakdown of the symmetry in protein-DNA interactions. The novel interactions observed are accompanied by local conformational change in the DNA. ChIP-sequencing (ChIP-Seq) data on other transcription factors has shown that they can bind to diverse targets, and hence the plasticity exhibited by AraR may be a general phenomenon. The ability of transcription factors to form alternate interactions may be important for employment in new functions and evolution of novel regulatory circuits. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Secondhand Tobacco Smoke Exposure Associations With DNA Methylation of the Aryl Hydrocarbon Receptor Repressor.

    Science.gov (United States)

    Reynolds, Lindsay M; Magid, Hoda S; Chi, Gloria C; Lohman, Kurt; Barr, R Graham; Kaufman, Joel D; Hoeschele, Ina; Blaha, Michael J; Navas-Acien, Ana; Liu, Yongmei

    2017-04-01

    Cigarette smoking is inversely associated with DNA methylation of the aryl hydrocarbon receptor repressor (AHRR; cg05575921). However, the association between secondhand tobacco smoke (SHS) exposure and AHRR methylation is unknown. DNA methylation of AHRR cg05575921 in CD14+ monocyte samples, from 495 never-smokers and 411 former smokers (having quit smoking ≥15 years) from the Multi-Ethnic Study of Atherosclerosis (MESA), was cross-sectionally compared with concomitantly ascertained self-reported SHS exposure, urine cotinine concentrations, and estimates of air pollutants at participants' homes. Linear regression was used to test for associations, and covariates included age, sex, race, education, study site, and previous smoking exposure (smoking status, time since quitting, and pack-years). Recent indoor SHS exposure (hours per week) was inversely associated with cg05575921 methylation (β ± SE = -0.009 ± 0.003, p = .007). The inverse effect direction was consistent (but did not reach significance) in the majority of stratified analyses (by smoking status, sex, and race). Categorical analysis revealed high levels of recent SHS exposure (≥10 hours per week) inversely associated with cg05575921 methylation (β ± SE = -0.28 ± 0.09, p = .003), which remained significant (p effect of SHS on human DNA methylation. In the present study, we evaluated the association between SHS exposure and DNA methylation in human monocytes, at a site (AHRR cg05575921) known to have methylation inversely associated with current and former cigarette smoking compared to never smoking. Results from this study suggest high levels of recent SHS exposure inversely associate with DNA methylation of AHRR cg05575921 in monocytes from nonsmokers, albeit with weaker effects than active cigarette smoking. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. The allosteric interaction between D-galactose and the Escherichia coli galactose repressor protein.

    Science.gov (United States)

    Brown, M P; Shaikh, N; Brenowitz, M; Brand, L

    1994-04-29

    The Escherichia coli galactose repressor protein (GalR) inhibits transcription of the gal operon upon binding to two operator sites (1-7). This DNA binding activity is inhibited when D-galactose or D-fucose binds to GalR (8-14). Fluorescence spectroscopy was used to characterize the single tryptophan of GalR and to investigate the interaction between galactose and GalR. Fluorescence quenching experiments place both tryptophan residues of the GalR dimer in similar, solvent-exposed locations. Galactose is shown to enhance the intrinsic tryptophan fluorescence of GalR, the source of which is not explained by a change in decay times, but is due to an increase in the pre-exponential factor of the longest of the three fluorescence decay times. It is shown that the beta-anomer of D-galactose is the likely form that binds to GalR. An increase in pH from 6.3 to 9.5 causes the equilibrium association constant (K alpha) describing the galactose-GalR interaction to decrease 10-fold. The interaction is cooperative below pH 9.5. Over the pH range of 6.3 to 9.5, the tryptophan solvent exposure of GalR increases. Galactose binding also induces an increase in exposure. These results, and others presented in this paper, show that both pH and galactose cause global alterations in the structure of GalR.

  19. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene.

    Directory of Open Access Journals (Sweden)

    Xingguo Zhu

    Full Text Available The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.

  20. Regulation of Escherichia coli purA by purine repressor, one component of a dual control mechanism.

    OpenAIRE

    He, B; Zalkin, H

    1994-01-01

    Escherichia coli purA encodes adenylosuccinate synthetase, one of two enzymes required for synthesis of AMP from IMP. purA is subject to two- to threefold regulation by purR and about twofold regulation by a purR-independent mechanism. The 5'-flanking region of purA confers purR-dependent transcriptional regulation of purA but not the purR-independent regulation. Two operator sites in the 5'-flanking region which bind purine repressor in vitro and are required for in vivo regulation were iden...

  1. An Autocrine Proliferation Repressor Regulates Dictyostelium discoideum Proliferation and Chemorepulsion Using the G Protein-Coupled Receptor GrlH

    OpenAIRE

    Yu Tang; Yuantai Wu; Sarah E. Herlihy; Francisco J. Brito-Aleman; Jose H. Ting; Chris Janetopoulos; Richard H. Gomer; Scott D. Emr

    2018-01-01

    In eukaryotic microbes, little is known about signals that inhibit the proliferation of the cells that secrete the signal, and little is known about signals (chemorepellents) that cause cells to move away from the source of the signal. Autocrine proliferation repressor protein A (AprA) is a protein secreted by the eukaryotic microbe Dictyostelium discoideum. AprA is a chemorepellent for and inhibits the proliferation of D. discoideum. We previously found that cells sense AprA using G proteins...

  2. Small Ubiquitin-like Modifier (SUMO) Conjugation Impedes Transcriptional Silencing by the Polycomb Group Repressor Sex Comb on Midleg*

    OpenAIRE

    Smith, Matthew; Mallin, Daniel R.; Simon, Jeffrey A.; Courey, Albert J.

    2011-01-01

    The Drosophila protein Sex Comb on Midleg (Scm) is a member of the Polycomb group (PcG), a set of transcriptional repressors that maintain silencing of homeotic genes during development. Recent findings have identified PcG proteins both as targets for modification by the small ubiquitin-like modifier (SUMO) protein and as catalytic components of the SUMO conjugation pathway. We have found that the SUMO-conjugating enzyme Ubc9 binds to Scm and that this interaction, which requires the Scm C-te...

  3. Conservation of the LexA repressor binding site in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Khan Feroz

    2008-03-01

    Full Text Available The LexA protein is a transcriptional repressor of the bacterial SOS DNA repair system, which comprises a set of DNA repair and cellular survival genes that are induced in response to DNA damage. Its varied DNA binding motifs have been characterized and reported in the Escherichia coli, Bacillus subtilis, rhizobia family members, marine magnetotactic bacterium, Salmonella typhimurium and recently in Mycobacterium tuberculosis and this motifs information has been used in our theoretical analysis to detect its novel regulated genes in radio-resistant Deinococcus radiodurans genome. This bacterium showed presence of SOS-box like consensus sequence in the upstream sequences of 3166 genes with >60% motif score similarity percentage (MSSP on both strands. Attempts to identify LexA-binding sites and the composition of the putative SOS regulon in D. radiodurans have been unsuccessful so far. To resolve the problem we performed theoretical analysis with modifications on reported data set of genes related to DNA repair (61 genes, stress response (145 genes and some unusual predicted operons (21 clusters. Expression of some of the predicted SOS-box regulated operon members then was examined through the previously reported microarray data which confirm the expression of only single predicted operon i.e. DRB0143 (AAA superfamily NTPase related to 5-methylcytosine specific restriction enzyme subunit McrB and DRB0144 (homolog of the McrC subunit of the McrBC restriction modification system. The methodology involved weight matrix construction through CONSENSUS algorithm using information of conserved upstream sequences of eight known genes including dinB, tagC, lexA, recA, uvrB, yneA of B. subtilis while lexA and recA of D. radiodurans through phylogenetic footprinting method and later detection of similar conserved SOS-box like LexA binding motifs through both RSAT & PoSSuMsearch programs. The resultant DNA consensus sequence had highly conserved 14 bp SOS

  4. A DNA mimic: the structure and mechanism of action for the anti-repressor protein AbbA.

    Science.gov (United States)

    Tucker, Ashley T; Bobay, Benjamin G; Banse, Allison V; Olson, Andrew L; Soderblom, Erik J; Moseley, M Arthur; Thompson, Richele J; Varney, Kristen M; Losick, Richard; Cavanagh, John

    2014-05-01

    Bacteria respond to adverse environmental conditions by switching on the expression of large numbers of genes that enable them to adapt to unfavorable circumstances. In Bacillus subtilis, many adaptive genes are under the negative control of the global transition state regulator, the repressor protein AbrB. Stressful conditions lead to the de-repression of genes under AbrB control. Contributing to this de-repression is AbbA, an anti-repressor that binds to and blocks AbrB from binding to DNA. Here, we have determined the NMR structure of the functional AbbA dimer, confirmed that it binds to the N-terminal DNA-binding domain of AbrB, and have provided an initial description for the interaction using computational docking procedures. Interestingly, we show that AbbA has structural and surface characteristics that closely mimic the DNA phosphate backbone, enabling it to readily carry out its physiological function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Transcriptional repressor role of PocR on the 1,3-propanediol biosynthetic pathway by Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2014-06-01

    The regulatory role of a transcriptional regulator (PocR) in the 1,3-propanediol biosynthetic pathway of Lactobacillus panis PM1 contributes to the optimization of 1,3-propanediol production by this strain, which potentially will lead to 1,3-propanediol manufacturing efficiencies. Lactobacillus panis PM1 can utilize a 1,3-propanediol (1,3-PDO) biosynthetic pathway, consisting of diol dehydratase (PduCDE) and 1,3-PDO dehydrogenase, as a NADH recycling system, to survive under various environmental conditions. In this study, we identified a key transcriptional repressor (PocR) which was annotated as a transcriptional factor of AraC family as part of the 1,3-PDO biosynthetic pathway of L. panis PM1. The over-expression of the PocR gene resulted in the significant repression (81 %) of pduC (PduCDE large subunit) transcription, and subsequently, the decreased activity of PduCDE by 22 %. As a result of the regulation of PduCDE, production of both 3-hydroxypropionaldehyde and 1,3-PDO in the PocR over-expressing strain were significantly decreased by 40 % relative to the control strain. These results clearly demonstrate the transcriptional repressor role of PocR in the 1,3-PDO biosynthetic pathway.

  6. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    Directory of Open Access Journals (Sweden)

    Noreen F Rizvi

    Full Text Available The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs, including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs with the plant hormone, methyl jasmonate (MJ, while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM. However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str, illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

  7. Transcriptional repressor domain of MBD1 is intrinsically disordered and interacts with its binding partners in a selective manner.

    KAUST Repository

    Hameed, Umar Farook Shahul

    2014-05-09

    Methylation of DNA CpG sites is a major mechanism of epigenetic gene silencing and plays important roles in cell division, development and carcinogenesis. One of its regulators is the 64-residue C-terminal Transcriptional Repressor Domain (the TRD) of MBD1, which recruits several repressor proteins such as MCAF1, HDAC3 and MPG that are essential for the gene silencing. Using NMR spectroscopy, we have characterized the solution structure of the C-terminus of MBD1 (MBD1-c, residues D507 to Q605), which included the TRD (A529 to P592). Surprisingly, the MBD1-c is intrinsically disordered. Despite its lack of a tertiary folding, MBD1-c could still bind to different partner proteins in a selective manner. MPG and MCAF1Δ8 showed binding to both the N-terminal and C-terminal residues of MBD1-c but HDAC3 preferably bound to the C-terminal region. This study reveals how MBD1-c discriminates different binding partners, and thus, expands our understanding of the mechanisms of gene regulation by MBD1.

  8. Loss of the Caenorhabditis elegans pocket protein LIN-35 reveals MuvB's innate function as the repressor of DREAM target genes.

    Directory of Open Access Journals (Sweden)

    Paul D Goetsch

    2017-11-01

    Full Text Available The DREAM (Dp/Retinoblastoma(Rb-like/E2F/MuvB transcriptional repressor complex acts as a gatekeeper of the mammalian cell cycle by establishing and maintaining cellular quiescence. How DREAM's three functional components, the E2F-DP heterodimer, the Rb-like pocket protein, and the MuvB subcomplex, form and function at target gene promoters remains unknown. The current model invokes that the pocket protein links E2F-DP and MuvB and is essential for gene repression. We tested this model by assessing how the conserved yet less redundant DREAM system in Caenorhabditis elegans is affected by absence of the sole C. elegans pocket protein LIN-35. Using a LIN-35 protein null mutant, we analyzed the assembly of E2F-DP and MuvB at promoters that are bound by DREAM and the level of expression of those "DREAM target genes" in embryos. We report that LIN-35 indeed mediates the association of E2F-DP and MuvB, a function that stabilizes DREAM subunit occupancy at target genes. In the absence of LIN-35, the occupancy of E2F-DP and MuvB at most DREAM target genes decreases dramatically and many of those genes become upregulated. The retention of E2F-DP and MuvB at some target gene promoters in lin-35 null embryos allowed us to test their contribution to DREAM target gene repression. Depletion of MuvB, but not E2F-DP, in the sensitized lin-35 null background caused further upregulation of DREAM target genes. We conclude that the pocket protein functions primarily to support MuvB-mediated repression of DREAM targets and that transcriptional repression is the innate function of the evolutionarily conserved MuvB complex. Our findings provide important insights into how mammalian DREAM assembly and disassembly may regulate gene expression and the cell cycle.

  9. Specificity and affinity of Lac repressor for the auxiliary operators O2 and O3 are explained by the structures of their protein–DNA complexes

    NARCIS (Netherlands)

    Romanuka, J.|info:eu-repo/dai/nl/30483761X; Folkers, G.E.|info:eu-repo/dai/nl/162277202; Biris, N.; Tishchenko, E.; Wienk, H.L.J.|info:eu-repo/dai/nl/203884884; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Kaptein, R.|info:eu-repo/dai/nl/074334603; Boelens, R.|info:eu-repo/dai/nl/070151407

    2009-01-01

    The structures of a dimeric mutant of the Lac repressor DNA-binding domain complexed with the auxiliary operators O2 and O3 have been determined using NMR spectroscopy and compared to the structures of the previously determined Lac–O1 and Lac–nonoperator complexes. Structural analysis of the Lac–O1

  10. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, L; Martinussen, J; Møllegaard, N E

    1990-01-01

    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt...

  11. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity

    NARCIS (Netherlands)

    Witteveen, Josefine S.; Willemsen, Marjolein H.; Dombroski, Thais C. D.; van Bakel, Nick H. M.; Nillesen, Willy M.; van Hulten, Josephus A.; Jansen, Eric J. R.; Verkaik, Dave; Veenstra-Knol, Hermine E.; van Ravenswaaij-Arts, Conny M. A.; Wassink-Ruiter, Jolien S. Klein; Vincent, Marie; David, Albert; Le Caignec, Cedric; Schieving, Jolanda; Gilissen, Christian; Foulds, Nicola; Rump, Patrick; Strom, Tim; Cremer, Kirsten; Zink, Alexander M.; Engels, Hartmut; de Munnik, Sonja A.; Visser, Jasper E.; Brunner, Han G.; Martens, Gerard J. M.; Pfundt, Rolph; Kleefstra, Tjitske; Kolk, Sharon M.

    Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder ( ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor

  12. Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity

    NARCIS (Netherlands)

    Witteveen, J.S.; Willemsen, M.H.; Dombroski, T.C.; Bakel, N.H. van; Nillesen, W.M.; Hulten, J.A. van; Jansen, E.J.; Verkaik, D.; Veenstra-Knol, H.E.; Ravenswaaij-Arts, C.M.A. van; Wassink-Ruiter, J.S.; Vincent, M.; David, A.; Le Caignec, C.; Schieving, J.; Gilissen, C.; Foulds, N.; Rump, P.; Strom, T.; Cremer, K.; Zink, A.M.; Engels, H.; Munnik, S.A. de; Visser, J.E.; Brunner, H.G.; Martens, G.J.; Pfundt, R.P.; Kleefstra, T.; Kolk, S.M.

    2016-01-01

    Numerous genes are associated with neurodevelopmental disorders such as intellectual disability and autism spectrum disorder (ASD), but their dysfunction is often poorly characterized. Here we identified dominant mutations in the gene encoding the transcriptional repressor and MeCP2 interactor

  13. The Molecular Switch of Telomere Phages: High Binding Specificity of the PY54 Cro Lytic Repressor to a Single Operator Site

    Science.gov (United States)

    Hammerl, Jens Andre; Roschanski, Nicole; Lurz, Rudi; Johne, Reimar; Lanka, Erich; Hertwig, Stefan

    2015-01-01

    Temperate bacteriophages possess a molecular switch, which regulates the lytic and lysogenic growth. The genomes of the temperate telomere phages N15, PY54 and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator. The roles of these products are thought to be similar to those of the lambda proteins CI, Cro and Q, respectively. Moreover, the gene order and the location of several operator sites in the prototype telomere phage N15 and in ϕKO2 are also reminiscent of lambda-like phages. By contrast, in silico analyses revealed the presence of only one operator (OR3) in PY54. The purified PY54 Cro protein was used for EMSA studies demonstrating that it exclusively binds to a 16-bp palindromic site (OR3) upstream of the prophage repressor gene. The OR3 operator sequences of PY54 and ϕKO2/N15 only differ by their peripheral base pairs, which are responsible for Cro specificity. PY54 cI and cro transcription is regulated by highly active promoters initiating the synthesis of a homogenious species of leaderless mRNA. The location of the PY54 Cro binding site and of the identified promoters suggests that the lytic repressor suppresses cI transcription but not its own synthesis. The results indicate an unexpected diversity of the growth regulation mechanisms in lambda-related phages. PMID:26043380

  14. The Nuclear Factor of Activated T Cells (Nfat) Transcription Factor Nfatp (Nfatc2) Is a Repressor of Chondrogenesis

    Science.gov (United States)

    Ranger, Ann M.; Gerstenfeld, Louis C.; Wang, Jinxi; Kon, Tamiyo; Bae, Hyunsu; Gravallese, Ellen M.; Glimcher, Melvin J.; Glimcher, Laurie H.

    2000-01-01

    Nuclear factor of activated T cells (NFAT) transcription factors regulate gene expression in lymphocytes and control cardiac valve formation. Here, we report that NFATp regulates chondrogenesis in the adult animal. In mice lacking NFATp, resident cells in the extraarticular connective tissues spontaneously differentiate to cartilage. These cartilage cells progressively differentiate and the tissue undergoes endochondral ossification, recapitulating the development of endochondral bone. Proliferation of already existing articular cartilage cells also occurs in some older animals. At both sites, neoplastic changes in the cartilage cells occur. Consistent with these data, NFATp expression is regulated in mesenchymal stem cells induced to differentiate along a chondrogenic pathway. Lack of NFATp in articular cartilage cells results in increased expression of cartilage markers, whereas overexpression of NFATp in cartilage cell lines extinguishes the cartilage phenotype. Thus, NFATp is a repressor of cartilage cell growth and differentiation and also has the properties of a tumor suppressor. PMID:10620601

  15. The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program.

    Science.gov (United States)

    Itoh-Nakadai, Ari; Hikota, Reina; Muto, Akihiko; Kometani, Kohei; Watanabe-Matsui, Miki; Sato, Yuki; Kobayashi, Masahiro; Nakamura, Atsushi; Miura, Yuichi; Yano, Yoko; Tashiro, Satoshi; Sun, Jiying; Ikawa, Tomokatsu; Ochiai, Kyoko; Kurosaki, Tomohiro; Igarashi, Kazuhiko

    2014-12-01

    Mature lymphoid cells express the transcription repressor Bach2, which imposes regulation on humoral and cellular immunity. Here we found critical roles for Bach2 in the development of cells of the B lineage, commencing from the common lymphoid progenitor (CLP) stage, with Bach1 as an auxiliary. Overexpression of Bach2 in pre-pro-B cells deficient in the transcription factor EBF1 and single-cell analysis of CLPs revealed that Bach2 and Bach1 repressed the expression of genes important for myeloid cells ('myeloid genes'). Bach2 and Bach1 bound to presumptive regulatory regions of the myeloid genes. Bach2(hi) CLPs showed resistance to myeloid differentiation even when cultured under myeloid conditions. Our results suggest that Bach2 functions with Bach1 and EBF1 to promote B cell development by repressing myeloid genes in CLPs.

  16. Tcf7l2/Tcf4 Transcriptional Repressor Function Requires HDAC Activity in the Developing Vertebrate CNS.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available The generation of functionally distinct neuronal subtypes within the vertebrate central nervous system (CNS requires the precise regulation of progenitor gene expression in specific neuronal territories during early embryogenesis. Accumulating evidence has implicated histone deacetylase (HDAC proteins in cell specification, proliferation, and differentiation in diverse embryonic and adult tissues. However, although HDAC proteins have shown to be expressed in the developing vertebrate neural tube, their specific role in CNS neural progenitor fate specification remains unclear. Prior work from our lab showed that the Tcf7l2/Tcf4 transcription factor plays a key role in ventral progenitor lineage segregation by differential repression of two key specification factors, Nkx2.2 and Olig2. In this study, we found that administration of HDAC inhibitors (Valproic Acid (VPA, Trichostatin-A (TSA, or sodium butyrate in chick embryos in ovo disrupted normal progenitor gene segregation in the developing neural tube, indicating that HDAC activity is required for this process. Further, using functional and pharmacological approaches in vivo, we found that HDAC activity is required for the differential repression of Nkx2.2 and Olig2 by Tcf7l2/Tcf4. Finally, using dominant-negative functional assays, we provide evidence that Tcf7l2/Tcf4 repression also requires Gro/TLE/Grg co-repressor factors. Together, our data support a model where the transcriptional repressor activity of Tcf7l2/Tcf4 involves functional interactions with both HDAC and Gro/TLE/Grg co-factors at specific target gene regulatory elements in the developing neural tube, and that this activity is required for the proper segregation of the Nkx2.2 (p3 and Olig2 (pMN expressing cells from a common progenitor pool.

  17. The general transcriptional repressor Tup1 is required for dimorphism and virulence in a fungal plant pathogen.

    Directory of Open Access Journals (Sweden)

    Alberto Elías-Villalobos

    2011-09-01

    Full Text Available A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.

  18. The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription.

    Directory of Open Access Journals (Sweden)

    Aamna Kaul

    2014-08-01

    Full Text Available Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling, and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase. We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in "active" chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone

  19. Expression, crystallization and preliminary diffraction studies of the Pseudomonas putida cytochrome P450cam operon repressor CamR

    International Nuclear Information System (INIS)

    Maenaka, Katsumi; Fukushi, Kouji; Aramaki, Hironori; Shirakihara, Yasuo

    2005-01-01

    The P. putida cytochrome P450cam operon repressor CamR has been expressed in E. coli and crystallized in space group P2 1 2 1 2. The Pseudomonas putida cam repressor (CamR) is a homodimeric protein that binds to the camO DNA operator to inhibit the transcription of the cytochrome P450cam operon camDCAB. CamR has two functional domains: a regulatory domain and a DNA-binding domain. The binding of the inducer d-camphor to the regulatory domain renders the DNA-binding domain unable to bind camO. Native CamR and its selenomethionyl derivative have been overproduced in Escherichia coli and purified. Native CamR was crystallized under the following conditions: (i) 12–14% PEG 4000, 50 mM Na PIPES, 0.1 M KCl, 1% glycerol pH 7.3 at 288 K with and without camphor and (ii) 1.6 M P i , 50 mM Na PIPES, 2 mM camphor pH 6.7 at 278 K. The selenomethionyl derivative CamR did not crystallize under either of these conditions, but did crystallize using 12.5% PEG MME 550, 25 mM Na PIPES, 2.5 mM MgCl 2 pH 7.3 at 298 K. Preliminary X-ray diffraction studies revealed the space group to be orthorhombic (P2 1 2 1 2), with unit-cell parameters a = 48.0, b = 73.3, c = 105.7 Å. Native and selenomethionyl derivative data sets were collected to 3 Å resolution at SPring-8 and the Photon Factory

  20. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte

    KAUST Repository

    Guerreiro, Ana

    2014-11-03

    Background Following fertilization, the early proteomes of metazoans are defined by the translation of stored but repressed transcripts; further embryonic development relies on de novo transcription of the zygotic genome. During sexual development of Plasmodium berghei, a rodent model for human malaria species including P. falciparum, the stability of repressed mRNAs requires the translational repressors DOZI and CITH. When these repressors are absent, Plasmodium zygote development and transmission to the mosquito vector is halted, as hundreds of transcripts become destabilized. However, which mRNAs are direct targets of these RNA binding proteins, and thus subject to translational repression, is unknown. Results We identify the maternal mRNA contribution to post-fertilization development of P. berghei using RNA immunoprecipitation and microarray analysis. We find that 731 mRNAs, approximately 50% of the transcriptome, are associated with DOZI and CITH, allowing zygote development to proceed in the absence of RNA polymerase II transcription. Using GFP-tagging, we validate the repression phenotype of selected genes and identify mRNAs relying on the 5′ untranslated region for translational control. Gene deletion reveals a novel protein located in the ookinete crystalloid with an essential function for sporozoite development. Conclusions Our study details for the first time the P. berghei maternal repressome. This mRNA population provides the developing ookinete with coding potential for key molecules required for life-cycle progression, and that are likely to be critical for the transmission of the malaria parasite from the rodent and the human host to the mosquito vector.

  1. FACT, the Bur kinase pathway, and the histone co-repressor HirC have overlapping nucleosome-related roles in yeast transcription elongation.

    Directory of Open Access Journals (Sweden)

    Jennifer R Stevens

    Full Text Available Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of 'cryptic' promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4-Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4-Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the

  2. Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Carmen Ruger-Herreros

    Full Text Available The activation of transcription by light in the fungus Neurospora crassa requires the White Collar Complex (WCC, a photoreceptor and transcription factor complex. After light reception two WCCs interact and bind the promoters of light-regulated genes to activate transcription. This process is regulated by VVD, a small photoreceptor that disrupts the interaction between WCCs and leads to a reduction in transcription after long exposures to light. The N. crassa RCO-1/RCM-1 repressor complex is the homolog of the Tup1-Ssn6 repressor complex in yeast, and its absence modifies photoadaptation. We show that the absence of the RCO-1/RCM-1 repressor complex leads to several alterations in transcription that are gene-specific: an increase in the accumulation of mRNAs in the dark, a repression of transcription, and a derepression of transcription after long exposures to light. The absence of the RCO-1/RCM-1 repressor complex leads to lower VVD levels that are available for the regulation of the activity of the WCC. The reduction in the amount of VVD results in increased WCC binding to the promoters of light-regulated genes in the dark and after long exposures to light, leading to the modification of photoadaptation that has been observed in rco-1 and rcm-1 mutants. Our results show that the photoadaptation phenotype of mutants in the RCO-1/RCM-1 repressor complex is, at least in part, an indirect consequence of the reduction of vvd transcription, and the resulting modification in the regulation of transcription by the WCC.

  3. Polycomb Repressor Complex 1 Member, BMI1 Contributes to Urothelial Tumorigenesis through p16-Independent Mechanisms

    Directory of Open Access Journals (Sweden)

    Lia E. De Faveri

    2015-10-01

    Full Text Available Urothelial carcinoma (UC causes significant morbidity and remains the most expensive cancer to treat because of the need for repeated resections and lifelong monitoring for patients with non–muscle-invasive bladder cancer (NMIBC. Novel therapeutics and stratification approaches are needed to improve the outlook for both NMIBC and muscle-invasive bladder cancer. We investigated the expression and effects of B Lymphoma Mo-MLV Insertion Region 1 (BMI1 in UC. BMI1 was found to be overexpressed in most UC cell lines and primary tumors by quantitative real-time polymerase chain reaction and immunohistochemistry. In contrast to some previous reports, no association with tumor stage or grade was observed in two independent tumor panels. Furthermore, upregulation of BMI1 was detected in premalignant bladder lesions, suggesting a role early in tumorigenesis. BMI1 is not located within a common region of genomic amplification in UC. The CDKN2A locus (which encodes the p16 tumor suppressor gene is a transcriptional target of BMI1 in some cellular contexts. In UC cell lines and primary tissues, no correlation between BMI1 and p16 expression was observed. Retroviral-mediated overexpression of BMI1 immortalized normal human urothelial cells (NHUC in vitro and was associated with induction of telomerase activity, bypass of senescence, and repression of differentiation. The effects of BMI1 on gene expression were identified by expression microarray analysis of NHUC-BMI1. Metacore analysis of the gene expression profile implicated downstream effects of BMI1 on α4/β1 integrin-mediated adhesion, cytoskeleton remodeling, and CREB1-mediated transcription.

  4. 2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase (TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of aryl hydrocarbon receptor transactivation.

    Science.gov (United States)

    MacPherson, Laura; Tamblyn, Laura; Rajendra, Sharanya; Bralha, Fernando; McPherson, J Peter; Matthews, Jason

    2013-02-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (TiPARP/ARTD14) is a member of the PARP family and is regulated by the aryl hydrocarbon receptor (AHR); however, little is known about TiPARP function. In this study, we examined the catalytic function of TiPARP and determined its role in AHR transactivation. We observed that TiPARP exhibited auto-mono-ADP-ribosyltransferase activity and ribosylated core histones. RNAi-mediated knockdown of TiPARP in T-47D breast cancer and HuH-7 hepatoma cells increased TCDD-dependent cytochrome P450 1A1 (CYP1A1) and CYP1B1 messenger RNA (mRNA) expression levels and recruitment of AHR to both genes. Overexpression of TiPARP reduced AHR-dependent increases in CYP1A1-reporter gene activity, which was restored by overexpression of AHR, but not aryl hydrocarbon receptor nuclear translocator. Deletion and mutagenesis studies showed that TiPARP-mediated inhibition of AHR required the zinc-finger and catalytic domains. TiPARP and AHR co-localized in the nucleus, directly interacted and both were recruited to CYP1A1 in response to TCDD. Overexpression of Tiparp enhanced, whereas RNAi-mediated knockdown of TiPARP reduced TCDD-dependent AHR proteolytic degradation. TCDD-dependent induction of AHR target genes was enhanced in Tiparp(-/-) mouse embryonic fibroblasts compared with wildtype controls. Our findings show that TiPARP is a mono-ADP-ribosyltransferase and a transcriptional repressor of AHR, revealing a novel negative feedback loop in AHR signalling.

  5. Aberrant REST-mediated transcriptional regulation in major depressive disorder.

    Science.gov (United States)

    Otsuki, Koji; Uchida, Shusaku; Wakabayashi, Yusuke; Matsubara, Toshio; Hobara, Teruyuki; Funato, Hiromasa; Watanabe, Yoshifumi

    2010-04-01

    There is growing evidence that aberrant transcriptional regulation is one of the key components of the pathophysiology of mood disorders. The repressor element-1 silencing transcription factor (REST) is a negative regulator of genes that contain the repressor element-1 (RE-1) binding site. REST has many target genes, including corticotropin releasing hormone (CRH), brain-derived neurotrophic factor, serotonin 1A receptor, which are suggested to be involved in the pathophysiology of depression and the action of antidepressants. However, a potential role for REST-mediated transcriptional regulation in mood disorders remains unclear. In this study, we examined the mRNA levels of REST and its known and putative target genes, using quantitative real-time PCR in peripheral blood cells of patients with major depressive and bipolar disorders in both a current depressive and a remissive state. We found reduced mRNA expression of REST and increased mRNA expression of CRH, adenylate cyclase 5, and the tumor necrosis factor superfamily, member 12-13 in patients with major depressive disorder in a current depressive state, but not in a remissive state. Altered expression of these mRNAs was not found in patients with bipolar disorder. Our results suggest that the aberrant REST-mediated transcriptional regulation of, at least, CRH, adenylate cyclase 5, and tumor necrosis factor superfamily, member 12-13, might be state-dependent and associated with the pathophysiology of major depression. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski

    Science.gov (United States)

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2011-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein, given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski−/− mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, Spindle Assembly Checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of micronuclei-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein. PMID:21412778

  7. The Sweet Potato NAC-Domain Transcription Factor IbNAC1 Is Dynamically Coordinated by the Activator IbbHLH3 and the Repressor IbbHLH4 to Reprogram the Defense Mechanism against Wounding

    Science.gov (United States)

    Chen, Shi-Peng; Kuo, Chih-Hsien; Lu, Hsueh-Han; Lo, Hui-Shan; Yeh, Kai-Wun

    2016-01-01

    IbNAC1 is known to activate the defense system by reprogramming a genetic network against herbivory in sweet potato. This regulatory activity elevates plant defense potential but relatively weakens plants by IbNAC1-mediated JA response. The mechanism controlling IbNAC1 expression to balance plant vitality and survival remains unclear. In this study, a wound-responsive G-box cis-element in the IbNAC1 promoter from -1484 to -1479 bp was identified. From a screen of wound-activated transcriptomic data, one transcriptional activator, IbbHLH3, and one repressor, IbbHLH4, were selected that bind to and activate or repress, respectively, the G-box motif in the IbNAC1 promoter to modulate the IbNAC1-mediated response. In the early wound response, the IbbHLH3-IbbHLH3 protein complex binds to the G-box motif to activate IbNAC1 expression. Thus, an elegant defense network is activated against wounding stress. Until the late stages of wounding, IbbHLH4 interacts with IbbHLH3, and the IbbHLH3-IbbHLH4 heterodimer competes with the IbbHLH3-IbbHLH3 complex to bind the G-box and suppress IbNAC1 expression and timely terminates the defense network. Moreover, the JAZs and IbEIL1 proteins interact with IbbHLH3 to repress the transactivation function of IbbHLH3 in non-wounded condition, but their transcription is immediately inhibited upon early wounding. Our work provides a genetic model that accurately switches the regulatory mechanism of IbNAC1 expression to adjust wounding physiology and represents a delicate defense regulatory network in plants. PMID:27780204

  8. Involvement of co-repressor LUH and the adapter proteins SLK1 and SLK2 in the regulation of abiotic stress response genes in Arabidopsis.

    Science.gov (United States)

    Shrestha, Barsha; Guragain, Bhuwan; Sridhar, Vaniyambadi V

    2014-02-24

    During abiotic stress many genes that are important for growth and adaptation to stress are expressed at elevated levels. However, the mechanisms that keep the stress responsive genes from expressing under non stress conditions remain elusive. Recent genetic characterization of the co-repressor LEUNIG_HOMOLOG (LUH) and transcriptional adaptor proteins SEUSS-LIKE1 (SLK1) and SLK2 have been proposed to function redundantly in diverse developmental processes; however their function in the abiotic stress response is unknown. Moreover, the molecular functions of LUH, SLK1 and SLK2 remain obscure. Here, we show the molecular function of LUH, SLK1 and SLK2 and the role of this complex in the abiotic stress response. The luh, slk1 and slk2 mutant plants shows enhanced tolerance to salt and osmotic stress conditions. SLK1 and SLK2 interact physically with the LUFS domain in LUH forming SLK1-LUH and SLK2-LUH co-repressor complexes to inhibit the transcription. LUH has repressor activity, whereas SLK1 and SLK2 function as adaptors to recruit LUH, which in turn recruits histone deacetylase to the target sequences to repress transcription. The stress response genes RD20, MYB2 and NAC019 are expressed at elevated levels in the luh, slk1 and slk2 mutant plants. Furthermore, these stress response genes are associated with decreased nucleosome density and increased acetylation levels at H3K9 and H3K14 in the luh, slk1 and slk2 mutant plants. Our results indicate that SLK1, SLK2 and LUH form a co-repressor complex. LUH represses by means of an epigenetic process involving histone modification to facilitate the condensation of chromatin thus preventing transcription at the target genes.

  9. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.

    Science.gov (United States)

    Doan, Thierry; Martin, Laetitia; Zorrilla, Silvia; Chaix, Denis; Aymerich, Stéphane; Labesse, Gilles; Declerck, Nathalie

    2008-06-01

    CggR belongs to the SorC family of bacterial transcriptional regulators which control the expression of genes and operons involved in carbohydrate catabolism. CggR was first identified in Bacillus subtilis where it represses the gapA operon encoding the five enzymes that catalyze the central part of glycolysis. Here we present a structure/function study demonstrating that the C-terminal region of CggR regulates the DNA binding activity of this repressor in response to binding of a phosphorylated sugar. Molecular modeling of CggR revealed a winged-helix DNA-binding motif followed by a C-terminal domain presenting weak but significant homology with glucosamine-6-phosphate deaminases from the NagB family. In silico ligand screening suggested that the CggR C-terminal domain would bind preferentially bi-phosphorylated compounds, in agreement with previous studies that proposed fructuose-1,6-biphosphate (FBP) as the inducer metabolite. In vitro, FBP was the only sugar compound capable of interfering with CggR cooperative binding to DNA. FBP was also found to protect CggR against trypsin degradation at two arginine residues predicted to reside in a mobile loop forming the active site lid of the NagB enzymes. Replacement of residues predicted to interact with FBP led to mutant CggR with altered repressor activity in vivo but retaining their structural integrity and DNA binding activity in vitro. Interestingly, some of the mutant repressors responded with different specificity towards mono- and di-phospho-fructosides. Based on these results, we propose that the activity of the CggR-like repressors is controlled by a phospho-sugar binding (PSB) domain presenting structural and functional homology with NagB enzymes. (c) 2008 Wiley-Liss, Inc.

  10. Quantitative comparison of DNA detection by GFP-lac repressor tagging, fluorescence in situ hybridization and immunostaining

    Directory of Open Access Journals (Sweden)

    Rohr Karl

    2007-12-01

    Full Text Available Abstract Background GFP-fusion proteins and immunostaining are methods broadly applied to investigate the three-dimensional organization of cells and cell nuclei, the latter often studied in addition by fluorescence in situ hybridization (FISH. Direct comparisons of these detection methods are scarce, however. Results We provide a quantitative comparison of all three approaches. We make use of a cell line that contains a transgene array of lac operator repeats which are detected by GFP-lac repressor fusion proteins. Thus we can detect the same structure in individual cells by GFP fluorescence, by antibodies against GFP and by FISH with a probe against the transgene array. Anti-GFP antibody detection was repeated after FISH. Our results show that while all four signals obtained from a transgene array generally showed qualitative and quantitative similarity, they also differed in details. Conclusion Each of the tested methods revealed particular strengths and weaknesses, which should be considered when interpreting respective experimental results. Despite the required denaturation step, FISH signals in structurally preserved cells show a surprising similarity to signals generated before denaturation.

  11. The Arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity.

    Science.gov (United States)

    Ryu, Jae Yong; Lee, Hyo-Jun; Seo, Pil Joon; Jung, Jae-Hoon; Ahn, Ji Hoon; Park, Chung-Mo

    2014-02-01

    Soil salinity is one of the most serious agricultural problems that significantly reduce crop yields in the arid and semi-arid regions. It influences various phases of plant growth and developmental processes, such as seed germination, leaf and stem growth, and reproductive propagation. Salt stress delays the onset of flowering in many plant species. We have previously reported that the Arabidopsis BROTHER OF FT AND TFL1 (BFT) acts as a floral repressor under salt stress. However, the molecular mechanisms underlying the BFT function in the salt regulation of flowering induction is unknown. In this work, we found that BFT delays flowering under high salinity by competing with FLOWERING LOCUS T (FT) for binding to the FD transcription factor. The flowering time of FD-deficient fd-2 mutant was insensitive to high salinity. BFT interacts with FD in the nucleus via the C-terminal domain of FD, which is also required for the interaction of FD with FT, and interferes with the FT-FD interaction. These observations indicate that BFT constitutes a distinct salt stress signaling pathway that modulates the function of the FT-FD module and possibly provides an adaptation strategy that fine-tunes photoperiodic flowering under high salinity.

  12. The clockwork orange Drosophila protein functions as both an activator and a repressor of clock gene expression.

    Science.gov (United States)

    Richier, Benjamin; Michard-Vanhée, Christine; Lamouroux, Annie; Papin, Christian; Rouyer, François

    2008-04-01

    The Drosophila clock relies on transcriptional feedback loops that generate daily oscillations of the clock gene expression at mRNA and protein levels. In the evening, the CLOCK (CLK) and CYCLE (CYC) basic helix-loop-helix (bHLH) PAS-domain transcription factors activate the expression of the period (per) and timeless (tim) genes. Posttranslational modifications delay the accumulation of PER and TIM, which inhibit CLK/CYC activity in the late night. We show here that a null mutant of the clockwork orange (cwo) gene encoding a bHLH orange-domain putative transcription factor displays long-period activity rhythms. cwo loss of function increases cwo mRNA levels but reduces mRNA peak levels of the 4 described CLK/CYC targets, inducing an almost complete loss of their cycling. In addition, the absence of CWO induces alterations of PER and CLK phosphorylation cycles. Our results indicate that, in vivo, CWO modulates clock gene expression through both repressor and activator transcriptional functions.

  13. Overexpression of the transcriptional repressor complex BCL-6/BCoR leads to nuclear aggregates distinct from classical aggresomes.

    Directory of Open Access Journals (Sweden)

    Elisabeth Buchberger

    Full Text Available Nuclear inclusions of aggregated proteins have primarily been characterized for molecules with aberrant poly-glutamine repeats and for mutated or structurally altered proteins. They were termed "nuclear aggresomes" and misfolding was shown to promote association with molecular chaperones and proteasomes. Here, we report that two components of a transcriptional repressor complex (BCL-6 and BCoR of wildtype amino acid sequence can independently or jointly induce the formation of nuclear aggregates when overexpressed. The observation that the majority of cells rapidly downregulate BCL-6/BCoR levels, supports the notion that expression of these proteins is under tight control. The inclusions occur when BCL-6/BCoR expression exceeds 150-fold of endogenous levels. They preferentially develop in the nucleus by a gradual increase in aggregate size to form large, spheroid structures which are not associated with heat shock proteins or marked by ubiquitin. In contrast, we find the close association of BCL-6/BCoR inclusions with PML bodies and a reduction in aggregation upon the concomitant overexpression of histone deacetylases or heat shock protein 70. In summary, our data offer a perspective on nuclear aggregates distinct from classical "nuclear aggresomes": Large complexes of spheroid structure can evolve in the nucleus without being marked by the cellular machinery for protein refolding and degradation. However, nuclear proteostasis can be restored by balancing the levels of chaperones.

  14. The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Flagella are surface structures critical for motility and virulence of many bacterial species. In Listeria monocytogenes, MogR tightly represses expression of flagellin (FlaA during extracellular growth at 37 degrees C and during intracellular infection. MogR is also required for full virulence in a murine model of infection. Using in vitro and in vivo infection models, we determined that the severe virulence defect of MogR-negative bacteria is due to overexpression of FlaA. Specifically, overproduction of FlaA in MogR-negative bacteria caused pleiotropic defects in bacterial division (chaining phenotype, intracellular spread, and virulence in mice. DNA binding and microarray analyses revealed that MogR represses transcription of all known flagellar motility genes by binding directly to a minimum of two TTTT-N(5-AAAA recognition sites positioned within promoter regions such that RNA polymerase binding is occluded. Analysis of MogR protein levels demonstrated that modulation of MogR repression activity confers the temperature-specificity to flagellar motility gene expression. Epistasis analysis revealed that MogR repression of transcription is antagonized in a temperature-dependent manner by the DegU response regulator and that DegU further regulates FlaA levels through a posttranscriptional mechanism. These studies provide the first known example to our knowledge of a transcriptional repressor functioning as a master regulator controlling nonhierarchal expression of flagellar motility genes.

