WorldWideScience

Sample records for arsenite-induced mitotic arrest

  1. Exit from Arsenite-Induced Mitotic Arrest Is p53 Dependent

    OpenAIRE

    McNeely, Samuel C.; Xu, Xiaogiang; Taylor, B. Frazier; Zacharias, Wolfgang; McCabe, Michael J.; States, J.Christopher

    2006-01-01

    Background Arsenic is both a human carcinogen and a chemotherapeutic agent, but the mechanism of neither arsenic-induced carcinogenesis nor tumor selective cytotoxicity is clear. Using a model cell line in which p53 expression is regulated exogenously in a tetracycline-off system (TR9-7 cells), our laboratory has shown that arsenite disrupts mitosis and that p53-deficient cells [p53(−)], in contrast to p53-expressing cells [p53(+)], display greater sensitivity to arsenite-induced mitotic arre...

  2. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest

    International Nuclear Information System (INIS)

    Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-π was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G2-phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application

  3. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization

    International Nuclear Information System (INIS)

    Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of α-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of α-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. γ-tubulin staining showed that cells treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70

  4. ATM/ATR-related checkpoint signals mediate arsenite-induced G{sub 2}/M arrest in primary aortic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsou, Tsui-Chun; Tsai, Feng-Yuan; Yeh, Szu-Ching; Chang, Louis W. [National Health Research Institutes, Division of Environmental Health and Occupational Medicine, Miaoli County (Taiwan)

    2006-12-15

    Epidemiological studies have demonstrated a high association of inorganic arsenic exposure with vascular disease. Our recent in vitro studies have linked this vascular damage to vascular endothelial dysfunction induced by arsenic exposure. However, cell-cycle arrest induced by arsenic and its involvement in vascular dysfunction remain to be clarified. In this study, we employed primary porcine aortic endothelial cells to investigate regulatory mechanisms of G{sub 2}/M phase arrest induced by arsenite. Our study revealed that lower concentrations of arsenite (1 and 3 {mu}M) increased cell proliferation, whereas higher concentrations of arsenite (10, 20, and 30 {mu}M) inhibited cell proliferation together with correlated increases in G{sub 2}/M phase arrest. We found that this arsenite-induced G{sub 2}/M phase arrest was accompanied by accumulation and/or phosphorylation of checkpoint-related molecules, including p53, Cdc25B, Cdc25C, and securin. Inhibition of activations of these checkpoint-related molecules by caffeine significantly attenuated the 30-{mu}M arsenite-induced G{sub 2}/M phase arrest by 93%. Our data suggest that the DNA damage responsive kinases ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) play critical roles in arsenite-induced G{sub 2}/M phase arrest in aortic endothelial cells possibly via regulation of checkpoint-related signaling molecules including p53, Cdc25B, Cdc25C, and securin. (orig.)

  5. Cdc20 control of cell fate during prolonged mitotic arrest

    DEFF Research Database (Denmark)

    Nilsson, Jakob

    2011-01-01

    The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations...

  6. Carbamazepine induces mitotic arrest in mammalian Vero cells

    International Nuclear Information System (INIS)

    We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells

  7. Carbamazepine induces mitotic arrest in mammalian Vero cells

    Energy Technology Data Exchange (ETDEWEB)

    Perez Martin, J.M.; Fernandez Freire, P.; Labrador, V. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Hazen, M.J. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)], E-mail: mariajose.hazen@uam.es

    2008-01-01

    We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells.

  8. Costunolide causes mitotic arrest and enhances radiosensitivity in human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Chen Chih-Jen

    2011-05-01

    Full Text Available Abstract Purpose This work aimed to investigate the effect of costunolide, a sesquiterpene lactone isolated from Michelia compressa, on cell cycle distribution and radiosensitivity of human hepatocellular carcinoma (HCC cells. Methods The assessment used in this study included: cell viability assay, cell cycle analysis by DNA histogram, expression of phosphorylated histone H3 (Ser 10 by flow cytometer, mitotic index by Liu's stain and morphological observation, mitotic spindle alignment by immunofluorescence of alpha-tubulin, expression of cell cycle-related proteins by Western blotting, and radiation survival by clonogenic assay. Results Our results show that costunolide reduced the viability of HA22T/VGH cells. It caused a rapid G2/M arrest at 4 hours shown by DNA histogram. The increase in phosphorylated histone H3 (Ser 10-positive cells and mitotic index indicates costunolide-treated cells are arrested at mitosis, not G2, phase. Immunofluorescence of alpha-tubulin for spindle formation further demonstrated these cells are halted at metaphase. Costunolide up-regulated the expression of phosphorylated Chk2 (Thr 68, phosphorylated Cdc25c (Ser 216, phosphorylated Cdk1 (Tyr 15 and cyclin B1 in HA22T/VGH cells. At optimal condition causing mitotic arrest, costunolide sensitized HA22T/VGH HCC cells to ionizing radiation with sensitizer enhancement ratio up to 1.9. Conclusions Costunolide could reduce the viability and arrest cell cycling at mitosis in hepatoma cells. Logical exploration of this mitosis-arresting activity for cancer therapeutics shows costunolide enhanced the killing effect of radiotherapy against human HCC cells.

  9. Costunolide causes mitotic arrest and enhances radiosensitivity in human hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    This work aimed to investigate the effect of costunolide, a sesquiterpene lactone isolated from Michelia compressa, on cell cycle distribution and radiosensitivity of human hepatocellular carcinoma (HCC) cells. The assessment used in this study included: cell viability assay, cell cycle analysis by DNA histogram, expression of phosphorylated histone H3 (Ser 10) by flow cytometer, mitotic index by Liu's stain and morphological observation, mitotic spindle alignment by immunofluorescence of alpha-tubulin, expression of cell cycle-related proteins by Western blotting, and radiation survival by clonogenic assay. Our results show that costunolide reduced the viability of HA22T/VGH cells. It caused a rapid G2/M arrest at 4 hours shown by DNA histogram. The increase in phosphorylated histone H3 (Ser 10)-positive cells and mitotic index indicates costunolide-treated cells are arrested at mitosis, not G2, phase. Immunofluorescence of alpha-tubulin for spindle formation further demonstrated these cells are halted at metaphase. Costunolide up-regulated the expression of phosphorylated Chk2 (Thr 68), phosphorylated Cdc25c (Ser 216), phosphorylated Cdk1 (Tyr 15) and cyclin B1 in HA22T/VGH cells. At optimal condition causing mitotic arrest, costunolide sensitized HA22T/VGH HCC cells to ionizing radiation with sensitizer enhancement ratio up to 1.9. Costunolide could reduce the viability and arrest cell cycling at mitosis in hepatoma cells. Logical exploration of this mitosis-arresting activity for cancer therapeutics shows costunolide enhanced the killing effect of radiotherapy against human HCC cells

  10. Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold

    Energy Technology Data Exchange (ETDEWEB)

    Galán-Malo, Patricia; Vela, Laura; Gonzalo, Oscar; Calvo-Sanjuán, Rubén; Gracia-Fleta, Lucía; Naval, Javier; Marzo, Isabel, E-mail: imarzo@unizar.es

    2012-02-01

    Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x{sub L} and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x{sub L} gene was silenced in A549 cells, vincristine induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x{sub L} or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x{sub L} switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x{sub L}/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types. Highlights: ► Vincristine induces cell death by apoptosis or mitotic catastrophe. ► Apoptosis-proficient cells die by apoptosis during mitosis upon vincristine treatment. ► p53wt apoptosis-deficient cells undergo apoptosis from a G1-like tetraploid state. ► p53mt apoptosis-deficient cells can survive and divide giving rise to 8N cells.

  11. Effect of caffeine on radiation-induced mitotic delay: delayed expression of G2 arrest

    International Nuclear Information System (INIS)

    In the presence of 5 mM caffeine, irradiated (1.5 Gy) S and G2 cells progressed to mitosis in register and without arrest in G2. Caffeine (5 mM) markedly reduced mitotic delay even after radiation doses up to 20 Gy. When caffeine was removed from irradiated (1.5 Gy) and caffeine-treated cells, a period of G2 arrest followed, similar in length to that produced by radiation alone. The arrest expressed was independent of the duration of the caffeine treatment for exposures up to 3 hr. The similarity of the response to the cited effects of caffeine on S-phase delay suggests a common basis for delay induction in S and G2 phases

  12. The SUMO protease SENP1 is required for cohesion maintenance and mitotic arrest following spindle poison treatment

    Energy Technology Data Exchange (ETDEWEB)

    Era, Saho [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Abe, Takuya; Arakawa, Hiroshi [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Kobayashi, Shunsuke [Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Szakal, Barnabas [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy); Yoshikawa, Yusuke; Motegi, Akira; Takeda, Shunichi [Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501 (Japan); Branzei, Dana, E-mail: dana.branzei@ifom.eu [Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan (Italy)

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer SENP1 knockout chicken DT40 cells are hypersensitive to spindle poisons. Black-Right-Pointing-Pointer Spindle poison treatment of SENP1{sup -/-} cells leads to increased mitotic slippage. Black-Right-Pointing-Pointer Mitotic slippage in SENP1{sup -/-} cells associates with apoptosis and endoreplication. Black-Right-Pointing-Pointer SENP1 counteracts sister chromatid separation during mitotic arrest. Black-Right-Pointing-Pointer Plk1-mediated cohesion down-regulation is involved in colcemid cytotoxicity. -- Abstract: SUMO conjugation is a reversible posttranslational modification that regulates protein function. SENP1 is one of the six SUMO-specific proteases present in vertebrate cells and its altered expression is observed in several carcinomas. To characterize SENP1 role in genome integrity, we generated Senp1 knockout chicken DT40 cells. SENP1{sup -/-} cells show normal proliferation, but are sensitive to spindle poisons. This hypersensitivity correlates with increased sister chromatid separation, mitotic slippage, and apoptosis. To test whether the cohesion defect had a causal relationship with the observed mitotic events, we restored the cohesive status of sister chromatids by introducing the TOP2{alpha}{sup +/-} mutation, which leads to increased catenation, or by inhibiting Plk1 and Aurora B kinases that promote cohesin release from chromosomes during prolonged mitotic arrest. Although TOP2{alpha} is SUMOylated during mitosis, the TOP2{alpha}{sup +/-} mutation had no obvious effect. By contrast, inhibition of Plk1 or Aurora B rescued the hypersensitivity of SENP1{sup -/-} cells to colcemid. In conclusion, we identify SENP1 as a novel factor required for mitotic arrest and cohesion maintenance during prolonged mitotic arrest induced by spindle poisons.

  13. The SUMO protease SENP1 is required for cohesion maintenance and mitotic arrest following spindle poison treatment

    International Nuclear Information System (INIS)

    Highlights: ► SENP1 knockout chicken DT40 cells are hypersensitive to spindle poisons. ► Spindle poison treatment of SENP1−/− cells leads to increased mitotic slippage. ► Mitotic slippage in SENP1−/− cells associates with apoptosis and endoreplication. ► SENP1 counteracts sister chromatid separation during mitotic arrest. ► Plk1-mediated cohesion down-regulation is involved in colcemid cytotoxicity. -- Abstract: SUMO conjugation is a reversible posttranslational modification that regulates protein function. SENP1 is one of the six SUMO-specific proteases present in vertebrate cells and its altered expression is observed in several carcinomas. To characterize SENP1 role in genome integrity, we generated Senp1 knockout chicken DT40 cells. SENP1−/− cells show normal proliferation, but are sensitive to spindle poisons. This hypersensitivity correlates with increased sister chromatid separation, mitotic slippage, and apoptosis. To test whether the cohesion defect had a causal relationship with the observed mitotic events, we restored the cohesive status of sister chromatids by introducing the TOP2α+/− mutation, which leads to increased catenation, or by inhibiting Plk1 and Aurora B kinases that promote cohesin release from chromosomes during prolonged mitotic arrest. Although TOP2α is SUMOylated during mitosis, the TOP2α+/− mutation had no obvious effect. By contrast, inhibition of Plk1 or Aurora B rescued the hypersensitivity of SENP1−/− cells to colcemid. In conclusion, we identify SENP1 as a novel factor required for mitotic arrest and cohesion maintenance during prolonged mitotic arrest induced by spindle poisons.

  14. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    Directory of Open Access Journals (Sweden)

    Zhong Rong Zhang

    Full Text Available Andrographolide (Andro suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC, alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  15. Withaferin-A induces mitotic catastrophe and growth arrest in prostate cancer cells

    Science.gov (United States)

    Roy, Ram V; Suman, Suman; Das, Trinath P.; Luevano, Joe; Damodaran, Chendil

    2014-01-01

    Cell cycle deregulation is strongly associated with the pathogenesis of prostate cancer (CaP). Clinical trials of cell cycle regulators that target either the G0/G1 or G2/M phase to inhibit the growth of cancers including CaP are increasing. In this study, we determined the cell-cycle regulatory potential of the herbal molecule Withaferin-A (WA) on CaP cells. WA induced irreversible G2/M arrest in both CaP cell lines (PC3 and DU145) for 48 h. The G2/M arrest was accompanied by upregulation of phosphorylated Wee1, phophorylated histone H3, p21 and Aurora-B. On the other hand, downregulation of cyclins (E2, A, and B1) and phorphorylated Cdc2 (Tyr15) was observed in WA-treated CaP cells. In addition, decreased levels of phosphorylated Chk1 (Ser345) and Chk2 (Thr68) were evident in WA-treated CaP cells. Our results suggest that activation of Cdc2 leads to accumulation in M-phase, with abnormal duplication, and initiation of mitotic catastrophe that results in cell death. In conclusion, these results clearly highlight the potential of WA as a regulator of the G2/M phase of the cell cycle and as a therapeutic agent for CaP. PMID:24079846

  16. Prolonged mitotic arrest induces a caspase-dependent DNA damage response at telomeres that determines cell survival.

    Science.gov (United States)

    Hain, Karolina O; Colin, Didier J; Rastogi, Shubhra; Allan, Lindsey A; Clarke, Paul R

    2016-01-01

    A delay in the completion of metaphase induces a stress response that inhibits further cell proliferation or induces apoptosis. This response is thought to protect against genomic instability and is important for the effects of anti-mitotic cancer drugs. Here, we show that mitotic arrest induces a caspase-dependent DNA damage response (DDR) at telomeres in non-apoptotic cells. This pathway is under the control of Mcl-1 and other Bcl-2 family proteins and requires caspase-9, caspase-3/7 and the endonuclease CAD/DFF40. The gradual caspase-dependent loss of the shelterin complex protein TRF2 from telomeres promotes a DDR that involves DNA-dependent protein kinase (DNA-PK). Suppression of mitotic telomere damage by enhanced expression of TRF2, or the inhibition of either caspase-3/7 or DNA-PK during mitotic arrest, promotes subsequent cell survival. Thus, we demonstrate that mitotic stress is characterised by the sub-apoptotic activation of a classical caspase pathway, which promotes telomere deprotection, activates DNA damage signalling, and determines cell fate in response to a prolonged delay in mitosis. PMID:27230693

  17. Inhibition of Survivin and Aurora B Kinase Sensitizes Mesothelioma Cells by Enhancing Mitotic Arrests

    International Nuclear Information System (INIS)

    Purpose: Survivin, a member of the inhibitor of apoptosis gene family, has also been shown to regulate mitosis. It binds Aurora B kinase and the inner centromere protein to form the chromosome passenger complex. Both Aurora B and survivin are overexpressed in many tumors. In this study, we examined whether irradiation affected survivin and Aurora B expression in mesothelioma cells, and how inhibition of these molecules affected radiosensitivity. Methods and Materials: ZM447439 and survivin antisense oligonucleotides were used to inhibit survivin and Aurora B kinase respectively. Western blot was performed to determine the expression of survivin, Aurora B, phosphorylated-histone H3 (Ser 10), and caspase cleavage. Multinucleated cells were counted using flow cytometry, and cell survival after treatment was determined using clonogenic assay. Results: At 3-Gy irradiation an increase was observed in levels of survivin and Aurora B as well as the kinase activity of Aurora B, with an increase in G2/M phase. The radiation-induced upregulation of these molecules was effectively attenuated by antisense oligonucleotides against survivin and a small-molecule inhibitor of Aurora B, ZM447439. Dual inhibition of survivin and Aurora B synergistically radiosensitized mesothelioma cells with a dose enhancement ratio of 2.55. This treatment resulted in increased formation of multinucleated cells after irradiation but did not increase levels of cleaved caspase 3. Conclusion: Inhibition of survivin and Aurora B induces mitotic cell arrest in mesothelioma cells after irradiation. These two proteins may be potential therapeutic targets for the enhancement of radiotherapy in malignant pleural mesothelioma

  18. Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype.

    Science.gov (United States)

    Mosieniak, Grażyna; Sliwinska, Małgorzata A; Przybylska, Dorota; Grabowska, Wioleta; Sunderland, Piotr; Bielak-Zmijewska, Anna; Sikora, Ewa

    2016-05-01

    Cellular senescence is recognized as a potent anticancer mechanism that inhibits carcinogenesis. Cancer cells can also undergo senescence upon chemo- or radiotherapy. Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, shows anticancer properties both in vitro and in vivo. Previously, we have shown that treatment with curcumin leads to senescence of human cancer cells. Now we identified the molecular mechanism underlying this phenomenon. We observed a time-dependent accumulation of mitotic cells upon curcumin treatment. The time-lapse analysis proved that those cells progressed through mitosis for a significantly longer period of time. A fraction of cells managed to divide or undergo mitotic slippage and then enter the next phase of the cell cycle. Cells arrested in mitosis had an improperly formed mitotic spindle and were positive for γH2AX, which shows that they acquired DNA damage during prolonged mitosis. Moreover, the DNA damage response pathway was activated upon curcumin treatment and the components of this pathway remained upregulated while cells were undergoing senescence. Inhibition of the DNA damage response decreased the number of senescent cells. Thus, our studies revealed that the induction of cell senescence upon curcumin treatment resulted from aberrant progression through the cell cycle. Moreover, the DNA damage acquired by cancer cells, due to mitotic disturbances, activates an important molecular mechanism that determines the potential anticancer activity of curcumin. PMID:26916504

  19. Exposure of Human Lung Cancer Cells to 8-Chloro-Adenosine Induces G2/M Arrest and Mitotic Catastrophe

    Directory of Open Access Journals (Sweden)

    Hong-Yu Zhang

    2004-11-01

    Full Text Available 8-Chloro-adenosine (8-CI-Ado is a potent chemotherapeutic agent whose cytotoxicity in a variety of tumor cell lines has been widely investigated. However, the molecular mechanisms are uncertain. In this study, we found that exposure of human lung cancer cell lines A549 (p53-wt and H1299 (p53-depleted to 8-CI-Ado induced cell arrest in the G2/M phase, which was accompanied by accumulation of binucleated and polymorphonucleated cells resulting from aberrant mitosis and failed cytokinesis. Western blotting showed the loss of phosphorylated forms of Cdc2 and Cdc25C that allowed progression into mitosis. Furthermore, the increase in Ser10-phosphorylated histone H3-positive cells revealed by fluorescence-activated cell sorting suggested that the agent-targeted cells were able to exit the G2 phase and enter the M phase. Immunocytochemistry showed that microtubule and microfilament arrays were changed in exposed cells, indicating that the dynamic instability of microtubules and microfilaments was lost, which may correlate with mitotic dividing failure. Aberrant mitosis resulted in mitotic catastrophe followed by varying degrees of apoptosis, depending on the cell lines. Thus, 8-CI-Ado appears to exert its cytotoxicity toward cells in culture by inducing mitotic catastrophe.

  20. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization

    International Nuclear Information System (INIS)

    Highlights: → PM2.5 induces mitotic arrest in BEAS-2B cells. → PM2.5 induces DNA damage and activates DNA damage response. → AhR regulated genes (Cyp1A1, Cyp1B1 and AhRR) are upregulated after PM exposure. → Mitotic spindle assembly is perturbed in PM exposed cells. - Abstract: Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in 'classical' apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.

  1. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan); Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  2. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    International Nuclear Information System (INIS)

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO2-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  3. Withaferin-A induces mitotic catastrophe and growth arrest in prostate cancer cells

    OpenAIRE

    Roy, Ram V; Suman, Suman; Das, Trinath P; Luevano, Joe; Damodaran, Chendil

    2013-01-01

    Cell cycle deregulation is strongly associated with the pathogenesis of prostate cancer (CaP). Clinical trials of cell cycle regulators that target either the G0/G1 or G2/M phase to inhibit the growth of cancers including CaP are increasing. In this study, we determined the cell-cycle regulatory potential of the herbal molecule Withaferin-A (WA) on CaP cells. WA induced irreversible G2/M arrest in both CaP cell lines (PC3 and DU145) for 48 h. The G2/M arrest was accompanied by upregulation of...

  4. Lysophosphatidate induces chemo-resistance by releasing breast cancer cells from taxol-induced mitotic arrest.

    Directory of Open Access Journals (Sweden)

    Nasser Samadi

    Full Text Available BACKGROUND: Taxol is a microtubule stabilizing agent that arrests cells in mitosis leading to cell death. Taxol is widely used to treat breast cancer, but resistance occurs in 25-69% of patients and it is vital to understand how Taxol resistance develops to improve chemotherapy. The effects of chemotherapeutic agents are overcome by survival signals that cancer cells receive. We focused our studies on autotaxin, which is a secreted protein that increases tumor growth, aggressiveness, angiogenesis and metastasis. We discovered that autotaxin strongly antagonizes the Taxol-induced killing of breast cancer and melanoma cells by converting the abundant extra-cellular lipid, lysophosphatidylcholine, into lysophosphatidate. This lipid stimulates specific G-protein coupled receptors that activate survival signals. METHODOLOGY/PRINCIPAL FINDINGS: In this study we determined the basis of these antagonistic actions of lysophosphatidate towards Taxol-induced G2/M arrest and cell death using cultured breast cancer cells. Lysophosphatidate does not antagonize Taxol action in MCF-7 cells by increasing Taxol metabolism or its expulsion through multi-drug resistance transporters. Lysophosphatidate does not lower the percentage of cells accumulating in G2/M by decreasing exit from S-phase or selective stimulation of cell death in G2/M. Instead, LPA had an unexpected and remarkable action in enabling MCF-7 and MDA-MB-468 cells, which had been arrested in G2/M by Taxol, to normalize spindle structure and divide, thus avoiding cell death. This action involves displacement of Taxol from the tubulin polymer fraction, which based on inhibitor studies, depends on activation of LPA receptors and phosphatidylinositol 3-kinase. CONCLUSIONS/SIGNIFICANCE: This work demonstrates a previously unknown consequence of lysophosphatidate action that explains why autotaxin and lysophosphatidate protect against Taxol-induced cell death and promote resistance to the action of this

  5. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    International Nuclear Information System (INIS)

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examined the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.

  6. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2012-10-15

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examined the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.

  7. Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain

    International Nuclear Information System (INIS)

    The mechanism underlying sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat brain. Arsenite was locally infused in the substantia nigra (SN) of anesthetized rat. Seven days after infusion, lipid peroxidation in the infused SN was elevated and dopamine level in the ipsilateral striatum was reduced in a concentration-dependent manner (0.3-5 nmol). Furthermore, local infusion of arsenite (5 nmol) decreased GSH content and increased expression of heat shock protein 70 and heme oxygenase-1 in the infused SN. Aggregation of α-synuclein, a putative pathological protein involved in several CNS neurodegenerative diseases, was elevated in the arsenite-infused SN. From the breakdown pattern of α-spectrin, both necrosis and apoptosis were involved in the arsenite-induced neurotoxicity. Pyknotic nuclei, cellular shrinkage and cytoplasmic disintegration, indicating necrosis, and TUNEL-positive cells and DNA ladder, indicating apoptosis was observed in the arsenite-infused SN. Arsenite-induced apoptosis was mediated via two different organelle pathways, mitochondria and endoplasmic reticulum (ER). For mitochondrial activation, cytosolic cytochrome c and caspase-3 levels were elevated in the arsenite-infused SN. In ER pathway, arsenite increased activating transcription factor-4, X-box binding protein 1, C/EBP homologues protein (CHOP) and cytosolic immunoglobulin binding protein levels. Moreover, arsenite reduced procaspase 12 levels, an ER-specific enzyme in the infused SN. Taken together, our study suggests that arsenite is capable of inducing oxidative injury in CNS. In addition to mitochondria, ER stress was involved in the arsenite-induced apoptosis. Arsenite-induced neurotoxicity clinically implies a pathophysiological role of arsenite in CNS neurodegeneration

  8. Navitoclax (ABT-263) accelerates apoptosis during drug-induced mitotic arrest by antagonizing Bcl-xL

    OpenAIRE

    Shi, Jue; Zhou, Yuan; Huang, Hsiao-Chun; Mitchison, Timothy J.

    2011-01-01

    Combining microtubule-targeting anti-mitotic drugs with targeted apoptosis potentiators is a promising new chemotherapeutic strategy to treat cancer. In this study we investigate the cellular mechanism by which Navitoclax (previously called ABT-263), a Bcl-2 family inhibitor, potentiates apoptosis triggered by paclitaxel and an inhibitor of Kinesin-5 (KSP), across a panel of epithelial cancer lines. Using time-lapse microscopy, we show that Navitoclax has little effect on cell death during in...

  9. Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase

    International Nuclear Information System (INIS)

    Epidemiological studies have demonstrated a high association of inorganic arsenic exposure with vascular diseases. Recent research has also linked this vascular damage to impairment of endothelial nitric oxide synthase (eNOS) function by arsenic exposure. However, the role of eNOS in regulating the arsenite-induced vascular dysfunction still remains to be clarified. In our present study, we investigated the effect of arsenite on Akt1 and eNOS and its involvement in cytotoxicity of vascular endothelial cells. Our study demonstrated that arsenite decreased the protein levels of both Akt1 and eNOS accompanied with increased levels of ubiquitination of total cell lysates. We found that inhibition of the ubiquitin-proteasome pathway by MG-132 could partially protect Akt1 and eNOS from degradation by arsenite together with a proportional protection from the arsenite-induced cytoxicity. Moreover, up-regulation of eNOS protein expression significantly attenuated the arsenite-induced cytotoxicity and eNOS activity could be significantly inhibited after incubation with arsenite for 24 h in a cell-free system. Our study indicated that endothelial eNOS activity could be attenuated by arsenite via the ubiquitin-proteasome-mediated degradation of Akt1/eNOS as well as via direct inhibition of eNOS activity. Our study also demonstrated that eNOS actually played a protective role in arsenite-induced cytoxicity. These observations supported the hypothesis that the impairment of eNOS function by arsenite is one of the mechanisms leading to vascular changes and diseases

  10. Mitotic arrest of breast cancer MDA-MB-231 cells by a halogenated thieno[3,2-d]pyrimidine

    OpenAIRE

    Ross, Christina R.; Temburnikar, Kartik W; Wilson, Gerald M.; Seley-Radtke, Katherine L.

    2015-01-01

    Halogenated thieno[3,2-d]pyrimidines exhibit antiproliferative activity against a variety of cancer cell models, such as the mouse lymphocytic leukemia cell line L1210 in which they induce apoptosis independent of cell cycle arrest. Here we assessed these activities on MDA-MB-231 cells, a well-established model of aggressive, metastatic breast cancer. While 2,4-dichloro[3,2-d]pyrimidine was less toxic to MDA-MB-231 cells than previously observed in the L1210 model, flow cytometry analysis sho...

  11. 2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1) induces G2/M arrest and mitotic catastrophe in human leukemia HL-60 cells

    International Nuclear Information System (INIS)

    2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1), a 2-phenyl-1,8-naphthyridin-4-one (2-PN) derivative, was synthesized and evaluated as an effective antimitotic agent in our laboratory. However, the molecular mechanisms are uncertain. In this study, HKL-1 was demonstrated to induce multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human leukemia HL-60 cells. Western blotting showed that HKL-1 induces mitotic catastrophe in HL-60 cells through regulating mitotic phase-specific kinases (down-regulating CDK1, cyclin B1, CENP-E, and aurora B) and regulating the expression of Bcl-2 family proteins (down-regulating Bcl-2 and up-regulating Bax and Bak), followed by caspase-9/-3 cleavage. These findings suggest that HKL-1 appears to exert its cytotoxicity toward HL-60 cells in culture by inducing mitotic catastrophe. Highlights: ► HKL-1 is a potential antimitotic agent against HL-60 cells. ► HKL-1 induces spindle disruption and sustained resulted in mitotic catastrophe. ► CENP-E and aurora B protein expressions significantly reduced. ► Bcl-2 family protein expressions altered and caspase-9/-3 activation. ► HKL-1 is an attractive candidate for possible use as a novel antimitotic agent.

  12. Resveratrol abrogates the Temozolomide-induced G2 arrest leading to mitotic catastrophe and reinforces the Temozolomide-induced senescence in glioma cells

    International Nuclear Information System (INIS)

    Temozolomide (TMZ) is the most widely used drug to treat glioblastoma (GBM), which is the most common and aggressive primary tumor of the Central Nervous System and one of the hardest challenges in oncotherapy. TMZ is an alkylating agent that induces autophagy, apoptosis and senescence in GBM cells. However, therapy with TMZ increases survival after diagnosis only from 12 to 14.4 months, making the development of combined therapies to treat GBM fundamental. One candidate for GBM therapy is Resveratrol (Rsv), which has additive toxicity with TMZ in several glioma cells in vitro and in vivo. However, the mechanism of Rsv and TMZ additive toxicity, which is the aim of the present work, is not clear, especially concerning cell cycle dynamics and long term effects. Glioma cell lines were treated with Rsv and TMZ, alone or in combinations, and the induction and the role of autophagy, apoptosis, cell cycle dynamics, protein expression and phosphorylation status were measured. We further evaluated the long term senescence induction and clonogenic capacity. As expected, temozolomide caused a G2 cell cycle arrest and extensive DNA damage response. Rsv did not reduced this response, even increasing pATM, pChk2 and gammaH2Ax levels, but abrogated the temozolomide-induced G2 arrest, increasing levels of cyclin B and pRb(S807/811) and reducing levels of pWee1(S642) and pCdk1(Y15). This suggests a cellular state of forced passage through G2 checkpoint despite large DNA damage, a scenario that may produce mitotic catastrophe. Indeed, the proportion of cells with high nuclear irregularity increased from 6 to 26% in 48 h after cotreatment. At a long term, a reduction in clonogenic capacity was observed, accompanied by a large induction of senescence. The presence of Rsv forces cells treated with TMZ through mitosis leading to mitotic catastrophe and senescence, reducing the clonogenic capacity of glioma cells and increasing the chronic effects of temozolomide

  13. The protective role of NF-κB and AP-1 in arsenite-induced apoptosis in aortic endothelial cells

    International Nuclear Information System (INIS)

    Arsenite (NaAsO2) has been shown to produce vascular dysfunction in many studies. Arsenite-induced damage to vascular endothelial cells represents one of the possible mechanisms causing leakage of the vascular endothelial barrier. To explore arsenite-induced vascular endothelial damage, we used primary porcine aortic endothelial cells (PAECs) as an in vitro system to test the effects of arsenite on signal transduction pathways and apoptosis. Here we demonstrated that arsenite exposure induced apoptosis accompanied by the occurrence of apoptotic signals including degradation of poly(ADP-ribose) polymerase (PARP) and CPP32 (cleavage/activation) and DNA ladder formation. By using the luciferase reporter assay, we demonstrated that arsenite exposure differentially activated two redox-sensitive transcription factors, NF-κB and AP-1. Lower levels of arsenite exposure (25 μM NaAsO2, 24 h) induced co-activation of NF-κB and AP-1, accompanied by 9% total apoptosis. In contrast, higher levels of arsenite exposure (40 μM NaAsO2, 24 h) induced higher levels of AP-1 activation, accompanied by 45% total apoptosis. Blockade of NF-κB or JNK activity further enhanced arsenite-induced apoptosis. Upregulation of JNK activity showed no effect on arsenite-induced apoptosis. Based on these data, we propose that activation of redox-sensitive transcription factors, NF-κB and AP-1, plays a very important role in the protection of PAECs from arsenite-induced apoptosis

  14. Structure–Biological Function Relationship Extended to Mitotic Arrest-Deficient 2-Like Protein Mad2 Native and Mutants-New Opportunity for Genetic Disorder Control

    Directory of Open Access Journals (Sweden)

    Speranta Avram

    2014-11-01

    Full Text Available Overexpression of mitotic arrest-deficient proteins Mad1 and Mad2, two components of spindle assembly checkpoint, is a risk factor for chromosomal instability (CIN and a trigger of many genetic disorders. Mad2 transition from inactive open (O-Mad2 to active closed (C-Mad2 conformations or Mad2 binding to specific partners (cell-division cycle protein 20 (Cdc20 or Mad1 were targets of previous pharmacogenomics studies. Here, Mad2 binding to Cdc20 and the interconversion rate from open to closed Mad2 were predicted and the molecular features with a critical contribution to these processes were determined by extending the quantitative structure-activity relationship (QSAR method to large-size proteins such as Mad2. QSAR models were built based on available published data on 23 Mad2 mutants inducing CIN-related functional changes. The most relevant descriptors identified for predicting Mad2 native and mutants action mechanism and their involvement in genetic disorders are the steric (van der Waals area and solvent accessible area and their subdivided and energetic van der Waals energy descriptors. The reliability of our QSAR models is indicated by significant values of statistical coefficients: Cross-validated correlation q2 (0.53–0.65 and fitted correlation r2 (0.82–0.90. Moreover, based on established QSAR equations, we rationally design and analyze nine de novo Mad2 mutants as possible promoters of CIN.

  15. A novel microtubule inhibitor, MT3-037, causes cancer cell apoptosis by inducing mitotic arrest and interfering with microtubule dynamics

    Science.gov (United States)

    Chang, Ling-Chu; Yu, Yung-Luen; Hsieh, Min-Tsang; Wang, Sheng-Hung; Chou, Ruey-Hwang; Huang, Wei-Chien; Lin, Hui-Yi; Hung, Hsin-Yi; Huang, Li-Jiau; Kuo, Sheng-Chu

    2016-01-01

    We investigated the anticancer potential of a new synthetic compound, 7-(3-fluorophenyl)-4-methylpyrido-[2,3-d]pyrimidin-5(8H)-one (MT3-037). We found that MT3-037 effectively decreased the cancer cell viability by inducing apoptosis. MT3-037 treatments led to cell cycle arrest at M phase, with a marked increase in both expression of cyclin B1 and cyclin-dependent kinase 1 (CDK1) as well as in CDK1 kinase activity. Key proteins that regulate mitotic spindle dynamics, including survivin, Aurora A/B kinases, and polo-like kinase 1 (PLK1), were activated in MT3-037-treated cells. MT3-037-induced apoptosis was accompanied by activation of a pro-apoptotic factor, FADD, and the inactivation of apoptosis inhibitors, Bcl-2 and Bcl-xL, resulting in the cleavage/activation of caspases. The activation of c-Jun N-terminal kinase (JNK) was associated with MT3-037-induced CDK1 and Aurora A/B activation and apoptosis. Immunofluorescence staining of tubulin indicated that MT3-037 altered tubulin networks in cancer cells. Moreover, an in vitro tubulin polymerization assay revealed that MT3-037 inhibited the tubulin polymerization by direct binding to tubulin. Molecular docking studies and binding site completion assays revealed that MT3-037 binds to the colchicine-binding site. Furthermore, MT3-037 significantly inhibited the tumor growth in both MDAMB-468 and Erlotinib-resistant MDA-MB-468 xenograft mouse models. In addition, MT3-037 inhibited the angiogenesis and disrupted the tube formation by human endothelial cells. Our study demonstrates that MT3-037 is a potential tubulin-disrupting agent for antitumor therapy.

  16. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    International Nuclear Information System (INIS)

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite

  17. Elevated level of spindle checkprotein MAD2 correlates with cellular mitotic arrest, but not with aneuploidy and clinicopathological characteristics in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Chew-Wun Wu; Chin-Wen Chi; Tze-Sing Huang

    2004-01-01

    AIM: To study the relevance of spindle assembly checkprotein MAD2 to cellular mitotic status, aneuploidy and other clinicopathological characteristics in gastric cancer.METHODS: Western blot analyses were performed to analyze the protein levels of MAD2 and cyclin B1 in the tumorous and adjacent nontumorous tissues of 34 gastric cancer patients. Cell cycle distribution and DNA ploidy of cancer tissues were also determined by flow cytometry.Conventional statistical methods were adopted to determine the relevance of abnormal MAD2 level to mitotic status,aneuploidy and clinicopathological parameters.RESULTS: Out of 34 gastric cancer patients 25 (74%)exhibited elevated MAD2 levels in their tumorous tissues compared with the corresponding nontumorous tissues.Elevation of MAD2 levels significantly correlated with the increased levels of cydin B1 expression and G2/M-phase distribution (P = 0.038 and P = 0.033, respectively), but was not relevant to aneuploidy. The gastric cancer patients with elevated MAD2 levels showed a tendency toward better disease-free and overall survival (P>0.05). However, no association was found between elevated MAD2 levels and patients' clinicopathological characteristics.CONCLUSION: Elevation of MAD2 level is present in 74%of gastric cancer patients, and correlates with increased mitotic checkpoint activity. However, elevation of MAD2level is not associated with patients' aneuploidy and any of the clinicopathological characteristics.

  18. Ameliorative Effects of Acacia Honey against Sodium Arsenite-Induced Oxidative Stress in Some Viscera of Male Wistar Albino Rats

    Science.gov (United States)

    Aliyu, Muhammad; Ibrahim, Sani; Inuwa, Hajiya M.; Sallau, Abdullahi B.; Abbas, Olagunju; Aimola, Idowu A.; Habila, Nathan; Uche, Ndidi S.

    2013-01-01

    Cancer is a leading cause of death worldwide and its development is frequently associated with oxidative stress-induced by carcinogens such as arsenicals. Most foods are basically health-promoting or disease-preventing and a typical example of such type is honey. This study was undertaken to investigate the ameliorative effects of Acacia honey on sodium arsenite-induced oxidative stress in the heart, lung and kidney tissues of male Wistar rats. Male Wistar albino rats divided into four groups of five rats each were administered distilled water, Acacia honey (20%), sodium arsenite (5 mg/kg body weight), Acacia honey, and sodium arsenite daily for one week. They were sacrificed anesthetically using 60 mg/kg sodium pentothal. The tissues were used for the assessment of glutathione peroxidase, catalase, and superoxide dismutase activities, protein content and lipid peroxidation. Sodium arsenite significantly (P < 0.05) suppressed the glutathione peroxidase, catalase, superoxide dismutase activities with simultaneous induction of lipid peroxidation. Administration of Acacia honey significantly increased (P < 0.05) glutathione peroxidase, catalase, and superoxide dismutase activities with concomitant suppression of lipid peroxidation as evident by the decrease in malondialdehyde level. From the results obtained, Acacia honey mitigates sodium arsenite induced-oxidative stress in male Wistar albino rats, which suggest that it may attenuate oxidative stress implicated in chemical carcinogenesis. PMID:24368942

  19. MPT0G066, a novel anti-mitotic drug, induces JNK-independent mitotic arrest, JNK-mediated apoptosis, and potentiates antineoplastic effect of cisplatin in ovarian cancer

    Science.gov (United States)

    Huang, Han-Li; Chao, Min-Wu; Li, Ya-Chi; Chang, Li-Hsun; Chen, Chun-Han; Chen, Mei-Chuan; Cheng, Chun-Chun; Liou, Jing-Ping; Teng, Che-Ming; Pan, Shiow-Lin

    2016-01-01

    Developing new anticancer agents against ovarian cancer is an urgent medical need. MPT0G066, a novel synthetic arylsulfonamide compound, was shown to inhibit cell growth and decrease viability in human ovarian cancer cells. MPT0G066 induced arrest of the cell cycle at the multipolyploidy (MP) phase in SKOV3 and at the G2/M phase in A2780 cells, while increasing the proportion of cells in the subG1. Additionally, MPT0G066 induced c-Jun-NH2 terminal kinase (JNK) activation, influenced cell cycle regulatory and Bcl-2 family proteins, which triggered intrinsic apoptotic pathways through cleavage of caspase-3, -7, -9, and poly-(ADP-ribose) polymerase (PARP). Flow cytometry analysis of p-glycoprotein (p-gp) function showed that MPT0G066 was not a substrate of p-gp. Additionally, it was shown that MPT0G066 could decrease cell viability in multiple-drug-resistant human ovarian cancer cells. Furthermore, the combination of MPT0G066 and cisplatin presented a synergistic cytotoxic effect against ovarian cancer cell lines in vitro. MPT0G066 also significantly suppressed the growth of ovarian carcinoma and potentiated the antineoplastic effects of cisplatin in vivo. In conclusion, these findings indicate that MPT0G066 can be a potential anticancer agent against ovarian cancer that worthy of further development. PMID:27526962

  20. Roles of oxidative stress and the ERK1/2, PTEN and p70S6K signaling pathways in arsenite-induced autophagy.

    Science.gov (United States)

    Huang, Ya-Chun; Yu, Hsin-Su; Chai, Chee-Yin

    2015-12-15

    Studies show that arsenite induces oxidative stress and modifies cellular function via phosphorylation of proteins and inhibition of DNA repair enzymes. Autophagy, which has multiple physiological and pathological roles in cellular function, is initiated by oxidative stress and is regulated by the signaling pathways of phosphatidylinositol 3-phosphate kinase (PI3K)/mammalian target of rapamycin (mTOR)/p70S6 kinase (p70S6K) and extracellular signaling-regulated protein kinase 1/2 (ERK1/2) that play important roles in oncogenesis. However, the effects of arsenite-induced oxidative stress on autophagy and on expression of related proteins are not fully understood. This study found that cells treated with sodium arsenite had reduced 8-oxoguanine DNA glycosylase 1 (OGG1) and increased 8-hydroxy-2'-deoxyguanosine (8-OHdG) and activating transcription factor (ATF) 3 in SV-40 immortalized human uroepithelial (SV-HUC-1) cells. Arsenite also increased the number of autophagosomes and increased levels of the autophagy markers Beclin-1 and microtubule-associated protein 1 light chain 3B. Reactive oxygen species scavenger decreased arsenite-induced autophagy in SV-HUC-1 cells. Our previous work showed that arsenite induced phosphorylation of the ERK1/2 signaling pathway. The current study further showed that arsenite decreased phosphatase and tensin homologue (PTEN) levels and increased phospho-p70S6 kinase (p-p70S6K) in SV-HUC-1 cells. However, both kinase inhibitor U0126 and the DNA (cytosine-5-)-methyltransferase 1 (DNMT1) inhibitor 5-aza-deoxycytidine abolished the effect of arsenite on expressions of PTEN and p-p70S6K. These results show that autophagy induced by arsenite exposure is mediated by oxidative stress, which regulates activation of the PTEN, p70S6K and ERK1/2 signaling pathways. Thus, this study clarifies the role of autophagy in arsenite-induced urothelial carcinogenesis. PMID:26432159

  1. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway)

    Science.gov (United States)

    Ganesh Kumar, C.; Poornachandra, Y.; Chandrasekhar, Cheemalamarri

    2015-11-01

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2

  2. Mitotic arrest and apoptosis in breast cancer cells induced by Origanum majorana extract: upregulation of TNF-α and downregulation of survivin and mutant p53.

    Directory of Open Access Journals (Sweden)

    Yusra Al Dhaheri

    Full Text Available BACKGROUND: In the present study, we investigated the effect of Origanum majorana ethanolic extract on the survival of the highly proliferative and invasive triple-negative p53 mutant breast cancer cell line MDA-MB-231. RESULTS: We found that O. majorana extract (OME was able to inhibit the viability of the MDA-MB-231 cells in a time- and concentration-dependent manner. The effect of OME on cellular viability was further confirmed by the inhibition of colony growth. We showed, depending on the concentration used, that OME elicited different effects on the MDA-MB 231 cells. Concentrations of 150 and 300 µg/mL induced an accumulation of apoptotic-resistant population of cells arrested in mitotis and overexpressing the cyclin-dependent kinase inhibitor, p21 and the inhibitor of apoptosis, survivin. On the other hand, higher concentrations of OME (450 and 600 µg/mL triggered a massive apoptosis through the extrinsic pathway, including the activation of tumor necrosis factor-α (TNF-α, caspase 8, caspase 3, and cleavage of PARP, downregulation of survivin as well as depletion of the mutant p53 in MDA-MB-231 cells. Furthermore, OME induced an upregulation of γ-H2AX, a marker of double strand DNA breaks and an overall histone H3 and H4 hyperacetylation. CONCLUSION: Our findings provide strong evidence that O. majorana may be a promising chemopreventive and therapeutic candidate against cancer especially for highly invasive triple negative p53 mutant breast cancer; thus validating its complementary and alternative medicinal use.

  3. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  4. MicroRNA-21 activation of ERK signaling via PTEN is involved in arsenite-induced autophagy in human hepatic L-02 cells.