  15. Overexpression of a repressor MdMYB15L negatively regulates anthocyanin and cold tolerance in red-fleshed callus.

    Science.gov (United States)

    Xu, Haifeng; Yang, Guanxian; Zhang, Jing; Wang, Yicheng; Zhang, Tianliang; Wang, Nan; Jiang, Shenghui; Zhang, Zongying; Chen, Xuesen

    2018-04-14

    The cold-induced metabolic pathway and anthocyanin biosynthesis play important roles in plant growth. In this study, we identified a bHLH binding motif in the MdMYB15L protein using protein sequence analyses. Yeast two-hybrid and pull-down assays showed that MdMYB15L could interact with MdbHLH33. Overexpressing MdMYB15L in red-fleshed callus inhibited the expression of MdCBF2 and resulted in reduced cold tolerance but did not affect anthocyanin levels. Chip-PCR and EMSA analysis showed that MdMYB15L could bind the type II cis-acting element found in the MdCBF2 promoter. Overexpressing MdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Knocking out the bHLH binding sequence of MdMYB15L (LBSMdMYB15L) prevented LBSMdMYB15L from interacting with MdbHLH33. Overexpressing LBSMdMYB15L in red-fleshed callus overexpressing MdbHLH33 also reduced cold tolerance and reduced MdbHLH33-induced anthocyanin biosynthesis. Together, these results suggested that an apple repressor MdMYB15L might play a key role in the cold signaling and anthocyanin metabolic pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula.

    Science.gov (United States)

    Jun, Ji Hyung; Liu, Chenggang; Xiao, Xirong; Dixon, Richard A

    2015-10-01

    Accumulation of anthocyanins and proanthocyanidins (PAs) is limited to specific cell types and developmental stages, but little is known about how antagonistically acting transcriptional regulators work together to determine temporal and spatial patterning of pigmentation at the cellular level, especially for PAs. Here, we characterize MYB2, a transcriptional repressor regulating both anthocyanin and PA biosynthesis in the model legume Medicago truncatula. MYB2 was strongly upregulated by MYB5, a major regulator of PA biosynthesis in M. truncatula and a component of MYB-basic helix loop helix-WD40 (MBW) activator complexes. Overexpression of MYB2 abolished anthocyanin and PA accumulation in M. truncatula hairy roots and Arabidopsis thaliana seeds, respectively. Anthocyanin deposition was expanded in myb2 mutant seedlings and flowers accompanied by increased anthocyanin content. PA mainly accumulated in the epidermal layer derived from the outer integument in the M. truncatula seed coat, starting from the hilum area. The area of PA accumulation and ANTHOCYANIDIN REDUCTASE expression was expanded into the seed body at the early stage of seed development in the myb2 mutant. Genetic, biochemical, and cell biological evidence suggests that MYB2 functions as part of a multidimensional regulatory network to define the temporal and spatial pattern of anthocyanin and PA accumulation linked to developmental processes. © 2015 American Society of Plant Biologists. All rights reserved.

  17. The filamentous growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae.

    Science.gov (United States)

    Karunanithi, Sheelarani; Cullen, Paul J

    2012-11-01

    In the budding yeast S. cerevisiae, nutrient limitation induces a MAPK pathway that regulates filamentous growth and biofilm/mat formation. How nutrient levels feed into the regulation of the filamentous growth pathway is not entirely clear. We characterized a newly identified MAPK regulatory protein of the filamentous growth pathway, Opy2. A two-hybrid screen with the cytosolic domain of Opy2 uncovered new interacting partners including a transcriptional repressor that functions in the AMPK pathway, Mig1, and its close functional homolog, Mig2. Mig1 and Mig2 coregulated the filamentous growth pathway in response to glucose limitation, as did the AMP kinase Snf1. In addition to associating with Opy2, Mig1 and Mig2 interacted with other regulators of the filamentous growth pathway including the cytosolic domain of the signaling mucin Msb2, the MAP kinase kinase Ste7, and the MAP kinase Kss1. As for Opy2, Mig1 overproduction dampened the pheromone response pathway, which implicates Mig1 and Opy2 as potential regulators of pathway specificity. Taken together, our findings provide the first regulatory link in yeast between components of the AMPK pathway and a MAPK pathway that controls cellular differentiation.

  18. Small ubiquitin-like modifier (SUMO) conjugation impedes transcriptional silencing by the polycomb group repressor Sex Comb on Midleg.

    Science.gov (United States)

    Smith, Matthew; Mallin, Daniel R; Simon, Jeffrey A; Courey, Albert J

    2011-04-01

    The Drosophila protein Sex Comb on Midleg (Scm) is a member of the Polycomb group (PcG), a set of transcriptional repressors that maintain silencing of homeotic genes during development. Recent findings have identified PcG proteins both as targets for modification by the small ubiquitin-like modifier (SUMO) protein and as catalytic components of the SUMO conjugation pathway. We have found that the SUMO-conjugating enzyme Ubc9 binds to Scm and that this interaction, which requires the Scm C-terminal sterile α motif (SAM) domain, is crucial for the efficient sumoylation of Scm. Scm is associated with the major Polycomb response element (PRE) of the homeotic gene Ultrabithorax (Ubx), and efficient PRE recruitment requires an intact Scm SAM domain. Global reduction of sumoylation augments binding of Scm to the PRE. This is likely to be a direct effect of Scm sumoylation because mutations in the SUMO acceptor sites in Scm enhance its recruitment to the PRE, whereas translational fusion of SUMO to the Scm N terminus interferes with this recruitment. In the metathorax, Ubx expression promotes haltere formation and suppresses wing development. When SUMO levels are reduced, we observe decreased expression of Ubx and partial haltere-to-wing transformation phenotypes. These observations suggest that SUMO negatively regulates Scm function by impeding its recruitment to the Ubx major PRE.

  19. Small Ubiquitin-like Modifier (SUMO) Conjugation Impedes Transcriptional Silencing by the Polycomb Group Repressor Sex Comb on Midleg*

    Science.gov (United States)

    Smith, Matthew; Mallin, Daniel R.; Simon, Jeffrey A.; Courey, Albert J.

    2011-01-01

    The Drosophila protein Sex Comb on Midleg (Scm) is a member of the Polycomb group (PcG), a set of transcriptional repressors that maintain silencing of homeotic genes during development. Recent findings have identified PcG proteins both as targets for modification by the small ubiquitin-like modifier (SUMO) protein and as catalytic components of the SUMO conjugation pathway. We have found that the SUMO-conjugating enzyme Ubc9 binds to Scm and that this interaction, which requires the Scm C-terminal sterile α motif (SAM) domain, is crucial for the efficient sumoylation of Scm. Scm is associated with the major Polycomb response element (PRE) of the homeotic gene Ultrabithorax (Ubx), and efficient PRE recruitment requires an intact Scm SAM domain. Global reduction of sumoylation augments binding of Scm to the PRE. This is likely to be a direct effect of Scm sumoylation because mutations in the SUMO acceptor sites in Scm enhance its recruitment to the PRE, whereas translational fusion of SUMO to the Scm N terminus interferes with this recruitment. In the metathorax, Ubx expression promotes haltere formation and suppresses wing development. When SUMO levels are reduced, we observe decreased expression of Ubx and partial haltere-to-wing transformation phenotypes. These observations suggest that SUMO negatively regulates Scm function by impeding its recruitment to the Ubx major PRE. PMID:21278366

  20. Mediatized Humanitarianism

    DEFF Research Database (Denmark)

    Vestergaard, Anne

    2014-01-01

    The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts to legiti......The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts...... legitimation by accountancy, legitimation by institutionalization, and legitimation by compensation. The analysis relates these changes to a problem of trust associated with mediatization through processes of mediation....

  1. A Novel Repressor of the ica Locus Discovered in Clinically Isolated Super-Biofilm-Elaborating Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Liansheng Yu

    2017-01-01

    Full Text Available Staphylococcus aureus TF2758 is a clinical isolate from an atheroma and a super-biofilm-elaborating/polysaccharide intercellular adhesin (PIA/poly-N-acetylglucosamine (PNAG-overproducing strain (L. Shrestha et al., Microbiol Immunol 60:148–159, 2016, https://doi.org/10.1111/1348-0421.12359. A microarray analysis and DNA genome sequencing were performed to identify the mechanism underlying biofilm overproduction by TF2758. We found high transcriptional expression levels of a 7-gene cluster (satf2580 to satf2586 and the ica operon in TF2758. Within the 7-gene cluster, a putative transcriptional regulator gene designated rob had a nonsense mutation that caused the truncation of the protein. The complementation of TF2758 with rob from FK300, an rsbU-repaired derivative of S. aureus strain NCTC8325-4, significantly decreased biofilm elaboration, suggesting a role for rob in this process. The deletion of rob in non-biofilm-producing FK300 significantly increased biofilm elaboration and PIA/PNAG production. In the search for a gene(s in the 7-gene cluster for biofilm elaboration controlled by rob, we identified open reading frame (ORF SAOUHSC_2898 (satf2584. Our results suggest that ORF SAOUHSC_2898 (satf2584 and icaADBC are required for enhanced biofilm elaboration and PIA/PNAG production in the rob deletion mutant. Rob bound to a palindromic sequence within its own promoter region. Furthermore, Rob recognized the TATTT motif within the icaR-icaA intergenic region and bound to a 25-bp DNA stretch containing this motif, which is a critically important short sequence regulating biofilm elaboration in S. aureus. Our results strongly suggest that Rob is a long-sought repressor that recognizes and binds to the TATTT motif and is an important regulator of biofilm elaboration through its control of SAOUHSC_2898 (SATF2584 and Ica protein expression in S. aureus.

  2. Photoperiod-insensitive floral transition in chrysanthemum induced by constitutive expression of chimeric repressor CsLHY-SRDX.

    Science.gov (United States)

    Oda, Atsushi; Higuchi, Yohei; Hisamatsu, Tamotsu

    2017-06-01

    A wide variety of physiological processes including flowering are controlled by the circadian clock in plants. In Arabidopsis, LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) constitute the central oscillator, and their gain of function and loss of function disrupt the circadian clock and affect flowering time through FLOWERING LOCUS T (FT), a gene encoding a florigen. Chrysanthemum is a typical short-day (SD) plant and responds to shortening of day length by the transition from the vegetative to reproductive phase. We identified FLOWERING LOCUS T-LIKE 3 (FTL3) and ANTI-FLORIGENIC FT/TFL1 FAMILY PROTEIN (AFT) as a florigen and antiflorigen, respectively, in a wild diploid chrysanthemum (Chrysanthemum seticuspe f. boreale). CsFTL3 and CsAFT are induced under SD or a noninductive photoperiod, respectively, and their balance determines the floral transition and anthesis. Meanwhile, the time-keeping mechanism that regulates the photoperiodic flowering in chrysanthemum is poorly understood. Here, we focused on a LHY/CCA1-like gene called CsLHY in chrysanthemum. We fused CsLHY to a gene encoding short transcriptional repressor domain (SRDX) and constitutively expressed it in chrysanthemum. Although the transcription of clock-related genes was conditionally affected, circadian rhythm was not completely disrupted in CsLHY-SRDX transgenic plants. These plants formed almost the same number of leaves before floral transition under SD and long-day conditions. Thus, CsLHY-SRDX chrysanthemum showed photoperiod-insensitive floral transition, but further development of the capitulum was arrested, and anthesis was not observed. Simultaneously with the flowering phenotype, CsFTL3 and CsAFT were downregulated in CsLHY-SRDX transgenic plants. These results suggest that CsLHY-SRDX affects CsFTL3 and CsAFT expression and causes photoperiod-insensitive floral transition without a severe defect in the circadian clock. Copyright © 2017 Elsevier B.V. All rights

  3. The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis

    Science.gov (United States)

    Gimenez-Ibanez, Selena; Boter, Marta; Fernández-Barbero, Gemma; Chini, Andrea; Rathjen, John P.; Solano, Roberto

    2014-01-01

    Pathogenicity of Pseudomonas syringae is dependent on a type III secretion system, which secretes a suite of virulence effector proteins into the host cytoplasm, and the production of a number of toxins such as coronatine (COR), which is a mimic of the plant hormone jasmonate-isoleuce (JA-Ile). Inside the plant cell, effectors target host molecules to subvert the host cell physiology and disrupt defenses. However, despite the fact that elucidating effector action is essential to understanding bacterial pathogenesis, the molecular function and host targets of the vast majority of effectors remain largely unknown. Here, we found that effector HopX1 from Pseudomonas syringae pv. tabaci (Pta) 11528, a strain that does not produce COR, interacts with and promotes the degradation of JAZ proteins, a key family of JA-repressors. We show that hopX1 encodes a cysteine protease, activity that is required for degradation of JAZs by HopX1. HopX1 associates with JAZ proteins through its central ZIM domain and degradation occurs in a COI1-independent manner. Moreover, ectopic expression of HopX1 in Arabidopsis induces the expression of JA-dependent genes, represses salicylic acid (SA)-induced markers, and complements the growth of a COR-deficient P. syringae pv. tomato (Pto) DC3000 strain during natural bacterial infections. Furthermore, HopX1 promoted susceptibility when delivered by the natural type III secretion system, to a similar extent as the addition of COR, and this effect was dependent on its catalytic activity. Altogether, our results indicate that JAZ proteins are direct targets of bacterial effectors to promote activation of JA-induced defenses and susceptibility in Arabidopsis. HopX1 illustrates a paradigm of an alternative evolutionary solution to COR with similar physiological outcome. PMID:24558350

  4. The leukemia associated ETO nuclear repressor gene is regulated by the GATA-1 transcription factor in erythroid/megakaryocytic cells

    Directory of Open Access Journals (Sweden)

    Gullberg Urban

    2010-05-01

    Full Text Available Abstract Background The Eight-Twenty-One (ETO nuclear co-repressor gene belongs to the ETO homologue family also containing Myeloid Translocation Gene on chromosome 16 (MTG16 and myeloid translocation Gene-Related protein 1 (MTGR1. By chromosomal translocations ETO and MTG16 become parts of fusion proteins characteristic of morphological variants of acute myeloid leukemia. Normal functions of ETO homologues have as yet not been examined. The goal of this work was to identify structural and functional promoter elements upstream of the coding sequence of the ETO gene in order to explore lineage-specific hematopoietic expression and get hints to function. Results A putative proximal ETO promoter was identified within 411 bp upstream of the transcription start site. Strong ETO promoter activity was specifically observed upon transfection of a promoter reporter construct into erythroid/megakaryocytic cells, which have endogeneous ETO gene activity. An evolutionary conserved region of 228 bp revealed potential cis-elements involved in transcription of ETO. Disruption of the evolutionary conserved GATA -636 consensus binding site repressed transactivation and disruption of the ETS1 -705 consensus binding site enhanced activity of the ETO promoter. The promoter was stimulated by overexpression of GATA-1 into erythroid/megakaryocytic cells. Electrophoretic mobility shift assay with erythroid/megakaryocytic cells showed specific binding of GATA-1 to the GATA -636 site. Furthermore, results from chromatin immunoprecipitation showed GATA-1 binding in vivo to the conserved region of the ETO promoter containing the -636 site. The results suggest that the GATA -636 site may have a role in activation of the ETO gene activity in cells with erythroid/megakaryocytic potential. Leukemia associated AML1-ETO strongly suppressed an ETO promoter reporter in erythroid/megakaryocytic cells. Conclusions We demonstrate that the GATA-1 transcription factor binds and

  5. Symmetric allosteric mechanism of hexameric Escherichia coli arginine repressor exploits competition between L-arginine ligands and resident arginine residues.

    Directory of Open Access Journals (Sweden)

    Rebecca Strawn

    2010-06-01

    Full Text Available An elegantly simple and probably ancient molecular mechanism of allostery is described for the Escherichia coli arginine repressor ArgR, the master feedback regulator of transcription in L-arginine metabolism. Molecular dynamics simulations with ArgRC, the hexameric domain that binds L-arginine with negative cooperativity, reveal that conserved arginine and aspartate residues in each ligand-binding pocket promote rotational oscillation of apoArgRC trimers by engagement and release of hydrogen-bonded salt bridges. Binding of exogenous L-arginine displaces resident arginine residues and arrests oscillation, shifting the equilibrium quaternary ensemble and promoting motions that maintain the configurational entropy of the system. A single L-arg ligand is necessary and sufficient to arrest oscillation, and enables formation of a cooperative hydrogen-bond network at the subunit interface. The results are used to construct a free-energy reaction coordinate that accounts for the negative cooperativity and distinctive thermodynamic signature of L-arginine binding detected by calorimetry. The symmetry of the hexamer is maintained as each ligand binds, despite the conceptual asymmetry of partially-liganded states. The results thus offer the first opportunity to describe in structural and thermodynamic terms the symmetric relaxed state predicted by the concerted allostery model of Monod, Wyman, and Changeux, revealing that this state is achieved by exploiting the dynamics of the assembly and the distributed nature of its cohesive free energy. The ArgR example reveals that symmetry can be maintained even when binding sites fill sequentially due to negative cooperativity, which was not anticipated by the Monod, Wyman, and Changeux model. The molecular mechanism identified here neither specifies nor requires a pathway for transmission of the allosteric signal through the protein, and it suggests the possibility that binding of free amino acids was an early

  6. CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis.

    Science.gov (United States)

    Goralogia, Greg S; Liu, Tong-Kun; Zhao, Lin; Panipinto, Paul M; Groover, Evan D; Bains, Yashkarn S; Imaizumi, Takato

    2017-10-01

    CYCLING DOF FACTOR 1 (CDF1) and its homologs play an important role in the floral transition by repressing the expression of floral activator genes such as CONSTANS (CO) and FLOWERING LOCUS T (FT) in Arabidopsis. The day-length-specific removal of CDF1-dependent repression is a critical mechanism in photoperiodic flowering. However, the mechanism by which CDF1 represses CO and FT transcription remained elusive. Here we demonstrate that Arabidopsis CDF proteins contain non-EAR motif-like conserved domains required for interaction with the TOPLESS (TPL) co-repressor protein. This TPL interaction confers a repressive function on CDF1, as mutations of the N-terminal TPL binding domain largely impair the ability of CDF1 protein to repress its targets. TPL proteins are present on specific regions of the CO and FT promoters where CDF1 binds during the morning. In addition, TPL binding increases when CDF1 expression is elevated, suggesting that TPL is recruited to these promoters in a time-dependent fashion by CDFs. Moreover, reduction of TPL activity induced by expressing a dominant negative version of TPL (tpl-1) in phloem companion cells results in early flowering and a decreased sensitivity to photoperiod in a manner similar to a cdf loss-of-function mutant. Our results indicate that the mechanism of CDF1 repression is through the formation of a CDF-TPL transcriptional complex, which reduces the expression levels of CO and FT during the morning for seasonal flowering. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Novel repressor of Escherichia coli O157:H7 motility encoded in the putative fimbrial cluster OI-1.

    Science.gov (United States)

    Allison, Sarah E; Silphaduang, Uma; Mascarenhas, Mariola; Konczy, Paulina; Quan, Quyen; Karmali, Mohamed; Coombes, Brian K

    2012-10-01

    Escherichia coli O157:H7 is a gastrointestinal pathogen that has become a serious public health concern, as it is associated with outbreaks and severe diseases such as hemolytic-uremic syndrome. The molecular basis of its greater virulence than that of other serotypes is not completely known. OI-1 is a putative fimbria-encoding genomic island that is found almost exclusively in O157:H7 Shiga toxin-producing E. coli strains and may be associated with the enhanced pathogenesis of these strains. In this study, we identified and characterized a novel repressor of flagellar synthesis encoded by OI-1. We showed that deletion of Z0021 increased the motility of E. coli O157:H7, which correlated with an increase in flagellin production and enhanced assembly of flagella on the cell surface. In contrast, overexpression of Z0021 inhibited motility. We demonstrated that Z0021 exerted its regulatory effects downstream of the transcription and translation of flhDC but prior to the activation of class II/III promoters. Furthermore, the master regulator of flagellar synthesis, FlhD(4)C(2), was shown to be a high-copy suppressor of the nonmotile phenotype associated with elevated levels of Z0021--a finding consistent with Z0021-FlhD(4)C(2) being a potential regulatory complex. This work provides insight into the mechanism by which Z0021, which we have named fmrA, represses flagellar synthesis and is the first report of a fimbrial-operon-encoded inhibitor of motility in E. coli O157:H7.

  8. Transcription Factor Ets-2 Acts as a Preinduction Repressor of Interleukin-2 (IL-2) Transcription in Naive T Helper Lymphocytes.

    Science.gov (United States)

    Panagoulias, Ioannis; Georgakopoulos, Tassos; Aggeletopoulou, Ioanna; Agelopoulos, Marios; Thanos, Dimitris; Mouzaki, Athanasia

    2016-12-23

    IL-2 is the first cytokine produced when naive T helper (Th) cells are activated and differentiate into dividing pre-Th0 proliferating precursors. IL-2 expression is blocked in naive, but not activated or memory, Th cells by the transcription factor Ets-2 that binds to the antigen receptor response element (ARRE)-2 of the proximal IL-2 promoter. Ets-2 acts as an independent preinduction repressor in naive Th cells and does not interact physically with the transcription factor NFAT (nuclear factor of activated T-cells) that binds to the ARRE-2 in activated Th cells. In naive Th cells, Ets-2 mRNA expression, Ets-2 protein levels, and Ets-2 binding to ARRE-2 decrease upon cell activation followed by the concomitant expression of IL-2. Cyclosporine A stabilizes Ets-2 mRNA and protein when the cells are activated. Ets-2 silences directly constitutive or induced IL-2 expression through the ARRE-2. Conversely, Ets-2 silencing allows for constitutive IL-2 expression in unstimulated cells. Ets-2 binding to ARRE-2 in chromatin is stronger in naive compared with activated or memory Th cells; in the latter, Ets-2 participates in a change of the IL-2 promoter architecture, possibly to facilitate a quick response when the cells re-encounter antigen. We propose that Ets-2 expression and protein binding to the ARRE-2 of the IL-2 promoter are part of a strictly regulated process that results in a physiological transition of naive Th cells to Th0 cells upon antigenic stimulation. Malfunction of such a repression mechanism at the molecular level could lead to a disturbance of later events in Th cell plasticity, leading to autoimmune diseases or other pathological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. The RpiR-Like Repressor IolR Regulates Inositol Catabolism in Sinorhizobium meliloti▿†

    Science.gov (United States)

    Kohler, Petra R. A.; Choong, Ee-Leng; Rossbach, Silvia

    2011-01-01

    Sinorhizobium meliloti, the nitrogen-fixing symbiont of alfalfa, has the ability to catabolize myo-, scyllo-, and d-chiro-inositol. Functional inositol catabolism (iol) genes are required for growth on these inositol isomers, and they play a role during plant-bacterium interactions. The inositol catabolism genes comprise the chromosomally encoded iolA (mmsA) and the iolY(smc01163)RCDEB genes, as well as the idhA gene located on the pSymB plasmid. Reverse transcriptase assays showed that the iolYRCDEB genes are transcribed as one operon. The iol genes were weakly expressed without induction, but their expression was strongly induced by myo-inositol. The putative transcriptional regulator of the iol genes, IolR, belongs to the RpiR-like repressor family. Electrophoretic mobility shift assays demonstrated that IolR recognized a conserved palindromic sequence (5′-GGAA-N6-TTCC-3′) in the upstream regions of the idhA, iolY, iolR, and iolC genes. Complementation assays found IolR to be required for the repression of its own gene and for the downregulation of the idhA-encoded myo-inositol dehydrogenase activity in the presence and absence of inositol. Further expression studies indicated that the late pathway intermediate 2-keto-5-deoxy-d-gluconic acid 6-phosphate (KDGP) functions as the true inducer of the iol genes. The iolA (mmsA) gene encoding methylmalonate semialdehyde dehydrogenase was not regulated by IolR. The S. meliloti iolA (mmsA) gene product seems to be involved in more than only the inositol catabolic pathway, since it was also found to be essential for valine catabolism, supporting its more recent annotation as mmsA. PMID:21784930

  10. Complex Mediation

    DEFF Research Database (Denmark)

    Bødker, Susanne; Andersen, Peter Bøgh

    2005-01-01

    This article has its starting point in a large number of empirical findings regarding computer-mediated work. These empirical findings have challenged our understanding of the role of mediation in such work; on the one hand as an aspect of communication and cooperation at work and on the other hand...... as an aspect of human engagement with instruments of work. On the basis of previous work in activity-theoretical and semiotic human—computer interaction, we propose a model to encompass both of these aspects. In a dialogue with our empirical findings we move on to propose a number of types of mediation...... that have helped to enrich our understanding of mediated work and the design of computer mediation for such work....

  11. Papaya CpERF9 acts as a transcriptional repressor of cell-wall-modifying genes CpPME1/2 and CpPG5 involved in fruit ripening.

    Science.gov (United States)

    Fu, Chang-Chun; Han, Yan-Chao; Qi, Xiu-Ye; Shan, Wei; Chen, Jian-Ye; Lu, Wang-Jin; Kuang, Jian-Fei

    2016-11-01

    CpERF9 controls papaya fruit ripening through transcriptional repression of cell-wall-modifying genes CpPME1/2 and CpPG5 by directly binding to their promoters. Papaya fruit ripening is an intricate and highly coordinated developmental process which is controlled by the action of ethylene and expression of numerous ethylene-responsive genes. Ethylene response factors (ERFs) representing the last regulators of ethylene-signaling pathway determine the specificities of ethylene response. However, knowledge concerning the transcriptional controlling mechanism of ERF-mediated papaya fruit ripening is limited. In the present work, a gene-encoding AP2/ERF protein with two ERF-associated amphiphilic repression (EAR) motifs, named CpERF9, was characterized from papaya fruit. CpERF9 was found to localize in nucleus, and possess transcriptional repression ability. CpERF9 expression steadily decreased during papaya fruit ripening, while several genes encoding pectin methylesterases (PMEs) and polygalacturonases (PGs), such as CpPME1/2 and CpPG5, were gradually increased, paralleling the decline of fruit firmness. Electrophoretic mobility shift assay (EMSA) demonstrated a specific binding of CpERF9 to promoters of CpPME1/2 and CpPG5, via the GCC-box motif. Transient expression of CpERF9 in tobacco repressed CpPME1/2 and CpPG5 promoter activities, which was depended on two EAR motifs of CpERF9 protein. Taken together, these findings suggest that papaya CpERF9 may act as a transcriptional repressor of several cell-wall modifying genes, such as CpPME1/2 and CpPG5, via directly binding to their promoters.

  12. Complex Mediation

    DEFF Research Database (Denmark)

    Bødker, Susanne; Andersen, Peter Bøgh

    2005-01-01

    This article has its starting point in a large number of empirical findings regarding computer-mediated work. These empirical findings have challenged our understanding of the role of mediation in such work; on the one hand as an aspect of communication and cooperation at work and on the other hand...... as an aspect of human engagement with instruments of work. On the basis of previous work in activity-theoretical and semiotic human—computer interaction, we propose a model to encompass both of these aspects. In a dialogue with our empirical findings we move on to propose a number of types of mediation...

  13. Transposon regulation in Drosophila: piRNA-producing P elements facilitate repression of hybrid dysgenesis by a P element that encodes a repressor polypeptide.

    Science.gov (United States)

    Simmons, Michael J; Thorp, Michael W; Buschette, Jared T; Becker, Jordan R

    2015-02-01

    The transposons of Drosophila melanogaster are regulated by small RNAs that interact with the Piwi family of proteins. These piRNAs are generated from transposons inserted in special loci such as the telomere-associated sequences at the left end of the X chromosome. Drosophila's P transposons can also be regulated by a polypeptide encoded by the KP element, a 1.15-kb-long member of the P family. Using piRNA-generating telomeric P elements (TPs) and repressor-producing transgenic KP elements, we demonstrate a functional connection between these two modes of regulation. By themselves, the TPs partially repress gonadal dysgenesis, a trait caused by rampant P-element activity in the germ line. This repression is manifested as a strictly maternal effect arising from the cytoplasmic transmission of P-specific piRNAs from mother to offspring. The repression is enhanced by genetic interactions between the TPs and other, non-telomeric P elements-a phenomenon attributable to ping-pong amplification of maternal piRNAs. KP elements, like other kinds of non-telomeric P elements, enhance regulation anchored in the TPs. However, with some TPs, the enhanced regulation is manifested as a strictly zygotic effect of the KP element. This effect is seen when the TP has few sequences in common with the KP element, a condition not conducive to ping-pong amplification of piRNAs; it can be attributed to the action of the KP repressor polypeptide. Because the effect is seen only when a TP was present in the mother's genotype, maternally generated P-element piRNAs could facilitate regulation by the KP repressor polypeptide.

  14. The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers.

    Science.gov (United States)

    Hiratsu, Keiichiro; Ohta, Masaru; Matsui, Kyoko; Ohme-Takagi, Masaru

    2002-03-13

    SUPERMAN was identified as a putative regulator of transcription that acts in floral development, but its function remains to be clarified. We demonstrate here that SUPERMAN is an active repressor whose repression domain is located in the carboxy-terminal region. Ectopic expression of SUPERMAN that lacked the repression domain resulted in a phenotype similar to that of superman mutants, demonstrating that the repression activity of SUPERMAN is essential for the development of normal flowers. Constitutive expression of SUPERMAN resulted in a severe dwarfism but did not affect cell size, indicating that SUPERMAN might regulate genes that are involved in cell division.

  15. Regulation of gene expression by repressor localization: biochemical evidence that membrane and DNA binding by the PutA protein are mutually exclusive.

    OpenAIRE

    Muro-Pastor, A M; Ostrovsky, P; Maloy, S

    1997-01-01

    The PutA protein from Salmonella typhimurium is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate, a reaction that is coupled to the transfer of electrons to the electron transport chain in the cytoplasmic membrane. The PutA protein is also a transcriptional repressor that regulates the expression of the put operon in response to the availability of proline. Despite extensive genetic and biochemical studies of the PutA protein, it was not known if the PutA protein car...

  16. Comparative Analysis of Chromatin Binding by Sex Comb on Midleg (SCM) and Other Polycomb Group Repressors at a Drosophila Hox Gene▿

    OpenAIRE

    Wang, Liangjun; Jahren, Neal; Miller, Ellen L.; Ketel, Carrie S.; Mallin, Daniel R.; Simon, Jeffrey A.

    2010-01-01

    Sex Comb on Midleg (SCM) is a transcriptional repressor in the Polycomb group (PcG), but its molecular role in PcG silencing is not known. Although SCM can interact with Polycomb repressive complex 1 (PRC1) in vitro, biochemical studies have indicated that SCM is not a core constituent of PRC1 or PRC2. Nevertheless, SCM is just as critical for Drosophila Hox gene silencing as canonical subunits of these well-characterized PcG complexes. To address functional relationships between SCM and othe...

  17. Regulation of gene expression by repressor localization: biochemical evidence that membrane and DNA binding by the PutA protein are mutually exclusive.

    Science.gov (United States)

    Muro-Pastor, A M; Ostrovsky, P; Maloy, S

    1997-04-01

    The PutA protein from Salmonella typhimurium is a bifunctional enzyme that catalyzes the oxidation of proline to glutamate, a reaction that is coupled to the transfer of electrons to the electron transport chain in the cytoplasmic membrane. The PutA protein is also a transcriptional repressor that regulates the expression of the put operon in response to the availability of proline. Despite extensive genetic and biochemical studies of the PutA protein, it was not known if the PutA protein carries out both of these two opposing functions while membrane associated or if instead it carries them out in different cellular compartments. To distinguish between these alternatives, we directly assayed the binding of purified PutA protein to DNA and membranes in vitro. The results indicate that wild-type PutA does not simultaneously associate with DNA and membranes. In addition, PutA superrepressor mutants that exhibit increased repression of the put genes show a direct correlation between decreased membrane binding and increased DNA binding. These results support a model in which the PutA protein shuttles between the membrane (where it acts as an enzyme but lacks access to DNA-binding sites) and the cytoplasm (where it binds DNA and acts as a transcriptional repressor), depending on the availability of proline.

  18. Cloning, expression, crystallization and preliminary X-ray analysis of a putative multiple antibiotic resistance repressor protein (MarR) from Xanthomonas campestris

    International Nuclear Information System (INIS)

    Tu, Zhi-Le; Li, Juo-Ning; Chin, Ko-Hsin; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Lyu, Ping-Chiang; Gao, Fei Philip; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-01-01

    A putative repressor for the multiple antibiotic resistance operon from a plant pathogen X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. The crystals diffracted to 2.3 Å with good quality. The multiple antibiotic resistance operon (marRAB) is a member of the multidrug-resistance system. When induced, this operon enhances resistance of bacteria to a variety of medically important antibiotics, causing a serious global health problem. MarR is a marR-encoded protein that represses the transcription of the marRAB operon. Through binding with salicylate and certain antibiotics, however, MarR can derepress and activate the marRAB operon. In this report, the cloning, expression, crystallization and preliminary X-ray analysis of XC1739, a putative MarR repressor protein present in the Xanthomonas campestris pv. campestris, a Gram-negative bacterium causing major worldwide disease of cruciferous crops, are described. The XC1739 crystals diffracted to a resolution of at least 1.8 Å. They are orthorhombic and belong to space group P2 1 2 1 2 1 , with unit-cell parameters a = 39.5, b = 54.2 and c = 139.5 Å, respectively. They contain two molecules in the asymmetric unit from calculation of the self-rotation function

  19. Cloning and characterization of the c1 repressor of Pseudomonas aeruginosa bacteriophage D3: a functional analog of phage lambda cI protein

    International Nuclear Information System (INIS)

    Miller, R.V.; Kokjohn, T.A.

    1987-01-01

    We cloned the gene (c1) which encodes the repressor of vegetative function of Pseudomonas aeruginosa bacteriophage D3. The cloned gene was shown to inhibit plating of D3 and the induction of D3 lysogens by UV irradiation. The efficiency of plating and prophage induction of the heteroimmune P. aeruginosa phage F116L were not affected by the presence of the cloned c1 gene of D3. When the D3 DNA fragment containing c1 was subcloned into pBR322 and introduced into Escherichia coli, it was shown to specifically inhibit the plating of phage lambda and the induction of the lambda prophage by mitomycin C. The plating of lambda imm434 phage was not affected. Analysis in minicells indicated that these effects correspond to the presence of a plasmid-encoded protein of 36,000 molecular weight. These data suggest the possibility that coliphage lambda and the P. aeruginosa phage D3 evolved from a common ancestor. The conservation of the functional similarities of their repressors may have occurred because of the advantage to these temperate phages of capitalizing on the potential of the evolutionarily conserved RecA protein to monitor the level of damage to the host genome

  20. Cloning and characterization of the c1 repressor of Pseudomonas aeruginosa bacteriophage D3: a functional analog of phage lambda cI protein

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.V.; Kokjohn, T.A.

    1987-05-01

    We cloned the gene (c1) which encodes the repressor of vegetative function of Pseudomonas aeruginosa bacteriophage D3. The cloned gene was shown to inhibit plating of D3 and the induction of D3 lysogens by UV irradiation. The efficiency of plating and prophage induction of the heteroimmune P. aeruginosa phage F116L were not affected by the presence of the cloned c1 gene of D3. When the D3 DNA fragment containing c1 was subcloned into pBR322 and introduced into Escherichia coli, it was shown to specifically inhibit the plating of phage lambda and the induction of the lambda prophage by mitomycin C. The plating of lambda imm434 phage was not affected. Analysis in minicells indicated that these effects correspond to the presence of a plasmid-encoded protein of 36,000 molecular weight. These data suggest the possibility that coliphage lambda and the P. aeruginosa phage D3 evolved from a common ancestor. The conservation of the functional similarities of their repressors may have occurred because of the advantage to these temperate phages of capitalizing on the potential of the evolutionarily conserved RecA protein to monitor the level of damage to the host genome.

  1. Characterization and purification of Adh distal promoter factor 2, Adf-2, a cell-specific and promoter-specific repressor in Drosophila.

    Science.gov (United States)

    Benyajati, C; Ewel, A; McKeon, J; Chovav, M; Juan, E

    1992-09-11

    Chromatin footprinting in Drosophila tissue culture cells has detected the binding of a non-histone protein at +8 of the distal Adh RNA start site, on a 10-bp direct repeat motif abutting a nucleosome positioned over the inactive Adh distal promoter. Alternatively the active promoter is bound by a transcription initiation complex. We have characterized and purified a protein Adf-2 that binds specifically to this direct repeat motif 5'TCTCAGTGCA3', present at +8 and -202 of the distal RNA start site. DNase I footprinting, methylation interference, and UV-crosslinking analyses showed that both direct repeats interact in vitro with a nuclear protein of approximately 120 kilodaltons (kDa). We purified Adf-2 through multiple rounds of sequence-specific DNA affinity chromatography. Southwestern analysis showed that the purified 120 KDa polypeptide binds the Adf-2 motif efficiently as a monomer or homomultimer. In vivo titrations of Adf-2 activity with the Adf-2 motif by transient co-transfection competitions in different Drosophila cell lines suggested that Adf-2 is a cell-specific repressor. Adf-2 has been detected ubiquitously in vitro, but is functional in vivo as a sequence-specific DNA binding protein and repressor only in the cells that have the inactive distal promoter. We discuss the possibility that an activation process is required for Adf-2 protein to bind DNA and function in vivo.

  2. bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses.

    Directory of Open Access Journals (Sweden)

    Sandra Fonseca

    Full Text Available Cell reprogramming in response to jasmonates requires a tight control of transcription that is achieved by the activity of JA-related transcription factors (TFs. Among them, MYC2, MYC3 and MYC4 have been described as activators of JA responses. Here we characterized the function of bHLH003, bHLH013 and bHLH017 that conform a phylogenetic clade closely related to MYC2, MYC3 and MYC4. We found that these bHLHs form homo- and heterodimers and also interact with JAZ repressors in vitro and in vivo. Phenotypic analysis of JA-regulated processes, including root and rosette growth, anthocyanin accumulation, chlorophyll loss and resistance to Pseudomonas syringae, on mutants and overexpression lines, suggested that these bHLHs are repressors of JA responses. bHLH003, bHLH013 and bHLH017 are mainly nuclear proteins and bind DNA with similar specificity to that of MYC2, MYC3 and MYC4, but lack a conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Moreover, expression of bHLH017 is induced by JA and depends on MYC2, suggesting a negative feed-back regulation of the activity of positive JA-related TFs. Our results suggest that the competition between positive and negative TFs determines the output of JA-dependent transcriptional activation.

  3. Bacillus subtilis IolQ (DegA) is a transcriptional repressor of iolX encoding NAD+-dependent scyllo-inositol dehydrogenase.

    Science.gov (United States)

    Kang, Dong-Min; Michon, Christophe; Morinaga, Tetsuro; Tanaka, Kosei; Takenaka, Shinji; Ishikawa, Shu; Yoshida, Ken-Ichi

    2017-07-11

    Bacillus subtilis is able to utilize at least three inositol stereoisomers as carbon sources, myo-, scyllo-, and D-chiro-inositol (MI, SI, and DCI, respectively). NAD + -dependent SI dehydrogenase responsible for SI catabolism is encoded by iolX. Even in the absence of functional iolX, the presence of SI or MI in the growth medium was found to induce the transcription of iolX through an unknown mechanism. Immediately upstream of iolX, there is an operon that encodes two genes, yisR and iolQ (formerly known as degA), each of which could encode a transcriptional regulator. Here we performed an inactivation analysis of yisR and iolQ and found that iolQ encodes a repressor of the iolX transcription. The coding sequence of iolQ was expressed in Escherichia coli and the gene product was purified as a His-tagged fusion protein, which bound to two sites within the iolX promoter region in vitro. IolQ is a transcriptional repressor of iolX. Genetic evidences allowed us to speculate that SI and MI might possibly be the intracellular inducers, however they failed to antagonize DNA binding of IolQ in in vitro experiments.

  4. Induced fit and the entropy of structural adaptation in the complexation of CAP and lambda-repressor with cognate DNA sequences.

    Science.gov (United States)

    Dixit, Surjit B; Andrews, David Q; Beveridge, D L

    2005-05-01

    Molecular dynamics (MD) simulations of 5 ns on protein-DNA complexes of catabolite-activator protein (CAP), lambda-repressor, and their corresponding uncomplexed protein and DNA, are reported. These cases represent two extremes of DNA bending, with CAP DNA bent severely and the lambda-operator nearly straight when complexed with protein. The calculations were performed using the AMBER suite of programs and the parm94 force field, validated for these studies by good agreement with experimental nuclear magnetic resonance data on DNA. An explicit computational model of structural adaptation and computation of the quasiharmonic entropy of association were obtained from the MD. The results indicate that, with respect to canonical B-form DNA, the extreme bending of the DNA in the complex with CAP is approximately 60% protein-induced and 40% intrinsic to the sequence-dependent structure of the free oligomer. The DNA in the complex is an energetically strained form, and the MD results are consistent with a conformational-capture mechanism. The calculated quasiharmonic entropy change accounts for the entropy difference between the two cases. The calculated entropy was decomposed into contributions from protein adaptation, DNA adaptation, and protein-DNA structural correlations. The origin of the entropy difference between CAP and lambda-repressor complexation arises more from the additional protein adaptation in the case of lambda, than to DNA bending and entropy contribution from DNA bending. The entropy arising from protein DNA cross-correlations, a contribution not previously discussed, is surprisingly large.

  5. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis.

    Science.gov (United States)

    Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc

    2015-03-03

    Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways.

  6. Mediatized play

    DEFF Research Database (Denmark)

    Johansen, Stine Liv

    Children’s play must nowadays be understood as a mediatized field in society and culture. Media – understood in a very broad sense - holds severe explanatory power in describing and understanding the practice of play, since play happens both with, through and inspired by media of different sorts....... In this presentation the case of ‘playing soccer’ will be outlined through its different mediated manifestations, including soccer games and programs on TV, computer games, magazines, books, YouTube videos and soccer trading cards....

  7. Mediating Business

    DEFF Research Database (Denmark)

    "Mediating Business" is a study of the expansion of business journalism. Building on evidence from Denmark, Finland, Norway and Sweden, "Mediating Business" is a comparative and multidisciplinary study of one of the major transformations of the mass media and the realm of business - nationally...... and globally. The book explores the history of key innovations and innovators in the business press. It analyzes changes in the discourse of business journalism associated with the growth in business news and the development of new ways of framing business issues and events. Finally, it examines...... the organizational implications of the increased media visibility of business and, in particular, the development of corporate governance and media relations....

  8. TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation

    International Nuclear Information System (INIS)

    Shibata, Mio; Sato, Tomonobu; Nukiwa, Ryota; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-01

    Highlights: ► NF-κB plays an important role in cell survival and carcinogenesis. ► TRIM45 negatively regulates TNFα-induced NF-κB-mediated transcription. ► TRIM45 overexpression suppresses cell growth. ► TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth. -- Abstract: The NF-κB signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-κB is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-κB signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin–proteasome system. It has been reported that overexpression of TRIM45, one of the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNFα-induced NF-κB-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-κB signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth.

  9. Binding of the N-Terminal Domain of the Lactococcal Bacteriophage TP901-1 CI Repressor to Its Target DNA: A Crystallography, Small Angle Scattering, and Nuclear Magnetic Resonance Study

    DEFF Research Database (Denmark)

    Frandsen, Kristian Erik Høpfner; Rasmussen, Kim K.; Jensen, Malene Ringkjøbing

    2013-01-01

    In most temperate bacteriophages, regulation of the choice of lysogenic or lytic life cycle is controlled by a CI repressor protein. Inhibition of transcription is dependent on a helix–turn–helix motif, often located in the N-terminal domain (NTD), which binds to specific DNA sequences (operator ...

  10. The CytR repressor antagonizes cyclic AMP-cyclic AMP receptor protein activation of the deoCp2 promoter of Escherichia coli K-12

    DEFF Research Database (Denmark)

    Søgaard-Andersen, Lotte; Martinussen, J; Møllegaard, N E

    1990-01-01

    We have investigated the regulation of the Escherichia coli deoCp2 promoter by the CytR repressor and the cyclic AMP (cAMP) receptor protein (CRP) complexed to cAMP. Promoter regions controlled by these two proteins characteristically contain tandem cAMP-CRP binding sites. Here we show that (i) Cyt......R selectively regulated cAMP-CRP-dependent initiations, although transcription started from the same site in deoCp2 in the absence or presence of cAMP-CRP; (ii) deletion of the uppermost cAMP-CRP target (CRP-2) resulted in loss of CytR regulation, but had only a minor effect on positive control by the cAMP...

  11. CD8 T cell-specific downregulation of histone hyperacetylation and gene activation of the IL-4 gene locus by ROG, repressor of GATA.

    Science.gov (United States)

    Omori, Miyuki; Yamashita, Masakatsu; Inami, Masamichi; Ukai-Tadenuma, Maki; Kimura, Motoko; Nigo, Yukiko; Hosokawa, Hiroyuki; Hasegawa, Akihiro; Taniguchi, Masaru; Nakayama, Toshinori

    2003-08-01

    Chromatin remodeling of type 2 cytokine gene loci occurs during differentiation of naive CD4 and CD8 T cells into type 2 helper (Th2) and cytotoxic (Tc2) T cells. IL-4 production and histone hyperacetylation in IL-4-associated nucleosomes in developing Tc2 cells were significantly lower than those of Th2 cells; however, cytokine production and histone hyperacetylation of IL-5 and IL-13 genes were equivalent. Developing Tc2 cells expressed lower GATA3 levels and dramatically increased levels of repressor of GATA (ROG). A ROG response element in the IL-13 gene exon 4 displayed Tc2-specific binding of ROG, HDAC1, and HDAC2 and exhibited repression of IL-4 gene activation. Thus, ROG may confer CD8 T cell-specific repression of histone hyperacetylation and activation of the IL-4 gene locus.

  12. Crystallization and preliminary X-ray analysis of BigR, a transcription repressor from Xylella fastidiosa involved in biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Rosicler Lázaro; Rinaldi, Fábio Cupri; Guimarães, Beatriz Gomes, E-mail: beatriz@lnls.br; Benedetti, Celso Eduardo, E-mail: beatriz@lnls.br [Center for Molecular and Structural Biology, Brazilian Synchrotron Light Laboratory, Campinas, SP, CP 6192, CEP 13083-970 (Brazil)

    2007-07-01

    In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. BigR (biofilm growth-associated repressor) is a novel repressor protein that regulates the transcription of an operon implicated in biofilm growth in both Xylella fastidiosa and Agrobacterium tumefaciens. This protein binds to a palindromic TA-rich element located in the promoter of the BigR operon and strongly represses transcription of the operon. BigR contains a helix–turn–helix (HTH) domain that is found in some members of the ArsR/SmtB family of metal sensors, which control metal resistance in bacteria. Although functional studies have suggested that BigR does not act as a metal sensor, the presence of two cysteines and a methionine in its primary structure raised the possibility of BigR being a metal-ligand protein. In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from native and SeMet crystals to resolutions of 1.95 and 2.2 Å, respectively. Both crystals belong to space group P321 and contain one molecule per asymmetric unit.

  13. Sequence-specific 1H NMR assignments and secondary structure of the Arc repressor of bacteriophage P22, as determined by two-dimensional 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Breg, J.N.; Boelens, R.; George, A.V.E.; Kaptein, R.

    1989-01-01

    The Arc repressor of bacteriophage P22 is a DNA binding protein that does not belong to any of the known classes of such proteins. The authors have undertaken a 1 H NMR study of the protein with the aim of elucidating its three-dimensional structure in solution and its mode of binding of operator DNA. Here the authors present the 1 H nuclear magnetic resonance (NMR) assignments of all backbone protons an most of the side-chain protons of Arc repressor. Elements of secondary structure have been identified on the basis of networks of characteristics sequential and medium-range nuclear Overhauser enhancements (NOEs). Two α-helical regions have been found in the peptide regions 16-29 and 35-45. The ends of the helices could not yet be firmly established and could extend to residue 31 for the first helix and to residue 49 for the second. Immediately before the first helix, between residues 8 and 14, a region is present with β-sheet characteristics dominated by a close proximity of the α-protons of residues 9 and 13. Because of the dimeric nature of the protein there are still two possible ways in which the NOEs in the β-sheet region can be interpreted. While the data presently do not allow an unambiguous choice between these two possibilities, some evidence is discussed that favors the latter (β-sheet between monomers). Since the N-terminal region of Arc is responsible for the sequence-specific recognition of its operator, the findings suggest the existence of a DNA binding motif in which a β-sheet region is present

  14. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    International Nuclear Information System (INIS)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-01

    Research highlights: → THAP5 is a DNA-binding protein and a transcriptional repressor. → THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. → THAP5 induction correlates with the degree of apoptosis in melanoma cell population. → THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  15. Crystallization and preliminary X-ray analysis of BigR, a transcription repressor from Xylella fastidiosa involved in biofilm formation

    International Nuclear Information System (INIS)

    Barbosa, Rosicler Lázaro; Rinaldi, Fábio Cupri; Guimarães, Beatriz Gomes; Benedetti, Celso Eduardo

    2007-01-01

    In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. BigR (biofilm growth-associated repressor) is a novel repressor protein that regulates the transcription of an operon implicated in biofilm growth in both Xylella fastidiosa and Agrobacterium tumefaciens. This protein binds to a palindromic TA-rich element located in the promoter of the BigR operon and strongly represses transcription of the operon. BigR contains a helix–turn–helix (HTH) domain that is found in some members of the ArsR/SmtB family of metal sensors, which control metal resistance in bacteria. Although functional studies have suggested that BigR does not act as a metal sensor, the presence of two cysteines and a methionine in its primary structure raised the possibility of BigR being a metal-ligand protein. In order to gain new insights into the protein structure and its possible interaction with a metal ion or effector ligand, BigR from X. fastidiosa was crystallized in native and selenomethionine (SeMet) labelled forms using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from native and SeMet crystals to resolutions of 1.95 and 2.2 Å, respectively. Both crystals belong to space group P321 and contain one molecule per asymmetric unit

  16. Actin-cytoskeleton polymerization differentially controls the stability of Ski and SnoN co-repressors in normal but not in transformed hepatocytes.

    Science.gov (United States)

    Caligaris, Cassandre; Vázquez-Victorio, Genaro; Sosa-Garrocho, Marcela; Ríos-López, Diana G; Marín-Hernández, Alvaro; Macías-Silva, Marina

    2015-09-01

    Ski and SnoN proteins function as transcriptional co-repressors in the TGF-β pathway. They regulate cell proliferation and differentiation, and their aberrant expression results in altered TGF-β signalling, malignant transformation, and alterations in cell proliferation. We carried out a comparative characterization of the endogenous Ski and SnoN protein regulation by TGF-β, cell adhesion disruption and actin-cytoskeleton rearrangements between normal and transformed hepatocytes; we also analyzed Ski and SnoN protein stability, subcellular localization, and how their protein levels impact the TGF-β/Smad-driven gene transcription. Ski and SnoN protein levels are lower in normal hepatocytes than in hepatoma cells. They exhibit a very short half-life and a nuclear/cytoplasmic distribution in normal hepatocytes opposed to a high stability and restricted nuclear localization in hepatoma cells. Interestingly, while normal cells exhibit a transient TGF-β-induced gene expression, the hepatoma cells are characterized by a strong and sustained TGF-β-induced gene expression. A novel finding is that Ski and SnoN stability is differentially regulated by cell adhesion and cytoskeleton rearrangements in the normal hepatocytes. The inhibition of protein turnover down-regulated both Ski and SnoN co-repressors impacting the kinetic of expression of TGF-β-target genes. Normal regulatory mechanisms controlling Ski and SnoN stability, subcellular localization and expression are altered in hepatocarcinoma cells. This work provides evidence that Ski and SnoN protein regulation is far more complex in normal than in transformed cells, since many of the normal regulatory mechanisms are lost in transformed cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Overexpression of the novel MATE fluoroquinolone efflux pump FepA in Listeria monocytogenes is driven by inactivation of its local repressor FepR.

    Directory of Open Access Journals (Sweden)

    François Guérin

    Full Text Available Whereas fluoroquinolone resistance mainly results from target modifications in gram-positive bacteria, it is primarily due to active efflux in Listeria monocytogenes. The aim of this study was to dissect a novel molecular mechanism of fluoroquinolone resistance in this important human pathogen. Isogenic L. monocytogenes clinical isolates BM4715 and BM4716, respectively susceptible and resistant to fluoroquinolones, were studied. MICs of norfloxacin and ciprofloxacin were determined in the presence or in the absence of reserpine (10 mg/L. Strain BM4715 was susceptible to norfloxacin (MIC, 4 mg/L and ciprofloxacin (MIC, 0.5 mg/L whereas BM4716 was highly resistant to both drugs (MICs 128 and 32 mg/L, respectively. Reserpine was responsible for a 16-fold decrease in both norfloxacin and ciprofloxacin MICs against BM4716 suggesting efflux associated resistance. Whole-genome sequencing of the strains followed by comparative genomic analysis revealed a single point mutation in the gene for a transcriptional regulator, designated fepR (for fluoroquinolone efflux protein regulator belonging to the TetR family. The frame-shift mutation was responsible for the introduction of a premature stop codon resulting in an inactive truncated protein. Just downstream from fepR, the structural gene for an efflux pump of the MATE family (named FepA was identified. Gene expression was quantified by qRT-PCR and demonstrated that fepA expression was more than 64-fold higher in BM4716 than in BM4715. The clean deletion of the fepR gene from BM4715 was responsible for an overexpression of fepA with resistance to norfloxacin and ciprofloxacin, confirming the role of FepR as a local repressor of fepA. In conclusion, we demonstrated that overexpression of the new MATE efflux pump FepA is responsible for fluoroquinolone resistance in L. monocytogenes and secondary to inactivation of the FepR repressor.

  18. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: azervos@mail.ucf.edu [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  19. Functional characterization of a cadmium resistance operon in Staphylococcus aureus ATCC12600: CadC does not function as a repressor.

    Science.gov (United States)

    Hoogewerf, Arlene J; Dyk, Lisa A Van; Buit, Tyler S; Roukema, David; Resseguie, Emily; Plaisier, Christina; Le, Nga; Heeringa, Lee; Griend, Douglas A Vander

    2015-02-01

    Sequencing of a cadmium resistance operon from a Staphylococcus aureus ATCC12600 plasmid revealed that it is identical to a cadCA operon found in MRSA strains. Compared to plasmid-cured and cadC-mutant strains, cadC-positive ATCC12600 cells had increased resistance to cadmium (1 mg ml(-1) cadmium sulfate) and zinc (4 mg ml(-1) zinc sulfate), but not to other metal ions. After growth in media containing 20 µg ml(-1) cadmium sulfate, cadC-mutant cells contained more intracellular cadmium than cadC-positive ATCC12600 cells, suggesting that cadC absence results in impaired cadmium efflux. Electrophoretic mobility shift assays were performed with CadC proteins encoded by the S. aureus ATCC12600 plasmid and by the cadC gene of pI258, which is known to act as a transcriptional repressor and shares only 47% protein sequence identity with ATCC12600 CadC. Mobility shifts occurred when pI258 CadC protein was incubated with the promoter DNA-regions from the pI258 and S. aureus ATCC12600 cadCA operons, but did not occur with S. aureus ATCC12600 CadC protein, indicating that the ATCC12600 CadC protein does not interact with promoter region DNA. This cadCA operon, found in MRSA strains and previously functionally uncharacterized, increases resistance to cadmium and zinc by an efflux mechanism, and CadC does not function as a transcriptional repressor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Genetic screen for regulatory mutations in Methanococcus maripaludis and its use in identification of induction-deficient mutants of the euryarchaeal repressor NrpR.

    Science.gov (United States)

    Lie, Thomas J; Leigh, John A

    2007-10-01

    NrpR is an euryarchaeal transcriptional repressor of nitrogen assimilation genes. Previous studies with Methanococcus maripaludis demonstrated that NrpR binds to palindromic operator sequences, blocking transcription initiation. The metabolite 2-oxoglutarate, an indicator of cellular nitrogen deficiency, induces transcription by lowering the affinity of NrpR for operator DNA. In this report we build on existing genetic tools for M. maripaludis to develop a screen for change-of-function mutations in a transcriptional regulator and demonstrate the use of an X-Gal (5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside) screen for strict anaerobes. We use the approach to address the primary structural requirements for the response of NrpR to 2-oxoglutarate. nrpR genes from the mesophilic M. maripaludis and the hyperthermophilic Methanopyrus kandleri were targeted for mutagenesis. M. maripaludis nrpR encodes a protein with two homologous NrpR domains while the M. kandleri nrpR homolog encodes a single NrpR domain. Random point mutagenesis and alanine replacement mutagenesis identified two amino acid residues of M. kandleri NrpR involved in induction of gene expression under nitrogen-deficient conditions and thus in the response to 2-oxoglutarate. Mutagenesis of the corresponding regions in either domain of M. maripaludis NrpR resulted in a similar effect, demonstrating a conserved structure-function relationship between the two repressors. The results indicate that in M. maripaludis, both NrpR domains participate in the 2-oxoglutarate response. The approach used here has wide adaptability to other regulatory systems in methanogenic Archaea and other strict anaerobes.

  1. RDR1 and SGS3, Components of RNA-Mediated Gene Silencing, Are Required for the Regulation of Cuticular Wax Biosynthesis in Developing Inflorescence Stems of Arabidopsis1[W][OA

    Science.gov (United States)

    Lam, Patricia; Zhao, Lifang; McFarlane, Heather E.; Aiga, Mytyl; Lam, Vivian; Hooker, Tanya S.; Kunst, Ljerka

    2012-01-01

    The cuticle is a protective layer that coats the primary aerial surfaces of land plants and mediates plant interactions with the environment. It is synthesized by epidermal cells and is composed of a cutin polyester matrix that is embedded and covered with cuticular waxes. Recently, we have discovered a novel regulatory mechanism of cuticular wax biosynthesis that involves the ECERIFERUM7 (CER7) ribonuclease, a core subunit of the exosome. We hypothesized that at the onset of wax production, the CER7 ribonuclease degrades an mRNA specifying a repressor of CER3, a wax biosynthetic gene whose protein product is required for wax formation via the decarbonylation pathway. In the absence of this repressor, CER3 is expressed, leading to wax production. To identify the putative repressor of CER3 and to unravel the mechanism of CER7-mediated regulation of wax production, we performed a screen for suppressors of the cer7 mutant. Our screen resulted in the isolation of components of the RNA-silencing machinery, RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, implicating RNA silencing in the control of cuticular wax deposition during inflorescence stem development in Arabidopsis (Arabidopsis thaliana). PMID:22689894

  2. Lateral gene expression in Drosophila early embryos is supported by Grainyhead-mediated activation and tiers of dorsally-localized repression.

    Directory of Open Access Journals (Sweden)

    Mayra Garcia

    Full Text Available The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind, a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence ("the A-box" present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh, a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator and Cic (repressor may also support a "switch-like" response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo.

  3. Repression of HNF1α-mediated transcription by amino-terminal enhancer of split (AES)

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Hee [Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912 (United States); Gorman, Amanda A. [Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536 (United States); Singh, Puja [Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912 (United States); Chi, Young-In, E-mail: ychi@hi.umn.edu [Section of Structural Biology, Hormel Institute, University of Minnesota, Austin, MN 55912 (United States)

    2015-12-04

    HNF1α (Hepatocyte Nuclear Factor 1α) is one of the master regulators in pancreatic beta-cell development and function, and the mutations in Hnf1α are the most common monogenic causes of diabetes mellitus. As a member of the POU transcription factor family, HNF1α exerts its gene regulatory function through various molecular interactions; however, there is a paucity of knowledge in their functional complex formation. In this study, we identified the Groucho protein AES (Amino-terminal Enhancer of Split) as a HNF1α-specific physical binding partner and functional repressor of HNF1α-mediated transcription, which has a direct link to glucose-stimulated insulin secretion in beta-cells that is impaired in the HNF1α mutation-driven diabetes. - Highlights: • We identified AES as a transcriptional repressor for HNF1α in pancreatic beta-cell. • AES's repressive activity was HNF1α-specific and was not observed with HNF1β. • AES interacts with the transactivation domain of HNF1α. • Small molecules can be designed or discovered to disrupt this interaction and improve insulin secretion and glucose homeostasis.

  4. Prophage Rs551 and Its Repressor Gene orf14 Reduce Virulence and Increase Competitive Fitness of Its Ralstonia solanacearum Carrier Strain UW551

    Directory of Open Access Journals (Sweden)

    Abdelmonim Ali Ahmad

    2017-12-01

    Full Text Available We previously characterized a filamentous lysogenic bacteriophage, ϕRs551, isolated directly from the race 3 biovar 2 phylotype IIB sequevar 1 strain UW551 of Ralstonia solanacearum grown under normal culture conditions. The genome of ϕRs551 was identified with 100% identity in the deposited genomes of 11 race 3 biovar 2 phylotype IIB sequevar 1 strains of R. solanacearum, indicating evolutionary and biological importance, and ORF14 of ϕRs551 was annotated as a putative type-2 repressor. In this study, we determined the effect of the prophage and its ORF14 on the virulence and competitive fitness of its carrier strain UW551 by deleting the orf14 gene only (the UW551 orf14 mutant, and nine of the prophage’s 14 genes including orf14 and six out of seven structural genes (the UW551 prophage mutant, respectively, from the genome of UW551. The two mutants were increased in extracellular polysaccharide production, twitching motility, expression of targeted virulence and virulence regulatory genes (pilT, egl, pehC, hrPB, and phcA, and virulence, suggesting that the virulence of UW551 was negatively regulated by ϕRs551, at least partially through ORF14. Interestingly, we found that the wt ϕRs551-carrying strain UW551 of R. solanacearum significantly outcompeted the wt strain RUN302 which lacks the prophage in tomato plants co-inoculated with the two strains. When each of the two mutant strains was co-inoculated with RUN302, however, the mutants were significantly out-competed by RUN302 for the same colonization site. Our results suggest that ecologically, ϕRs551 may play an important role by regulating the virulence of and offering a competitive fitness advantage to its carrier bacterial strain for persistence of the bacterium in the environment, which in turn prolongs the symbiotic relationship between the phage ϕRs551 and the R. solanacearum strain UW551. Our study is the first toward a better understanding of the co-existence between a

  5. Zn2+-Inducible Expression Platform for Synechococcus sp. Strain PCC 7002 Based on the smtA Promoter/Operator and smtB Repressor.

    Science.gov (United States)

    Pérez, Adam A; Gajewski, John P; Ferlez, Bryan H; Ludwig, Marcus; Baker, Carol S; Golbeck, John H; Bryant, Donald A

    2017-02-01

    Synechococcus sp. strain PCC 7002 has been gaining significance as both a model system for photosynthesis research and for industrial applications. Until recently, the genetic toolbox for this model cyanobacterium was rather limited and relied primarily on tools that only allowed constitutive gene expression. This work describes a two-plasmid, Zn 2+ -inducible expression platform that is coupled with a zurA mutation, providing enhanced Zn 2+ uptake. The control elements are based on the metal homeostasis system of a class II metallothionein gene (smtA 7942 ) and its cognate SmtB 7942 repressor from Synechococcus elongatus strain PCC 7942. Under optimal induction conditions, yellow fluorescent protein (YFP) levels were about half of those obtained with the strong, constitutive phycocyanin (cpcBA 6803 ) promoter of Synechocystis sp. strain PCC 6803. This metal-inducible expression system in Synechococcus sp. strain PCC 7002 allowed the titratable gene expression of YFP that was up to 19-fold greater than the background level. This system was utilized successfully to control the expression of the Drosophila melanogaster β-carotene 15,15'-dioxygenase, NinaB, which is toxic when constitutively expressed from a strong promoter in Synechococcus sp. strain PCC 7002. Together, these properties establish this metal-inducible system as an additional useful tool that is capable of controlling gene expression for applications ranging from basic research to synthetic biology in Synechococcus sp. strain PCC 7002. This is the first metal-responsive expression system in cyanobacteria, to our knowledge, that does not exhibit low sensitivity for induction, which is one of the major hurdles for utilizing this class of genetic tools. In addition, high levels of expression can be generated that approximate those of established constitutive systems, with the added advantage of titratable control. Together, these properties establish this Zn 2+ -inducible system, which is based on the

  6. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage.

    Science.gov (United States)

    Zhang, Ali; Zhou, Nanjiang; Huang, Jianguo; Liu, Qian; Fukuda, Koji; Ma, Ding; Lu, Zhaohui; Bai, Cunxue; Watabe, Kounosuke; Mo, Yin-Yuan

    2013-03-01

    It is well known that upon stress, the level of the tumor suppressor p53 is remarkably elevated. However, despite extensive studies, the underlying mechanism involving important inter-players for stress-induced p53 regulation is still not fully understood. We present evidence that the human lincRNA-RoR (RoR) is a strong negative regulator of p53. Unlike MDM2 that causes p53 degradation through the ubiquitin-proteasome pathway, RoR suppresses p53 translation through direct interaction with the heterogeneous nuclear ribonucleoprotein I (hnRNP I). Importantly, a 28-base RoR sequence carrying hnRNP I binding motifs is essential and sufficient for p53 repression. We further show that RoR inhibits p53-mediated cell cycle arrest and apoptosis. Finally, we demonstrate a RoR-p53 autoregulatory feedback loop where p53 transcriptionally induces RoR expression. Together, these results suggest that the RoR-hnRNP I-p53 axis may constitute an additional surveillance network for the cell to better respond to various stresses.

  7. Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1.

    Science.gov (United States)

    Feld, Christine; Sahu, Peeyush; Frech, Miriam; Finkernagel, Florian; Nist, Andrea; Stiewe, Thorsten; Bauer, Uta-Maria; Neubauer, Andreas

    2018-02-20

    SKI is a transcriptional co-regulator and overexpressed in various human tumors, for example in acute myeloid leukemia (AML). SKI contributes to the origin and maintenance of the leukemic phenotype. Here, we use ChIP-seq and RNA-seq analysis to identify the epigenetic alterations induced by SKI overexpression in AML cells. We show that approximately two thirds of differentially expressed genes are up-regulated upon SKI deletion, of which >40% harbor SKI binding sites in their proximity, primarily in enhancer regions. Gene ontology analysis reveals that many of the differentially expressed genes are annotated to hematopoietic cell differentiation and inflammatory response, corroborating our finding that SKI contributes to a myeloid differentiation block in HL60 cells. We find that SKI peaks are enriched for RUNX1 consensus motifs, particularly in up-regulated SKI targets upon SKI deletion. RUNX1 ChIP-seq displays that nearly 70% of RUNX1 binding sites overlap with SKI peaks, mainly at enhancer regions. SKI and RUNX1 occupy the same genomic sites and cooperate in gene silencing. Our work demonstrates for the first time the predominant co-repressive function of SKI in AML cells on a genome-wide scale and uncovers the transcription factor RUNX1 as an important mediator of SKI-dependent transcriptional repression.

  8. Osteogenic differentiation of mouse mesenchymal progenitor cell, Kusa-A1 is promoted by mammalian transcriptional repressor Rbpj

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengchao [Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, 710032 Xi' an (China); Kawashima, Nobuyuki, E-mail: kawashima.n.endo@tmd.ac.jp [Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Sakamoto, Kei; Katsube, Ken-ichi [Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); Umezawa, Akihiro [Department of Reproductive Biology and Pathology, National Institute for Child Health and Development, 2-10-4 Ohkura, Setagaya-ku, Tokyo 157-8535 (Japan); Suda, Hideaki [Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan); GCOE Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 (Japan)

    2010-09-10

    Research highlights: {yields} High Rbpj mRNA expression was observed in mesenchymal cells surrounding the bone of mouse embryos. {yields} Overexpression of Rbpj depressed Notch-Hes1/Hey1 signaling. {yields} Rbpj upregulated promoter activities of Runx2 and Ose2. {yields} Rbpj promoted osteoblastic differentiation/maturation in Kusa-A1 cells. -- Abstract: Pluripotent mesenchymal stem cells possess the ability to differentiate into many cell types, but the precise mechanisms of differentiation are still unclear. Here, we provide evidence that Rbpj (recombination signal-binding protein for immunoglobulin kappa j region) protein, the primary nuclear mediator of Notch, is involved in osteogenesis. Overexpression of Rbpj promoted osteogenic differentiation of mouse Kusa-A1 cells in vitro and in vivo. Transient transfection of an Rbpj expression vector into Kusa-A1 cells upregulated promoter activities of Runx2 and Ose2. Enhanced osteogenic potentials including high alkaline phosphatase activity, rapid calcium deposition, and increased calcified nodule formation, were observed in established stable Rbpj-overexpressing Kusa-A1 (Kusa-A1/Rbpj) cell line. In vivo mineralization by Kusa-A1/Rbpj was promoted compared to that by Kusa-A1 host cells. Histological findings revealed that expression of Rbpj was primarily observed in osteoblasts. These results suggest that Rbpj may play essential roles in osteoblast differentiation.

  9. SarA is a repressor of hla (alpha-hemolysin) transcription in Staphylococcus aureus: its apparent role as an activator of hla in the prototype strain NCTC 8325 depends on reduced expression of sarS.

    Science.gov (United States)

    Oscarsson, Jan; Kanth, Anna; Tegmark-Wisell, Karin; Arvidson, Staffan

    2006-12-01

    In most Staphylococcus aureus strains, inactivation of sarA increases hla transcription, indicating that sarA is a repressor. However, in S. aureus NCTC 8325 and its derivatives, used for most studies of hla regulation, inactivation of sarA resulted in decreased hla transcription. The disparate phenotype of strain NCTC 8325 seems to be associated with its rsbU mutation, which leads to sigma(B) deficiency. This has now been verified by the demonstration that sarA repressed hla transcription in an rsbU+ derivative of strain 8325-4 (SH1000). That sarA could act as a repressor of hla in an 8325-4 background was confirmed by the observation that inactivation of sarA in an agr sarS rot triple mutant dramatically increased hla transcription to wild-type levels. However, the apparent role of sarA as an activator of hla in 8325-4 was not a result of the rsbU mutation alone, as inactivation of sarA in another rsbU mutant, strain V8, led to increased hla transcription. Northern blot analysis revealed much higher levels of sarS mRNA in strain V8 than in 8325-4, which was likely due to the mutation in the sarS activator, tcaR, in 8325-4, which was not found in strain V8. On the other hand, the relative increase in sarS transcription upon the inactivation of sarA was 15-fold higher in 8325-4 than in strain V8. Because of this, inactivation of sarA in 8325-4 means a net increase in repressor activity, whereas in strain V8, inactivation of sarA means a net decrease in repressor activity and, therefore, enhanced hla transcription.

  10. D-Serine/N-methyl-D-aspartate receptor signaling decreases DNA-binding activity of the transcriptional repressor DREAM in Müller glia from the retina.

    Science.gov (United States)

    Chavira-Suárez, Erika; Ramírez, Mónica; Lamas, Mónica

    2008-02-20

    In the adult retina, N-methyl-D-aspartate (NMDA) neurotoxicity induces Müller cell reactive gliosis which is characterized by changes in gene expression that lead to proliferation and affect retinal physiology. The amino acid D-serine is synthesized in Müller cells and modulates these processes acting as a coagonist of NMDA receptors. We have found that the transcription factor DREAM (downstream regulatory element antagonist modulator), which acts as a transcriptional repressor by binding as a tetramer to regulatory elements located in the promoter region of target genes, is expressed in these cells and that its DNA-binding activity is modulated by NMDA receptor activation. Consistently, immunocytochemical analysis demonstrates that NMDA receptor activation induces changes in the nuclear localization of this transcription factor. DREAM is a pleiotropic transcription factor capable to repress and activate genes involved in several physiological events in different tissues. These results link, for the first time, this transcription factor with NMDA-receptor activation. Given the relevance of glutamatergic transmission in the retina and the remarkable functional plasticity of Müller cells, these findings support the notion that the NMDA receptor-dependent modulation of DREAM activity could play a role in relevant physiological processes ranging from retinal response to injury to differentiation capacity of retinal progenitor cells.

  11. Comparative analysis of chromatin binding by Sex Comb on Midleg (SCM) and other polycomb group repressors at a Drosophila Hox gene.

    Science.gov (United States)

    Wang, Liangjun; Jahren, Neal; Miller, Ellen L; Ketel, Carrie S; Mallin, Daniel R; Simon, Jeffrey A

    2010-06-01

    Sex Comb on Midleg (SCM) is a transcriptional repressor in the Polycomb group (PcG), but its molecular role in PcG silencing is not known. Although SCM can interact with Polycomb repressive complex 1 (PRC1) in vitro, biochemical studies have indicated that SCM is not a core constituent of PRC1 or PRC2. Nevertheless, SCM is just as critical for Drosophila Hox gene silencing as canonical subunits of these well-characterized PcG complexes. To address functional relationships between SCM and other PcG components, we have performed chromatin immunoprecipitation studies using cultured Drosophila Schneider line 2 (S2) cells and larval imaginal discs. We find that SCM associates with a Polycomb response element (PRE) upstream of the Ubx gene which also binds PRC1, PRC2, and the DNA-binding PcG protein Pleiohomeotic (PHO). However, SCM is retained at this Ubx PRE despite genetic disruption or knockdown of PHO, PRC1, or PRC2, suggesting that SCM chromatin targeting does not require prior association of these other PcG components. Chromatin immunoprecipitations (IPs) to test the consequences of SCM genetic disruption or knockdown revealed that PHO association is unaffected, but reduced levels of PRE-bound PRC2 and PRC1 were observed. We discuss these results in light of current models for recruitment of PcG complexes to chromatin targets.

  12. Comparative Analysis of Chromatin Binding by Sex Comb on Midleg (SCM) and Other Polycomb Group Repressors at a Drosophila Hox Gene▿

    Science.gov (United States)

    Wang, Liangjun; Jahren, Neal; Miller, Ellen L.; Ketel, Carrie S.; Mallin, Daniel R.; Simon, Jeffrey A.

    2010-01-01

    Sex Comb on Midleg (SCM) is a transcriptional repressor in the Polycomb group (PcG), but its molecular role in PcG silencing is not known. Although SCM can interact with Polycomb repressive complex 1 (PRC1) in vitro, biochemical studies have indicated that SCM is not a core constituent of PRC1 or PRC2. Nevertheless, SCM is just as critical for Drosophila Hox gene silencing as canonical subunits of these well-characterized PcG complexes. To address functional relationships between SCM and other PcG components, we have performed chromatin immunoprecipitation studies using cultured Drosophila Schneider line 2 (S2) cells and larval imaginal discs. We find that SCM associates with a Polycomb response element (PRE) upstream of the Ubx gene which also binds PRC1, PRC2, and the DNA-binding PcG protein Pleiohomeotic (PHO). However, SCM is retained at this Ubx PRE despite genetic disruption or knockdown of PHO, PRC1, or PRC2, suggesting that SCM chromatin targeting does not require prior association of these other PcG components. Chromatin immunoprecipitations (IPs) to test the consequences of SCM genetic disruption or knockdown revealed that PHO association is unaffected, but reduced levels of PRE-bound PRC2 and PRC1 were observed. We discuss these results in light of current models for recruitment of PcG complexes to chromatin targets. PMID:20351181

  13. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    Science.gov (United States)

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  14. Regulation of MntH by a dual Mn(II- and Fe(II-dependent transcriptional repressor (DR2539 in Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Hongxing Sun

    Full Text Available The high intracellular Mn/Fe ratio observed within the bacteria Deinococcus radiodurans may contribute to its remarkable resistance to environmental stresses. We isolated DR2539, a novel regulator of intracellular Mn/Fe homeostasis in D. radiodurans. Electrophoretic gel mobility shift assays (EMSAs revealed that DR2539 binds specifically to the promoter of the manganese acquisition transporter (MntH gene, and that DR0865, the only Fur homologue in D. radiodurans, cannot bind to the promoter of mntH, but it can bind to the promoter of another manganese acquisition transporter, MntABC. β-galactosidase expression analysis indicated that DR2539 acts as a manganese- and iron-dependent transcriptional repressor. Further sequence alignment analysis revealed that DR2539 has evolved some special characteristics. Site-directed mutagenesis suggested that His98 plays an important role in the activities of DR2539, and further protein-DNA binding activity assays showed that the activity of H98Y mutants decreased dramatically relative to wild type DR2539. Our study suggests that D. radiodurans has evolved a very efficient manganese regulation mechanism that involves its high intracellular Mn/Fe ratio and permits resistance to extreme conditions.

  15. Lymphoid Progenitor Cells from Childhood Acute Lymphoblastic Leukemia Are Functionally Deficient and Express High Levels of the Transcriptional Repressor Gfi-1

    Directory of Open Access Journals (Sweden)

    Jessica Purizaca

    2013-01-01

    Full Text Available Acute lymphoblastic leukemia (ALL is the most frequent malignancy of childhood. Substantial progress on understanding the cell hierarchy within ALL bone marrow (BM has been recorded in the last few years, suggesting that both primitive cell fractions and committed lymphoid blasts with immature stem cell-like properties contain leukemia-initiating cells. Nevertheless, the biology of the early progenitors that initiate the lymphoid program remains elusive. The aim of the present study was to investigate the ability of lymphoid progenitors from B-cell precursor ALL BM to proliferate and undergo multilineage differentiation. By phenotype analyses, in vitro proliferation assays, and controlled culture systems, the lymphoid differentiation potentials were evaluated in BM primitive populations from B-cell precursor ALL pediatric patients. When compared to their normal counterparts, functional stem and progenitor cell contents were substantially reduced in ALL BM. Moreover, neither B nor NK or dendritic lymphoid-cell populations developed recurrently from highly purified ALL-lymphoid progenitors, and their proliferation and cell cycle status revealed limited proliferative capacity. Interestingly, a number of quiescence-associated transcription factors were elevated, including the transcriptional repressor Gfi-1, which was highly expressed in primitive CD34+ cells. Together, our findings reveal major functional defects in the primitive hematopoietic component of ALL BM. A possible contribution of high levels of Gfi-1 expression in the regulation of the stem/progenitor cell biology is suggested.

  16. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes.

    Science.gov (United States)

    Feng, Bi-hong; Han, Yan-chao; Xiao, Yun-yi; Kuang, Jian-fei; Fan, Zhong-qi; Chen, Jian-ye; Lu, Wang-jin

    2016-04-01

    The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25 MaDof genes from banana fruit (Musa acuminata), designated as MaDof1-MaDof25 Gene expression analysis in fruit subjected to different ripening conditions revealed that MaDofs were differentially expressed during different stages of ripening. MaDof10, 23, 24, and 25 were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, including MaEXP1/2/3/5, MaXET7, MaPG1, MaPME3, MaPL2, MaCAT, and MaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Mechanism of Iron-Dependent Repressor (IdeR Activation and DNA Binding: A Molecular Dynamics and Protein Structure Network Study.

    Directory of Open Access Journals (Sweden)

    Soma Ghosh

    2015-12-01

    Full Text Available Metalloproteins form a major class of enzymes in the living system that are involved in crucial biological functions such as catalysis, redox reactions and as 'switches' in signal transductions. Iron dependent repressor (IdeR is a metal-sensing transcription factor that regulates free iron concentration in Mycobacterium tuberculosis. IdeR is also known to promote bacterial virulence, making it an important target in the field of therapeutics. Mechanistic details of how iron ions modulate IdeR such that it dimerizes and binds to DNA is not understood clearly. In this study, we have performed molecular dynamic simulations and integrated it with protein structure networks to study the influence of iron on IdeR structure and function. A significant structural variation between the metallated and the non-metallated system is observed. Our simulations clearly indicate the importance of iron in stabilizing its monomeric subunit, which in turn promotes dimerization. However, the most striking results are obtained from the simulations of IdeR-DNA complex in the absence of metals, where at the end of 100ns simulations, the protein subunits are seen to rapidly dissociate away from the DNA, thereby forming an excellent resource to investigate the mechanism of DNA binding. We have also investigated the role of iron as an allosteric regulator of IdeR that positively induces IdeR-DNA complex formation. Based on this study, a mechanistic model of IdeR activation and DNA binding has been proposed.

  18. Evidence for involvement of the C-terminal domain in the dimerization of the CopY repressor protein from Enterococcus hirae

    Energy Technology Data Exchange (ETDEWEB)

    Pazehoski, Kristina O., E-mail: pazehosk@pitt.edu [Division of Natural Sciences, University of Pittsburgh at Greensburg, Greensburg, PA 15601 (United States); Cobine, Paul A., E-mail: pac0006@auburn.edu [Department of Biological Sciences, 101 Rouse Life Science Building, Auburn University, AL 36849 (United States); Winzor, Donald J. [Department of Biochemistry, University of Queensland, Brisbane, Queensland 4072 (Australia); Dameron, Charles T., E-mail: cdameron@francis.edu [Department of Chemistry, Saint Francis University, Loretto, PA 15940 (United States)

    2011-03-11

    Research highlights: {yields} A metal-binding protein domain is directly involved in protein dimerization. {yields} Fusing the metal-binding domain to a monomeric protein induces dimerization. {yields} Frontal size-exclusion chromatography measures the strength of dimer interaction. {yields} Ultracentrifugation studies confirm the influence of metal binding on dimerization. -- Abstract: Metal binding to the C-terminal region of the copper-responsive repressor protein CopY is responsible for homodimerization and the regulation of the copper homeostasis pathway in Enterococcus hirae. Specific involvement of the 38 C-terminal residues of CopY in dimerization is indicated by zonal and frontal (large zone) size-exclusion chromatography studies. The studies demonstrate that the attachment of these CopY residues to the immunoglobulin-binding domain of streptococcal protein G (GB1) promotes dimerization of the monomeric protein. Although sensitivity of dimerization to removal of metal from the fusion protein is smaller than that found for CopY (as measured by ultracentrifugation studies), the demonstration that an unrelated protein (GB1) can be induced to dimerize by extending its sequence with the C-terminal portion of CopY confirms the involvement of this region in CopY homodimerization.

  19. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula[OPEN

    Science.gov (United States)

    2015-01-01

    Accumulation of anthocyanins and proanthocyanidins (PAs) is limited to specific cell types and developmental stages, but little is known about how antagonistically acting transcriptional regulators work together to determine temporal and spatial patterning of pigmentation at the cellular level, especially for PAs. Here, we characterize MYB2, a transcriptional repressor regulating both anthocyanin and PA biosynthesis in the model legume Medicago truncatula. MYB2 was strongly upregulated by MYB5, a major regulator of PA biosynthesis in M. truncatula and a component of MYB-basic helix loop helix-WD40 (MBW) activator complexes. Overexpression of MYB2 abolished anthocyanin and PA accumulation in M. truncatula hairy roots and Arabidopsis thaliana seeds, respectively. Anthocyanin deposition was expanded in myb2 mutant seedlings and flowers accompanied by increased anthocyanin content. PA mainly accumulated in the epidermal layer derived from the outer integument in the M. truncatula seed coat, starting from the hilum area. The area of PA accumulation and ANTHOCYANIDIN REDUCTASE expression was expanded into the seed body at the early stage of seed development in the myb2 mutant. Genetic, biochemical, and cell biological evidence suggests that MYB2 functions as part of a multidimensional regulatory network to define the temporal and spatial pattern of anthocyanin and PA accumulation linked to developmental processes. PMID:26410301

  20. DOF AFFECTING GERMINATION 2 is a positive regulator of light-mediated seed germination and is repressed by DOF AFFECTING GERMINATION 1.

    Science.gov (United States)

    Santopolo, Silvia; Boccaccini, Alessandra; Lorrai, Riccardo; Ruta, Veronica; Capauto, Davide; Minutello, Emanuele; Serino, Giovanna; Costantino, Paolo; Vittorioso, Paola

    2015-03-04

    The transcription factor DOF AFFECTING GERMINATION1 (DAG1) is a repressor of the light-mediated seed germination process. DAG1 acts downstream PHYTOCHROME INTERACTING FACTOR3-LIKE 5 (PIL5), the master repressor, and negatively regulates gibberellin biosynthesis by directly repressing the biosynthetic gene AtGA3ox1. The Dof protein DOF AFFECTING GERMINATION (DAG2) shares a high degree of aminoacidic identity with DAG1. While DAG1 inactivation considerably increases the germination capability of seeds, the dag2 mutant has seeds with a germination potential substantially lower than the wild-type, indicating that these factors may play opposite roles in seed germination. We show here that DAG2 expression is positively regulated by environmental factors triggering germination, whereas its expression is repressed by PIL5 and DAG1; by Chromatin Immuno Precipitation (ChIP) analysis we prove that DAG1 directly regulates DAG2. In addition, we show that Red light significantly reduces germination of dag2 mutant seeds. In agreement with the seed germination phenotype of the dag2 mutant previously published, the present data prove that DAG2 is a positive regulator of the light-mediated seed germination process, and particularly reveal that this protein plays its main role downstream of PIL5 and DAG1 in the phytochrome B (phyB)-mediated pathway.

  1. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  2. The LIM homeodomain transcription factor LHX6: a transcriptional repressor that interacts with pituitary homeobox 2 (PITX2) to regulate odontogenesis.