    Science.gov (United States)

    Liu, Xinlu; Luo, Fei; Ling, Min; Lu, Lu; Shi, Le; Lu, Xiaolin; Xu, Hui; Chen, Chao; Yang, Qianlei; Xue, Junchao; Li, Jun; Zhang, Aihua; Liu, Qizhan

    2016-06-11

    Autophagy, an evolutionarily conserved cellular process, has diverse physiological and pathological roles in biological functions. Whether autophagy is induced by arsenite, a well-established human carcinogen, and the molecular mechanisms involved, remain to be established. Further, microRNAs (miRNAs) act as regulators in various cancers, but how miRNAs regulate autophagy remains largely unexplored. We have found that, in human hepatic epithelial (L-02) cells, arsenite increases levels of autophagy-related proteins in a concentration- and time-dependent manner and elevates the number of autophagic vacuoles (AVs). Arsenite also activates the ERK pathway in a dose- and time-dependent manner. In L-02 cells exposed to arsenite, microRNA-21 (miRNA-21) is over-expressed, and its target proteins, PTEN, PDCD4, and Spry1, are decreased. Moreover, inhibition of miR-21 increases levels of PTEN, and reduces levels of Beclin 1 and LC3 II/I, indicating that miR-21 is involved in arsenite-induced autophagy. In addition, ectopic expression of PTEN blocks the effect of miR-21 on the arsenite-induced autophagy and decreases p-ERK levels. Also, ERK promotes the autophagy induced by arsenite. In sum, upon exposure of cells to arsenite, over-expression of miR-21 activates ERK through PTEN, factors that participate in arsenite-induced autophagy. This link, mediated through miRNAs, establishes a mechanism for the development of autophagy that is associated with arsenic toxicity. Such information contributes to an understanding of the liver toxicity caused by arsenite. PMID:27107786

  5. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sá-Júnior, Paulo Luiz de [Laboratory of Genetics, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Pasqualoto, Kerly Fernanda Mesquita [Biochemistry and Biophysical Laboratory, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Ferreira, Adilson Kleber [Laboratory of Genetics, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Tavares, Maurício Temotheo; Damião, Mariana Celestina Frojuello Costa Bernstorff [Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Prof. Lineu Prestes Avenue, 580, Postal Code: 05508-000, Sao Paulo (Brazil); Azevedo, Ricardo Alexandre de [Biochemistry and Biophysical Laboratory, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Câmara, Diana Aparecida Dias; Pereira, Alexandre; Madeiro de Souza, Dener [Laboratory of Genetics, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Parise Filho, Roberto, E-mail: roberto.parise@usp.br [Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Prof. Lineu Prestes Avenue, 580, Postal Code: 05508-000, Sao Paulo (Brazil)

    2013-02-01

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle at the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent. -- Highlights: ► We report for the first time that RPF101 possesses anticancer properties. ► RPF101 induces apoptosis of human breast cancer cells. ► RPF 101 decreases mitochondrial potential and induces DNA fragmentation.

  6. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle at the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent. -- Highlights: ► We report for the first time that RPF101 possesses anticancer properties. ► RPF101 induces apoptosis of human breast cancer cells. ► RPF 101 decreases mitochondrial potential and induces DNA fragmentation.

  7. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAsIII) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAsIII induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAsIII in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAsIII can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  8. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte;

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P...

  9. Mitotic spindle perturbations

    NARCIS (Netherlands)

    Tame, M.A.

    2016-01-01

    Microtubules are major components of the cytoskeleton and form the bipolar spindle apparatus during mitosis. The mitotic spindle consists of highly dynamic microtubule polymers that are under constant modulation, controlled by multiple motor proteins and microtubule-associated proteins. This tight s

  10. APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage

    Directory of Open Access Journals (Sweden)

    Toda Kazuhiro

    2012-02-01

    Full Text Available Abstract Background The spindle assembly checkpoint (SAC inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons. Results Here we describe mitotic slippage in yeast bub2Δ mutant cells that are defective in the repression of precocious telophase onset (mitotic exit. Precocious activation of anaphase promoting complex/cyclosome (APC/C-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation, in addition to telophase onset (mitotic exit, during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments. Conclusions The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans.

  11. Daily Arrests

    Data.gov (United States)

    Montgomery County of Maryland — This dataset provides the public with arrest information from the Montgomery County Central Processing Unit (CPU) systems. The data presented is derived from every...

  12. Prophylactic neuroprotective efficiency of co-administration of Ginkgo biloba and Trifolium pretense against sodium arsenite-induced neurotoxicity and dementia in different regions of brain and spinal cord of rats.

    Science.gov (United States)

    Abdou, Heba M; Yousef, Mokhtar I; El Mekkawy, Desouki A; Al-Shami, Ahmed S

    2016-08-01

    The present study was carried out to evaluate the potential protective role of co-administration of Ginkgo biloba, Trifolium pretenseagainst sodium arsenite-induced neurotoxicity in different parts of brain (Cerebral cortex, Hippocampus, striatum and Hind brain) and in the spinal cord of rats. Sodium arsenite caused impairment in the acquisition and learning in all the behavioral tasks and caused significant increase in tumor necrosis factor-α,thiobarbituric acid-reactive substances andlipid profile, while caused significant decrease in glutathione, total thiol content, total antioxidant capacity, acetylcholinesterase, monoamine oxidase and ATPases activities. These results were confirmed by histopathological, fluorescence and scanning electron microscopy examination of different regions of brain. From these results sodium arsenite-induced neurodegenerative disorder in different regions of brain and spinal cord and this could be mediated through modifying the intracellular brain ions homeostasis, cholinergic dysfunction and oxidative damage. The presence of Ginkgo biloba and/orTrifolium pretense with sodium arsenite minimized its neurological damages. It was pronounced that using Ginkgo biloba and Trifolium pretense in combination was more effective as protective agents compared to use eachone of them alone. PMID:27234133

  13. Molecular origin of mitotic aneuploidies in preimplantation embryos.

    Science.gov (United States)

    Mantikou, Eleni; Wong, Kai Mee; Repping, Sjoerd; Mastenbroek, Sebastiaan

    2012-12-01

    Mitotic errors are common in human preimplantation embryos. The occurrence of mitotic errors is highest during the first three cleavages after fertilization and as a result about three quarters of human preimplantation embryos show aneuploidies and are chromosomally mosaic at day three of development. The origin of these preimplantation mitotic aneuploidies and the molecular mechanisms involved are being discussed in this review. At later developmental stages the mitotic aneuploidy rate is lower. Mechanisms such as cell arrest, apoptosis, active correction of the aneuploidies and preferential allocation of the aneuploid cells to the extra-embryonic tissues could underlie this lower rate. Understanding the mechanisms that cause mitotic aneuploidies in human preimplantation embryos and the way human preimplantation embryos deal with these aneuploidies might lead to ways to limit the occurrence of aneuploidies, in order to ultimately increase the quality of embryos and with that the likelihood of a successful pregnancy in IVF/ICSI. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. PMID:22771499

  14. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte; Kruse, Torben; Nordström, Kurt

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome....

  15. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis

    International Nuclear Information System (INIS)

    Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90α/β also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.

  16. High LET radiation enhances nocodazole induced cell death in HeLa cells through mitotic catastrophe and apoptosis

    International Nuclear Information System (INIS)

    To understand how human tumor cells respond to the combined treatment with nocodazole and high linear energy transfer (LET) radiation, alterations in cell cycle, mitotic disturbances and cell death were investigated in the present study. Human cervix carcinoma HeLa cells were exposed to nocodazole for 18 h immediately followed by high LET iron ion irradiation and displayed a sequence of events leading to DNA damages, mitotic aberrations, interphase restitution and endocycle as well as cell death. A prolonged mitotic arrest more than 10 h was observed following nocodazole exposure, no matter the irradiation was present or not. The occurrence of mitotic slippage following the mitotic arrest was only drug-dependent and the irradiation did not accelerate it. The amount of polyploidy cells was increased following mitotic slippage. No detectable G2 or G1 arrest was observed in cells upon the combined treatment and the cells reentered the cell cycle still harboring unrepaired cellular damages. This premature entry caused an increase of multipolar mitotic spindles and amplification of centrosomes, which gave rise to lagging chromosomal material, failure of cytokinesis and polyploidization. These mitotic disturbances and their outcomes confirmed the incidence of mitotic catastrophe and delayed apoptotic features displayed by terminal-transferased UTP- nick end-labeling (TUNEL) method after the combined treatment. These results suggest that the addition of high-LET iron ion irradiation to nocodazole enhanced mitotic catastrophe and delayed apoptosis in HeLa cells. These might be important cell death mechanisms involved in tumor cells in response to the treatment of antimitotic drug combined with high LET radiation. (author)

  17. Smurf2 as a novel mitotic regulator: From the spindle assembly checkpoint to tumorigenesis

    Directory of Open Access Journals (Sweden)

    Moore Finola E

    2009-07-01

    Full Text Available Abstract The execution of the mitotic program with high fidelity is dependent upon precise spatiotemporal regulation of posttranslational protein modifications. For example, the timely polyubiquitination of critical mitotic regulators by Anaphase Promoting Complex/Cyclosome (APC/C is essential for the metaphase to anaphase transition and mitotic exit. The spindle assembly checkpoint prevents unscheduled activity of APC/C-Cdc20 in early mitosis, allowing bipolar attachment of kinetochores to mitotic spindle and facilitating equal segregation of sister chromatids. The critical effector of the spindle checkpoint, Mitotic arrest deficient 2 (Mad2, is recruited to unattached kinetochores forming a complex with other regulatory proteins to efficiently and cooperatively inhibit APC/C-Cdc20. A weakened and/or dysfunctional spindle checkpoint has been linked to the development of genomic instability in both cell culture and animal models, and evidence suggests that aberrant regulation of the spindle checkpoint plays a critical role in human carcinogenesis. Recent studies have illuminated a network of both degradative and non-degradative ubiquitination events that regulate the metaphase to anaphase transition and mitotic exit. Within this context, our recent work showed that the HECT (Homologous to E6-AP C-terminus-family E3 ligase Smurf2 (Smad specific ubiquitin regulatory factor 2, known as a negative regulator of transforming growth factor-beta (TGF-β signaling, is required for a functional spindle checkpoint by promoting the functional localization and stability of Mad2. Here we discuss putative models explaining the role of Smurf2 as a new regulator in the spindle checkpoint. The dynamic mitotic localization of Smurf2 to the centrosome and other critical mitotic structures provides implications about mitotic checkpoint control dependent on various ubiquitination events. Finally, deregulated Smurf2 activity may contribute to carcinogenesis by

  18. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells

    OpenAIRE

    Nien-Cheng Chen; Charng-Cherng Chyau; Yi-Ju Lee; Hsien-Chun Tseng; Fen-Pi Chou

    2016-01-01

    Paclitaxel is a mitotic inhibitor used in cancer chemotherapy. Mulberry fruit is rich in phenolic compounds and flavonoids and exhibits chemopreventive activities. In this study, mulberry water extract (MWE) was used as a supplement to synergize with the effects of paclitaxel in the treatment of the TSGH 8301 human bladder cancer cell line. Treatment with paclitaxel combined with MWE (paclitaxel/MWE) enhanced the cytotoxicity of paclitaxel and induced severe G2/M arrest, mitotic catastrophe a...

  19. Micromechanics of human mitotic chromosomes

    International Nuclear Information System (INIS)

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed

  20. Plk1 Inhibition Causes Post-Mitotic DNA Damage and Senescence in a Range of Human Tumor Cell Lines

    Science.gov (United States)

    Bowman, Doug; Shinde, Vaishali; Lasky, Kerri; Shi, Judy; Vos, Tricia; Stringer, Bradley; Amidon, Ben; D'Amore, Natalie; Hyer, Marc L.

    2014-01-01

    Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX), which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens. PMID:25365521

  1. Plk1 inhibition causes post-mitotic DNA damage and senescence in a range of human tumor cell lines.

    Science.gov (United States)

    Driscoll, Denise L; Chakravarty, Arijit; Bowman, Doug; Shinde, Vaishali; Lasky, Kerri; Shi, Judy; Vos, Tricia; Stringer, Bradley; Amidon, Ben; D'Amore, Natalie; Hyer, Marc L

    2014-01-01

    Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX), which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens. PMID:25365521

  2. Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akinori [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Kikuguchi, Chisato [Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412 (Japan); Morita, Masahiro; Shimodaira, Tetsuhiro; Tokai-Nishizumi, Noriko; Yokoyama, Kazumasa; Ohsugi, Miho; Suzuki, Toru [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Yamamoto, Tadashi, E-mail: tyamamot@ims.u-tokyo.ac.jp [Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Cell Signal Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412 (Japan)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CNOT3 depletion increases the mitotic index. Black-Right-Pointing-Pointer CNOT3 inhibits the expression of MAD1. Black-Right-Pointing-Pointer CNOT3 destabilizes the MAD1 mRNA. Black-Right-Pointing-Pointer MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4-NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4-NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4-NOT complex, is involved in the regulation of the spindle assembly checkpoint, suggesting that the CCR4-NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.

  3. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  4. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development.

    Directory of Open Access Journals (Sweden)

    Rajiv C McCoy

    2015-10-01

    Full Text Available Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4-8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos

  5. Radmis, a novel mitotic spindle protein that functions in cell division of neural progenitors.

    Directory of Open Access Journals (Sweden)

    Takahito Yumoto

    Full Text Available Developmental dynamics of neural stem/progenitor cells (NSPCs are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle/ckap2l gene, a novel microtubule-associated protein (MAP enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C, and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs.

  6. Proteomic profiling revealed the functional networks associated with mitotic catastrophe of HepG2 hepatoma cells induced by 6-bromine-5-hydroxy-4-methoxybenzaldehyde

    International Nuclear Information System (INIS)

    Mitotic catastrophe, a form of cell death resulting from abnormal mitosis, is a cytotoxic death pathway as well as an appealing mechanistic strategy for the development of anti-cancer drugs. In this study, 6-bromine-5-hydroxy-4-methoxybenzaldehyde was demonstrated to induce DNA double-strand break, multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human hepatoma HepG2 cells. We used proteomic profiling to identify the differentially expressed proteins underlying mitotic catastrophe. A total of 137 differentially expressed proteins (76 upregulated and 61 downregulated proteins) were identified. Some of the changed proteins have previously been associated with mitotic catastrophe, such as DNA-PKcs, FoxM1, RCC1, cyclin E, PLK1-pT210, 14-3-3σ and HSP70. Multiple isoforms of 14-3-3, heat-shock proteins and tubulin were upregulated. Analysis of functional significance revealed that the 14-3-3-mediated signaling network was the most significantly enriched for the differentially expressed proteins. The modulated proteins were found to be involved in macromolecule complex assembly, cell death, cell cycle, chromatin remodeling and DNA repair, tubulin and cytoskeletal organization. These findings revealed the overall molecular events and functional signaling networks associated with spindle disruption and mitotic catastrophe. - Graphical abstract: Display Omitted Research highlights: → 6-bromoisovanillin induced spindle disruption and sustained mitotic arrest, consequently resulted in mitotic catastrophe. → Proteomic profiling identified 137 differentially expressed proteins associated mitotic catastrophe. → The 14-3-3-mediated signaling network was the most significantly enriched for the altered proteins. → The macromolecule complex assembly, cell cycle, chromatin remodeling and DNA repair, tubulin organization were also shown involved in mitotic catastrophe.

  7. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Cobo, J.M. [Universidad de Alcala de Henares, Madrid (Spain); Valdez, J.G.; Gurley, L.R. [Los Alamos National Lab., NM (United States)

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  8. Deterrence and arrest ratios.

    Science.gov (United States)

    Carmichael, Stephanie E; Piquero, Alex R

    2006-02-01

    In the limited research on the origins of sanction threat perceptions, researchers have focused on either the effects of actively engaging in crime or the effects of formal sanctioning but rarely on both (i.e., the arrest ratio or the number of arrests relative to the number of crimes committed). This article extends this line of research by using a sample of Colorado inmates and measures arrest ratios and sanction perceptions for eight different crime types. Analyses reveal that the offenders report both significant experiential and arrest ratio effects. Theoretical and policy implications, limitations, and directions for future research are outlined. PMID:16397123

  9. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  10. Mitotic chromosome condensation in vertebrates

    International Nuclear Information System (INIS)

    Work from several laboratories over the past 10–15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292–301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307–316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119–1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579–589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  11. Upregulation of meiosis-specific genes in lymphoma cell lines following genotoxic insult and induction of mitotic catastrophe

    International Nuclear Information System (INIS)

    We have previously reported that p53 mutated radioresistant lymphoma cell lines undergo mitotic catastrophe after irradiation, resulting in metaphase arrest and the generation of endopolyploid cells. A proportion of these endopolyploid cells then undergo a process of de-polyploidisation, stages of which are partially reminiscent of meiotic prophase. Furthermore, expression of meiosis-specific proteins of the cancer/testis antigens group of genes has previously been reported in tumours. We therefore investigated whether expression of meiosis-specific genes was associated with the polyploidy response in our tumour model. Three lymphoma cell lines, Namalwa, WI-L2-NS and TK6, of varying p53 status were exposed to a single 10 Gy dose of gamma radiation and their responses assessed over an extended time course. DNA flow cytometry and mitotic counts were used to assess the kinetics and extent of polyploidisation and mitotic progression. Expression of meiotic genes was analysed using RT-PCR and western blotting. In addition, localisation of the meiotic cohesin REC8 and its relation to centromeres was analysed by immunofluorescence. The principal meiotic regulator MOS was found to be significantly post-transcriptionally up-regulated after irradiation in p53 mutated but not p53 wild-type lymphoma cells. The maximum expression of MOS coincided with the maximal fraction of metaphase arrested cells and was directly proportional to both the extent of the arrest and the number of endopolyploid cells that subsequently emerged. The meiotic cohesin REC8 was also found to be up-regulated after irradiation, linking sister chromatid centromeres in the metaphase-arrested and subsequent giant cells. Finally, RT-PCR revealed expression of the meiosis-prophase genes, DMC1, STAG3, SYCP3 and SYCP1. We conclude that multiple meiotic genes are aberrantly activated during mitotic catastrophe in p53 mutated lymphoma cells after irradiation. Furthermore, we suggest that the coordinated expression

  12. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Salmela, Anna-Leena [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Turku Graduate School of Biomedical Sciences, Turku (Finland); Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Pouwels, Jeroen; Kukkonen-Macchi, Anu [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Waris, Sinikka; Toivonen, Pauliina [Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Jaakkola, Kimmo [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Maeki-Jouppila, Jenni [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Drug Discovery Graduate School, University of Turku (Finland); Kallio, Lila, E-mail: lila.kallio@vtt.fi [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Kallio, Marko J. [VTT Technical Research Centre of Finland, Medical Biotechnology, P.O. Box 106, Turku (Finland); Turku Centre for Biotechnology, P.O. Box 123, University of Turku (Finland); Centre of Excellence for Translational Genome-Scale Biology, P.O. Box 106, Academy of Finland (Finland)

    2012-03-10

    The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3 Prime ,5-dihydroxy-4 Prime ,6,7-trimethoxyflavone) as an anti-mitotic flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.

  13. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis

    International Nuclear Information System (INIS)

    The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule–kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3′,5-dihydroxy-4′,6,7-trimethoxyflavone) as an anti-mitotic flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule–kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.

  14. Akt Inhibitor A-443654 Interferes with Mitotic Progression by Regulating Aurora A Kinase Expression

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2008-08-01

    Full Text Available Both Akt and Aurora A kinase have been shown to be important targets for intervention for cancer therapy. We report here that Compound A (A-443654, a specific Akt inhibitor, interferes with mitotic progression and bipolar spindle formation. Compound A induces G2/M accumulation, defects in centrosome separation, and formation of either monopolar arrays or disorganized spindles. On the basis of gene expression array studies, we identified Aurora A as one of the genes regulated transcriptionally by Akt inhibitors including Compound A. Inhibition of the phosphatidylinositol 3-kinase (PI3K/Akt pathway, either by PI3K inhibitor LY294002 or by Compound A, dramatically inhibits the promoter activity of Aurora A, whereas the mammalian target of rapamycin inhibitor has little effect, suggesting that Akt might be responsible for up-regulating Aurora A for mitotic progression. Further analysis of the Aurora A promoter region indicates that the Ets element but not the Sp1 element is required for Compound A-sensitive transcriptional control of Aurora A. Overexpression of Aurora A in cells treated with Compound A attenuates the mitotic arrest and the defects in bipolar spindle formation induced by Akt inhibition. Our studies suggest that that Akt may promote mitotic progression through the transcriptional regulation of Aurora A.

  15. Sudden Cardiac Arrest

    Science.gov (United States)

    ... scan, or MUGA, which shows how well your heart is pumping blood. Magnetic resonance imaging (MRI) which gives doctors detailed pictures of your heart. How is SCA treated? Sudden cardiac arrest should ...

  16. Cardiac arrest in children

    Directory of Open Access Journals (Sweden)

    Tress Erika

    2010-01-01

    Full Text Available Major advances in the field of pediatric cardiac arrest (CA were made during the last decade, starting with the publication of pediatric Utstein guidelines, the 2005 recommendations by the International Liaison Committee on Resuscitation, and culminating in multicenter collaborations. The epidemiology and pathophysiology of in-hospital and out-of-hospital CA are now well described. Four phases of CA are described and the term "post-cardiac arrest syndrome" has been proposed, along with treatment goals for each of its four phases: immediate post-arrest, early post-arrest, intermediate and recovery phase. Hypothermia is recommended to be considered as a therapy for post-CA syndrome in comatose patients after CA, and large multicenter prospective studies are underway. We reviewed landmark articles related to pediatric CA published during the last decade. We present the current knowledge of epidemiology, pathophysiology and treatment of CA relevant to pre-hospital and acute care health practitioners.

  17. Cardiac arrest in children.

    Science.gov (United States)

    Tress, Erika E; Kochanek, Patrick M; Saladino, Richard A; Manole, Mioara D

    2010-07-01

    Major advances in the field of pediatric cardiac arrest (CA) were made during the last decade, starting with the publication of pediatric Utstein guidelines, the 2005 recommendations by the International Liaison Committee on Resuscitation, and culminating in multicenter collaborations. The epidemiology and pathophysiology of in-hospital and out-of-hospital CA are now well described. Four phases of CA are described and the term "post-cardiac arrest syndrome" has been proposed, along with treatment goals for each of its four phases: immediate post-arrest, early post-arrest, intermediate and recovery phase. Hypothermia is recommended to be considered as a therapy for post-CA syndrome in comatose patients after CA, and large multicenter prospective studies are underway. We reviewed landmark articles related to pediatric CA published during the last decade. We present the current knowledge of epidemiology, pathophysiology and treatment of CA relevant to pre-hospital and acute care health practitioners. PMID:20930971

  18. Sudden Cardiac Arrest

    Science.gov (United States)

    ... Heart Risk Factors & Prevention Heart Diseases & Disorders Atrial Fibrillation (AFib) Sudden Cardiac Arrest (SCA) SCA: Who's At Risk? Prevention of SCA What Causes SCA? SCA Awareness Atrial Flutter Heart Block Heart Failure Sick Sinus Syndrome Substances & Heart Rhythm Disorders Symptoms & ...

  19. Sudden Cardiac Arrest

    Science.gov (United States)

    ... often are found in public places, such as shopping malls, golf courses, businesses, airports, airplanes, casinos, ... arrest In a study published online today in the New England Journal of Medicine , ...

  20. Cardiac arrest - cardiopulmonary resuscitation

    Institute of Scientific and Technical Information of China (English)

    Basri Lenjani; Besnik Elshani; Nehat Baftiu; Kelmend Pallaska; Kadir Hyseni; Njazi Gashi; Nexhbedin Karemani; Ilaz Bunjaku; Taxhidin Zaimi; Arianit Jakupi

    2014-01-01

    Objective:To investigate application of cardiopulmonary resuscitation(CPR) measures within the golden minutes inEurope.Methods:The material was taken from theUniversityClinical Center ofKosovo -EmergencyCentre inPristina, during the two(2) year period(2010-2011).The collected date belong to the patients with cardiac arrest have been recorded in the patients' log book protocol at the emergency clinic.Results:During the2010 to2011 in the emergency center of theCUCK inPristina have been treated a total of269 patients with cardiac arrest, of whom159 or59.1% have been treated in2010, and110 patients or40.9% in2011.Of the269 patients treated in the emergency centre,93 or34.6% have exited lethally in the emergency centre, and176 or 65.4% have been transferred to other clinics.In the total number of patients with cardiac arrest, males have dominated with186 cases, or69.1%.The average age of patients included in the survey was56.7 year oldSD±16.0 years.Of the269 patients with cardiac arrest, defibrillation has been applied for93 or34.6% of patients.In the outpatient settings defibrillation has been applied for3 or3.2% of patients.Patients were defibrillated with application of one to four shocks. Of27 cases with who have survived cardiac arrest, none of them have suffered cardiac arrest at home,3 or11.1% of them have suffered cardiac arrest on the street, and24 or88.9% of them have suffered cardiac arrest in the hospital.5 out of27 patients survived have ended with neurological impairment.Cardiac arrest cases were present during all days of the week, but frequently most reported cases have been onMonday with32.0% of cases, and onFriday with24.5% of cases. Conclusions:All survivors from cardiac arrest have received appropriate medical assistance within10 min from attack, which implies that if cardiac arrest occurs near an institution health care(with an opportunity to provide the emergent health care) the rate of survival is higher.

  1. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J;

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogonal...... light scatter. The method was optimized using the human leukemia cell lines HL-60 and K-562. Samples of 10(5) ethanol-fixed cells were treated with pepsin/HCl and stained as a nuclear suspension with anti-BrdUrd antibody, FITC-conjugated secondary antibody, and propidium iodide. Labelled mitoses could...... fluorescence distribution. This interpretation was supported by experiments using mitotic arrest, fluorescence activated cell sorting and microscopy, and comparison with an alternative flow cytometric method for discrimination of mitoses....

  2. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells’ sensitivity to paclitaxel

    OpenAIRE

    Tambe, Mahesh; Pruikkonen, Sofia; Mäki-Jouppila, Jenni; Ping CHEN; Elgaaen, Bente Vilming; Straume, Anne Hege; Huhtinen, Kaisa; Cárpen, Olli; Lønning, Per Eystein; Davidson, Ben; Hautaniemi, Sampsa; Kallio, Marko J.

    2016-01-01

    The molecular pathways that contribute to the proliferation and drug response of cancer cells are highly complex and currently insufficiently characterized. We have identified a previously unknown microRNA-based mechanism that provides cancer cells means to stimulate tumorigenesis via increased genomic instability and, at the same time, evade the action of clinically utilized microtubule drugs. We demonstrate miR-493-3p to be a novel negative regulator of mitotic arrest deficient-2 (MAD2), an...

  3. Cooperative Action of Cdk1/cyclin B and SIRT1 Is Required for Mitotic Repression of rRNA Synthesis

    OpenAIRE

    Voit, Renate; Seiler, Jeanette; Grummt, Ingrid

    2015-01-01

    Author Summary In metazoans, transcription is arrested during mitosis. Previous studies have established that mitotic repression of cellular transcription is mediated by Cdk1/cyclin B-dependent phosphorylation of basal transcription factors that nucleate transcription complex formation. Repression of rDNA transcription at the onset of mitosis is brought about by inactivation of the TBP-containing transcription factor SL1 by Cdk1/cyclin B-dependent phosphorylation of the TAFI110 subunit, which...

  4. The role of p53 in the response to mitotic spindle damage

    International Nuclear Information System (INIS)

    The p53 tumour suppressor protein has defined roles in G1/S and G2/M cell cycle checkpoint in response to a range of cellular stresses including DNA damage, dominant oncogene expression, hypoxia, metabolic changes and viral infection. In addition to these responses, p53 can also be activated when damage occurs to the mitotic spindle. Initially, spindle damage activates a p53-independent checkpoint which functions at the metaphase-anaphase transition and prevents cells from progressing through mitosis until the completion of spindle formation. Cells eventually escape from this block (a process termed 'mitotic slippage'), and an aberrant mitosis ensues in which sister chromatids fail to segregate properly. After a delay period, p53 responds to this mitotic failure by instituting a G1-like growth arrest, with an intact nucleus containing 4N DNA, but without the cells undergoing division. Cells lacking wild-type p53 are still able to arrest transiently at mitosis, and also fail to undergo division, underscoring that the delay in mitosis is p53-independent. However, these cells are not prevented from re-entering the cell cycle and can reduplicate their DNA unchecked, leading to polyploidy. Additionally, p53-null cells which experience spindle failure often show the appearance of micronuclei arising from poorly segregated chromosomes which have de-condensed and been enclosed in a nuclear envelope. The ability of p53 to prevent their formation suggests an additional G2 involvement which prevents nuclear breakdown prior to mitosis. The molecular mechanism by which p53 is able to sense mitotic failure is still unknown, but may be linked to the ability of p53 to regulate duplication of the centrosome, the organelle which nucleates spindle formation. (authors)

  5. Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol.

    Science.gov (United States)

    Luo, Yan; Ji, Xinmiao; Liu, Juanjuan; Li, Zhiyuan; Wang, Wenchao; Chen, Wei; Wang, Junfeng; Liu, Qingsong; Zhang, Xin

    2016-06-01

    Microtubules are the fundamental components in mitotic spindle, which plays essential roles in cell division. It was well known that purified microtubules could be affected by static magnetic fields (SMFs) in vitro because of the diamagnetic anisotropy of tubulin. However, whether these effects lead to cell division defects was unknown. Here we find that 1T SMFs induce abnormal mitotic spindles and increase mitotic index. Synchronization experiments show that SMFs delay cell exit from mitosis and cause mitotic arrest. These mimic the cellular effects of a microtubule-targeting drug Paclitaxel (Taxol), which is frequently used in combination with 5-Fluorouracil (5-FU) and Cisplatin in cancer treatment. Using four different human cancer cell lines, HeLa, HCT116, CNE-2Z and MCF7, we find that SMFs increase the antitumor efficacy of 5-FU or 5-FU/Taxol, but not Cisplatin, which indicates that the SMF-induced combinational effects with chemodrugs are drug-specific. Our study not only reveals the effect of SMFs on microtubules to cause abnormal mitotic spindles and delay cells exit from mitosis, but also implies the potential applications of SMFs in combination with chemotherapy drugs 5-FU or 5-FU/Taxol, but not with Cisplatin in cancer treatment. PMID:26775206

  6. New mitotic regulators released from chromatin

    Directory of Open Access Journals (Sweden)

    Hideki eYokoyama

    2013-12-01

    Full Text Available Faithful action of the mitotic spindle segregates duplicated chromosomes into daughter cells. Perturbations of this process result in chromosome mis-segregation, leading to chromosomal instability and cancer development. Chromosomes are not simply passengers segregated by spindle microtubules but rather play a major active role in spindle assembly. The GTP bound form of the Ran GTPase (RanGTP, produced around chromosomes, locally activates spindle assembly factors. Recent studies have uncovered that chromosomes organize mitosis beyond spindle formation. They distinctly regulate other mitotic events, such as spindle maintenance in anaphase, which is essential for chromosome segregation. Furthermore, the direct function of chromosomes is not only to produce RanGTP but, in addition, to release key mitotic regulators from chromatin. Chromatin-remodeling factors and nuclear pore complex proteins, which have established functions on chromatin in interphase, dissociate from mitotic chromatin and function in spindle assembly or maintenance. Thus, chromosomes actively organize their own segregation using chromatin-releasing mitotic regulators as well as RanGTP.

  7. Mitotic regulation by NIMA-related kinases

    Directory of Open Access Journals (Sweden)

    Blot Joelle

    2007-08-01

    Full Text Available Abstract The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing centre of their respective species, namely the centrosome or spindle pole body. Here, they have important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence that NIMA-related kinases make a significant contribution to the orchestration of mitotic progression and thereby protect cells from chromosome instability. Furthermore, we highlight their potential as novel chemotherapeutic targets.

  8. Analysis of the mitotic exit control system using locked levels of stable mitotic cyclin.

    Science.gov (United States)

    Drapkin, Benjamin J; Lu, Ying; Procko, Andrea L; Timney, Benjamin L; Cross, Frederick R

    2009-01-01

    Cyclin-dependent kinase (Cdk) both promotes mitotic entry (spindle assembly and anaphase) and inhibits mitotic exit (spindle disassembly and cytokinesis), leading to an elegant quantitative hypothesis that a single cyclin oscillation can function as a ratchet to order these events. This ratchet is at the core of a published ODE model for the yeast cell cycle. However, the ratchet model requires appropriate cyclin dose-response thresholds. Here, we test the inhibition of mitotic exit in budding yeast using graded levels of stable mitotic cyclin (Clb2). In opposition to the ratchet model, stable levels of Clb2 introduced dose-dependent delays, rather than hard thresholds, that varied by mitotic exit event. The ensuing cell cycle was highly abnormal, suggesting a novel reason for cyclin degradation. Cdc14 phosphatase antagonizes Clb2-Cdk, and Cdc14 is released from inhibitory nucleolar sequestration independently of stable Clb2. Thus, Cdc14/Clb2 balance may be the appropriate variable for mitotic regulation. Although our results are inconsistent with the aforementioned ODE model, revision of the model to allow Cdc14/Clb2 balance to control mitotic exit corrects these discrepancies, providing theoretical support for our conclusions. PMID:19920813

  9. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Komura, Jun-ichiro, E-mail: junkom@med.tohoku.ac.jp [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Ikehata, Hironobu [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Mori, Toshio [Radioisotope Research Center, Nara Medical University, Kashihara, Nara 634-8521 (Japan); Ono, Tetsuya [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan)

    2012-03-10

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: Black-Right-Pointing-Pointer Global genome repair of (6-4) photoproducts is fully active in mitotic cells. Black-Right-Pointing-Pointer DNA in condensed mitotic chromatin does not seem inaccessible or inert. Black-Right-Pointing-Pointer Mitotic transcriptional repression may impair transcription-coupled repair.

  10. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    International Nuclear Information System (INIS)

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: ► Global genome repair of (6-4) photoproducts is fully active in mitotic cells. ► DNA in condensed mitotic chromatin does not seem inaccessible or inert. ► Mitotic transcriptional repression may impair transcription-coupled repair.

  11. PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry.

    Directory of Open Access Journals (Sweden)

    Martin Eifler

    2014-10-01

    Full Text Available Entry into mitosis is accompanied by dramatic changes in cellular architecture, metabolism and gene expression. Many viruses have evolved cell cycle arrest strategies to prevent mitotic entry, presumably to ensure sustained, uninterrupted viral replication. Here we show for human cytomegalovirus (HCMV what happens if the viral cell cycle arrest mechanism is disabled and cells engaged in viral replication enter into unscheduled mitosis. We made use of an HCMV mutant that, due to a defective Cyclin A2 binding motif in its UL21a gene product (pUL21a, has lost its ability to down-regulate Cyclin A2 and, therefore, to arrest cells at the G1/S transition. Cyclin A2 up-regulation in infected cells not only triggered the onset of cellular DNA synthesis, but also promoted the accumulation and nuclear translocation of Cyclin B1-CDK1, premature chromatin condensation and mitotic entry. The infected cells were able to enter metaphase as shown by nuclear lamina disassembly and, often irregular, metaphase spindle formation. However, anaphase onset was blocked by the still intact anaphase promoting complex/cyclosome (APC/C inhibitory function of pUL21a. Remarkably, the essential viral IE2, but not the related chromosome-associated IE1 protein, disappeared upon mitotic entry, suggesting an inherent instability of IE2 under mitotic conditions. Viral DNA synthesis was impaired in mitosis, as demonstrated by the abnormal morphology and strongly reduced BrdU incorporation rates of viral replication compartments. The prolonged metaphase arrest in infected cells coincided with precocious sister chromatid separation and progressive fragmentation of the chromosomal material. We conclude that the Cyclin A2-binding function of pUL21a contributes to the maintenance of a cell cycle state conducive for the completion of the HCMV replication cycle. Unscheduled mitotic entry during the course of the HCMV replication has fatal consequences, leading to abortive infection and

  12. Crack-arrest technology

    International Nuclear Information System (INIS)

    Over the last several years, the Heavy Section Steel Technology (HSST) Program has conducted several fracture mechanics experiments on large specimens that produced crack-arrest fracture-toughness values above 220 MPa·√m, which is the limit imposed by the ASME Code and the limit included in the Issues on Pressurized Thermal Shock studies. It is therefore appropriate and timely to investigate the influence that these high crack-arrest data have on the integrity assessment of nuclear Reactor Pressure Vessels (RPVs). A review of the evolution of the Pressurized Thermal Shock (PTS) issue and current methods of analysis provides insight into the motivation for the HSST Program performing the large-specimen fracture mechanics experiments. During the early 1970s, it was recognized that RPVs could be subjected to severe thermal shock as the result of a large-break loss-of-coolant accident (LBLOCA). Analyses performed at that time indicated that thermal shock alone would not result in failure (through-wall cracking) of the vessel. However, a combination of pressure and a less severe thermal shock, the result of some postulated transients, could result in vessel failure. In March 1978, such a transient occurred at the Rancho Seco nuclear power plant. As a result of these events, parametric PTS studies were undertaken. Because of the apparent need for and the existence of high-temperature crack-arrest capability, the NRC HSST Program and others began to investigate the effect of higher crack-arrest values on the probability of failure and to determine if these values actually exist for prototypical RPV materials. This report describes the results of HSST Program large-specimen crack-arrest testing

  13. The bipolar assembly domain of the mitotic motor kinesin-5

    OpenAIRE

    Acar, Seyda; Carlson, David B.; Budamagunta, Madhu S.; Yarov-Yarovoy, Vladimir; Correia, John J.; Niñonuevo, Milady R.; Jia, Weitao; Tao, Li; Leary, Julie A.; Voss, John C.; Evans, James E.; Scholey, Jonathan M.

    2013-01-01

    An outstanding unresolved question is how does the mitotic spindle utilize microtubules and mitotic motors to coordinate accurate chromosome segregation during mitosis? This process depends upon the mitotic motor, kinesin-5, whose unique bipolar architecture, with pairs of motor domains lying at opposite ends of a central rod, allows it to crosslink microtubules within the mitotic spindle and to coordinate their relative sliding during spindle assembly, maintenance and elongation. The structu...

  14. Inhibition of the mitotic exit network in response to damaged telomeres.

    Directory of Open Access Journals (Sweden)

    Mauricio Valerio-Santiago

    Full Text Available When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN, in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression.

  15. Unattached kinetochores rather than intrakinetochore tension arrest mitosis in taxol-treated cells.

    Science.gov (United States)

    Magidson, Valentin; He, Jie; Ault, Jeffrey G; O'Connell, Christopher B; Yang, Nachen; Tikhonenko, Irina; McEwen, Bruce F; Sui, Haixin; Khodjakov, Alexey

    2016-02-01

    Kinetochores attach chromosomes to the spindle microtubules and signal the spindle assembly checkpoint to delay mitotic exit until all chromosomes are attached. Light microscopy approaches aimed to indirectly determine distances between various proteins within the kinetochore (termed Delta) suggest that kinetochores become stretched by spindle forces and compact elastically when the force is suppressed. Low Delta is believed to arrest mitotic progression in taxol-treated cells. However, the structural basis of Delta remains unknown. By integrating same-kinetochore light microscopy and electron microscopy, we demonstrate that the value of Delta is affected by the variability in the shape and size of outer kinetochore domains. The outer kinetochore compacts when spindle forces are maximal during metaphase. When the forces are weakened by taxol treatment, the outer kinetochore expands radially and some kinetochores completely lose microtubule attachment, a condition known to arrest mitotic progression. These observations offer an alternative interpretation of intrakinetochore tension and question whether Delta plays a direct role in the control of mitotic progression. PMID:26833787

  16. Unattached kinetochores rather than intrakinetochore tension arrest mitosis in taxol-treated cells

    Science.gov (United States)

    Magidson, Valentin; He, Jie; Ault, Jeffrey G.; O’Connell, Christopher B.; Yang, Nachen; Tikhonenko, Irina; McEwen, Bruce F.

    2016-01-01

    Kinetochores attach chromosomes to the spindle microtubules and signal the spindle assembly checkpoint to delay mitotic exit until all chromosomes are attached. Light microscopy approaches aimed to indirectly determine distances between various proteins within the kinetochore (termed Delta) suggest that kinetochores become stretched by spindle forces and compact elastically when the force is suppressed. Low Delta is believed to arrest mitotic progression in taxol-treated cells. However, the structural basis of Delta remains unknown. By integrating same-kinetochore light microscopy and electron microscopy, we demonstrate that the value of Delta is affected by the variability in the shape and size of outer kinetochore domains. The outer kinetochore compacts when spindle forces are maximal during metaphase. When the forces are weakened by taxol treatment, the outer kinetochore expands radially and some kinetochores completely lose microtubule attachment, a condition known to arrest mitotic progression. These observations offer an alternative interpretation of intrakinetochore tension and question whether Delta plays a direct role in the control of mitotic progression. PMID:26833787

  17. The centrosome protein NEDD1 as a potential pharmacological target to induce cell cycle arrest

    Directory of Open Access Journals (Sweden)

    Etievant Chantal

    2009-02-01

    Full Text Available Abstract Background NEDD1 is a protein that binds to the gamma-tubulin ring complex, a multiprotein complex at the centrosome and at the mitotic spindle that mediates the nucleation of microtubules. Results We show that NEDD1 is expressed at comparable levels in a variety of tumor-derived cell lines and untransformed cells. We demonstrate that silencing of NEDD1 expression by treatment with siRNA has differential effects on cells, depending on their status of p53 expression: p53-positive cells arrest in G1, whereas p53-negative cells arrest in mitosis with predominantly aberrant monopolar spindles. However, both p53-positive and -negative cells arrest in mitosis if treated with low doses of siRNA against NEDD1 combined with low doses of the inhibitor BI2536 against the mitotic kinase Plk1. Simultaneous reduction of NEDD1 levels and inhibition of Plk1 act in a synergistic manner, by potentiating the anti-mitotic activity of each treatment. Conclusion We propose that NEDD1 may be a promising target for controlling cell proliferation, in particular if targeted in combination with Plk1 inhibitors.

  18. Localization of topoisomerase II in mitotic chromosomes

    OpenAIRE

    1985-01-01

    In the preceding article we described a polyclonal antibody that recognizes cSc-1, a major polypeptide component of the chicken mitotic chromosome scaffold. This polypeptide was shown to be chicken topoisomerase II. In the experiments described in the present article we use indirect immunofluorescence and immunoelectron microscopy to examine the distribution of topoisomerase II within intact chromosomes. We also describe a simple experimental protocol that differentiates antigens that are int...

  19. Measuring mitotic spindle dynamics in budding yeast

    Science.gov (United States)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  20. The Mechanics of Mitotic Cell Rounding

    OpenAIRE

    Stewart, Martin

    2012-01-01

    During mitosis, adherent animal cells undergo a drastic shape change, from essentially flat to round, in a process known as mitotic cell rounding (MCR). The aim of this thesis was to critically examine the physical and biological basis of MCR. The experimental part of this thesis employed a combined optical microscope-atomic force microscope (AFM) setup in conjunction with flat tipless cantilevers to analyze cell mechanics, shape and volume. To this end, two AFM assays were developed: the ...

  1. Nuclear Chk1 prevents premature mitotic entry.

    Science.gov (United States)

    Matsuyama, Makoto; Goto, Hidemasa; Kasahara, Kousuke; Kawakami, Yoshitaka; Nakanishi, Makoto; Kiyono, Tohru; Goshima, Naoki; Inagaki, Masaki

    2011-07-01

    Chk1 inhibits the premature activation of the cyclin-B1-Cdk1. However, it remains controversial whether Chk1 inhibits Cdk1 in the centrosome or in the nucleus before the G2-M transition. In this study, we examined the specificity of the mouse monoclonal anti-Chk1 antibody DCS-310, with which the centrosome was stained. Conditional Chk1 knockout in mouse embryonic fibroblasts reduced nuclear but not centrosomal staining with DCS-310. In Chk1(+/myc) human colon adenocarcinoma (DLD-1) cells, Chk1 was detected in the nucleus but not in the centrosome using an anti-Myc antibody. Through the combination of protein array and RNAi technologies, we identified Ccdc-151 as a protein that crossreacted with DCS-310 on the centrosome. Mitotic entry was delayed by expression of the Chk1 mutant that localized in the nucleus, although forced immobilization of Chk1 to the centrosome had little impact on the timing of mitotic entry. These results suggest that nuclear but not centrosomal Chk1 contributes to correct timing of mitotic entry. PMID:21628425

  2. Synchronizing Progression of Schizosaccharomyces pombe Cells from Prophase through Mitosis and into S Phase with nda3-KM311 Arrest Release.

    Science.gov (United States)

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Here, we describe how the rapid reversibility of the nda3-KM311 cold-sensitive β-tubulin mutation was optimized by Mitsuhiro Yanagida's laboratory to synchronize mitotic progression in an entire cell population. The inability to form microtubules following the loss of β-tubulin function at 20°C triggers the spindle assembly checkpoint, which arrests mitotic progression. Restoration of β-tubulin function by rewarming to 30°C (or higher) releases the arrest, generating a highly synchronous progression through mitosis. The viability of nda3-KM311 strains at 30°C makes it feasible to generate double mutants between nda3-KM311 and any temperature-sensitive mutant that can also grow at 30°C. These double mutants can be used in reciprocal shift analyses, in which cold-induced early mitotic arrest is relieved by a shift to 36°C, which then inactivates the product of the second mutant gene. The addition of microtubule depolymerizing drugs before the return to 36°C will maintain checkpoint signaling at 36°C transiently, permitting analysis of the impact of temperature-sensitive mutations on checkpoint function. Silencing the checkpoint of nda3-KM311-arrested cells at 20°C through chemical inhibition of aurora kinase is a powerful way to study checkpoint recovery pathways and mitotic exit without anaphase. PMID:27480719

  3. A Novel Pathway that Coordinates Mitotic Exit with Spindle Position

    OpenAIRE

    Nelson, Scott A.; Cooper, John A.

    2007-01-01

    In budding yeast, the spindle position checkpoint (SPC) delays mitotic exit until the mitotic spindle moves into the neck between the mother and bud. This checkpoint works by inhibiting the mitotic exit network (MEN), a signaling cascade initiated and controlled by Tem1, a small GTPase. Tem1 is regulated by a putative guanine exchange factor, Lte1, but the function and regulation of Lte1 remains poorly understood. Here, we identify novel components of the checkpoint that operate upstream of L...

  4. Protein synthetic requirements for caffeine amelioration of radiation-induced G/sub 2/-arrest

    International Nuclear Information System (INIS)

    Irradiated cells are arrested in G/sub 2/ (transition point [TP] = 32 min before cell selection in mitosis). Irradiated cells do not recover from G/sub 2/ arrest in the presence of cycloheximide (CHM) indicating dependence of recovery on protein synthesis. Irradiated cells in the presence of caffeine progress to mitosis without arrest. The authors investigate whether irradiated cells in the presence of caffeine require protein synthesis to progress to mitosis. Mitotic cell selection was used to monitor the progression of irradiated CHO cells (150 rad) during exposure to 5 mM caffeine and/or 50 μg/ml CHM. Protein synthesis inhibition was confirmed using /sup 3/H-leucine incorporation. Cells exposed to CHM alone are arrested in G/sub 2/ (TP=49 min), thus cells beyond this point have synthesized all proteins necessary for entry into mitosis. In the presence of caffeine, unirradiated cells exposed to CHM are not arrested at all in G/sub 2/, instead arrest occurs near the S/G/sub 2/ boundary (TP=95 min) indicating that caffeine alleviates the dependence of G/sub 2/ cell progression on protein synthesis. However, irradiated cells exposed to both caffeine and CHM are only able to progress to mitosis if beyond the CHM-TP. Irradiated cells in the presence of caffeine thus behave as untreated cells and require protein synthesis for progression to mitosis when prior to the CHM-TP

  5. Cardiac arrest – cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Basri Lenjani

    2014-01-01

    Conclusions: All survivors from cardiac arrest have received appropriate medical assistance within 10 min from attack, which implies that if cardiac arrest occurs near an institution health care (with an opportunity to provide the emergent health care the rate of survival is higher.

  6. Novel insights into mitotic chromosome condensation

    Science.gov (United States)

    Piskadlo, Ewa; Oliveira, Raquel A.

    2016-01-01

    The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division.

  7. X-ray-induced G 2 arrest in ataxia telangiectasia lymphoblastoid cells

    International Nuclear Information System (INIS)

    Sensitivity to X-ray-induced G-2 arrest was compared between ataxia telangiectasia (AT) lymphoblastoid cells and normal human cells. Flow cytometrical analysis of cells following X-ray irradiation revealed that the fraction of cells with 4n DNA content was greater in AT cells than in normal cells as previously reported by other investigators. However, the other parameterss for cell-cycle progression kinetics including mitotic indices, cumulative mitotic indices and cumulative labelled mitotic indices indicated that X-ray-induced G-2 arrest as a function of dose in AT cells was indistinguishable from that in normal cells. Moreover, no significant difference in cell viability was noted between AT and normal cells until 48 h following X-irradiation up to 2.6 Gy, although X-irradiated At cells, compared to normal cells, showed a significantly decrease survival in terms of cell multiplication in growth medium and colony formation in soft agar. These data collectively suggest that the greater accumulation of AT cells with 4n DNA content in flow cytometry cannot be attributed to more stringent irreversible blockage of cell-cycle progression at the G-2 phase and eventual cell death there. The possible reasons for this greater accumulation are discussed. (Author). 19 refs.; 5 figs.; 2 tabs

  8. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Toshiaki [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Habu, Toshiyuki [Radiation Biology Center, Kyoto University, Kyoto (Japan); Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H. [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Osafune, Kenji [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Taura, Daisuke; Sone, Masakatsu [Department of Medicine and Clinical Science, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko [Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Hashikata, Hirokuni; Takagi, Yasushi [Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Morito, Daisuke [Faculty of Life Sciences, Kyoto Sangyo University, Kyoto (Japan); Miyamoto, Susumu [Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Nakao, Kazuwa [Department of Medicine and Clinical Science, Graduate School of Medicine, Kyoto University, Kyoto (Japan); Koizumi, Akio, E-mail: koizumi.akio.5v@kyoto-u.ac.jp [Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto (Japan)

    2013-10-04

    Highlights: •Overexpression of RNF213 R4810K inhibited cell proliferation. •Overexpression of RNF213 R4810K had the time of mitosis 4-fold and mitotic failure. •R4810K formed a complex with MAD2 more readily than wild-type. •iPSECs from the MMD patients had elevated mitotic failure compared from the control. •RNF213 R4810K induced mitotic abnormality and increased risk of aneuploidy. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n = 3, 61.0 ± 8.2%) compared with wild-type subjects (n = 6, 13.1 ± 7.7%; p < 0.01). Aneuploidy was observed more frequently in fibroblasts (p < 0.01) and induced pluripotent stem cells (iPSCs) (p < 0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p < 0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p < 0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability.

  9. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality

    International Nuclear Information System (INIS)

    Highlights: •Overexpression of RNF213 R4810K inhibited cell proliferation. •Overexpression of RNF213 R4810K had the time of mitosis 4-fold and mitotic failure. •R4810K formed a complex with MAD2 more readily than wild-type. •iPSECs from the MMD patients had elevated mitotic failure compared from the control. •RNF213 R4810K induced mitotic abnormality and increased risk of aneuploidy. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n = 3, 61.0 ± 8.2%) compared with wild-type subjects (n = 6, 13.1 ± 7.7%; p < 0.01). Aneuploidy was observed more frequently in fibroblasts (p < 0.01) and induced pluripotent stem cells (iPSCs) (p < 0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p < 0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p < 0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability

  10. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  11. Human Zwint-1 Specifies Localization of Zeste White 10 to Kinetochores and Is Essential for Mitotic Checkpoint Signaling

    Institute of Scientific and Technical Information of China (English)

    HongmeiWang; XiaoyuHu; XiaDing; ZhenDou; ZhihongYank; AndrewW.Shaw; MaikunTcng; DonW.Cleveland; MichaelL.Goldberg; LiwenNiu; XucbiaoYao

    2005-01-01

    Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore, a multiprotein complex assembled onto centromeric DNA of the chromosome. Here we show that Zwint-1 is required and is sufficient for kinetochore localization of Zestc White 10 (ZW10) in HeLa cells. Zwint-1 specifies the kinetochore association of ZW10 by interacting with its N-terminal domain. Suppression of synthesis of Zwint-1 by small interfering RNA abolishes the localization of ZW10 to the kinetochore, demonstrating the requirement of Zwint-1 for ZWl0 kinetochore localization. In addition, dcplction of Zwint-1 affects no mitotic arrest but causes aberrant premature chromo. some segregation. These Zwint-l-suppressed cells dis. play chromosome bridge phenotype with sister chromatids inter-connected. Moreover, Zwint-1 is required for stable association of CENP.F and dynamitin but not BUB1 with the kinetochore. Finally, our studies showthat Zwint-1 is a new component of the mitotic check. point, as cells lacking Zwint-1 fail to arrest in mitosis when exposed to microtubule inhibitors, yielding inter. phase cells with multinuclei. As ZWl0 and Zwint.1 are absent from yeast, we reasoned that metazoans evolved an elaborate spindle checkpoint machinery to ensure faithful chromosome segregation in mitosis.

  12. Juvenile Arrests, 1998. Juvenile Justice Bulletin.

    Science.gov (United States)

    Snyder, Howard N.

    This report provides a summary and analysis of national and state juvenile arrest data in the United States. In 1998, law enforcement agencies made an estimated 2.6 million arrests of persons under age 18. Federal Bureau of Investigations statistics indicate that juveniles account for 18% of all arrests, and 17% of all violent crime arrests in…

  13. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feng; Camp, David G.; Gritsenko, Marina A.; Luo, Quanzhou; Kelly, Ryan T.; Clauss, Therese RW; Brinkley, William R.; Smith, Richard D.; Stenoien, David L.

    2007-11-16

    The chromosomal passenger complex (CPC) is a critical regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation specific antibody that labels the CPC using liquid chromatography coupled to mass spectrometry. A mitotic phosphorylation motif (PX{G/T/S}{L/M}[pS]P or WGL[pS]P) was identified in 11 proteins including Fzr/Cdh1 and RIC-8, two proteins with potential links to the CPC. Phosphoprotein complexes contained known CPC components INCENP, Aurora-B and TD-60, as well as SMAD2, 14-3-3 proteins, PP2A, and Cdk1, a likely kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins including SMAD2, Plk3 and INCENP. Mitotic SMAD2 and Plk3 phosphorylation was confirmed using phosphorylation specific antibodies, and in the case of Plk3, phosphorylation correlates with its localization to the mitotic apparatus. A mutagenesis approach was used to show INCENP phosphorylation is required for midbody localization. These results provide evidence for a shared phosphorylation event that regulates localization of critical proteins during mitosis.

  14. Mitotic Catastrophe的研究进展%Progress in Mitotic Catastrophe

    Institute of Scientific and Technical Information of China (English)

    张博; 周平坤

    2007-01-01

    细胞死亡是多细胞生物生命过程中重要的生理或病理现象,可分为坏死和程序性细胞死亡,而后者根据死亡细胞的形态学和发生机制的不同又可分为凋亡、自吞噬和mitotic catastrophe,其中mitotic catastrophe是近年来才被揭示报道,是指细胞在有丝分裂过程中死亡的现象,是一种发生在细胞有丝分裂期由于异常的细胞分裂而导致的细胞死亡,它常常伴随着细胞有丝分裂检查点的异常和基因或纺锤体结构的损伤而发生.现对mitotic catastrophe及相关的调控机制进行综述.

  15. 33 CFR 154.822 - Detonation arresters, flame arresters, and flame screens.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Detonation arresters, flame... BULK Vapor Control Systems § 154.822 Detonation arresters, flame arresters, and flame screens. (a) Each detonation arrester required by this part must: (1) Be capable of arresting a detonation from either side...

  16. Mutation in the bimD gene of Aspergillus nidulans confers a conditional mitotic block and sensitivity to DNA damaging agents

    International Nuclear Information System (INIS)

    Mutation in the bimD gene of Aspergillus nidulans results in a mitotic block in anaphase characterized by a defective mitosis. Mutation in bimD also confers, at temperatures permissive for the mitotic arrest phenotype, an increased sensitivity to DNA damaging agents, including methyl methanesulfonate and ultraviolet light. In order to better understand the relationship between DNA damage and mitotic progression, the authors cloned the bimD gene from Aspergillus. A cosmid containing the bimD gene was identified among pools of cosmids by cotransformation with the nutritional selective pyrG gene of a strain carrying the recessive, temperature-sensitive lethal bimD6 mutation. The bimD gene encodes a predicted polypeptide of 166,000 daltons in mass and contains amino acid sequence motifs similar to those found in some DNA-binding transcription factors. These sequences include a basic domain followed by a leucine zipper, which together are called a bZIP motif, and a carboxyl-terminal domain enriched in acidic amino acids. Overexpression of the wild-type bimD protein resulted in an arrest of the nuclear division cycle that was reversible and determined to be in either the G1 or S phase of the cell cycle. The data suggest that bimD may play an essential regulatory role relating to DNA metabolism which is required for a successful mitosis. 7l refs., 7 figs., 1 tab

  17. Mitotic defects lead to pervasive aneuploidy and accompany loss of RB1 activity in mouse LmnaDhe dermal fibroblasts.

    Directory of Open Access Journals (Sweden)

    C Herbert Pratt

    Full Text Available BACKGROUND: Lamin A (LMNA is a component of the nuclear lamina and is mutated in several human diseases, including Emery-Dreifuss muscular dystrophy (EDMD; OMIM ID# 181350 and the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS; OMIM ID# 176670. Cells from progeria patients exhibit cell cycle defects in both interphase and mitosis. Mouse models with loss of LMNA function have reduced Retinoblastoma protein (RB1 activity, leading to aberrant cell cycle control in interphase, but how mitosis is affected by LMNA is not well understood. RESULTS: We examined the cell cycle and structural phenotypes of cells from mice with the Lmna allele, Disheveled hair and ears (Lmna(Dhe. We found that dermal fibroblasts from heterozygous Lmna(Dhe (Lmna(Dhe/+ mice exhibit many phenotypes of human laminopathy cells. These include severe perturbations to the nuclear shape and lamina, increased DNA damage, and slow growth rates due to mitotic delay. Interestingly, Lmna(Dhe/+ fibroblasts also had reduced levels of hypophosphorylated RB1 and the non-SMC condensin II-subunit D3 (NCAP-D3, a mitosis specific centromere condensin subunit that depends on RB1 activity. Mitotic check point control by mitotic arrest deficient-like 1 (MAD2L1 also was perturbed in Lmna(Dhe/+ cells. Lmna(Dhe/+ fibroblasts were consistently aneuploid and had higher levels of micronuclei and anaphase bridges than normal fibroblasts, consistent with chromosome segregation defects. CONCLUSIONS: These data indicate that RB1 may be a key regulator of cellular phenotype in laminopathy-related cells, and suggest that the effects of LMNA on RB1 include both interphase and mitotic cell cycle control.

  18. High throughput screening of natural products for anti-mitotic effects in MDA-MB-231 human breast carcinoma cells.

    Science.gov (United States)

    Mazzio, E; Badisa, R; Mack, N; Deiab, S; Soliman, K F A

    2014-06-01

    Some of the most effective anti-mitotic microtubule-binding agents, such as paclitaxel (Taxus brevifolia) were originally discovered through robust National Cancer Institute botanical screenings. In this study, a high-through put microarray format was utilized to screen 897 aqueous extracts of commonly used natural products (0.00015-0.5 mg/mL) relative to paclitaxel for anti-mitotic effects (independent of toxicity) on proliferation of MDA-MB-231 cells. The data obtained showed that less than 1.34 % of the extracts tested showed inhibitory growth (IG50 ) properties Phoradendron flavescens), Tou Gu Cao [symbol: see text] Speranskia herb (Speranskia tuberculata), Bentonite clay, Bunge root (Pulsatilla chinensis), Brucea fruit (Brucea javanica), Madder root (Rubia tinctorum), Gallnut of Chinese Sumac (Melaphis chinensis), Elecampane root (Inula Helenium), Yuan Zhi [symbol: see text] root (Polygala tenuifolia), Pagoda Tree fruit (Melia Toosendan), Stone root (Collinsonia Canadensis), and others such as American Witchhazel, Arjun, and Bladderwrack. The strongest tumoricidal herbs identified from amongst the subset evaluated for anti-mitotic properties were wild yam (Dioscorea villosa), beth root (Trillium Pendulum), and alkanet root (Lithospermum canescens). Additional data was obtained on a lesser-recognized herb: (S. tuberculata), which showed growth inhibition on BT-474 (human ductal breast carcinoma) and Ishikawa (human endometrial adenocarcinoma) cells with ability to block replicative DNA synthesis, leading to G2 arrest in MDA-MB-231 cells. In conclusion, these findings present relative potency of anti-mitotic natural plants that are effective against human breast carcinoma MDA-MB-231 cell division. PMID:24105850

  19. Incorporation of thymidine into onion root meristematic cell nuclei in presence of hydroxyurea and its role in recovery of mitotic activity

    International Nuclear Information System (INIS)

    Hydroxyurea treatment of onion roots induced mitotic block which was released by transfer of bulbs to water, and also to some extent by addition of cold or 3H-thymidine to hydroxyurea solutions. In presence of hydroxyurea there was noted very intense incorporation of 3H-thymidine into cell nuclei, giving labelling index of 40-70%. However, all the mitotic figures appearing in presence of hydroxyurea and 3H-thymidine were unlabelled. On the other hand, labelled mitotic figures were obtained when roots incubated with 3H-thymidine in presence of hydroxyurea had been transferred to water. Incorporation of 3H-uridine was unaffected by hydroxyurea. The results show that hydroxyurea arrests onion root meristematic cells, either in the S phase and the G2 phase. Enhanced incorporation of 3H-thymidine in the presence of hydroxyurea, and release by added thymidine of the mitotic block indicate that hydroxyurea induces in onion root meristematic cells a particular shortage of thymidylate. (author)

  20. Significant decrease of ADP release rate underlies the potent activity of dimethylenastron to inhibit mitotic kinesin Eg5 and cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Linlin [Lung Cancer Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052 (China); Sun, Xiaodong; Xie, Songbo; Yu, Haiyang [Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071 (China); Zhong, Diansheng, E-mail: Zhongdsh@hotmail.com [Lung Cancer Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052 (China); Department of Oncology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052 (China)

    2014-05-09

    Highlights: • DIMEN displays higher anti-proliferative activity than enastron. • DIMEN induced mitotic arrest and apoptosis more significantly than enastron. • DIMEN blocked the conformational change of ADP-binding pocket more effectively. • DIMEN hindered ADP release more potently than enastron. - Abstract: Eg5 is a mitotic kinesin that plays a crucial role in the formation of bipolar mitotic spindles, by hydrolyzing ATP to push apart anti-parallel microtubules. Dimethylenastron is potent specific small molecule inhibitor of Eg5. The mechanism by which dimethylenastron inhibits Eg5 function remains unclear. By comparing with enastron, here we report that dimethylenastron prevents the growth of pancreatic and lung cancer cells more effectively, by halting mitotic progression and triggering apoptosis. We analyze their interactions with ADP-bound Eg5 crystal structure, and find that dimethylenastron binds Eg5 motor domain with higher affinity. In addition, dimethylenastron allosterically blocks the conformational change of the “sandwich”-like ADP-binding pocket more effectively. We subsequently use biochemical approach to reveal that dimethylenastron slows ADP release more significantly than enastron. These data thus provide biological, structural and mechanistic insights into the potent inhibitory activity of dimethylenastron.

  1. The bipolar assembly domain of the mitotic motor kinesin-5.

    Science.gov (United States)

    Acar, Seyda; Carlson, David B; Budamagunta, Madhu S; Yarov-Yarovoy, Vladimir; Correia, John J; Niñonuevo, Milady R; Jia, Weitao; Tao, Li; Leary, Julie A; Voss, John C; Evans, James E; Scholey, Jonathan M

    2013-01-01

    An outstanding unresolved question is how does the mitotic spindle utilize microtubules and mitotic motors to coordinate accurate chromosome segregation during mitosis? This process depends upon the mitotic motor, kinesin-5, whose unique bipolar architecture, with pairs of motor domains lying at opposite ends of a central rod, allows it to crosslink microtubules within the mitotic spindle and to coordinate their relative sliding during spindle assembly, maintenance and elongation. The structural basis of kinesin-5's bipolarity is, however, unknown, as protein asymmetry has so far precluded its crystallization. Here we use electron microscopy of single molecules of kinesin-5 and its subfragments, combined with hydrodynamic analysis plus mass spectrometry, circular dichroism and site-directed spin label electron paramagnetic resonance spectroscopy, to show how a staggered antiparallel coiled-coil 'BASS' (bipolar assembly) domain directs the assembly of four kinesin-5 polypeptides into bipolar minifilaments. PMID:23299893

  2. Mitotic Diversity in Homeostatic Human Interfollicular Epidermis

    Directory of Open Access Journals (Sweden)

    Katharina Nöske

    2016-01-01

    Full Text Available Despite decades of skin research, regulation of proliferation and homeostasis in human epidermis is still insufficiently understood. To address the role of mitoses in tissue regulation, we utilized human long-term skin equivalents and systematically assessed mitoses during early epidermal development and long-term epidermal regeneration. We now demonstrate four different orientations: (1 horizontal, i.e., parallel to the basement membrane (BM and suggestive of symmetric divisions; (2 oblique with an angle of 45°–70°; or (3 perpendicular, suggestive of asymmetric division. In addition, we demonstrate a fourth substantial fraction of suprabasal mitoses, many of which are committed to differentiation (Keratin K10-positive. As verified also for normal human skin, this spatial mitotic organization is part of the regulatory program of human epidermal tissue homeostasis. As a potential marker for asymmetric division, we investigated for Numb and found that it was evenly spread in almost all undifferentiated keratinocytes, but indeed asymmetrically distributed in some mitoses and particularly frequent under differentiation-repressing low-calcium conditions. Numb deletion (stable knockdown by CRISPR/Cas9, however, did not affect proliferation, neither in a three-day follow up study by life cell imaging nor during a 14-day culture period, suggesting that Numb is not essential for the general control of keratinocyte division.

  3. Phosphoproteins are components of mitotic microtubule organizing centers.

    OpenAIRE

    Vandre, D.D.; Davis, F. M.; Rao, P. N.; Borisy, G G

    1984-01-01

    Protein phosphorylation has been suggested as an important control mechanism for the events leading toward the initiation and completion of mitosis. Using a monoclonal antibody recognizing a class of phosphoproteins abundant in mitotic cells, we demonstrated the localization of a subset of these phosphoproteins to several discrete mitotic structures. Patchy immunofluorescence was present in the interphase nuclei, but a significant increase in nuclear immunofluorescence was apparent at prophas...

  4. A Protein Interaction Map of the Mitotic Spindle

    OpenAIRE

    Wong, Jonathan; Nakajima, Yuko; Westermann, Stefan; Shang, Ching; Kang, Jung-seog; Goodner, Crystal; Houshmand, Pantea; Fields, Stanley; Chan, Clarence S.M.; Drubin, David; Barnes, Georjana; Hazbun, Tony

    2007-01-01

    The mitotic spindle consists of a complex network of proteins that segregates chromosomes in eukaryotes. To strengthen our understanding of the molecular composition, organization, and regulation of the mitotic spindle, we performed a system-wide two-hybrid screen on 94 proteins implicated in spindle function in Saccharomyces cerevisiae. We report 604 predominantly novel interactions that were detected in multiple screens, involving 303 distinct prey proteins. We uncovered a pattern of extens...

  5. AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis

    OpenAIRE

    Lu, Yuqing; Li, Cong; Wang, Hai; Chen, Hao; Berg, Howard; Xia, Yiji

    2011-01-01

    Pentatricopeptide repeat (PPR) proteins are mainly involved in regulating post-transcriptional processes in mitochondria and plastids, including chloroplasts. Mutations in the Arabidopsis PPR2 gene have previously been found to cause defects in seed development and reduced transmission through male and female gametophytes. However, the exact function of AtPPR2 has not been defined. We found that a loss-of-function mutation of AtPPR2 leads to arrest of the first mitotic division during both ma...

  6. Anti-mitotic potential of 7-diethylamino-3(2 Prime -benzoxazolyl)-coumarin in 5-fluorouracil-resistant human gastric cancer cell line SNU620/5-FU

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hyun [Department of Pharmacology, Kwandong University College of Medicine, Gangneung 210-701 (Korea, Republic of); Kim, Su-Nam [KIST Gangneung Institute, Gangneung 210-340 (Korea, Republic of); Oh, Joa Sub [College of Pharmacy, Dankook University, Cheonan 330-714 (Korea, Republic of); Lee, Seokjoon [Department of Basic Science, Kwandong University College of Medicine, Gangneung 210-701 (Korea, Republic of); Kim, Yong Kee, E-mail: yksnbk@sookmyung.ac.kr [College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer DBC exerts antiproliferative potential against 5FU-resistant human gastric cancer cells. Black-Right-Pointing-Pointer This effect is mediated by destabilization of microtubules and subsequent mitotic arrest. Black-Right-Pointing-Pointer DBC enhances apoptosis via caspase activation and downregulation of antiapoptotic genes. -- Abstract: In this study, we investigate an anti-mitotic potential of the novel synthetic coumarin-based compound, 7-diethylamino-3(2 Prime -benzoxazolyl)-coumarin, in 5-fluorouracil-resistant human gastric cancer cell line SNU-620-5FU and its parental cell SNU-620. It exerts the anti-proliferative effects with similar potencies against both cancer cells, which is mediated by destabilization of microtubules and subsequent mitotic arrest. Furthermore, this compound enhances caspase-dependent apoptotic cell death via decreased expression of anti-apoptotic genes. Taken together, our data strongly support anti-mitotic potential of 7-diethylamino-3(2 Prime -benzoxazolyl)-coumarin against drug-resistant cancer cells which will prompt us to further develop as a novel microtubule inhibitor for drug-resistant cancer chemotherapy.

  7. Wide plate crack arrest testing

    International Nuclear Information System (INIS)

    To predict the behavior of a nuclear pressure vessel undergoing pressurized thermal shock, certain information on dynamic crack propagation and arrest is required. The purpose of the work described is to provide such data on wide plates fracturing at temperatures up to the upper shelf region. Four tests have been completed on the 26 MN Universal Testing Machine at NBS. The specimens are to be fractured in a thermal gradient that, in the most extreme case, might extend from -1000C to 2000 across the 1 meter specimen width. This is done so that the crack will initiate in a cold, brittle region and arrest in a hot, tough region. An important part of this study is data acquisition from the numerous strain gages, thermocouples, timing wires, crack mouth opening displacement gages, and acoustic emission transducers that are mounted on the specimen. Each test has been different with respect to conditions of testing, specimen configuration, and instrumentation used. The progressive changes in test procedure represent attempts to obtain the desired crack run and arrest behavior and to improve upon the quality of the data collected. In particular, efforts were made to initiate crack propagation at lower stress intensity factors. Also, strain gage combinations and locations were optimized to better deduce the crack position as a function of time. Another result of great interest that can be deduced from these tests is the initiation of fracture toughness and the arrest toughness

  8. Sudden Cardiac Arrest (SCA) Risk Assessment

    Science.gov (United States)

    ... Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  9. Cardiac arrest: resuscitation and reperfusion.

    Science.gov (United States)

    Patil, Kaustubha D; Halperin, Henry R; Becker, Lance B

    2015-06-01

    The modern treatment of cardiac arrest is an increasingly complex medical procedure with a rapidly changing array of therapeutic approaches designed to restore life to victims of sudden death. The 2 primary goals of providing artificial circulation and defibrillation to halt ventricular fibrillation remain of paramount importance for saving lives. They have undergone significant improvements in technology and dissemination into the community subsequent to their establishment 60 years ago. The evolution of artificial circulation includes efforts to optimize manual cardiopulmonary resuscitation, external mechanical cardiopulmonary resuscitation devices designed to augment circulation, and may soon advance further into the rapid deployment of specially designed internal emergency cardiopulmonary bypass devices. The development of defibrillation technologies has progressed from bulky internal defibrillators paddles applied directly to the heart, to manually controlled external defibrillators, to automatic external defibrillators that can now be obtained over-the-counter for widespread use in the community or home. But the modern treatment of cardiac arrest now involves more than merely providing circulation and defibrillation. As suggested by a 3-phase model of treatment, newer approaches targeting patients who have had a more prolonged cardiac arrest include treatment of the metabolic phase of cardiac arrest with therapeutic hypothermia, agents to treat or prevent reperfusion injury, new strategies specifically focused on pulseless electric activity, which is the presenting rhythm in at least one third of cardiac arrests, and aggressive post resuscitation care. There are discoveries at the cellular and molecular level about ischemia and reperfusion pathobiology that may be translated into future new therapies. On the near horizon is the combination of advanced cardiopulmonary bypass plus a cocktail of multiple agents targeted at restoration of normal metabolism and

  10. Mitotic Exit Control as an Evolved Complex System

    Energy Technology Data Exchange (ETDEWEB)

    Bosl, W; Li, R

    2005-04-25

    The exit from mitosis is the last critical decision a cell has to make during a division cycle. A complex regulatory system has evolved to evaluate the success of mitotic events and control this decision. Whereas outstanding genetic work in yeast has led to rapid discovery of a large number of interacting genes involved in the control of mitotic exit, it has also become increasingly difficult to comprehend the logic and mechanistic features embedded in the complex molecular network. Our view is that this difficulty stems in part from the attempt to explain mitotic exit control using concepts from traditional top-down engineering design, and that exciting new results from evolutionary engineering design applied to networks and electronic circuits may lend better insights. We focus on four particularly intriguing features of the mitotic exit control system: the two-stepped release of Cdc14; the self-activating nature of Tem1 GTPase; the spatial sensor associated with the spindle pole body; and the extensive redundancy in the mitotic exit network. We attempt to examine these design features from the perspective of evolutionary design and complex system engineering.

  11. Involvement of Mos-MEK-MAPK pathway in cytostatic factor (CSF) arrest in eggs of the parthenogenetic insect, Athalia rosae.

    Science.gov (United States)

    Yamamoto, Daisuke S; Tachibana, Kazunori; Sumitani, Megumi; Lee, Jae Min; Hatakeyama, Masatsugu

    2008-01-01

    Extensive survey of meiotic metaphase II arrest during oocyte maturation in vertebrates revealed that the mitogen-activated protein kinase (MAPK) pathway regulated by the c-mos proto-oncogene product, Mos, has an essential role in cytostatic activity, termed cytostatic factor (CSF). In contrast, little is known in invertebrates in which meiotic arrest occurs in most cases at metaphase I (MI arrest). A parthenogenetic insect, the sawfly Athalia rosae, in which artificial egg activation is practicable, has advantages to investigate the mechanisms of MI arrest. Both the MAPK/extracellular signal-regulated protein kinase kinase (MEK) and MAPK were phosphorylated and maintained active in MI-arrested sawfly eggs, whereas they were dephosphorylated soon after egg activation. Treatment of MI-arrested eggs with U0126, an inhibitor of MEK, resulted in dephosphorylation of MAPK and MI arrest was resumed. The sawfly c-mos gene orthologue encoding a serine/threonine kinase was cloned and analyzed. It was expressed in nurse cells in the ovaries. To examine CSF activity of the sawfly Mos, synthesized glutathione S-transferase (GST)-fusion sawfly Mos protein was injected into MI-resumed eggs in which MEK and MAPK were dephosphorylated. Both MEK and MAPK were phosphorylated again upon injection. In these GST-fusion sawfly Mos-injected eggs subsequent mitotic (syncytial) divisions were blocked and embryonic development was ceased. These results demonstrated that the MEK-MAPK pathway was involved in maintaining CSF arrest in sawfly eggs and Mos functioned as its upstream regulatory molecule. PMID:18793721

  12. Molecular mechanisms of DNA recombination: testing mitotic and meiotic models

    International Nuclear Information System (INIS)

    A hyperhaploid n + 1 strain of Saccharomyces cerevisiae (LBL1) disomic for chromosome VII was employed to isolate hyper-rec and hypo-rec mutations affecting spontaneous mitotic gene conversion and intergenic recombination. The genotype of LBL1 permits simultaneous and independent identification of rec mutations that enhance or diminish gene conversion and those that enhance or diminish intergenic recombination. Five phenotypic groups of rec mutants were isolated following ultraviolet light mutagenesis. Rec mutations that simultaneously abolish or enhance both classes of recombinational events were detected. These results demonstrate that gene conversion and intergenic recombination are under joint genetic control in mitotic cells. Conversion-specific and intergenic recombination-specific rec mutants were also recovered. Their properties indicate that conversion and intergenic recombination are separable pheonomena dependent upon discrete REC genes. The rec mutants isolated in LBL1 provide a method to test molecular models of mitotic and meiotic recombination

  13. The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase.

    Science.gov (United States)

    Brandeis, M; Hunt, T

    1996-10-01

    We have studied how the cell cycle-specific oscillations of mitotic B-type cyclins are generated in mouse fibroblasts. A reporter enzyme comprising the N-terminus of a B-type cyclin fused to bacterial chloramphenicol acetyl transferase (CAT) was degraded at the end of mitosis like endogenous cyclins. Point mutations in the destruction box of this construct completely abolished its mitotic instability. When the destructible reporter was driven by the cyclin B2 promoter, CAT activity mimicked the oscillations in the level of the endogenous cyclin B2. These oscillations were largely conserved when the reporter was transcribed constitutively from the SV40 promoter. Pulse-chase experiments or addition of the proteasome inhibitors lactacystin and ALLN showed that cyclin synthesis continued after the end of mitosis. The destruction box-specific degradation of cyclins normally ceases at the onset of S phase, and is active in fibroblasts arrested in G0 and in differentiated C2 myoblasts. We were able to reproduce this proteolysis in vitro in extracts of synchronized cells. Extracts of G1 cells degraded cyclin B1 whereas p27Kip1 was stable, in contrast, cyclin B1 remained stable and p27Kip1 was degraded in extracts of S phase cells. PMID:8895573

  14. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel.

    Science.gov (United States)

    Tambe, Mahesh; Pruikkonen, Sofia; Mäki-Jouppila, Jenni; Chen, Ping; Elgaaen, Bente Vilming; Straume, Anne Hege; Huhtinen, Kaisa; Cárpen, Olli; Lønning, Per Eystein; Davidson, Ben; Hautaniemi, Sampsa; Kallio, Marko J

    2016-03-15

    The molecular pathways that contribute to the proliferation and drug response of cancer cells are highly complex and currently insufficiently characterized. We have identified a previously unknown microRNA-based mechanism that provides cancer cells means to stimulate tumorigenesis via increased genomic instability and, at the same time, evade the action of clinically utilized microtubule drugs. We demonstrate miR-493-3p to be a novel negative regulator of mitotic arrest deficient-2 (MAD2), an essential component of the spindle assembly checkpoint that monitors the fidelity of chromosome segregation. The microRNA targets the 3' UTR of Mad2 mRNA thereby preventing translation of the Mad2 protein. In cancer cells, overexpression of miR-493-3p induced a premature mitotic exit that led to increased frequency of aneuploidy and cellular senescence in the progeny cells. Importantly, excess of the miR-493-3p conferred resistance of cancer cells to microtubule drugs. In human neoplasms, miR-493-3p and Mad2 expression alterations correlated with advanced ovarian cancer forms and high miR-493-3p levels were associated with reduced survival of ovarian and breast cancer patients with aggressive tumors, especially in the paclitaxel therapy arm. Our results suggest that intratumoral profiling of miR-493-3p and Mad2 levels can have diagnostic value in predicting the efficacy of taxane chemotherapy. PMID:26943585

  15. Mitotic Spindle Disruption by Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells.

    Science.gov (United States)

    Giladi, Moshe; Schneiderman, Rosa S; Voloshin, Tali; Porat, Yaara; Munster, Mijal; Blat, Roni; Sherbo, Shay; Bomzon, Zeev; Urman, Noa; Itzhaki, Aviran; Cahal, Shay; Shteingauz, Anna; Chaudhry, Aafia; Kirson, Eilon D; Weinberg, Uri; Palti, Yoram

    2015-01-01

    Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells. PMID:26658786

  16. Action study of mumio preparation on mitotic index by autoradiography way

    International Nuclear Information System (INIS)

    In this chapter author made conclusion that leading of mumio preparation raise the mitotic activity and promote of rapid passing by cells mitotic cycle that lead to rapid partition and raising of quantity cells in hemopoietic organs

  17. The effects of X-rays on the mitotic activity of mouse epidermis

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, N.P. Jr.; Hempelmann, L.H.; Hoffman, J.G.

    1949-04-19

    This report describes a simplified technique of obtaining the mitotic index of mouse skin and indicates the surprising sensitivity of the mitotic activity of mouse epithelium to the effects of x-rays.

  18. Developmentally arrested Austrofundulus limnaeus embryos have changes in post-translational modifications of histone H3.

    Science.gov (United States)

    Toni, Lee S; Padilla, Pamela A

    2016-02-01

    Although vertebrate embryogenesis is typically a continuous and dynamic process, some embryos have evolved mechanisms to developmentally arrest. The embryos of Austrofundulus limnaeus, a killifish that resides in ephemeral ponds, routinely enter diapause II (DII), a reversible developmental arrest promoted by endogenous cues rather than environmental stress. DII, which starts at 24-26 days post-fertilization and can persist for months, is characterized by a significant decline in heart rate and an arrest of development and differentiation. Thus, A. limnaeus is a unique model to study epigenetic features associated with embryonic arrest. To investigate chromosome structures associated with mitosis or gene expression, we examined the post-translational modifications of histone H3 (phosphorylation of serine 10, mono-, di- and tri-methylation of lysine 4 or 27) in preDII, DII and postDII embryos. As seen by microscopy analysis, DII embryos have a significant decrease in the H3S10P marker for mitotic nuclei and an inner nuclear membrane localization of the H3K27me2 marker associated with silencing of gene expression. ELISA experiments reveal that the levels of methylation at H3K4 and H3K27 are significantly different between preDII, DII and postDII embryos, indicating that there are molecular differences between embryos of different chronological age and stage of development. Furthermore, in DII embryos relative to preDII embryos, there are differences in the level of H3K27me3 and H3K4me3, which may reflect critical chromatin remodeling that occurs prior to arrest of embryogenesis. This work helps lay a foundation for chromatin analysis of vertebrate embryo diapause, an intriguing yet greatly understudied phenomenon. PMID:26685169

  19. Cognitive and Functional Consequence of Cardiac Arrest.

    Science.gov (United States)

    Perez, Claudia A; Samudra, Niyatee; Aiyagari, Venkatesh

    2016-08-01

    Cardiac arrest is associated with high morbidity and mortality. Better-quality bystander cardiopulmonary resuscitation training, cardiocerebral resuscitation principles, and intensive post-resuscitation hospital care have improved survival. However, cognitive and functional impairment after cardiac arrest remain areas of concern. Research focus has shifted beyond prognostication in the immediate post-arrest period to identification of mechanisms for long-term brain injury and implementation of promising protocols to reduce neuronal injury. These include therapeutic temperature management (TTM), as well as pharmacologic and psychological interventions which also improve overall neurological function. Comprehensive assessment of cognitive function post-arrest is hampered by heterogeneous measures among studies. However, the domains of attention, long-term memory, spatial memory, and executive function appear to be affected. As more patients survive cardiac arrest for longer periods of time, there needs to be a greater focus on interventions that can enhance cognitive and psychosocial function post-arrest. PMID:27311306

  20. Rab11 endosomes contribute to mitotic spindle organization and orientation.

    Science.gov (United States)

    Hehnly, Heidi; Doxsey, Stephen

    2014-03-10

    During interphase, Rab11-GTPase-containing endosomes recycle endocytic cargo. However, little is known about Rab11 endosomes in mitosis. Here, we show that Rab11 localizes to the mitotic spindle and regulates dynein-dependent endosome localization at poles. We found that mitotic recycling endosomes bind γ-TuRC components and associate with tubulin in vitro. Rab11 depletion or dominant-negative Rab11 expression disrupts astral microtubules, delays mitosis, and redistributes spindle pole proteins. Reciprocally, constitutively active Rab11 increases astral microtubules, restores γ-tubulin spindle pole localization, and generates robust spindles. This suggests a role for Rab11 activity in spindle pole maturation during mitosis. Rab11 depletion causes misorientation of the mitotic spindle and the plane of cell division. These findings suggest a molecular mechanism for the organization of astral microtubules and the mitotic spindle through Rab11-dependent control of spindle pole assembly and function. We propose that Rab11 and its associated endosomes cocontribute to these processes through retrograde transport to poles by dynein. PMID:24561039

  1. Radiation-induced mitotic catastrophe in PARG-deficient cells

    International Nuclear Information System (INIS)

    Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in the regulation of chromatin structure, DNA metabolism, cell division and cell death. Through the hydrolysis of poly(ADP-ribose) (PAR), Poly(ADP-ribose) glyco-hydrolase (PARG) has a crucial role in the control of life-and-death balance following DNA insult. Comprehension of PARG function has been hindered by the existence of many PARG isoforms encoded by a single gene and displaying various subcellular localizations. To gain insight into the function of PARG in response to irradiation, we constitutively and stably knocked down expression of PARG isoforms in HeLa cells. PARG depletion leading to PAR accumulation was not deleterious to undamaged cells and was in fact rather beneficial, because it protected cells from spontaneous single-strand breaks and telomeric abnormalities. By contrast, PARG-deficient cells showed increased radiosensitivity, caused by defects in the repair of single- and double-strand breaks and in mitotic spindle checkpoint, leading to alteration of progression of mitosis. Irradiated PARG-deficient cells displayed centrosome amplification leading to mitotic supernumerary spindle poles, and accumulated aberrant mitotic figures, which induced either polyploidy or cell death by mitotic catastrophe. Our results suggest that PARG could be a novel potential therapeutic target for radiotherapy. (authors)

  2. THE INFLUENCE OF CAFFEINE ON MITOTIC DIVISION AT CAPSICUM ANNUUM L.

    Directory of Open Access Journals (Sweden)

    Elena Rosu

    2006-08-01

    Full Text Available The paper presents, the caffeine effects in mitotic division at Capsicum annuum L.. The treatment has determined the lessening of the mitotic index (comparative with the control variant, until mitotic division total inhibition, as well as an growth frequency of division aberation in anaphase and telophase.

  3. Simulated Cardiopulmonary Arrests in a Hospital Setting.

    Science.gov (United States)

    Mishkin, Barbara H.; And Others

    1982-01-01

    Describes a simulated interdisciplinary role rehearsal for cardiopulmonary arrest to prepare nurses to function effectively. Includes needs analysis, program components, and responses of program participants. (Author)

  4. [Out-of-hospital cardiac arrest].

    Science.gov (United States)

    Virkkunen, Ilkka; Hoppu, Sanna; Kämäräinen, Antti

    2011-01-01

    Cardiac arrest as the first symptom of coronary artery disease is not uncommon. Some of previously healthy people with sudden cardiac arrest may be saved by effective resuscitation and post-resuscitative therapy. The majority of cardiac arrest patients experience the cardiac arrest outside of the hospital, in which case early recognition of lifelessness, commencement of basic life support and entry to professional care without delay are the prerequisites for recovery. After the heart has started beating again, the clinical picture of post-resuscitation syndrome must be recognized and appropriate treatment utilized. PMID:22204143

  5. Mechanism of APC/CCDC20 activation by mitotic phosphorylation.

    Science.gov (United States)

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A; Brunner, Michael R; Davidson, Iain F; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A; Peters, Jan-Michael

    2016-05-10

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  6. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    Science.gov (United States)

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  7. Psychopathology in Women Arrested for Domestic Violence

    Science.gov (United States)

    Stuart, Gregory L.; Moore, Todd M.; Gordon, Kristina Coop; Ramsey, Susan E.; Kahler, Christopher W.

    2006-01-01

    This study examined the prevalence of psychopathology among women arrested for violence and whether the experience of intimate partner violence (IPV) was associated with Axis I psychopathology. Women who were arrested for domestic violence perpetration and court referred to violence intervention programs (N=103) completed measures of IPV…

  8. The course of circulatory and cerebral recovery after circulatory arrest: influence of pre-arrest, arrest and post-arrest factors.

    Science.gov (United States)

    Jørgensen, E O; Holm, S

    1999-11-01

    We evaluated the influence of pre-arrest, arrest and post-arrest factors on circulatory and neurological recovery for up to 1 year following circulatory arrest of cardio-pulmonary aetiology in 231 patients. Initially, all patients were unconscious and 106 had some cortical activity recorded in the immediate post-resuscitation EEG (Group I), while 125 had no such activity initially (Group II). The following variables were explored: age, sex, medical history, cause and location of arrest, initial cardiac dysrhythmia, duration of life support, metabolic acidosis, pulse-pressure product and heart pump function capacity early after resuscitation. Outcome measures were duration and quality of circulatory survival, cause of death, neurological recovery and ultimate outcome. First year survival was 33% in Group I and 16% in Group II. Severe heart failure and brain death occurred mainly in Group II. Circulatory recovery was negatively influenced by out-of-hospital arrest, metabolic acidosis and pulse-pressure products below 150. Neurological recovery was negatively influenced by initial dysrhythmias other than ventricular fibrillation, pulse-pressure products below 150, post-arrest heart failure and/or pulmonary complications. It seems that circulatory and cerebral outcomes are mainly determined by the global ischaemic insults sustained during the circulatory arrest period. PMID:10625157

  9. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein

    DEFF Research Database (Denmark)

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-01-01

    vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic...

  10. Mitochondrial genome regulates mitotic fidelity by maintaining centrosomal homeostasis

    OpenAIRE

    Donthamsetty, Shashikiran; Brahmbhatt, Meera; Pannu, Vaishali; Rida, Padmashree CG; Ramarathinam, Sujatha; Ogden, Angela; Cheng, Alice; Singh, Keshav K.; Aneja, Ritu

    2014-01-01

    Centrosomes direct spindle morphogenesis to assemble a bipolar mitotic apparatus to enable error-free chromosome segregation and preclude chromosomal instability (CIN). Amplified centrosomes, a hallmark of cancer cells, set the stage for CIN, which underlies malignant transformation and evolution of aggressive phenotypes. Several studies report CIN and a tumorigenic and/or aggressive transformation in mitochondrial DNA (mtDNA)-depleted cells. Although several nuclear-encoded proteins are impl...

  11. A transmembrane inner nuclear membrane protein in the mitotic spindle

    OpenAIRE

    Figueroa, Ricardo; Gudise, Santhosh; Larsson, Veronica; Hallberg, Einar

    2010-01-01

    We have recently characterized a novel transmembrane protein of the inner nuclear membrane of mammalian cells. The protein has two very interesting features. First, despite being an integral membrane protein it is able to concentrate in the membranes colocalizing with the mitotic spindle in metaphase and anaphase. Hence, the protein was named Samp1, Spindle associated membrane protein 1. Secondly, it displays a functional connection to centrosomes. This article discusses various aspects of Sa...

  12. A Genetic Map of DICTYOSTELIUM DISCOIDEUM Based on Mitotic Recombination

    OpenAIRE

    Welker, Dennis L.; Williams, Keith L.

    1982-01-01

    A genetic map of the cellular slime mold Dictyostelium discoideum is presented in which 42 loci are ordered on five of the seven linkage groups. Although most of the loci were ordered using standing mitotic crossing-over techniques in which recessive selective markers were employed, use was also made of unselected recombined haploid strains. Consistent with cytological studies in which the chromosomes appear to be acrocentric, only a single arm has been found for each of the five linkage grou...