    Science.gov (United States)

    Zhang, Zichao; Gutierrez, Diana; Li, Xiao; Bidlack, Felicitas; Cao, Huojun; Wang, Jianbo; Andrade, Kelsey; Margolis, Henry C; Amendt, Brad A

    2013-01-25

    LHX6 is a LIM-homeobox transcription factor expressed during embryogenesis; however, the molecular mechanisms regulating LHX6 transcriptional activities are unknown. LHX6 and the PITX2 homeodomain transcription factor have overlapping expression patterns during tooth and craniofacial development, and in this report, we demonstrate new transcriptional mechanisms for these factors. PITX2 and LHX6 are co-expressed in the oral and dental epithelium and epithelial cell lines. Lhx6 expression is increased in Pitx2c transgenic mice and decreased in Pitx2 null mice. PITX2 activates endogenous Lhx6 expression and the Lhx6 promoter, whereas LHX6 represses its promoter activity. Chromatin immunoprecipitation experiments reveal endogenous PITX2 binding to the Lhx6 promoter. LHX6 directly interacts with PITX2 to inhibit PITX2 transcriptional activities and activation of multiple promoters. Bimolecular fluorescence complementation assays reveal an LHX6·PITX2 nuclear interaction in living cells. LHX6 has a dominant repressive effect on the PITX2 synergistic activation with LEF-1 and β-catenin co-factors. Thus, LHX6 acts as a transcriptional repressor and represses the expression of several genes involved in odontogenesis. We have identified specific defects in incisor, molar, mandible, bone, and root development and late stage enamel formation in Lhx6 null mice. Amelogenin and ameloblastin expression is reduced and/or delayed in the Lhx6 null mice, potentially resulting from defects in dentin deposition and ameloblast differentiation. Our results demonstrate that LHX6 regulates cell proliferation in the cervical loop and promotes cell differentiation in the anterior region of the incisor. We demonstrate new molecular mechanisms for LHX6 and an interaction with PITX2 for normal craniofacial and tooth development.

  3. Structural explanation for allolactose (lac operon inducer) synthesis by lacZ β-galactosidase and the evolutionary relationship between allolactose synthesis and the lac repressor.

    Science.gov (United States)

    Wheatley, Robert W; Lo, Summie; Jancewicz, Larisa J; Dugdale, Megan L; Huber, Reuben E

    2013-05-03

    β-Galactosidase (lacZ) has bifunctional activity. It hydrolyzes lactose to galactose and glucose and catalyzes the intramolecular isomerization of lactose to allolactose, the lac operon inducer. β-Galactosidase promotes the isomerization by means of an acceptor site that binds glucose after its cleavage from lactose and thus delays its exit from the site. However, because of its relatively low affinity for glucose, details of this site have remained elusive. We present structural data mapping the glucose site based on a substituted enzyme (G794A-β-galactosidase) that traps allolactose. Various lines of evidence indicate that the glucose of the trapped allolactose is in the acceptor position. The evidence includes structures with Bis-Tris (2,2-bis(hydroxymethyl)-2,2',2″-nitrilotriethanol) and L-ribose in the site and kinetic binding studies with substituted β-galactosidases. The site is composed of Asn-102, His-418, Lys-517, Ser-796, Glu-797, and Trp-999. Ser-796 and Glu-797 are part of a loop (residues 795-803) that closes over the active site. This loop appears essential for the bifunctional nature of the enzyme because it helps form the glucose binding site. In addition, because the loop is mobile, glucose binding is transient, allowing the release of some glucose. Bioinformatics studies showed that the residues important for interacting with glucose are only conserved in a subset of related enzymes. Thus, intramolecular isomerization is not a universal feature of β-galactosidases. Genomic analyses indicated that lac repressors were co-selected only within the conserved subset. This shows that the glucose binding site of β-galactosidase played an important role in lac operon evolution.

  4. The Oct1 homolog Nubbin is a repressor of NF-κB-dependent immune gene expression that increases the tolerance to gut microbiota.

    Science.gov (United States)

    Dantoft, Widad; Davis, Monica M; Lindvall, Jessica M; Tang, Xiongzhuo; Uvell, Hanna; Junell, Anna; Beskow, Anne; Engström, Ylva

    2013-09-06

    Innate immune responses are evolutionarily conserved processes that provide crucial protection against invading organisms. Gene activation by potent NF-κB transcription factors is essential both in mammals and Drosophila during infection and stress challenges. If not strictly controlled, this potent defense system can activate autoimmune and inflammatory stress reactions, with deleterious consequences for the organism. Negative regulation to prevent gene activation in healthy organisms, in the presence of the commensal gut flora, is however not well understood. We show that the Drosophila homolog of mammalian Oct1/POU2F1 transcription factor, called Nubbin (Nub), is a repressor of NF-κB/Relish-driven antimicrobial peptide gene expression in flies. In nub1 mutants, which lack Nub-PD protein, excessive expression of antimicrobial peptide genes occurs in the absence of infection, leading to a significant reduction of the numbers of cultivatable gut commensal bacteria. This aberrant immune gene expression was effectively blocked by expression of Nub from a transgene. We have identified an upstream regulatory region, containing a cluster of octamer sites, which is required for repression of antimicrobial peptide gene expression in healthy flies. Chromatin immunoprecipitation experiments demonstrated that Nub binds to octamer-containing promoter fragments of several immune genes. Gene expression profiling revealed that Drosophila Nub negatively regulates many genes that are involved in immune and stress responses, while it is a positive regulator of genes involved in differentiation and metabolism. This study demonstrates that a large number of genes that are activated by NF-κB/Relish in response to infection are normally repressed by the evolutionarily conserved Oct/POU transcription factor Nub. This prevents uncontrolled gene activation and supports the existence of a normal gut flora. We suggest that Nub protein plays an ancient role, shared with mammalian Oct

  5. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia.

    Directory of Open Access Journals (Sweden)

    Alvaro Hernández

    2011-06-01

    Full Text Available The wide utilization of biocides poses a concern on the impact of these compounds on natural bacterial populations. Furthermore, it has been demonstrated that biocides can select, at least in laboratory experiments, antibiotic resistant bacteria. This situation has raised concerns, not just on scientists and clinicians, but also on regulatory agencies, which are demanding studies on the impact that the utilization of biocides may have on the development on resistance and consequently on the treatment of infectious diseases and on human health. In the present article, we explored the possibility that the widely used biocide triclosan might induce antibiotic resistance using as a model the opportunistic pathogen Stenotrophomonas maltophilia. Biochemical, functional and structural studies were performed, focusing on SmeDEF, the most relevant antibiotic- and triclosan-removing multidrug efflux pump of S. maltophilia. Expression of smeDEF is regulated by the repressor SmeT. Triclosan released SmeT from its operator and induces the expression of smeDEF, thus reducing the susceptibility of S. maltophilia to antibiotics in the presence of the biocide. The structure of SmeT bound to triclosan is described. Two molecules of triclosan were found to bind to one subunit of the SmeT homodimer. The binding of the biocide stabilizes the N terminal domain of both subunits in a conformation unable to bind DNA. To our knowledge this is the first crystal structure obtained for a transcriptional regulator bound to triclosan. This work provides the molecular basis for understanding the mechanisms allowing the induction of phenotypic resistance to antibiotics by triclosan.

  6. The Binding of Triclosan to SmeT, the Repressor of the Multidrug Efflux Pump SmeDEF, Induces Antibiotic Resistance in Stenotrophomonas maltophilia

    Science.gov (United States)

    Romero, Antonio; Martínez, José L.

    2011-01-01

    The wide utilization of biocides poses a concern on the impact of these compounds on natural bacterial populations. Furthermore, it has been demonstrated that biocides can select, at least in laboratory experiments, antibiotic resistant bacteria. This situation has raised concerns, not just on scientists and clinicians, but also on regulatory agencies, which are demanding studies on the impact that the utilization of biocides may have on the development on resistance and consequently on the treatment of infectious diseases and on human health. In the present article, we explored the possibility that the widely used biocide triclosan might induce antibiotic resistance using as a model the opportunistic pathogen Stenotrophomonas maltophilia. Biochemical, functional and structural studies were performed, focusing on SmeDEF, the most relevant antibiotic- and triclosan-removing multidrug efflux pump of S. maltophilia. Expression of smeDEF is regulated by the repressor SmeT. Triclosan released SmeT from its operator and induces the expression of smeDEF, thus reducing the susceptibility of S. maltophilia to antibiotics in the presence of the biocide. The structure of SmeT bound to triclosan is described. Two molecules of triclosan were found to bind to one subunit of the SmeT homodimer. The binding of the biocide stabilizes the N terminal domain of both subunits in a conformation unable to bind DNA. To our knowledge this is the first crystal structure obtained for a transcriptional regulator bound to triclosan. This work provides the molecular basis for understanding the mechanisms allowing the induction of phenotypic resistance to antibiotics by triclosan. PMID:21738470

  7. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis

    Science.gov (United States)

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-01-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  8. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor*

    Science.gov (United States)

    Valencia-Sama, Ivette; Zhao, Yulei; Lai, Dulcie; Janse van Rensburg, Helena J.; Hao, Yawei; Yang, Xiaolong

    2015-01-01

    Transcriptional co-activator with a PDZ binding domain (TAZ) is a WW domain-containing transcriptional co-activator and a core component of an emerging Hippo signaling pathway that regulates organ size, tumorigenesis, metastasis, and drug resistance. TAZ regulates these biological functions by up-regulating downstream cellular genes through transactivation of transcription factors such as TEAD and TTF1. To understand the molecular mechanisms underlying TAZ-induced tumorigenesis, we have recently performed a gene expression profile analysis by overexpressing TAZ in mammary cells. In addition to the TAZ-up-regulated genes that were confirmed in our previous studies, we identified a large number of cellular genes that were down-regulated by TAZ. In this study, we have confirmed these down-regulated genes (including cytokines, chemokines, and p53 gene family members) as bona fide downstream transcriptional targets of TAZ. By using human breast and lung epithelial cells, we have further characterized ΔNp63, a p53 gene family member, and shown that TAZ suppresses ΔNp63 mRNA, protein expression, and promoter activity through interaction with the transcription factor TEAD. We also show that TEAD can inhibit ΔNp63 promoter activity and that TAZ can directly interact with ΔNp63 promoter-containing TEAD binding sites. Finally, we provide functional evidence that down-regulation of ΔNp63 by TAZ may play a role in regulating cell migration. Altogether, this study provides novel evidence that the Hippo component TAZ can function as a co-repressor and regulate biological functions by negatively regulating downstream cellular genes. PMID:25995450

  9. Hippo Component TAZ Functions as a Co-repressor and Negatively Regulates ΔNp63 Transcription through TEA Domain (TEAD) Transcription Factor.

    Science.gov (United States)

    Valencia-Sama, Ivette; Zhao, Yulei; Lai, Dulcie; Janse van Rensburg, Helena J; Hao, Yawei; Yang, Xiaolong

    2015-07-03

    Transcriptional co-activator with a PDZ binding domain (TAZ) is a WW domain-containing transcriptional co-activator and a core component of an emerging Hippo signaling pathway that regulates organ size, tumorigenesis, metastasis, and drug resistance. TAZ regulates these biological functions by up-regulating downstream cellular genes through transactivation of transcription factors such as TEAD and TTF1. To understand the molecular mechanisms underlying TAZ-induced tumorigenesis, we have recently performed a gene expression profile analysis by overexpressing TAZ in mammary cells. In addition to the TAZ-up-regulated genes that were confirmed in our previous studies, we identified a large number of cellular genes that were down-regulated by TAZ. In this study, we have confirmed these down-regulated genes (including cytokines, chemokines, and p53 gene family members) as bona fide downstream transcriptional targets of TAZ. By using human breast and lung epithelial cells, we have further characterized ΔNp63, a p53 gene family member, and shown that TAZ suppresses ΔNp63 mRNA, protein expression, and promoter activity through interaction with the transcription factor TEAD. We also show that TEAD can inhibit ΔNp63 promoter activity and that TAZ can directly interact with ΔNp63 promoter-containing TEAD binding sites. Finally, we provide functional evidence that down-regulation of ΔNp63 by TAZ may play a role in regulating cell migration. Altogether, this study provides novel evidence that the Hippo component TAZ can function as a co-repressor and regulate biological functions by negatively regulating downstream cellular genes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Positive Regulation of Staphylococcal Enterotoxin H by Rot (Repressor of Toxin) Protein and Its Importance in Clonal Complex 81 Subtype 1 Lineage-Related Food Poisoning.

    Science.gov (United States)

    Sato'o, Yusuke; Hisatsune, Junzo; Nagasako, Yuria; Ono, Hisaya K; Omoe, Katsuhiko; Sugai, Motoyuki

    2015-11-01

    We previously demonstrated the clonal complex 81 (CC81) subtype 1 lineage is the major staphylococcal food poisoning (SFP)-associated lineage in Japan (Y. Sato'o et al., J Clin Microbiol 52:2637-2640, 2014, http://dx.doi.org/10.1128/JCM.00661-14). Strains of this lineage produce staphylococcal enterotoxin H (SEH) in addition to SEA. However, an evaluation of the risk for the recently reported SEH has not been sufficiently conducted. We first searched for staphylococcal enterotoxin (SE) genes and SE proteins in milk samples that caused a large SFP outbreak in Japan. Only SEA and SEH were detected, while there were several SE genes detected in the samples. We next designed an experimental model using a meat product to assess the productivity of SEs and found that only SEA and SEH were detectably produced in situ. Therefore, we investigated the regulation of SEH production using a CC81 subtype 1 isolate. Through mutant analysis of global regulators, we found the repressor of toxin (Rot) functioned oppositely as a stimulator of SEH production. SEA production was not affected by Rot. seh mRNA expression correlated with rot both in media and on the meat product, and the Rot protein was shown to directly bind to the seh promoter. The seh promoter sequence was predicted to form a loop structure and to hide the RNA polymerase binding sequences. We propose Rot binds to the promoter sequence of seh and unfolds the secondary structure that may lead the RNA polymerase to bind the promoter, and then seh mRNA transcription begins. This alternative Rot regulation for SEH may contribute to sufficient toxin production by the CC81 subtype 1 lineage in foods to induce SFP. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The Glycerol-Dependent Metabolic Persistence of Pseudomonas putida KT2440 Reflects the Regulatory Logic of the GlpR Repressor

    Science.gov (United States)

    Nikel, Pablo I.; Romero-Campero, Francisco J.; Zeidman, Joshua A.; Goñi-Moreno, Ángel

    2015-01-01

    ABSTRACT The growth of the soil bacterium Pseudomonas putida KT2440 on glycerol as the sole carbon source is characterized by a prolonged lag phase, not observed with other carbon substrates. We examined the bacterial growth in glycerol cultures while monitoring the metabolic activity of individual cells. Fluorescence microscopy and flow cytometry, as well as the analysis of the temporal start of growth in single-cell cultures, revealed that adoption of a glycerol-metabolizing regime was not the result of a gradual change in the whole population but rather reflected a time-dependent bimodal switch between metabolically inactive (i.e., nongrowing) and fully active (i.e., growing) bacteria. A transcriptional Φ(glpD-gfp) fusion (a proxy of the glycerol-3-phosphate [G3P] dehydrogenase activity) linked the macroscopic phenotype to the expression of the glp genes. Either deleting glpR (encoding the G3P-responsive transcriptional repressor that controls the expression of the glpFKRD gene cluster) or altering G3P formation (by overexpressing glpK, encoding glycerol kinase) abolished the bimodal glpD expression. These manipulations eliminated the stochastic growth start by shortening the otherwise long lag phase. Provision of glpR in trans restored the phenotypes lost in the ΔglpR mutant. The prolonged nongrowth regime of P. putida on glycerol could thus be traced to the regulatory device controlling the transcription of the glp genes. Since the physiological agonist of GlpR is G3P, the arrangement of metabolic and regulatory components at this checkpoint merges a positive feedback loop with a nonlinear transcriptional response, a layout fostering the observed time-dependent shift between two alternative physiological states. PMID:25827416

  12. Nordic Mediation Reseach

    DEFF Research Database (Denmark)

    A presentation of 12 studies on mediation from researchers from Denmark, Finland, Norway and Sweden.......A presentation of 12 studies on mediation from researchers from Denmark, Finland, Norway and Sweden....

  13. microRNA 21-mediated suppression of Sprouty1 by Pokemon affects liver cancer cell growth and proliferation.

    Science.gov (United States)

    Jin, Xiu-Li; Sun, Qin-Sheng; Liu, Feng; Yang, Hong-Wei; Liu, Min; Liu, Hong-Xia; Xu, Wei; Jiang, Yu-Yang

    2013-07-01

    Transcriptional repressor Pokemon is a critical factor in embryogenesis, development, cell proliferation, differentiation, and oncogenesis, thus behaving as an oncogene. Oncomine database suggests a potential correlation between the expressions of Pokemon and Sprouty1. This study investigated the regulatory role of Pokemon in Sprouty1 expression and the effect on liver cancer cell growth and proliferation, revealing a novel miR-21-mediated regulatory circuit. In normal (HL-7702) and cancer (QGY-7703) liver cell lines, Sprouty1 expression is inversely correlated with Pokemon levels. Targeted expression or siRNA-mediated silencing showed that Pokemon is a repressor of Sprouty1 expression at both mRNA and protein levels, but Pokemon cannot affect the promoter activity of Sprouty1. Sprouty1 is a target of miR-21 and interestingly, we found that miR-21 is up-regulated by Pokemon in liver cancer cells. Luciferase reporter assays showed that Pokemon up-regulated miR-21 transcription in a dose-dependent manner, and ChIP assay exhibited a direct binding of Pokemon to the miR-21 promoter at -747 to -399 bp. Site-directed mutagenesis of the GC boxes at -684 to -679 bp and -652 to -647 bp of miR-21 promoter abolished the regulatory activity by Pokemon. Furthermore, we found that the modulation of Pokemon and miR-21 expression affected the growth and proliferation of liver cancer cells QGY-7703. In summary, our findings demonstrate that Pokemon suppresses Sprouty1 expression through a miR-21-mediated mechanism, affecting the growth and proliferation of liver cancer cells. This study recognized miR-21 and Sprouty1 as novel targets of the Pokemon regulatory network. Copyright © 2013 Wiley Periodicals, Inc.

  14. mediation: R Package for Causal Mediation Analysis

    Directory of Open Access Journals (Sweden)

    Dustin Tingley

    2014-09-01

    Full Text Available In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting such an analysis. The package is organized into two distinct approaches. Using the model-based approach, researchers can estimate causal mediation effects and conduct sensitivity analysis under the standard research design. Furthermore, the design-based approach provides several analysis tools that are applicable under different experimental designs. This approach requires weaker assumptions than the model-based approach. We also implement a statistical method for dealing with multiple (causally dependent mediators, which are often encountered in practice. Finally, the package also offers a methodology for assessing causal mediation in the presence of treatment noncompliance, a common problem in randomized trials.

  15. Bayesian Mediation Analysis

    Science.gov (United States)

    Yuan, Ying; MacKinnon, David P.

    2009-01-01

    In this article, we propose Bayesian analysis of mediation effects. Compared with conventional frequentist mediation analysis, the Bayesian approach has several advantages. First, it allows researchers to incorporate prior information into the mediation analysis, thus potentially improving the efficiency of estimates. Second, under the Bayesian…

  16. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression.

    Science.gov (United States)

    Souslova, Tatiana; Mirédin, Kim; Millar, Anne M; Albert, Paul R

    2017-12-01

    Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immunoprecipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal

  17. Retinoic acid accelerates downregulation of the Xist repressor, Oct4, and increases the likelihood of Xist activation when Tsix is deficient

    Directory of Open Access Journals (Sweden)

    Ahn Janice Y

    2010-08-01

    qualitatively aberrant Xist clusters. Conclusions We conclude that RA treatment leads to premature downregulation of Oct4 and partial derepression of Xist irrespective of X-chromosome counting. RA-induced Xist clusters in male cells do not result in global or stable silencing, and excess cell death is not observed. These data and RA's known pleiotropic effects on ES transcription networks suggest that RA differentation bypasses normal X-inactivation controls and should be used judiciously. We propose that the likelihood of Xist expression is determined by a balance of multiple Xist activators and repressors, and that levels of Oct4 and Tsix are crucial toward achieving this balance.

  18. An analysis of the binding of repressor protein ModE to modABCD (molybdate transport) operator/promoter DNA of Escherichia coli.

    Science.gov (United States)

    Grunden, A M; Self, W T; Villain, M; Blalock, J E; Shanmugam, K T

    1999-08-20

    Expression of the modABCD operon in Escherichia coli, which codes for a molybdate-specific transporter, is repressed by ModE in vivo in a molybdate-dependent fashion. In vitro DNase I-footprinting experiments identified three distinct regions of protection by ModE-molybdate on the modA operator/promoter DNA, GTTATATT (-15 to -8; region 1), GCCTACAT (-4 to +4; region 2), and GTTACAT (+8 to +14; region 3). Within the three regions of the protected DNA, a pentamer sequence, TAYAT (Y = C or T), can be identified. DNA-electrophoretic mobility experiments showed that the protected regions 1 and 2 are essential for binding of ModE-molybdate to DNA, whereas the protected region 3 increases the affinity of the DNA to the repressor. The stoichiometry of this interaction was found to be two ModE-molybdate per modA operator DNA. ModE-molybdate at 5 nM completely protected the modABCD operator/promoter DNA from DNase I-catalyzed hydrolysis, whereas ModE alone failed to protect the DNA even at 100 nM. The apparent K(d) for the interaction between the modA operator DNA and ModE-molybdate was 0.3 nM, and the K(d) increased to 8 nM in the absence of molybdate. Among the various oxyanions tested, only tungstate replaced molybdate in the repression of modA by ModE, but the affinity of ModE-tungstate for modABCD operator DNA was 6 times lower than with ModE-molybdate. A mutant ModE(T125I) protein, which repressed modA-lac even in the absence of molybdate, protected the same region of modA operator DNA in the absence of molybdate. The apparent K(d) for the interaction between modA operator DNA and ModE(T125I) was 3 nM in the presence of molybdate and 4 nM without molybdate. The binding of molybdate to ModE resulted in a decrease in fluorescence emission, indicating a conformational change of the protein upon molybdate binding. The fluorescence emission spectra of mutant ModE proteins, ModE(T125I) and ModE(Q216*), were unaffected by molybdate. The molybdate-independent mutant Mod

  19. The Functions of Mediator in Candida albicans Support a Role in Shaping Species-Specific Gene Expression

    Science.gov (United States)

    Jelicic, Branka; Lo, Tricia L.; Beaurepaire, Cecile; Bantun, Farkad; Quenault, Tara; Boag, Peter R.; Ramm, Georg; Callaghan, Judy; Beilharz, Traude H.; Nantel, André; Peleg, Anton Y.; Traven, Ana

    2012-01-01

    The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species. PMID:22496666

  20. The functions of Mediator in Candida albicans support a role in shaping species-specific gene expression.

    Directory of Open Access Journals (Sweden)

    Nathalie Uwamahoro

    Full Text Available The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species.

  1. General gauge mediation

    International Nuclear Information System (INIS)

    Meade, Patrick; Seiberg, Nathan; Shih, David

    2009-01-01

    We give a general definition of gauge mediated supersymmetry breaking which encompasses all the known gauge mediation models. In particular, it includes both models with messengers as well as direct mediation models. A formalism for computing the soft terms in the generic model is presented. Such a formalism is necessary in strongly-coupled direct mediation models where perturbation theory cannot be used. It allows us to identify features of the entire class of gauge mediation models and to distinguish them from specific signatures of various subclasses. (author)

  2. Evaluative Profiling of Arsenic Sensing and Regulatory Systems in the Human Microbiome Project Genomes

    Directory of Open Access Journals (Sweden)

    Raphael D. Isokpehi

    2014-01-01

    Full Text Available The influence of environmental chemicals including arsenic, a type 1 carcinogen, on the composition and function of the human-associated microbiota is of significance in human health and disease. We have developed a suite of bioinformatics and visual analytics methods to evaluate the availability (presence or absence and abundance of functional annotations in a microbial genome for seven Pfam protein families: As(III-responsive transcriptional repressor (ArsR, anion-transporting ATPase (ArsA, arsenical pump membrane protein (ArsB, arsenate reductase (ArsC, arsenical resistance operon transacting repressor (ArsD, water/glycerol transport protein (aquaporins, and universal stress protein (USP. These genes encode function for sensing and/or regulating arsenic content in the bacterial cell. The evaluative profiling strategy was applied to 3,274 genomes from which 62 genomes from 18 genera were identified to contain genes for the seven protein families. Our list included 12 genomes in the Human Microbiome Project (HMP from the following genera: Citrobacter, Escherichia, Lactobacillus, Providencia, Rhodococcus , and Staphylococcus. Gene neighborhood analysis of the arsenic resistance operon in the genome of Bacteroides thetaiotaomicron VPI-5482, a human gut symbiont, revealed the adjacent arrangement of genes for arsenite binding/transfer (ArsD and cytochrome c biosynthesis (DsbD_2. Visual analytics facilitated evaluation of protein annotations in 367 genomes in the phylum Bacteroidetes identified multiple genomes in which genes for ArsD and DsbD_2 were adjacently arranged. Cytochrome c , produced by a posttranslational process, consists of heme-containing proteins important for cellular energy production and signaling. Further research is desired to elucidate arsenic resistance and arsenic-mediated cellular energy production in the Bacteroidetes.

  3. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    International Nuclear Information System (INIS)

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-01-01

    Highlights: ► Sigma1 ligand treatment mediates decrease in tumor cell mass. ► Identification of a Sigma1 ligand with reversible translational repressor actions. ► Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  4. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Felix J., E-mail: fkim@drexelmed.edu [Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102-1192 (United States); Schrock, Joel M. [Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Spino, Christina M. [Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102-1192 (United States); Marino, Jacqueline C.; Pasternak, Gavril W. [Molecular Pharmacology and Chemistry Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States)

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer Sigma1 ligand treatment mediates decrease in tumor cell mass. Black-Right-Pointing-Pointer Identification of a Sigma1 ligand with reversible translational repressor actions. Black-Right-Pointing-Pointer Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  5. Flexible Mediation Analysis With Multiple Mediators.

    Science.gov (United States)

    Steen, Johan; Loeys, Tom; Moerkerke, Beatrijs; Vansteelandt, Stijn

    2017-07-15

    The advent of counterfactual-based mediation analysis has triggered enormous progress on how, and under what assumptions, one may disentangle path-specific effects upon combining arbitrary (possibly nonlinear) models for mediator and outcome. However, current developments have largely focused on single mediators because required identification assumptions prohibit simple extensions to settings with multiple mediators that may depend on one another. In this article, we propose a procedure for obtaining fine-grained decompositions that may still be recovered from observed data in such complex settings. We first show that existing analytical approaches target specific instances of a more general set of decompositions and may therefore fail to provide a comprehensive assessment of the processes that underpin cause-effect relationships between exposure and outcome. We then outline conditions for obtaining the remaining set of decompositions. Because the number of targeted decompositions increases rapidly with the number of mediators, we introduce natural effects models along with estimation methods that allow for flexible and parsimonious modeling. Our procedure can easily be implemented using off-the-shelf software and is illustrated using a reanalysis of the World Health Organization's Large Analysis and Review of European Housing and Health Status (WHO-LARES) study on the effect of mold exposure on mental health (2002-2003). © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. c-Myb protein interacts with Rcd-1, a component of the CCR4 transcription mediator complex.

    Science.gov (United States)

    Haas, Martin; Siegert, Michaela; Schürmann, André; Sodeik, Beate; Wolfes, Heiner

    2004-06-29

    Transcriptional initiation of eukaryotic genes depends on the cooperative interaction of various transcription factors. Using the yeast two-hybrid assay, we have identified the murine Rcd-1 protein as a cofactor of the c-myb proto-oncogene product. Rcd-1 is evolutionarily conserved among many species, and moreover the yeast homologue CAF40 is part of the carbon catabolite repressor protein transcriptional mediator thought to be involved in the negative regulation of genes transcribed by RNA polymerase II. Rcd-1 is located mainly in the nucleus, and it interacts with c-Myb both in vitro and in vivo. The activation of the myeloid c-myb-specific mim-1 promoter is repressed by Rcd-1. Interestingly, rcd-1 is an erythropoietin regulated gene, which also represses the action of the AP-1 transcription factor on its target genes.

  7. Immunologically mediated oral diseases

    OpenAIRE

    Jimson, Sudha; Balachader, N.; Anita, N.; Babu, R.

    2015-01-01

    Immune mediated diseases of oral cavity are uncommon. The lesions may be self-limiting and undergo remission spontaneously. Among the immune mediated oral lesions the most important are lichen planus, pemphigus, erythema multiformi, epidermolysis bullosa, systemic lupus erythematosis. Cellular and humoral mediated immunity play a major role directed against epithelial and connective tissue in chronic and recurrent patterns. Confirmatory diagnosis can be made by biopsy, direct and indirect imm...

  8. Applied mediation analyses

    DEFF Research Database (Denmark)

    Lange, Theis; Hansen, Kim Wadt; Sørensen, Rikke

    2017-01-01

    In recent years, mediation analysis has emerged as a powerful tool to disentangle causal pathways from an exposure/treatment to clinically relevant outcomes. Mediation analysis has been applied in scientific fields as diverse as labour market relations and randomized clinical trials of heart...... disease treatments. In parallel to these applications, the underlying mathematical theory and computer tools have been refined. This combined review and tutorial will introduce the reader to modern mediation analysis including: the mathematical framework; required assumptions; and software implementation...

  9. Implementing general gauge mediation

    International Nuclear Information System (INIS)

    Carpenter, Linda M.; Dine, Michael; Festuccia, Guido; Mason, John D.

    2009-01-01

    Recently there has been much progress in building models of gauge mediation, often with predictions different than those of minimal gauge mediation. Meade, Seiberg, and Shih have characterized the most general spectrum which can arise in gauge-mediated models. We discuss some of the challenges of building models of general gauge mediation, especially the problem of messenger parity and issues connected with R symmetry breaking and CP violation. We build a variety of viable, weakly coupled models which exhibit some or all of the possible low energy parameters.

  10. The Schizosaccharomyces pombe Mediator

    DEFF Research Database (Denmark)

    Venturi, Michela

    , Schizosaccharomyces pombe and mammalian Mediator. In our study, we have taken the S. pombe Mediator into consideration and characterized genetically and biochemically two subunits already know in S. cerevisiae, Med9 and Med11, but still not identified in the S. pombe Mediator. Genetic analysis has shown that med9...... complex, but our results did not exclude it completely either. Our attempts to demonstrate the presence of these two subunits in the Mediator complex remain inconclusive primarily due to the lack of proper expression of the tagged versions of the proteins. However, we have paved a way to further...

  11. The Solanum lycopersicum Zinc Finger2 Cysteine-2/Histidine-2 Repressor-Like Transcription Factor Regulates Development and Tolerance to Salinity in Tomato and Arabidopsis(1[W])

    Czech Academy of Sciences Publication Activity Database

    Hichri, I.; Muhovski, Y.; Žižková, Eva; Dobrev, Petre; Franco-Zorrilla, J.M.; Solano, R.; Lopez-Vidriero, I.; Motyka, Václav; Lutts, S.

    2014-01-01

    Roč. 164, č. 4 (2014), s. 1967-1990 ISSN 0032-0889 R&D Projects: GA ČR(CZ) GAP506/11/0774 Institutional support: RVO:61389030 Keywords : RICE ORYZA-SATIVA * AGROBACTERIUM -MEDIATED TRANSFORMATION * TARGET-SEQUENCE RECOGNITION Subject RIV: EF - Botanics Impact factor: 6.841, year: 2014

  12. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. Laccase/Mediator Systems

    NARCIS (Netherlands)

    Hilgers, Roelant; Vincken, Jean Paul; Gruppen, Harry; Kabel, Mirjam A.

    2018-01-01

    Laccase-mediator systems (LMS) have been widely studied for their capacity to oxidize the nonphenolic subunits of lignin (70-90% of the polymer). The phenolic subunits (10-30% of the polymer), which can also be oxidized without mediators, have received considerably less attention. Consequently, it

  14. Music, radio and mediatization

    DEFF Research Database (Denmark)

    Michelsen, Morten; Krogh, Mads

    2016-01-01

    Mediatization has become a key concept for understanding the relations between media and other cultural and social fields. Contributing to the discussions related to the concept of mediatization, this article discusses how practices of radio and music(al life) influence each other. We follow Deacon......’s and Stanyer’s advice to supplement the concept of mediatization with ‘a series of additional concepts at lower levels of abstraction’ and suggest, in this respect, the notion of heterogeneous milieus of music–radio. Hereby, we turn away from the all-encompassing perspectives related to the concept...... of mediatization where media as such seem to be ascribed agency. Instead, we consider historical accounts of music–radio in order to address the complex nonlinearity of concrete processes of mediatization as they take place in the multiple meetings between a decentred notion of radio and musical life....

  15. Two-Stage Translational Control of Dentate Gyrus LTP Consolidation Is Mediated by Sustained BDNF-TrkB Signaling to MNK

    Directory of Open Access Journals (Sweden)

    Debabrata Panja

    2014-11-01

    Full Text Available BDNF signaling contributes to protein-synthesis-dependent synaptic plasticity, but the dynamics of TrkB signaling and mechanisms of translation have not been defined. Here, we show that long-term potentiation (LTP consolidation in the dentate gyrus of live rodents requires sustained (hours BDNF-TrkB signaling. Surprisingly, this sustained activation maintains an otherwise labile signaling pathway from TrkB to MAP-kinase-interacting kinase (MNK. MNK activity promotes eIF4F translation initiation complex formation and protein synthesis in mechanistically distinct early and late stages. In early-stage translation, MNK triggers release of the CYFIP1/FMRP repressor complex from the 5′-mRNA cap. In late-stage translation, MNK regulates the canonical translational repressor 4E-BP2 in a synapse-compartment-specific manner. This late stage is coupled to MNK-dependent enhanced dendritic mRNA translation. We conclude that LTP consolidation in the dentate gyrus is mediated by sustained BDNF signaling to MNK and MNK-dependent regulation of translation in two functionally and mechanistically distinct stages.

  16. Arsenic Detoxification by Geobacter Species.

    Science.gov (United States)

    Dang, Yan; Walker, David J F; Vautour, Kaitlin E; Dixon, Steven; Holmes, Dawn E

    2017-02-15

    Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found

  17. General resonance mediation

    International Nuclear Information System (INIS)

    McGarrie, Moritz

    2012-07-01

    We extend the framework of general gauge mediation to cases where the mediating fields have a nontrivial spectral function, as might arise from strong dynamics. We demonstrate through examples that this setup describes a broad class of possible models of gauge mediated supersymmetry breaking. A main emphasis is to give general formulas for cross sections for σ(visible → hidden) in these resonance models. We will also give formulas for soft masses, A-terms and demonstrate the framework with a holographic setup.

  18. Axionic Mirage Mediation

    International Nuclear Information System (INIS)

    Nakamura, Shuntaro; Okumura, Ken-ichi; Yamaguchi, Masahiro

    2008-01-01

    In this talk, we propose a model of mirage mediation, in which Peccei-Quinn symmetry is incorporated. In this axionic mirage mediation, it is shown that the Peccei-Quinn symmetry breaking scale is dynamically determined around 10 10 GeV to 10 12 GeV due to the supersymmetry breaking effects. The problems in the original mirage mediation such as the μ-problem and the moduli problem can be solved simultaneouly. Furthermore, in our model the axino, which is the superpartner of the axion, is the lightest sparticle.

  19. Polyarene mediators for mediated redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.; Ingersoll, David; Liang, Chengdu

    2018-01-02

    The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.

  20. Glucose-mediated repression of autolysis and conidiogenesis in Emericella nidulans.

    Science.gov (United States)

    Emri, Tamás; Molnár, Zsolt; Veres, Tünde; Pusztahelyi, Tünde; Dudás, Gábor; Pócsi, István

    2006-10-01

    Glucose-mediated repression of autolysis and sporulation was studied in submerged Emericellanidulans (anam. Aspergillus nidulans) cultures. Null mutation of the creA gene, which encodes the major carbon catabolite repressor CreA in E. nidulans, resulted in a hyperautolytic phenotype characterized by increased extracellular hydrolase production and dry cell mass declination. Interestingly, glucose, as well as the glucose antimetabolite 2-deoxy-d-glucose, repressed autolysis and sporulation in both the control and the creA null mutant strains suggesting that these processes were also subjected to CreA-independent carbon regulation. For example, the glucose-mediated, but CreA-independent, repression of the sporulation transcription factor BrlA was likely to contribute to the negative regulation of conidiogenesis by glucose. Although CreA played a prominent role in the regulation of autolysis via the repression of genes encoding important autolytic hydrolases like ChiB chitinase and PrtA protease the age-related production of the chitinase activity was also negatively affected by the down-regulation of brlA expression. However, neither CreA-dependent nor CreA-independent elements of carbon regulation affected the initiation and regulation of cell death in E. nidulans under carbon starvation.

  1. Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability.

    Directory of Open Access Journals (Sweden)

    Hilla Weidberg

    2016-06-01

    Full Text Available Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA and target of rapamycin complex I (TORC1 signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter.

  2. Technology-Use Mediation

    DEFF Research Database (Denmark)

    Bansler, Jørgen P.; Havn, Erling C.

    2004-01-01

    Implementation of new computer-mediated communication (CMC) systems in organizations is a complex socio-technical endeavour, involving the mutual adaptation of technology and organization over time. Drawing on the analytic concept of sensemaking, this paper provides a theoretical perspective...... that deepens our understanding of how organizations appropriate new electronic communication media. The paper analyzes how a group of mediators in a large, multinational company adapted a new web-based CMC technology (a virtual workspace) to the local organizational context (and vice versa) by modifying...... features of the technology, providing ongoing support for users, and promoting appropriate conventions of use. We found that these mediators exerted considerable influence on how the technology was established and used in the organization. The mediators were not neutral facilitators of a well...

  3. Making mediation work.

    Science.gov (United States)

    Arif, Zeba

    2016-10-26

    Mediation can be an effective way of solving conflict between staff members. It signifies a willingness for people to work together to discuss their differences in a constructive way, before going down the official grievance route.

  4. Understanding Mediation Support

    OpenAIRE

    Lanz, David; Pring, Jamie; von Burg, Corinne; Zeller, Mathias

    2017-01-01

    Recent decades have witnessed increasing institutionalization of mediation support through the establishment of mediation support structures (MSS) within foreign ministries and secretariats of multilateral organizations. This study sheds light on this trend and aims to better understand the emergence, design and development of different MSS. This study analyzes six MSS, namely those established in the United Nations (UN), the Organization for Security and Co-operation in Europe (OSCE), the Eu...

  5. Neurally Mediated Syncope

    OpenAIRE

    Zaqqa, Munir; Massumi, Ali

    2000-01-01

    Neurally mediated syncope is a disorder of the autonomic regulation of postural tone, which results in hypotension, bradycardia, and loss of consciousness. A wide variety of stimuli can trigger this reflex, the most common stimulus being orthostatic stress. Typically, a patient with neurally mediated syncope experiences nausea, lightheadedness, a feeling of warmth, and pallor before abruptly losing consciousness. If the cause of syncope is unclear, a stepwise approach is necessary to arrive a...

  6. Hegel's conceptions of mediation

    OpenAIRE

    O'Connor, Brian

    1999-01-01

    Given its centrality to the intellectual thought processes through which the great structures of logic, nature, and spirit are unfolded it is clear that mediation is vital to the very possibility of Hegel's encyclopaedic philosophy. Yet Hegel gives little specific explanation of the concept of mediation. Surprisingly, it has been the subject of even less attention by scholars of Hegel. Nevertheless it is casually used in discussions of Hegel and post-Hegelian philosophy as though its meaning ...

  7. Transcription-factor-mediated DNA looping probed by high-resolution, single-molecule imaging in live E. coli cells.

    Directory of Open Access Journals (Sweden)

    Zach Hensel

    Full Text Available DNA looping mediated by transcription factors plays critical roles in prokaryotic gene regulation. The "genetic switch" of bacteriophage λ determines whether a prophage stays incorporated in the E. coli chromosome or enters the lytic cycle of phage propagation and cell lysis. Past studies have shown that long-range DNA interactions between the operator sequences O(R and O(L (separated by 2.3 kb, mediated by the λ repressor CI (accession number P03034, play key roles in regulating the λ switch. In vitro, it was demonstrated that DNA segments harboring the operator sequences formed loops in the presence of CI, but CI-mediated DNA looping has not been directly visualized in vivo, hindering a deep understanding of the corresponding dynamics in realistic cellular environments. We report a high-resolution, single-molecule imaging method to probe CI-mediated DNA looping in live E. coli cells. We labeled two DNA loci with differently colored fluorescent fusion proteins and tracked their separations in real time with ∼40 nm accuracy, enabling the first direct analysis of transcription-factor-mediated DNA looping in live cells. Combining looping measurements with measurements of CI expression levels in different operator mutants, we show quantitatively that DNA looping activates transcription and enhances repression. Further, we estimated the upper bound of the rate of conformational change from the unlooped to the looped state, and discuss how chromosome compaction may impact looping kinetics. Our results provide insights into transcription-factor-mediated DNA looping in a variety of operator and CI mutant backgrounds in vivo, and our methodology can be applied to a broad range of questions regarding chromosome conformations in prokaryotes and higher organisms.

  8. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin

    Science.gov (United States)

    Winbanks, Catherine E.; Weeks, Kate L.; Thomson, Rachel E.; Sepulveda, Patricio V.; Beyer, Claudia; Qian, Hongwei; Chen, Justin L.; Allen, James M.; Lancaster, Graeme I.; Febbraio, Mark A.; Harrison, Craig A.; McMullen, Julie R.; Chamberlain, Jeffrey S.

    2012-01-01

    Follistatin is essential for skeletal muscle development and growth, but the intracellular signaling networks that regulate follistatin-mediated effects are not well defined. We show here that the administration of an adeno-associated viral vector expressing follistatin-288aa (rAAV6:Fst-288) markedly increased muscle mass and force-producing capacity concomitant with increased protein synthesis and mammalian target of rapamycin (mTOR) activation. These effects were attenuated by inhibition of mTOR or deletion of S6K1/2. Furthermore, we identify Smad3 as the critical intracellular link that mediates the effects of follistatin on mTOR signaling. Expression of constitutively active Smad3 not only markedly prevented skeletal muscle growth induced by follistatin but also potently suppressed follistatin-induced Akt/mTOR/S6K signaling. Importantly, the regulation of Smad3- and mTOR-dependent events by follistatin occurred independently of overexpression or knockout of myostatin, a key repressor of muscle development that can regulate Smad3 and mTOR signaling and that is itself inhibited by follistatin. These findings identify a critical role of Smad3/Akt/mTOR/S6K/S6RP signaling in follistatin-mediated muscle growth that operates independently of myostatin-driven mechanisms. PMID:22711699

  9. RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation

    International Nuclear Information System (INIS)

    Nohmi, Takehiko; Battista, J.R.; Dodson, L.A.; Walker, G.C.