  13. Mitotic Origins of Chromosomal Instability in Colorectal Cancer

    OpenAIRE

    Dalton, W. Brian; Yang, Vincent W.

    2007-01-01

    Mitosis is a crucial part of the cell cycle. A successful mitosis requires the proper execution of many complex cellular behaviors. Thus, there are many points at which mitosis may be disrupted. In cancer cells, chronic disruption of mitosis can lead to unequal segregation of chromosomes, a phenomenon known as chromosomal instability. A majority of colorectal tumors suffer from this instability, and recent studies have begun to reveal the specific ways in which mitotic defects promote chromos...

  14. Mitotic exit: Determining the PP2A dephosphorylation program.

    Science.gov (United States)

    Pereira, Gislene; Schiebel, Elmar

    2016-08-29

    In mitotic exit, proteins that were highly phosphorylated are sequentially targeted by the phosphatase PP2A-B55, but what underlies substrate selection is unclear. In this issue, Cundell et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201606033) identify the determinants of PP2A-B55's dephosphorylation program, thereby influencing spindle disassembly, nuclear envelope reformation, and cytokinesis. PMID:27551057

  15. Evaluation of Morphological Diversity, Mitotic Instability and Fertility in Tritipyrum

    OpenAIRE

    zolfaghar shahriari; mohammad assad; hosein hassani

    2014-01-01

    Tritipyrum is prone to mitotic instability, stiff straw and low fertility. A complete randomized design was used to evaluate morphological diversity, fertility and grain yield of 7 new synthetic Tritipyrum lines and their F1 offspring’sin a cross with bread wheat. Fertility, harvest index, biological yield, 1000-grains weight (TGW) and grain yield of Tritipyrum derived genotypes were significantly lower than bread wheat and Triticale. The morphology of Tritipyrum was found to be similar with ...

  16. Role of senescence and mitotic catastrophe in cancer therapy

    Directory of Open Access Journals (Sweden)

    Shukla Yogeshwer

    2010-01-01

    Full Text Available Abstract Senescence and mitotic catastrophe (MC are two distinct crucial non-apoptotic mechanisms, often triggered in cancer cells and tissues in response to anti-cancer drugs. Chemotherapeuticals and myriad other factors induce cell eradication via these routes. While senescence drives the cells to a state of quiescence, MC drives the cells towards death during the course of mitosis. The senescent phenotype distinguishes tumor cells that survived drug exposure but lost the ability to form colonies from those that recover and proliferate after treatment. Although senescent cells do not proliferate, they are metabolically active and may secrete proteins with potential tumor-promoting activities. The other anti-proliferative response of tumor cells is MC that is a form of cell death that results from abnormal mitosis and leads to the formation of interphase cells with multiple micronuclei. Different classes of cytotoxic agents induce MC, but the pathways of abnormal mitosis differ depending on the nature of the inducer and the status of cell-cycle checkpoints. In this review, we compare the two pathways and mention that they are activated to curb the growth of tumors. Altogether, we have highlighted the possibilities of the use of senescence targeting drugs, mitotic kinases and anti-mitotic agents in fabricating novel strategies in cancer control.

  17. Naphthalimides Induce G2 Arrest Through the ATM-Activated Chk2-Executed Pathway in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    2009-11-01

    Full Text Available Naphthalimides, particularly amonafide and 2-(2-dimethylamino-6-thia-2-aza-benzo[def]chrysene-1,3-diones (R16, have been identified to possess anticancer activities and to induce G2-M arrest through inhibiting topoisomerase II accompanied by Chk1 degradation. The current study was designed to precisely dissect the signaling pathway(s responsible for the naphthalimide-induced cell cycle arrest in human colon carcinoma HCT116 cells. Using phosphorylated histone H3 and mitotic protein monoclonal 2 as mitosis markers, we first specified the G2 arrest elicited by the R16 and amonafide. Then, R16 and amonafide were revealed to induce phosphorylation of the DNA damage sensor ataxia telangiectasia-mutated (ATM responding to DNA double-strand breaks (DSBs. Inhibition of ATM by both the pharmacological inhibitor caffeine and the specific small interference RNA (siRNA rescued the G2 arrest elicited by R16, indicating its ATM-dependent characteristic. Furthermore, depletion of Chk2, but not Chk1 with their corresponding siRNA, statistically significantly reversed the R16- and amonafide-triggered G2 arrest. Moreover, the naphthalimides phosphorylated Chk2 in an ATM-dependent manner but induced Chk1 degradation. These data indicate that R16 and amonafide preferentially used Chk2 as evidenced by the differential ATM-executed phosphorylation of Chk1 and Chk2. Thus, a clear signaling pathway can be established, in which ATM relays the DNA DSBs signaling triggered by the naphthalimides to the checkpoint kinases, predominantly to Chk2,which finally elicits G2 arrest. The mechanistic elucidation not only favors the development of the naphthalimides as anticancer agents but also provides an alternative strategy of Chk2 inhibition to potentiate the anticancer activities of these agents.

  18. G2/M Cell Cycle Arrest and Tumor Selective Apoptosis of Acute Leukemia Cells by a Promising Benzophenone Thiosemicarbazone Compound.

    Science.gov (United States)

    Cabrera, Maia; Gomez, Natalia; Remes Lenicov, Federico; Echeverría, Emiliana; Shayo, Carina; Moglioni, Albertina; Fernández, Natalia; Davio, Carlos

    2015-01-01

    Anti-mitotic therapies have been considered a hallmark in strategies against abnormally proliferating cells. Focusing on the extensively studied family of thiosemicarbazone (TSC) compounds, we have previously identified 4,4'-dimethoxybenzophenone thiosemicarbazone (T44Bf) as a promising pharmacological compound in a panel of human leukemia cell lines (HL60, U937, KG1a and Jurkat). Present findings indicate that T44Bf-mediated antiproliferative effects are associated with a reversible chronic mitotic arrest caused by defects in chromosome alignment, followed by induced programmed cell death. Furthermore, T44Bf selectively induces apoptosis in leukemia cell lines when compared to normal peripheral blood mononuclear cells. The underlying mechanism of action involves the activation of the mitochondria signaling pathway, with loss of mitochondrial membrane potential and sustained phosphorylation of anti-apoptotic protein Bcl-xL as well as increased Bcl-2 (enhanced phosphorylated fraction) and pro-apoptotic protein Bad levels. In addition, ERK signaling pathway activation was found to be a requisite for T44Bf apoptotic activity. Our findings further describe a novel activity for a benzophenone thiosemicarbazone and propose T44Bf as a promising anti-mitotic prototype to develop chemotherapeutic agents to treat acute leukemia malignancies. PMID:26360247

  19. G2/M Cell Cycle Arrest and Tumor Selective Apoptosis of Acute Leukemia Cells by a Promising Benzophenone Thiosemicarbazone Compound.

    Directory of Open Access Journals (Sweden)

    Maia Cabrera

    Full Text Available Anti-mitotic therapies have been considered a hallmark in strategies against abnormally proliferating cells. Focusing on the extensively studied family of thiosemicarbazone (TSC compounds, we have previously identified 4,4'-dimethoxybenzophenone thiosemicarbazone (T44Bf as a promising pharmacological compound in a panel of human leukemia cell lines (HL60, U937, KG1a and Jurkat. Present findings indicate that T44Bf-mediated antiproliferative effects are associated with a reversible chronic mitotic arrest caused by defects in chromosome alignment, followed by induced programmed cell death. Furthermore, T44Bf selectively induces apoptosis in leukemia cell lines when compared to normal peripheral blood mononuclear cells. The underlying mechanism of action involves the activation of the mitochondria signaling pathway, with loss of mitochondrial membrane potential and sustained phosphorylation of anti-apoptotic protein Bcl-xL as well as increased Bcl-2 (enhanced phosphorylated fraction and pro-apoptotic protein Bad levels. In addition, ERK signaling pathway activation was found to be a requisite for T44Bf apoptotic activity. Our findings further describe a novel activity for a benzophenone thiosemicarbazone and propose T44Bf as a promising anti-mitotic prototype to develop chemotherapeutic agents to treat acute leukemia malignancies.

  20. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest

    Directory of Open Access Journals (Sweden)

    Maria Maurer

    2015-07-01

    Full Text Available Background: Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods: This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results: Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion: Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.

  1. Human Nek7-interactor RGS2 is required for mitotic spindle organization.

    Science.gov (United States)

    de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg

    2015-01-01

    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization. PMID:25664600

  2. Mitotic Spindle Disruption by Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells

    OpenAIRE

    Moshe Giladi; Schneiderman, Rosa S; Tali Voloshin; Yaara Porat; Mijal Munster; Roni Blat; Shay Sherbo; Zeev Bomzon; Noa Urman; Aviran Itzhaki; Shay Cahal; Anna Shteingauz; Aafia Chaudhry; Kirson, Eilon D.; Uri Weinberg

    2015-01-01

    Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on mi...

  3. Novel Suicide Ligands of Tubulin Arrest Cancer Cells in S-Phase

    Directory of Open Access Journals (Sweden)

    Ashley Davis

    1999-12-01

    Full Text Available It is presently accepted that the mechanism of action for all anti-tumor tubulin ligands involves the perturbation of microtubule dynamics during the G2/M phase of cell division and subsequent entry into apoptosis 1]. In this report, we challenge the established dogma by describing a unique mechanism of action caused by a novel series of tubulin ligands, halogenated derivatives of acetamido benzoyl ethyl ester. We have developed a suicide ligand for tubulin, which covalently attaches to the target and shows potent cancericidal activity in tissue culture assays and in animal tumor models. These compounds target early S-phase at the G1/S transition rather than the G2/M phase and mitotic arrest. Bcl-2 phosphorylation, a marker of mitotic microtubule inhibition by other tubulin ligands was dramatically altered, phosphorylation was rapid and biphasic rather than a slow linear event. The halogenated ethyl ester series of derivatives thus constitute a unique set of tubulin ligands which induce a novel mechanism of apoptosis.

  4. The SFP1 gene product of Saccharomyces cerevisiae regulates G2/M transitions during the mitotic cell cycle and DNA-damage response

    International Nuclear Information System (INIS)

    In eukaryotic cells, checkpoint pathways arrest cell-cycle progression if a particular event has failed to complete appropriately or if an important intracellular structure is defective or damaged. Saccharomyces cerevisiae strains that lack the SFP1 gene fail to arrest at the G2 DNA-damage checkpoint in response to genomic injury, but maintain their ability to arrest at the replication and spindle-assembly checkpoints. sfp1D mutants are characterized by a premature entrance into mitosis during a normal (undamaged) cell cycle, while strains that overexpress Sfp1p exhibit delays in G2. Sfp1p therefore acts as a repressor of the G2/M transition, both in the normal cell cycle and in the G2 checkpoint pathway. Sfp1 is a nuclear protein with two Cys2His2 zinc-finger domains commonly found in transcription factors. We propose that Sfp1p regulates the expression of gene products involved in the G2/M transition during the mitotic cell cycle and the DNA-damage response. In support of this model, overexpression of Sfp1p induces the expression of the PDS1 gene, which is known to encode a protein that regulates the G2 checkpoint. (author)

  5. BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice.

    Directory of Open Access Journals (Sweden)

    Yulong Liang

    2010-01-01

    Full Text Available BRIT1 protein (also known as MCPH1 contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1(-/- mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1(-/- mice and mouse embryonic fibroblasts (MEFs were hypersensitive to gamma-irradiation. BRIT1(-/- MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1(-/- mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2's function and as a result leads to infertility and genomic instability in mice.

  6. Composite Pressure Vessel Including Crack Arresting Barrier

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  7. Sonic Hedgehog Opposes Epithelial Cell Cycle Arrest

    OpenAIRE

    Fan, Hongran; Khavari, Paul A

    1999-01-01

    Stratified epithelium displays an equilibrium between proliferation and cell cycle arrest, a balance that is disrupted in basal cell carcinoma (BCC). Sonic hedgehog (Shh) pathway activation appears sufficient to induce BCC, however, the way it does so is unknown. Shh-induced epidermal hyperplasia is accompanied by continued cell proliferation in normally growth arrested suprabasal cells in vivo. Shh-expressing cells fail to exit S and G2/M phases in response to calcium-induced differentiation...

  8. Paclitaxel Arrests Growth of Intracellular Toxoplasma gondii

    OpenAIRE

    Estes, Randee; Vogel, Nicolas; Mack, Douglas; McLeod, Rima

    1998-01-01

    Addition of paclitaxel (Taxol) at a concentration of 1 μM to Toxoplasma gondii-infected human foreskin fibroblasts arrested parasite multiplication. Division of the T. gondii tachyzoite nucleus was inhibited, leading to syncytium-like parasite structures within the fibroblasts by 24 h after infection and treatment of the cultures. By 4 days after infection and treatment of the cultures with paclitaxel, this inhibition was irreversible, since the arrested intracellular form was incapable of le...

  9. Surviving out-of-hospital cardiac arrest.

    Science.gov (United States)

    Evans, Nick

    2016-05-01

    Emergency care nurses have been urged to play their part in Scotland's push to revolutionise care for cardiac arrest patients - by teaching others how to save a life. This article discusses the Scottish out-of-hospital cardiac arrest strategy, with particular focus on the drive to increase bystander cardiopulmonary resuscitation (CPR) rates, and on how emergency nurses are being enlisted to help promote the training of members of the public. PMID:27165393

  10. Mitotic delay of irradiated cells and its connection with quantity of radiation injuries

    International Nuclear Information System (INIS)

    The study is dedicated to development of mathematical approach to interpret radiation-induced mitosic delay. An assumption is made that mitotic delay is conditioned by discrete injuries distributed in cells according to stochasticity of interaction of radiation and target substance. It is supposed to consider the problem on injuries nature causing mitotic delay and to use the developed method for accounting the effect of radiation-induced mitotic delay on registered chromosomal aberration yield. 10 refs.; 2 figs.; 3 tabs

  11. Predicting crack arrest in reactor pressure vessels

    International Nuclear Information System (INIS)

    The pressurized thermal shock (PTS) issue has provided increased motivation for the search for a reasonably accurate crack arrest prediction methodology. This issue has assumed greater significance recently as a consequence of the imposition of Regulatory Guide 1.99 Revision 2 procedures for determining the effects of radiation embrittlement in the context of the screening criteria in the PTS rule that is used by the United States Nuclear Regulatory Commission to assess the integrity of reactor pressure vessels. The currently accepted procedure for predicting crack arrest is the so-called KIa procedure, which is based on static linear elastic fracture mechanics principles, with a crack being presumed to arrest when the crack tip stress intensity factor KIST falls below a value KIa. The present paper reviews recent EPRI sponsored research, which shows that the static procedure is overly conservative when it is applied to the first arrest of a deep crack in the thickness of a reactor vessel. This conclusion is clearly important when assessing the consequences of the imposition of the procedures of Regulatory Guide 1.99 Revision 2. A more accurate crack arrest prediction procedure, i.e. the Combustion Engineering constrained static procedure or the reflectionless stress intensity factor procedure which are very similar in concept and their arrest prediction, should be considered to assess the impact of its use in the context of the screening criteria limits in the PTS rule. (orig.)

  12. Sex Disparities in Arrest Outcomes for Domestic Violence

    Science.gov (United States)

    Hamilton, Melissa; Worthen, Meredith G. F.

    2011-01-01

    Domestic violence arrests have been historically focused on protecting women and children from abusive men. Arrest patterns continue to reflect this bias with more men arrested for domestic violence compared to women. Such potential gender variations in arrest patterns pave the way to the investigation of disparities by sex of the offender in…

  13. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  14. Cyto-3D-print to attach mitotic cells.

    Science.gov (United States)

    Castroagudin, Michelle R; Zhai, Yujia; Li, Zhi; Marnell, Michael G; Glavy, Joseph S

    2016-08-01

    The Cyto-3D-print is an adapter that adds cytospin capability to a standard centrifuge. Like standard cytospinning, Cyto-3D-print increases the surface attachment of mitotic cells while giving a higher degree of adaptability to other slide chambers than available commercial devices. The use of Cyto-3D-print is cost effective, safe, and applicable to many slide designs. It is durable enough for repeated use and made of biodegradable materials for environment-friendly disposal. PMID:26464272

  15. Microtubule Dynamics and Oscillating State for Mitotic Spindle

    CERN Document Server

    Rashid-Shomali, Safura

    2010-01-01

    We present a physical mechanism that can cause the mitotic spindle to oscillate. The driving force for this mechanism emerges from the polymerization of astral microtubules interacting with the cell cortex. We show that Brownian ratchet model for growing microtubules reaching the cell cortex, mediate an effective mass to the spindle body and therefore force it to oscillate. We compare the predictions of this mechanism with the previous mechanisms which were based on the effects of motor proteins. Finally we combine the effects of microtubules polymerization and motor proteins, and present the detailed phase diagram for possible oscillating states.

  16. Integrin-linked kinase regulates interphase and mitotic microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Simin Lim

    Full Text Available Integrin-linked kinase (ILK localizes to both focal adhesions and centrosomes in distinct multiprotein complexes. Its dual function as a kinase and scaffolding protein has been well characterized at focal adhesions, where it regulates integrin-mediated cell adhesion, spreading, migration and signaling. At the centrosomes, ILK regulates mitotic spindle organization and centrosome clustering. Our previous study showed various spindle defects after ILK knockdown or inhibition that suggested alteration in microtubule dynamics. Since ILK expression is frequently elevated in many cancer types, we investigated the effects of ILK overexpression on microtubule dynamics. We show here that overexpressing ILK in HeLa cells was associated with a shorter duration of mitosis and decreased sensitivity to paclitaxel, a chemotherapeutic agent that suppresses microtubule dynamics. Measurement of interphase microtubule dynamics revealed that ILK overexpression favored microtubule depolymerization, suggesting that microtubule destabilization could be the mechanism behind the decreased sensitivity to paclitaxel, which is known to stabilize microtubules. Conversely, the use of a small molecule inhibitor selective against ILK, QLT-0267, resulted in suppressed microtubule dynamics, demonstrating a new mechanism of action for this compound. We further show that treatment of HeLa cells with QLT-0267 resulted in higher inter-centromere tension in aligned chromosomes during mitosis, slower microtubule regrowth after cold depolymerization and the presence of a more stable population of spindle microtubules. These results demonstrate that ILK regulates microtubule dynamics in both interphase and mitotic cells.

  17. Arrested coalescence of viscoelastic droplets: polydisperse doublets.

    Science.gov (United States)

    Dahiya, Prerna; Caggioni, Marco; Spicer, Patrick T

    2016-07-28

    Arrested droplet coalescence produces stable anisotropic shapes and is a key mechanism for microstructure development in foods, petroleum and pharmaceutical formulations. Past work has examined the dynamic elastic arrest of coalescing monodisperse droplet doublets and developed a simple model of doublet strain as a function of physical variables. Although the work describes experimental data well, it is limited to describing same-size droplets. A new model incorporating a generalized description of doublet shape is developed to describe polydisperse doublet formation in more realistic emulsion systems. Polydisperse doublets are shown to arrest at lower strains than monodisperse doublets as a result of the smaller contribution of surface area in a given pair. Larger droplet size ratios have lower relative degrees of strain because coalescence is arrested at an earlier stage than in more monodisperse cases. Experimental observations of polydisperse doublet formation indicate that the model under-predicts arrest strains at low solid levels and small droplet sizes. The discrepancy is hypothesized to be the result of nonlinear elastic deformation at high strains.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'. PMID:27298435

  18. The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage.

    Directory of Open Access Journals (Sweden)

    Shane Zaidi

    Full Text Available Heat shock protein 90 (HSP90 is a molecular chaperone responsible for the conformational maintenance of a number of client proteins that play key roles in cell cycle arrest, DNA damage repair and apoptosis following radiation. HSP90 inhibitors exhibit antitumor activity by modulating the stabilisation and activation of HSP90 client proteins. We sought to evaluate NVP-AUY922, the most potent HSP90 inhibitor yet reported, in preclinical radiosensitization studies.NVP-AUY922 potently radiosensitized cells in vitro at low nanomolar concentrations with a concurrent depletion of radioresistance-linked client proteins. Radiosensitization by NVP-AUY922 was verified for the first time in vivo in a human head and neck squamous cell carcinoma xenograft model in athymic mice, as measured by delayed tumor growth and increased surrogate end-point survival (p = <0.0001. NVP-AUY922 was shown to ubiquitously inhibit resolution of dsDNA damage repair correlating to delayed Rad51 foci formation in all cell lines tested. Additionally, NVP-AUY922 induced a stalled mitotic phenotype, in a cell line-dependent manner, in HeLa and HN5 cell lines irrespective of radiation exposure. Cell cycle analysis indicated that NVP-AUY922 induced aberrant mitotic entry in all cell lines tested in the presence of radiation-induced DNA damage due to ubiquitous CHK1 depletion, but resultant downstream cell cycle effects were cell line dependent.These results identify NVP-AUY922 as the most potent HSP90-mediated radiosensitizer yet reported in vitro, and for the first time validate it in a clinically relevant in vivo model. Mechanistic analysis at clinically achievable concentrations demonstrated that radiosensitization is mediated by the combinatorial inhibition of cell growth and survival pathways, ubiquitous delay in Rad51-mediated homologous recombination and CHK1-mediated G(2/M arrest, but that the contribution of cell cycle perturbation to radiosensitization may be cell line

  19. INFLUENCE OF SODIUM METABISULPHITE (E 223) ON MITOTIC DIVISION IN CALENDULA OFFICINALIS L.s

    OpenAIRE

    Romeo-Cristian Marc; Gabriela Capraru

    2008-01-01

    This paper presents the cytogenetic effects induced by sodium metabisulphite (E 223) (a food additive used as preservative) in meristematic cells of Calendula officinalis L. root tips. The treatment has determined the lessening of the mitotic index (comparative with the control variant), until mitotic division total inhibition, as well as a growth frequency of division aberration in anaphase and telophase.

  20. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    DEFF Research Database (Denmark)

    Purrington, Kristen S; Slettedahl, Seth; Bolla, Manjeet K;

    2014-01-01

    Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymor...

  1. Par1b induces asymmetric inheritance of plasma membrane domains via LGN-dependent mitotic spindle orientation in proliferating hepatocytes

    NARCIS (Netherlands)

    Slim, Christiaan L; Lázaro-Diéguez, Francisco; Bijlard, Marjolein; Toussaint, Mathilda J M; de Bruin, Alain; Du, Quansheng; Müsch, Anne; van Ijzendoorn, Sven C D

    2013-01-01

    The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical p

  2. Cytoplasmic flows as signatures for the mechanics of mitotic positioning

    CERN Document Server

    Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael

    2015-01-01

    The proper positioning of the mitotic spindle is crucial for asymmetric cell division and generating cell diversity during development. Proper position in the single-cell embryo of Caenorhabditis elegans is achieved initially by the migration and rotation of the pronuclear complex (PNC) and its two associated centrosomal arrays of microtubules (MTs). We present here the first systematic theoretical study of how these $O(1000)$ centrosomal microtubules (MTs) interact through the immersing cytoplasm, the cell periphery and PNC, and with each other, to achieve proper position. This study is made possible through our development of a highly efficient and parallelized computational framework that accounts explicitly for long-ranged hydrodynamic interactions (HIs) between the MTs, while also capturing their flexibility, dynamic instability, and interactions with molecular motors and boundaries. First, we show through direct simulation that previous estimates of the PNC drag coefficient, based on either ignoring or ...

  3. Aurora A's functions during mitotic exit: the Guess Who game

    Directory of Open Access Journals (Sweden)

    David eReboutier

    2015-12-01

    Full Text Available Until recently, the knowledge of Aurora A kinase functions during mitosis was limited to pre-metaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. However, an involvement of Aurora A in post-metaphase events was also suspected, but not clearly demonstrated due to the technical difficulty to perform the appropriate experiments. Recent developments of both an analog specific version of Aurora A, and of small molecule inhibitors have led to the first demonstration that Aurora A is required for the early steps of cytokinesis. As in pre-metaphase, Aurora A plays diverse functions during anaphase, essentially participating in astral microtubules dynamics and central spindle assembly and functioning. The present review describes the experimental systems used to decipher new functions of Aurora A during late mitosis and situate these functions into the context of cytokinesis mechanisms.

  4. Aurora A's Functions During Mitotic Exit: The Guess Who Game.

    Science.gov (United States)

    Reboutier, David; Benaud, Christelle; Prigent, Claude

    2015-01-01

    Until recently, the knowledge of Aurora A kinase functions during mitosis was limited to pre-metaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. However, an involvement of Aurora A in post-metaphase events was also suspected, but not clearly demonstrated due to the technical difficulty to perform the appropriate experiments. Recent developments of both an analog-specific version of Aurora A and small molecule inhibitors have led to the first demonstration that Aurora A is required for the early steps of cytokinesis. As in pre-metaphase, Aurora A plays diverse functions during anaphase, essentially participating in astral microtubules dynamics and central spindle assembly and functioning. The present review describes the experimental systems used to decipher new functions of Aurora A during late mitosis and situate these functions into the context of cytokinesis mechanisms. PMID:26734572

  5. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with 17α-estradiol-induced apoptosis in human Jurkat T cells.

    Science.gov (United States)

    Han, Cho Rong; Jun, Do Youn; Kim, Yoon Hee; Lee, Ji Young; Kim, Young Ho

    2013-10-01

    In Jurkat T cell clone (JT/Neo), G2/M arrest, apoptotic sub-G1 peak, mitochondrial membrane potential (Δψm) loss, and TUNEL-positive DNA fragmentation were induced following exposure to 17α-estradiol (17α-E2), whereas none of these events (except for G2/M arrest) were induced in Jurkat cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, phosphorylation at Thr161 and dephosphorylation at Tyr15 of Cdk1, upregulation of cyclin B1 level, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation, and Bim phosphorylation were detected in the presence of Bcl-2 overexpression. However, the 17α-E2-induced upregulation of Bak levels, activation of Bak, activation of caspase-3, and PARP degradation were abrogated by Bcl-2 overexpression. In the presence of the G1/S blocking agent hydroxyurea, 17α-E2 failed to induce G2/M arrest and all apoptotic events including Cdk1 activation and phosphorylation of Bcl-2, Mcl-1 and Bim. The 17α-E2-induced phosphorylation of Bcl-2 family proteins and mitochondrial apoptotic events were suppressed by a Cdk1 inhibitor but not by aurora A and aurora B kinase inhibitors. Immunofluorescence microscopic analysis showed that an aberrant bipolar microtubule array, incomplete chromosome congression at the metaphase plate, and prometaphase arrest, which was reversible, were the underlying factors for 17α-E2-induced mitotic arrest. The in vitro microtubule polymerization assay showed that 17α-E2 could directly inhibit microtubule formation. These results show that the apoptogenic activity of 17α-E2 was due to the impaired mitotic spindle assembly causing prometaphase arrest and prolonged Cdk1 activation, the phosphorylation of Bcl-2, Mcl-1 and Bim, and the activation of Bak and mitochondria-dependent caspase cascade. PMID:23707954

  6. In-silico modeling of the mitotic spindle assembly checkpoint.

    Directory of Open Access Journals (Sweden)

    Bashar Ibrahim

    Full Text Available BACKGROUND: The Mitotic Spindle Assembly Checkpoint ((MSAC is an evolutionary conserved mechanism that ensures the correct segregation of chromosomes by restraining cell cycle progression from entering anaphase until all chromosomes have made proper bipolar attachments to the mitotic spindle. Its malfunction can lead to cancer. PRINCIPLE FINDINGS: We have constructed and validated for the human (MSAC mechanism an in silico dynamical model, integrating 11 proteins and complexes. The model incorporates the perspectives of three central control pathways, namely Mad1/Mad2 induced Cdc20 sequestering based on the Template Model, MCC formation, and APC inhibition. Originating from the biochemical reactions for the underlying molecular processes, non-linear ordinary differential equations for the concentrations of 11 proteins and complexes of the (MSAC are derived. Most of the kinetic constants are taken from literature, the remaining four unknown parameters are derived by an evolutionary optimization procedure for an objective function describing the dynamics of the APC:Cdc20 complex. MCC:APC dissociation is described by two alternatives, namely the "Dissociation" and the "Convey" model variants. The attachment of the kinetochore to microtubuli is simulated by a switching parameter silencing those reactions which are stopped by the attachment. For both, the Dissociation and the Convey variants, we compare two different scenarios concerning the microtubule attachment dependent control of the dissociation reaction. Our model is validated by simulation of ten perturbation experiments. CONCLUSION: Only in the controlled case, our models show (MSAC behaviour at meta- to anaphase transition in agreement with experimental observations. Our simulations revealed that for (MSAC activation, Cdc20 is not fully sequestered; instead APC is inhibited by MCC binding.

  7. Juvenile Arrests, 2007. Juvenile Justice Bulletin

    Science.gov (United States)

    Puzzanchera, Charles

    2009-01-01

    This Bulletin summarizes 2007 juvenile crime and arrest data reported by local law enforcement agencies across the country and cited in the FBI report, "Crime in the United States 2007." The Bulletin describes the extent and nature of juvenile crime that comes to the attention of the justice system. It serves as a baseline for comparison for…

  8. Acute kidney injury after cardiac arrest

    OpenAIRE

    Tujjar, Omar; Mineo, Giulia; Dell’Anna, Antonio; Poyatos-Robles, Belen; Donadello, Katia; Scolletta, Sabino; Vincent, Jean-Louis; Taccone, Fabio Silvio

    2015-01-01

    Introduction The aim of this study was to evaluate the incidence and determinants of AKI in a large cohort of cardiac arrest patients. Methods We reviewed all patients admitted, for at least 48 hours, to our Dept. of Intensive Care after CA between January 2008 and October 2012. AKI was defined as oligo-anuria (daily urine output

  9. The Organizational Determinants of Police Arrest Decisions

    Science.gov (United States)

    Chappell, Allison T.; MacDonald, John M.; Manz, Patrick W.

    2006-01-01

    A limited amount of research has examined the relationship between characteristics of police organizations and policing styles. In particular, few studies have examined the link between organizational structures and police officer arrest decisions. Wilson's (1968) pioneering case study of police organizations suggested that individual police…

  10. Maternal Cardiac Arrest: A Practical and Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Farida M. Jeejeebhoy

    2013-01-01

    Full Text Available Cardiac arrest during pregnancy is a dedicated chapter in the American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care; however, a robust maternal cardiac arrest knowledge translation strategy and emergency response plan is not usually the focus of institutional emergency preparedness programs. Although maternal cardiac arrest is rare, the emergency department is a high-risk area for receiving pregnant women in either prearrest or full cardiac arrest. It is imperative that institutions review and update emergency response plans for a maternal arrest. This review highlights the most recent science, guidelines, and recommended implementation strategies related to a maternal arrest. The aim of this paper is to increase the understanding of the important physiological differences of, and management strategies for, a maternal cardiac arrest, as well as provide institutions with the most up-to-date literature on which they can build emergency preparedness programs for a maternal arrest.

  11. Myocardial stunning after resuscitation from cardiac arrest following spinal anaesthesia

    OpenAIRE

    Pranjali Madhav Kurhekar; VSG Yachendra; Simi P Babu; Raghavelu Govindasamy

    2014-01-01

    Cardiac arrest associated with spinal anaesthesia has been well researched. Myocardial stunning after successful resuscitation from cardiac arrest is seen in up to 2/3 rd of in-hospital cardiac arrests. Myocardial stunning after resuscitation from cardiac arrest associated with spinal anaesthesia has probably not been reported earlier. Our case, an ASA physical status I lady, posted for tubal reanastomosis surgery developed bradycardia followed by asystole, approximately 5 minutes after givin...

  12. Ophiopogonin B induces apoptosis, mitotic catastrophe and autophagy in A549 cells.

    Science.gov (United States)

    Chen, Meijuan; Guo, Yuanyuan; Zhao, Ruolin; Wang, Xiaoxia; Jiang, Miao; Fu, Haian; Zhang, Xu

    2016-07-01

    Ophiopogonin B (OP-B), a saponin compound isolated from Radix Ophiopogon japonicus, was verified to inhibit cell proliferation in numerous non-small cell lung cancer (NSCLC) cells in our previous study. However, the precise mechanisms of action have remained unclear. In the present study, we mainly investigated the effects of OP-B on adenocarcinoma A549 cells to further elaborate the underlying mechanisms of OP-B in different NSCLC cell lines. Detection by high content screening (HCS) and TUNEL assay verified that OP-B induced apoptosis in this cell line, while detection of Caspase-3, Bcl-2 and Bax showed that OP-B induced cell death was caspase and mitochondrial independent. Further experiments showed that OP-B induced cell cycle arrest in the S and G2/M phases by inhibiting the expression of Myt1 and phosphorylation of Histone H3 (Ser10), which resulted in mitotic catastrophe in the cells. Transmission electron microscopy (TEM) observation of cell micro-morphology combined with detection of Atgs by western blot analysis showed that OP-B induced autophagy in this cell line. Autophagy inhibition by the lysosome inhibitor CQ or Beclin1-siRNA knockdown both attenuated cell viability, demonstrated that autophagy also being the vital reason resulted in cell death. More importantly, the xenograft model using A549 cells provided further evidence of the inhibition of OP-B on tumor proliferation. Immunohistochemistry detection of LC3 and Tunel assay both verified that high dose of OP-B (75 mg/kg) induced autophagy and apoptosis in vivo, and western blot detection of p-Histone H3 (Ser10), Survivin and XIAP further indicated the molecular mechanism of OP-B in vivo. As our findings revealed, multiple types of cell death overlapped in OP-B treated A549 cells, it displayed multitarget characteristics of the compounds extracted from the Chinese herbal, which may be used as candidate anticancer medicine in clinic. PMID:27175570

  13. Meiotic and Mitotic Cell Cycle Mutants Involved in Gametophyte Development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Jingjing Liu; Li-Jia Qu

    2008-01-01

    The alternation between diploid and haploid generations is fundamentalin the life cycles of both animals and plants.The meiotic cell cycle is common to both animals and plants gamete formation, but in animals the products of meiosis are gametes,whereas for most plants,subsequent mitotic cell cycles are needed for their formation. Clarifying the regulatory mechanisms of mitotic cell cycle progression during gametophyte development will help understanding of sexual reproduction in plants.Many mutants defective in gametophyte development and,in particular,many meiotic and mitotic cell cycle mutants in Arabidopsis male and female gametophyte development were identified through both forward and reverse genetics approaches.

  14. The essential mitotic peptidyl–prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins

    OpenAIRE

    Shen, Minhui; Stukenberg, P. Todd; Kirschner, Marc W; Lu, Kun Ping

    1998-01-01

    Phosphorylation of mitotic proteins on the Ser/Thr-Pro motifs has been shown to play an important role in regulating mitotic progression. Pin1 is a novel essential peptidyl–prolyl isomerase (PPIase) that inhibits entry into mitosis and is also required for proper progression through mitosis, but its substrate(s) and function(s) remain to be determined. Here we report that in both human cells and Xenopus extracts, Pin1 interacts directly with a subset of mitotic phosphoproteins on phosphorylat...

  15. Effects of allitridi on cell cycle arrest of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Min-Wen Ha; Rui Ma; Li-Ping Shun; Yue-Hua Gong; Yuan Yuan

    2005-01-01

    AIM: To determine the effect of allitridi on cell cycle of human gastric cancer (HGC) cell lines MGC803 and SGC7901 and its possible mechanism.METHODS: Trypan blue dye exclusion was used to evaluate the proliferation, inhibition of cells and damages of these cells were detected with electron microscope.Flow cytometry and cell mitotic index were used to analyze the change of cell cycle, immunohistochemistry, and RT-PCR was used to examine expression of the p21WAF1 gene.RESULTS: MGC803 cell growth was inhibited by allitridi with 24 h IC50 being 6.4 μg/mL. SGC7901 cell growth was also inhibited by allitridi with 24 h IC50 being 7.3 μg/mL.After being treated with allitridi at the concentration of 12 μg/mL for 24 h, cells were found to have direct cytotoxic effects, including broken cellular membrane, swollen and vesiculated mitochondria and rough endoplasmic reticula,and mass lipid droplet. When cells were treated with allitridi at the concentration of 3, 6, and 9 μg/mL for 24 h, the percentage of G0/G1 phase cells was decreased and that of G2/M phase cells was significantly increased (P = 0.002)compared with those in the group. When cells were treated with allitridi at the concentration of 6 μg/mL, cell mitotic index was much higher (P = 0.003) than that of control group, indicating that allitridi could cause gastric cancer cell arrest in M phase. Besides, the expression levels of p21WAF1 gene of MGC803 cells and p21WAF1 gene of SGC7901 cells were remarkably upregulated after treatment.CONCLUSION: Allitridi can cause gastric cancer cell arrest in M phase, and this may be one of the mechanisms for inhibiting cell proliferation. Effect of allitridi on cells in M phas e may be associated with the upregulation of p21WAF1 genes. This study provides experimental data for clinical use of allitridi in the treatment of gastric carcinoma.

  16. The CRO-1 gene of Saccharomyces cerevisiae controls mitotic crossing over, chromosomal stability and sporulation

    International Nuclear Information System (INIS)

    The properties of a novel temperature-sensitive recombination-defective mutant of Saccharomyces cerevisiae, cro1-1 is described. The cro1-1 mutant is the first instance of a rec mutation that reduces drastically the rates of spontaneous mitotic crossing-over events but not those of gene conversional events. The cro1-1 mutation thus provides evidence that mitotic crossing-over is dependent upon gene products that are not essential for gene conversional events. The cro1-1 mutation also results in enhanced mitotic-chromosomal instability and MATa/MATα cro1-1/cro1-1 mutants are sporulation deficient. These phenotypes indicate that the CRO1 gene modulates mitotic chromosomal integrity and is essential for normal meiosis. The cro1-1 mutant possesses Holliday junction resolvase activity, hence its recombinational defect does not involve failure to execute this putative final recombinational step. 7 refs., 1 fig., 5 tabs

  17. Relationship of cyclic AMP levels to duration of radiation-induced mitotic delay

    International Nuclear Information System (INIS)

    A study has been made of the effect of several phosphodiesterase inhibitors (caffeine, theophylline, methyl-isobutyl xanthine (MIX), diethyl-amino-1-reserpine (DL-152) and 4-(-3-butoxy-4-methoxybenzyl-2-imidazolidinone) (Ro-20-1742)) on the duration of X-ray induced mitotic delay and on cyclic AMP concentration in replicate monolayer cultures of CHO cells. Only caffeine (1mM) of the methyl xanthines protected the cells against radiation-induced mitotic delay, without changing the cyclic AMP level. Elevated AMP levels and mitotic delay were demonstrated for unirradiated cells treated with MIX, Ro-20-1724 and DL-152, although the timing and extent of the delays varied for the different compounds. There was synergism between Ro-20-1724 and irradiation for lengthening the period of mitotic delay. (U.K.)

  18. Effects of 5-fluorouracil on the mitotic activity of onion root tips apical meristem

    Directory of Open Access Journals (Sweden)

    Waldemar Lechowicz

    2015-05-01

    Full Text Available The effects of various concentrations of 5-FU on the mitotic activity of onion root tips apical meristem were investigated during 24-hour incubation in 5-FU and postincubation in water. The incubation in 5-FU caused a reversible inhibition of mitotic activity, and waves of the partially synchronised mitoses were observed during the period of postincubation. The most pronounced synchronisation of mitoses was obtained after incubation in 100 mg/l. 5-FU but the mitotic index of the resumed mitotic activity amounted to only one half of the control value. 5-FU was found to cause some cytological changes in meristematic cells such as enlargement of the nucleoli, change in the interphasic nuclei structure, appearance of subchromatid and chromatid aberrations and micronuclei. The effects of 5-FU on nucleic acids and the cell division cycle ace discussed and compared with the effects of 5-FUdR.

  19. Pediatric Cardiac Arrest Due to Trauma.

    Science.gov (United States)

    Kjellemo, Hugo; Hansen, Andreas E; Øines, Dennis A; Nilsen, Thor O; Wik, Lars

    2016-01-01

    Survival from pediatric cardiac arrest due to trauma has been reported to be 0.0%-8.8%. Some argue that resuscitation efforts in the case of trauma-related cardiac arrests are futile. We describe a successful outcome in the case of a child who suffered cardiac arrest caused by external traumatic airway obstruction. Our case illustrates how to deal with pediatric traumatic cardiac arrests in an out-of-hospital environment. It also illustrates how good clinical treatment in these situations may be supported by correct treatment after hospital admission when it is impossible to ventilate the patient to provide sufficient oxygen delivery to vital organs. This case relates to a lifeless child of 3-5 years, blue, and trapped by an electrically operated garage door. The first ambulance arrived to find several men trying to bend the frame and the door apart in order to extricate the child, who was hanging in the air with head and neck squeezed between the horizontally-moving garage door and the vertical door frame. One paramedic found a car jack and used it to push the door and the frame apart, allowing the lifeless child to be extricated. Basic life support was then initiated. Intubation was performed by the anesthesiologist without drugs. With FiO2 1.0 the first documented SaO2 was <50%. Restoration of Spontaneous Circulation was achieved after thirty minutes, and she was transported to the hospital. After a few hours she was put on venous-arterial ECMO for 5.5 days and discharged home after two months. Outpatient examinations during the rest of 2013 were positive, and the child found not to be suffering from any injuries, either physical or mental. The last follow-up in October 2014 demonstrated she had made a 100% recovery and she started school in August 2014. PMID:26930137

  20. Nuclear reactor melt arrest and coolability device

    Energy Technology Data Exchange (ETDEWEB)

    Theofanous, Theo G.; Dinh, Nam Truc; Wachowiak, Richard M.

    2016-06-14

    Example embodiments provide a Basemat-Internal Melt Arrest and Coolability device (BiMAC) that offers improved spatial and mechanical characteristics for use in damage prevention and risk mitigation in accident scenarios. Example embodiments may include a BiMAC having an inclination of less than 10-degrees from the basemat floor and/or coolant channels of less than 4 inches in diameter, while maintaining minimum safety margins required by the Nuclear Regulatory Commission.

  1. Phosphorylation and disassembly of intermediate filaments in mitotic cells

    International Nuclear Information System (INIS)

    As baby hamster kidney (BHK-21) cells enter mitosis, networks of intermediate filaments (IFs) are transformed into cytoplasmic aggregates of protofilaments. Coincident with this morphological change, the phosphate content of vimentin increases from 0.3 mol of Pi per mol of protein in interphase to 1.9 mol of Pi per mol of protein in mitosis. A similar increase in phosphate content is observed with desmin, from 0.5 mol of Pi per mol of protein to 1.5 mol of Pi per mol of protein. Fractionation of mitotic cell lysates by hydroxylapatite column chromatography reveals the presence of two IF protein kinase activities, designated as IF protein kinase I and IF protein kinase II. Comparison of two-dimensional 32P-labeled phosphopeptide maps of vimentin and desmin phosphorylated in vivo in mitosis, and in vitro using partially purified kinase fractions, reveals extensive similarity in the two sets of phosphorylation sites. Phosphorylation of in vitro polymerized IFs by IF protein kinase II induces complete disassembly as determined by negative-stain electron microscopy. The results support the idea that the disassembly of IFs in mitosis is regulated by the phosphorylation of its subunit proteins

  2. Phosphorylation and disassembly of intermediate filaments in mitotic cells

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yinghao; Rosevear, E.; Goldman, R.D. (Northwestern Univ. Medical School, Chicago, IL (USA))

    1989-03-01

    As baby hamster kidney (BHK-21) cells enter mitosis, networks of intermediate filaments (IFs) are transformed into cytoplasmic aggregates of protofilaments. Coincident with this morphological change, the phosphate content of vimentin increases from 0.3 mol of P{sub i} per mol of protein in interphase to 1.9 mol of P{sub i} per mol of protein in mitosis. A similar increase in phosphate content is observed with desmin, from 0.5 mol of P{sub i} per mol of protein to 1.5 mol of P{sub i} per mol of protein. Fractionation of mitotic cell lysates by hydroxylapatite column chromatography reveals the presence of two IF protein kinase activities, designated as IF protein kinase I and IF protein kinase II. Comparison of two-dimensional {sup 32}P-labeled phosphopeptide maps of vimentin and desmin phosphorylated in vivo in mitosis, and in vitro using partially purified kinase fractions, reveals extensive similarity in the two sets of phosphorylation sites. Phosphorylation of in vitro polymerized IFs by IF protein kinase II induces complete disassembly as determined by negative-stain electron microscopy. The results support the idea that the disassembly of IFs in mitosis is regulated by the phosphorylation of its subunit proteins.