    1988-01-01

    The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. It has been shown that the UmuD protein shares homology with LexA, the repressor of the SOS genes. In this paper the authors describe a series of genetic experiments that indicate that the purpose of RecA-mediated cleavage of UmuD at its bond between Cys-24 and Gly-25 is to activate UmuD for its role in mutagenesis and that the COOH-terminal fragment of UmuD is necessary and sufficient for the role of UmuD in UV mutagenesis. Other genetic experiments are presented that (i) support the hypothesis that the primary role of Ser-60 in UmuD function is to act as a nucleophile in the RecA-mediated cleavage reaction and (ii) raise the possibility that RecA has a third role in UV mutagenesis besides mediating the cleavage of LexA and UmuD

  10. Analysis of multiparty mediation processes

    NARCIS (Netherlands)

    Vuković, Siniša

    2013-01-01

    Crucial challenges for multiparty mediation processes include the achievement of adequate cooperation among the mediators and consequent coordination of their activities in the mediation process. Existing literature goes only as far as to make it clear that successful mediation requires necessary

  11. Role of 5'TG3'-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition.

    Science.gov (United States)

    Sharma, Ajay; Sinha, Nishant R; Siddiqui, Saad; Mohan, Rajiv R

    2015-01-01

    We have previously reported that vorinostat, an FDA-approved, clinically used histone deacetylase (HDAC) inhibitor, attenuates corneal fibrosis in vivo in rabbits by blocking transforming growth factor β (TGFβ). The 5'TG3'-interacting factors (TGIFs) are transcriptional repressors of TGFβ1 signaling via the Smad pathway. The present study was designed to explore the expression of TGIFs in human corneal fibroblasts and to investigate their role in mediating the antifibrotic effect of vorinostat. Human corneal fibroblast cultures were generated from donor corneas. RNA isolation, cDNA preparation, and PCR were performed to detect the presence of TGIF1 and TGIF2 transcripts. The cultures were exposed to vorinostat (2.5 µM) to test its effect on TGIF mRNA and protein levels using qPCR and immunoblotting. Myofibroblast formation was induced with TGFβ1 (5 ng/ml) treatment under serum-free conditions. The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Smad2/3/4 and TGIF knockdowns were performed using pre-validated RNAi/siRNAs and a commercially available transfection reagent. Human corneal fibroblasts showed the expression of TGIF1 and TGIF2. Vorinostat (2.5 µM) caused a 2.8-3.3-fold increase in TGIF1 and TGIF2 mRNA levels and a 1.4-1.8-fold increase in TGIF1 and TGIF2 protein levels. Vorinostat treatment also caused a significant increase in acetylhistone H3 and acetylhistone H4. Vorinostat-induced increases in TGIF1 and TGIF2 were accompanied by a concurrent decrease in corneal fibrosis, as indicated by a decrease in αSMA mRNA by 83±7.7% and protein levels by 97±5%. The RNAi-mediated knockdown of Smad2, Smad3, and Smad4 markedly attenuated TGFβ1-evoked transdifferentiation of fibroblasts to myofibroblasts. The siRNA-mediated knockdown of TGIF1 and TGIF2 neutralized vorinostat-evoked decreases in αSMA mRNA by 31%-45% and protein

  12. Mediation: The Wise Advocacy

    Directory of Open Access Journals (Sweden)

    Towseef Ahmad

    2016-01-01

    Full Text Available AbstractAdversarial litigation is not the only means of resolving disputes and settling of claims. There are various options. Alternative means of dispute resolution can save money and time, and can help to anchor and resolve the dispute while exploring valuable good offices, amicable approaches and facilitation. Mediation, as used in law, is a process of managing negotiation by a neutral third party in the form of Alternative Dispute Resolution (ADR, as a convenient way of resolving disputes between two or more parties with speediation processes. On the sidelines typically, a neutral third party, the mediator assists the parties to negotiate a settlement. The term “mediation” broadly refers to any instance in which a neutral third party helps others to reach an amicable and mutually acceptable agreement. More specifically, mediation has a structure, timetable and dynamic approaches that “ordinary” negotiations usually lack. The process helps the parties to flourish the healthy ideas which are different and distinct from the legal rights in a Court of law. It is well known in International Law also and disputants can submit their disputes to mediation in a variety of matters such as commercial, legal, diplomatic, workplace, community and family matters, which assumes a great significance and it is bricolaged within the framework of this article.Keywords: Adversarial, Litigation, Mediation, Negotiation and Amicable.

  13. Fashion, Mediations & Method Assemblages

    DEFF Research Database (Denmark)

    Sommerlund, Julie; Jespersen, Astrid Pernille

    , respectively. The paper thus takes on aesthetics and the social in a manner closely related to a core argument of STS - namely that the scientific fact, and the social processes of constructing, distributing, and using that fact, are co-constructed (Callon, 1986; Latour, 1993). The paper thus contributes......, it is an important ambition of this paper to go into a methodological discussion of how "that which effectively happens" can be approached. To this end, the paper will combine Hennion's term of the "mediator" with John Laws methodological term of "method assemblages". Method assemblages is a suggested as a way...... of handling multiple, fluid realities with multiple, fluid methods. Empirically, the paper works with mediation in fashion - that is efforts the active shaping of relations between producer and consumer through communication, marketing and PR. Fashion mediation is by no means simple, but organise complex...

  14. Immunologically mediated oral diseases.

    Science.gov (United States)

    Jimson, Sudha; Balachader, N; Anita, N; Babu, R

    2015-04-01

    Immune mediated diseases of oral cavity are uncommon. The lesions may be self-limiting and undergo remission spontaneously. Among the immune mediated oral lesions the most important are lichen planus, pemphigus, erythema multiformi, epidermolysis bullosa, systemic lupus erythematosis. Cellular and humoral mediated immunity play a major role directed against epithelial and connective tissue in chronic and recurrent patterns. Confirmatory diagnosis can be made by biopsy, direct and indirect immunoflouresence, immune precipitation and immunoblotting. Therapeutic agents should be selected after thorough evaluation of immune status through a variety of tests and after determining any aggravating or provoking factors. Early and appropriate diagnosis is important for proper treatment planning contributing to better prognosis and better quality of life of patient.

  15. Immunologically mediated oral diseases

    Directory of Open Access Journals (Sweden)

    Sudha Jimson

    2015-01-01

    Full Text Available Immune mediated diseases of oral cavity are uncommon. The lesions may be self-limiting and undergo remission spontaneously. Among the immune mediated oral lesions the most important are lichen planus, pemphigus, erythema multiformi, epidermolysis bullosa, systemic lupus erythematosis. Cellular and humoral mediated immunity play a major role directed against epithelial and connective tissue in chronic and recurrent patterns. Confirmatory diagnosis can be made by biopsy, direct and indirect immunoflouresence, immune precipitation and immunoblotting. Therapeutic agents should be selected after thorough evaluation of immune status through a variety of tests and after determining any aggravating or provoking factors. Early and appropriate diagnosis is important for proper treatment planning contributing to better prognosis and better quality of life of patient.

  16. Mediation and Legal Assistance

    Directory of Open Access Journals (Sweden)

    Larisa Zaitseva

    2014-01-01

    Full Text Available The development of alternative dispute resolution procedures raises a number of new problems and questions for jurisprudence and legal practice. Many of these are closely related to the implementation of mediation procedures. Significant attention has been paid in the legal literature to the need for mediators’ legal education. Nowadays a professional lawyer usually performs the functions of a mediator. Nevertheless, in some countries the competence of mediators can be limited. In fact, such persons may be prohibited from providing any legal assistance to the parties. A direct prohibition of this kind exists in Russian legislation. To what degree is this prohibition realistic and reasonable? Different countries enjoy different approaches to the possibility of providing disputing parties with a mediator’s legal assistance in addressing issues requiring legal advice or in the drafting of legal documents. Different approaches to this issue have appeared for various reasons. The absence of consensus is caused by a contradiction between the principle of mediator neutrality in the conflict resolution process and the goals of dispute settlement in which a legally competent intermediary is involved. To ensure the effectiveness of the mediation process, legislators should seek out more flexible ways of regulating procedure. Mandatory regulation itself contradicts the spirit of ‘semi-formal’ alternative (extrajudicial methods for conflict resolution. As such, the presence of direct prohibitions or severe restrictions may not only become challenging in the performance of law but such peremptory norms can also make mediation unattractive and ineffective for some particular types of dispute, such as labor disputes. The principle of preserving a mediator’s neutrality is possible if exercised within the framework of a balanced approach to reasonable limits and discretionary rules for the provision of certain types of legal assistance to disputing

  17. Mediated intimacy in families

    DEFF Research Database (Denmark)

    Stougaard, Malthe Kirkhoff

    2006-01-01

    Mediating intimacy between children and their parents is still limited investigated and at the same time, we find that, emerging technologies are about to change and affect the way we interact with each other. In this paper, we report from an empirical study where we investigated the social...... with other types of intimate relations such as strong-tie intimacy (couples cohabiting). However, we also identified several issues of intimacy unique to the special relation between children and their parents. These unique acts of intimacy propose challenges when designing technologies for mediated intimacy...

  18. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees

    Energy Technology Data Exchange (ETDEWEB)

    Potkar, Rewati; Recla, Jill [School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Busov, Victor, E-mail: vbusov@mtu.edu [School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2013-02-15

    Highlights: ► We show a novel microRNA-mediated mechanism for control of bud dormancy in trees. ► ptr-MIR169a and PtrHAP2–5 gene showed inverse expression during dormancy period. ► The PtrHAP2–5 decline in abundance correlated with high ptr-MIR169a levels. ► PtrHAP2–5 cleavage occurred at the miR169 site during PtrHAP2–5 transcript decline. ► Our results show that miR169 attenuates PtrHAP2–5 transcript during dormancy. -- Abstract: Dormancy is a mechanism evolved in woody perennial plants to survive the winter freezing and dehydration stress via temporary suspension of growth. We have identified two aspen microRNAs (ptr-MIR169a and ptr-MIR169h) which were highly and specifically expressed in dormant floral and vegetative buds. ptr-MIR169a and its target gene PtrHAP2–5 showed inverse expression patterns during the dormancy period. ptr-MIR169a transcript steadily increased through the first half of the dormancy period and gradually declined with the approach of active growing season. PtrHAP2–5 abundance was higher in the beginning of the dormancy period but rapidly declined thereafter. The decline of PtrHAP2–5 correlated with the high levels of ptr-MIR169a accumulation, suggesting miR169-mediated attenuation of the target PtrHAP2–5 transcript. We experimentally verified the cleavage of PtrHAP2–5 at the predicted miR169a site at the time when PtrHAP2–5 transcript decline was observed. HAP2 is a subunit of a nuclear transcription factor Y (NF-Y) complex consisting of two other units, HAP3 and HAP5. Using digital expression profiling we show that poplar HAP2 and HAP5 are preferentially detected in dormant tissues. Our study shows that microRNAs play a significant and as of yet unknown and unstudied role in regulating the timing of bud dormancy in trees.

  19. Decreased expression of Freud-1/CC2D1A, a transcriptional repressor of the 5-HT1A receptor, in the prefrontal cortex of subjects with major depression.

    Science.gov (United States)

    Szewczyk, Bernadeta; Albert, Paul R; Rogaeva, Anastasia; Fitzgibbon, Heidi; May, Warren L; Rajkowska, Grazyna; Miguel-Hidalgo, Jose J; Stockmeier, Craig A; Woolverton, William L; Kyle, Patrick B; Wang, Zhixia; Austin, Mark C

    2010-09-01

    Serotonin1A (5-HT(1A)) receptors are reported altered in the brain of subjects with major depressive disorder (MDD). Recent studies have identified transcriptional regulators of the 5-HT(1A) receptor and have documented gender-specific alterations in 5-HT(1A) transcription factor and 5-HT(1A) receptors in female MDD subjects. The 5' repressor element under dual repression binding protein-1 (Freud-1) is a calcium-regulated repressor that negatively regulates the 5-HT(1A) receptor gene. This study documented the cellular expression of Freud-1 in the human prefrontal cortex (PFC) and quantified Freud-1 protein in the PFC of MDD and control subjects as well as in the PFC of rhesus monkeys chronically treated with fluoxetine. Freud-1 immunoreactivity was present in neurons and glia and was co-localized with 5-HT(1A) receptors. Freud-1 protein level was significantly decreased in the PFC of male MDD subjects (37%, p=0.02) relative to gender-matched control subjects. Freud-1 protein was also reduced in the PFC of female MDD subjects (36%, p=0.18) but was not statistically significant. When the data was combined across genders and analysed by age, the decrease in Freud-1 protein level was greater in the younger MDD subjects (48%, p=0.01) relative to age-matched controls as opposed to older depressed subjects. Similarly, 5-HT(1A) receptor protein was significantly reduced in the PFC of the younger MDD subjects (48%, p=0.01) relative to age-matched controls. Adult male rhesus monkeys administered fluoxetine daily for 39 wk revealed no significant change in cortical Freud-1 or 5-HT(1A) receptor proteins compared to vehicle-treated control monkeys. Reduced protein expression of Freud-1 in MDD subjects may reflect dysregulation of this transcription factor, which may contribute to the altered regulation of 5-HT(1A) receptors observed in subjects with MDD. These data may also suggest that reductions in Freud-1 protein expression in the PFC may be associated with early onset of

  20. Cultural mediation in museums

    Directory of Open Access Journals (Sweden)

    Gherghina Boda

    2017-12-01

    Full Text Available If we perceive the museum not only as a place of storing and conserving the patrimony, but also of transmitting it, then we can also see it as a mediator through which cultures can become collective patrimony. Tightly connected to patrimonial appropriation, mediation appears from this perspective as a process and not an end, as it manifests itself in animation, communication and making knowledge popular in relation to a precise patrimony. That is why we can see cultural mediation as a transmission, as a transformation, as an action or social project which aims at creating social bonds, the museum thus being not only a place of meeting for the public with the objects exposed, but also as a place of meeting between different cultures. Thus, cultural mediation presents itself as the most efficient means for access to culture of all categories of the public, situated as the crossroads of culture, continuous education and entertainment and is inscribed in the field of informal education.

  1. Bradykinin-mediated angioedema.

    Science.gov (United States)

    Obtułowicz, Krystyna

    2016-01-01

    Angioedema and urticaria often constitute a challenge in daily clinical practice. They may either co- -occur or present as independent conditions. They are characterized by a complex pathomechanism, and their symptoms may be triggered by diverse factors. These differences are crucial for developing a successful treatment regimen. Both conditions may have an allergic origin (immunoglobulin [Ig] E and non-IgE-related), usually induced by histamine, or a nonallergic one, such as bradykinin-mediated angioedema in patients with C1 inhibitor (C1-INH) deficiency or angioedema induced by certain drugs (eg, angiotensin-converting enzyme inhibitors). Currently, we distinguish 5 types of nonallergic angioedema: hereditary angioedema (HAE) due to C1-INH deficiency, acquired angioedema (AAE), and angioedema induced by the renin-angiotensin-aldosterone system, all of which are mediated by bradykinin, as well as pseudoallergic angioedema and idiopathic angioedema. Bradykinin-mediated angioedema (eg, laryngeal angioedema) may be life-threatening because of resistance to corticosteroids and antihistamine drugs. C1-INH concentrates are the drugs of choice in the treatment of HAE and AAE. In recent years, some new drugs have been introduced in the treatment of bradykinin-mediated angioedema, such as bradykinin B2-receptor antagonist, icatibant, and kallikrein inhibitor, ecallantide, which allow to improve treatment outcomes.

  2. The Bensberg Mediation Model

    Directory of Open Access Journals (Sweden)

    Raluca - Marilena Mihalcioiu

    2011-05-01

    Full Text Available The basis of the conflict through the mediation represents the objectives and procedures ofmediation, mediation of a conflict. The conflict will not be disclosed to others, but the parties will be creditedthe authority to resolve the conflict, the conflict among themselves with the help of a mediator. The disputeshould be resolved by the parties with help of a third party. The parties in conflict (it may be several personsare jointly responsible for the solution. They seek together a way that leads to long-term settlement of theconflict. The assumption of responsibility in this process strengthens the confidence and the importance oftheir decision. Important is that losers usually have no peace, because they are out for revenge. Winners don’tneed peace. If both parties lose, remains disappointing, with the understanding of which the conflict isresolved, will understand each other better developed. Reconciliation is therefore a longer-term goal.Conflicts also help to clarify roles. The paper presents Bensberg Model of Mediation, because this isdeveloped as a win win solution and his possible implementation in Romanian schools.

  3. Den sundhedsfremmende mediator

    DEFF Research Database (Denmark)

    Læssøe, Jeppe

    2009-01-01

    mediering samt mellem forskellige mediator-roller og tilhørsforhold. Det er også vigtigt at være bevidst om de centrale kvaliteter, risici og dilemmaer, som mediering indebærer i forhold til involvering af borgerne. Denne artikel rummer et bud på en sådan nuanceret begrebsliggørelse og refleksion, relateret...

  4. Expanding mediation theory

    NARCIS (Netherlands)

    Verbeek, Peter P.C.C.

    2012-01-01

    In his article In Between Us, Yoni van den Eede expands existing theories of mediation into the realm of the social and the political, focusing on the notions of opacity and transparency. His approach is rich and promising, but two pitfalls should be avoided. First, his concept of ‘in-between’ runs

  5. Amino acid residues involved in inactivation of the Escherichia coli multidrug resistance repressor MarR by salicylate, 2,4-dinitrophenol, and plumbagin

    Science.gov (United States)

    McMurry, Laura M.; Levy, Stuart B.

    2013-01-01

    MarR is the dedicated autorepressor of the marRAB operon found in seven genera of the Enterobacteraceae. The MarA transcriptional regulator directly activates numerous genes involved in multidrug resistance and other environmental responses. MarR is inactivated by certain phenolic ligands, such as salicylate, by an unknown mechanism. Our recent work has shown that several amino acid residues of Escherichia coli MarR affecting ligand binding are located between the dimerization and DNA-binding domains. To further characterize the ligand-binding region of MarR, we have now examined seven point mutants generated by random mutagenesis and eleven site-directed alanine replacement mutants for inactivation by three ligands: salicylate, 2,4-dinitrophenol, and plumbagin. Inactivation of MarR was quantitated in intact cells by loss of MarR-mediated repression of a chromosomal mar-lacZ transcriptional fusion. The results showed that most of the residues important for ligand effectiveness lay in the α1 and α2 helices of MarR, between the putative DNA-binding domain and the dimerization domain of MarR, reinforcing our earlier findings. Moreover, the three ligands had different, but overlapping, sets of residues impacting their effects on MarR. PMID:24111786

  6. Involvement of transcription repressor Snail in the regulation of human telomerase reverse transcriptase (hTERT) by transforming growth factor-β.

    Science.gov (United States)

    Yoo, Young-Sun; Park, Seoyoung; Gwak, Jungsug; Ju, Bong Gun; Oh, Sangtaek

    2015-09-11

    Human telomerase reverse transcriptase (hTERT), a catalytic subunit of telomerase, is the primary determinant for telomerase enzyme activity, which has been associated with cellular immortality. Expression of the hTERT gene is regulated by various extracellular (external) stimuli and is aberrantly up-regulated in more than 90% of cancers. Here we show that hTERT gene expression was repressed in response to transforming growth factor-β (TGF-β) by a mechanism dependent on transcription factors Snail and c-Myc. TGF-β activated Snail and down-regulated c-Myc gene expression. In addition, ectopic expression of Snail strongly inhibited hTERT promoter activity, although co-expression of c-Myc abrogated this effect. Chromatin immunoprecipitation (ChIP) analysis revealed that TGF-β decreased c-Myc occupancy and dramatically increased recruitment of Snail to the E-box motifs of the hTERT promoter, thereby repressing hTERT expression. Our findings suggest a dynamic alteration in hTERT promoter occupancy by Snail and c-Myc is the mechanistic basis for TGF-β-mediated regulation of hTERT. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Axionic mirage mediation

    International Nuclear Information System (INIS)

    Nakamura, Shuntaro; Okumura, Ken-ichi; Yamaguchi, Masahiro

    2008-01-01

    Although mirage mediation is one of the most plausible mediation mechanisms of supersymmetry breaking, it suffers from two crucial problems. One is the μ/Bμ problem, and the second is the cosmological one. The former stems from the fact that the B parameter tends to be comparable with the gravitino mass, which is 2 orders of magnitude larger than the other soft masses. The latter problem is caused by the decay of the modulus whose branching ratio into the gravitino pair is sizable. In this paper, we propose a model of mirage mediation, in which Peccei-Quinn symmetry is incorporated. In this axionic mirage mediation, it is shown that the Peccei-Quinn symmetry breaking scale is dynamically determined around 10 10 GeV to 10 12 GeV due to the supersymmetry breaking effects, and the μ problem can be solved naturally. Furthermore, in our model, the lightest supersymmetric particle (LSP) is the axino, that is, the superpartner of the axion. The overabundance of the LSPs due to decays of the modulus/gravitino, which is the most serious cosmological difficulty in the mirage mediation, can be avoided if the axino is sufficiently light. The next-LSPs (NLSPs) produced by the gravitino decay eventually decay into the axino LSPs, yielding the dominant component of the axinos remaining today. It is shown that the axino with a mass of O(100) MeV is naturally realized, which can constitute the dark matter of the Universe, with a free-streaming length of the order of 0.1 Mpc. The saxion, the real scalar component of the axion supermultiplet, can also be cosmologically harmless due to the dilution of the modulus decay. The lifetime of the NLSP is relatively long, but much shorter than 1 sec, when the big-bang nucleosynthesis commences. The decay of the NLSP would provide intriguing collider signatures

  8. SNAIL Mediates TGF-β1-Induced Downregulation of Pentraxin 3 Expression in Human Granulosa Cells.

    Science.gov (United States)

    Li, Hui; Chang, Hsun-Ming; Shi, Zhendan; Leung, Peter C K

    2018-04-01

    Transforming growth factor-β (TGF-β) 1 plays a critical role in regulating follicular development, and its dysregulation has been shown to be involved in the pathogenesis of ovulation dysfunction. SNAIL is a well-known transcriptional repressor that mediates TGF-β1-induced cellular functions. Pentraxin 3 (PTX3) is a key enzyme for the assembly and stabilization of the cumulus oophorus extracellular matrix, which is essential for cumulus expansion during the periovulatory stage. The purpose of the present study was to investigate the roles of TGF-β1 and SNAIL in the regulation of PTX3 expression and to examine the underlying mechanism. An established immortalized human granulosa cell (GC) line (SVOG), a GC tumor cell line (KGN), and primary human granulosa-lutein cells were used as study models. We demonstrated that TGF-β1 treatment substantially decreased the messenger RNA and protein levels of PTX3. This suppressive effect was abolished by cotreatment with the soluble TGF-β type II receptor (TβRII) or the ALK4/5/7 inhibitor SB431542. Knockdown of ALK5, SMAD2/3, or SMAD4 reversed the effects of TGF-β1-induced SNAIL upregulation and PTX3 suppression. These results indicate that TGF-β1 upregulates SNAIL and downregulates PTX3 expression via a TβRII-ALK5-mediated SMAD-dependent signaling pathway in human GCs. Additionally, TGF-β1-induced PTX3 suppression was mediated by upregulation of the SNAIL transcription factor, as knockdown of SNAIL completely reversed the suppression of PTX3 in response to TGF-β1. These findings could inform the roles of TGF-β1 and SNAIL in the regulation of follicular function and might provide therapeutic targets for the treatment of ovulation dysfunction.

  9. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation.

    Science.gov (United States)

    Zhang, Song; Takaku, Motoki; Zou, Liyun; Gu, Ai-di; Chou, Wei-Chun; Zhang, Ge; Wu, Bing; Kong, Qing; Thomas, Seddon Y; Serody, Jonathan S; Chen, Xian; Xu, Xiaojiang; Wade, Paul A; Cook, Donald N; Ting, Jenny P Y; Wan, Yisong Y

    2017-11-02

    T helper 17 (T H 17) cells are critically involved in host defence, inflammation, and autoimmunity. Transforming growth factor β (TGFβ) is instrumental in T H 17 cell differentiation by cooperating with interleukin-6 (refs 6, 7). Yet, the mechanism by which TGFβ enables T H 17 cell differentiation remains elusive. Here we reveal that TGFβ enables T H 17 cell differentiation by reversing SKI-SMAD4-mediated suppression of the expression of the retinoic acid receptor (RAR)-related orphan receptor γt (RORγt). We found that, unlike wild-type T cells, SMAD4-deficient T cells differentiate into T H 17 cells in the absence of TGFβ signalling in a RORγt-dependent manner. Ectopic SMAD4 expression suppresses RORγt expression and T H 17 cell differentiation of SMAD4-deficient T cells. However, TGFβ neutralizes SMAD4-mediated suppression without affecting SMAD4 binding to the Rorc locus. Proteomic analysis revealed that SMAD4 interacts with SKI, a transcriptional repressor that is degraded upon TGFβ stimulation. SKI controls histone acetylation and deacetylation of the Rorc locus and T H 17 cell differentiation via SMAD4: ectopic SKI expression inhibits H3K9 acetylation of the Rorc locus, Rorc expression, and T H 17 cell differentiation in a SMAD4-dependent manner. Therefore, TGFβ-induced disruption of SKI reverses SKI-SMAD4-mediated suppression of RORγt to enable T H 17 cell differentiation. This study reveals a critical mechanism by which TGFβ controls T H 17 cell differentiation and uncovers the SKI-SMAD4 axis as a potential therapeutic target for treating T H 17-related diseases.

  10. Intrinsic plasmids influence MicF-mediated translational repression of ompF in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Zizhong eLiu

    2015-08-01

    Full Text Available Yersinia pestis, which is the causative agent of plague, has acquired exceptional pathogenicity potential during its evolution from Y. pseudotuberculosis. Two laterally acquired plasmids, namely, pMT1 and pPCP1, are specific to Y. pestis and are critical for pathogenesis and flea transmission. Small regulatory RNAs (sRNAs commonly function as regulators of gene expression in bacteria. MicF, is a paradigmatic sRNA that acts as a post-transcriptional repressor through imperfect base pairing with the 5’-UTR of its target mRNA, ompF, in Escherichia coli. The high sequence conservation and minor variation in the RNA duplex of MicF-ompF has been reported in Yersinia. In this study, we utilized super-folder GFP reporter gene fusion to validate the post-transcriptional MicF-mediated regulation of target mRNA ompF in Y. pestis. Unexpectedly, upon MicF overexpression, the slightly upregulated expression of OmpF were found in the wild-type strain, which contradicted the previously established model. Interestingly, the translational repression of ompF target fusions was restored in the intrinsic plasmids-cured Y. pestis strain, suggesting intrinsic plasmids influence the MicF-mediated translational repression of ompF in Y. pestis. Further examination showed that plasmid pPCP1 is likely the main contributor to the reversal of MicF-mediated translational repression of ompF. It represents that the possible roles of

  11. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis.

    Science.gov (United States)

    Zhang, Eric E; Liu, Yi; Dentin, Renaud; Pongsawakul, Pagkapol Y; Liu, Andrew C; Hirota, Tsuyoshi; Nusinow, Dmitri A; Sun, Xiujie; Landais, Severine; Kodama, Yuzo; Brenner, David A; Montminy, Marc; Kay, Steve A

    2010-10-01

    During fasting, mammals maintain normal glucose homeostasis by stimulating hepatic gluconeogenesis. Elevations in circulating glucagon and epinephrine, two hormones that activate hepatic gluconeogenesis, trigger the cAMP-mediated phosphorylation of cAMP response element-binding protein (Creb) and dephosphorylation of the Creb-regulated transcription coactivator-2 (Crtc2)--two key transcriptional regulators of this process. Although the underlying mechanism is unclear, hepatic gluconeogenesis is also regulated by the circadian clock, which coordinates glucose metabolism with changes in the external environment. Circadian control of gene expression is achieved by two transcriptional activators, Clock and Bmal1, which stimulate cryptochrome (Cry1 and Cry2) and Period (Per1, Per2 and Per3) repressors that feed back on Clock-Bmal1 activity. Here we show that Creb activity during fasting is modulated by Cry1 and Cry2, which are rhythmically expressed in the liver. Cry1 expression was elevated during the night-day transition, when it reduced fasting gluconeogenic gene expression by blocking glucagon-mediated increases in intracellular cAMP concentrations and in the protein kinase A-mediated phosphorylation of Creb. In biochemical reconstitution studies, we found that Cry1 inhibited accumulation of cAMP in response to G protein-coupled receptor (GPCR) activation but not to forskolin, a direct activator of adenyl cyclase. Cry proteins seemed to modulate GPCR activity directly through interaction with G(s)α. As hepatic overexpression of Cry1 lowered blood glucose concentrations and improved insulin sensitivity in insulin-resistant db/db mice, our results suggest that compounds that enhance cryptochrome activity may provide therapeutic benefit to individuals with type 2 diabetes.

  12. The Transcriptional Repressor, MtrR, of the mtrCDE Efflux Pump Operon of Neisseria gonorrhoeae Can Also Serve as an Activator of “off Target” Gene (glnE Expression

    Directory of Open Access Journals (Sweden)

    Paul J. T. Johnson

    2015-06-01

    Full Text Available MtrR is a well-characterized repressor of the Neisseria gonorrhoeae mtrCDE efflux pump operon. However, results from a previous transcriptional profiling study suggested that MtrR also represses or activates expression of at least sixty genes outside of the mtr locus. Evidence that MtrR can directly repress so-called “off target” genes has previously been reported; in particular, MtrR was shown to directly repress glnA, which encodes glutamine synthetase. In contrast, evidence for the ability of MtrR to directly activate expression of gonococcal genes has been lacking; herein, we provide such evidence. We now report that MtrR has the ability to directly activate expression of glnE, which encodes the dual functional adenyltransferase/deadenylase enzyme GlnE that modifies GlnA resulting in regulation of its role in glutamine biosynthesis. With its capacity to repress expression of glnA, the results presented herein emphasize the diverse and often opposing regulatory properties of MtrR that likely contributes to the overall physiology and metabolism of N. gonorrhoeae.

  13. Proto-oncogene FBI-1 (Pokemon/ZBTB7A) Represses Transcription of the Tumor Suppressor Rb Gene via Binding Competition with Sp1 and Recruitment of Co-repressors*S⃞

    Science.gov (United States)

    Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook

    2008-01-01

    FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp –308 to –188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp –65 to –56) and GC-box 2 (bp –18 to –9), the latter of which is also bound by FBI-1. We found that FRE3 (bp –244 to –236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression. PMID:18801742

  14. The Vibrio harveyi master quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters.

    Science.gov (United States)

    Pompeani, Audra J; Irgon, Joseph J; Berger, Michael F; Bulyk, Martha L; Wingreen, Ned S; Bassler, Bonnie L

    2008-10-01

    Quorum sensing is the process of cell-to-cell communication by which bacteria communicate via secreted signal molecules called autoinducers. As cell population density increases, the accumulation of autoinducers leads to co-ordinated changes in gene expression across the bacterial community. The marine bacterium, Vibrio harveyi, uses three autoinducers to achieve intra-species, intra-genera and inter-species cell-cell communication. The detection of these autoinducers ultimately leads to the production of LuxR, the quorum-sensing master regulator that controls expression of the genes in the quorum-sensing regulon. LuxR is a member of the TetR protein superfamily; however, unlike other TetR repressors that typically repress their own gene expression and that of an adjacent operon, LuxR is capable of activating and repressing a large number of genes. Here, we used protein binding microarrays and a two-layered bioinformatics approach to show that LuxR binds a 21 bp consensus operator with dyad symmetry. In vitro and in vivo analyses of two promoters directly regulated by LuxR allowed us to identify those bases that are critical for LuxR binding. Together, the in silico and biochemical results enabled us to scan the genome and identify novel targets of LuxR in V. harveyi and thus expand the understanding of the quorum-sensing regulon.

  15. Current Directions in Mediation Analysis

    Science.gov (United States)

    MacKinnon, David P.; Fairchild, Amanda J.

    2010-01-01

    Mediating variables continue to play an important role in psychological theory and research. A mediating variable transmits the effect of an antecedent variable on to a dependent variable, thereby providing more detailed understanding of relations among variables. Methods to assess mediation have been an active area of research for the last two decades. This paper describes the current state of methods to investigate mediating variables. PMID:20157637

  16. [Mediation in schools].

    Science.gov (United States)

    Mickley, Angela

    2006-01-01

    In this article the guiding questions concern the objectives and effectiveness of introducing mediation into an existing school culture of dominance, competition and selection. In addition the necessity will be shown of combining conflict resolution with organisational development and the introduction of a consensual ethics and behaviour code to attain sustainable results in creating a constructive and healthy school environment. Given scarce resources and little time the decisive role of artistic methods will be looked at in providing young people with flexible methods of expressing and negotiating their interests in a changing environment of values and power structures. Some aspects of the development of nonviolent communication, conflict resolution and mediation methods in schools in Germany will be focused on with special emphasis on the type of intervention used and its long term sustainable effects.

  17. Church mediation - een vak apart

    NARCIS (Netherlands)

    Annelies Klinefelter; dr Hans A.J. Jonker

    2009-01-01

    Welke rol kan mediation in de kerk spelen in de diverse geledingen en specifieke activiteiten? In dit artikel wordt ingegaan op kerkelijke conflicten, gelaagdheid in church mediation, en specifieke dilemma's van church mediation. Daarnaast komen enkele benaderingen aan bod zoals: helende

  18. Neurally-mediated sincope.

    Science.gov (United States)

    Can, I; Cytron, J; Jhanjee, R; Nguyen, J; Benditt, D G

    2009-08-01

    Syncope is a syndrome characterized by a relatively sudden, temporary and self-terminating loss of consciousness; the causes may vary, but they have in common a temporary inadequacy of cerebral nutrient flow, usually due to a fall in systemic arterial pressure. However, while syncope is a common problem, it is only one explanation for episodic transient loss of consciousness (TLOC). Consequently, diagnostic evaluation should start with a broad consideration of real or seemingly real TLOC. Among those patients in whom TLOC is deemed to be due to ''true syncope'', the focus may then reasonably turn to assessing the various possible causes; in this regard, the neurally-mediated syncope syndromes are among the most frequently encountered. There are three common variations: vasovagal syncope (often termed the ''common'' faint), carotid sinus syndrome, and the so-called ''situational faints''. Defining whether the cause is due to a neurally-mediated reflex relies heavily on careful history taking and selected testing (e.g., tilt-test, carotid massage). These steps are important. Despite the fact that neurally-mediated faints are usually relatively benign from a mortality perspective, they are nevertheless only infrequently an isolated event; neurally-mediated syncope tends to recur, and physical injury resulting from falls or accidents, diminished quality-of-life, and possible restriction from employment or avocation are real concerns. Consequently, defining the specific form and developing an effective treatment strategy are crucial. In every case the goal should be to determine the cause of syncope with sufficient confidence to provide patients and family members with a reliable assessment of prognosis, recurrence risk, and treatment options.

  19. Teachers as mediators

    DEFF Research Database (Denmark)

    Dorf, Hans; Kelly, Peter; Hohmann, Ulrike

    2012-01-01

    Within the context of lower secondary English teaching in South West England, this study identifies in broad terms the competing goals between which English teachers mediate and the explicit and hidden tensions that result. To understand the interactions of competing goals, teachers’ goal...... and cultural influences on practice. Yet the teachers observed moved smoothly between goal-oriented behaviours in a continuous and comfortable style, easily and without reflecting any tensions between them. Thus, this article elaborates an account of situated English teaching....

  20. Plasmid mediated tetracycline resistance of Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND in shrimps

    Directory of Open Access Journals (Sweden)

    Jee Eun Han

    2015-11-01

    Full Text Available Antimicrobial resistance is one of the most important problems in public health, veterinary medicine and aquaculture. Importantly, plasmid mediated antibiotic resistance of pathogenic Vibrio parahaemolyticus from shrimp can potentially be transferred through transposition, conjugation and plasmid uptake to different bacterial species in aquaculture systems. In this study, we evaluated the antibiotic resistance pattern in V. parahaemolyticus strains associated with acute hepatopancreatic necrosis disease (AHPND from penaeid shrimp and identified AHPND strains from Mexico showed a high level of resistance to tetracycline (≥5 μg/mL and have the tetB gene coding tetracycline resistance. In particular, the tetB gene was carried in a single copy plasmid (named as pTetB-VA1 comprising 5162-bp with 40% G + C content from the strain (13-511/A1. The plasmid pTetB-VA1 consists of 9 ORFs encoding tetracycline resistant and repressor proteins, transcriptional regulatory proteins and transposases and showed a 99% sequence identity to other tet gene plasmids (pIS04_68 and pAQU2.

  1. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis

    KAUST Repository

    Liu, Qian

    2010-07-01

    Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylationindependent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana. © 2010 American Society of Plant Biologists.

  2. Snail-mediated cancer stem cell-like phenotype in human CNE2 nasopharyngeal carcinoma cell.

    Science.gov (United States)

    Peng, Shan; Wu, Cheng; Sun, Wei; Liu, Dongbo; Luo, Min; Su, Beibei; Zhang, Linli; Mei, Qi; Hu, Guoqing

    2018-03-01

    Cancer stem cell (CSC)-like phenotype, which has been proven to play a critical role in invasion and metastasis of many kinds of cancers, has also been reported to be associated with epithelial-mesenchymal transition. Snail, a potent repressor of E-cadherin expression, was found to have a function to regulate the aforementioned processes. In the current study, expression of putative CSCs biomarkers and the ratio of CSC-like CNE2 (cancer cell line) in total CNE2 were measured, and CSC-like characteristics were analyzed with tumor-sphere self-renewal and colony-forming assays. Migration and invasion properties were determined by using transwell and wound healing assays. Xenograft tumor assays in vivo were done to evaluate the function of Snail and radiation in the tumor forming ability. In human nasopharyngeal carcinoma (NPC) cells, overexpression of Snail mediates a CSC-like phenotype, which enhances the initiation, invasion, and migration ability of cancer cells. Thus, Snail is a potential therapeutic target in NPC. © 2017 Wiley Periodicals, Inc.

  3. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells.

    Science.gov (United States)

    Chen, Jiangzhi; Xu, Hong; Zou, Xiuqun; Wang, Jiamin; Zhu, Yi; Chen, Hao; Shen, Baiyong; Deng, Xiaxing; Zhou, Aiwu; Chin, Y Eugene; Rauscher, Frank J; Peng, Chenghong; Hou, Zhaoyuan

    2014-08-15

    Transcriptional repressor Snail is a master regulator of epithelial-mesenchymal transition (EMT), yet the epigenetic mechanism governing Snail to induce EMT is not well understood. Here, we report that in pancreatic ductal adenocarcinoma (PDAC), elevated levels of the ubiquitin E3 ligase Ring1B and Snail, along with elevated monoubiquitination of H2A at K119 (H2AK119Ub1), are highly correlated with poor survival. Mechanistic investigations identified Ring1B as a Snail-interacting protein and showed that the carboxyl zinc fingers of Snail recruit Ring1B and its paralog Ring1A to repress its target promoters. Simultaneous depletion of Ring1A and Ring1B in pancreatic cancer cells decreased Snail binding to the target chromatin, abolished H2AK119Ub1 modification, and thereby compromised Snail-mediated transcriptional repression and cell migration. We found that Ring1B and the SNAG-associated chromatin modifier EZH2 formed distinct protein complexes with Snail and that EZH2 was required for Snail-Ring1A/B recruitment to the target promoter. Collectively, our results unravel an epigenetic mechanism underlying transcriptional repression by Snail, suggest Ring1A/B as a candidate therapeutic target, and identify H2AK119Ub1 as a potential biomarker for PDAC diagnosis and prognosis. ©2014 American Association for Cancer Research.

  4. Aβ induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis.

    Science.gov (United States)

    Feng, Jie; Meng, Chengbo; Xing, Da

    2015-02-01

    p53 upregulated modulator of apoptosis (PUMA) is a promising tumor therapy target because it elicits apoptosis and profound sensitivity to radiation and chemotherapy. However, inhibition of PUMA may be beneficial for curbing excessive apoptosis associated with neurodegenerative disorders. Alzheimer's disease (AD) is a representative neurodegenerative disease in which amyloid-β (Aβ) deposition causes neurotoxicity. The regulation of PUMA during Aβ-induced neuronal apoptosis remains poorly understood. Here, we reported that PUMA expression was significantly increased in the hippocampus of transgenic mice models of AD and hippocampal neurons in response to Aβ. PUMA knockdown protected the neurons against Aβ-induced apoptosis. Furthermore, besides p53, PUMA transactivation was also regulated by forkhead box O3a through p53-independent manner following Aβ treatment. Notably, PUMA contributed to neuronal apoptosis through competitive binding of apoptosis repressor with caspase recruitment domain to activate caspase-8 that cleaved Bid into tBid to accelerate Bax mitochondrial translocation, revealing a novel pathway of Bax activation by PUMA to mediate Aβ-induced neuronal apoptosis. Together, we demonstrated that PUMA activation involved in Aβ-induced apoptosis, representing a drug target to antagonize AD progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Pax6 represses androgen receptor-mediated transactivation by inhibiting recruitment of the coactivator SPBP.

    Directory of Open Access Journals (Sweden)

    Julianne Elvenes

    Full Text Available The androgen receptor (AR has a central role in development and maintenance of the male reproductive system and in the etiology of prostate cancer. The transcription factor Pax6 has recently been reported to act as a repressor of AR and to be hypermethylated in prostate cancer cells. SPBP is a transcriptional regulator that previously has been shown to enhance the activity of Pax6. In this study we have identified SPBP to act as a transcriptional coactivator of AR. We also show that Pax6 inhibits SPBP-mediated enhancement of AR activity on the AR target gene probasin promoter, a repression that was partly reversed by increased expression of SPBP. Enhanced expression of Pax6 reduced the amount of SPBP associated with the probasin promoter when assayed by ChIP in HeLa cells. We mapped the interaction between both AR and SPBP, and AR and Pax6 to the DNA-binding domains of the involved proteins. Further binding studies revealed that Pax6 and SPBP compete for binding to AR. These results suggest that Pax6 represses AR activity by displacing and/or inhibiting recruitment of coactivators to AR target promoters. Understanding the mechanism for inhibition of AR coactivators can give rise to molecular targeted drugs for treatment of prostate cancer.

  6. DREAM mediated regulation of GCM1 in the human placental trophoblast.

    Directory of Open Access Journals (Sweden)

    Dora Baczyk

    Full Text Available The trophoblast transcription factor glial cell missing-1 (GCM1 regulates differentiation of placental cytotrophoblasts into the syncytiotrophoblast layer in contact with maternal blood. Reduced placental expression of GCM1 and abnormal syncytiotrophoblast structure are features of hypertensive disorder of pregnancy--preeclampsia. In-silico techniques identified the calcium-regulated transcriptional repressor--DREAM (Downstream Regulatory Element Antagonist Modulator--as a candidate for GCM1 gene expression. Our objective was to determine if DREAM represses GCM1 regulated syncytiotrophoblast formation. EMSA and ChIP assays revealed a direct interaction between DREAM and the GCM1 promoter. siRNA-mediated DREAM silencing in cell culture and placental explant models significantly up-regulated GCM1 expression and reduced cytotrophoblast proliferation. DREAM calcium dependency was verified using ionomycin. Furthermore, the increased DREAM protein expression in preeclamptic placental villi was predominantly nuclear, coinciding with an overall increase in sumolylated DREAM and correlating inversely with GCM1 levels. In conclusion, our data reveal a calcium-regulated pathway whereby GCM1-directed villous trophoblast differentiation is repressed by DREAM. This pathway may be relevant to disease prevention via calcium-supplementation.