  3. Regulation of mitotic spindle orientation: an integrated view.

    Science.gov (United States)

    di Pietro, Florencia; Echard, Arnaud; Morin, Xavier

    2016-08-01

    Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN-independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation. PMID:27432284

  4. Maintaining Genome Stability in Defiance of Mitotic DNA Damage

    Science.gov (United States)

    Ferrari, Stefano; Gentili, Christian

    2016-01-01

    The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy. PMID:27493659

  5. Centromeric barrier disruption leads to mitotic defects in Schizosaccharomyces pombe.

    Science.gov (United States)

    Gaither, Terilyn L; Merrett, Stephanie L; Pun, Matthew J; Scott, Kristin C

    2014-04-01

    Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation and preserving genome stability. The centromeres of most eukaryotic organisms are structurally complex, composed of nonoverlapping, structurally and functionally distinct chromatin subdomains, including the specialized core chromatin that underlies the kinetochore and pericentromeric heterochromatin. The genomic and epigenetic features that specify and preserve the adjacent chromatin subdomains critical to centromere identity are currently unknown. Here we demonstrate that chromatin barriers regulate this process in Schizosaccharomyces pombe. Reduced fitness and mitotic chromosome segregation defects occur in strains that carry exogenous DNA inserted at centromere 1 chromatin barriers. Abnormal phenotypes are accompanied by changes in the structural integrity of both the centromeric core chromatin domain, containing the conserved CENP-A(Cnp1) protein, and the flanking pericentric heterochromatin domain. Barrier mutant cells can revert to wild-type growth and centromere structure at a high frequency after the spontaneous excision of integrated exogenous DNA. Our results reveal a previously undemonstrated role for chromatin barriers in chromosome segregation and in the prevention of genome instability. PMID:24531725

  6. X-ray induction of mitotic and meiotic chromosome aberrations

    International Nuclear Information System (INIS)

    In 1964 six pairs of rat kangaroo (Potorous tridactylis) were obtained from Australia. The tissues of these animals were used to initiate cell lines. Since this species has a low chromosome number of six pairs, each pair with its own distinctive morphology, it is particularly favorable for cytogenetic research. In cell cultures derived from the corneal endothelial tissues of one animal there emerged a number of haploid cells. The number of haploid cells in the cultures reached as high as 20% of the total mitotic configurations. The in vitro diploid and haploid mixture cell cultures could be a resemblance or a coincidence to the mixture existence of the diploid primary spermatocytes and the haploid secondary spermatocytes (gametes) in the in vivo testicular tissues of the male animals. It would be interesting to compare reactions of the haploid and diploid cell mixture, either in the cultures or in the testes, to x-ray exposure. Two other studies involving x-ray effects on Chinese hamster oocyte maturation and meiotic chromosomes and the x-ray induction of Chinese hamster spermatocyte meiotic chromosome aberrations have been done in this laboratory. A review of these three studies involving diploid and haploid chromosomes may lead to further research in the x-ray induction of chromosome aberrations

  7. A chemical tool box defines mitotic and interphase roles for Mps1 kinase

    OpenAIRE

    Lan, Weijie; Don W Cleveland

    2010-01-01

    In this issue, three groups (Hewitt et al. 2010. J. Cell Biol. doi:10.1083/jcb.201002133; Maciejowski et al. 2010. J. Cell Biol. doi:10.1083/jcb.201001050; Santaguida et al. 2010. J. Cell Biol. doi:10.1083/jcb.201001036) use chemical inhibitors to analyze the function of the mitotic checkpoint kinase Mps1. These studies demonstrate that Mps1 kinase activity ensures accurate chromosome segregation through its recruitment to kinetochores of mitotic checkpoint proteins, formation of interphase a...

  8. Variations in the association of papillomavirus E2 proteins with mitotic chromosomes

    OpenAIRE

    Jaquelline G de Oliveira; Colf, Leremy A.; Alison A McBride

    2006-01-01

    The E2 protein segregates episomal bovine papillomavirus (BPV) genomes to daughter cells by tethering them to mitotic chromosomes, thus ensuring equal distribution and retention of viral DNA. To date, only the BPV1 E2 protein has been shown to bind to mitotic chromosomes. We assessed the localization of 13 different animal and human E2 proteins from seven papillomavirus genera, and we show that most of them are stably bound to chromosomes throughout mitosis. Furthermore, in contrast to the ra...

  9. Brd4 Marks Select Genes on Mitotic Chromatin and Directs Postmitotic Transcription

    OpenAIRE

    Dey, Anup; Nishiyama, Akira; Karpova, Tatiana; McNally, James; Ozato, Keiko

    2009-01-01

    On entry into mitosis, many transcription factors dissociate from chromatin, resulting in global transcriptional shutdown. During mitosis, some genes are marked to ensure the inheritance of their expression in the next generation of cells. The nature of mitotic gene marking, however, has been obscure. Brd4 is a double bromodomain protein that localizes to chromosomes during mitosis and is implicated in holding mitotic memory. In interphase, Brd4 interacts with P-TEFb and functions as a global...

  10. Stereospecific phosphorylation by the central mitotic kinase Cdk1-cyclin B.

    Science.gov (United States)

    Etzkorn, Felicia A; Zhao, Song

    2015-04-17

    The cis vs trans conformation, or shape, of phosphoserine-proline (pSer-Pro), a prevalent motif in cell cycle proteins, may play a significant role in regulating mitosis. We demonstrate that Cdk1-cyclin B, the central mitotic kinase, is specific for the trans conformation, not cis, of synthetic, locked Ser-Pro 11-residue peptide substrates, using LC-MSMS detection and sequencing of phosphorylated products. This substrate stereospecificity may contribute an additional level of mitotic regulation. PMID:25603287

  11. Hypothermia improves outcome from cardiac arrest.

    Science.gov (United States)

    Bernard, S A

    2005-12-01

    Out-of-hospital cardiac arrest is common and patients who are initially resuscitated by ambulance officers and transported to hospital are usually admitted to the intensive care unit (ICU). In the past, the treatment in the ICU consisted of supportive care only, and most patients remained unconscious due to the severe anoxic neurological injury. It was this neurological injury rather than cardiac complications that caused the high rate of morbidity and mortality. However, in the early 1990's, a series of animal experiments demonstrated convincingly that mild hypothermia induced after return of spontaneous circulation and maintained for several hours dramatically reduced the severity of the anoxic neurological injury. In the mid-1990's, preliminary human studies suggested that mild hypothermia could be induced and maintained in post-cardiac arrest patients without an increase in the rate of cardiac or other complications. In the late 1990's, two prospective, randomised, controlled trials were conducted and the results confirmed the animal data that mild hypothermia induced after resuscitation and maintained for 12 - 24 hours dramatically improved neurological and overall outcomes. On the basis of these studies, mild hypothermia was endorsed in 2003 by the International Liaison Committee on Resuscitation as a recommended treatment for comatose patients with an initial cardiac rhythm of ventricular fibrillation. However, the application of this therapy into routine clinical critical care practice has been slow. The reasons for this are uncertain, but may relate to the relative complexity of the treatment, unfamiliarity with the pathophysiology of hypothermia, lack of clear protocols and/or uncertainty of benefit in particular patients. Therefore, recent research in this area has focused on the development of feasible, inexpensive techniques for the early, rapid induction of mild hypothermia after cardiac arrest. Currently, the most promising strategy is a rapid

  12. SGO1 maintains bovine meiotic and mitotic centromeric cohesions of sister chromatids and directly affects embryo development.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Yin

    Full Text Available Shugoshin (SGO is a critical factor that enforces cohesion from segregation of paired sister chromatids during mitosis and meiosis. It has been studied mainly in invertebrates. Knowledge of SGO(s in a mammalian system has only been reported in the mouse and Hela cells. In this study, the functions of SGO1 in bovine oocytes during meiotic maturation, early embryonic development and somatic cell mitosis were investigated. The results showed that SGO1 was expressed from germinal vesicle (GV to the metaphase II stage. SGO1 accumulated on condensed and scattered chromosomes from pre-metaphase I to metaphase II. The over-expression of SGO1 did not interfere with the process of homologous chromosome separation, although once separated they were unable to move to the opposing spindle poles. This often resulted in the formation of oocytes with 60 replicated chromosomes. Depletion of SGO1 in GV oocytes affected chromosomal separation resulting in abnormal chromosome alignment at a significantly higher proportion than in control oocytes. Knockdown of SGO1 expression significantly decreased the embryonic developmental rate and quality. To further confirm the function(s of SGO1 during mitosis, bovine embryonic fibroblast cells were transfected with SGO1 siRNAs. SGO1 depletion induced the premature dissociation of chromosomal cohesion at the centromere and along the chromosome arm giving rise to abnormal appearing mitotic patterns. The results of this study infer that SGO1 is involved in the centromeric cohesion of sister chromatids and chromosomal movement towards the spindle poles. Depletion of SGO1 causes arrestment of cell division in meiosis and mitosis.

  13. Global arrest of translation during invertebrate quiescence.

    Science.gov (United States)

    Hofmann, G E; Hand, S C

    1994-08-30

    Comparing the translational capacities of cell-free systems from aerobically developing embryos of the brine shrimp Artemia franciscana vs. quiescent embryos has revealed a global arrest of protein synthesis. Incorporation rates of [3H]leucine by lysates from 4-h anoxic embryos were 8% of those from aerobic (control) embryos, when assayed at the respective pH values measured for each treatment in vivo. Exposure of embryos to 4 h of aerobic acidosis (elevated CO2 in the presence of oxygen) suppressed protein synthesis to 3% of control values. These latter two experimental treatments promote developmental arrest of Artemia embryos and, concomitantly, cause acute declines in intracellular pH. When lysates from each treatment were assayed over a range of physiologically relevant pH values (pH 6.4-8.0), amino acid incorporation rates in lysates from quiescent embryos were consistently lower than values for the aerobic controls. Acute reversal of pH to alkaline values during the 6-min assays was not sufficient to return the incorporation rates of quiescent lysates to control values. Thus, a stable alteration in translational capacity of quiescent lysates is indicated. Addition of exogenous mRNA did not rescue the suppressed protein synthesis in quiescent lysates, which suggests that the acute blockage of amino acid incorporation is apparently not due to limitation in message. Thus, the results support a role for intracellular pH as an initial signaling event in translational control during quiescence yet, at the same time, indicate that a direct proton effect on the translational machinery is not the sole proximal agent for biosynthetic arrest in this primitive crustacean. PMID:8078909

  14. Identification of Drosophila mitotic genes by combining co-expression analysis and RNA interference.

    Directory of Open Access Journals (Sweden)

    Maria Patrizia Somma

    2008-07-01

    Full Text Available RNAi screens have, to date, identified many genes required for mitotic divisions of Drosophila tissue culture cells. However, the inventory of such genes remains incomplete. We have combined the powers of bioinformatics and RNAi technology to detect novel mitotic genes. We found that Drosophila genes involved in mitosis tend to be transcriptionally co-expressed. We thus constructed a co-expression-based list of 1,000 genes that are highly enriched in mitotic functions, and we performed RNAi for each of these genes. By limiting the number of genes to be examined, we were able to perform a very detailed phenotypic analysis of RNAi cells. We examined dsRNA-treated cells for possible abnormalities in both chromosome structure and spindle organization. This analysis allowed the identification of 142 mitotic genes, which were subdivided into 18 phenoclusters. Seventy of these genes have not previously been associated with mitotic defects; 30 of them are required for spindle assembly and/or chromosome segregation, and 40 are required to prevent spontaneous chromosome breakage. We note that the latter type of genes has never been detected in previous RNAi screens in any system. Finally, we found that RNAi against genes encoding kinetochore components or highly conserved splicing factors results in identical defects in chromosome segregation, highlighting an unanticipated role of splicing factors in centromere function. These findings indicate that our co-expression-based method for the detection of mitotic functions works remarkably well. We can foresee that elaboration of co-expression lists using genes in the same phenocluster will provide many candidate genes for small-scale RNAi screens aimed at completing the inventory of mitotic proteins.

  15. Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication

    Directory of Open Access Journals (Sweden)

    Thiry Marc

    2007-08-01

    Full Text Available Abstract Background Nucleolin is a major component of the nucleolus, but is also found in other cell compartments. This protein is involved in various aspects of ribosome biogenesis from transcription regulation to the assembly of pre-ribosomal particles; however, many reports suggest that it could also play an important role in non nucleolar functions. To explore nucleolin function in cell proliferation and cell cycle regulation we used siRNA to down regulate the expression of nucleolin. Results We found that, in addition to the expected effects on pre-ribosomal RNA accumulation and nucleolar structure, the absence of nucleolin results in a cell growth arrest, accumulation in G2, and an increase of apoptosis. Numerous nuclear alterations, including the presence of micronuclei, multiple nuclei or large nuclei are also observed. In addition, a large number of mitotic cells showed a defect in the control of centrosome duplication, as indicated by the presence of more than 2 centrosomes per cell associated with a multipolar spindle structure in the absence of nucleolin. This phenotype is very similar to that obtained with the inactivation of another nucleolar protein, B23. Conclusion Our findings uncovered a new role for nucleolin in cell division, and highlight the importance of nucleolar proteins for centrosome duplication.

  16. Abulia following an episode of cardiac arrest.

    Science.gov (United States)

    Naik, Vismay Dinesh

    2015-01-01

    The word 'abulia' means a lack of will, initiative or drive. The symptoms of abulia include lack of spontaneous action and speech, reduced emotional responsiveness and social interaction, poor attention and easy distractibility. These symptoms are independent of reduced levels of consciousness or cognitive impairment. We describe a case of a socially active 72-year-old female patient who presented with symptoms of abulia which may have occurred due to damage of the frontosubcortical circuits following an episode of cardiac arrest. The patient's symptoms improved dramatically following treatment with bromocriptine. PMID:26135487

  17. Global arrest of translation during invertebrate quiescence.

    OpenAIRE

    Hofmann, G E; Hand, S C

    1994-01-01

    Comparing the translational capacities of cell-free systems from aerobically developing embryos of the brine shrimp Artemia franciscana vs. quiescent embryos has revealed a global arrest of protein synthesis. Incorporation rates of [3H]leucine by lysates from 4-h anoxic embryos were 8% of those from aerobic (control) embryos, when assayed at the respective pH values measured for each treatment in vivo. Exposure of embryos to 4 h of aerobic acidosis (elevated CO2 in the presence of oxygen) sup...

  18. Sublingual Microcirculation is Impaired in Post-cardiac Arrest Patients

    DEFF Research Database (Denmark)

    G. Omar, Yasser; Massey, Michael; Wiuff Andersen, Lars; A. Giberson, Tyler; Berg, Katherine; N. Cocchi, Michael; I. Shapiro, Nathan; W. Donnino, Michael

    2013-01-01

    markers in the post-cardiac arrest state. METHODS: We prospectively evaluated the sublingual microcirculation in post-cardiac arrest patients, severe sepsis/septic shock patients, and healthy control patients using Sidestream Darkfield microscopy. Microcirculatory flow was assessed using the...... microcirculation flow index (MFI) at 6 and 24h in the cardiac arrest patients, and within 6h of emergency department admission in the sepsis and control patients. RESULTS: We evaluated 30 post-cardiac arrest patients, 16 severe sepsis/septic shock patients, and 9 healthy control patients. Sublingual...... microcirculatory blood flow was significantly impaired in post-cardiac arrest patients at 6h (MFI 2.6 [IQR: 2-2.9]) and 24h (2.7 [IQR: 2.3-2.9]) compared to controls (3.0 [IQR: 2.9-3.0]; p<0.01 and 0.02, respectively). After adjustment for initial APACHE II score, post-cardiac arrest patients had significantly...

  19. A case of thyroid storm with cardiac arrest

    Directory of Open Access Journals (Sweden)

    Nakashima Y

    2014-05-01

    Full Text Available Yutaka Nakashima,1 Tsuneaki Kenzaka,2 Masanobu Okayama,3 Eiji Kajii31Department for Support of Rural Medicine, Yamaguchi Grand Medical Center, 2Division of General Medicine, Center for Community Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan; 3Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University School of Medicine, Shimotsuke, JapanAbstract: A 23-year-old man became unconscious while jogging. He immediately received basic life support from a bystander and was transported to our hospital. On arrival, his spontaneous circulation had returned from a state of ventricular fibrillation and pulseless electrical activity. Following admission, hyperthyroidism led to a suspicion of thyroid storm, which was then diagnosed as a possible cause of the cardiac arrest. Although hyperthyroidism-induced cardiac arrest including ventricular fibrillation is rare, it should be considered when diagnosing the cause of treatable cardiac arrest.Keywords: hyperthyroidism, ventricular fibrillation, treatable cardiac arrest, cardiac arrest, cardiopulmonary arrest

  20. Myocardial stunning after resuscitation from cardiac arrest following spinal anaesthesia

    Directory of Open Access Journals (Sweden)

    Pranjali Madhav Kurhekar

    2014-01-01

    Full Text Available Cardiac arrest associated with spinal anaesthesia has been well researched. Myocardial stunning after successful resuscitation from cardiac arrest is seen in up to 2/3 rd of in-hospital cardiac arrests. Myocardial stunning after resuscitation from cardiac arrest associated with spinal anaesthesia has probably not been reported earlier. Our case, an ASA physical status I lady, posted for tubal reanastomosis surgery developed bradycardia followed by asystole, approximately 5 minutes after giving subarachnoid block. Return of spontaneous circulation (ROSC was achieved within 2 minutes with cardiopulmonary resuscitation (CPR and defibrillation for pulseless ventricular tachycardia. Patient developed delayed pulmonary oedema, which was probably due to myocardial stunning. In the present case, inadequate preloading could have precipitated bradycardia progressing to cardiac arrest which, after resuscitation led to reversible myocardial dysfunction. We conclude that early vasopressor infusion, titrated fluids and echocardiography should be considered in immediate post cardiac arrest phase following spinal anaesthesia.

  1. Postoperative cardiac arrest due to cardiac surgery complications

    International Nuclear Information System (INIS)

    To examine the role of anesthetists in the management of cardiac arrest occurring in association with cardiac anesthesia. In this retrospective study we studied the potential performances for each of the relevant incidents among 712 patients undergoing cardiac operations at Golestan and Naft Hospitals Ahwaz between November 2006 and July 2008. Out of total 712 patients undergoing cardiac surgery, cardiac arrest occurred in 28 cases (3.9%) due to different postoperative complications. This included massive bleeding (50% of cardiac arrest cases, 1.9% of patients); pulseless supra ventricular tachycardia (28.5% of cardiac arrest cases, 1.1% of patients); Heart Failure (7% of cardiac arrest cases, 0.2% of patients); Aorta Arc Rapture (3.5% of cardiac arrest cases, 0.1% of patients); Tamponade due to pericardial effusion (3.5% of cardiac arrest cases, 0.1% of total patients); Right Atrium Rupture (3.5% of cardiac arrest cases, 0.1% of patients) were detected after cardiac surgery. Out of 28 cases 7 deaths occurred (25% of cardiac arrest cases, 0.1% of patients). The most prevalent reason for cardiac arrest during post operative phase was massive bleeding (50%) followed by pulseless supra ventricular tachycardia (28.5%). Six patients had some morbidity and the remaining 15 patients recovered. There are often multiple contributing factors to a cardiac arrest under cardiac anesthesia, as much a complete systematic assessment of the patient, equipment, and drugs should be completed. We also found that the diagnosis and management of cardiac arrest in association with cardiac anesthesia differs considerably from that encountered elsewhere. (author)

  2. Hospital Variation in Survival After In‐hospital Cardiac Arrest

    OpenAIRE

    Merchant, Raina M.; Berg, Robert A.; Yang, Lin; Becker, Lance B.; Groeneveld, Peter W.; Chan, Paul S.; ,

    2014-01-01

    Background In‐hospital cardiac arrest (IHCA) is common and often fatal. However, the extent to which hospitals vary in survival outcomes and the degree to which this variation is explained by patient and hospital factors is unknown. Methods and Results Within Get with the Guidelines‐Resuscitation, we identified 135 896 index IHCA events at 468 hospitals. Using hierarchical models, we adjusted for demographics comorbidities and arrest characteristics (eg, initial rhythm, etiology, arrest locat...

  3. PIASy Mediates SUMO-2/3 Conjugation of Poly(ADP-ribose) Polymerase 1 (PARP1) on Mitotic Chromosomes*

    OpenAIRE

    Ryu, Hyunju; Al-Ani, Gada; Deckert, Katelyn; Kirkpatrick, Donald; Gygi, Steven P.; Dasso, Mary; Azuma, Yoshiaki

    2010-01-01

    PIASy is a small ubiquitin-related modifier (SUMO) ligase that modifies chromosomal proteins in mitotic Xenopus egg extracts and plays an essential role in mitotic chromosome segregation. We have isolated a novel SUMO-2/3-modified mitotic chromosomal protein and identified it as poly(ADP-ribose) polymerase 1 (PARP1). PARP1 was robustly conjugated to SUMO-2/3 on mitotic chromosomes but not on interphase chromatin. PIASy promotes SUMOylation of PARP1 both in egg extracts and in vitro reconstitu...

  4. Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Hwa; Yoo, Hye-In; Kang, Han Sung; Ro, Jungsil [Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do (Korea, Republic of); Yoon, Sungpil, E-mail: yoons@ncc.re.kr [Research Institute, National Cancer Center, Ilsan-gu, Goyang-si, Gyeonggi-do (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Sal sensitizes antimitotic drugs-treated cancer cells. Black-Right-Pointing-Pointer Sal sensitizes them by prevention of G2 arrest and reduced cyclin D1 levels. Black-Right-Pointing-Pointer Sal also sensitizes them by increasing DNA damage and reducing p21 level. Black-Right-Pointing-Pointer A low concentration of Sal effectively sensitized the cancer cells to antimitotic drugs. -- Abstract: Here, we investigated whether Sal could sensitize cancer cells to antimitotic drugs. We demonstrated that Sal sensitized paclitaxcel (PAC)-, docetaxcel (DOC)-, vinblastin (VIN)-, or colchicine (COL)-treated cancer cell lines, suggesting that Sal has the ability to sensitize the cells to any form of microtubule-targeting drugs. Sensitization to the antimitotic drugs could be achieved with very low concentrations of Sal, suggesting that there is a possibility to minimize Sal toxicity associated with human cancer patient treatments. Sensitization by Sal increased apoptosis, which was observed by C-PARP production. Sal sensitized the cancer cells to antimitotic drugs by preventing G2 arrest, suggesting that Sal contributes to the induction of mitotic catastrophe. Sal generally reduced cyclin D1 levels in PAC-, DOC-, and VIN-treated cells. In addition, Sal treatment increased pH2AX levels and reduced p21 levels in antimitotic drugs-treated cells. These observations suggest that the mechanisms underlying Sal sensitization to DNA-damaging compounds, radiation, and microtubule-targeting drugs are similar. Our data demonstrated that Sal sensitizes cancer cells to antimitotic drugs by increasing apoptosis through the prevention of G2 arrest via conserved Sal-sensitization mechanisms. These results may contribute to the development of Sal-based chemotherapy for cancer patients treated with antimitotic drugs.

  5. The effect of magnesium on mitotic spindle formation in Schizosaccharomyces pombe.

    Science.gov (United States)

    Uz, Gulsen; Sarikaya, Aysegul Topal

    2016-01-01

    Magnesium (Mg2+), an essential ion for cells and biological systems, is involved in a variety of cellular processes, including the formation and breakdown of microtubules. The results of a previous investigation suggested that as cells grow the intracellular Mg2+ concentration falls, thereby stimulating formation of the mitotic spindle. In the present work, we used a Mg2+-deficient Schizosaccharomyces pombe strain GA2, in which two essential membrane Mg2+ transporter genes (homologs of ALR1 and ALR2 in Saccharomyces cerevisae) were deleted, and its parental strain Sp292, to examine the extent to which low Mg2+ concentrations can affect mitotic spindle formation. The two S. pombe strains were transformed with a plasmid carrying a GFP-α2-tubulin construct to fluorescently label microtubules. Using the free Mg2+-specific fluorescent probe mag-fura-2, we confirmed that intracellular free Mg2+ levels were lower in GA2 than in the parental strain. Defects in interphase microtubule organization, a lower percentage of mitotic spindle formation and a reduced mitotic index were also observed in the GA2 strain. Although there was interphase microtubule polymerization, the lower level of mitotic spindle formation in the Mg2+-deficient strain suggested a greater requirement for Mg2+ in this phenomenon than previously thought. PMID:27560651

  6. PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells

    Science.gov (United States)

    Rogers, Samuel; Fey, Dirk; McCloy, Rachael A.; Parker, Benjamin L.; Mitchell, Nicholas J.; Payne, Richard J.; Daly, Roger J.; James, David E.; Caldon, C. Elizabeth; Watkins, D. Neil; Croucher, David R.; Burgess, Andrew

    2016-01-01

    ABSTRACT Entry into mitosis is driven by the phosphorylation of thousands of substrates, under the master control of Cdk1. During entry into mitosis, Cdk1, in collaboration with MASTL kinase, represses the activity of the major mitotic protein phosphatases, PP1 and PP2A, thereby ensuring mitotic substrates remain phosphorylated. For cells to complete and exit mitosis, these phosphorylation events must be removed, and hence, phosphatase activity must be reactivated. This reactivation of phosphatase activity presumably requires the inhibition of MASTL; however, it is not currently understood what deactivates MASTL and how this is achieved. In this study, we identified that PP1 is associated with, and capable of partially dephosphorylating and deactivating, MASTL during mitotic exit. Using mathematical modelling, we were able to confirm that deactivation of MASTL is essential for mitotic exit. Furthermore, small decreases in Cdk1 activity during metaphase are sufficient to initiate the reactivation of PP1, which in turn partially deactivates MASTL to release inhibition of PP2A and, hence, create a feedback loop. This feedback loop drives complete deactivation of MASTL, ensuring a strong switch-like activation of phosphatase activity during mitotic exit. PMID:26872783

  7. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    Science.gov (United States)

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. PMID:26406118

  8. High frequency induction of mitotic recombination by ionizing radiation in Mlh1 null mouse cells

    International Nuclear Information System (INIS)

    Mitotic recombination in somatic cells involves crossover events between homologous autosomal chromosomes. This process can convert a cell with a heterozygous deficiency to one with a homozygous deficiency if a mutant allele is present on one of the two homologous autosomes. Thus mitotic recombination often represents the second mutational step in tumor suppressor gene inactivation. In this study we examined the frequency and spectrum of ionizing radiation (IR)-induced autosomal mutations affecting Aprt expression in a mouse kidney cell line null for the Mlh1 mismatch repair (MMR) gene. The mutant frequency results demonstrated high frequency induction of mutations by IR exposure and the spectral analysis revealed that most of this response was due to the induction of mitotic recombinational events. High frequency induction of mitotic recombination was not observed in a DNA repair-proficient cell line or in a cell line with an MMR-independent mutator phenotype. These results demonstrate that IR exposure can initiate a process leading to mitotic recombinational events and that MMR function suppresses these events from occurring

  9. The Effect Of PHA And SEA On Mitotic Index Of Lymphocyte Cell Of Macaca Fasciulare

    International Nuclear Information System (INIS)

    The observation of influences of PHA (phytohemagglutinin) and SEA (staphilucoccal enterotoxin A) on mitotic index of lymphocyte of Macaca Fascicularis had been done. Half milliliters of lymphocyte cells stimulated with PHA or SEA were cultured in 10 ml RPMI + 1.0 ml Fetal Bouvine Serum (FBS ) + 0.1 ml L-glutamine + 0.15 ml PHA or 0.1 ml SEA ( 0.5 μg/ml ) + 0.1 ml Colchisin on 37 degree C for 96 hours. The result demonstrated that the frequency of mitotic index stimulated with PHA was higher than that of SEA. The average of mitotic index with PHA was 18.56 %, and with SEA was 8.3 %. (author)

  10. Semaphorin-Plexin Signaling Controls Mitotic Spindle Orientation during Epithelial Morphogenesis and Repair

    DEFF Research Database (Denmark)

    Xia, Jingjing; Swiercz, Jakub M.; Bañón-Rodríguez, Inmaculada;

    2015-01-01

    Morphogenesis, homeostasis, and regeneration of epithelial tissues rely on the accurate orientation of cell divisions, which is specified by the mitotic spindle axis. To remain in the epithelial plane, symmetrically dividing epithelial cells align their mitotic spindle axis with the plane. Here, we...... show that this alignment depends on epithelial cell-cell communication via semaphorin-plexin signaling. During kidney morphogenesis and repair, renal tubular epithelial cells lacking the transmembrane receptor Plexin-B2 or its semaphorin ligands fail to correctly orient the mitotic spindle, leading to...... severe defects in epithelial architecture and function. Analyses of a series of transgenic and knockout mice indicate that Plexin-B2 controls the cell division axis by signaling through its GTPase-activating protein (GAP) domain and Cdc42. Our data uncover semaphorin-plexin signaling as a central...

  11. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes.

    Science.gov (United States)

    Rahayu, Retno; Ohsaki, Eriko; Omori, Hiroko; Ueda, Keiji

    2016-09-01

    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy-electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. PMID:27254595

  12. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    Science.gov (United States)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  13. Bistability of mitotic entry and exit switches during open mitosis in mammalian cells.

    Science.gov (United States)

    Hégarat, Nadia; Rata, Scott; Hochegger, Helfrid

    2016-07-01

    Mitotic entry and exit are switch-like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions. PMID:27231150

  14. Mitotic recombination induced by chemical and physical agents in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    The treatment of diploid cultures of yeast with ultraviolet light (uv), γ-rays, nitrous acid (na) and ethyl methane sulphonate (ems) results in increases in cell death, mitotic gene conversion and crossing-over. Acridine orange (ao) treatment, in contrast, was effective only in increasing the frequency of gene conversion. The individual mutagens were effective in the order uv>na>γ-rays>ao>ems. Prior treatment of yeast cultures in starvation medium produced a significant reduction in the yield of induced gene conversion. The results have been interpreted on the basis of a general model of mitotic gene conversion which involves the post-replication repair of induced lesions involving de novo DNA synthesis without genetic exchange. In contrast mitotic crossing-over appears to involve the action of a repair system independent from excision or post-replication repair which involves genetic exchange between homologous chromosomes

  15. Growth arrest by the antitumor steroidal lactone withaferin A in human breast cancer cells is associated with down-regulation and covalent binding at cysteine 303 of β-tubulin.

    Science.gov (United States)

    Antony, Marie L; Lee, Joomin; Hahm, Eun-Ryeong; Kim, Su-Hyeong; Marcus, Adam I; Kumari, Vandana; Ji, Xinhua; Yang, Zhen; Vowell, Courtney L; Wipf, Peter; Uechi, Guy T; Yates, Nathan A; Romero, Guillermo; Sarkar, Saumendra N; Singh, Shivendra V

    2014-01-17

    Withaferin A (WA), a C5,C6-epoxy steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer cells in vitro and in vivo and prevents mammary cancer development in a transgenic mouse model. However, the mechanisms underlying the anticancer effect of WA are not fully understood. Herein, we report that tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. The G2 and mitotic arrest resulting from WA exposure in MCF-7, SUM159, and SK-BR-3 cells was associated with a marked decrease in protein levels of β-tubulin. These effects were not observed with the naturally occurring C6,C7-epoxy analogs of WA (withanone and withanolide A). A non-tumorigenic normal mammary epithelial cell line (MCF-10A) was markedly more resistant to mitotic arrest by WA compared with breast cancer cells. Vehicle-treated control cells exhibited a normal bipolar spindle with chromosomes aligned along the metaphase plate. In contrast, WA treatment led to a severe disruption of normal spindle morphology. NMR analyses revealed that the A-ring enone in WA, but not in withanone or withanolide A, was highly reactive with cysteamine and rapidly succumbed to irreversible nucleophilic addition. Mass spectrometry demonstrated direct covalent binding of WA to Cys(303) of β-tubulin in MCF-7 cells. Molecular docking indicated that the WA-binding pocket is located on the surface of β-tubulin and characterized by a hydrophobic floor, a hydrophobic wall, and a charge-balanced hydrophilic entrance. These results provide novel insights into the mechanism of growth arrest by WA in breast cancer cells. PMID:24297176

  16. Resuscitation, prolonged cardiac arrest, and an automated chest compression device

    DEFF Research Database (Denmark)

    Risom, Martin; Jørgensen, Henrik; Rasmussen, Lars S;

    2010-01-01

    The European Resuscitation Council's 2005 guidelines for cardiopulmonary resuscitation (CPR) emphasize the delivery of uninterrupted chest compressions of adequate depth during cardiac arrest.......The European Resuscitation Council's 2005 guidelines for cardiopulmonary resuscitation (CPR) emphasize the delivery of uninterrupted chest compressions of adequate depth during cardiac arrest....

  17. Buoyant currents arrested by convective dissolution

    Science.gov (United States)

    MacMinn, Christopher W.; Juanes, Ruben

    2013-05-01

    When carbon dioxide (CO2) dissolves into water, the density of water increases. This seemingly insubstantial phenomenon has profound implications for geologic carbon sequestration. Here we show, by means of laboratory experiments with analog fluids, that the up-slope migration of a buoyant current of CO2 is arrested by the convective dissolution that ensues from a fingering instability at the moving CO2-groundwater interface. We consider the effectiveness of convective dissolution as a large-scale trapping mechanism in sloping aquifers, and we show that a small amount of slope is beneficial compared to the horizontal case. We study the development and coarsening of the fingering instability along the migrating current and predict the maximum migration distance of the current with a simple sharp-interface model. We show that convective dissolution exerts a powerful control on CO2 plume dynamics and, as a result, on the potential of geologic carbon sequestration.

  18. Growth arrest specific protein (GAS) 6

    DEFF Research Database (Denmark)

    Haase, T N; Rasmussen, Morten; Jaksch, C A M; Gaarn, L W; Petersen, Camilla K; Billestrup, N; Nielsen, Jens Høiriis

    2013-01-01

    Aims/hypothesis Maternal low-protein (LP) diet during gestation results in a reduced beta cell mass in the offspring at birth and this may hamper the ability to adapt to high-energy food and sedentary lifestyle later in life. To investigate the biology behind the LP-offspring phenotype, this study...... using RNA microarray and quantitative PCR. The role of a differentially expressed gene, growth arrest specific protein 6 (GAS6), was evaluated in vitro using neonatal rat islets. Results The mRNA level of Gas6, known to be mitogenic in other tissues, was reduced in LP offspring. The mRNA content of Mafa...... was increased in LP offspring suggesting an early maturation of beta cells. When applied in vitro, GAS6 increased proliferation of neonatal pancreatic beta cells, while reducing glucose-stimulated insulin secretion without changing the total insulin content of the islets. In addition, GAS6 decreased...

  19. Maturation arrest of human oocytes at germinal vesicle stage

    Directory of Open Access Journals (Sweden)

    Zhi Qin Chen

    2010-01-01

    Full Text Available Maturation arrest of human oocytes may occur at various stages of the cell cycle. A total failure of human oocytes to complete meiosis is rarely observed during assisted conception cycles. We describe here a case of infertile couples for whom all oocytes repeatedly failed to mature at germinal vesicle (GV stage during in vitro fertilization/Intra cytoplasmic sperm injection (IVF/ICSI. The patient underwent controlled ovarian stimulation followed by oocyte retrieval and IVF/ICSI. The oocytes were stripped off cumulus cells prior to the ICSI procedure and their maturity status was defined. The oocyte maturation was repeatedly arrested at the GV. Oocyte maturation arrest may be the cause of infertility in this couple. The recognition of oocyte maturation arrest as a specific medical condition may contribute to the characterization of the currently known as "oocyte factor." The cellular and genetic mechanisms causing oocyte maturation arrest should be the subject for further investigation.

  20. Mitotic Arrest and Apoptosis in Breast Cancer Cells Induced by Origanum majorana Extract: Upregulation of TNF-α and Downregulation of Survivin and Mutant p53

    OpenAIRE

    Yusra Al Dhaheri; Ali Eid; Synan AbuQamar; Samir Attoub; Mohammad Khasawneh; Ghenima Aiche; Soleiman Hisaindee; Rabah Iratni

    2013-01-01

    Background: In the present study, we investigated the effect of Origanum majorana ethanolic extract on the survival of the highly proliferative and invasive triple-negative p53 mutant breast cancer cell line MDA-MB-231. Results: We found that O. majorana extract (OME) was able to inhibit the viability of the MDA-MB-231 cells in a time- and concentration-dependent manner. The effect of OME on cellular viability was further confirmed by the inhibition of colony growth. We showed, depending on t...

  1. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  2. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  3. Loss of CCDC6, the first identified RET partner gene, affects pH2AX S139 levels and accelerates mitotic entry upon DNA damage.

    Directory of Open Access Journals (Sweden)

    Francesco Merolla

    Full Text Available CCDC6 was originally identified in chimeric genes caused by chromosomal translocation involving the RET proto-oncogene in some thryoid tumors mostly upon ionizing radiation exposure. Recognised as a pro-apoptotic phosphoprotein that negatively regulates CREB1-dependent transcription, CCDC6 is an ATM substrate that is responsive to genotoxic stress. Here we report that following genotoxic stress, loss or inactivation of CCDC6 in cancers that carry the CCDC6 fusion, accelerates the dephosphorylation of pH2AX S139, resulting in defective G2 arrest and premature mitotic entry. Moreover, we show that CCDC6 depleted cells appear to repair DNA damaged in a shorter time compared to controls, based on reporter assays in cells. High-troughput proteomic screening predicted the interaction between the CCDC6 gene product and the catalytic subunit of Serin-Threonin Protein Phosphatase 4 (PP4c recently identified as the evolutionarily conserved pH2AX S139 phosphatase that is activated upon DNA Damage. We describe the interaction between CCDC6 and PP4c and we report the modulation of PP4c enzymatic activity in CCDC6 depleted cells. We discuss the functional significance of CCDC6-PP4c interactions and hypothesize that CCDC6 may act in the DNA Damage Response by negatively modulating PP4c activity. Overall, our data suggest that in primary tumours the loss of CCDC6 function could influence genome stability and thereby contribute to carcinogenesis.

  4. HTLV-1 Tax mutants that do not induce G1 arrest are disabled in activating the anaphase promoting complex

    Directory of Open Access Journals (Sweden)

    Kuo Yu-Liang

    2007-05-01

    Full Text Available Abstract HTLV-1 Tax is a potent activator of viral transcription and NF-κB. Recent data indicate that Tax activates the anaphase promoting complex/cyclosome (APC/C ahead of schedule, causing premature degradation of cyclin A, cyclin B1, securin, and Skp2. Premature loss of these mitotic regulators is accompanied by mitotic aberrations and leads to rapid senescence and cell cycle arrest in HeLa and S. cerevisiae cells. Tax-induced rapid senescence (tax-IRS of HeLa cells is mediated primarily by a dramatic stabilization of p27KIP and is also accompanied by a great surge in the level of p21CIP1mRNA and protein. Deficiencies in p27KIP prevent Tax-IRS. A collection of tax point mutants that permit normal growth of S. cerevisiae have been isolated. Like wild-type tax, many of them (C23W, A108T, L159F, and L235F transactivate both the HTLV-LTR and the NF-κB reporters. One of them, V19M, preferentially activates NF-κB, but is attenuated for LTR activation. None of the mutants significantly elevated the levels of p21CIP1and p27KIP1, indicating that the dramatic surge in p21CIP1/WAF1and p27KIP 1induced by Tax is brought about by a mechanism distinct from NF-κB or LTR activation. Importantly, the ability of these mutants to activate APC/C is attenuated or abrogated. These data indicate that Tax-induced rapid senescence is causally associated with APC/C activation.

  5. Influence of sodium phosphate (E 339) on mitotic division in Calendula officinalis L.

    OpenAIRE

    Romeo-Cristian Marc; Gabriela Capraru

    2008-01-01

    This paper includes the cytogenetic effects induced by sodium phosphate (E 339) food additive in meristematic cells of Calendula officinalis L. root tips. The increase of food additive concentration determined the decrease of mitotic index, while the frequency and the type of chromosome aberrations are much greater in treated variants, comparatively with control.

  6. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Kathryn M. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States); Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)]. E-mail: ghoffmann@holycross.edu

    2007-03-01

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, {beta}-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv{sup +} revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state.

  7. A selective stain for mitotic figures, particularly in the developing brain.

    Science.gov (United States)

    Fraser, F J

    1982-07-01

    A selective stain for mitotic figures is valuable where autoradiographic counting is not required, especially in the developing brain. Most work in this field has been based on conventional nuclear stains which do not differentiate mitotic figures from resting cells by color. Hematoxylin, Feulgen, gallocyanin and Nissl methods have been used particularly. The method described uses a modified Bouin fixative, followed by hydrolysis in 1 N HCl. Mitotic figures are selectively stained using crystal violet, with nuclear fast red as the counterstain for resting cells. The method has been tested using material from postnatal and fetal sheep, guinea pig and rat. Using paraffin mounted serial sections it is applicable to all organs. The method was very successful on developing rat brain, particularly for detail and quantitative estimation in the early stages of prenatal development, which was of primary interest. Nucleated cells of the erythrocytic series, keratin and what appear to be mast cells were found to stain. When nuclear counting or cell recognition were required these did not cause any difficulty, except in prenatal liver. The highly selective method presented stains mitotic figures, in all tissue tested, an intense blue against a background of red resting cells. PMID:6183796

  8. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoon, Hyun-Joo [TissueGene Inc. 9605 Medical Center Dr., Rockville, MD 20850 (United States); Yoo, Hae Yong [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Choi, Cheol Yong, E-mail: choicy@skku.ac.kr [Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  9. Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities

    NARCIS (Netherlands)

    Hut, HMJ; Kampinga, HH; Sibon, OCM

    2005-01-01

    The effect of heat shock on centrosomes has been mainly studied in interphase cells. Centrosomes play a key role in proper segregation of DNA during mitosis. However, the direct effect and consequences of heat shock on mitotic cells and a possible cellular defense system against proteotoxic stress d

  10. Mitotic phosphorylation of VCIP135 blocks p97ATPase-mediated Golgi membrane fusion

    Energy Technology Data Exchange (ETDEWEB)

    Totsukawa, Go; Matsuo, Ayaka; Kubota, Ayano; Taguchi, Yuya; Kondo, Hisao, E-mail: hk228@med.kyushu-u.ac.jp

    2013-04-05

    Highlights: •VCIP135 is mitotically phosphorylated on Threonine-760 and Serine-767 by Cdc2. •Phosphorylated VCIP135 does not bind to p97ATPase. •The phosphorylation of VCIP135 inhibits p97ATPase-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 and p37 phosphorylation on Serine-56 and Threonine-59 result in mitotic inhibition of the p97/p47 and the p97/p37 pathways, respectively [11,14]. In this study, we show another mechanism of mitotic inhibition of p97-mediated Golgi membrane fusion. We clarified that VCIP135, an essential factor in both p97 membrane fusion pathways, is phosphorylated on Threonine-760 and Serine-767 by Cdc2 at mitosis and that this phosphorylated VCIP135 does not bind to p97. An in vitro Golgi reassembly assay revealed that VCIP135(T760E, S767E), which mimics mitotic phosphorylation, caused no cisternal regrowth. Our results indicate that the phosphorylation of VCIP135 on Threonine-760 and Serine-767 inhibits p97-mediated Golgi membrane fusion at mitosis.

  11. Discrimination of bromodeoxyuridine labelled and unlabelled mitotic cells in flow cytometric bromodeoxyuridine/DNA analysis

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J K; Christensen, I J;

    1994-01-01

    Bromodeoxyuridine (BrdUrd) labelled and unlabelled mitotic cells, respectively, can be discriminated from interphase cells using a new method, based on immunocytochemical staining of BrdUrd and flow cytometric four-parameter analysis of DNA content, BrdUrd incorporation, and forward and orthogona...

  12. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends.

    Science.gov (United States)

    Kern, David M; Nicholls, Peter K; Page, David C; Cheeseman, Iain M

    2016-05-01

    The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning. PMID:27138257

  13. Classification of mitotic figures with convolutional neural networks and seeded blob features

    Directory of Open Access Journals (Sweden)

    Christopher D Malon

    2013-01-01

    Full Text Available Background: The mitotic figure recognition contest at the 2012 International Conference on Pattern Recognition (ICPR challenges a system to identify all mitotic figures in a region of interest of hematoxylin and eosin stained tissue, using each of three scanners (Aperio, Hamamatsu, and multispectral. Methods: Our approach combines manually designed nuclear features with the learned features extracted by convolutional neural networks (CNN. The nuclear features capture color, texture, and shape information of segmented regions around a nucleus. The use of a CNN handles the variety of appearances of mitotic figures and decreases sensitivity to the manually crafted features and thresholds. Results : On the test set provided by the contest, the trained system achieves F1 scores up to 0.659 on color scanners and 0.589 on multispectral scanner. Conclusions : We demonstrate a powerful technique combining segmentation-based features with CNN, identifying the majority of mitotic figures with a fair precision. Further, we show that the approach accommodates information from the additional focal planes and spectral bands from a multi-spectral scanner without major redesign.

  14. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    International Nuclear Information System (INIS)

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis

  15. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, β-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv+ revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state

  16. Direct preparation protocol to obtain mitotic chromosomes from canine mammary tumors.

    Science.gov (United States)

    Morais, C S D; Affonso, P R A M; Bitencourt, J A; Wenceslau, A A

    2015-01-01

    Currently, mammary neoplasms in female canines are a serious problem in veterinary clinics. In addition, the canine species is an excellent disease model for human oncology because of the biological and genetic similarities between the species. Cytogenetics has allowed further study of the characterization of neoplasms in canines. We hypothesized that the use of a direct preparation protocol for mitotic chromosome analysis would provide a simple and low cost protocol for use in all laboratories. The objective of this method is to display in a few hours of dividing cells just like the time of collection since cell division in tissue can be obtained. Ten female canines with the spontaneous occurrence of mammary neoplasia were used to test a pioneering direct preparation protocol to obtain mitotic chromosomes. The excised breast tumor tissue fragments were subjected to the protocol consisting of treatment with colchicine, treatment with hypotonic solution, and fixation. Mitotic chromosomes were absent in cell suspensions of only two samples among the 10 materials analyzed, based on the analysis of five blades for each preparation obtained. So, the cell suspension obtained allowed for the observation of eight tissue samples viable for cytogenetic analysis, five of which had excellent numbers of mitotic chromosomes. However, the technique was unsuccessful in producing high-quality cell suspensions because of inadequate condensation and scattering of chromosomes. While adjustments to methodological procedures are needed, this protocol represents a low cost and simplified method to study the cytogenetics of canine tumors. PMID:26782592

  17. Flow Sorting of Mitotic Chromosomes in Common Wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Vrána, Jan; Doleželová, Marie; Šimková, Hana; Čihalíková, Jarmila; Lysák, Martin; Doležel, Jaroslav

    2000-01-01

    Roč. 156, - (2000), s. 2033-2041. ISSN 0016-6731 R&D Projects: GA ČR GV521/96/K117; GA MŠk ME 376 Institutional research plan: CEZ:AV0Z5038910 Keywords : Mitotic Chromosomes * Triticum aestivum L. Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.687, year: 2000

  18. Suspension of Mitotic Activity in Dentate Gyrus of the Hibernating Ground Squirrel

    Directory of Open Access Journals (Sweden)

    Victor I. Popov

    2011-01-01

    Full Text Available Neurogenesis occurs in the adult mammalian hippocampus, a region of the brain important for learning and memory. Hibernation in Siberian ground squirrels provides a natural model to study mitosis as the rapid fall in body temperature in 24 h (from 35-36°C to +4–6°C permits accumulation of mitotic cells at different stages of the cell cycle. Histological methods used to study adult neurogenesis are limited largely to fixed tissue, and the mitotic state elucidated depends on the specific phase of mitosis at the time of day. However, using an immunohistochemical study of doublecortin (DCX and BrdU-labelled neurons, we demonstrate that the dentate gyrus of the ground squirrel hippocampus contains a population of immature cells which appear to possess mitotic activity. Our data suggest that doublecortin-labelled immature cells exist in a mitotic state and may represent a renewable pool for generation of new neurons within the dentate gyrus.

  19. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis

    Directory of Open Access Journals (Sweden)

    Lee Seung Joon

    2012-01-01

    Full Text Available Abstract Background Curcumin (diferuloylmethane, the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of Curcuma longa. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC, is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy. Methods Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an in vitro APC activity assay. Results We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells. Conclusions We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to

  20. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    Curcumin (diferuloylmethane), the yellow pigment in the Asian spice turmeric, is a hydrophobic polyphenol from the rhizome of Curcuma longa. Because of its chemopreventive and chemotherapeutic potential with no discernable side effects, it has become one of the major natural agents being developed for cancer therapy. Accumulating evidence suggests that curcumin induces cell death through activation of apoptotic pathways and inhibition of cell growth and proliferation. The mitotic checkpoint, or spindle assembly checkpoint (SAC), is the major cell cycle control mechanism to delay the onset of anaphase during mitosis. One of the key regulators of the SAC is the anaphase promoting complex/cyclosome (APC/C) which ubiquitinates cyclin B and securin and targets them for proteolysis. Because APC/C not only ensures cell cycle arrest upon spindle disruption but also promotes cell death in response to prolonged mitotic arrest, it has become an attractive drug target in cancer therapy. Cell cycle profiles were determined in control and curcumin-treated medulloblastoma and various other cancer cell lines. Pull-down assays were used to confirm curcumin binding. APC/C activity was determined using an in vitro APC activity assay. We identified Cdc27/APC3, a component of the APC/C, as a novel molecular target of curcumin and showed that curcumin binds to and crosslinks Cdc27 to affect APC/C function. We further provide evidence that curcumin preferably induces apoptosis in cells expressing phosphorylated Cdc27 usually found in highly proliferating cells. We report that curcumin directly targets the SAC to induce apoptosis preferably in cells with high levels of phosphorylated Cdc27. Our studies provide a possible molecular mechanism why curcumin induces apoptosis preferentially in cancer cells and suggest that phosphorylation of Cdc27 could be used as a biomarker to predict the therapeutic response of cancer cells to curcumin

  1. Evolution of the dragonfly head-arresting system

    OpenAIRE

    Gorb, S. N.

    1999-01-01

    The arrester or fixation system of the head in adult Odonata is unique among arthropods. This system involves the organs of two body segments: the head and the neck. It consists of a skeleton–muscle apparatus that sets the arrester parts in motion. The parts comprise formations covered with complicated microstructures: fields of microtrichia on the rear surface of the head and post-cervical sclerites of the neck. The arrester immobilizes the head during feeding or when the dragonfly is in tan...

  2. Soft Semicrystalline Thermoplastic Elastomers by Arrested Crystallization

    Science.gov (United States)

    Burns, Adam; Register, Richard

    2014-03-01

    Thermoplastic elastomers (TPEs) marry the solid-state behavior of vulcanized rubbers with the melt processability of thermoplastics. Archetypal soft TPEs consist of triblock copolymers comprising a rubbery mid-block flanked by two identical glassy end-blocks. Incorporating crystalline blocks into TPEs can confer solvent resistance as well as reduce the processing costs by giving access to single-phase melts. However, simply substituting crystalline for glassy end-blocks dramatically degrades the solid-state mechanical properties, particularly at large strains. We seek to integrate the benefits of crystallinity into TPEs, while maintaining the desired mechanical properties, using the block architecture: crystalline-glassy-rubbery-glassy-crystalline. Methods have been developed to synthesize highly symmetric, narrow-distribution block copolymers with this architecture using anionic polymerization of butadiene, styrene, and isoprene followed by hydrogenation. Judicious choices of block molecular weights indeed yield homogeneous melts above the melting point of the crystalline component. Upon cooling, crystallization--rather than interblock repulsion--establishes the solid-state microstructure which physically crosslinks the rubbery mid-block, ultimately conferring elasticity. Subsequent vitrification of the adjacent glassy blocks arrests the growth of the crystallites, and protects them from yielding under applied load. As a result, our materials show low initial moduli, strain hardening, and high extensibility, typical of commercial TPEs.

  3. Extracorporeal membrane oxygenation for pediatric cardiac arrest.

    Science.gov (United States)

    Ryan, Jennie

    2015-02-01

    Extracorporeal cardiopulmonary resuscitation (ECPR) remains a promising treatment for pediatric patients in cardiac arrest unresponsive to traditional cardiopulmonary resuscitation. With venoarterial extracorporeal support, blood is drained from the right atrium, oxygenated through the extracorporeal circuit, and transfused back to the body, bypassing the heart and lungs. The use of artificial oxygenation and perfusion thus provides the body a period of hemodynamic stability, while allowing resolution of underlying disease processes. Survival rates for ECPR patients are higher than those for traditional cardiopulmonary resuscitation (CPR), although neurological outcomes require further investigation. The impact of duration of CPR and length of treatment with extracorporeal membrane oxygenation vary in published reports. Furthermore, current guidelines for the initiation and use of ECPR are limited and may lead to confusion about appropriate use of this support. Many ethical concerns arise with this advanced form of life support. More often than not, the dilemma is not whether to withhold ECPR, but rather when to withdraw it. Although clinicians must decide if ECPR is appropriate and when further intervention is futile, the ultimate burden of choice is left to the patient's caregivers. Offering support and guidance to the patient's family as well as the patient is essential. PMID:25639578

  4. MRI in the assessment of growth arrest

    Energy Technology Data Exchange (ETDEWEB)

    Lohman, Martina; Kivisaari, Arto; Kivisaari, Leena [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Vehmas, Tapio [Finnish Institute of Occupational Health, Helsinki (Finland); Kallio, Pentti; Puntila, Juha [Department of Paediatric Surgery, Hospital for Children and Adolescents, University Central Hospital, Helsinki (Finland)

    2002-01-01

    Objective: To compare MRI with X-ray tomography in the assessment of bone bridges across the growth plate. Materials and methods: The investigation consisted of two parts. (1) Eleven children with 13 epiphyses suspected of physeal growth arrests were examined with conventional X-ray tomography and MRI. The bar was post-traumatic in eight children, postinfectious in two and due to a congenital, operated pes equinovarus in one. Three blinded radiologists separately evaluated the examinations retrospectively. (2) The images of four children with known physeal bars in the ankle were mixed with 36 normal examinations obtained 1-year after trauma and evaluated blindly by three radiologists. Results: In 5 of 13 epiphysis, the bony bridge was considered smaller on MRI than on X-ray tomography, in 7 of 13 it was considered equal, while it was larger only in one. The interobserver agreement (weighted kappa) was 0.8 (very good) for MRI, 0.76 (good) for X-ray tomography and 0.60 (moderate) for radiographs. The four bony bridges were easily detected on MRI. Conclusions: Compared to MRI, the size of bridges was estimated larger by tomography in about half of the patients. (orig.)

  5. Emergency Neurological Life Support: Resuscitation Following Cardiac Arrest.

    Science.gov (United States)

    Rittenberger, Jon C; Friess, Stuart; Polderman, Kees H

    2015-12-01

    Cardiac arrest is the most common cause of death in North America. Neurocritical care interventions, including targeted temperature management (TTM), have significantly improved neurological outcomes in patients successfully resuscitated from cardiac arrest. Therefore, resuscitation following cardiac arrest was chosen as an emergency neurological life support protocol. Patients remaining comatose following resuscitation from cardiac arrest should be considered for TTM. This protocol will review induction, maintenance, and re-warming phases of TTM, along with management of TTM side effects. Aggressive shivering suppression is necessary with this treatment to ensure the maintenance of a target temperature. Ancillary testing, including electrocardiography, computed tomography and/or magnetic resonance imaging of the brain, continuous electroencephalography monitoring, and correction of electrolyte, blood gas, and hematocrit changes, are also necessary to optimize outcomes. PMID:26438463

  6. [Effect of phenibut on the respiratory arrest caused by serotonin].

    Science.gov (United States)

    Tarakanov, I A; Tarasova, N N; Belova, E A; Safonov, V A

    2006-01-01

    The role of the GABAergic system in mechanisms of the respiratory arrest caused by serotonin administration was studied in anaesthetized rats. Under normal conditions, the systemic administration of serotonin (20-60 mg/kg, i.v.) resulted in drastic changes of the respiratory pattern, whereby the initial phase of increased respiratory rate was followed by the respiratory arrest. The preliminary injection of phenibut (400 mg/kg, i.p.) abolished or sharply reduced the duration of the respiratory arrest phase induced by serotonin. Bilateral vagotomy following the phenibut injection potentiated the anti-apnoesic effect of phenibut, which was evidence of the additive action of vagotomy and phenibut administration. The mechanism of apnea caused by serotonin administration is suggested to include a central GABAergic element, which is activated by phenibut so as to counteract the respiratory arrest. PMID:16579056

  7. Diacetylmorphine (heroin) body packer presenting with respiratory arrest.

    Science.gov (United States)

    Naseem, Arshad; Abbas, Shahid

    2009-04-01

    Intracorporeal concealment of illicit drugs known as 'body packing' is uncommonly reported. A body packer with swallowed capsules containing Diacetylmorphine (heroin) for smuggling purposes presented with respiratory arrest and recovered after ventilatory support and nalaxone infusion. PMID:19356347

  8. Early myoclonic status and outcome after cardiorespiratory arrest

    OpenAIRE

    Morris, H; Howard, R; Brown, P.

    1998-01-01

    It has been suggested that early myoclonic status after cardiorespiratory arrest is an agonal event.1 Here we describe three cases who developed early myoclonic status during a coma after cardiorespiratory arrest due to acute asthma. As consciousness improved, each patient developed Lance-Adams type multifocal myoclonus, but the eventual outcome was satisfactory. Only one patient needed assistance to walk, and all three were self caring. One patient had persistent dyscalc...

  9. Crack arrest saturation model under combined electrical and mechanical loadings

    OpenAIRE

    R.R. Bhargava; A. Setia

    2009-01-01

    Purpose: The investigation aims at proposing a model for cracked piezoelectric strip which is capable to arrest the crack.Design/methodology/approach: Under the combined effect of electrical and mechanical loadings applied at the edges of the strip, the developed saturation zone is produced at each tip of the crack. To arrest further opening of the crack, the rims of the developed saturation zones are subjected to in-plane cohesive, normal uniform constant saturation point electrical displace...

  10. Al-Qaeda arrest casts shadow over the LHC

    CERN Multimedia

    Dacey, James

    2010-01-01

    "Cern remains on course for the imminent switch-on of the Large Hadron Collider (LHC) despite the media frenzy following the recent arrest of a physicist who had been working at the facility. The researcher in question is a 32-year-old man of Algerian descent who is expected to face trail in France - the country in which he was arrested" (0.5 page)

  11. The psychosocial outcome of anoxic brain injury following cardiac arrest

    OpenAIRE

    Wilson, Michelle

    2012-01-01

    Aim of the study The psychosocial outcome of anoxic brain injury following cardiac arrest is a relatively under researched, but clinically important area. The aim of the current study was to add to the limited existing literature exploring the psychosocial outcome for cardiac arrest survivors, but specifically explore if there is a greater impact on psychosocial outcome in individuals experiencing anoxic brain injury as a result. Methods A range of self report measures were used to c...

  12. Cardiopulmonary arrest in pregnancy with schizophrenia: a case report

    OpenAIRE

    Kudo, Takako; Kaga, Akimune; Akagi, Kozo; Iwahashi, Hideki; Makino, Hiromitsu; WATANABE, YOKO; Kawamura, Takae; Sato, Taiju; Shinozaki, Tsuyoshi; Miwa, Shinya; Okazaki, Nobuo; Kure, Shigeo; Nakae, Shingi

    2014-01-01

    Background Cardiopulmonary arrest in pregnancy has a very high maternal and fetal mortality rate. We report a case of successful maternal and neonatal survival in association with emergency cesarean section of a schizophrenic pregnant patient. To our knowledge, this is the first reported case of cardiopulmonary arrest in a pregnant woman with schizophrenia. Case presentation The parents were Japanese. The mother was 39 years old and had no history of prior pregnancy. Her admission to our hosp...

  13. Usage of Lightning Arrester Line to Feed Light Electrical Loads

    Directory of Open Access Journals (Sweden)

    Hani B. Odeh

    2009-01-01

    Full Text Available In remote areas, light loads (tens of kilowatts are scattered and situated in the field of high voltage lines (66KV and above. These loads are very far from the main feeders/sub-stations (33KV-0.380KV. Feeding such loads in the traditional ways like provision of Diesel-Powered Stations, installation of new distribution lines from the Feeding Centers, or building new Sub-Stations are not practical ways from the economical point of view, because it requires huge additional expenses and will increase electrical power losses. These expenses are not worthy for such loads and therefore, it is necessary to search for other methods to supply them. One of these methods is to use the lightning arrester line as capacitive divider to supply the light loads. In this research, the induced voltage of the lightning arrester line was calculated when it is isolated from the earth. We found the capacitance between lightning arrester line versus the phases and lightning arrester. It was also found the selective power out of the lightning arrester line and the required length which is to be isolated from the earth keeping the main function of the lightning arrester line. When economically comparing between supplying the light electrical loads by traditional ways and the method of lightning arrester, it was found the advantage of using lightning arresters to supply such loads. Also, by using the traditional methods, it was noted that there is a power loss in the power transmission lines by a percentage of 1.8%.

  14. The stringent response and cell cycle arrest in Escherichia coli.

    OpenAIRE

    Daniel J Ferullo; Lovett, Susan T.

    2008-01-01

    The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes...

  15. The Stringent Response and Cell Cycle Arrest in Escherichia coli

    OpenAIRE

    Daniel J Ferullo; Lovett, Susan T.

    2008-01-01

    The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes...

  16. Dynamic propagation and cleavage crack arrest in bainitic steel

    International Nuclear Information System (INIS)

    In complement of the studies of harmfulness of defects, generally realized in term of initiation, the concept of crack arrest could be used as complementary analyses to the studies of safety. The stop occurs when the stress intensity factor becomes lower than crack arrest toughness (KIa) calculated in elasto-statics (KI ≤ KIa). The aim of this thesis is to understand and predict the stop of a crack propagating at high speed in a 18MND5 steel used in the pressure water reactor (PWR). The test chosen to study crack arrest is the disc thermal shock test. The observations under the scanning electron microscope of the fracture surface showed that the crack arrest always occurs in cleavage mode and that the critical microstructural entity with respect to the propagation and crack arrest corresponds to at least the size of the prior austenitic grain. The numerical analyses in elasto-statics confirm the conservatism of the codified curve of the RCC-M with respect to the values of KIa. The dynamic numerical analyses show that the deceleration of the crack measured at the end of the propagation is related to the global dynamic of the structure (vibrations). The transferability to components of crack arrest toughness obtained from tests analysed in static is thus not assured. The disc thermal shock tests were also modelled by considering a criterion of propagation and arrest of the type 'RKR' characterized by a critical stress sc which depends on the temperature. The results obtained account well for the crack jump measured in experiments as well as the shape of the crack arrest front. (author)

  17. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    DEFF Research Database (Denmark)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob;

    2013-01-01

    reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function....... Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs....

  18. An in vivo model of mitotic cell death and Ras/MAPK signaling

    International Nuclear Information System (INIS)

    Full text: We have created the first and only existing tissue-model of mitotic cell death using the nematode C. elegans. We are able to measure radiation sensitivity in C. elegans by microscopically scoring the percentage of radiation-induced abnormal vulvae. We have found that these abnormalities are due to the death of the vulva cells after their third (and final) division, consistent with post-mitotic cell death. In C. elegans the Ras/MAPK signaling pathway is primarily responsible for the development of the hermaphrodite vulva, and is highly conserved to the mammalian Ras/MAPK pathway. We began by studying the effects of radiation on worm strains with mild loss-of-function (lof) mutations in components of the Ras/MAPK pathway. While the mutant strains that we studied have no abnormalities in normal vulva development, we found that all were radiosensitive, with increased radiation-induced vulval abnormalities as compared to wild-type worms. We therefore wanted to see if overexpression of the Ras/MAPK pathway would confer radioresistance in our system, so we irradiated a gain-of-function (gof) EGFR mutant worm strain. We found that this strain was radioresistant, with less radiation-induced vulval abnormalities than wild-type worms. We have concluded that the Ras/MAPK pathway protects against mitotic cell death in C. elegans. We wanted to better understand the downstream effectors of Ras/MAPK signaling that facilitate protection from mitotic cell death. Since mitotic cell death is due to DNA damage, we hypothesized that worm strains with mutations in the DNA damage response pathway should also be sensitive to mitotic cell death. We have begun analyzing worms with mutations in cell cycle checkpoint genes and DNA damage sensor genes, and have found that all of the strains tested thus far are highly radiosensitive. We plan to genetically cross gain-of-function Ras/MAPK mutants and loss-of-function checkpoint or damage response mutants, and determine the linearity of

  19. Situational ambiguity and gendered patterns of arrest for intimate partner violence.

    Science.gov (United States)

    Durfee, Alesha

    2012-01-01

    Using data from the 2005 National Incident-Based Reporting System (NIBRS), this analysis focuses on the impacts that domestic violence mandatory arrest policies have on arrest outcomes in "situationally ambiguous" cases: cases where both the female and male partners have been identified by police as both a victim and an offender. Results indicate that although officers arrest male partners more frequently than female partners, after controlling for incident and individual factors, mandatory arrest policies disproportionately affect women. Furthermore, correlates of arrest differ for male-only arrests versus female-only arrests. These findings are discussed in the context of changing legal responses to domestic violence. PMID:22411299

  20. Mitotic stopwatch for the blast fungus Magnaporthe oryzae during invasion of rice cells.

    Science.gov (United States)

    Jones, Kiersun; Jenkinson, Cory B; Borges Araújo, Maíra; Zhu, Jie; Kim, Rebecca Y; Kim, Dong Won; Khang, Chang Hyun

    2016-08-01

    To study nuclear dynamics of Magnaporthe oryzae, we developed a novel mitotic reporter strain with GFP-NLS (localized in nuclei during interphase but in the cytoplasm during mitosis) and H1-tdTomato (localized in nuclei throughout the cell cycle). Time-lapse confocal microscopy of the reporter strain during host cell invasion provided several new insights into nuclear division and migration in M. oryzae: (i) mitosis lasts about 5min; (ii) mitosis is semi-closed; (iii) septal pores are closed during mitosis; and (iv) a nucleus exhibits extreme constriction (approximately from 2μm to 0.5μm), elongation (over 5μm), and long migration (over 16μm). Our observations raise new questions about mechanisms controlling the mitotic dynamics, and the answers to these questions may result in new means to prevent fungal proliferation without negatively affecting the host cell cycle. PMID:27321562

  1. Analysis of the Ceratitis capitata y chromosome using in situ hybridization to mitotic chromosomes

    International Nuclear Information System (INIS)

    In Ceratitis capitata the Y chromosome is responsible for sex-determination. We used fluorescence in situ hybridization (FISH) for cytogenetic analysis of mitotic chromosomes. FISH with the wild-type strain EgyptII and two repetitive DNA probes enabled us to differentiate between the short and the long arm of the Y chromosome and gives a much better resolution than C-banding of mitotic chromosomes. We identified the Y-chromosomal breakpoints in Y-autosome translocations using FISH. Even more complex rearrangements i.e. deletions and insertions in some translocation strains were detected by this method. A strategy for mapping the primary sex determination factor in Ceratitis capitata by FISH is presented. (author)

  2. Mitotic Exit Function of Polo-like Kinase Cdc5 Is Dependent on Sequential Activation by Cdk1.

    Science.gov (United States)

    Rodriguez-Rodriguez, Jose-Antonio; Moyano, Yolanda; Játiva, Soraya; Queralt, Ethel

    2016-05-31

    To complete mitosis, Saccharomyces cerevisiae needs to activate the mitotic phosphatase Cdc14. Two pathways contribute to Cdc14 regulation: FEAR (Cdc14 early anaphase release) and MEN (mitotic exit network). Cdc5 polo-like kinase was found to be an important mitotic exit component. However, its specific role in mitotic exit regulation and its involvement in Cdc14 release remain unclear. Here, we provide insight into the mechanism by which Cdc5 contributes to the timely release of Cdc14. Our genetic and biochemical data indicate that Cdc5 acts in parallel with MEN during anaphase. This MEN-independent Cdc5 function requires active separase and activation by Cdk1-dependent phosphorylation. Cdk1 first phosphorylates Cdc5 to activate it in early anaphase, and then, in late anaphase, further phosphorylation of Cdc5 by Cdk1 is needed to promote its MEN-related functions. PMID:27210759

  3. Human papillomavirus type 16 E7 oncoprotein engages but does not abrogate the mitotic spindle assembly checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yueyang [Division of Infectious Diseases, Brigham and Women' s Hospital and Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115 (United States); Munger, Karl, E-mail: kmunger@rics.bwh.harvard.edu [Division of Infectious Diseases, Brigham and Women' s Hospital and Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115 (United States)

    2012-10-10

    The mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore-microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as well as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons.

  4. Regulation of mitotic progression : Focus on Plk1 function and the novel Ska complex at kinetochores

    OpenAIRE

    Hanisch, Anja

    2007-01-01

    During mitosis the duplicated chromosomes have to be faithfully segregated into the nascent daughter cells in order to maintain genomic stability. This critical process is dependent on the rearrangement of the interphase microtubule (MT) network, resulting in the formation of a bipolar mitotic spindle. For proper chromosome segregation all chromosomes have to become connected to MTs emanating from opposite spindle poles. The MT attachment sites on the chromosomes are the kinetochores (KTs), w...

  5. The forces that center the mitotic spindle in the C. elegans embryo

    OpenAIRE

    Garzon-Coral, Carlos

    2015-01-01

    The precise positioning of the mitotic spindle to the cell center during mitosis is a fundamental process for chromosome segregation and the division plane definition. Despite its importance, the mechanism for spindle centering remains elusive. To study this mechanism, the dynamic of the microtubules was characterized at the bulk and at the cortex in the C. elegans embryo. Then, this dynamic was correlated to the centering forces of the spindle that were studied by applying calibrated magneti...

  6. Mechanism of the mitotic kinesin CENP-E in tethering kinetochores to spindle microtubules

    OpenAIRE

    Kim, Yumi

    2009-01-01

    The mitotic kinesin CENP-E is an essential kinetochore motor that directly contributes to the capture and stabilization of spindle microtubules by kinetochores. Although it has been well established that CENP-E is essential for metaphase chromosome alignment and reduction of CENP-E leads to high rates of whole chromosome missegregation in cells, its properties as a microtubule- dependent motor, the mechanism by which CENP-E contributes to the dynamic linkage between kinetochores and spindle m...

  7. c-Mos forces the mitotic cell cycle to undergo meiosis II to produce haploid gametes

    OpenAIRE

    Tachibana, Kazunori; Tanaka, Daisuke; Isobe, Tomohiro; Kishimoto, Takeo

    2000-01-01

    The meiotic cycle reduces ploidy through two consecutive M phases, meiosis I and meiosis II, without an intervening S phase. To maintain ploidy through successive generations, meiosis must be followed by mitosis after the recovery of diploidy by fertilization. However, the coordination from meiotic to mitotic cycle is still unclear. Mos, the c-mos protooncogene product, is a key regulator of meiosis in vertebrates. In contrast to the previous observation that Mos f...

  8. Mitotic Spindle Positioning in Saccharomyces cerevisiae Is Accomplished by Antagonistically Acting Microtubule Motor Proteins

    OpenAIRE

    Cottingham, Frank R.; Hoyt, M. Andrew

    1997-01-01

    Proper positioning of the mitotic spindle is often essential for cell division and differentiation processes. The asymmetric cell division characteristic of budding yeast, Saccharomyces cerevisiae, requires that the spindle be positioned at the mother–bud neck and oriented along the mother–bud axis. The single dynein motor encoded by the S. cerevisiae genome performs an important but nonessential spindle-positioning role. We demonstrate that kinesin-related Kip3p makes a major contribution to...

  9. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly

    OpenAIRE

    Buvelot, Stéphanie; Tatsutani, Sean Y.; Vermaak, Danielle; Biggins, Sue

    2003-01-01

    Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1–GFP localizes to kinetochores from G1 to metaphase, transfers to the spindle after metaphase, and accumulates at the spindle midzone ...

  10. Interaction of the Betapapillomavirus E2 Tethering Protein with Mitotic Chromosomes▿

    OpenAIRE

    Sekhar, Vandana; Reed, Shawna C.; Alison A McBride

    2009-01-01

    During persistent papillomavirus infection, the viral E2 protein tethers the viral genome to the host cell chromosomes, ensuring maintenance and segregation of the viral genome during cell division. However, E2 proteins from different papillomaviruses interact with distinct chromosomal regions and targets. The tethering mechanism has been best characterized for bovine papillomavirus type 1 (BPV1), where the E2 protein tethers the viral genome to mitotic chromosomes in complex with the cellula...

  11. Mitotic Kinesin-Like Protein 2 Binds and Colocalizes with Papillomavirus E2 during Mitosis▿

    OpenAIRE

    Yu, Ting; Peng, Yu-Cai; Androphy, Elliot J.

    2006-01-01

    MKlp2 is a kinesin-like motor protein of the central mitotic spindle required for completion of cytokinesis. Papillomavirus E2 is a sequence specific DNA binding protein that regulates viral transcription and replication and is responsible for partitioning viral episomes into daughter cells during cell division. We demonstrate that MKlp2 specifically associates with the E2 protein during mitosis. Using chromatin immunoprecipitation, we show viral genomes are in complex with MKlp2 only within ...

  12. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule

    OpenAIRE

    Baird, Richard A.; Burton, Miriam D.; Fashena, David S.; Naeger, Rebecca A.

    2000-01-01

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate...

  13. Caspase-Mediated Specific Cleavage of BubR1 Is a Determinant of Mitotic Progression

    OpenAIRE

    Kim, Mijin; Murphy, Katie; Liu, Fang; Parker, Sharon E.; Dowling, Melissa L.; Baff, Wesley; Kao, Gary D.

    2007-01-01

    The fidelity of chromosomal duplication is monitored by cell cycle checkpoints operational during mitosis. One such cell cycle delay is invoked by microtubule-targeting agents such as nocodazole or paclitaxel (Taxol) and is mediated by mitotic checkpoint proteins that include BubR1. Relatively little is known about the regulation of expression and stability of BubR1 (or other checkpoint proteins) and how these factors dictate the durability of the cell cycle delay. We report here that treatme...

  14. Mutagenesis and mitotic recombination in Aspergillus niger, an expedition from gene to genome

    OpenAIRE

    Vondervoort, Peter Jozef Ida van de

    2007-01-01

    Aspergillus niger is a cosmopolitan fungus and its spores can be found in air and soil worldwide. This saprophyte is used in food biotechnology for the production of proteins, mainly enzymes and for the production of organic acids. In the production of proteins, several problems are encountered such as repressed gene-expression, morphologic and genetic instability and undesired metabolite accumulation. To find solutions to these problems, often mutagenesis and mitotic recombination have been ...

  15. A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis

    OpenAIRE

    Altan-Bonnet, Nihal; Phair, Robert D.; Polishchuk, Roman S.; Weigert, Roberto; Lippincott-Schwartz, Jennifer

    2003-01-01

    In mitosis, chromosome, cytoskeleton, and organelle dynamics must be coordinated for successful cell division. Here, we present evidence for a role for Arf1, a small GTPase associated with the Golgi apparatus, in the orchestration of mitotic Golgi breakdown, chromosome segregation, and cytokinesis. We show that early in mitosis Arf1 becomes inactive and dissociates from Golgi membranes. This is followed by the dispersal of numerous Arf1-dependent peripheral Golgi proteins and subsequent Golgi...

  16. Prognostic value of mitotic index and Bcl2 expression in male breast cancer.

    OpenAIRE

    Lacle, M.M.; van der Pol, C.C.; Witkamp, A. J.; van der Wall, E.; van Diest, P.J.

    2013-01-01

    The incidence of male breast cancer (MBC) is rising. Current treatment regimens for MBC are extrapolated from female breast cancer (FBC), based on the assumption that FBC prognostic features and therapeutic targets can be extrapolated to MBC. However, there is yet little evidence that prognostic features that have been developed and established in FBC are applicable to MBC as well. In a recent study on FBC, a combination of mitotic index and Bcl2 expression proved to be of strong prognostic v...

  17. Mitotically active microglandular hyperplasia of the cervix: a case series with implications for the differential diagnosis.

    Science.gov (United States)

    Abi-Raad, Rita; Alomari, Ahmed; Hui, Pei; Buza, Natalia

    2014-09-01

    Microglandular hyperplasia (MGH) is a benign proliferation of endocervical glands with relatively uniform columnar or cuboidal nuclei, and rare to absent mitoses. Endometrial adenocarcinomas with mucinous differentiation or a microglandular pattern can closely mimic MGH, often resulting in a diagnostic dilemma in small biopsy specimens. Rare unusual morphologic features-mild to moderate nuclear atypia, solid or reticular growth pattern, hobnail and signet ring cells-have been previously reported in MGH. We present 9 cases of unusual, mitotically active-between 5 and 11 mitotic figures per 10 HPF-MGH, all of which presented as endocervical polyps and had morphologic features otherwise typical of MGH. The patients' age ranged between 35 and 56 yr, 2 patients were postmenopausal. High-risk human papillomavirus status was available in 7 patients, all of which were negative. The Ki-67 proliferation index ranged between 1% and 15%, and all cases were negative for p16, carcinoembryonic antigen, and vimentin immunostains. The clinical follow-up ranged from 3 to 76.2 mo, with a median of 40.7 mo, all patients were doing well without evidence of endocervical or endometrial malignancy. In summary, this case series documents the presence of rare cases of MGH demonstrating significant mitotic activity (up to 11/10 HPF) without a negative impact on the clinical prognosis. Mitotic activity alone should be interpreted with caution in small biopsy specimens with microglandular growth pattern. Immunohistochemical stains, especially p16, carcinoembryonic antigen, and vimentin, may be helpful-in addition to the patient's clinical history and human papillomavirus status to rule out endocervical or endometrial malignancy. PMID:25083971

  18. Drought Resistance and Mitotic Instability of Tritipyrum Compared with Triticale and Bread Wheat

    OpenAIRE

    shahriari, zolfaghar; Mohammad Taghi ASSAD; Hosein Shahsavand HASANI

    2012-01-01

    This study presents the first data on the drought resistance pattern of seven new synthetic 6x primary Tritipyrum amphiploid linesand evaluates their mitotic instability. The primary Tritipyrum lines were crossed with Iranian 6x bread wheat ‘Navid’ cultivar and theirF1 and F2 progenies were obtained. Two experiments with complete randomized design were conducted under optimum and limitedwater conditions to evaluate Tritipyrum-derived genotypes for drought resistance in greenhouse. Under optim...

  19. Nursing students’ knowledge about arrest rhythms and their treatment

    Directory of Open Access Journals (Sweden)

    Aikaterini Kyrgianidou

    2014-04-01

    Full Text Available Cardiovascular diseases are one of the leading causes of death worldwide. Knowledge of health professionals for the arrest rhythms, is considered particularly important for the early recognition and proper treatment. Aim: The purpose of the present study was to assess the knowledge of nursing students on arrest rhythms and how to treat them. Material and Methods: The sample studied included 151 students from the Department of Nursing A' (n = 60, 40% and B' (n = 91, 60%, TEI of Athens, of whom 83% (n=125 were women and 17% (n=26 were men with a mean age of 23 years. Data collection was performed with specially designed questionnaire, that apart from demographics and students’ education level, it included ten questions about arrest rhythms’ knowledge and also self-assessment questions of their level of knowledge. The data were analyzed with the SPSS package v.19, using the criteria t-Test and χ2. Results: Of all the participants in the research, 95% (n = 144 did not answer correctly more than 6 questions from a total of 10. The students of the Department of Nursing A’ recognized with greater accuracy the arrest rhythms (p = 0.003. Those studying in lower semester acknowledged best the arrest rhythms (p = 0.002. Students who had recently attended course in basic or advanced resuscitation recognized best the arrest rhythms (p = 0.006. Older students knew better right treatment of the arrest rhythms (p = 0.037. Also, students who had attended the course of cardiac nursing in the last year, knew better the right treatment (p <0.001. Finally, the level of self-assessment was in line with the actual level of knowledge of students (p = 0.05. Conclusions: Continuous attendance of courses, education on certified programs and refresh courses help to maintain a good level of knowledge for longer periods.

  20. The stringent response and cell cycle arrest in Escherichia coli.

    Science.gov (United States)

    Ferullo, Daniel J; Lovett, Susan T

    2008-12-01

    The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions. PMID:19079575

  1. The stringent response and cell cycle arrest in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Daniel J Ferullo

    2008-12-01

    Full Text Available The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions.

  2. Changing the guard: Polymer replaces porcelain for surge arresters

    Energy Technology Data Exchange (ETDEWEB)

    Skytt, T.; Gleimar, H. E. G.

    2002-07-01

    Surge arresters are safety devices which quickly and effectively limit the over voltages that can arise in transmission networks following lightning, switching and other transient events. The earliest forms of overvoltage protection, a simple air gap between electrodes, have long since been replaced by a new generation of gapless arresters with series-connected, non-linear zinc oxide varistors contained in a porcelain housing. Now these porcelain type surge arresters are being replaced by a new type, called PEXLIM (Polymeric EXcellent LIMiter), which uses the same block of zinc oxide as the porcelain type, but its housing is made of silicon rubber, a polymer. The new lightweight insulation material shows a number of properties superior to the porcelain, such as enhanced product safety and ease of handling. It is also more durable, resilient, yet solid and compact, water-repellent, lightweight, resistant to aging or light or ultra-violet radiation, as well as fire, has good electrical properties, and is environmentally friendly since it does not contain any substances harmful to the environment. These properties make this new type of surge arrester highly suitable for use in earthquake-prone areas; it can also replace more expensive and maintenance-intensive equipment. Having successfully broken into the lower voltage systems, these new type of surge arresters are now rapidly gaining ground at the higher voltage levels. ABB, the developer of PEXLIM, has already supplied these arresters to North America for use in an 800-kV grid. As further proof of its growing popularity, last year PEXLIM made up over half of the surge arrester production for applications up to and including 245 kV. 1 tab., 6 figs.

  3. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells.

    Science.gov (United States)

    Rusin, Scott F; Schlosser, Kate A; Adamo, Mark E; Kettenbach, Arminja N

    2015-10-13

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c-dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2-dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. PMID:26462736

  4. Effect of Various Doses of Nicotine on Mitotic Index in Esophageal Mucosa

    Directory of Open Access Journals (Sweden)

    S. Khajeh Jahromi

    2016-07-01

    Full Text Available Introduction & Objective: Nicotine could directly act as a cancer promoter. The purpose of this study was to evaluate effects of nicotine on mitotic index in esophagus epithelium. Materials & Methods: In the present study 30 adult male mice were used. Animals were ran-domly divided into three groups. Group A or the control group received vehicle, groups B and C received nicotine intraperitoneally at doses of 0.2 and 0.4 mg/kg once daily for 14 days, re-spectively. Evaluations were made using kI-67 immunohistochemistry and Hematoxilin& Eo-sin for proliferative activity and morphometric study on esophagus mucosa, respectively. Results: Administration of nicotine in group C, showed a significant increase (P<0.05 in KI-67 index 34.15±2.50vs. 10.41±1.4 compared with the control subjects. The other parameters such as epithelial height, lamina propria, muscular mucosa and mucosa height in nicotine- treated groups were not affected. Nicotine at dose of 0.2 mg/kg did not change the mitotic in-dex in epithelium when compared with the control group. Conclusion: This study indicates nicotine at dose of 0.4 mg/kg increases mitotic activity in basal cells in esophagus epithelium. (Sci J Hamadan Univ Med Sci 2016; 23 (2:126-133

  5. Live Cell Imaging of the Cancer-related Transcription Factor RUNX2 during Mitotic Progression

    Science.gov (United States)

    Pockwinse, Shirwin M.; Kota, Krishna P.; Quaresma, Alexandre J.C.; Imbalzano, Anthony N.; Lian, Jane B.; van Wijnen, Andre J.; Stein, Janet L.; Stein, Gary S.; Nickerson, Jeffrey A.

    2010-01-01

    The nuclear matrix bound transcription factor RUNX2 is a lineage-specific developmental regulator that is linked to cancer. We have previously shown that RUNX2 controls transcription of both RNA polymerase II genes and RNA polymerase I dependent ribosomal RNA genes. RUNX2 is epigenetically retained through mitosis on both classes of target genes in condensed chromosomes. We have used fluorescence recovery after photobleaching (FRAP) to measure the relative binding kinetics of EGFP-RUNX2 at transcription sites in the nucleus and nucleoli during interphase, as well as on mitotic chromosomes. RUNX2 becomes more strongly bound as cells go from interphase through prophase, with a doubling of the most tightly bound “immobile fraction”. RUNX2 exchange then becomes much more facile during metaphase to telophase. During interphase the less tightly bound pool of RUNX2 exchanges more slowly at nucleoli than at subnuclear foci, and the non-exchanging immobile fraction is greater in nucleoli. These results are consistent with a model in which the molecular mechanism of RUNX2 binding is different at protein-coding and ribosomal RNA genes. The binding interactions of RUNX2 change as cells go through mitosis, with binding affinity increasing as chromosomes condense and then decreasing through subsequent mitotic phases. The increased residence of RUNX2 at mitotic chromosomes may reflect its epigenetic function in “bookmarking” of target genes in cancer cells. PMID:20945391

  6. APC2 and Axin promote mitotic fidelity by facilitating centrosome separation and cytoskeletal regulation.

    Science.gov (United States)

    Poulton, John S; Mu, Frank W; Roberts, David M; Peifer, Mark

    2013-10-01

    To ensure the accurate transmission of genetic material, chromosome segregation must occur with extremely high fidelity. Segregation errors lead to chromosomal instability (CIN), with deleterious consequences. Mutations in the tumor suppressor adenomatous polyposis coli (APC) initiate most colon cancers and have also been suggested to promote disease progression through increased CIN, but the mechanistic role of APC in preventing CIN remains controversial. Using fly embryos as a model, we investigated the role of APC proteins in CIN. Our findings suggest that APC2 loss leads to increased rates of chromosome segregation error. This occurs through a cascade of events beginning with incomplete centrosome separation leading to failure to inhibit formation of ectopic cleavage furrows, which result in mitotic defects and DNA damage. We test several hypotheses related to the mechanism of action of APC2, revealing that APC2 functions at the embryonic cortex with several protein partners, including Axin, to promote mitotic fidelity. Our in vivo data demonstrate that APC2 protects genome stability by modulating mitotic fidelity through regulation of the cytoskeleton. PMID:24026117

  7. Late A-bomb effects on proliferation and mitotic inhibition of T- and B-lymphocytes

    International Nuclear Information System (INIS)

    In order to investigate late effects of ionization radiation and aging on T- and B-lymphocytes, mitotic ability of T- and B-lymphocytes in the peripheral blood of 266 A-bomb survivors was examined by determining the incorporation of [3H]-thymidine. Phytohemagglutinin (PHA) and pokeweed mitogen (PWM) were used as inducers. Furthermore, mitotic inhibition of lymphocytes induced by a lymphatic inhibitor which was in part prepared from ulex seed extracts (USE) was examined. A decreased reaction of peripheral lymphocytes to PHA was seen in men exposed to 100-199 rad; a decreased reaction to PWM was seen in women exposed to more than 200 rad. According to the age group at examination, these decreased reactions were remarkable in men aged 60 years or younger and women aged 60 years or older. Among men less than 60-year-old exposed to 100-199 rad, PWM-induced mitosis of lymphocytes tended to be inhibited remarkably by USE. These results suggest the involvement of late A-bomb effects in mitotic regulation of T- and B-lymphocytes of aged A-bomb survivors. (Namekawa, K.)

  8. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule

    Science.gov (United States)

    Baird, R. A.; Burton, M. D.; Fashena, D. S.; Naeger, R. A.

    2000-01-01

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.

  9. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    International Nuclear Information System (INIS)

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [3H]thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [3H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain

  10. The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase.

    OpenAIRE

    Brandeis, M.; Hunt, T

    1996-01-01

    We have studied how the cell cycle-specific oscillations of mitotic B-type cyclins are generated in mouse fibroblasts. A reporter enzyme comprising the N-terminus of a B-type cyclin fused to bacterial chloramphenicol acetyl transferase (CAT) was degraded at the end of mitosis like endogenous cyclins. Point mutations in the destruction box of this construct completely abolished its mitotic instability. When the destructible reporter was driven by the cyclin B2 promoter, CAT activity mimicked t...

  11. RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2014-03-01

    Full Text Available Mechanisms that maintain transcriptional memory through cell division are important to maintain cell identity, and sequence-specific transcription factors that remain associated with mitotic chromatin are emerging as key players in transcriptional memory propagation. Here, we show that the major transcriptional effector of Notch signaling, RBPJ, is retained on mitotic chromatin, and that this mitotic chromatin association is mediated through the direct association of RBPJ with DNA. We further demonstrate that RBPJ binds directly to nucleosomal DNA in vitro, with a preference for sites close to the entry/exit position of the nucleosomal DNA. Genome-wide analysis in the murine embryonal-carcinoma cell line F9 revealed that roughly 60% of the sites occupied by RBPJ in asynchronous cells were also occupied in mitotic cells. Among them, we found that a fraction of RBPJ occupancy sites shifted between interphase and mitosis, suggesting that RBPJ can be retained on mitotic chromatin by sliding on DNA rather than disengaging from chromatin during mitotic chromatin condensation. We propose that RBPJ can function as a mitotic bookmark, marking genes for efficient transcriptional activation or repression upon mitotic exit. Strikingly, we found that sites of RBPJ occupancy were enriched for CTCF-binding motifs in addition to RBPJ-binding motifs, and that RBPJ and CTCF interact. Given that CTCF regulates transcription and bridges long-range chromatin interactions, our results raise the intriguing hypothesis that by collaborating with CTCF, RBPJ may participate in establishing chromatin domains and/or long-range chromatin interactions that could be propagated through cell division to maintain gene expression programs.

  12. Cloning of four cycling from maize indicates that higher plants have three structurally distinct groups of mitotic cyclins

    OpenAIRE

    Renaudin, J P; Colasanti, J; RIME, Hélène; Z. Yuan; Sundaresan, V.

    1994-01-01

    While a large number of cyclins have been described in animals and yeasts, very limited information is available regarding cyclins in plants. We describe here the isolation of cDNA clones encoding four putative mitotic cyclins from maize. All four cyclins were able to induce maturation of Xenopus oocytes, demonstrating that they can act as mitotic cyclins in this system. Northern analysis showed that all four cyclins were expressed only in actively dividing tissues and organs, with a stronger...

  13. Conditional Mutations in the Mitotic Chromosome Binding Function of the Bovine Papillomavirus Type 1 E2 Protein

    OpenAIRE

    Zheng, Peng-Sheng; Brokaw, Jane; Alison A McBride

    2005-01-01

    The papillomavirus E2 protein is required for viral transcriptional regulation, DNA replication and genome segregation. We have previously shown that the E2 transactivator protein and BPV1 genomes are associated with mitotic chromosomes; E2 links the genomes to cellular chromosomes to ensure efficient segregation to daughter nuclei. The transactivation domain of the E2 protein is necessary and sufficient for association of the E2 protein with mitotic chromosomes. To determine which residues o...

  14. Effects of dietary fat on metabolic and structural adpatation of mitotic and postmitotic tissues to calorie restriction in mice

    OpenAIRE

    Khraiwesh, Husam M.

    2016-01-01

    In this work it is analyzed the effect of aging and its possible prevention by calorie restriction (CR) in liver and skeletal muscle from mice. These organs were selected as models of mitotic and post-mitotic tissues, respectively. Furthermore, the effect of dietary fat under CR was also investigated. For this purpose, animals submitted to CR were separated into three CR groups with soybean oil (high in ω−6 polyunsaturated fatty acids), fish oil (with a high content of polyu...