  7. Immune mediated liver failure.

    Science.gov (United States)

    Wang, Xiaojing; Ning, Qin

    2014-01-01

    Liver failure is a clinical syndrome of various etiologies, manifesting as jaundice, encephalopathy, coagulopathy and circulatory dysfunction, which result in subsequent multiorgan failure. Clinically, liver failure is classified into four categories: acute, subacute, acute-on-chronic and chronic liver failure. Massive hepatocyte death is considered to be the core event in the development of liver failure, which occurs when the extent of hepatocyte death is beyond the liver regenerative capacity. Direct damage and immune-mediated liver injury are two major factors involved in this process. Increasing evidence has suggested the essential role of immune-mediated liver injury in the pathogenesis of liver failure. Here, we review the evolved concepts concerning the mechanisms of immune-mediated liver injury in liver failure from human and animal studies. Both innate and adaptive immunity, especially the interaction of various immune cells and molecules as well as death receptor signaling system are discussed. In addition, we highlight the concept of "immune coagulation", which has been shown to be related to the disease progression and liver injury exacerbation in HBV related acute-on-chronic liver failure.

  8. Lopsided Gauge Mediation

    CERN Document Server

    De Simone, Andrea; Giudice, Gian Francesco; Pappadopulo, Duccio; Rattazzi, Riccardo

    2011-01-01

    It has been recently pointed out that the unavoidable tuning among supersymmetric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called $\\mu$-$B_\\mu$ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of $B_\\mu$ and of the other Higgs-sector soft masses, as predicted in models where both $\\mu$ and $B_\\mu$ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. We discuss general parametric relations involving the fine-tuning of the model and various observables such as the chargino mass and the value of $\\tan\\beta$. We build an explicit model and we study the constraints coming from LEP and Tevatron. We show that in spite of ne...

  9. Incorporating nonlinearity into mediation analyses.

    Science.gov (United States)

    Knafl, George J; Knafl, Kathleen A; Grey, Margaret; Dixon, Jane; Deatrick, Janet A; Gallo, Agatha M

    2017-03-21

    Mediation is an important issue considered in the behavioral, medical, and social sciences. It addresses situations where the effect of a predictor variable X on an outcome variable Y is explained to some extent by an intervening, mediator variable M. Methods for addressing mediation have been available for some time. While these methods continue to undergo refinement, the relationships underlying mediation are commonly treated as linear in the outcome Y, the predictor X, and the mediator M. These relationships, however, can be nonlinear. Methods are needed for assessing when mediation relationships can be treated as linear and for estimating them when they are nonlinear. Existing adaptive regression methods based on fractional polynomials are extended here to address nonlinearity in mediation relationships, but assuming those relationships are monotonic as would be consistent with theories about directionality of such relationships. Example monotonic mediation analyses are provided assessing linear and monotonic mediation of the effect of family functioning (X) on a child's adaptation (Y) to a chronic condition by the difficulty (M) for the family in managing the child's condition. Example moderated monotonic mediation and simulation analyses are also presented. Adaptive methods provide an effective way to incorporate possibly nonlinear monotonicity into mediation relationships.

  10. Incorporating nonlinearity into mediation analyses

    Directory of Open Access Journals (Sweden)

    George J. Knafl

    2017-03-01

    Full Text Available Abstract Background Mediation is an important issue considered in the behavioral, medical, and social sciences. It addresses situations where the effect of a predictor variable X on an outcome variable Y is explained to some extent by an intervening, mediator variable M. Methods for addressing mediation have been available for some time. While these methods continue to undergo refinement, the relationships underlying mediation are commonly treated as linear in the outcome Y, the predictor X, and the mediator M. These relationships, however, can be nonlinear. Methods are needed for assessing when mediation relationships can be treated as linear and for estimating them when they are nonlinear. Methods Existing adaptive regression methods based on fractional polynomials are extended here to address nonlinearity in mediation relationships, but assuming those relationships are monotonic as would be consistent with theories about directionality of such relationships. Results Example monotonic mediation analyses are provided assessing linear and monotonic mediation of the effect of family functioning (X on a child’s adaptation (Y to a chronic condition by the difficulty (M for the family in managing the child's condition. Example moderated monotonic mediation and simulation analyses are also presented. Conclusions Adaptive methods provide an effective way to incorporate possibly nonlinear monotonicity into mediation relationships.

  11. What carries a mediation process? Configural analysis of mediation.

    Science.gov (United States)

    von Eye, Alexander; Mun, Eun Young; Mair, Patrick

    2009-09-01

    Mediation is a process that links a predictor and a criterion via a mediator variable. Mediation can be full or partial. This well-established definition operates at the level of variables even if they are categorical. In this article, two new approaches to the analysis of mediation are proposed. Both of these approaches focus on the analysis of categorical variables. The first involves mediation analysis at the level of configurations instead of variables. Thus, mediation can be incorporated into the arsenal of methods of analysis for person-oriented research. Second, it is proposed that Configural Frequency Analysis (CFA) can be used for both exploration and confirmation of mediation relationships among categorical variables. The implications of using CFA are first that mediation hypotheses can be tested at the level of individual configurations instead of variables. Second, this approach leaves the door open for different types of mediation processes to exist within the same set. Using a data example, it is illustrated that aggregate-level analysis can overlook mediation processes that operate at the level of individual configurations.

  12. Translation as cultural mediator

    Directory of Open Access Journals (Sweden)

    Roxana Petcu

    2009-01-01

    Full Text Available The aim of this paper is to analyze the role that translation plays as cultural mediator, as it already widely accepted that translation involves not just two languages, but two cultures, two worlds that are brought into close contact with each other. Obviously, between the two cultures, the two worlds that translation compares and contrasts there are both similarities and dissimilarities. What is of interest to us is the way in which dissimilarities should be approached in the process of translation, whether they should be domesticated or foreignized as Venuti put it, whether the reader should be brought closer to the text or the text closer to the reader.

  13. Holographic Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study

    2009-06-19

    We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.

  14. Urban Songlines as Mediator

    DEFF Research Database (Denmark)

    Corlin, Anne

    2016-01-01

    The aim of this paper is to present an investigation of the method The Urban Songlines Book and how it works as a mediator for mapping the experienced space. The method contains a combination of aerial maps, photographs, and interviews as a way to understand the respondent´s use, relations...... and experiences of their neighborhood and the city. Through a presentation of the origin of the method, a description of the conducted study, and an analysis of the process in relation to theories about participatory design, social design, ANT and architectural sociology, the paper reveals how this method...

  15. 45 CFR 16.18 - Mediation.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Mediation. 16.18 Section 16.18 Public Welfare... BOARD § 16.18 Mediation. (a) In cases pending before the Board. If the Board decides that mediation... mediation techniques and will provide or assist in selecting a mediator. The mediator may take any steps...

  16. Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators.

    Science.gov (United States)

    Huang, Yen-Tsung; Pan, Wen-Chi

    2016-06-01

    Causal mediation modeling has become a popular approach for studying the effect of an exposure on an outcome through a mediator. However, current methods are not applicable to the setting with a large number of mediators. We propose a testing procedure for mediation effects of high-dimensional continuous mediators. We characterize the marginal mediation effect, the multivariate component-wise mediation effects, and the L2 norm of the component-wise effects, and develop a Monte-Carlo procedure for evaluating their statistical significance. To accommodate the setting with a large number of mediators and a small sample size, we further propose a transformation model using the spectral decomposition. Under the transformation model, mediation effects can be estimated using a series of regression models with a univariate transformed mediator, and examined by our proposed testing procedure. Extensive simulation studies are conducted to assess the performance of our methods for continuous and dichotomous outcomes. We apply the methods to analyze genomic data investigating the effect of microRNA miR-223 on a dichotomous survival status of patients with glioblastoma multiforme (GBM). We identify nine gene ontology sets with expression values that significantly mediate the effect of miR-223 on GBM survival. © 2015, The International Biometric Society.

  17. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian

    2010-01-01

    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work as transcri...

  18. Role of 5′TG3′-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition

    Science.gov (United States)

    Sharma, Ajay; Sinha, Nishant R.; Siddiqui, Saad

    2015-01-01

    Purpose We have previously reported that vorinostat, an FDA-approved, clinically used histone deacetylase (HDAC) inhibitor, attenuates corneal fibrosis in vivo in rabbits by blocking transforming growth factor β (TGFβ). The 5′TG3′-interacting factors (TGIFs) are transcriptional repressors of TGFβ1 signaling via the Smad pathway. The present study was designed to explore the expression of TGIFs in human corneal fibroblasts and to investigate their role in mediating the antifibrotic effect of vorinostat. Methods Human corneal fibroblast cultures were generated from donor corneas. RNA isolation, cDNA preparation, and PCR were performed to detect the presence of TGIF1 and TGIF2 transcripts. The cultures were exposed to vorinostat (2.5 µM) to test its effect on TGIF mRNA and protein levels using qPCR and immunoblotting. Myofibroblast formation was induced with TGFβ1 (5 ng/ml) treatment under serum-free conditions. The changes in fibrosis parameters were quantified by measuring fibrosis marker α-smooth muscle actin (αSMA) mRNA and protein levels with qPCR, immunostaining, and immunoblotting. Smad2/3/4 and TGIF knockdowns were performed using pre-validated RNAi/siRNAs and a commercially available transfection reagent. Results Human corneal fibroblasts showed the expression of TGIF1 and TGIF2. Vorinostat (2.5 µM) caused a 2.8–3.3-fold increase in TGIF1 and TGIF2 mRNA levels and a 1.4–1.8-fold increase in TGIF1 and TGIF2 protein levels. Vorinostat treatment also caused a significant increase in acetylhistone H3 and acetylhistone H4. Vorinostat-induced increases in TGIF1 and TGIF2 were accompanied by a concurrent decrease in corneal fibrosis, as indicated by a decrease in αSMA mRNA by 83±7.7% and protein levels by 97±5%. The RNAi-mediated knockdown of Smad2, Smad3, and Smad4 markedly attenuated TGFβ1-evoked transdifferentiation of fibroblasts to myofibroblasts. The siRNA-mediated knockdown of TGIF1 and TGIF2 neutralized vorinostat-evoked decreases in

  19. Interpreter-mediated dentistry.

    Science.gov (United States)

    Bridges, Susan; Drew, Paul; Zayts, Olga; McGrath, Colman; Yiu, Cynthia K Y; Wong, H M; Au, T K F

    2015-05-01

    The global movements of healthcare professionals and patient populations have increased the complexities of medical interactions at the point of service. This study examines interpreter mediated talk in cross-cultural general dentistry in Hong Kong where assisting para-professionals, in this case bilingual or multilingual Dental Surgery Assistants (DSAs), perform the dual capabilities of clinical assistant and interpreter. An initial language use survey was conducted with Polyclinic DSAs (n = 41) using a logbook approach to provide self-report data on language use in clinics. Frequencies of mean scores using a 10-point visual analogue scale (VAS) indicated that the majority of DSAs spoke mainly Cantonese in clinics and interpreted for postgraduates and professors. Conversation Analysis (CA) examined recipient design across a corpus (n = 23) of video-recorded review consultations between non-Cantonese speaking expatriate dentists and their Cantonese L1 patients. Three patterns of mediated interpreting indicated were: dentist designated expansions; dentist initiated interpretations; and assistant initiated interpretations to both the dentist and patient. The third, rather than being perceived as negative, was found to be framed either in response to patient difficulties or within the specific task routines of general dentistry. The findings illustrate trends in dentistry towards personalized care and patient empowerment as a reaction to product delivery approaches to patient management. Implications are indicated for both treatment adherence and the education of dental professionals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae.

    Science.gov (United States)

    Afzal, Muhammad; Shafeeq, Sulman; Kuipers, Oscar P

    2014-09-01

    Comparison of the transcriptome of Streptococcus pneumoniae strain D39 grown in the presence of either lactose or galactose with that of the strain grown in the presence of glucose revealed the elevated expression of various genes and operons, including the lac gene cluster, which is organized into two operons, i.e., lac operon I (lacABCD) and lac operon II (lacTFEG). Deletion of the DeoR family transcriptional regulator lacR that is present downstream of the lac gene cluster revealed elevated expression of lac operon I even in the absence of lactose. This suggests a function of LacR as a transcriptional repressor of lac operon I, which encodes enzymes involved in the phosphorylated tagatose pathway in the absence of lactose or galactose. Deletion of lacR did not affect the expression of lac operon II, which encodes a lactose-specific phosphotransferase. This finding was further confirmed by β-galactosidase assays with PlacA-lacZ and PlacT-lacZ in the presence of either lactose or glucose as the sole carbon source in the medium. This suggests the involvement of another transcriptional regulator in the regulation of lac operon II, which is the BglG-family transcriptional antiterminator LacT. We demonstrate the role of LacT as a transcriptional activator of lac operon II in the presence of lactose and CcpA-independent regulation of the lac gene cluster in S. pneumoniae. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Distinct roles for aryl hydrocarbon receptor nuclear translocator and ah receptor in estrogen-mediated signaling in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Mark P Labrecque

    Full Text Available The activated AHR/ARNT complex (AHRC regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Importantly, evidence has shown that TCDD represses estrogen receptor (ER target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3',4'-dimethoxy-α-naphthoflavone (DiMNF to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.

  2. Comments on General Gauge Mediation

    OpenAIRE

    Intriligator, Kenneth; Sudano, Matthew

    2008-01-01

    There has been interest in generalizing models of gauge mediation of supersymmetry breaking. As shown by Meade, Seiberg, and Shih (MSS), the soft masses of general gauge mediation can be expressed in terms of the current two-point functions of the susy-breaking sector. We here give a simple extension of their result which provides, for general gauge mediation, the full effective potential for squark pseudo-D-flat directions. The effective potential reduces to the sfermion soft masses near the...

  3. Ligand Receptor-Mediated Regulation of Growth in Plants.

    Science.gov (United States)

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  4. Mediating Trust in Terrorism Coverage

    DEFF Research Database (Denmark)

    Mogensen, Kirsten

    Mass mediated risk communication can contribute to perceptions of threats and fear of “others” and/or to perceptions of trust in fellow citizens and society to overcome problems. This paper outlines a cross-disciplinary holistic framework for research in mediated trust building during an acute...... crisis. While the framework is presented in the context of television coverage of a terror-related crisis situation, it can equally be used in connection with all other forms of mediated trust. Key words: National crisis, risk communication, crisis management, television coverage, mediated trust....

  5. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  6. Inflammatory mediators and intestinal injury.

    Science.gov (United States)

    Caplan, M S; MacKendrick, W

    1994-06-01

    Although the causes of necrotizing enterocolitis (NEC) are not well understood, there is compelling evidence to suggest that the inflammatory mediators play an important role in the pathophysiology of the disease. This article examines the role of platelet-activating factor (PAF) and other mediators on the development of NEC, and attempts to explain the association of the putative NEC risk factors with altered mediator production and subsequent intestinal injury. The authors hypothesize that PAF is a key mediator in the final common pathway leading to NEC.

  7. When Memories are Mediated

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Bjerregaard, Mette

    2013-01-01

    that are mediated through stories: told and retold as oral stories through generations, as myths or sagas, or remediated as contemporary documentary film accounts or more fictional film accounts. In these processes of retelling acts of violence, transformations of meanings across time, cultural, social...... and political contexts and media platforms take place and become contexts for audience reception. This paper explores two examples of narratives that construct memories of acts of mass violence: “Gzim Rewind” (Sweden, 2011, director Knutte Wester) about 1990’s Kosovo, and “The Act of Killing” (Denmark, 2012......, director Joshua Oppenheimer) about 1960’s Indonesia. The two films, in very different ways, focus on persons who tell about their involvement in acts of mass violence. Both films use live action footage in combination with fictional elements and settings, and both films also convey personal relationships...

  8. Mediating Potency and Fear

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    2018-01-01

    ’ [Shaviro, S., 2010. Post-cinematic affect. Winchester: Zero Books]. These intensity effects mediate between the age of terror's ecology of fear [Massumi, Brian, 2002. Parables for the virtual: movement, affect, sensation. Durham: Duke University Press] and our bodies. Rather than producing fear, action....... Adey, M. Whitehead, and A.J. Williams, eds. From above: war, violence and verticality. London: Hurst & Company]. Through a sensory assault of intense bass soundtracks, kinetic camera movements, and intense CGI effects action movies work to produce what Steven Shaviro has termed ‘intensity effects....... Robin James significantly posits a drone atmosphere where our perceptual limit reconfigures through ‘droning’ – the creation of an affective timbre [James, R., 2013. Drones, sound, and super-panoptic surveillance. Cyborgology]. As James argues, ‘[d]roning rivets you to material conditions, affects...

  9. Mediated Cultural Memories

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Bjerregaard, Mette

    2013-01-01

    (A revised, full paper will be published in the journal Mediekultur, spring 2014) This paper explores two examples of narratives representing memories of acts of mass violence: Gzim Rewind (Sweden, 2011, director Knutte Wester) about 1990’s Kosovo, and The Act of Killing (Denmark, 2012, director...... perspectives of semiosis (meaning-making) in relation to the films as redefining genres and what sorts of meanings different audiences create about the films. Acts of mass violence, including murder on civilians, genocide, and wars, can be seen as seeds for memories of the involved persons and following...... generations. Acts of mass violence also construct a sort of looking glass of culturally dominant memories that are mediated through stories: retold as oral stories through generations, as myths or sagas, or remediated in contemporary documentary or fiction films. In these processes of retelling acts...

  10. Mediatization and Government Communication

    DEFF Research Database (Denmark)

    Laursen, Bo; Valentini, Chiara

    2015-01-01

    Social actors see exposure in the news media as attractive for publicity purposes and are under pressure to adapt their press work to a “media logic” to be attractive sources for journalists and editors. This article investigates the European Parliament’s press officers’ professional practices...... in the light of mediatization and government communication theories. Without one pan-European public sphere, the European Parliament, like the other European Union (EU) institutions, competes with national actors for the news media’s attention in the EU’s twenty-eight national public spheres, where EU affairs......” in their communication efforts, and that they face a daily professional challenge as they attempt to promote the European Parliament and its activities to the news media in a way that will not compromise their credibility as government sources. The study provides new insights into communicative aspects of EU governance...

  11. Fashion, Mediations & Method Assemblages

    DEFF Research Database (Denmark)

    Sommerlund, Julie; Jespersen, Astrid Pernille

    relations between individuals and social contexts, aesthetics and production, distribution and consumption, as well as relations between fluidity and stability. By addressing the field of fashion, the paper proposes to shed light on an empirical setting which has so far been studied either as a purely......This paper discusses relations between aesthetics of fashion and the sociality of fashion. It takes as its premise that aesthetics and sociality are co-constructed, and cannot be regarded as separate - although this has been the norm in the academic traditions of aesthetics and sociology...... to STS literature by expanding one of its central debates to a new empirical setting; fashion specifically, and the aesthetic-cultural field on a more general level. In trying to make a theoretical connection between aesthetics and sociality of fashion, the paper suggests the term of "mediator" (Hennion...

  12. Endosome-mediated autophagy

    Science.gov (United States)

    Kondylis, Vangelis; van Nispen tot Pannerden, Hezder E.; van Dijk, Suzanne; ten Broeke, Toine; Wubbolts, Richard; Geerts, Willie J.; Seinen, Cor; Mutis, Tuna; Heijnen, Harry F.G.

    2013-01-01

    Activation of TLR signaling has been shown to induce autophagy in antigen-presenting cells (APCs). Using high-resolution microscopy approaches, we show that in LPS-stimulated dendritic cells (DCs), autophagosomes emerge from MHC class II compartments (MIICs) and harbor both the molecular machinery for antigen processing and the autophagosome markers LC3 and ATG16L1. This ENdosome-Mediated Autophagy (ENMA) appears to be the major type of autophagy in DCs, as similar structures were observed upon established autophagy-inducing conditions (nutrient deprivation, rapamycin) and under basal conditions in the presence of bafilomycin A1. Autophagosome formation was not significantly affected in DCs expressing ATG4BC74A mutant and atg4b−/− bone marrow DCs, but the degradation of the autophagy substrate SQSTM1/p62 was largely impaired. Furthermore, we demonstrate that the previously described DC aggresome-like LPS-induced structures (DALIS) contain vesicular membranes, and in addition to SQSTM1 and ubiquitin, they are positive for LC3. LC3 localization on DALIS is independent of its lipidation. MIIC-driven autophagosomes preferentially engulf the LPS-induced SQSTM1-positive DALIS, which become later degraded in autolysosomes. DALIS-associated membranes also contain ATG16L1, ATG9 and the Q-SNARE VTI1B, suggesting that they may represent (at least in part) a membrane reservoir for autophagosome expansion. We propose that ENMA constitutes an unconventional, APC-specific type of autophagy, which mediates the processing and presentation of cytosolic antigens by MHC class II machinery, and/or the selective clearance of toxic by-products of elevated ROS/RNS production in activated DCs, thereby promoting their survival. PMID:23481895

  13. Protein Kinase C-Mediated Phosphorylation of BCL11B at Serine 2 Negatively Regulates Its Interaction with NuRD Complexes during CD4+ T-Cell Activation.

    Science.gov (United States)

    Dubuissez, Marion; Loison, Ingrid; Paget, Sonia; Vorng, Han; Ait-Yahia, Saliha; Rohr, Olivier; Tsicopoulos, Anne; Leprince, Dominique

    2016-07-01

    The transcription factor BCL11B/CTIP2 is a major regulatory protein implicated in various aspects of development, function and survival of T cells. Mitogen-activated protein kinase (MAPK)-mediated phosphorylation and SUMOylation modulate BCL11B transcriptional activity, switching it from a repressor in naive murine thymocytes to a transcriptional activator in activated thymocytes. Here, we show that BCL11B interacts via its conserved N-terminal MSRRKQ motif with endogenous MTA1 and MTA3 proteins to recruit various NuRD complexes. Furthermore, we demonstrate that protein kinase C (PKC)-mediated phosphorylation of BCL11B Ser2 does not significantly impact BCL11B SUMOylation but negatively regulates NuRD recruitment by dampening the interaction with MTA1 or MTA3 (MTA1/3) and RbAp46 proteins. We detected increased phosphorylation of BCL11B Ser2 upon in vivo activation of transformed and primary human CD4(+) T cells. We show that following activation of CD4(+) T cells, BCL11B still binds to IL-2 and Id2 promoters but activates their transcription by recruiting P300 instead of MTA1. Prolonged stimulation results in the direct transcriptional repression of BCL11B by KLF4. Our results unveil Ser2 phosphorylation as a new BCL11B posttranslational modification linking PKC signaling pathway to T-cell receptor (TCR) activation and define a simple model for the functional switch of BCL11B from a transcriptional repressor to an activator during TCR activation of human CD4(+) T cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. The mediation procedure in Romania

    Directory of Open Access Journals (Sweden)

    Alexandrina Zaharia

    2009-06-01

    Full Text Available The mediation activity as an alternative way of solving conflicts occupies an important place in modernsociety. Currently, the mediation reached its maturity worldwide being adopted without reservations.The future of solving conflicts is undoubtedly closely related to mediation. XXth century is the century of solvingconflicts amiably outside the court room. In Romania and the mediation profession were regulated by the Law no.192/2006, on the basis of the idea that mediation is one of the major themes of the reform strategy of the judicialsystem 2005-2007. By adopting the mentioned law it was followed the idea of reducing the volume of activitycourts, and therefore, relieve them of as many cases, with the direct effect on the quality of justice. Mediation is avoluntary process in which the parties with a neutral and impartial third party, without power of decision - themediator - who is qualified to assist the parties to negotiate, facilitating the communication between them andhelping them to reach a unanimous effective and sustainable agreement. The parties may resort to mediation beforeor after triggering a trial. Mediation can be applied, in principle, on any type of conflict. However, theRomanian legislator has established special stipulations on conflict mediation in criminal, civil and familylaw. Although not expressly provided, the stipulations regarding the civil conflicts and also apply to commercialconflicts. Therefore, the mediation is applicable to most types of lawsuits, except those relating to personalrights. As a "win- win" principle, the mediation does not convert any of the parties defeated or victorious; allthose involved have gained by applying this procedure.

  15. Theorizing with/out "Mediators".

    Science.gov (United States)

    Roth, Wolff-Michael; Jornet, Alfredo

    2017-01-05

    Mediation is one of the most often cited concepts in current cultural-historical theory literature, in which cultural actions and artifacts are often characterized as mediators standing between situational stimuli and behavioral responses. Most often presented as a means to overcome Cartesian dualism between subject and object, and between individual and society, some scholars have nonetheless raised criticism suggesting that such mediators are problematic for a dialectical psychology that takes a unit analysis (monist) approach. In fact, Spinoza develops a monist theory of mind and body that goes without and even excludes every form of mediation. In this study, we follow up on the latter criticisms and explore what we consider to be problematic uses of the notion of mediation as an analytical construct in the literature. We elaborate an empirically grounded discussion on the ways the concept of mediation may lead to dualistic readings; and we offer an alternative account where the notion of mediator is not needed. We conclude discussing prospects for and implications of a cultural-historical theory where the notion of mediation no longer is invoked to account for human action and development.

  16. Practical Guide to Civil Mediation

    CERN Multimedia

    2006-01-01

    The Permanent Mission of Switzerland has informed CERN that the Département des Institutions of the Republic and Canton of Geneva and the Groupement suisse des Magistrats pour la médiation (GEMME) - Swiss Association of Magistrates for Mediation have published a multilingual Practical Guide to Civil Mediation (including English). In this context, the Swiss Mission has underlined the benefits of resorting to mediation, especially for the personnel of International Organizations, and which the Secretary-General of the GEMME has summarised as follows: it is a private process not requiring the waiver of the parties' immunities; the confidentiality of the mediation process is guaranteed both by the mediator and the parties to it; the search for an amicable settlement does not need to be determined by reference to law (provided that public order is respected); the process is faster (2 to 3 sessions), less costly and more flexible than civil or arbitration procedures; in order to reinforce the agreem...

  17. Practical Guide to Civil Mediation

    CERN Multimedia

    2006-01-01

    The Permanent Mission of Switzerland has informed CERN that the Département des Institutions of the Republic and Canton of Geneva and the Groupement suisse des Magistrats pour la médiation (GEMME) - Swiss Association of Magistrates for Mediation have published a multilingual Practical Guide to Civil Mediation (including English). In this context, the Swiss Mission has underlined the benefits of resorting to mediation, especially for the personnel of international organizations, and which the Secretary-General of the GEMME has summarised as follows: it is a private process not requiring the waiver of the parties' immunities; the confidentiality of the mediation process is guaranteed both by the mediator and the parties to it; the search for an amicable settlement does not need to be determined by reference to law (provided that public order is respected); the process is faster (2 to 3 sessions), less costly and more flexible than civil or arbitration procedures; in order to reinforce the agreeme...

  18. Comments on general gauge mediation

    International Nuclear Information System (INIS)

    Intriligator, Kenneth; Sudano, Matthew

    2008-01-01

    There has been interest in generalizing models of gauge mediation of supersymmetry breaking. As shown by Meade, Seiberg, and Shih (MSS), the soft masses of general gauge mediation can be expressed in terms of the current two-point functions of the susy-breaking sector. We here give a simple extension of their result which provides, for general gauge mediation, the full effective potential for squark pseudo-D-flat directions. The effective potential reduces to the sfermion soft masses near the origin, and the full potential, away from the origin, can be useful for cosmological applications. We also generalize the soft masses and effective potential to allow for general gauge mediation by Higgsed gauge groups. Finally, we discuss general gauge mediation in the limit of small F-terms, and how the results of MSS connect with the analytic continuation in superspace results, based on a spurion analysis.

  19. 34 CFR 81.13 - Mediation.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Mediation. 81.13 Section 81.13 Education Office of the... Mediation. (a) Voluntary mediation is available for proceedings that are pending before the OALJ. (b) A... mediation by filing a motion with the ALJ assigned to the case. The OALJ arranges for a mediator if the...

  20. 24 CFR 3288.35 - Mediation.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Mediation. 3288.35 Section 3288.35...-Administered States § 3288.35 Mediation. (a) Mediator. The dispute resolution provider will provide for the... identifies any other party that should be included in the mediation, the mediator will contact the other...

  1. 44 CFR 7.942 - Mediation.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Mediation. 7.942 Section 7..., Conciliation, and Enforcement Procedures § 7.942 Mediation. (a) FEMA will promptly refer to a mediation agency... participate in the mediation process to the extent necessary to reach an agreement or for the mediator to make...

  2. 29 CFR 1202.1 - Mediation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Mediation. 1202.1 Section 1202.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD RULES OF PROCEDURE § 1202.1 Mediation. The mediation..., or where conferences are refused. The National Mediation Board may proffer its services in case any...

  3. 29 CFR 35.32 - Mediation.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Mediation. 35.32 Section 35.32 Labor Office of the Secretary... Mediation. (a) Referral to mediation. CRC will promptly refer to the Federal Mediation and Conciliation Service or the mediation agency designated by the Secretary of Health and Human Services under 45 CFR part...

  4. 29 CFR 1203.1 - Mediation services.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Mediation services. 1203.1 Section 1203.1 Labor Regulations Relating to Labor (Continued) NATIONAL MEDIATION BOARD APPLICATIONS FOR SERVICE § 1203.1 Mediation services. Applications for the mediation services of the National Mediation Board under section 5, First, of the Railway...

  5. 22 CFR 143.33 - Mediation.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Mediation. 143.33 Section 143.33 Foreign... Mediation. (a) Referral of complaints for mediation. The agency will refer to the Federal Mediation and... participate in the mediation process to the extent necessary to reach an agreement or make an informed...

  6. 32 CFR 776.38 - Mediation.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Mediation. 776.38 Section 776.38 National... Professional Conduct § 776.38 Mediation. (a) Mediation: (1) A covered attorney may act as a mediator between... mediation, including the advantages and risks involved, and the effect on the attorney-client...

  7. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  8. Chaperone-Mediated Autophagy

    Science.gov (United States)

    Bejarano, Eloy; Cuervo, Ana Maria

    2010-01-01

    Continuous renewal of intracellular components is required to preserve cellular functionality. In fact, failure to timely turnover proteins and organelles leads often to cell death and disease. Different pathways contribute to the degradation of intracellular components in lysosomes or autophagy. In this review, we focus on chaperone-mediated autophagy (CMA), a selective form of autophagy that modulates the turnover of a specific pool of soluble cytosolic proteins. Selectivity in CMA is conferred by the presence of a targeting motif in the cytosolic substrates that, upon recognition by a cytosolic chaperone, determines delivery to the lysosomal surface. Substrate proteins undergo unfolding and translocation across the lysosomal membrane before reaching the lumen, where they are rapidly degraded. Better molecular characterization of the different components of this pathway in recent years, along with the development of transgenic models with modified CMA activity and the identification of CMA dysfunction in different severe human pathologies and in aging, are all behind the recent regained interest in this catabolic pathway. PMID:20160146

  9. Caspases: An apoptosis mediator

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Palai

    2015-03-01

    Full Text Available The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy - dependent biochemical mechanisms. Apoptosis is a widely conserved phenomenon helping many processes, including normal cell turnover, proper development and functioning of the immune system, hormone dependent atrophy etc. Inappropriate apoptosis (either low level or high level leads to many developmental abnormalities like, neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. To use cells for therapeutic purposes through generating cell lines, it is critical to study the cell cycle machinery and signalling pathways that controls cell death and apoptosis. Apoptotic pathways provide a fundamental protective mechanism that decreases cellular sensitivity to damaging events and allow proper developmental process in multi-cellular organisms. Major mediator of apoptosis is a family of proteins known as caspases. There are mainly fourteen types of caspases but out of them only ten caspasese have got essential role in controlling the process of apoptosis. These ten caspases have been categorized into either initiator caspases (caspase 2, 8, 9, 10 or executioner caspases (caspase 3, 6, 7. Although various types of caspases have been identified so far, the exact mechanisms of action of these groups of proteins is still to be fully understood. The aim of this review is to provide a detail overview of role of different caspases in regulating the process of apoptosis.

  10. Transcriptional regulation of the genes encoding cytochromes P450BM-1 and P450BM-3 in Bacillus megaterium by the binding of Bm3R1 repressor to Barbie box elements and operator sites.

    Science.gov (United States)

    Liang, Q; Fulco, A J

    1995-08-04

    We previously reported (Liang, Q., He, J.-S., and Fulco, A.J. (1995) J. Biol. Chem. 270, 4438-4450) that Bm3R1, a repressor regulating the expression of P450BM-3 in Bacillus megaterium, could bind to Barbie box sequences in the 5'-flanking regions of barbiturate-inducible genes. We've now shown that pentobarbital does not inhibit in vitro binding of Bm3R1 to the P450BM-3 and P450BM-1 Barbie boxes (BB3 and BB1), although the palindromic operator sequence (OIII) of P450BM-3 did have a strong competitive effect on such binding. G39E-Bm3R1, a mutant of Bm3R1, did not bind to either Barbie box. In the presence of Bm3R1, portions of the regulatory regions of P450BM-3 and P450BM-1 were protected from DNase I digestion. These included 11 of the 15 base pairs of BB3 plus 7 base pairs 3' to BB3, BB1 plus 16 base pairs 3' to BB1, and, in the 5'-flanking region of P450BM-1, segments covering most of two palindromic sequences (OII and OIII) of 24 and 52 base pairs. These DNase I-protected regions (including OIII) showed considerable sequence identity, especially in a conserved poly(A) motif. Barbiturates did not inhibit binding of Bm3R1 to OI. OII in vitro while G39E-Bm3R1 did not bind. The regulatory effects of Bm3R1 on P450BM-1 and P450BM-3 were also evaluated in vivo using heterologous chloramphenicol acetyltransferase constructs and Western blotting. In the G39E mutant strain, both P450BM-1 and P450BM-3 were constitutively expressed, and the regulatory proteins Bm1P1 and Bm3P1, although still pentobarbital-inducible, had significantly higher basal levels of synthesis. In toto, our results show that Bm3R1 represses both P450BM-1 and P450BM-3 expression and that it may effect this by coordinate binding to operator and Barbie box sequences to produce looping of the P450BM-1 and P450BM-3 regulatory regions through protein-protein interaction.

  11. Interaction between repressor Opi1p and ER membrane protein Scs2p facilitates transit of phosphatidic acid from the ER to mitochondria and is essential for INO1 gene expression in the presence of choline.

    Science.gov (United States)

    Gaspar, Maria L; Chang, Yu-Fang; Jesch, Stephen A; Aregullin, Manuel; Henry, Susan A

    2017-11-10

    In the yeast Saccharomyces cerevisiae , the Opi1p repressor controls the expression of INO1 via the Opi1p/Ino2p-Ino4p regulatory circuit. Inositol depletion favors Opi1p interaction with both Scs2p and phosphatidic acid at the endoplasmic reticulum (ER) membrane. Inositol supplementation, however, favors the translocation of Opi1p from the ER into the nucleus, where it interacts with the Ino2p-Ino4p complex, attenuating transcription of INO1 A strain devoid of Scs2p ( scs2 Δ) and a mutant, OPI1FFAT , lacking the ability to interact with Scs2p were utilized to examine the specific role(s) of the Opi1p-Scs2p interaction in the regulation of INO1 expression and overall lipid metabolism. Loss of the Opi1p-Scs2p interaction reduced INO1 expression and conferred inositol auxotrophy. Moreover, inositol depletion in strains lacking this interaction resulted in Opi1p being localized to sites of lipid droplet formation, coincident with increased synthesis of triacylglycerol. Supplementation of choline to inositol-depleted growth medium led to decreased TAG synthesis in all three strains. However, in strains lacking the Opi1p-Scs2p interaction, Opi1p remained in the nucleus, preventing expression of INO1 These data support the conclusion that a specific pool of phosphatidic acid, associated with lipid droplet formation in the perinuclear ER, is responsible for the initial rapid exit of Opi1p from the nucleus to the ER and is required for INO1 expression in the presence of choline. Moreover, the mitochondria-specific phospholipid, cardiolipin, was significantly reduced in both strains compromised for Opi1p-Scs2p interaction, indicating that this interaction is required for the transfer of phosphatidic acid from the ER to the mitochondria for cardiolipin synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The retinoblastoma protein as a transcriptional repressor

    DEFF Research Database (Denmark)

    Helin, K; Ed, H

    1993-01-01

    The retinoblastoma protein (pRB) is one of the best-studied tumour suppressor gene products. Its loss during the genesis of many human tumours, its inactivation by several DNA tumour virus oncoproteins, and its ability to inhibit cell growth when introduced into dividing cells all suggest that p...

  13. Transcriptional repressor DREAM regulates trigeminal noxious perception.

    Science.gov (United States)

    Benedet, Tomaso; Gonzalez, Paz; Oliveros, Juan C; Dopazo, Jose M; Ghimire, Kedar; Palczewska, Malgorzata; Mellstrom, Britt; Naranjo, Jose R

    2017-05-01

    Expression of the downstream regulatory element antagonist modulator (DREAM) protein in dorsal root ganglia and spinal cord is related to endogenous control mechanisms of acute and chronic pain. In primary sensory trigeminal neurons, high levels of endogenous DREAM protein are preferentially localized in the nucleus, suggesting a major transcriptional role. Here, we show that transgenic mice expressing a dominant active mutant of DREAM in trigeminal neurons show increased responses following orofacial sensory stimulation, which correlates with a decreased expression of prodynorphin and brain-derived neurotrophic factor in trigeminal ganglia. Genome-wide analysis of trigeminal neurons in daDREAM transgenic mice identified cathepsin L and the monoglyceride lipase as two new DREAM transcriptional targets related to pain. Our results suggest a role for DREAM in the regulation of trigeminal nociception. This article is part of the special article series "Pain". © 2016 International Society for Neurochemistry.

  14. Mediation of information and educational mediation: conceptual discussions

    Directory of Open Access Journals (Sweden)

    Helena Célia de Souza Sacerdote

    2016-04-01

    Full Text Available Introduction: This is systematization of theoretical and methodological contributions related to the concepts of mediation information and pedagogical mediation in the literature. Objective: To understand possible intersection of information science and Online Education with regard to these concepts to check that both can be considered as analogous in its essence and practice. Methodology: Literature review based on literature by consulting the scientific productions selected in search of SciELO.ORG databases and EBSCO Host, the portal of CAPES / MEC and Google Scholar. Results: The most cited concepts in information science and education were de Almeida Junior (2009 and Masetto (2013, respectively. Conclusion: It is observed that the concept of mediation can move interchangeably between both areas. This is because the evidence found in the productions of the last five years indicate that the concept of information of mediation seems to have found its bases in education (educational psychology.

  15. Doing statistical mediation and moderation

    CERN Document Server

    Jose, Paul E

    2013-01-01

    Written in a friendly, conversational style, this book offers a hands-on approach to statistical mediation and moderation for both beginning researchers and those familiar with modeling. Starting with a gentle review of regression-based analysis, Paul Jose covers basic mediation and moderation techniques before moving on to advanced topics in multilevel modeling, structural equation modeling, and hybrid combinations, such as moderated mediation. User-friendly features include numerous graphs and carefully worked-through examples; ""Helpful Suggestions"" about procedures and pitfalls; ""Knowled

  16. Assay of mast cell mediators

    DEFF Research Database (Denmark)

    Rådinger, Madeleine; Jensen, Bettina M; Swindle, Emily

    2015-01-01

    Mediator release from activated mast cells is a major initiator of the symptomology associated with allergic disorders such as anaphylaxis and asthma. Thus, methods to monitor the generation and release of such mediators have widespread applicability in studies designed to understand the processes...... regulating mast cell activation and for the identification of therapeutic approaches to block mast cell-driven disease. In this chapter, we discuss approaches used for the determination of mast cell degranulation, lipid-derived inflammatory mediator production, and cytokine/chemokine gene expression as well...

  17. The mediatization of ethical consumption

    DEFF Research Database (Denmark)

    Eskjær, Mikkel Fugl

    2013-01-01

    Over the years, mediatization studies have investigated the influence of media in numerous sections of contemporary society. One area that has received limited attention is the mediatization of consumption, particularly issues concerning ethical consumption. This article presents a study of how...... mediatization is transforming modern consumption and contributing to the mainstreaming of ethical consumption. Based on a study of a Danish online eco-store, the article argues that modern ethical consumption increasingly depends on new media practices to present sustainable consumption as practical...

  18. Estimation of Causal Mediation Effects for a Dichotomous Outcome in Multiple-Mediator Models using the Mediation Formula

    Science.gov (United States)

    Nelson, Suchitra; Albert, Jeffrey M.

    2013-01-01

    Mediators are intermediate variables in the causal pathway between an exposure and an outcome. Mediation analysis investigates the extent to which exposure effects occur through these variables, thus revealing causal mechanisms. In this paper, we consider the estimation of the mediation effect when the outcome is binary and multiple mediators of different types exist. We give a precise definition of the total mediation effect as well as decomposed mediation effects through individual or sets of mediators using the potential outcomes framework. We formulate a model of joint distribution (probit-normal) using continuous latent variables for any binary mediators to account for correlations among multiple mediators. A mediation formula approach is proposed to estimate the total mediation effect and decomposed mediation effects based on this parametric model. Estimation of mediation effects through individual or subsets of mediators requires an assumption involving the joint distribution of multiple counterfactuals. We conduct a simulation study that demonstrates low bias of mediation effect estimators for two-mediator models with various combinations of mediator types. The results also show that the power to detect a non-zero total mediation effect increases as the correlation coefficient between two mediators increases, while power for individual mediation effects reaches a maximum when the mediators are uncorrelated. We illustrate our approach by applying it to a retrospective cohort study of dental caries in adolescents with low and high socioeconomic status. Sensitivity analysis is performed to assess the robustness of conclusions regarding mediation effects when the assumption of no unmeasured mediator-outcome confounders is violated. PMID:23650048

  19. Ascorbic Acid Inhibition of Candida albicans Hsp90-Mediated Morphogenesis Occurs via the Transcriptional Regulator Upc2

    Science.gov (United States)

    Van Hauwenhuyse, Frédérique; Fiori, Alessandro

    2014-01-01

    Morphogenetic transitions of the opportunistic fungal pathogen Candida albicans are influenced by temperature changes, with induction of filamentation upon a shift from 30 to 37°C. Hsp90 was identified as a major repressor of an elongated cell morphology at low temperatures, as treatment with specific inhibitors of Hsp90 results in elongated growth forms at 30°C. Elongated growth resulting from a compromised Hsp90 is considered neither hyphal nor pseudohyphal growth. It has been reported that ascorbic acid (vitamin C) interferes with the yeast-to-hypha transition in C. albicans. In the present study, we show that ascorbic acid also antagonizes the morphogenetic change caused by hampered Hsp90 function. Further analysis revealed that Upc2, a transcriptional regulator of genes involved in ergosterol biosynthesis, and Erg11, the target of azole antifungals, whose expression is in turn regulated by Upc2, are required for this antagonism. Ergosterol levels correlate with elongated growth and are reduced in cells treated with the Hsp90 inhibitor geldanamycin (GdA) and restored by cotreatment with ascorbic acid. In addition, we show that Upc2 appears to be required for ascorbic acid-mediated inhibition of the antifungal activity of fluconazole. These results identify Upc2 as a major regulator of ascorbic acid-induced effects in C. albicans and suggest an association between ergosterol content and elongated growth upon Hsp90 compromise. PMID:25084864

  20. [Mediation model in adolescent psychology].