  15. Antioxidant potential of tea reduces arsenite induced oxidative stress in Swiss albino mice.

    Science.gov (United States)

    Sinha, D; Roy, S; Roy, M

    2010-04-01

    Environmental arsenic (As) is a potent human carcinogen and groundwater As contamination is a major health concern in West Bengal, India. Oxidative stress has been one of the prime factors in As-induced carcinogenicity. Generation of reactive oxygen species (ROS), beyond the body's endogenous antioxidant balance cause a severe imbalance of the cellular antioxidant defence mechanism. Tea, a popular beverage has excellent chemopreventive and antioxidant properties. In this study it was investigated whether these flavonoids could ameliorate the arsenite (As III) induced oxidative stress in Swiss albino mice. Bio-monitoring with comet assay elicited that the increase in genotoxicity caused by As III was counteracted by both black tea and green tea. Elevated levels of lipid peroxides and protein carbonyl by As III were effectively reduced with green as well as black tea. They also exhibited protective action against the As III induced depletion of antioxidants like catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and glutathione (GSH) in mice liver tissue. Thus the tea polyphenols by virtue of their antioxidant potential may be used as an effective agent to reduce the As III induced oxidative stress in Swiss albino mice. PMID:20096321

  16. Modulation of the arsenite-induced expression of stress proteins by reducing agents

    OpenAIRE

    Kato, Kanefusa; Ito, Hidenori; Okamoto, Keiko

    1997-01-01

    We examined the effects of reducing agents on the expression of heat shock protein 27 (hsp27), αB crystallin, and hsp70 in C6 rat glioma cells in response to stress. Cells were exposed to arsenite (100 µM for 1 h) in the presence of dithiothreitol at various concentrations (0.03–2 mM), and the accumulation of all three proteins was markedly stimulated in cells that had been exposed to arsenite in the presence of a low concentration (0.03–0.1 mM) of dithiothreitol. Stimulation of these arsenit...

  17. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

    Energy Technology Data Exchange (ETDEWEB)

    Gonsebatt, M.E. [UNAM, Ciudad Universitaria, Dept. Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Mexico (Mexico); Razo, L.M. del; Sanchez-Pena, L.C. [Seccion de Toxicologia, CINVESTAV, Mexico (Mexico); Cerbon, M.A. [Facultad de Quimica, UNAM, Departamento de Biologia, Mexico (Mexico); Zuniga, O.; Ramirez, P. [Facultad de Estudios Superiores Cuautitlan, UNAM, Laboratorio de Toxicologia Celular, Coordinacion General de Estudios de Posgrado e Investigacion, Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2007-09-15

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 {mu}M of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function. (orig.)

  18. Polyphenols of Mangifera indica modulate arsenite-induced cytotoxicity in a human proximal tubule cell line

    Directory of Open Access Journals (Sweden)

    Gabino Garrido

    2012-04-01

    Full Text Available Inorganic arsenic is an ubiquitous environmental contaminant able to cause severe pathologies in humans, including kidney disorders. The possible protective effects of Mangifera indica L., Anacardiaceae, stem bark extract (MSBE and some mango phenols on the cytotoxicity of arsenite (AsIII in the proximal tubule cell line HK-2 was investigated. In cells cultured for 24 h in presence of AsIII, a dose-dependent loss of cell viability occurred that was significantly alleviated by MSBE, followed by gallic acid, catechin and mangiferin. Mangiferin complexed with Fe+++ proved more efficacious than mangiferin alone. MSBE and pure phenols increased significantly the cell surviving fraction in clonogenic assays. In cells pretreated with MSBE or phenols for 72 h the protection afforded by MSBE resulted decreased in comparison with the shorter experiments. Cells pretreated with a subcytotoxic amount of AsIII or cultured in continuous presence of low concentration of mangiferin proved to be more resistant to AsIII, while cells cultured in presence of albumin resulted more sensitive. Because all the above conditions share changes in expression/activity of P-glycoprotein (P-gp, a transporter potentially involved in arsenic resistance, the capability of M. indica phenols in modulating AsIII-induced cytotoxicity would be at least in part dependent on their interactions with P-gp.

  19. In Vitro Protective Potentials of Annona muricata Leaf Extracts Against Sodium Arsenite-induced Toxicity.

    Science.gov (United States)

    George, Vazhappilly Cijo; Kumar, Devanga Ragupathi Naveen; Suresh, Palamadai Krishnan; Kumar, Rangasamy Ashok

    2015-01-01

    Sodium arsenite (NaAsO2) is a metalloid which is present widely in the environment and its chronic exposure can contribute to the induction of oxidative stress, resulting in disturbances in various metabolic functions including liver cell death. Hence, there is a need to develop drugs from natural sources, which can reduce arsenic toxicity. While there have been reports regarding the antioxidant and protective potentials of Annona muricataleaf extracts, our study is the first ofits kind to extend these findings by specifically evaluating its ability to render protection against sodium arsenite (NaAsO2) induced toxicity (10 μM) in WRL-68 (human hepatic cells) and human erythrocytes by employing XTT and haemolysis inhibition assays respectively. The methanolic extract exhibited higher activity than the aqueous extract in both assays. The results showed a dose-dependent decrease in arsenic toxicity in both WRL-68 cells and erythrocytes, suggesting the protective nature of Annona muricatato mitigate arsenic toxicity. Hence the bioactive extracts can further be scrutinized for the identification and characterization of their principal contributors. PMID:26033234

  20. Study of sodium arsenite induced biochemical changes on certain biomolecules of the freshwater catfish Clarias batrachus

    Directory of Open Access Journals (Sweden)

    Randhir Kumar

    2012-01-01

    Full Text Available Toxic impact of sublethal concentration (1 mg/L; 5% of 96h LC50 value of sodium arsenite (NaAsO2 on certain biomolecules (proteins, nucleic acids, lipids, and glycogen of five tissue components (muscles, liver, brain, skin, and gills of the freshwater catfish Clarias batrachus was analysed. The important toxic manifestations include marked decrease in the concentration of proteins (21.72-45.42% in muscles; 3.42-53.94% in liver; 15.39-45.42% in brain; 15.40-4.00% in skin and 11.35-64.13% in gills, DNA (0.55-22.95% in muscles; 8.33-14.06% in liver; 5.30-18.40% in brain; 13.57-52.80% in skin; and 12.38-31.01% in gills, RNA (42.68-76.16% in muscles; 10.68-39.75% in liver; 5.66-29.05% in brain; 7.72-27.93% in skin and 21.47-44.38% in gills and glycogen (24.00-51.72% in muscles; 49.11-72.45% in liver; 11.49-26.03% in brain; 26.13-38.05% in skin and 17.80-37.97% in gills. Excepting liver where the lipid content increases (15.82-24.13%, the fat content also showed depletion in their concentration (10.40-29.83% in muscles; 8.30-34.45% in brain; 8.94-31.47% in skin and 12.75-28.86% in gills, in the rest of the organ systems.Foi analisado o impacto tóxico da concentração subletal (1 mg/L; 5% do valor de LC50 de 96h do arsenito de sódio (NaAsO2 sobre certas biomoléculas (proteinas, ácidos nucleicos, lipídios e glicogênio de cinco tecidos (músculos, fígado, cérebro, pele e brânquias do bagre Clarias batrachus. As manifestações tóxicas importantes incluiram o decréscimo acentuado na concentração de proteinas (21,72-45,42% nos músculos; 3,42-53,94% no fígado; 15,39-45,42% no cérebro; 15,40-4,00% na pele e 11,35-64,13% nas brânquias, DNA (0,55-22,95% nos músculos; 8,33-14,06% no fígado; 5,30-18,40% no cérebro; 13,57-52,80% na pele e 12,38-31,01% nas brânquias, RNA (42,68-76,16% nos músculos; 10,68-39,75% no fígado; 5,66-29,05% no cérebro; 7,72-27,93% na pele e 21,47-44,38% nas brânquias e glicogênio (24,00-51,72% nos músculos; 49,11-72,45% no fígado; 11,49-26,03% no cérebro; 26,13-38,05% na pele e 17,80-37,97% nas brânquias. Excetuando o fígado onde o conteúdo de lipídeos aumentou (15,82-24,13%, houve uma depleção na concentração de lipídeos no restante dos sistemas orgânicos (10,40-29,83% nos músculos; 8,30-34,45% no cérebro; 8,94-31,47% na pele e 12,75-28,86% nas brânquias

  1. Positive feedback promotes mitotic exit via the APC/C-Cdh1-separase-Cdc14 axis in budding yeast.

    Science.gov (United States)

    Hatano, Yuhki; Naoki, Koike; Suzuki, Asuka; Ushimaru, Takashi

    2016-10-01

    The mitotic inhibitor securin is degraded via the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C)-Cdc20 after anaphase onset. This triggers activation of the mitotic protease separase and thereby sister chromatid separation. However, only a proportion of securin molecules are degraded at metaphase-anaphase transition and the remaining molecules are still present in anaphase. The roles of securin and separase in late mitosis remain elusive. Here, we show that securin still inhibits separase to repress mitotic exit in anaphase in budding yeast. APC/C-Cdh1-mediated securin degradation at telophase further liberated separase, which promotes Cdc14 release and mitotic exit. Separase executed these events via its proteolytic action and that in the Cdc14 early release (FEAR) network. Cdc14 release further activated APC/C-Cdh1 in the manner of a positive feedback loop. Thus, the positive feedback promotes mitotic exit via the APC/C-Cdh1-separase-Cdc14 axis. This study shows the importance of the two-step degradation mode of securin and the role of separase in mitotic exit. PMID:27418100

  2. Using Automated Image Analysis Algorithms to Distinguish Normal, Aberrant, and Degenerate Mitotic Figures Induced by Eg5 Inhibition.

    Science.gov (United States)

    Bigley, Alison L; Klein, Stephanie K; Davies, Barry; Williams, Leigh; Rudmann, Daniel G

    2016-07-01

    Modulation of the cell cycle may underlie the toxicologic or pharmacologic responses of a potential therapeutic agent and contributes to decisions on its preclinical and clinical safety and efficacy. The descriptive and quantitative assessment of normal, aberrant, and degenerate mitotic figures in tissue sections is an important end point characterizing the effect of xenobiotics on the cell cycle. Historically, pathologists used manual counting and special staining visualization techniques such as immunohistochemistry for quantification of normal, aberrant, and degenerate mitotic figures. We designed an automated image analysis algorithm for measuring these mitotic figures in hematoxylin and eosin (H&E)-stained sections. Algorithm validation methods used data generated from a subcutaneous human transitional cell carcinoma xenograft model in nude rats treated with the cell cycle inhibitor Eg5. In these studies, we scanned and digitized H&E-stained xenografts and applied a complex ruleset of sequential mathematical filters and shape discriminators for classification of cell populations demonstrating normal, aberrant, or degenerate mitotic figures. The resultant classification system enabled the representations of three identifiable degrees of morphological change associated with tumor differentiation and compound effects. The numbers of mitotic figure variants and mitotic indices data generated corresponded to a manual assessment by a pathologist and supported automated algorithm verification and application for both efficacy and toxicity studies. PMID:26936079

  3. Current Pharmacological Advances in the Treatment of Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Andry Papastylianou

    2012-01-01

    Full Text Available Cardiac arrest is defined as the sudden cessation of spontaneous ventilation and circulation. Within 15 seconds of cardiac arrest, the patient loses consciousness, electroencephalogram becomes flat after 30 seconds, pupils dilate fully after 60 seconds, and cerebral damage takes place within 90–300 seconds. It is essential to act immediately as irreversible damage can occur in a short time. Cardiopulmonary resuscitation (CPR is an attempt to restore spontaneous circulation through a broad range of interventions which are early defibrillation, high-quality and uninterrupted chest compressions, advanced airway interventions, and pharmacological interventions. Drugs should be considered only after initial shocks have been delivered (when indicated and chest compressions and ventilation have been started. During cardiopulmonary resuscitation, no specific drug therapy has been shown to improve survival to hospital discharge after cardiac arrest, and only few drugs have a proven benefit for short-term survival. This paper reviews current pharmacological treatment of cardiac arrest. There are three groups of drugs relevant to the management of cardiac arrest: vasopressors, antiarrhythmics, and other drugs such as sodium bicarbonate, calcium, magnesium, atropine, fibrinolytic drugs, and corticosteroids.

  4. Sculpting Pickering Emulsion Droplets by Arrest and Jamming

    Science.gov (United States)

    Burke, Christopher; Wei, Zengyi; Caggioni, Marco; Spicer, Patrick; Atherton, Tim

    Pickering emulsion droplets can be arrested into non-spherical shapes--useful for applications such as active delivery--through a general mechanism of deformation followed by absorption of additional colloidal particles onto the interface, relaxation of the droplet caused by surface tension and arrest at some point due to crowding of the particles. We perform simulations of the arrest process to clarify the relative importance of diffusive rearrangement of particles and collective forcing due to surface evolution. Experiment and theory are compared, giving insight into the stability of the resulting capsules and the robustness of the production process for higher-throughput production in, for example, microfluidic systems. We adapt theoretical tools from the jamming literature to better understand the arrested configurations and long timescale evolution of the system: using linear programming and a penalty function approach, we identify unjamming motions in kinetically arrested states. We propose a paradigm of ``metric jamming'' to describe the limiting behavior of this class of system: a structure is metric-jammed if it is stable with respect to collective motion of the particles as well as evolution of the hypersurface on which the packing is embedded. Supported by a Cottrell Award from the Research Corporation for Science Advancement.

  5. Capecitabine-induced ventricular fibrillation arrest: Possible Kounis syndrome.

    Science.gov (United States)

    Kido, Kazuhiko; Adams, Val R; Morehead, Richard S; Flannery, Alexander H

    2016-04-01

    We report the case of capecitabine-induced ventricular fibrillation arrest, possibly secondary to type I Kounis syndrome. A 47-year-old man with a history of T3N1 moderately differentiated adenocarcinoma of the colon, status-post sigmoid resection, was started on adjuvant capecitabine approximately five months prior to presentation of cardiac arrest secondary to ventricular fibrillation. An electrocardiogram (EKG) revealed ST segment elevation on the lateral leads and the patient was taken emergently to the cardiac catheterization laboratory. The catheterization revealed no angiographically significant stenosis and coronary artery disease was ruled out. After ruling out other causes of cardiac arrest, the working diagnosis was capecitabine-induced ventricular fibrillation arrest. As such, an inflammatory work up was sent to evaluate for the possibility of a capecitabine hypersensitivity, or Kounis syndrome, and is the first documented report in the literature to do so when evaluating Kounis syndrome. Immunoglobulin E (IgE), tryptase, and C-reactive protein were normal but histamine, interleukin (IL)-6, and IL-10 were elevated. Histamine elevation supports the suspicion that our patient had type I Kounis syndrome. Naranjo adverse drug reaction probability scale indicates a probable adverse effect due to capecitabine with seven points. A case of capecitabine-induced ventricular fibrillation arrest is reported, with a potential for type 1 Kounis syndrome as an underlying pathology supported by immunologic work up. PMID:25870182

  6. Delayed cell death associated with mitotic catastrophe in γ-irradiated stem-like glioma cells

    International Nuclear Information System (INIS)

    Stem-like tumor cells are regarded as highly resistant to ionizing radiation (IR). Previous studies have focused on apoptosis early after irradiation, and the apoptosis resistance observed has been attributed to reduced DNA damage or enhanced DNA repair compared to non-stem tumor cells. Here, early and late radioresponse of patient-derived stem-like glioma cells (SLGCs) and differentiated cells directly derived from them were examined for cell death mode and the influence of stem cell-specific growth factors. Primary SLGCs were propagated in serum-free medium with the stem-cell mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Differentiation was induced by serum-containing medium without EGF and FGF. Radiation sensitivity was evaluated by assessing proliferation, clonogenic survival, apoptosis, and mitotic catastrophe. DNA damage-associated γH2AX as well as p53 and p21 expression were determined by Western blots. SLGCs failed to apoptose in the first 4 days after irradiation even at high single doses up to 10 Gy, but we observed substantial cell death later than 4 days postirradiation in 3 of 6 SLGC lines treated with 5 or 10 Gy. This delayed cell death was observed in 3 of the 4 SLGC lines with nonfunctional p53, was associated with mitotic catastrophe and occurred via apoptosis. The early apoptosis resistance of the SLGCs was associated with lower γH2AX compared to differentiated cells, but we found that the stem-cell culture cytokines EGF plus FGF-2 strongly reduce γH2AX levels. Nonetheless, in two p53-deficient SLGC lines examined γIR-induced apoptosis even correlated with EGF/FGF-induced proliferation and mitotic catastrophe. In a line containing CD133-positive and -negative stem-like cells, the CD133-positive cells proliferated faster and underwent more γIR-induced mitotic catastrophe. Our results suggest the importance of delayed apoptosis, associated mitotic catastrophe, and cellular proliferation for γIR-induced death of

  7. p53-Dependent G1 arrest and p53-independent apoptosis influence the radio biologic response of glioblastoma

    International Nuclear Information System (INIS)

    Purpose: Loss of the p53 tumor suppressor gene has been associated with tumor progression, disease relapse, poor response to antineoplastic therapy, and poor prognosis in many malignancies. We have investigated the contribution of p53-mediated radiation-induced apoptosis and G1 arrest to the well described radiation resistance of glioblastoma multiforme (GM) cells. Methods and Materials: Radiation survival in vitro was quantitated using linear quadratic and repair-saturation mathematical models. Isogenic derivatives of glioblastoma cells differing only in their p53 status were generated using a retroviral vector expressing a dominant negative mutant of p53. Radiation-induced apoptosis was assayed by Flourescence-activated cell sorter (FACS) analysis, terminal deoxynucleotide transferase labeling technique, and chromatin morphology. Cells were synchronized in early G1 phase and mitotic and labeling indices were measured. Results: Radiation-induced apoptosis of GM cells was independent of functional wild-type p53 (wt p53). Decreased susceptibility to radiation-induced apoptosis was associated with lower α values characterizing the shoulder of the clonogenic radiation survival curve. Using isogenic GM cells differing only in their p53 activity, we found that a p53-mediated function, radiation-induced G1 arrest, could also influence the value of α and clonogenic radiation resistance. Inactivation of wt p53 function by a dominant negative mutant of p53 resulted in a significantly diminished α value with no alteration in cellular susceptibility to radiation-induced apoptosis. The clonal derivative U87-LUX.8 expressing a functional wt p53 had an α (Gy-1) value of 0.609, whereas the isogenic clonal derivative U87-175.4 lacking wt p53 function had an α (Gy-1) value of 0.175. Conclusion: We conclude that two distinct cellular responses to radiation, p53-independent apoptosis and p53-dependent G1-arrest, influence radiobiological parameters that characterize the

  8. Cardiac arrest following ventilator fire: A rare cause

    Directory of Open Access Journals (Sweden)

    K Nazeer Ahmed

    2012-01-01

    Full Text Available Operating room fires are rare events, but when occur they result in serious and sometimes fatal consequences. Anaesthesia ventilator fire leading to cardiac arrest is a rare incident and has not been reported. We report a near catastrophic ventilator fire leading to cardiac arrest in a patient undergoing subtotal thyroidectomy. In the present case sparks due to friction or electrical short circuit within the ventilator might have acted as source of ignition leading to fire and explosion in the oxygen rich environment. The patient was successfully resuscitated and revived with uneventful recovery and no adverse sequelae. The cardiac arrest was possibly due to severe hypoxia resulting from inhalation of smoke containing high concentrations of carbon monoxide and other noxious gases.

  9. Investigating Different ZnO Arresters Models against Transient Waves

    Directory of Open Access Journals (Sweden)

    A. Babaee

    2011-12-01

    Full Text Available Metal oxide surge arresters have dynamic characteristics that are significant for over voltage coordination studies involving fast front surges. Several models with acceptable accuracy have been proposed to simulate this frequency-dependent behavior. In this paper, various electrical models are presented for surge arrester performance simulation against lightning impulse. The desirable model is obtained by using simulation results of the existing models and experimental tests. The IEEE proposed model is a proportional model can give satisfactory results for discharge currents within a range of time to crest for 0.5 to 45 :s but due to no existing residual voltage resulting switching current on the manufacture's datasheets decrease its performance generally. In this study the maximum residual voltage due to current impulse is analyzed too. In additional, the amount of discharged energy by surge arrester is focused.

  10. Drug therapy in cardiac arrest: a review of the literature.

    Science.gov (United States)

    Lundin, Andreas; Djärv, Therese; Engdahl, Johan; Hollenberg, Jacob; Nordberg, Per; Ravn-Fischer, Annika; Ringh, Mattias; Rysz, Susanne; Svensson, Leif; Herlitz, Johan; Lundgren, Peter

    2016-01-01

    The aim of this study was to review the literature on human studies of drug therapy in cardiac arrest during the last 25 years. In May 2015, a systematic literature search was performed in PubMed, Embase, the Cochrane Library, and CRD databases. Prospective interventional and observational studies evaluating a specified drug therapy in human cardiac arrest reporting a clinical endpoint [i.e. return of spontaneous circulation (ROSC) or survival] and published in English 1990 or later were included, whereas animal studies, case series and reports, studies of drug administration, drug pharmacology, non-specified drug therapies, preventive drug therapy, drug administration after ROSC, studies with primarily physiological endpoints, and studies of traumatic cardiac arrest were excluded. The literature search identified a total of 8936 articles. Eighty-eight articles met our inclusion criteria and were included in the review. We identified no human study in which drug therapy, compared with placebo, improved long-term survival. Regarding adrenaline and amiodarone, the drugs currently recommended in cardiac arrest, two prospective randomized placebo-controlled trials, were identified for adrenaline, and one for amiodarone, but they were all underpowered to detect differences in survival to hospital discharge. Of all reviewed studies, only one recent prospective study demonstrated improved neurological outcome with one therapy over another using a combination of vasopressin, steroids, and adrenaline as the intervention compared with standard adrenaline administration. The evidence base for drug therapy in cardiac arrest is scarce. However, many human studies on drug therapy in cardiac arrest have not been powered to identify differences in important clinical outcomes such as survival to hospital discharge and favourable neurological outcome. Efforts are needed to initiate large multicentre prospective randomized clinical trials to evaluate both currently recommended and

  11. Swedish ambulance nurses' experiences of nursing patients suffering cardiac arrest.

    Science.gov (United States)

    Larsson, Ricard; Engström, Åsa

    2013-04-01

    Effective pre-hospital treatment of a person suffering cardiac arrest is a challenging task for the ambulance nurses. The aim of this study was to describe ambulance nurses' experiences of nursing patients suffering cardiac arrest. Qualitative personal interviews were conducted during 2011 in Sweden with seven ambulance nurses with experience of nursing patients suffering cardiac arrests. The interview texts were analyzed using qualitative thematic content analysis, which resulted in the formulation of one theme with six categories. Mutual preparation, regular training and education were important factors in the nursing of patients suffering cardiac arrest. Ambulance nurses are placed in ethically demanding situations regarding if and for how long they should continue cardio-pulmonary resuscitation (CPR) to accord with pre-hospital cardiac guidelines and patients' wishes. When a cardiac arrest patient is nursed their relatives also need the attention of ambulance nurses. Reflection is one way for ambulance nurses to learn from, and talk about, their experiences. This study provides knowledge of ambulance nurses' experiences in the care of people with cardiac arrest. Better feedback about the care given by the ambulance nurses, and about the diagnosis and nursing care the patients received after they were admitted to the hospital are suggested as improvements that would allow ambulance nurses to learn more from their experience. Further development and research concerning the technical equipment might improve the situation for both the ambulance nurses and the patients. Ambulance nurses need regularly training and education to be prepared for saving people's lives and also to be able to make the right decisions. PMID:23577977

  12. Out-of-Hospital Cardiac Arrest in Denmark

    DEFF Research Database (Denmark)

    Wissenberg Jørgensen, Mads

    years ago in Denmark. These findings led to several national initiatives to strengthen bystander resuscitation attempts and advance care. Despite these nationwide efforts, it was unknown prior to this project whether these efforts resulted in changes in resuscitation attempts by bystanders and changes...... in patient survival following out-of hospital cardiac arrest; utilizing the Danish nationwide registries, we sought to answer these questions. Moreover, in order to further improve understanding and target future national strategies for cardiac arrest management, we examined whether there were sex...

  13. A study of the low level radiation effect on the mitotic index of the basal cells in the buccal pouch of hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Byung Cheol; You, Dong Soo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1993-08-15

    The purpose of this study was to investigate the defects of the low level irradiation on the mitotic index of the basal cells in the buccal pouch of hamsters (golden hamster: APG strain). After colchicine was administrated to the hamsters through the intraperitoneal, the low level radiation (5461 mR) was exposed in the buccal pouch of hamsters. The mitotic index of the basal cells was estimated 2 hours after irradiation. The results were as follows: 1. The mean mitotic index of the control group was 4.32. 2. The mean mitotic index of the irradiated group was 2.46. 3. T-test of data in the irradiated group showed significant difference from the mitotic endex in the control group. These results suggested the lowered mitotic index of the irradiated group resulted from the low level irradiation.

  14. The Effect of Olive Oil Mill Effluent on the Mitotic Cell Division and Total Protein Amount of the Root Tips of Triticum aestivumL.

    OpenAIRE

    Aybeke, Mehmet; OLGUN, Göksel

    2000-01-01

    In this work sitotoxic and mutagenic effects Olive Oil Mill Effluent (OOME) on the root tips of Triticum aestivumL. were investigated. In this purpose, germination rate of seeds, mitotic division abnormalities and total protein amounts were evaluated. The seeds kept in various OOME concentrastions, it was determinated that germination rate decreased, whilst mitotic abnormalities and mitotic cell division frequency increased. Especially, the increased cell division frequency was of signif...

  15. Implications of mitotic and meiotic irregularities in common beans (Phaseolus vulgaris L.).

    Science.gov (United States)

    Lima, D C; Braz, G T; Dos Reis, G B; Techio, V H; Davide, L C; de F B Abreu, A

    2016-01-01

    The common bean has great social and economic importance in Brazil and is the subject of a high number of publications, especially in the fields of genetics and breeding. Breeding programs aim to increase grain yield; however, mitosis and meiosis represent under explored research areas that have a direct impact on grain yield. Therefore, the study of cell division could be another tool available to bean geneticists and breeders. The aim of this study was to investigate irregularities occurring during the cell cycle and meiosis in common bean. The common bean cultivar used was BRSMG Talismã, which owing to its high yield and grain quality is recommended for cultivation in Brazil. We classified the interphase nuclei, estimated the mitotic and meiotic index, grain pollen viability, and percentage of abnormalities in both processes. The mitotic index was 4.1%, the interphase nucleus was non-reticulated, and 19% of dividing somatic cells showed abnormal behavior. Meiosis also presented irregularities resulting in a meiotic index of 44.6%. Viability of pollen grains was 94.3%. These results indicate that the common bean cultivar BRSMG Talismã possesses repair mechanisms that compensate for changes by producing a large number of pollen grains. Another important strategy adopted by bean plants to ensure stability is the elimination of abnormal cells by apoptosis. As the common bean cultivar BRSMG Talismã is recommended for cultivation because of its good agronomic performance, it can be concluded that mitotic and meiotic irregularities have no negative influence on its grain quality and yield. PMID:27323072

  16. Aurora kinase inhibitors: a new class of drugs targeting the regulatory mitotic system.

    Science.gov (United States)

    Pérez Fidalgo, José Alejandro; Roda, Desamparados; Roselló, Susana; Rodríguez-Braun, Edith; Cervantes, Andrés

    2009-12-01

    The present review gives a perspective on the Aurora kinase family members, their function in normal cells, their role in cancer progression as well as their potential as target for anticancer treatment. Mitosis has been an important target for anticancer therapy development, leading to some specific drugs mainly addressing Tubulines, as a key structure of the mitotic spindle. Vinca alkaloids, taxanes or epotilones are good examples of conventionally developed antimitotic agents. However, novel classes of antineoplastic drugs are being studied, targeting the regulatory system that controls functional aspects of mitosis, such as Aurora or Polo-like kinases or Kinespondin inhibitors. The specific role of the different Aurora kinase proteins as regulator enzymes of the mitotic process in normal cells is discussed. Some of the mechanisms that link Aurora overexpression with cancer are also considered. Thereafter, the clinical and preclinical development of the different Aurora kinase inhibitors is presented. This is nowadays a very active area of therapeutic research and at least, sixteen new compounds are being studied as potential antineoplastic drugs. Most of them are in a very early phase of clinical development. However, we summarized the most recently published findings related with these drugs: main characteristics, way of administration, dose limiting toxicities and recommended doses for further studies. Another important aspect in Aurora kinase inhibition is the study and validation of potential biomarkers to optimize the clinical development. Several studies included pharmacodynamic assessments in normal blood cells, skin or/and tumor biopsies. Several proposals included a higher mitotic index, a decreased number of mitosis with bipolar spindles or normal alignment of chromosomes and inhibition of histone H3 phosphorylation. Future strategies and challenges for trials with Aurora kinase inhibitors are also discussed. PMID:20045785

  17. Police Management Training Factors Influencing DWI Arrests. Final Report.

    Science.gov (United States)

    Bishop, Edward W.

    The development of training material for police management personnel concerning command and supervisory actions appropriate for more effective driving-while-intoxicated (DWI) enforcement is desired. The training is based on two research studies that identified environmental and attitudinal factors influencing a patrolman's arrest decision. These…

  18. Hemodynamics and vasopressor support in therapeutic hypothermia after cardiac arrest

    DEFF Research Database (Denmark)

    Bro-Jeppesen, John; Kjaergaard, Jesper; Søholm, Helle;

    2014-01-01

    AIM: Inducing therapeutic hypothermia (TH) in Out-of-Hospital Cardiac Arrest (OHCA) can be challenging due to its impact on central hemodynamics and vasopressors are frequently used to maintain adequate organ perfusion. The aim of this study was to assess the association between level of vasopres...

  19. Heart Attack or Sudden Cardiac Arrest: How Are They Different?

    Science.gov (United States)

    ... for Heart360 Cardiovascular Conditions • Conditions Home • Arrhythmia and Atrial Fibrillation • Cardiac Arrest • Cardiac Rehab • Cardiomyopathy • Cardiovascular Conditions of Childhood • Cholesterol • Congenital Heart Defects • Diabetes • Heart Attack • Heart Failure (HF) • Heart Valve Problems and Disease • High Blood ...

  20. Bad Behavior : Delinquency, Arrest and Early School Leaving

    NARCIS (Netherlands)

    Ward, Shannon; Williams, J.; van Ours, Jan

    2015-01-01

    In this paper we investigate the effects of delinquency and arrest on school leaving using information on males from the National Longitudinal Survey of Youth 1997. We use a multivariate mixed proportional hazard framework in order to account for common unobserved confounders and reverse causality.

  1. Parenting and Women Arrested for Intimate Partner Violence

    Science.gov (United States)

    Simmons, Catherine A.; Lehmann, Peter; Dia, David A.

    2010-01-01

    Exploring the relationship between parenting and women's use of violence the current study surveyed 106 mothers arrested for intimate partner violence (IPV) related crimes on parenting styles and attitudes toward when using violence against their partner is justified. Findings indicate parenting styles indicative of low belief in using physical…

  2. Ventilation and gas exchange management after cardiac arrest.

    Science.gov (United States)

    Sutherasan, Yuda; Raimondo, Pasquale; Pelosi, Paolo

    2015-12-01

    For several decades, physicians had integrated several interventions aiming to improve the outcomes in post-cardiac arrest patients. However, the mortality rate after cardiac arrest is still as high as 50%. Post-cardiac arrest syndrome is associated with high morbidity and mortality due to not only poor neurological outcome and cardiovascular failure but also respiratory dysfunction. To minimize ventilator-associated lung injury, protective mechanical ventilation by using low tidal volume ventilation and driving pressure may decrease pulmonary complications and improve survival. Low level of positive end-expiratory pressure (PEEP) can be initiated and titrated with careful cardiac output and respiratory mechanics monitoring. Furthermore, optimizing gas exchange by avoiding hypoxia and hyperoxia as well as maintaining normocarbia may improve neurological and survival outcome. Early multidisciplinary cardiac rehabilitation intervention is recommended. Minimally invasive monitoring techniques, that is, echocardiography, transpulmonary thermodilution method measuring extravascular lung water, as well as transcranial Doppler ultrasound, might be useful to improve appropriate management of post-cardiac arrest patients. PMID:26670813

  3. 19 CFR 162.63 - Arrests and seizures.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Arrests and seizures. 162.63 Section 162.63 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) INSPECTION, SEARCH, AND SEIZURE Controlled Substances, Narcotics, and Marihuana §...

  4. Description of a collaborative community approach to impacting juvenile arrests.

    Science.gov (United States)

    Barrett, James G; Janopaul-Naylor, Elizabeth

    2016-05-01

    Although the burden of mental health disorders among youth involved with the juvenile justice system is high, few communities have effectively integrated mental health resources with law enforcement (Myers & Farrell, 2008). The city of Cambridge, Massachusetts has developed the Safety Net Collaborative, which is a multiagency integrated model of preventive services for at-risk youth involving mental health providers, police officers, schools, and the department of youth and families. There are 6,000 youth in the city's public schools under the local police jurisdiction. Youth are referred to this program by schools, courts, and parents. There are approximately 30 active cases each year. Initial outcome measures were tracked, including number of arrests, diversions, and mental health referrals. Rate of decline in arrests was compared pre and post implementation. Community arrests have decreased by more than 50% since implementing this model. Contracting with mental health services has led to an average 94 outpatient mental health provider referral per year. The results show positive trends in arrest rates after implementation of this collaborative model of preventive services. These findings support greater research and utilization of integrated, preventive service models for at-risk youth. (PsycINFO Database Record PMID:27148947

  5. Mechanisms of immunosuppression by organotins : apoptosis vs. proliferative arrest

    NARCIS (Netherlands)

    Gennari, Alessandra

    2001-01-01

    Mechanisms of immunosuppression by organotins-apoptosis vs. proliferative arrest. The organotin compounds di-n-butyltin dichloride (DBTC) and trin-butyltin chloride (TBTC), used as stabilizers and biocides respectively, induce thymus atrophy inhibiting immature thymocyte proliferation. The aim of

  6. Anaphylactic shock and cardiac arrest caused by thiamine infusion

    DEFF Research Database (Denmark)

    Juel, Jacob; Pareek, Manan; Langfrits, Christian Sigvald;

    2013-01-01

    intoxication and developed cardiac arrest due to anaphylactic shock following intravenous thiamine infusion. The patient was successfully resuscitated after 15 min and repeated epinephrine administrations. He was discharged in good health after 14 days. This case report emphasises both the importance...

  7. Study on the radioprotective effect of cystamine and mexamine during two subsequent mitotic cycles

    Energy Technology Data Exchange (ETDEWEB)

    Sidorov, V.P. (Vsesoyuznyj Nauchno-ssledovatel' skij Inst. I Khimizatsii Lesnogo Khozyajstva, Pushkino (USSR))

    The radioprotective agents were found to be effective in relation to chromosomal aberrations occuring during both the first and the second mitotic cycles. It was shown that the radioprotective effect of cystamine and mexamine is completely removed by the effect of the inhibitor of DNA synthesis, 5-aminouracil. It is suggested that the radioprotective effect of the protective agents is realized through the formation of complexes between the radioprotective agent and the genetically active loci of chromosome DNA rather than through the reduction of radiation-induced DNA lesions.

  8. Mitotic chromosome loss in a radiation-sensitive strain of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Cells of Saccharomyces cerevisiae with mutations in the RAD52 gene have previously been shown to be defective in meiotic and mitotic recombination, in sporulation, and in repair of radiation-induced damage to DNA. In this study we show that diploid cells homozygous for rad52 lose chromosomes at high frequencies and that these frequencies of loss can be increased dramatically by exposure of these cells to x-rays. Genetic analyses of survivors of x-ray treatment demonstrate that chromosome loss events result in the conversion of diploid cells to cells with near haploid chromosome numbers

  9. Evidence that phosphorylation by the mitotic kinase Cdk1 promotes ICER monoubiquitination and nuclear delocalization

    Energy Technology Data Exchange (ETDEWEB)

    Memin, Elisabeth, E-mail: molinac@mail.montclair.edu [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103 (United States); Genzale, Megan [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103 (United States); Crow, Marni; Molina, Carlos A. [Department of Biology and Molecular Biology, Montclair State University, Montclair, NJ, 07043 (United States)

    2011-10-15

    In contrast to normal prostatic cells, the transcriptional repressor Inducible cAMP Early Repressor (ICER) is undetected in the nuclei of prostate cancer cells. The molecular mechanisms for ICER abnormal expression in prostate cancer cells remained largely unknown. In this report data is presented demonstrating that ICER is phosphorylated by the mitotic kinase cdk1. Phosphorylation of ICER on a discrete residue targeted ICER to be monoubiquitinated. Different from unphosphorylated, phosphorylated and polyubiquitinated ICER, monoubiquitinated ICER was found to be cytosolic. Taken together, these results hinted on a mechanism for the observed abnormal subcellular localization of ICER in human prostate tumors.

  10. Evidence that phosphorylation by the mitotic kinase Cdk1 promotes ICER monoubiquitination and nuclear delocalization

    International Nuclear Information System (INIS)

    In contrast to normal prostatic cells, the transcriptional repressor Inducible cAMP Early Repressor (ICER) is undetected in the nuclei of prostate cancer cells. The molecular mechanisms for ICER abnormal expression in prostate cancer cells remained largely unknown. In this report data is presented demonstrating that ICER is phosphorylated by the mitotic kinase cdk1. Phosphorylation of ICER on a discrete residue targeted ICER to be monoubiquitinated. Different from unphosphorylated, phosphorylated and polyubiquitinated ICER, monoubiquitinated ICER was found to be cytosolic. Taken together, these results hinted on a mechanism for the observed abnormal subcellular localization of ICER in human prostate tumors.

  11. Mitotic instability of Pichia pinus diploid cells 2. Segregation induced by gamma-irradiation

    International Nuclear Information System (INIS)

    Two types of genetic damages resulted from gamma rays in diploid cells of yeasts Pichia pinus MH4: nonlethal damages resulting in increasing frequency of mitotic crossing-over and lethal damages leading to cell death or arising unstable clones have been described. Survaving irradiated cells with lethal damages (which nature is not established) originate ''grown'' colonies which instability is manifested in the increased frequency of segregation of lethal sections and aneuploid segregants; in such colonies segregants without one, two or three nonhomologous chromosomes are often found. It is concluded that losses of separate chromosomes are not those primary damages which result in radiation inactivation of cells

  12. Cell death, chromosome damage and mitotic delay in normal human, ataxia telangiectasia and retinoblastoma fibroblasts after X-irradiation

    International Nuclear Information System (INIS)

    We recently showed (Scott and Zampetti-Bosseler 1980) that X-ray sensitive mouse lymphoma cells sustain more chromosome damage, mitotic delay and spindle defects than X-ray resistant cells. We proposed that (a) chromosome aberrations contribute much more to lethality than spindle defects, and (b) that DNA lesions are less effectively repaired in the sensitive cells and give rise to more G2 mitotic delay and chromosome aberrations. Our present results on human fibroblasts with reported differential sensitivity to ionizing radiation (i.e. normal donors and patients with ataxia telangiectasia and retinoblastoma) support the first hypothesis since we observed a positive correlation between chromosome aberration frequencies and cell killing and no induced spindle defects. Our second hypothesis is however not substantiated since X-ray sensitive fibroblasts from the ataxia patient suffered less mitotic delay than cells from normal donors. A common lesion for mitotic delay and chromosome aberrations can still be assumed by adopting the hypothesis of Painter and Young (1981) that the defect in ataxia cells is not in repair but in a failure of DNA damage to initiate mitotic delay. In contrast to other reports, we found the retinoblastoma cells to be of normal radiation sensitivity (cell killing and aberrations). (author)

  13. Explaining Discrepancies in Arrest Rates Between Black and White Male Juveniles

    OpenAIRE

    Fite, Paula J.; Wynn, Porche’; Pardini, Dustin A.

    2009-01-01

    The authors investigated discrepancies in arrest rates between Black and White male juveniles by examining the role of early risk factors for arrest. Two hypotheses were evaluated: (a) Disproportionate minority arrest is due to increased exposure to early risk factors, and (b) a differential sensitivity to early risk factors contributes to disproportionate minority arrest. The study included 481 Black and White boys who were followed from childhood to early adulthood. A higher incidence of ea...

  14. The effect of mitotic inhibitors on DNA strand size and radiation-associated break repair in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    The effect of mitotic inhibitors on formation and repair of DNA breaks was studied in cultured fibroblasts from patients with Down syndrome in order to investigate the hypothesis that the karyotyping procedure itself may play a role in the increased chromosome breakage seen in these cells after gamma radiation exposure. Using the nondenaturing elution and alkaline elution techniques to examine fibroblasts from Down syndrome patients and from controls, no specific abnormalities in Down syndrome cells could be detected after exposure to mitotic inhibitors, including rate and extent of elution of DNA from filters as well as repair of radiation-induced DNA breaks. In both normal and Down syndrome cell strains, however, exposure to mitotic inhibitors was associated with a decrease in cellular DNA strand size, suggesting the presence of drug-induced DNA strand breaks. The mechanism of increased chromosome sensitivity of Down syndrome cells to gamma radiation remains unknown. (orig.)

  15. Gender and Relational-Distance Effects in Arrests for Domestic Violence

    Science.gov (United States)

    Lally, William; DeMaris, Alfred

    2012-01-01

    This study tests two hypotheses regarding factors affecting arrest of the perpetrator in domestic violence incidents. Black's relational-distance thesis is that the probability of arrest increases with increasing relational distance between perpetrator and victim. Klinger's leniency principle suggests that the probability of arrest is lower for…

  16. U.S. Juvenile Arrests: Gang Membership, Social Class, and Labeling Effects

    Science.gov (United States)

    Tapia, Mike

    2011-01-01

    This study addresses the link between gang membership and arrest frequency, exploring the Gang x Socioeconomic status interaction on those arrests. Notoriously poor, delinquent, and often well-known to police, America's gang youth should have very high odds of arrest. Yet it is unclear whether mere membership in a gang increases the risk of arrest…

  17. DNA lesions induced by replication stress trigger mitotic aberration and tetraploidy development.

    Directory of Open Access Journals (Sweden)

    Yosuke Ichijima

    Full Text Available During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress.