    Science.gov (United States)

    Deguitre, Marie; Pascal-Verdelhan, Chantal; Saez, Catherine; Calmels, Marie-Jeanne; Nesensohn, Jessica; Legras, Stéphanie; Paradis, Martine

    2014-01-01

    Body mediation is today used as a tool for establishing a relationship with a young person experiencing psychological suffering. It is particularly useful in adolescence, a period marked by the destabilisation of emotional and relational fields.

  1. Inflammatory mediators of neuropathic pain

    OpenAIRE

    Oliveira Júnior, José Oswaldo de; Portella Junior, Caio Sander Andrade; Cohen, Cláudia Panossian

    2016-01-01

    ABSTRACT BACKGROUND AND OBJECTIVES: Pro-inflammatory chemical mediators and algogenic substances seem to be confused by the sharing of their actions and by interactions in painful and inflammatory presentation. This study aimed at presenting a review of major inflammatory chemical mediators and place them in neuropathic pain pathophysiology. CONTENTS: Inflammation is the homeostatic response of vascularized tissues to remove harmful agents and restore their normal functions. Nervous system ...

  2. Dimensional reduction in anomaly mediation

    Science.gov (United States)

    Boyda, Ed; Murayama, Hitoshi; Pierce, Aaron

    2002-04-01

    We offer a guide to dimensional reduction in theories with anomaly-mediated supersymmetry breaking. Evanescent operators proportional to ɛ arise in the bare Lagrangian when it is reduced from d=4 to d=4-2ɛ dimensions. In the course of a detailed diagrammatic calculation, we show that inclusion of these operators is crucial. The evanescent operators conspire to drive the supersymmetry-breaking parameters along anomaly-mediation trajectories across heavy particle thresholds, guaranteeing the ultraviolet insensitivity.

  3. Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings.

    Science.gov (United States)

    Melo, Nielda K G; Bianchetti, Ricardo E; Lira, Bruno S; Oliveira, Paulo M R; Zuccarelli, Rafael; Dias, Devisson L O; Demarco, Diego; Peres, Lazaro E P; Rossi, Magdalena; Freschi, Luciano

    2016-04-01

    The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants. © 2016 American Society of Plant Biologists. All Rights

  4. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    Science.gov (United States)

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. Copyright © 2015 Federation of European Biochemical Societies

  5. Inhibition of a novel specific neuroglial integrin signaling pathway increases STAT3-mediated CNTF expression

    Science.gov (United States)

    2013-01-01

    Background Ciliary neurotrophic factor (CNTF) expression is repressed in astrocytes by neuronal contact in the CNS and is rapidly induced by injury. Here, we defined an inhibitory integrin signaling pathway. Results The integrin substrates laminin, fibronectin and vitronectin, but not collagen, thrombospondin or fibrinogen, reduced CNTF expression in C6 astroglioma cells. Antibodies against αv and β5, but not α6 or β1, integrin induced CNTF. Together, the ligand and antibody specificity suggests that CNTF is repressed by αvβ5 integrin. Antibodies against Thy1, an abundant neuronal surface protein whose function is unclear, induced CNTF in neuron-astrocyte co-cultures indicating that it is a neuroglial CNTF repressor. Inhibition of the integrin signaling molecule Focal Adhesion Kinase (FAK) or the downstream c-Jun N-terminal kinase (JNK), but not extracellular regulated kinase (ERK) or p38 MAPK, greatly induced CNTF mRNA and protein expression within 4 hours. This selective inhibitory pathway phosphorylated STAT3 on its inhibitory ser-727 residue interfering with activity of the pro-transcription Tyr-705 residue. STAT3 can activate CNTF transcription because it bound to its promoter and FAK antagonist-induced CNTF was reduced by blocking STAT3. Microinjection of FAK inhibitor directly into the brain or spinal cord in adult mice rapidly induced CNTF mRNA and protein expression. Importantly, systemic treatment with FAK inhibitors over 3 days induced CNTF in the subventricular zone and increased neurogenesis. Conclusions Neuron-astroglia contact mediated by integrins serves as a sensor to enable rapid neurotrophic responses and provides a new pharmacological avenue to exploit the neuroprotective properties of endogenous CNTF. PMID:23693126

  6. miR-145 Antagonizes SNAI1-Mediated Stemness and Radiation Resistance in Colorectal Cancer.

    Science.gov (United States)

    Zhu, Yun; Wang, Cindy; Becker, Scott A; Hurst, Katie; Nogueira, Lourdes M; Findlay, Victoria J; Camp, E Ramsay

    2018-03-07

    Epithelial-to-mesenchymal transition (EMT) has been closely linked with therapy resistance and cancer stem cells (CSCs). However, EMT pathways have proven challenging to therapeutically target. MicroRNA 145 (miR-145) targets multiple stem cell transcription factors and its expression is inversely correlated with EMT. Therefore, we hypothesized that miR-145 represents a therapeutic target to reverse snail family transcriptional repressor 1 (SNAI1)-mediated stemness and radiation resistance (RT). Stable expression of SNAI1 in DLD1 and HCT116 cells (DLD1-SNAI1; HCT116-SNAI1) increased expression of Nanog and decreased miR-145 expression compared to control cells. Using a miR-145 luciferase reporter assay, we determined that ectopic SNAI1 expression significantly repressed the miR-145 promoter. DLD1-SNAI1 and HCT116-SNAI1 cells demonstrated decreased RT sensitivity and, conversely, miR-145 replacement significantly enhanced RT sensitivity. Of the five parental colon cancer cell lines, SW620 cells demonstrated relatively high endogenous SNAI1 and low miR-145 levels. In the SW620 cells, miR-145 replacement decreased CSC-related transcription factor expression, spheroid formation, and radiation resistance. In rectal cancer patient-derived xenografts, CSC identified by EpCAM+/aldehyde dehydrogenase (ALDH)+ demonstrated high expression of SNAI1, c-Myc, and Nanog compared with non-CSCs (EpCAM+/ALDH-). Conversely, patient-derived CSCs demonstrated low miR-145 expression levels relative to non-CSCs. These results suggest that the SNAI1:miR-145 pathway represents a novel therapeutic target in colorectal cancer to overcome RT resistance. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. Mutations affecting lipopolysaccharide enhance ail-mediated entry of Yersinia enterocolitica into mammalian cells.

    Science.gov (United States)

    Pierson, D E

    1994-07-01

    Two genes of Yersinia enterocolitica, inv and ail, have been identified as having a role in the bacterial adherence to and entry into mammalian cells in vitro. Expression of both genes is regulated by temperature. In stationary phase, ail gene expression is detectable only in bacteria at 37 degrees C, not at lower temperatures. An inv mutant derivative of Y. enterocolitica, which cannot enter mammalian cells when grown at 30 degrees C because of the lack of both inv and ail gene products, was mutagenized with the transposons mini-Tn10 and Tn5B50 to look for an increase in Ail-mediated cell entry. Sixteen mutants that could enter tissue culture cells after growth at 30 degrees C were selected. All of the mutants had increased cell surface Ail levels as detected by an Ail-specific monoclonal antibody. All of the ten Tn5B50 and one of the six mini-Tn10 mutants showed no increase in ail expression, but they had alterations in their lipopolysaccharide (LPS) such that no O side chains were detectable in bacteria grown at 30 degrees C. Thus, these mutants that are increased in their ability to enter cells appear to be so as a result of a change in the LPS on the surface resulting in increased levels of Ail protein able to interact with the mammalian cell surface. In the remaining mini-Tn10 mutants, LPS is normal, and the increase in cell surface Ail levels appears to be due to an increase in ail mRNA present in the cell. These mutants may therefore be affecting a repressor of ail gene expression.

  8. 15 CFR 923.54 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Mediation. 923.54 Section 923.54... Mediation. (a) Section 307(h) of the Act provides for mediation of serious disagreement between any Federal... cases, mediation by the Secretary, with the assistance of the Executive Office of the President, may be...

  9. 34 CFR 110.32 - Mediation.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Mediation. 110.32 Section 110.32 Education Regulations..., Conciliation, and Enforcement Procedures § 110.32 Mediation. (a) ED promptly refers to the Federal Mediation and Conciliation Service or to the mediation agency designated by the Secretary of Health and Human...

  10. 38 CFR 18.543 - Mediation.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Mediation. 18.543 Section... Enforcement Procedures § 18.543 Mediation. (a) Referral of complaints for mediation. VA will refer to the Federal Mediation and Conciliation Service all complaints that: (1) Fall within the jurisdiction of the...

  11. 7 CFR 614.11 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Mediation. 614.11 Section 614.11 Agriculture... AGRICULTURE CONSERVATION OPERATIONS NRCS APPEAL PROCEDURES § 614.11 Mediation. (a) A participant who wishes to pursue mediation must file request for mediation under this part with the NRCS official designated in the...

  12. 43 CFR 17.332 - Mediation.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Mediation. 17.332 Section 17.332 Public..., and Enforcement Procedures § 17.332 Mediation. (a) Referral of complaints for mediation. DOI will... participate in the mediation process to the extent necessary to reach an agreement or make an informed...

  13. Mediation and Counseling Services: A Viable Partnership

    Science.gov (United States)

    Hodges, Shannon

    2009-01-01

    Mediation has become common in many areas of society, including marital dissolution, community disputes, governmental agencies, and business and industry. Though higher education has been slower than society to adopt mediation services, campus mediation is becoming increasingly more common. This article explains why mediation is a viable…

  14. 24 CFR 146.35 - Mediation.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Mediation. 146.35 Section 146.35... ASSISTANCE Investigation, Settlement, and Enforcement Procedures § 146.35 Mediation. (a) HUD shall refer to the Federal Mediation and Conciliation Service, a mediation agency designated by the Secretary of...

  15. 10 CFR 1040.89-6 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Mediation. 1040.89-6 Section 1040.89-6 Energy DEPARTMENT... Enforcement Procedures § 1040.89-6 Mediation. (a) Referral of complaints for mediation. DOE will refer to the Federal Mediation and Conciliation Service, in accordance with 45 CFR 90.43(c)(3), all complaints that: (1...

  16. 15 CFR 930.111 - OCRM mediation.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false OCRM mediation. 930.111 Section 930... FEDERAL CONSISTENCY WITH APPROVED COASTAL MANAGEMENT PROGRAMS Secretarial Mediation § 930.111 OCRM mediation. The availability of mediation does not preclude use by the parties of alternative means for...

  17. Mediation in Schools: Tapping the Potential

    Science.gov (United States)

    Hendry, Richard

    2010-01-01

    This article explores the developing role of mediation as a conflict resolution process in schools. It gives an accepted definition and clarifies the purposes of mediation, outlining the range of contexts in and beyond schools in which mediation is already offered as a formal intervention. The typical process of mediation itself is described. The…

  18. 22 CFR 218.33 - Mediation.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Mediation. 218.33 Section 218.33 Foreign... § 218.33 Mediation. (a) Referral of complaints for mediation. The agency will refer to the Federal Mediation and Conciliation Service all complaints that: (1) fall within the jurisdiction of these...

  19. 45 CFR 91.43 - Mediation.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Mediation. 91.43 Section 91.43 Public Welfare... Enforcement Procedures § 91.43 Mediation. (a) HHS will promptly refer to a mediation agency designated by the... mediation process to the extent necessary to reach an agreement or make an informed judgment that an...

  20. 15 CFR 20.12 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Mediation. 20.12 Section 20.12... Procedures § 20.12 Mediation. (a) DOC will refer to a mediation service designated by the Secretary all... further processing. (b) Both the complainant and the recipient shall participate in the mediation process...

  1. 14 CFR 1252.402 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Mediation. 1252.402 Section 1252.402... Procedures § 1252.402 Mediation. (a) Referral of complaints for mediation. NASA will refer to the Federal Mediation and Conciliation Service all complaints that: (1) Fall within the jurisdiction of the Act and...

  2. 7 CFR 780.9 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Mediation. 780.9 Section 780.9 Agriculture Regulations... PROGRAMS APPEAL REGULATIONS § 780.9 Mediation. (a) Any request for mediation must be submitted after... once: (1) If resolution of an adverse decision is not achieved in mediation, a participant may exercise...

  3. 10 CFR 4.333 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Mediation. 4.333 Section 4.333 Energy NUCLEAR REGULATORY... Investigation, Conciliation, and Enforcement Procedures § 4.333 Mediation. (a) Referral of complaints for mediation. NRC will refer to a mediation agency designated by the Secretary of the Department of Health and...

  4. 45 CFR 1156.16 - Mediation.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Mediation. 1156.16 Section 1156.16 Public Welfare... Procedures § 1156.16 Mediation. (a) Referral of complaints for mediation. The Endowment will promptly refer all complaints to the agency designated by the Secretary of HHS to manage the mediation process that...

  5. Strongly coupled semidirect mediation of supersymmetry breaking

    International Nuclear Information System (INIS)

    Ibe, M.; Izawa, K.-I.; Nakai, Y.

    2009-01-01

    Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.

  6. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, Andrew [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Department of Statistics, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Krueger, Sharon K. [Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Tilton, Susan C.; Waters, Katrina M. [Superfund Research Center, Oregon State University (United States); Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Baird, William M. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States)

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  7. Epstein-Barr Virus Rta-Mediated Accumulation of DNA Methylation Interferes with CTCF Binding in both Host and Viral Genomes.

    Science.gov (United States)

    Chen, Yen-Ju; Chen, Yu-Lian; Chang, Yao; Wu, Chung-Chun; Ko, Ying-Chieh; Tsao, Sai Wah; Chen, Jen-Yang; Lin, Su-Fang

    2017-08-01

    Rta, an Epstein-Barr virus (EBV) immediate-early protein, reactivates viral lytic replication that is closely associated with tumorigenesis. In previous studies, we demonstrated that in epithelial cells Rta efficiently induced cellular senescence, which is an irreversible G 1 arrest likely to provide a favorable environment for productive replications of EBV and Kaposi's sarcoma-associated herpesvirus (KSHV). To restrict progression of the cell cycle, Rta simultaneously upregulates CDK inhibitors and downregulates MYC, CCND1, and JUN, among others. Rta has long been known as a potent transcriptional activator, thus its role in gene repression is unexpected. In silico analysis revealed that the promoter regions of MYC , CCND1 , and JUN are common in (i) the presence of CpG islands, (ii) strong chromatin immunoprecipitation (ChIP) signals of CCCTC-binding factor (CTCF), and (iii) having at least one Rta binding site. By combining ChIP assays and DNA methylation analysis, here we provide evidence showing that Rta binding accumulated CpG methylation and decreased CTCF occupancy in the regulatory regions of MYC , CCND1 , and JUN , which were associated with downregulated gene expression. Stable residence of CTCF in the viral latency and reactivation control regions is a hallmark of viral latency. Here, we observed that Rta-mediated decreased binding of CTCF in the viral genome is concurrent with virus reactivation. Via interfering with CTCF binding, in the host genome Rta can function as a transcriptional repressor for gene silencing, while in the viral genome Rta acts as an activator for lytic gene loci by removing a topological constraint established by CTCF. IMPORTANCE CTCF is a multifunctional protein that variously participates in gene expression and higher-order chromatin structure of the cellular and viral genomes. In certain loci of the genome, CTCF occupancy and DNA methylation are mutually exclusive. Here, we demonstrate that the Epstein-Barr virus (EBV

  8. PARP1-mediated PPARα poly(ADP-ribosyl)ation suppresses fatty acid oxidation in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Huang, Kun; Du, Meng; Tan, Xin; Yang, Ling; Li, Xiangrao; Jiang, Yuhan; Wang, Cheng; Zhang, Fengxiao; Zhu, Feng; Cheng, Min; Yang, Qinglin; Yu, Liqing; Wang, Lin; Huang, Dan; Huang, Kai

    2017-05-01

    PARP1 is a key mediator of cellular stress responses and critical in multiple physiological and pathophysiological processes of cells. However, whether it is involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) remains elusive. We analysed PARP1 activity in the liver of mice on a high fat diet (HFD), and samples from NAFLD patients. Gain- or loss-of-function approaches were used to investigate the roles and mechanisms of hepatic PARP1 in the pathogenesis of NAFLD. PARP1 is activated in fatty liver of HFD-fed mice. Pharmacological or genetic manipulations of PARP1 are sufficient to alter the HFD-induced hepatic steatosis and inflammation. Mechanistically we identified peroxisome proliferator-activated receptor α (PPARα) as a substrate of PARP1-mediated poly(ADP-ribosyl)ation. This poly(ADP-ribosyl)ation of PPARα inhibits its recruitment to target gene promoters and its interaction with SIRT1, a key regulator of PPARα signaling, resulting in suppression of fatty acid oxidation upregulation induced by fatty acids. Moreover, we show that PARP1 is a transcriptional repressor of PPARα gene in human hepatocytes, and its activation suppresses the ligand (fenofibrate)-induced PPARα transactivation and target gene expression. Importantly we demonstrate that liver biopsies of NAFLD patients display robust increases in PARP activity and PPARα poly(ADP-ribosyl)ation levels. Our data indicate that PARP1 is activated in fatty liver, which prevents maximal activation of fatty acid oxidation by suppressing PPARα signaling. Pharmacological inhibition of PARP1 may alleviate PPARα suppression and therefore have therapeutic potential for NAFLD. PARP1 is activated in the non-alcoholic fatty liver of mice and patients. Inhibition of PARP1 activation alleviates lipid accumulation and inflammation in fatty liver of mice. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. Intracellular mediators of transforming growth factor β superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo

    Directory of Open Access Journals (Sweden)

    Ishii Shunsuke

    2007-06-01

    Full Text Available Abstract Background Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Results Proteins that are downstream of the transforming growth factor-β superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFβ superfamily for their normal development. Phosphorylated Smad1 (pSmad1, pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Conclusion Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-β superfamily to endosomes is important for the regulation of growth factor signaling.

  10. Gaugino-assisted anomaly mediation

    International Nuclear Information System (INIS)

    Kribs, Graham D.

    2001-01-01

    I present a model of supersymmetry breaking mediated through a small extra dimension. Standard model matter multiplets and a supersymmetry-breaking (or 'hidden') sector are confined to opposite four-dimensional boundaries while gauge multiplets live in the bulk. The hidden sector does not contain a singlet and the dominant contribution to gaugino masses is via anomaly-mediated supersymmetry breaking. Scalar masses get contributions from both anomaly mediation and a tiny hard breaking of supersymmetry by operators on the hidden-sector boundary. These operators contribute to scalar masses at one loop and in most of parameter space, their contribution dominates. Thus it is easy to make all squared scalar masses positive. As no additional fields or symmetries are required below the Planck scale, this is among the simplest working models of anomaly mediation. The gaugino spectrum is left untouched and the phenomenology of the model is roughly similar to anomaly mediated supersymmetry breaking with a universal scalar mass added. Finally, the main differences in the spectrum between this model and other approaches are identified. This talk is based on work [1] done in collaboration with David E. Kaplan

  11. Three tasks for mediatization research

    DEFF Research Database (Denmark)

    Ekstrøm, Mats; Fornäs, Johan; Jansson, André

    2016-01-01

    Based on the interdisciplinary experience of a Swedish research committee, this article discusses critical conceptual issues raised by the current debate on mediatization – a concept that holds great potential to constitute a space for synthesized understandings of media-related social...... transformations. In contrast to other, more metaphorical constructions, mediatization can be studied empirically in systematic ways through various sub-processes that together provide a complex picture of how culture and everyday life evolve in times of media saturation. The first part of this article argues...... that mediatization researchers have sometimes formulated too grand claims as to mediatization’s status as a unitary approach, a meta-theory or a paradigm. Such claims have led to problematic confusions around the concept and should be abandoned in favour of a more open agenda. In line with such a call for openness...

  12. Mediation in Legal English Teaching

    Directory of Open Access Journals (Sweden)

    Chovancová Barbora

    2016-06-01

    Full Text Available Mediation is a language activity that has been unjustly neglected when preparing law students for their future professional careers. When trained in a professional context, students need to develop and improve complex communicative skills. These include not only the traditional language skills such as reading, writing, listening and speaking, but also more advanced skills such as summarizing, providing definitions, changing registers etc. All these are involved in the students’ acquisition of ‘soft skills’ that are particularly important for students of law since much of their future work involves interpersonal lawyer-client interaction. This article argues that mediation is a crucial (though previously underestimated skill and that law-oriented ESP instruction should provide training aimed at developing this skill. Showing a practical application of this approach, the paper demonstrates that mediation can be successfully integrated in the legal English syllabus and make the learning of legal English more effective.

  13. Gauge mediated mini-split

    Science.gov (United States)

    Cohen, Timothy; Craig, Nathaniel; Knapen, Simon

    2016-03-01

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ- b μ problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 105 to 108 GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  14. Gauge mediated mini-split

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy [Institute of Theoretical Science, University of Oregon,Eugene, OR 97403 (United States); Craig, Nathaniel [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Knapen, Simon [Berkeley Center for Theoretical Physics,University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group,Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-03-15

    We propose a simple model of split supersymmetry from gauge mediation. This model features gauginos that are parametrically a loop factor lighter than scalars, accommodates a Higgs boson mass of 125 GeV, and incorporates a simple solution to the μ−b{sub μ} problem. The gaugino mass suppression can be understood as resulting from collective symmetry breaking. Imposing collider bounds on μ and requiring viable electroweak symmetry breaking implies small a-terms and small tan β — the stop mass ranges from 10{sup 5} to 10{sup 8} GeV. In contrast with models with anomaly + gravity mediation (which also predict a one-loop loop suppression for gaugino masses), our gauge mediated scenario predicts aligned squark masses and a gravitino LSP. Gluinos, electroweakinos and Higgsinos can be accessible at the LHC and/or future colliders for a wide region of the allowed parameter space.

  15. Playful mediation and virtual sociality

    Directory of Open Access Journals (Sweden)

    Sihem NAJJAR

    2010-01-01

    Full Text Available As a space of sociability, virtual games, especially online role playing games, allow us to capture the interest of the playfulness in social life, but they are means by which users are able to experiment their relationship to others. The virtual games as a mediation device, constitute a "pretext" to forge friendships, develop love relationships, improve language skills, discover other cultures, etc. Based on a sociological survey of Tunisian Internet users (both sexes fans of virtual games we try to show how playful mediation is producing a multifaceted virtual sociality inherent in our contemporary societies.

  16. Family education and television mediation

    Directory of Open Access Journals (Sweden)

    Paz CÁNOVAS LEONHARDT

    2010-07-01

    Full Text Available This article try to deal with the complex influence of television viewing in the process of socialization of children and adolescents, focusing our attention on the importance of the family as the mediator-educator agency of particular relevance. Once analyzed the basic theoretical assumptions, we deepened in reality under study by providing data about how the studied population lives television and what extent parental mediation influences and affects the process. The article concludes with some reflections and pedagogical suggestions which trying to help to the optimization of the educational reality.

  17. Mediated Encryption: Analysis and Design

    Directory of Open Access Journals (Sweden)

    I. Elashry1

    2015-01-01

    Full Text Available Boneh, Ding and Tsudik presented identity-based mediated RSA encryption and signature systems in which the users are not allowed to decrypt/sign messages without the authorisation of a security mediator.We show that ID-MRSA is not secure and we present a secure modified version of it which is as efficient as the original system. We also propose a generic mediated encryption that translates any identity based encryption to a mediated version of this IBE. It envelops an IBE encrypted message using a user’s identity into an IBE envelope using the identity of the SEM. We present two security models based on the role of the adversary whether it is a revoked user or a hacked SEM. We prove that GME is as secure as the SEM’s IBE against a revoked user and as secure as the user’s IBE against a hacked SEM. We also present two implementations of GME based on Boneh-Franklin FullIBE system which is a pairing-based system and Boneh, Gentry and Hamburg (BGH system which is pairing-free system.

  18. Mediating Multilingual Children's Language Resources

    Science.gov (United States)

    Potts, D.; Moran, M. J.

    2013-01-01

    The everyday reality of children's multilingualism is a significant resource for expanding students' perspectives on the world, but many questions remain regarding the negotiation of these resources in mainstream classrooms. Drawing on research from a long-term Canadian study of multiliterate pedagogies, this paper explores mediation of home…

  19. Agrobacterium tumefaciens-Mediated Transformation

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand

    2015-01-01

    The use of Agrobacterium tumefaciens-mediated transformation for achieving genetic transformation of fungi has steadily increased over the last decade, and has proven to be almost universally applicable technique once suitable selection markers have been developed. In recent years the major...

  20. Anomaly mediation in superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theoretique, Ecole Polytechnique, CNRS, Palaiseau (France)

    2010-08-15

    We study anomaly mediated supersymmetry breaking in type IIB string theory and use our results to test the supergravity formula for anomaly mediated gaugino masses. We compute 1-loop gaugino masses for models of D3-branes on orbifold singularities with 3-form fluxes by calculating the annulus correlator of 3-form flux and two gauginos in the zero momentum limit. Consistent with supergravity expectations we find both anomalous and running contributions to 1-loop gaugino masses. For background Neveu-Schwarz H-flux we find an exact match with the supergravity formula. For Ramond-Ramond flux there is an off-shell ambiguity that precludes a full matching. The anomaly mediated gaugino masses, while determined by the infrared spectrum, arise from an explicit sum over UV open string winding modes. We also calculate brane-to-brane tree-level gravity mediated gaugino masses and show that there are two contributions coming from the dilaton and from the twisted modes, which are suppressed by the full T{sup 6} volume and the untwisted T{sup 2} volume respectively. (orig.)

  1. Sonic mediations: body, sound, technology

    NARCIS (Netherlands)

    Birdsall, C.; Enns, A.

    2008-01-01

    Sonic Mediations: Body, Sound, Technology is a collection of original essays that represents an invaluable contribution to the burgeoning field of sound studies. While sound is often posited as having a bridging function, as a passive in-between, this volume invites readers to rethink the concept of

  2. Trilinear-augmented gaugino mediation

    DEFF Research Database (Denmark)

    Heisig, Jan; Kersten, Jörn; Murphy, Nick

    2017-01-01

    We consider a gaugino-mediated supersymmetry breaking scenario where in addition to the gauginos the Higgs fields couple directly to the field that breaks supersymmetry. This yields non-vanishing trilinear scalar couplings in general, which can lead to large mixing in the stop sector providing...

  3. Mediating Scandal in Contemporary Japan

    Czech Academy of Sciences Publication Activity Database

    Pruša, Igor

    -, č. 7 (2017) E-ISSN 2264-4733 Institutional support: RVO:68378009 Keywords : Japanese media * journalistic practices * media scandal * media ritual * scandal mediation process Subject RIV: AO - Sociology, Demography OBOR OECD: Sociology http://frenchjournalformediaresearch.com/docannexe/file/1145/prusa_pdf.pdf

  4. 2. Cell-mediatedImmunity

    Indian Academy of Sciences (India)

    Admin

    Cell-mediated Immunity sma hmed', Banishree Saha', nand Patwardhan°,. Shwetha Shivaprasad and Dipankar Nandis. Our immune system, by and large, does a fine job in protect- ing us from opportunistic and infectious microbes, potential carcinogens and allergens. It is therefore crucial to under- stand the organization ...

  5. Risk, Causation, Mediation, and Moderation

    Science.gov (United States)

    Kumsta, Robert; Rutter, Michael; Stevens, Suzanne; Sonuga-Barke, Edmund J.

    2010-01-01

    Throughout this monograph, there has been frequent reference to levels of risk, inference of causation, testing for mediating variables, and the need to consider possible moderating influences. In this chapter, the authors review what is meant by these concepts, and then seek to pull together the findings from the English and Romanian Adoptee…

  6. Mediation –Voluntary or Mandatory Procedure

    Directory of Open Access Journals (Sweden)

    Angelica ROSU

    2010-03-01

    Full Text Available Part of modifications brought through 370/2009 Act to the 192/2006 Law concerning mediation and structure of mediator profession have been interpreted as establishing a preliminary mediation procedure before intimating the courts of law, in civil and commercial matters. This interpretation is in excess of operative legal provisions. Although the law in modified form stipulates the compulsoriness of judicial authorities and other jurisdictional bodies to inform the parties about the possibility and the dvantages of using mediation procedure and the obligation to guide the parties to resort at mediation, this circumstances does not affect the mediation particular voluntary nature.

  7. The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.

    Science.gov (United States)

    Sakurai, Shunya; Shimizu, Toshiyuki; Ohto, Umeharu

    2017-10-27

    2,3,7,8-Tetrachlorodibenzo- p -dioxin and related compounds are extraordinarily potent environmental toxic pollutants. Most of the 2,3,7,8-tetrachlorodibenzo- p -dioxin toxicities are mediated by aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor belonging to the basic helix-loop-helix (bHLH) Per-ARNT-Sim (PAS) family. Upon ligand binding, AhR forms a heterodimer with AhR nuclear translocator (ARNT) and induces the expression of genes involved in various biological responses. One of the genes induced by AhR encodes AhR repressor (AhRR), which also forms a heterodimer with ARNT and represses the activation of AhR-dependent transcription. The control of AhR activation is critical for managing AhR-mediated diseases, but the mechanisms by which AhRR represses AhR activation remain poorly understood, because of the lack of structural information. Here, we determined the structure of the AhRR-ARNT heterodimer by X-ray crystallography, which revealed an asymmetric intertwined domain organization presenting structural features that are both conserved and distinct among bHLH-PAS family members. The structures of AhRR-ARNT and AhR-ARNT were similar in the bHLH-PAS-A region, whereas the PAS-B of ARNT in the AhRR-ARNT complex exhibited a different domain arrangement in this family reported so far. The structure clearly disclosed that AhRR competitively represses AhR binding to ARNT and target DNA and further suggested the existence of an AhRR-ARNT-specific repression mechanism. This study provides a structural basis for understanding the mechanism by which AhRR represses AhR-mediated gene transcription. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Two Distinct Mechanisms Govern RpoS-Mediated Repression of Tick-Phase Genes during Mammalian Host Adaptation by Borrelia burgdorferi, the Lyme Disease Spirochete

    Directory of Open Access Journals (Sweden)

    Arianna P. Grove

    2017-08-01

    Full Text Available The alternative sigma factor RpoS plays a key role modulating gene expression in Borrelia burgdorferi, the Lyme disease spirochete, by transcribing mammalian host-phase genes and repressing σ70-dependent genes required within the arthropod vector. To identify cis regulatory elements involved in RpoS-dependent repression, we analyzed green fluorescent protein (GFP transcriptional reporters containing portions of the upstream regions of the prototypical tick-phase genes ospAB, the glp operon, and bba74. As RpoS-mediated repression occurs only following mammalian host adaptation, strains containing the reporters were grown in dialysis membrane chambers (DMCs implanted into the peritoneal cavities of rats. Wild-type spirochetes harboring ospAB- and glp-gfp constructs containing only the minimal (−35/−10 σ70 promoter elements had significantly lower expression in DMCs relative to growth in vitro at 37°C; no reduction in expression occurred in a DMC-cultivated RpoS mutant harboring these constructs. In contrast, RpoS-mediated repression of bba74 required a stretch of DNA located between −165 and −82 relative to its transcriptional start site. Electrophoretic mobility shift assays employing extracts of DMC-cultivated B. burgdorferi produced a gel shift, whereas extracts from RpoS mutant spirochetes did not. Collectively, these data demonstrate that RpoS-mediated repression of tick-phase borrelial genes occurs by at least two distinct mechanisms. One (e.g., ospAB and the glp operon involves primarily sequence elements near the core promoter, while the other (e.g., bba74 involves an RpoS-induced transacting repressor. Our results provide a genetic framework for further dissection of the essential “gatekeeper” role of RpoS throughout the B. burgdorferi enzootic cycle.

  9. The law applicable to International Mediation Contracts

    OpenAIRE

    Orejudo Prieto de los Mozos, Patricia

    2011-01-01

    Mediation entails the provision of the services of a professional, the mediator, who holds a legal relationship with the disputants: the mediation contract. Where there are transnational elements in the mediation process, the contract is of an international character. In such situation, the Laws of the diverse States involved could claim to be applicable to the same contract. The determination of the (only) Law applicable is of upmost interest in spite of the high degree of standardization of...

  10. Mediator oxidation systems in organic electrosynthesis

    International Nuclear Information System (INIS)

    Ogibin, Yurii N; Elinson, Michail N; Nikishin, Gennady I

    2009-01-01

    The data on the use of mediator oxidation systems activated by electric current (anodic or parallel anodic and cathodic) in organic electrosynthesis are considered and generalised. Electrochemical activation of these systems permits successful application of catalytic versions and easy scaling of mediator-promoted processes. Chemical and environmental advantages of electrochemical processes catalysed by mediator oxidation systems are demonstrated. Examples of the application of organic and inorganic mediators for the oxidation of various classes of organic compounds under conditions of electrolysis are given.

  11. Parameter space of general gauge mediation

    International Nuclear Information System (INIS)

    Rajaraman, Arvind; Shirman, Yuri; Smidt, Joseph; Yu, Felix

    2009-01-01

    We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.

  12. Mediational Competencies for Online Education

    Directory of Open Access Journals (Sweden)

    María Elena Chan Núñez

    2005-11-01

    Full Text Available Addressed in the article is a position taken within and in favor of education and virtuality, considering the importance of training constructors of the digital environment. The competencies needed by actors of educational processes, the same which are necessary for their construction, are conceptualized as mediational. Because these are not usually the competencies most visibly when teachers and students are trained for online education, we found it of interest to present part of a research project on this type of competencies. The work starts out from an axiological position on virtual education, the recognition of the way the technologies model educational interactions on line. It follows with the notion of mediation and meditational competency, and comes to a design model that would consider these competencies in the development of learning environments. The article closes with reflections about the interdisciplinary integration necessary for a technological and educational development based on a communicative paradigm.

  13. Mediatization: a concept, multiple voices

    Directory of Open Access Journals (Sweden)

    Pedro Gilberto GOMES

    2016-12-01

    Full Text Available Mediatization has become increasingly a key concept, fundamental, essential to describe the present and the history of media and communicative change taking place. Thus, it became part of a whole, one can not see them as a separate sphere. In this perspective, the media coverage is used as a concept to describe the process of expansion of the different technical means and consider the interrelationships between the communicative change, means and sociocultural change. However, although many researchers use the concept of mediatization, each gives you the meaning that best suits your needs. Thus, the concept of media coverage is treated with multiple voices. This paper discusses this problem and present a preliminary pre-position on the matter.

  14. Simple scheme for gauge mediation

    International Nuclear Information System (INIS)

    Murayama, Hitoshi; Nomura, Yasunori

    2007-01-01

    We present a simple scheme for constructing models that achieve successful gauge mediation of supersymmetry breaking. In addition to our previous work [H. Murayama and Y. Nomura, Phys. Rev. Lett. 98, 151803 (2007)] that proposed drastically simplified models using metastable vacua of supersymmetry breaking in vectorlike theories, we show there are many other successful models using various types of supersymmetry-breaking mechanisms that rely on enhanced low-energy U(1) R symmetries. In models where supersymmetry is broken by elementary singlets, one needs to assume U(1) R violating effects are accidentally small, while in models where composite fields break supersymmetry, emergence of approximate low-energy U(1) R symmetries can be understood simply on dimensional grounds. Even though the scheme still requires somewhat small parameters to sufficiently suppress gravity mediation, we discuss their possible origins due to dimensional transmutation. The scheme accommodates a wide range of the gravitino mass to avoid cosmological problems

  15. Methods for Mediation Analysis with Missing Data

    Science.gov (United States)

    Zhang, Zhiyong; Wang, Lijuan

    2013-01-01

    Despite wide applications of both mediation models and missing data techniques, formal discussion of mediation analysis with missing data is still rare. We introduce and compare four approaches to dealing with missing data in mediation analysis including list wise deletion, pairwise deletion, multiple imputation (MI), and a two-stage maximum…

  16. Mediation in complex multi-party disputes

    NARCIS (Netherlands)

    Kamminga, Y.P.; Blohorn-Brenneur, B.

    2013-01-01

    Mediation is on the rise but it is lagging behind in certain fields such as in the resolution of complex disputes. This article addresses how biases in the decision-making process for selecting either mediation or litigation surrounding dispute resolution works in the disadvantage of mediation. It

  17. 41 CFR 101-8.717 - Mediation.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Mediation. 101-8.717... FINANCIAL ASSISTANCE 8.7-Discrimination Prohibited on the Basis of Age § 101-8.717 Mediation. (a) GSA promptly refers to the mediation agency designated by the Secretary, HHS, all sufficient complaints that...

  18. 7 CFR 400.94 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Mediation. 400.94 Section 400.94 Agriculture... AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Appeal Procedure § 400.94 Mediation. For adverse decisions only: (a) Appellants have the right to seek mediation or other forms of alternative dispute resolution in...

  19. Single-Level and Multilevel Mediation Analysis

    Science.gov (United States)

    Tofighi, Davood; Thoemmes, Felix

    2014-01-01

    Mediation analysis is a statistical approach used to examine how the effect of an independent variable on an outcome is transmitted through an intervening variable (mediator). In this article, we provide a gentle introduction to single-level and multilevel mediation analyses. Using single-level data, we demonstrate an application of structural…

  20. 34 CFR 303.419 - Mediation.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Mediation. 303.419 Section 303.419 Education... DISABILITIES Procedural Safeguards Mediation and Due Process Procedures for Parents and Children § 303.419 Mediation. (a) General. Each State shall ensure that procedures are established and implemented to allow...

  1. The Merits of Using Longitudinal Mediation

    Science.gov (United States)

    Jose, Paul E.

    2016-01-01

    Many of the mediation analyses reported in the literature are based on concurrent or single-occasion data sets. The 2 overarching themes of the present article are: Results of concurrent mediations are inherently ambiguous, and researchers would be wise to conduct mediations on longitudinal data sets instead. An example included here demonstrates…

  2. Causal Mediation Analysis: Warning! Assumptions Ahead

    Science.gov (United States)

    Keele, Luke

    2015-01-01

    In policy evaluations, interest may focus on why a particular treatment works. One tool for understanding why treatments work is causal mediation analysis. In this essay, I focus on the assumptions needed to estimate mediation effects. I show that there is no "gold standard" method for the identification of causal mediation effects. In…

  3. 7 CFR 900.109 - Mediation agreement.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Mediation agreement. 900.109 Section 900.109 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing... Mediation agreement. An agreement arrived at by mediation shall not become effective until approved by the...

  4. 45 CFR 617.10 - Mediation.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Mediation. 617.10 Section 617.10 Public Welfare... OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE FROM NSF § 617.10 Mediation. (a) NSF will refer to the Federal Mediation and Conciliation Service all complaints that fall within...

  5. 34 CFR 300.506 - Mediation.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Mediation. 300.506 Section 300.506 Education... DISABILITIES Procedural Safeguards Due Process Procedures for Parents and Children § 300.506 Mediation. (a... due process complaint, to resolve disputes through a mediation process. (b) Requirements. The...

  6. 13 CFR 117.12 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Mediation. 117.12 Section 117.12... Mediation. (a) SBA shall, after ensuring that the complaint falls within the coverage of this Act and all... clearly within an exception, promptly refer the complaint to the Federal Mediation and Conciliation...

  7. 7 CFR 205.663 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Mediation. 205.663 Section 205.663 Agriculture... PROVISIONS NATIONAL ORGANIC PROGRAM Administrative Compliance § 205.663 Mediation. Any dispute with respect... acceptance by the certifying agent. Mediation shall be requested in writing to the applicable certifying...

  8. Bacterial antagonist mediated protein molecules

    OpenAIRE

    Urbizu, Lucia Paola; Sparo, Mónica Delfina; Sanchez Bruni, Sergio Fabian

    2016-01-01

    Bacterial antagonism mediated by ribosomally synthesised peptides has gained considerable attention in recent years because of its potential applications in the control of undesirable microbiota. These peptides, generally referred to as bacteriocins, are defined as a heterogeneous group of ribosomally synthesised, proteinaceous substances (with or without further modifications) extracellularly secreted by many Gram-positive and some Gram-negative bacteria. Their mode of activity is primarily ...

  9. Direct mediation, duality and unification

    International Nuclear Information System (INIS)

    Abel, Steven; Khoze, Valentin V.

    2008-01-01

    It is well-known that in scenarios with direct gauge mediation of supersymmetry breaking the messenger fields significantly affect the running of Standard Model couplings and introduce Landau poles which are difficult to avoid. Among other things, this appears to remove any possibility of a meaningful unification prediction and is often viewed as a strong argument against direct mediation. We propose two ways that Seiberg duality can circumvent this problem. In the first, which we call 'deflected-unification', the SUSY-breaking hidden sector is a magnetic theory which undergoes a Seiberg duality to an electric phase. Importantly, the electric version has fewer fundamental degrees of freedom coupled to the MSSM compared to the magnetic formulation. This changes the β-functions of the MSSM gauge couplings so as to push their Landau poles above the unification scale. We show that this scenario is realised for recently suggested models of gauge mediation based on a metastable SCQD-type hidden sector directly coupled to MSSM. The second possibility for avoiding Landau poles, which we call 'dual-unification', begins with the observation that, if the mediating fields fall into complete SU(5) multiplets, then the MSSM+messengers exhibits a fake unification at unphysical values of the gauge couplings. We show that, in known examples of electric/magnetic duals, such a fake unification in the magnetic theory reflects a real unification in the electric theory. We therefore propose that the Standard Model could itself be a magnetic dual of some unknown electric theory in which the true unification takes place. This scenario maintains the unification prediction (and unification scale) even in the presence of Landau poles in the magnetic theory below the GUT scale. We further note that this dual realization of grand unification can explain why Nature appears to unify, but the proton does not decay.

  10. The development of a viral mediated CRISPR/Cas9 system with doxycycline dependent gRNA expression for inducible in vitro and in vivo genome editing.

    Directory of Open Access Journals (Sweden)

    Christopher A. de Solis

    2016-08-01

    Full Text Available The RNA-guided Cas9 nuclease, from the type II prokaryotic Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR adaptive immune system, has been adapted and utilized by scientists to edit the genomes of eukaryotic cells. Here, we report the development of a viral mediated CRISPR/Cas9 system that can be rendered inducible utilizing doxycycline (Dox and can be delivered to cells in vitro and in vivo utilizing adeno-associated virus (AAV. Specifically, we developed an inducible gRNA (gRNAi AAV vector that is designed to express the gRNA from a H1/TO promoter. This AAV vector is also designed to express the Tet repressor (TetR to regulate the expression of the gRNAi in a Dox dependent manner. We show that H1/TO promoters of varying length and a U6/TO promoter can edit DNA with similar efficiency in vitro, in a Dox dependent manner. We also demonstrate that our inducible gRNAi vector can be used to edit the genomes of neurons in vivo within the mouse brain in a Dox dependent manner. Genome editing can be induced in vivo with this system by supplying animals Dox containing food for as little as one day. This system might be cross compatible with many existing S. pyogenes Cas9 systems (i.e. Cas9 mouse, CRISPRi, etc., and therefore it likely can be used to render these systems inducible as well.

  11. RAG-mediated DNA double-strand breaks activate a cell type–specific checkpoint to inhibit pre–B cell receptor signals

    Science.gov (United States)

    Bednarski, Jeffrey J.; Pandey, Ruchi; Schulte, Emily; White, Lynn S.; Chen, Bo-Ruei; Sandoval, Gabriel J.; Kohyama, Masako; Haldar, Malay; Nickless, Andrew; Trott, Amanda; Cheng, Genhong; Murphy, Kenneth M.; Bassing, Craig H.; Payton, Jacqueline E.

    2016-01-01

    DNA double-strand breaks (DSBs) activate a canonical DNA damage response, including highly conserved cell cycle checkpoint pathways that prevent cells with DSBs from progressing through the cell cycle. In developing B cells, pre–B cell receptor (pre–BCR) signals initiate immunoglobulin light (Igl) chain gene assembly, leading to RAG-mediated DNA DSBs. The pre–BCR also promotes cell cycle entry, which could cause aberrant DSB repair and genome instability in pre–B cells. Here, we show that RAG DSBs inhibit pre–BCR signals through the ATM- and NF-κB2–dependent induction of SPIC, a hematopoietic-specific transcriptional repressor. SPIC inhibits expression of the SYK tyrosine kinase and BLNK adaptor, resulting in suppression of pre–BCR signaling. This regulatory circuit prevents the pre–BCR from inducing additional Igl chain gene rearrangements and driving pre–B cells with RAG DSBs into cycle. We propose that pre–B cells toggle between pre–BCR signals and a RAG DSB-dependent checkpoint to maintain genome stability while iteratively assembling Igl chain genes. PMID:26834154

  12. Minimal ancilla mediated quantum computation

    International Nuclear Information System (INIS)

    Proctor, Timothy J.; Kendon, Viv

    2014-01-01

    Schemes of universal quantum computation in which the interactions between the computational elements, in a computational register, are mediated by some ancillary system are of interest due to their relevance to the physical implementation of a quantum computer. Furthermore, reducing the level of control required over both the ancillary and register systems has the potential to simplify any experimental implementation. In this paper we consider how to minimise the control needed to implement universal quantum computation in an ancilla-mediated fashion. Considering computational schemes which require no measurements and hence evolve by unitary dynamics for the global system, we show that when employing an ancilla qubit there are certain fixed-time ancilla-register interactions which, along with ancilla initialisation in the computational basis, are universal for quantum computation with no additional control of either the ancilla or the register. We develop two distinct models based on locally inequivalent interactions and we then discuss the relationship between these unitary models and the measurement-based ancilla-mediated models known as ancilla-driven quantum computation. (orig.)

  13. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  14. Mediation With Muscle: Understanding When Mediators Commit Resources to Civil War Negotiations

    Science.gov (United States)

    2015-12-01

    additional mediation events not listed in the original dataset. I also identified additional mediation events during the course of my research that had...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited MEDIATION WITH MUSCLE...UNDERSTANDING WHEN MEDIATORS COMMIT RESOURCES TO CIVIL WAR NEGOTIATIONS by Michael D. Caplan December 2015 Thesis Advisor: T. Camber Warren Second Reader

  15. Unwrapping Court-Connected Mediation Agreements

    DEFF Research Database (Denmark)

    Adrian, Lin; Mykland, Solfrid

    2018-01-01

    Court-connected mediated agreements seem to both fulfil and fail the ideal of self-determination in mediation theory. In a study of 134 agreements from court-connected mediation, we found that the majority of agreements contain creative elements and display great variation in the provisions...... and understand them. The judicial language is well known for the drafters of the agreement but not the parties. Thus, court-connected mediation seems to fail aspects of self-determination when it comes to drafting agreements. We draw on new-institutional theory when we explore and explain this apparent...... contradiction within the court-connected mediation practice....

  16. Genomic responses to arsenic in the cyanobacterium Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Ana María Sánchez-Riego

    Full Text Available Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [As(III] and arsenate [As(V]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.

  17. Where does mediator bind in vivo?

    Science.gov (United States)

    Fan, Xiaochun; Struhl, Kevin

    2009-01-01

    The Mediator complex associates with RNA polymerase (Pol) II, and it is recruited to enhancer regions by activator proteins under appropriate environmental conditions. However, the issue of Mediator association in yeast cells is controversial. Under optimal growth conditions (YPD medium), we were unable to detect Mediator at essentially any S. cerevisiae promoter region, including those supporting very high levels of transcription. In contrast, whole genome microarray experiments in synthetic complete (SC) medium reported that Mediator associates with many genes at both promoter and coding regions. As assayed by chromatin immunoprecipitation, we show that there are a small number of Mediator targets in SC medium that are not observed in YPD medium. However, most Mediator targets identified in the genome-wide analysis are false positives that arose for several interrelated reasons: the use of overly lenient cut-offs; artifactual differences in apparent IP efficiencies among different genomic regions in the untagged strain; low fold-enrichments making it difficult to distinguish true Mediator targets from false positives that occur in the absence of the tagged Mediator protein. Lastly, apparent Mediator association in highly active coding regions is due to a non-specific effect on accessibility due to the lack of nucleosomes, not to a specific association of Mediator. These results indicate that Mediator does not bind to numerous sites in the yeast genome, but rather selectively associates with a limited number of upstream promoter regions in an activator- and stress-specific manner.

  18. Where does mediator bind in vivo?

    Directory of Open Access Journals (Sweden)

    Xiaochun Fan

    Full Text Available The Mediator complex associates with RNA polymerase (Pol II, and it is recruited to enhancer regions by activator proteins under appropriate environmental conditions. However, the issue of Mediator association in yeast cells is controversial. Under optimal growth conditions (YPD medium, we were unable to detect Mediator at essentially any S. cerevisiae promoter region, including those supporting very high levels of transcription. In contrast, whole genome microarray experiments in synthetic complete (SC medium reported that Mediator associates with many genes at both promoter and coding regions.As assayed by chromatin immunoprecipitation, we show that there are a small number of Mediator targets in SC medium that are not observed in YPD medium. However, most Mediator targets identified in the genome-wide analysis are false positives that arose for several interrelated reasons: the use of overly lenient cut-offs; artifactual differences in apparent IP efficiencies among different genomic regions in the untagged strain; low fold-enrichments making it difficult to distinguish true Mediator targets from false positives that occur in the absence of the tagged Mediator protein. Lastly, apparent Mediator association in highly active coding regions is due to a non-specific effect on accessibility due to the lack of nucleosomes, not to a specific association of Mediator.These results indicate that Mediator does not bind to numerous sites in the yeast genome, but rather selectively associates with a limited number of upstream promoter regions in an activator- and stress-specific manner.

  19. Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings1[OPEN

    Science.gov (United States)

    Melo, Nielda K.G.; Bianchetti, Ricardo E.; Oliveira, Paulo M.R.; Demarco, Diego

    2016-01-01

    The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants. PMID:26829981

  20. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1992-03-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing an electrochemical process, based upon mediated electrochemical oxidation (MEO), that converts toxic organic components of mixed waste to water, carbon dioxide, and chloride or chloride precipitates. Aggressive oxidizer ions such as Ag 2+ , Co 3+ , or Fe 3+ are produced at an anode. These can attack organic molecules directly, and may also produce hydroxyl free radicals that promote destruction. Solid and liquid radioactive waste streams containing only inorganic radionuclide forms may be treated with existing technology and prepared for final disposal. The coulombic efficiency of the process has been determined, as well as the destruction efficiency for ethylene glycol, a surrogate waste. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient- temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag(II) has been used as a mediator in this process. Fe(III) and Co(III) are attractive alternatives to Ag(II) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is toxic heavy metal. Quantitative data have been obtained for the complete oxidation of ethylene glycol by Fe(III) and Co(III). Though ethylene glycol is a nonhalogenated organic, these data have enabled us to make direct comparisons of activities of Fe(III) and Co(III) with Ag(II). Very good quantitative data for the oxidation of ethylene glycol by Ag(II) had already been collected

  1. Immunoglobulin E-Mediated Autoimmunity

    Directory of Open Access Journals (Sweden)

    Marcus Maurer

    2018-04-01

    Full Text Available The study of autoimmunity mediated by immunoglobulin E (IgE autoantibodies, which may be termed autoallergy, is in its infancy. It is now recognized that systemic lupus erythematosus, bullous pemphigoid (BP, and chronic urticaria, both spontaneous and inducible, are most likely to be mediated, at least in part, by IgE autoantibodies. The situation in other conditions, such as autoimmune uveitis, rheumatoid arthritis, hyperthyroid Graves’ disease, autoimmune pancreatitis, and even asthma, is far less clear but evidence for autoallergy is accumulating. To be certain of an autoallergic mechanism, it is necessary to identify both IgE autoantibodies and their targets as has been done with the transmembrane protein BP180 and the intracellular protein BP230 in BP and IL-24 in chronic spontaneous urticaria. Also, IgE-targeted therapies, such as anti-IgE, must have been shown to be of benefit to patients as has been done with both of these conditions. This comprehensive review of the literature on IgE-mediated autoallergy focuses on three related questions. What do we know about the prevalence of IgE autoantibodies and their targets in different diseases? What do we know about the relevance of IgE autoantibodies in different diseases? What do we know about the cellular and molecular effects of IgE autoantibodies? In addition to providing answers to these questions, based on a broad review of the literature, we outline the current gaps of knowledge in our understanding of IgE autoantibodies and describe approaches to address them.

  2. Hydrological models are mediating models

    Science.gov (United States)

    Babel, L. V.; Karssenberg, D.

    2013-08-01

    Despite the increasing role of models in hydrological research and decision-making processes, only few accounts of the nature and function of models exist in hydrology. Earlier considerations have traditionally been conducted while making a clear distinction between physically-based and conceptual models. A new philosophical account, primarily based on the fields of physics and economics, transcends classes of models and scientific disciplines by considering models as "mediators" between theory and observations. The core of this approach lies in identifying models as (1) being only partially dependent on theory and observations, (2) integrating non-deductive elements in their construction, and (3) carrying the role of instruments of scientific enquiry about both theory and the world. The applicability of this approach to hydrology is evaluated in the present article. Three widely used hydrological models, each showing a different degree of apparent physicality, are confronted to the main characteristics of the "mediating models" concept. We argue that irrespective of their kind, hydrological models depend on both theory and observations, rather than merely on one of these two domains. Their construction is additionally involving a large number of miscellaneous, external ingredients, such as past experiences, model objectives, knowledge and preferences of the modeller, as well as hardware and software resources. We show that hydrological models convey the role of instruments in scientific practice by mediating between theory and the world. It results from these considerations that the traditional distinction between physically-based and conceptual models is necessarily too simplistic and refers at best to the stage at which theory and observations are steering model construction. The large variety of ingredients involved in model construction would deserve closer attention, for being rarely explicitly presented in peer-reviewed literature. We believe that devoting

  3. The transcription factor DREAM represses A20 and mediates inflammation

    OpenAIRE

    Tiruppathi, Chinnaswamy; Soni, Dheeraj; Wang, Dong-Mei; Xue, Jiaping; Singh, Vandana; Thippegowda, Prabhakar B.; Cheppudira, Bopaiah P.; Mishra, Rakesh K.; DebRoy, Auditi; Qian, Zhijian; Bachmaier, Kurt; Zhao, Youyang; Christman, John W.; Vogel, Stephen M.; Ma, Averil

    2014-01-01

    Here we show that the transcription-repressor DREAM binds to the A20 promoter to repress the expression of A20, the deubiquitinase suppressing inflammatory NF-κB signaling. DREAM-deficient (Dream−/− ) mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, USF1 binding to the DRE-associated E-box domain activated A20 expression in response to inf...

  4. Mediation designs for tobacco prevention research

    Science.gov (United States)

    MacKinnon, David P.; Taborga, Marcia P.; Morgan-Lopez, Antonio A.

    2010-01-01

    This paper describes research designs and statistical analyses to investigate how tobacco prevention programs achieve their effects on tobacco use. A theoretical approach to program development and evaluation useful for any prevention program guides the analysis. The theoretical approach focuses on action theory for how the program affects mediating variables and on conceptual theory for how mediating variables are related to tobacco use. Information on the mediating mechanisms by which tobacco prevention programs achieve effects is useful for the development of efficient programs and provides a test of the theoretical basis of prevention efforts. Examples of these potential mediating mechanisms are described including mediated effects through attitudes, social norms, beliefs about positive consequences, and accessibility to tobacco. Prior research provides evidence that changes in social norms are a critical mediating mechanism for successful tobacco prevention. Analysis of mediating variables in single group designs with multiple mediators are described as well as multiple group randomized designs which are the most likely to accurately uncover important mediating mechanisms. More complicated dismantling and constructive designs are described and illustrated based on current findings from tobacco research. Mediation analysis for categorical outcomes and more complicated statistical methods are outlined. PMID:12324176

  5. The Mediator complex and transcription regulation

    Science.gov (United States)

    Poss, Zachary C.; Ebmeier, Christopher C.

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064

  6. miR-200b mediates post-transcriptional repression of ZFHX1B

    DEFF Research Database (Denmark)

    Christoffersen, Nanna Rønbjerg; Silahtaroglu, Asli; Ørom, Ulf Lupo Andersson

    2007-01-01

    MicroRNAs have important functions during animal development and homeostasis through post-transcriptional regulation of their cognate mRNA targets. ZFHX1B is a transcriptional repressor involved in the TGFbeta signaling pathway and in processes of epithelial to mesenchymal transition via regulation...

  7. Desperately Trying to Mediate Immediacy

    Directory of Open Access Journals (Sweden)

    Andreas Oliver Schellewald

    2018-01-01

    Full Text Available Evermore aspects of contemporary cultures, societies and human life appear to be changed through processes of digitization and mediatization. A great body of work is touching on these processes of change. However, not many discuss aspects of leisure and aesthetics. And if they do so, seldom regarding bodily and worldly aspects. This paper thus seeks to discuss such changes alongside the phenomenon of esports. More precisely, the paper situates the aesthetic dimension and practices of watching and doing esports in contemporary cultures and societies, focusing on lived experiences (ästhetisches Erleben in digital and mediated contexts. The failing attempt to understand, the attempt to re-present and Gelassenheit (composure or serenity are introduced as modes of coping with immediate aesthetic experiences. Here, especially the constitutive transition from a physical to a meta-physical dimension of reality will be grasped on. By that, ongoing philosophical debates about the constitution of reality and being can be supported in their progress.

  8. Metastable neural dynamics mediates expectation

    Science.gov (United States)

    Mazzucato, Luca; La Camera, Giancarlo; Fontanini, Alfredo

    Sensory stimuli are processed faster when their presentation is expected compared to when they come as a surprise. We previously showed that, in multiple single-unit recordings from alert rat gustatory cortex, taste stimuli can be decoded faster from neural activity if preceded by a stimulus-predicting cue. However, the specific computational process mediating this anticipatory neural activity is unknown. Here, we propose a biologically plausible model based on a recurrent network of spiking neurons with clustered architecture. In the absence of stimulation, the model neural activity unfolds through sequences of metastable states, each state being a population vector of firing rates. We modeled taste stimuli and cue (the same for all stimuli) as two inputs targeting subsets of excitatory neurons. As observed in experiment, stimuli evoked specific state sequences, characterized in terms of `coding states', i.e., states occurring significantly more often for a particular stimulus. When stimulus presentation is preceded by a cue, coding states show a faster and more reliable onset, and expected stimuli can be decoded more quickly than unexpected ones. This anticipatory effect is unrelated to changes of firing rates in stimulus-selective neurons and is absent in homogeneous balanced networks, suggesting that a clustered organization is necessary to mediate the expectation of relevant events. Our results demonstrate a novel mechanism for speeding up sensory coding in cortical circuits. NIDCD K25-DC013557 (LM); NIDCD R01-DC010389 (AF); NSF IIS-1161852 (GL).

  9. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  10. Direct detection with dark mediators

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, David; Surujon, Ze' ev [C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794 (United States); Tsai, Yuhsin [Physics Department, University of California Davis, Davis, CA 95616 (United States)

    2014-11-10

    We introduce dark mediator Dark Matter (dmDM) where the dark and visible sectors are connected by at least one light mediator ϕ carrying the same dark charge that stabilizes DM. ϕ is coupled to the Standard Model via an operator q{sup ¯}qϕϕ{sup ⁎}/Λ, and to dark matter via a Yukawa coupling y{sub χ}χ{sup c¯}χϕ. Direct detection is realized as the 2→3 process χN→χ{sup ¯}Nϕ at tree-level for m{sub ϕ}≲10 keV and small Yukawa coupling, or alternatively as a loop-induced 2→2 process χN→χN. We explore the direct-detection consequences of this scenario and find that a heavy O(100 GeV) dmDM candidate fakes different O(10 GeV) standard WIMPs in different experiments. Large portions of the dmDM parameter space are detectable above the irreducible neutrino background and not yet excluded by any bounds. Interestingly, for the m{sub ϕ} range leading to novel direct detection phenomenology, dmDM is also a form of Self-Interacting Dark Matter (SIDM), which resolves inconsistencies between dwarf galaxy observations and numerical simulations.

  11. Multifunctional Curcumin Mediate Multitherapeutic Effects.

    Science.gov (United States)

    Shehzad, Adeeb; Qureshi, Munibah; Anwar, Muhammad Nabeel; Lee, Young Sup

    2017-09-01

    Inflammation can promote the development of arthritis, obesity, cardiovascular, type II diabetes, pancreatitis, metabolic and neurodegenerative diseases, and certain types of cancer. Compounds isolated from plants have been practiced since ancient times for curing various ailments including inflammatory disorders and to support normal physiological functions. Curcumin (diferuloylmethane) is a yellow coloring agent, extracted from turmeric that has been used for the prevention and treatment of various inflammatory diseases. Numerous studies have shown that curcumin modulate multiple molecular targets and can be translated to the clinics for multiple therapeutic processes. There is compelling evidence that curcumin can block cell proliferation, invasion, and angiogenesis as well as reduced the prolonged survival of cancer cells. Curcumin mediates anti-inflammatory effect through downregulation of inflammatory cytokines, transcription factors, protein kinases, and enzymes that promote inflammation and development of chronic diseases. In addition, curcumin induces apoptosis through mitochondrial and receptor-mediated pathways by activating caspase cascades. Curcumin is a safe and nontoxic drug that has been reported to be well tolerated. Available clinical trials support the potential role of curcumin for treatment of various inflammatory disorders. However, curcumin's efficacy is hindered by poor absorption and low bioavailability, which limit its translation into clinics. This review outlines the potential pharmacological and clinical role of curcumin, which provide a gateway for the beneficial role of plant isolated compounds in treatment of various inflammatory diseases and cancer. © 2017 Institute of Food Technologists®.

  12. A New Gauge Mediation Theory

    CERN Document Server

    Antoniadis, Ignatios; Delgado, A; Quirós, Mariano

    2006-01-01

    We propose a class of models with gauge mediation of supersymmetry breaking, inspired by simple brane constructions, where R-symmetry is very weakly broken. The gauge sector has an extended N=2 supersymmetry and the two electroweak Higgses form an N=2 hypermultiplet, while quarks and leptons remain in N=1 chiral multiplets. Supersymmetry is broken via the D-term expectation value of a secluded U(1) and it is transmitted to the Standard Model via gauge interactions of messengers in N=2 hypermultiplets: gauginos thus receive Dirac masses. The model has several distinct experimental signatures with respect to ordinary models of gauge or gravity mediation realizations of the Minimal Supersymmetric Standard Model (MSSM). First, it predicts extra states as a third chargino that can be observed at collider experiments. Second, the absence of a D-flat direction in the Higgs sector implies a lightest Higgs behaving exactly as the Standard Model one and thus a reduction of the `little' fine-tuning in the low tan(beta) ...

  13. Role of chaperone mediated autophagy (CMA) in the degradation of misfolded N-CoR protein in non-small cell lung cancer (NSCLC) cells.

    Science.gov (United States)

    Ali, Azhar Bin; Nin, Dawn Sijin; Tam, John; Khan, Matiullah

    2011-01-01

    Nuclear receptor co-repressor (N-CoR) plays important role in transcriptional control mediated by several tumor suppressor proteins. Recently, we reported a role of misfolded-conformation dependent loss (MCDL) of N-CoR in the activation of oncogenic survival pathway in acute promyelocytic leukemia (APL). Since N-CoR plays important role in cellular homeostasis in various tissues, therefore, we hypothesized that an APL like MCDL of N-CoR might also be involved in other malignancy. Indeed, our initial screening of N-CoR status in various leukemia and solid tumor cells revealed an APL like MCDL of N-CoR in primary and secondary tumor cells derived from non-small cell lung cancer (NSCLC). The NSCLC cell specific N-CoR loss could be blocked by Kaletra, a clinical grade protease inhibitor and by genistein, an inhibitor of N-CoR misfolding previously characterized by us. The misfolded N-CoR presented in NSCLC cells was linked to the amplification of ER stress and was subjected to degradation by NSCLC cell specific aberrant protease activity. In NSCLC cells, misfolded N-CoR was found to be associated with Hsc70, a molecular chaperone involved in chaperone mediated autophagy (CMA). Genetic and chemical inhibition of Lamp2A, a rate limiting factor of CMA, significantly blocked the loss of N-CoR in NSCLC cells, suggesting a crucial role of CMA in N-CoR degradation. These findings identify an important role of CMA-induced degradation of misfolded N-CoR in the neutralization of ER stress and suggest a possible role of misfolded N-CoR protein in the activation of oncogenic survival pathway in NSCLC cells.

  14. Ideal crop plant architecture is mediated by tassels replace upper ears1, a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1.

    Science.gov (United States)

    Dong, Zhaobin; Li, Wei; Unger-Wallace, Erica; Yang, Jinliang; Vollbrecht, Erik; Chuck, George

    2017-10-10

    Axillary branch suppression is a favorable trait bred into many domesticated crop plants including maize compared with its highly branched wild ancestor teosinte. Branch suppression in maize was achieved through selection of a gain of function allele of the teosinte branched1 (tb1) transcription factor that acts as a repressor of axillary bud growth. Previous work indicated that other loci may function epistatically with tb1 and may be responsible for some of its phenotypic effects. Here, we show that tb1 mediates axillary branch suppression through direct activation of the tassels replace upper ears1 ( tru1 ) gene that encodes an ankyrin repeat domain protein containing a BTB/POZ motif necessary for protein-protein interactions. The expression of TRU1 and TB1 overlap in axillary buds, and TB1 binds to two locations in the tru1 gene as shown by chromatin immunoprecipitation and gel shifts. In addition, nucleotide diversity surveys indicate that tru1 , like tb1 , was a target of selection. In modern maize, TRU1 is highly expressed in the leaf trace vasculature of axillary internodes, while in teosinte, this expression is highly reduced or absent. This increase in TRU1 expression levels in modern maize is supported by comparisons of relative protein levels with teosinte as well as by quantitative measurements of mRNA levels. Hence, a major innovation in creating ideal maize plant architecture originated from ectopic overexpression of tru1 in axillary branches, a critical step in mediating the effects of domestication by tb1.

  15. Legal and Psychological Aspects of Mediation

    Directory of Open Access Journals (Sweden)

    Dobrokhotova E. N.

    2016-01-01

    Full Text Available The article focuses on gradual innovation of mediation into the practice of social conflict resolution in the light of legal and psychological means of mediation. While mediation is perceived as a conflictological concept and is more widely used in dispute settlement and resolution, a new interdisciplinary field of theoretical knowledge with its own conceptual framework as well as a new professional and practical field are beginning to form both in Russia and in other countries. As theoretical and practical aspects of innovation in mediation require consolidation not only for its national development but also for the guaranteed international cooperation, the article touches upon some of the particular theoretical issues of the topic in question: terminological consistency, consolidation of the system of mediation principles, the phenomenon of juridisation of mediation and its limits.

  16. Robust Mediation Analysis Based on Median Regression

    Science.gov (United States)

    Yuan, Ying; MacKinnon, David P.

    2014-01-01

    Mediation analysis has many applications in psychology and the social sciences. The most prevalent methods typically assume that the error distribution is normal and homoscedastic. However, this assumption may rarely be met in practice, which can affect the validity of the mediation analysis. To address this problem, we propose robust mediation analysis based on median regression. Our approach is robust to various departures from the assumption of homoscedasticity and normality, including heavy-tailed, skewed, contaminated, and heteroscedastic distributions. Simulation studies show that under these circumstances, the proposed method is more efficient and powerful than standard mediation analysis. We further extend the proposed robust method to multilevel mediation analysis, and demonstrate through simulation studies that the new approach outperforms the standard multilevel mediation analysis. We illustrate the proposed method using data from a program designed to increase reemployment and enhance mental health of job seekers. PMID:24079925

  17. Theorizing Mediation: Lessons Learned from Legal Anthropology

    Directory of Open Access Journals (Sweden)

    Marc Simon Thomas

    2016-01-01

    Full Text Available Since the 1990s, there has been an increasing interest in mediation in the Netherlands, as part of a set of ‘alternative dispute resolution’ methods. Politicians, lawyers and practitioners have embraced mediation as a legitimate method for settling disputes, alongside the adjudication of conflicts in courts of law. However, there is a striking lack of literature aimed at theorizing mediation from a legal perspective. This article argues that the legal anthropology literature on disputes and dispute settlement offers useful insights for understanding mediation from a ‘legal research’ point of view. This is because a lot of current common knowledge on mediation has its roots in a legal anthropological understanding. The argument that is set forth in this article is that the most important lesson that can be learned is that mediation should not be seen in isolation, but as part of a social process.

  18. The Economics of First-Contract Mediation

    OpenAIRE

    Sabien Dobbelaere; Roland Iwan Luttens

    2013-01-01

    This paper provides an economic foundation for non-binding mediation to stimulate first collective bargaining agreements, as implemented in British Columbia since 1993. We show that the outcome of first-contract mediation is Pareto efficient and proves immune to the insider-outsider problem of underhiring. We also demonstrate that equilibrium wages and profits under mediation coincide with the Owen values of the corresponding cooperative game with the coalitional structure that follows from u...

  19. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production.

    Science.gov (United States)

    Cress, Brady F; Leitz, Quentin D; Kim, Daniel C; Amore, Teresita D; Suzuki, Jon Y; Linhardt, Robert J; Koffas, Mattheos A G

    2017-01-17

    Anthocyanins are a class of brightly colored, glycosylated flavonoid pigments that imbue their flower and fruit host tissues with hues of predominantly red, orange, purple, and blue. Although all anthocyanins exhibit pH-responsive photochemical changes, distinct structural decorations on the core anthocyanin skeleton also cause dramatic color shifts, in addition to improved stabilities and unique pharmacological properties. In this work, we report for the first time the extension of the reconstituted plant anthocyanin pathway from (+)-catechin to O-methylated anthocyanins in a microbial production system, an effort which requires simultaneous co-option of the endogenous metabolites UDP-glucose and S-adenosyl-L-methionine (SAM or AdoMet). Anthocyanin O-methyltransferase (AOMT) orthologs from various plant sources were co-expressed in Escherichia coli with Petunia hybrida anthocyanidin synthase (PhANS) and Arabidopsis thaliana anthocyanidin 3-O-glucosyltransferase (At3GT). Vitis vinifera AOMT (VvAOMT1) and fragrant cyclamen 'Kaori-no-mai' AOMT (CkmOMT2) were found to be the most effective AOMTs for production of the 3'-O-methylated product peonidin 3-O-glucoside (P3G), attaining the highest titers at 2.4 and 2.7 mg/L, respectively. Following modulation of plasmid copy number and optimization of VvAOMT1 and CkmOMT2 expression conditions, production was further improved to 23 mg/L using VvAOMT1. Finally, CRISPRi was utilized to silence the transcriptional repressor MetJ in order to deregulate the methionine biosynthetic pathway and improve SAM availability for O-methylation of cyanidin 3-O-glucoside (C3G), the biosynthetic precursor to P3G. MetJ repression led to a final titer of 51 mg/L (56 mg/L upon scale-up to shake flask), representing a twofold improvement over the non-targeting CRISPRi control strain and 21-fold improvement overall. An E. coli strain was engineered for production of the specialty anthocyanin P3G using the abundant and comparatively

  20. Focus point supersymmetry in extended gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ran [School of Physics, Nankai University,Tianjin 300071 (China); Li, Tianjun [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics (KITPC),Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu 610054 (China); Staub, Florian [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nußallee 12, 53115 Bonn (Germany); Zhu, Bin [School of Physics, Nankai University,Tianjin 300071 (China)

    2014-03-27

    We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural.

  1. Focus point supersymmetry in extended gauge mediation

    International Nuclear Information System (INIS)

    Ding, Ran; Li, Tianjun; Staub, Florian; Zhu, Bin

    2014-01-01

    We propose a small extension of the minimal gauge mediation through the combination of extended gauge mediation and conformal sequestering. We show that the focus point supersymmetry can be realized naturally, and the fine tuning is significantly reduced compared to the minimal gauge mediation and extended gauge mediation without focus point. The Higgs boson mass is around 125 GeV, the gauginos remain light, and the gluino is likely to be detected at the next run of the LHC. However, the multi-TeV squarks is out of the reach of the LHC. The numerical calculation for fine-tuning shows that this model remains natural

  2. Parental mediation and cyberbullying - a longitudinal study.

    Science.gov (United States)

    Chng, Grace S; Liau, Albert; Khoo, Angeline; Li, Dongdong

    2014-01-01

    Parents use active and restrictive mediation strategies to guide and regulate children's online participation and the online risks they encounter. However, changes in parental mediation do occur over time and the effectiveness of these strategies on cyberbullying demands for further empirical investigation. The current study addresses these issues with a sample of 1084 students (49% girls) in a longitudinal, three-wave design. Gender differences were tested via multi-group analyses. Longitudinal growth models showed that parental use of both active and restrictive mediation decreased over time. For both types of mediation, the mean rate of change had a significant effect on boys' engagement in cyberbullying, but not for girls. Initial levels of restrictive mediation, but not active mediation, were found to be significantly predictive of cyberbullying in both genders. Girls had higher initial levels of both parental mediation types in comparison to boys. The results reveal that the effectiveness of active and restrictive mediation in relation to students' cyberbullying differs and informs us on gender differences. The implications of these results for parental education in online mediation are discussed.

  3. Phenomenological aspects of mirage mediation

    International Nuclear Information System (INIS)

    Loewen, Valeri

    2009-07-01

    We consider the possibility that string theory vacua with spontaneously broken supersymmetry and a small positive cosmological constant arise due to hidden sector matter interactions, known as F-uplifting/F-downlifting. We analyze this procedure in a model-independent way in the context of type IIB and heterotic string theory. Our investigation shows that the uplifting/downlifting sector has very important consequences for the resulting phenomenology. Not only does it adjust the vacuum energy, but it can also participate in the process of moduli stabilization. In addition, we find that this sector is the dominant source of supersymmetry breaking. It leads to a hybrid mediation scheme and its signature is a relaxed mirage pattern of the soft supersymmetry breaking terms. The low energy spectra exhibit distinct phenomenological properties and di er from conventional schemes considered so far. (orig.)

  4. Crime fiction and mediatized religion

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    Scandinavian media where religion has become mediatized. Consumers of popular culture no longer endorse confidence in institutionalized religion, but that does not mean that people are losing faith: Faith only seems to adjust itself and tiptoe into popular media and popular fiction. Hence, this paper seeks......In recent Scandinavian crime fiction an ongoing discussion on religion and religiosity is taking place. This undercurrent goes historically a long way back, but the past few decades seem to have left room for an altered view on religion in modern crime fiction. Crime fiction has usually been...... into popular crime fiction. In novels by Arne Dahl, Henning Mortensen, Gunnar Staalesen, A.J. Kazinski, Gretelise Holm and several other Scandinavian writers of crime fiction it is possible to locate an interest in theology and topics of religious philosophy which reflects this current trend in modern...

  5. Incoherence-Mediated Remote Synchronization

    Science.gov (United States)

    Zhang, Liyue; Motter, Adilson E.; Nishikawa, Takashi

    2017-04-01

    In previously identified forms of remote synchronization between two nodes, the intermediate portion of the network connecting the two nodes is not synchronized with them but generally exhibits some coherent dynamics. Here we report on a network phenomenon we call incoherence-mediated remote synchronization (IMRS), in which two noncontiguous parts of the network are identically synchronized while the dynamics of the intermediate part is statistically and information-theoretically incoherent. We identify mirror symmetry in the network structure as a mechanism allowing for such behavior, and show that IMRS is robust against dynamical noise as well as against parameter changes. IMRS may underlie neuronal information processing and potentially lead to network solutions for encryption key distribution and secure communication.

  6. Phenomenological aspects of mirage mediation

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Valeri

    2009-07-15

    We consider the possibility that string theory vacua with spontaneously broken supersymmetry and a small positive cosmological constant arise due to hidden sector matter interactions, known as F-uplifting/F-downlifting. We analyze this procedure in a model-independent way in the context of type IIB and heterotic string theory. Our investigation shows that the uplifting/downlifting sector has very important consequences for the resulting phenomenology. Not only does it adjust the vacuum energy, but it can also participate in the process of moduli stabilization. In addition, we find that this sector is the dominant source of supersymmetry breaking. It leads to a hybrid mediation scheme and its signature is a relaxed mirage pattern of the soft supersymmetry breaking terms. The low energy spectra exhibit distinct phenomenological properties and di er from conventional schemes considered so far. (orig.)

  7. Mediated electrochemical hazardous waste destruction

    International Nuclear Information System (INIS)

    Hickman, R.G.; Farmer, J.C.; Wang, F.T.

    1991-08-01

    There are few permitted processes for mixed waste (radioactive plus chemically hazardous) treatment. We are developing electrochemical processes that convert the toxic organic components of mixed waste to water, carbon dioxide, an innocuous anions such as chloride. Aggressive oxidizer ions such as Ag 2+ or Ce +4 are produced at an anode. These can attack the organic molecules directly. They can also attack water which yields hydroxyl free radicals that in turn attack the organic molecules. The condensed (i.e., solid and/or liquid) effluent streams contain the inorganic radionuclide forms. These may be treated with existing technology and prepared for final disposal. Kinetics and the extent of destruction of some toxic organics have been measured. Depending on how the process is operated, coulombic efficiency can be nearly 100%. In addition, hazardous organic materials are becoming very expensive to dispose of and when they are combined with transuranic radioactive elements no processes are presently permitted. Mediated electrochemical oxidation is an ambient-temperature aqueous-phase process that can be used to oxidize organic components of mixed wastes. Problems associated with incineration, such as high-temperature volatilization of radionuclides, are avoided. Historically, Ag (2) has been used as a mediator in this process. Fe(6) and Co(3) are attractive alternatives to Ag(2) since they form soluble chlorides during the destruction of chlorinated solvents. Furthermore, silver itself is a toxic heavy metal. Quantitative data has been obtained for the complete oxidation of ethylene glycol by Fe(6) and Co(3). Though ethylene glycol is a nonhalogenated organic, this data has enabled us to make direct comparisons of activities of Fe(6) and Co(3) with Ag(2). Very good quantitative data for the oxidation of ethylene glycol by Ag(2) had already been collected. 4 refs., 6 figs

  8. Detergent-mediated protein aggregation.

    Science.gov (United States)

    Neale, Chris; Ghanei, Hamed; Holyoake, John; Bishop, Russell E; Privé, Gilbert G; Pomès, Régis

    2013-04-01

    Because detergents are commonly used to solvate membrane proteins for structural evaluation, much attention has been devoted to assessing the conformational bias imparted by detergent micelles in comparison to the native environment of the lipid bilayer. Here, we conduct six 500-ns simulations of a system with >600,000 atoms to investigate the spontaneous self assembly of dodecylphosphocholine detergent around multiple molecules of the integral membrane protein PagP. This detergent formed equatorial micelles in which acyl chains surround the protein's hydrophobic belt, confirming existing models of the detergent solvation of membrane proteins. In addition, unexpectedly, the extracellular and periplasmic apical surfaces of PagP interacted with the headgroups of detergents in other micelles 85 and 60% of the time, respectively, forming complexes that were stable for hundreds of nanoseconds. In some cases, an apical surface of one molecule of PagP interacted with an equatorial micelle surrounding another molecule of PagP. In other cases, the apical surfaces of two molecules of PagP simultaneously bound a neat detergent micelle. In these ways, detergents mediated the non-specific aggregation of folded PagP. These simulation results are consistent with dynamic light scattering experiments, which show that, at detergent concentrations ≥600 mM, PagP induces the formation of large scattering species that are likely to contain many copies of the PagP protein. Together, these simulation and experimental results point to a potentially generic mechanism of detergent-mediated protein aggregation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Anticipating mediated talks : Predicting the timing of mediation with disaggregated conflict dynamics

    OpenAIRE

    Ruhe, Constantin

    2015-01-01

    Research on mediation has shown that mediation can be an effective conflict management tool to contain intrastate conflicts, prevent escalation of low intensity conflicts, and foster de-escalation. But can ripe moments for conflict prevention effectively be anticipated? This article argues that the short-term conflict history provides a good predictor of the probability of mediation onset in low-intensity conflicts. It builds on an expected utility theory of mediation and states that conflict...

  10. Tests of Mediation: Paradoxical Decline in Statistical Power as a Function of Mediator Collinearity

    Science.gov (United States)

    Beasley, T. Mark

    2014-01-01

    Increasing the correlation between the independent variable and the mediator ("a" coefficient) increases the effect size ("ab") for mediation analysis; however, increasing a by definition increases collinearity in mediation models. As a result, the standard error of product tests increase. The variance inflation caused by…

  11. Forms of Mediation: The Case of Interpreter-Mediated Interactions in Medical Systems

    Science.gov (United States)

    Baraldi, Claudio

    2009-01-01

    This paper analyses the forms of mediation in interlinguistic interactions performed in Italian healthcare services and in contexts of migration. The literature encourages dialogic transformative mediation, empowering participants' voices and changing cultural presuppositions in social systems. It may be doubtful, however, whether mediation can…

  12. Elaborative Retrieval: Do Semantic Mediators Improve Memory?

    Science.gov (United States)

    Lehman, Melissa; Karpicke, Jeffrey D.

    2016-01-01

    The elaborative retrieval account of retrieval-based learning proposes that retrieval enhances retention because the retrieval process produces the generation of semantic mediators that link cues to target information. We tested 2 assumptions that form the basis of this account: that semantic mediators are more likely to be generated during…

  13. Factor affecting Agrobacterium -mediated transformation of rice ...

    African Journals Online (AJOL)

    Potato is a very important food crop and is adversely affected by fungus. Agrobacterium-mediated transformation can play an important role in the improvement of potato. The present study was conducted to optimize the different factors affecting Agrobacterium-mediated transformation of chitinase gene. Nodes were used as ...

  14. A default Bayesian hypothesis test for mediation

    NARCIS (Netherlands)

    Nuijten, M.B.; Wetzels, R.; Matzke, D.; Wagenmakers, E.J.

    2015-01-01

    In order to quantify the relationship between multiple variables, researchers often carry out a mediation analysis. In such an analysis, a mediator (e.g., knowledge of a healthy diet) transmits the effect from an independent variable (e.g., classroom instruction on a healthy diet) to a dependent

  15. Integrating Mediators and Moderators in Research Design

    Science.gov (United States)

    MacKinnon, David P.

    2011-01-01

    The purpose of this article is to describe mediating variables and moderating variables and provide reasons for integrating them in outcome studies. Separate sections describe examples of moderating and mediating variables and the simplest statistical model for investigating each variable. The strengths and limitations of incorporating mediating…

  16. Understanding and Using Mediators and Moderators

    Science.gov (United States)

    Wu, Amery D.; Zumbo, Bruno D.

    2008-01-01

    Mediation and moderation are two theories for refining and understanding a causal relationship. Empirical investigation of mediators and moderators requires an integrated research design rather than the data analyses driven approach often seen in the literature. This paper described the conceptual foundation, research design, data analysis, as…

  17. Parent Mediation Empowers Sibling Conflict Resolution

    Science.gov (United States)

    Ross, Hildy S.; Lazinski, Marysia J.

    2014-01-01

    Research Findings: For the current study, formal mediation procedures were adapted for families and parents were trained and asked to mediate their children's disputes; control group parents intervened as they normally would. Conflict negotiations with parents and their children (ages 3½-11 years) occurring 3 and 7 weeks following training, and…

  18. Semiotic Mediation within an AT Frame

    Science.gov (United States)

    Maracci, Mirko; Mariotti, Maria Alessandra

    2013-01-01

    This article is meant to present a specific elaboration of the notion of mediation in relation to the use of artefacts to enhance mathematics teaching and learning: the elaboration offered by the Theory of Semiotic Mediation. In particular, it provides an explicit model--consistent with the activity-actions-operations framework--of the actions…

  19. Stable Agrobacterium -mediated transformation of the halophytic ...

    African Journals Online (AJOL)

    Stable Agrobacterium-mediated transformation of the halophytic Leymus chinensis (Trin.) Yan-Lin Sun, Soon-Kwan Hong. Abstract. In this study, an efficient procedure for stable Agrobacterium-mediated transformation of Leymus chinensis (Trin.) was established. Agrobacterium tumefaciens strain EHA105, harboring a ...

  20. Auxin-Mediated Transcriptional System with a Minimal Set of Components Is Critical for Morphogenesis through the Life Cycle in Marchantia polymorpha.

    Directory of Open Access Journals (Sweden)

    Hirotaka Kato

    2015-05-01

    Full Text Available The plant hormone auxin regulates many aspects of plant growth and development. Recent progress in Arabidopsis provided a scheme that auxin receptors, TIR1/AFBs, target transcriptional co-repressors, AUX/IAAs, for degradation, allowing ARFs to regulate transcription of auxin responsive genes. The mechanism of auxin-mediated transcriptional regulation is considered to have evolved around the time plants adapted to land. However, little is known about the role of auxin-mediated transcription in basal land plant lineages. We focused on the liverwort Marchantia polymorpha, which belongs to the earliest diverging lineage of land plants. M. polymorpha has only a single TIR1/AFB (MpTIR1, a single AUX/IAA (MpIAA, and three ARFs (MpARF1, MpARF2, and MpARF3 in the genome. Expression of a dominant allele of MpIAA with mutations in its putative degron sequence conferred an auxin resistant phenotype and repressed auxin-dependent expression of the auxin response reporter proGH3:GUS. We next established a system for DEX-inducible auxin-response repression by expressing the putatively stabilized MpIAA protein fused with the glucocorticoid receptor domain (MpIAA(mDII-GR. Repression of auxin responses in (proMpIAA:MpIAA(mDII-GR plants caused severe defects in various developmental processes, including gemmaling development, dorsiventrality, organogenesis, and tropic responses. Transient transactivation assays showed that the three MpARFs had different transcriptional activities, each corresponding to their phylogenetic classifications. Moreover, MpIAA and MpARF proteins interacted with each other with different affinities. This study provides evidence that pleiotropic auxin responses can be achieved by a minimal set of auxin signaling factors and suggests that the transcriptional regulation mediated by TIR1/AFB, AUX/IAA, and three types of ARFs might have been a key invention to establish body plans of land plants. We propose that M. polymorpha is a good model to