  18. Effect of propolis on mitotic and cellular proliferation indices in human blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Montoro, A.; Almonacid, M.; Villaescusa, J. [Valencia Hospital Univ. la Fe, Servicio de Proteccion Radiologica (Spain); Barquinero, J. [Barcelona Univ. Autonom, Servicio de Dosimetria Biologica, Unidad de Antropologia, Dept. de Biologia Animal, Vegetal y Ecologia, barcelona (Spain); Barrios, L. [Barcelona Univ. Autonoma, Dept. de Biologia Celular y Fisiologia. Unidad de Biologia Celular (Spain); Verdu, G. [Valencia Univ. Politecnica, Dept. de Ingenieria Quimica y Nuclear (Spain); Perez, J. [Hospital la Fe, Seccion de Radiofisica, Servicio de Radioterapia, valencia (Spain)

    2006-07-01

    The study of the frequency of chromosomal aberrations per cell is the tool used in Biological dosimetry studies. Using dose-effect calibration curve obtained in our laboratory, we can evaluate the radioprotector effect of the EEP (ethanolic extract of propolis) in cultures in vitro. Propolis is the generic name for resinous substance collected by honeybees. The results showed a reduction in chromosomal aberrations's frequency of up to 50 %. The following study consisted of analyzing human peripheral blood lymphocytes exposed to 2 Gy {gamma} rays, in presence and absence of EEP, the change in the frequency of chromosome aberrations was analysed with biological dosimetry. The protection against the formation of dicentric and ring was dose-dependent, but there seemed to be a maximum protection, i.e. a further increase in the concentration of EEP does not show additional protection. This work studies the effect of the EEP of the cellular cycle using the mitotic and cellular proliferation index, as an alternative for the screening cytostatic activity. The results indicate that the lymphocytes which were cultures in presence of EEP exhibited a significant and dependent-concentration decrease in mitotic index and proliferation kinetics. The possible mechanisms involved in the radioprotective influence of EEP are discussed. (authors)

  19. Visualization of the chromosome scaffold and intermediates of loop domain compaction in extracted mitotic cells.

    Science.gov (United States)

    Sheval, Eugene V; Polyakov, Vladimir Y

    2006-12-01

    A novel extraction protocol for cells cultured on coverslips is described. Observations of the extraction process in a perfusion chamber reveal that cells of all mitotic stages are not detached from coverslips during extraction, and all stages can be recognized using phase contrast images. We studied the extracted cell morphology and distribution of a major scaffold component - topoisomerase IIalpha, in extracted metaphase and anaphase cells. An extraction using 2M NaCl leads to destruction of chromosomes at the light microscope level. Immunogold studies demonstrate that the only residual structure observed is an axial chromosome scaffold that contains topoisomerase IIalpha. In contrast, mitotic chromosomes are swelled only partially after an extraction using dextran sulphate and heparin, and it appears that this treatment does not lead to total destruction of loop domains. In this case, the chromosome scaffold and numerous structures resembling small rosettes are revealed inside extracted cells. The rosettes observed condense after addition of Mg2+-ions and do not contain topoisomerase IIalpha suggesting that these structures correspond to intermediates of loop domain compaction. We propose a model of chromosome structure in which the loop domains are condensed into highly regular structures with rosette organization. PMID:17029868

  20. Changes in distribution of nuclear matrix antigens during the mitotic cell cycle.

    Science.gov (United States)

    Chaly, N; Bladon, T; Setterfield, G; Little, J E; Kaplan, J G; Brown, D L

    1984-08-01

    We examined the distribution of nonlamin nuclear matrix antigens during the mitotic cell cycle in mouse 3T3 fibroblasts. Four monoclonal antibodies produced against isolated nuclear matrices were used to characterize antigens by the immunoblotting of isolated nuclear matrix preparations, and were used to localize the antigens by indirect immunofluorescence. For comparison, lamins and histones were localized using human autoimmune antibodies. At interphase, the monoclonal antibodies recognized non-nucleolar and nonheterochromatin nuclear components. Antibody P1 stained the nuclear periphery homogeneously, with some small invaginations toward the interior of the nucleus. Antibody I1 detected an antigen distributed as fine granules throughout the nuclear interior. Monoclonals PI1 and PI2 stained both the nuclear periphery and interior, with some characteristic differences. During mitosis, P1 and I1 were chromosome-associated, whereas PI1 and PI2 dispersed in the cytoplasm. Antibody P1 heavily stained the periphery of the chromosome mass, and we suggest that the antigen may play a role in maintaining interphase and mitotic chromosome order. With antibody I1, bright granules were distributed along the chromosomes and there was also some diffuse internal staining. The antigen to I1 may be involved in chromatin/chromosome higher-order organization throughout the cell cycle. Antibodies PI1 and PI2 were redistributed independently during prophase, and dispersed into the cytoplasm during prometaphase. Antibody PI2 also detected antigen associated with the spindle poles. PMID:6378926

  1. The effect of x-ray induced mitotic delay on chromosome aberration yields in human lymphocytes

    International Nuclear Information System (INIS)

    The extent to which X-ray induced mitotic delay at 150 and 400 rad influences chromosome aberration yields was examined in human peripheral blood lymphocytes. The dicentric was used as a marker and aberration yields were obtained for mixed cultures prepared from equal numbers of normal and irradiated cells. The cultures were terminated following incubation times of 36-120 h. Greater mitotic delay of the order of a few hours was observed at the higher dose. However most reduction in the numbers of lymphocytes arriving at metaphase by 48 h may be ascribed to interphase death of failure to transform. Analysis of the dicentric distributions which were expected to follow Poisson statistics indicated that cells containing dicentrics were delayed relative to irradiated but aberration-free cells. Cells with one dicentric moved more easily through the first cell cycle than cells containing two dicentrics. Following accidental partial body irradiation, selection in culture favouring the unirradiated lymphocytes does not distort the aberration yield sufficiently to warrant incubation times in excess of the standard 48-52 h

  2. Effect of propolis on mitotic and cellular proliferation indices in human blood lymphocytes

    International Nuclear Information System (INIS)

    The study of the frequency of chromosomal aberrations per cell is the tool used in Biological dosimetry studies. Using dose-effect calibration curve obtained in our laboratory, we can evaluate the radioprotector effect of the EEP (ethanolic extract of propolis) in cultures in vitro. Propolis is the generic name for resinous substance collected by honeybees. The results showed a reduction in chromosomal aberrations's frequency of up to 50 %. The following study consisted of analyzing human peripheral blood lymphocytes exposed to 2 Gy γ rays, in presence and absence of EEP, the change in the frequency of chromosome aberrations was analysed with biological dosimetry. The protection against the formation of dicentric and ring was dose-dependent, but there seemed to be a maximum protection, i.e. a further increase in the concentration of EEP does not show additional protection. This work studies the effect of the EEP of the cellular cycle using the mitotic and cellular proliferation index, as an alternative for the screening cytostatic activity. The results indicate that the lymphocytes which were cultures in presence of EEP exhibited a significant and dependent-concentration decrease in mitotic index and proliferation kinetics. The possible mechanisms involved in the radioprotective influence of EEP are discussed. (authors)

  3. The Emerging Nexus of Active DNA Demethylation and Mitochondrial Oxidative Metabolism in Post-Mitotic Neurons

    Directory of Open Access Journals (Sweden)

    Huan Meng

    2014-12-01

    Full Text Available The variable patterns of DNA methylation in mammals have been linked to a number of physiological processes, including normal embryonic development and disease pathogenesis. Active removal of DNA methylation, which potentially regulates neuronal gene expression both globally and gene specifically, has been recently implicated in neuronal plasticity, learning and memory processes. Model pathways of active DNA demethylation involve ten-eleven translocation (TET methylcytosine dioxygenases that are dependent on oxidative metabolites. In addition, reactive oxygen species (ROS and oxidizing agents generate oxidative modifications of DNA bases that can be removed by base excision repair proteins. These potentially link the two processes of active DNA demethylation and mitochondrial oxidative metabolism in post-mitotic neurons. We review the current biochemical understanding of the DNA demethylation process and discuss its potential interaction with oxidative metabolism. We then summarise the emerging roles of both processes and their interaction in neural plasticity and memory formation and the pathophysiology of neurodegeneration. Finally, possible therapeutic approaches for neurodegenerative diseases are proposed, including reprogramming therapy by global DNA demethylation and mitohormesis therapy for locus-specific DNA demethylation in post-mitotic neurons.

  4. Post-mitotic role of nucleostemin as a promoter of skeletal muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Hiroyuki; Romanova, Liudmila; Kellner, Steven; Verma, Mayank; Rayner, Samuel [Stem Cell Institute, University of Minnesota, Room 2-216, MTRF, 2001 6th St. SE, Minneapolis, MN 55455 (United States); Asakura, Atsushi, E-mail: asakura@umn.edu [Stem Cell Institute, University of Minnesota, Room 2-216, MTRF, 2001 6th St. SE, Minneapolis, MN 55455 (United States); Kikyo, Nobuaki, E-mail: kikyo001@umn.edu [Stem Cell Institute, University of Minnesota, Room 2-216, MTRF, 2001 6th St. SE, Minneapolis, MN 55455 (United States)

    2010-01-01

    Nucleostemin (NS) is a nucleolar protein abundantly expressed in a variety of proliferating cells and undifferentiated cells. Its known functions include cell cycle regulation and the control of pre-rRNA processing. It also has been proposed that NS has an additional role in undifferentiated cells due to its downregulation during stem cell differentiation and its upregulation during tissue regeneration. Here, however, we demonstrate that skeletal muscle cell differentiation has a unique expression profile of NS in that it is continuously expressed during differentiation. NS was expressed at similar levels in non-proliferating muscle stem cells (satellite cells), rapidly proliferating precursor cells (myoblasts) and post-mitotic terminally differentiated cells (myotubes and myofibers). The sustained expression of NS during terminal differentiation is necessary to support increased protein synthesis during this process. Downregulation of NS inhibited differentiation of myoblasts to myotubes, accompanied by striking downregulation of key myogenic transcription factors, such as myogenin and MyoD. In contrast, upregulation of NS inhibited proliferation and promoted muscle differentiation in a p53-dependent manner. Our findings provide evidence that NS has an unexpected role in post-mitotic terminal differentiation. Importantly, these findings also indicate that, contrary to suggestions in the literature, the expression of NS cannot always be used as a reliable indicator for undifferentiated cells or proliferating cells.

  5. Multisite phosphorylation of Pin1-associated mitotic phosphoproteins revealed by monoclonal antibodies MPM-2 and CC-3

    Directory of Open Access Journals (Sweden)

    Vincent Michel

    2004-06-01

    Full Text Available Abstract Background The peptidyl-prolyl isomerase Pin1 recently revealed itself as a new player in the regulation of protein function by phosphorylation. Pin1 isomerizes the peptide bond of specific phosphorylated serine or threonine residues preceding proline in several proteins involved in various cellular events including mitosis, transcription, differentiation and DNA damage response. Many Pin1 substrates are antigens of the phosphodependent monoclonal antibody MPM-2, which reacts with a subset of proteins phosphorylated at the G2/M transition. Results As MPM-2 is not a general marker of mitotic phosphoproteins, and as most mitotic substrates are phosphorylated more than once, we used a different phosphodependent antibody, mAb CC-3, to identify additional mitotic phosphoproteins and eventual Pin1 substrates by combining affinity purification, MALDI-TOF mass spectrometry and immunoblotting. Most CC-3-reactive phosphoproteins appeared to be known or novel MPM-2 antigens and included the RNA-binding protein p54nrb/nmt55, the spliceosomal protein SAP155, the Ki-67 antigen, MAP-1B, DNA topoisomerases II α and β, the elongation factor hSpt5 and the largest subunit of RNA polymerase II. The CC-3 mitotic antigens were also shown to be Pin1 targets. The fine CC-3- and MPM-2-epitope mapping of the RNA polymerase II carboxy-terminal domain confirmed that the epitopes were different and could be generated in vitro by distinct kinases. Finally, the post-mitotic dephosphorylation of both CC-3 and MPM-2 antigens was prevented when cellular Pin1 activity was blocked by the selective inhibitor juglone. Conclusion These observations indicate that the mitotic phosphoproteins associated with Pin1 are phosphorylated on multiple sites, suggesting combinatorial regulation of substrate recognition and isomerization.

  6. Influence of irradiation at different stages of mitotic cycle upon production of sister chromatid exchanges in cultured Chinese hamster cells

    International Nuclear Information System (INIS)

    Frequency of sister chromatid exchanges (SCE) and microexchanges in Chinese hamster cells has been studied by means of the method of differential staining of chromatids on irradiation at different stages of the mitotic cycle. It is shown that the irradiation enhances frequency of SCE and microexchanges if it is carried out before the end of DNA replication synthesis. Comparison of frequency depenedence of radiation-induced microexchanges and SCE at different stages of the mitotic cycle results in the conclusion that the microexchanges are none other than small SCE

  7. Influence of irradiation at different stages of mitotic cycle unon production of sister chromatid exchanges in cultured chinese hamster cells

    International Nuclear Information System (INIS)

    Frequency of.sister chromatid exchanges (SCE) and microexchanges in the chinese hamster cells was investigated by means of the method of differential colouring of chromatids on irradiation at different stages of the mitotic cycle. It is shown that the irradiation increases frequency of SCE and microexchanges if it is performed before the end of the replicative DNA synthesis. Comparison of frequency dependence of radiation-induced microexchanges and SCE at different stages of the mitotic cycle permits to conclude that the microexchanges are small SCE

  8. Mitotic inhibition of ICR 2A frog cells exposed to 265-313 nm monochromatic ultraviolet wavelengths and photoreactivating light

    International Nuclear Information System (INIS)

    Exposure of ICR 2A frog cells to 265, 289, 302 or 313 nm U.V. radiation caused a decrease in the MI of the irradiated cells in a fluence-dependent fashion. Treatment of cells with PRL immediately after U.V.-irradiation resulted in a smaller decrease in the MI, demonstrating that pyrimidine dimers played a role in the mitotic inhibition induced by these U.V. wavelengths. The effect of PRL on 313 nm-irradiated cells was much smaller than for the other wavelengths tested, indicating that non-dimer photoproducts were of importance in the mitotic inhibition induced by this U.V. wavelength. (author)

  9. Mlp1 Acts as a Mitotic Scaffold to Spatially Regulate Spindle Assembly Checkpoint Proteins in Aspergillus nidulans

    OpenAIRE

    De Souza, Colin P.; Hashmi, Shahr B.; Nayak, Tania; Oakley, Berl; Osmani, Stephen A.

    2009-01-01

    During open mitosis several nuclear pore complex (NPC) proteins have mitotic specific localizations and functions. We find that the Aspergillus nidulans Mlp1 NPC protein has previously unrealized mitotic roles involving spatial regulation of spindle assembly checkpoint (SAC) proteins. In interphase, An-Mlp1 tethers the An-Mad1 and An-Mad2 SAC proteins to NPCs. During a normal mitosis, An-Mlp1, An-Mad1, and An-Mad2 localize similarly on, and around, kinetochores until telophase when they trans...

  10. High throughput screening of natural products for anti-mitotic effects in MDA-MB-231 human breast carcinoma cells

    OpenAIRE

    Mazzio, E; Badisa, R; Mack, N; Deiab, S.; Soliman, KFA

    2013-01-01

    Some of the most effective anti-mitotic microtubule-binding agents, such as paclitaxel (Taxus brevifolia) were originally discovered through robust NCI botanical screenings. In this study, a high-through microarray format was utilized to screen 897 aqueous extracts of commonly used natural products (0.00015–0.5 mg/ml) relative to paclitaxel for anti-mitotic effects (independent of toxicity) on proliferation of MDA-MB-231 cells. The data obtained showed that less than 1.34 % tested showed inhi...

  11. Pediatric defibrillation after cardiac arrest: initial response and outcome

    Science.gov (United States)

    Rodríguez-Núñez, Antonio; López-Herce, Jesús; García, Cristina; Domínguez, Pedro; Carrillo, Angel; Bellón, Jose María

    2006-01-01

    Introduction Shockable rhythms are rare in pediatric cardiac arrest and the results of defibrillation are uncertain. The objective of this study was to analyze the results of cardiopulmonary resuscitation that included defibrillation in children. Methods Forty-four out of 241 children (18.2%) who were resuscitated from inhospital or out-of-hospital cardiac arrest had been treated with manual defibrillation. Data were recorded according to the Utstein style. Outcome variables were a sustained return of spontaneous circulation (ROSC) and one-year survival. Characteristics of patients and of resuscitation were evaluated. Results Cardiac disease was the major cause of arrest in this group. Ventricular fibrillation (VF) or pulseless ventricular tachycardia (PVT) was the first documented electrocardiogram rhythm in 19 patients (43.2%). A shockable rhythm developed during resuscitation in 25 patients (56.8%). The first shock (dose, 2 J/kg) terminated VF or PVT in eight patients (18.1%). Seventeen children (38.6%) needed more than three shocks to solve VF or PVT. ROSC was achieved in 28 cases (63.6%) and it was sustained in 19 patients (43.2%). Only three patients (6.8%), however, survived at 1-year follow-up. Children with VF or PVT as the first documented rhythm had better ROSC, better initial survival and better final survival than children with subsequent VF or PVT. Children who survived were older than the finally dead patients. No significant differences in response rate were observed when first and second shocks were compared. The survival rate was higher in patients treated with a second shock dose of 2 J/kg than in those who received higher doses. Outcome was not related to the cause or the location of arrest. The survival rate was inversely related to the duration of cardiopulmonary resuscitation. Conclusion Defibrillation is necessary in 18% of children who suffer cardiac arrest. Termination of VF or PVT after the first defibrillation dose is achieved in a low

  12. Arrest of rapid crack propagation in polymer pipes

    Energy Technology Data Exchange (ETDEWEB)

    Flueler, P.; Farshad, M. [EMPA, Duebendorf (Switzerland)

    1995-12-31

    The design of rapid crack arresters for polymer pipes was studied. Mechanisms that would inhibit a running crack and strengthen existing pipes against dynamic fracture and to enhance their degree of safety were examined. The crack arresters examined were based on the principle that rapid crack propagation (RCP) could not occur in pipe walls that were less than a `critical thickness`. Sections of pipe whose walls were thinned were reinforced with a reinforcing ring. Another variation was to produce a pipe with partially adhered multilayer walls. A third variation tried was a multi-layer pipe segment with a damping element and reinforcing rings. Experiments were successful in reducing RCP, but these preliminary results were considered exploratory and would require further confirmation. 2 figs., 8 refs.

  13. Increased risk of sudden cardiac arrest in obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Warnier, Miriam Jacoba; Blom, Marieke Tabo; Bardai, Abdennasser;

    2013-01-01

    BACKGROUND: We aimed to determine whether (1) patients with obstructive pulmonary disease (OPD) have an increased risk of sudden cardiac arrest (SCA) due to ventricular tachycardia or fibrillation (VT/VF), and (2) the SCA risk is mediated by cardiovascular risk-profile and/or respiratory drug use....... METHODS: A community-based case-control study was performed, with 1310 cases of SCA of the ARREST study and 5793 age, sex and SCA-date matched non-SCA controls from the PHARMO database. Only incident SCA cases, age older than 40 years, that resulted from unequivocal cardiac causes...... with electrocardiographic documentation of VT/VF were included. Conditional logistic regression analysis was used to assess the association between SCA and OPD. Pre-specified subgroup analyses were performed regarding age, sex, cardiovascular risk-profile, disease severity, and current use of respiratory drugs. RESULTS...

  14. Cellular Growth Arrest and Persistence from Enzyme Saturation

    Science.gov (United States)

    Ray, J. Christian J.; Wickersheim, Michelle L.; Jalihal, Ameya P.; Adeshina, Yusuf O.; Cooper, Tim F.; Balázsi, Gábor

    2016-01-01

    Metabolic efficiency depends on the balance between supply and demand of metabolites, which is sensitive to environmental and physiological fluctuations, or noise, causing shortages or surpluses in the metabolic pipeline. How cells can reliably optimize biomass production in the presence of metabolic fluctuations is a fundamental question that has not been fully answered. Here we use mathematical models to predict that enzyme saturation creates distinct regimes of cellular growth, including a phase of growth arrest resulting from toxicity of the metabolic process. Noise can drive entry of single cells into growth arrest while a fast-growing majority sustains the population. We confirmed these predictions by measuring the growth dynamics of Escherichia coli utilizing lactose as a sole carbon source. The predicted heterogeneous growth emerged at high lactose concentrations, and was associated with cell death and production of antibiotic-tolerant persister cells. These results suggest how metabolic networks may balance costs and benefits, with important implications for drug tolerance. PMID:27010473

  15. Cell cycle control after DNA damage: arrest, recovery and adaptation

    International Nuclear Information System (INIS)

    DNA damage triggers surveillance mechanisms, the DNA checkpoints, that control the genome integrity. The DNA checkpoints induce several responses, either cellular or transcriptional, that favor DNA repair. In particular, activation of the DNA checkpoints inhibits cell cycle progression in all phases, depending on the stage when lesions occur. These arrests are generally transient and cells ultimately reenter the cell division cycle whether lesions have been repaired (this process is termed 'recovery') or have proved un-repairable (this option is called 'adaptation'). The mechanisms controlling cell cycle arrests, recovery and adaptation are largely conserved among eukaryotes, and much information is now available for the yeast Saccharomyces cerevisiae, that is used as a model organism in these studies. (author)

  16. Characteristics of in-hospital cardiac arrest and cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Josip Ivić

    2009-02-01

    Full Text Available Aim We have studied epidemiology of in-hospital cardiac arrest, characteristics of organizing a reanimationand its,procedures as well as its documenting.Methods We analyzed all resuscitation procedure data where anesthesiology reanimation teams (RT providedcardiopulmonary resuscitation (CPR during one-year period. We included resuscitation attemptsthat were initiated outside the Department of Anesthesiology, excluding incidents in operation rooms andIntensive Care Unit (ICU. Data on every cardiac arrest and CPR were entered in a special form.Results During one-year period 87 CPR were performed. Victims of cardiac arrest were principallyelderly patients (age 60 – 80, mostly male (60%. Most frequent victims were neurological patients(42%, surgical patients (21% and neurosurgical patients (10%. The leading cause of cardiac arrestwas primary heart disease, following neurological diseases and respiration disorders of severe etiology.In over 90% cases CPR was initiated by medical personnel in their respective departments, RT arrivedwithin 5 minutes in 73,56% cases. Initially survival was 32%, but full recovery was accomplished in 4patients out of 87 (4,6%.Conclusion Victims of cardiac arrest are patients whose primary disease contributes to occurrence ofcardiorespiratory complications. High mortality and low percentage of full recovery can be explainedby characteristics of patients (old age, nature and seriousness of primary disease which significantly affectthe outcome of CPR. In some cases a question is raised whether to initiate the CPR at all. We wouldlike to point out that continous monitoring of potentially critical patients may prevent cardiorespiratoryincidents whereas the quality and success of CPR may be improved by training of staff and better technicalequipment on the relevant locations in the in the hospital where such incidents usually occur.

  17. Crack arrest saturation model under combined electrical and mechanical loadings

    Directory of Open Access Journals (Sweden)

    R.R. Bhargava

    2009-12-01

    Full Text Available Purpose: The investigation aims at proposing a model for cracked piezoelectric strip which is capable to arrest the crack.Design/methodology/approach: Under the combined effect of electrical and mechanical loadings applied at the edges of the strip, the developed saturation zone is produced at each tip of the crack. To arrest further opening of the crack, the rims of the developed saturation zones are subjected to in-plane cohesive, normal uniform constant saturation point electrical displacement. The problem is solved using Fourier integral transform method which reduces the problem to the solution of Fredholm integral equation of the second kind. This integral equation in turn is solved numerically.Findings: The expressions are derived for different intensity factors and energy release rate. A qualitative analysis of the parameters affecting the arrest of opening of the crack and fatigue crack growth with respect to strip thickness and material constants are presented graphically.Research limitations/implications: The investigations are carried out by considering the material electrical brittle. Consequently, the zones protrude along the straight lines ahead of the crack tips. And further, the small scale electrical yielding conditions are used.Practical implications: Piezoelectric materials are widely getting used nowadays, even in day to day life like piezoelectric cigarette lighter, children toys etc. And, its advance used in technology like transducers, actuators has been already in progress. So, the aspect of cracking of piezoelectric materials are of great practical importance.Originality/value: The piezoelectric material under the combined effect of electrical and mechanical loadings gives the assessment of electrical displacement which is required to arrest the crack. The various useful interpretations are also drawn from the graphs.

  18. Nontrapping arrest of Langmuir wave damping near the threshold amplitude

    OpenAIRE

    Ivanov, A.V.; Cairns, Iver H.

    2005-01-01

    Evolution of a Langmuir wave is studied numerically for finite amplitudes slightly above the threshold which separates damping from nondamping cases. Arrest of linear damping is found to be a second-order effect due to ballistic evolution of perturbations, resonant power transfer between field and particles, and organization of phase space into a positive slope for the average distribution function $f_{av}$ around the resonant wave phase speed $v_\\phi$. Near the threshold trapping in the wave...

  19. Anaphylactic shock and cardiac arrest caused by thiamine infusion

    OpenAIRE

    Juel, Jacob; Pareek, Manan; Langfrits, Christian Sigvald; Jensen, Svend Eggert

    2013-01-01

    Parenteral thiamine has a very high safety profile. The most common adverse effect is local irritation; however, anaphylactic or anaphylactoid reactions may occur, mostly related to intravenous administration. We describe a 44-year-old man, a chronic alcoholic, who was admitted with alcohol intoxication and developed cardiac arrest due to anaphylactic shock following intravenous thiamine infusion. The patient was successfully resuscitated after 15 min and repeated epinephrine administrations....

  20. Electrocardiogram characteristics prior to in-hospital cardiac arrest

    OpenAIRE

    Attin, Mina; Feld, Gregory; Lemus, Hector; Najarian, Kayvan; Shandilya, Sharad; Wang, Lu; Sabouriazad, Pouya; Lin, Chii-Dean

    2014-01-01

    Survival after in-hospital cardiac arrest (I-HCA) remains < 30 %. There is very limited literature exploring the electrocardiogram changes prior to I-HCA. The purpose of the study was to determine demographics and electrocardiographic predictors prior to I-HCA. A retrospective study was conducted among 39 cardiovascular subjects who had cardiopulmonary resuscitation from I-HCA with initial rhythms of pulseless electrical activity (PEA) and asystole. Demographics including medical history, eje...

  1. Luminescence from Tube-Arrest Bubbles in Pure Glycerin

    Institute of Scientific and Technical Information of China (English)

    陈岐岱; 王龙

    2004-01-01

    Single transient cavitation bubble with luminescence has been generated in pure glycerin by using the ‘tube arrest'method. The analyses of high-speed photograph and light emission data suggest that the light emission would be a single bubble sonoluminescence. The luminescence pulse width is observed to wry from sub-nanosecond to about 30 ns. The width and intensity of luminescence pulses increases with the height of the liquid column height and decreases with the liquid temperature.

  2. Hyperoxia toxicity after cardiac arrest: What is the evidence?

    OpenAIRE

    Llitjos, Jean-François; Mira, Jean-Paul; Duranteau, Jacques; Cariou, Alain

    2016-01-01

    This review gives an overview of current knowledge on hyperoxia pathophysiology and examines experimental and human evidence of hyperoxia effects after cardiac arrest. Oxygen plays a pivotal role in critical care management as a lifesaving therapy through the compensation of the imbalance between oxygen requirements and supply. However, growing evidence sustains the hypothesis of reactive oxygen species overproduction-mediated toxicity during hyperoxia, thus exacerbating organ failure by vari...

  3. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  4. Oral Phenytoin Toxicity Causing Sinus Arrest: A Case Report

    Science.gov (United States)

    Thimmisetty, Ravi K.; Gorthi, Janardhana Rao

    2014-01-01

    We present a case of sinus node arrest leading to symptomatic junctional bradycardia from oral phenytoin toxicity, which is a rare presentation. Our patient had no prior cardiac history and was on phenytoin therapy for seizure disorder. Although bradycardia is more commonly associated with intravenous phenytoin and there were few case reports of bradycardia with oral phenytoin reported, the literature is limited. In this case report, we also reviewed the pathophysiology of phenytoin-induced cardiac toxicity. PMID:25343048

  5. Patients with polycystic ovary syndrome have successful embryo arrest

    OpenAIRE

    Yin, Baoli; Hao, Haoying; Wei, Duo; Song, Xiaobing; Xie, Juanke; Zhang, Cuilian

    2015-01-01

    In this retrospective study, we investigate the relationship between embryo arrest and polycystic ovary syndrome (PCOS) during in vitro fertilization-embryo transfer (IVF-ET). In this study, 667 subjects were enrolled, including 330 patients with PCOS and 337 subjects without PCOS. The subjects underwent in vitro fertilization/intracytoplasmic sperm injection and embryo transfer (IVF/ICSI-ET) cycles at the Reproductive Medical Centre of Henan Provincial Hospital from January 2009 to December ...

  6. ADULTHOOD ANIMAL ABUSE AMONG MEN ARRESTED FOR DOMESTIC VIOLENCE

    OpenAIRE

    Febres, Jeniimarie; Brasfield, Hope; Shorey, Ryan C.; Elmquist, Joanna; Ninnemann, Andrew; Schonbrun, Yael C.; Temple, Jeff R.; Recupero, Patricia R.; Stuart, Gregory L.

    2014-01-01

    Learning more about intimate partner violence (IPV) perpetrators could aid the development of more effective treatments. The prevalence of adulthood animal abuse (AAA) perpetration and its association with IPV perpetration, antisociality, and alcohol use in 307 men arrested for domestic violence was examined. 41% (n = 125) of the men committed at least one act of animal abuse since the age of 18, in contrast to the 3.0% prevalence rate reported by men in the general population. Controlling fo...

  7. Autoradiographic studies on the cell kinetics after the whole body X-irradiation. 3. Post-irradiation changes in the mitotic activity and mitotic cycle of the rat's brain subependymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, N.D. (Tsentral' nyj Nauchno-Issledovatel' skij Rentgeno-Radiologicheskij Inst., Leningrad (USSR))

    1982-04-01

    The study is carried out on subependymal cells of rat brain usig autoradiography with 3H-tymidine introduced 60-80 min before whole body X-ray irradiation i doses 50, 150, or 300 R. In postradiation cell system the dynamics of mitotic index Isub(M) and changes of mitotic cycle aevaluated according to the curve of labelled mitosis (CLM) are studied. A new interpretation of ''classical delay of mitosis'' is given, which points not to excessive delay in phases of mitotic cycle but to dependence on dose time from the irradiation moment before appearance of the first mitoses of survived cells as cells which were dividing at the time of death. At that, all the cells of the system have experienced one hour block independent of the dose. It is showm that the curve Isub(M) can serve as a measure of dead proliferative cells. The changes of CLM, conditioned by mitotic deathe f cells irradiated in G2-and S-phases and its other peculiarities are discussed.

  8. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae. [Comparison of. gamma. -, uv-induced meiotic and spontaneous mitotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1979-01-01

    Effects of the rad52 mutation in Saccharomyces cerevisiae on meiotic, ..gamma..-ray-induced, uv-induced, and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Intra- and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the hisl-1/hisl-315 and trp5-2/trp5-48 heteroalleles. Gene-centromere recombination was also not observed in rad52/rad52 diploids. No ..gamma..-ray-induced intragenic mitotic recombination is seen in rad52/rad52 diploids and uv-induced intragenic recombination is greatly reduced. However, spontaneous mitotic recombination is not similarly affected. The RAD52 gene thus functions in recombination in meiosis and in ..gamma..-ray and uv-induced mitotic recombination but not in spontaneous mitotic recombination.

  9. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle

    International Nuclear Information System (INIS)

    The microtubule (MT) motor protein kinesin is a vital component of cells and organs expressing acrylamide (ACR) toxicity. As a mechanism of its potential carcinogenicity, we determined whether kinesins involved in cell division are inhibited by ACR similar to neuronal kinesin [Sickles, D.W., Brady, S.T., Testino, A.R., Friedman, M.A., and Wrenn, R.A. (1996). Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. Journal of Neuroscience Research 46, 7-17.] Kinesin-related genes were isolated from rat testes [Navolanic, P.M., and Sperry, A.O. (2000). Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biology of Reproduction 62, 1360-1369.], their kinesin-like proteins expressed in bacteria using recombinant DNA techniques and the effects of ACR, glycidamide (GLY) and propionamide (a non-neurotoxic metabolite) on the function of two of the identified kinesin motors were tested. KIFC5A MT bundling activity, required for mitotic spindle formation, was measured in an MT-binding assay. Both ACR and GLY caused a similar concentration-dependent reduction in the binding of MT; concentrations of 100 μM ACR or GLY reduced its activity by 60%. KRP2 MT disassembling activity was assayed using the quantity of tubulin disassembled from taxol-stabilized MT. Both ACR and GLY inhibited KRP2-induced MT disassembly. GLY was substantially more potent; significant reductions of 60% were achieved by 500 μM, a comparable inhibition by ACR required a 5 mM concentration. Propionamide had no significant effect on either kinesin, except KRP2 at 10 mM. This is the first report of ACR inhibition of a mitotic/meiotic motor protein. ACR (or GLY) inhibition of kinesin may be an alternative mechanism to DNA adduction in the production of cell division defects and potential carcinogenicity. We conclude that ACR may act on multiple kinesin family members and produce toxicities in organs highly dependent on microtubule-based functions

  10. Cremophor EL stimulates mitotic recombination in uvsH//uvsH diploid strain of Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Cleverson Busso

    2004-03-01

    Full Text Available Cremophor EL is a solubilizer and emulsifier agent used in the pharmaceutical and foodstuff industries. The solvent is the principal constituent of paclitaxel's clinical formulation vehicle. Since mitotic recombination plays a crucial role in multistep carcinogenesis, the study of the recombinagenic potential of chemical compounds is of the utmost importance. In our research genotoxicity of cremophor EL has been studied by using an uvsH//uvsH diploid strain of Aspergillus nidulans. Since it spends a great part of its cell cycle in the G2period, this fungus is a special screening system for the study of mitotic recombination induced by chemical substances. Homozygotization Indexes (HI for paba and bi markers from heterozygous B211//A837 diploid strain were determined for the evaluation of the recombinagenic effect of cremophor EL. It has been shown that cremophor EL induces increase in mitotic crossing-over events at nontoxic concentrations (0.05 and 0.075% v/v.Cremofor EL (CEL é um solubilizante e emulsificante amplamente utilizado nas indústrias farmacêuticas e de gêneros alimentícios. É o principal veículo empregado nas formulações clínicas do antineoplásico paclitaxel. Considerando-se que a recombinação mitótica desempenha importante função no processo de carcinogênese, o estudo de substâncias químicas com potencial recombinagênico assume importância crucial, no sentido de se detectar aquelas que eventualmente possam atuar como promotoras de neoplasias. A genotoxicidade do cremofor EL foi estudada no presente trabalho, utilizando-se uma linhagem diplóide uvsH//uvsH de Aspergillus nidulans. Neste fungo as células vegetativas comumente repousam no período G2 do ciclo celular, facilitando a ocorrência da recombinação mitótica. O efeito recombinagênico do CEL foi avaliado através da determinação dos Índices de Homozigotização para os marcadores nutricionais paba e bi do diplóide heterozigoto B211//A837. Os

  11. Advances in crack-arrest technology for reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Pugh, C.E.

    1988-01-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the US Nuclear Regulatory Commission is continuing to improve the understanding of conditions that govern the initiation, rapid propagation, arrest, and ductile tearing of cracks in reactor pressure vessel (RPV) steels. This paper describes recent advances in a coordinated effort being conducted under the HSST Program by ORNL and several subcontracting groups to develop the crack-arrest data base and the analytical tools required to construct inelastic dynamic fracture models for RPV steels. Large-scale tests are being carried out to generate crack-arrest toughness data at temperatures approaching and above the onset of Charpy upper-shelf behavior. Small- and intermediate-size specimens subjected to static and dynamic loading are being developed and tested to provide additional fracture data for RPV steels. Viscoplastic effects are being included in dynamic fracture models and computer programs and their utility validated through analyses of data from carefully controlled experiments. Recent studies are described that examine convergence problems associated with energy-based fracture parameters in viscoplastic-dynamic fracture applications. Alternative techniques that have potential for achieving convergent solutions for fracture parameters in the context of viscoplastic-dynamic models are discussed. 46 refs., 15 figs., 3 tabs.

  12. Hyperoxia toxicity after cardiac arrest: What is the evidence?

    Science.gov (United States)

    Llitjos, Jean-François; Mira, Jean-Paul; Duranteau, Jacques; Cariou, Alain

    2016-12-01

    This review gives an overview of current knowledge on hyperoxia pathophysiology and examines experimental and human evidence of hyperoxia effects after cardiac arrest. Oxygen plays a pivotal role in critical care management as a lifesaving therapy through the compensation of the imbalance between oxygen requirements and supply. However, growing evidence sustains the hypothesis of reactive oxygen species overproduction-mediated toxicity during hyperoxia, thus exacerbating organ failure by various oxidative cellular injuries. In the cardiac arrest context, evidence of hyperoxia effects on outcome is fairly conflicting. Although prospective data are lacking, retrospective studies and meta-analysis suggest that hyperoxia could be associated with an increased mortality. However, data originate from retrospective, heterogeneous and inconsistent studies presenting various biases that are detailed in this review. Therefore, after an original and detailed analysis of all experimental and clinical studies, we herein provide new ideas and concepts that could participate to improve knowledge on oxygen toxicity and help in developing further prospective controlled randomized trials on this topic. Up to now, the strategy recommended by international guidelines on cardiac arrest (i.e., targeting an oxyhemoglobin saturation of 94-98 %) should be applied in order to avoid deleterious hypoxia and potent hyperoxia. PMID:27003426

  13. An analysis of mandatory arrest policy on domestic violence

    Directory of Open Access Journals (Sweden)

    Ahmet Çelik

    2013-05-01

    Full Text Available Women are more likely to be beaten, raped, or killed because of domestic violence. Men have beaten their wives and partners for centuries with no payback from the criminal justice system. Recent decades domestic violence cases became an important focal point for criminal justice system. Despite increased public awareness, domestic violence remains a serious public policy issue in all around the world. Domestic violence was historically an area of policing where officers were reluctant to interfere because of its sensitive nature vary from one culture to another. Governments started to face with increased liability for police inaction. Therefore law makers passed laws requiring the warrantless arrests of individuals for misdemeanor assault of an intimate partner. This article tries to explain background information over domestic violence from public policy perspective at first. Then tries to explain mandatory arrest policies with its goals and effects. After evaluation and implications of mandatory arrest policies on domestic violence this article concludes by recommending various policy recommendation at the end.

  14. Inhibition of the Ras-ERK pathway in mitotic COS7 cells is due to the inability of EGFR/Raf to transduce EGF signaling to downstream proteins.

    Science.gov (United States)

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Ma, Yue

    2016-06-01

    Although previous studies have shown that Ras-ERK signaling in mitosis is closed due to the inhibition of signal transduction, the events involved in the molecular mechanisms are still unclear. In the present study, we investigated the Ras-ERK signaling pathway in mitotic COS7 cells. The results demonstrated that treatment with epidermal growth factor (EGF) failed to increase the endocytosis of EGF-EGFR (EGF receptor) complexes in mitotic COS7 cells, although a large amount of endosomes were found in asynchronous COS7 cells. Clathrin expression levels in mitotic COS7 cells were inhibited whereas caveolin expression levels in mitotic COS7 cells were almost unaffected. Y1068 and Y1086 residues of EGFR in the mitotic COS7 cells were activated. However, Grb2 and Shc in the mitotic COS7 cells did not bind to activated EGFR. Ras activity was inhibited in the mitotic COS7 cells whereas its downstream protein, Raf, was obviously phosphorylated by EGF in mitosis. Treatment with phorbol 12-myristate 13-acetate (PMA) also increased the phosphorylation levels of Raf in the mitotic COS7 cells. Nevertheless, Raf phosphorylation in mitosis was significantly inhibited by AG1478. Lastly, activation of EGF-mediated MEK and ERK in the mitotic COS7 cells was obviously inhibited. In summary, our results suggest that the Ras-ERK pathway is inhibited in mitotic COS7 cells which may be the dual result of the difficulty in the transduction of EGF signaling by EGFR or Raf to downstream proteins. PMID:27004682

  15. Polyglutamylated Tubulin Binding Protein C1orf96/CSAP Is Involved in Microtubule Stabilization in Mitotic Spindles

    Science.gov (United States)

    Ohta, Shinya; Hamada, Mayako; Sato, Nobuko; Toramoto, Iyo

    2015-01-01

    The centrosome-associated C1orf96/Centriole, Cilia and Spindle-Associated Protein (CSAP) targets polyglutamylated tubulin in mitotic microtubules (MTs). Loss of CSAP causes critical defects in brain development; however, it is unclear how CSAP association with MTs affects mitosis progression. In this study, we explored the molecular mechanisms of the interaction of CSAP with mitotic spindles. Loss of CSAP caused MT instability in mitotic spindles and resulted in mislocalization of Nuclear protein that associates with the Mitotic Apparatus (NuMA), with defective MT dynamics. Thus, CSAP overload in the spindles caused extensive MT stabilization and recruitment of NuMA. Moreover, MT stabilization by CSAP led to high levels of polyglutamylation on MTs. MT depolymerization by cold or nocodazole treatment was inhibited by CSAP binding. Live-cell imaging analysis suggested that CSAP-dependent MT-stabilization led to centrosome-free MT aster formation immediately upon nuclear envelope breakdown without γ-tubulin. We therefore propose that CSAP associates with MTs around centrosomes to stabilize MTs during mitosis, ensuring proper bipolar spindle formation and maintenance. PMID:26562023

  16. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells.

    Directory of Open Access Journals (Sweden)

    Conrad von Schubert

    Full Text Available The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.

  17. Par1b induces asymmetric inheritance of plasma membrane domains via LGN-dependent mitotic spindle orientation in proliferating hepatocytes.

    Directory of Open Access Journals (Sweden)

    Christiaan L Slim

    2013-12-01

    Full Text Available The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct "apicolateral" subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2 translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN and the capture of nuclear mitotic apparatus protein (NuMA-positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma.

  18. The participation of elevated levels of cyclic GMP in the recovery from radiation-induced mitotic delay

    International Nuclear Information System (INIS)

    The levels of cyclic AMP and cyclic GMP have been measured in Physarum plasmodia before and after treatment with gamma-radiation, 2 mM caffeine, or combinations of the two agents compared to the length of the radiation-induced mitotic delay. Caffeine alone produces a rapid transient elevation of cyclic AMP and a slower delayed elevation of cyclic GMP. Irradiation elicits an immediate transient increase in cyclic AMP and a later cyclic GMP increase which accompanies or precedes the delayed mitosis. A composite pattern is produced by combinations of radiation and caffeine, a distinctive feature of which is an elevated level of cyclic GMP near the time of the radiation-delayed and caffeine-promoted mitosis. With pretreatment by caffeine, the least radiation-induced mitotic delay occurs when plasmodia are irradiated during the caffeine-elicited increase in cyclic GMP. The plasmodium becomes refractory to the reduction of mitotic delay by caffeine at approximately the time it becomes refractory to the further elevation of cyclic GMP by caffeine. The data support a role for cyclic AMP in the onset of and for cyclic GMP in the recovery from mitotic delay induced by ionizing radiation. (author)

  19. Draft Genome Sequences of Supercritical CO[subscript 2]-Tolerant Bacteria Bacillus subterraneus MITOT1 and Bacillus cereus MIT0214

    OpenAIRE

    Peet, Kyle C.; Thompson, Janelle R.

    2015-01-01

    We report draft genome sequences of Bacillus subterraneus MITOT1 and Bacillus cereus MIT0214 isolated through enrichment of samples from geologic sequestration sites in pressurized bioreactors containing a supercritical (sc) CO[subscript 2] headspace. Their genome sequences expand the phylogenetic range of sequenced bacilli and allow characterization of molecular mechanisms of scCO[subscript 2] tolerance.

  20. Descriptive Analysis of Medication Administration During Inpatient Cardiopulmonary Arrest Resuscitation (from the Mayo Registry for Telemetry Efficacy in Arrest Study).

    Science.gov (United States)

    Snipelisky, David; Ray, Jordan; Matcha, Gautam; Roy, Archana; Dumitrascu, Adrian; Harris, Dana; Bosworth, Veronica; Clark, Brooke; Thomas, Colleen S; Heckman, Michael G; Vadeboncoeur, Tyler; Kusumoto, Fred; Burton, M Caroline

    2016-05-15

    Advanced cardiovascular life support guidelines exist, yet there are variations in clinical practice. Our study aims to describe the utilization of medications during resuscitation from in-hospital cardiopulmonary arrest. A retrospective review of patients who suffered a cardiopulmonary arrest from May 2008 to June 2014 was performed. Clinical and resuscitation data, including timing and dose of medications used, were extracted from the electronic medical record and comparisons made. A total of 94 patients were included in the study. Patients were divided into different groups based on the medication combination used during resuscitation: (1) epinephrine; (2) epinephrine and bicarbonate; (3) epinephrine, bicarbonate, and calcium; (4) epinephrine, bicarbonate, and epinephrine drip; and (5) epinephrine, bicarbonate, calcium, and epinephrine drip. No difference in baseline demographics or clinical data was present, apart from history of dementia and the use of calcium channel blockers. The number of medications given was correlated with resuscitation duration (Spearman's rank correlation = 0.50, p <0.001). The proportion of patients who died during the arrest was 12.5% in those who received epinephrine alone, 30.0% in those who received only epinephrine and bicarbonate, and 46.7% to 57.9% in the remaining groups. Patients receiving only epinephrine had shorter resuscitation durations compared to that of the other groups (p <0.001) and improved survival (p = 0.003). In conclusion, providers frequently use nonguideline medications in resuscitation efforts for in-hospital cardiopulmonary arrests. Increased duration and mortality rates were found in those resuscitations compared with epinephrine alone, likely due to the longer resuscitation duration in the former groups. PMID:27015887

  1. Increase in mitotic recombination in diploid cells of Aspergillus nidulans in response to ethidium bromide

    Directory of Open Access Journals (Sweden)

    Tânia C.A. Becker

    2003-01-01

    Full Text Available Ethidium bromide (EB is an intercalating inhibitor of topoisomerase II and its activities are related to chemotherapeutic drugs used in anti-cancer treatments. EB promotes several genotoxic effects in exposed cells by stabilising the DNA-enzyme complex. The recombinagenic potential of EB was evaluated in our in vivo study by the loss of heterozygosity of nutritional markers in diploid Aspergillus nidulans cells through Homozygotization Index (HI. A DNA repair mutation, uvsZ and a chromosome duplication DP (II-I were introduced in the genome of tested cells to obtain a sensitive system for the recombinagenesis detection. EB-treated diploid cells had HI values significantly greater than the control at both concentrations (4.0 x 10-3 and 5.0 x 10-3 mM. Results indicate that the intercalating agent is potentially capable of inducing mitotic crossing-over in diploid A. nidulans cells.

  2. Radiosensitivity of chromosomes in two successive mitotic cycles of human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Luchnik, N.V.; Poryadkova, N.A.

    1988-11-01

    A culture of human lymphocytes was irradiated with /gamma/-quanta in a dose of 0.5 Gy with different ratios of cells in first (M1) and second (M2) mitotic cycle and the frequency of aberrations induced at stage G2 was analyzed. With increase in interval of time between the start of culturing and irradiation, total yield of aberrations increased in a regular way. However, if the M1:M2 ratio is considered, then it turns out that in M2 chromosomes are /approximately/1.5 times more sensitive than in M1: within the limits of each cycle, radiosensitivity is constant and does not depend on its duration. It was established in accordance with data of other authors that 5-bromodeoxyuridine (5-BdU) increases radiosensitivity materially.

  3. Technological exploration of BAC-FISH on mitotic chromosomes of maize

    Institute of Scientific and Technical Information of China (English)

    Yongsheng TAO; Zuxin ZHANG; Yonglin CHEN; Lijia LI; Yonglian ZHENG

    2008-01-01

    The rice BAC-DNA was used as probes and fluorescence in situ hybridization (FISH) was applied to the interphase and metaphase mitotic chromosomes of maize. To optimize the BAC-FISH technique, we respect-ively assayed the effect of several factors, including maize or rice genomic Cot DNA used as blocking reagent of DNA, washing temperatures and FAD concentration in the washing buffer and in the hybrid solution. The results show that Cot DNA of maize genome blocked the repet-itive sequence of the rice BAC-DNA when the Cot value was below 50. Meanwhile, it was necessary to adjust the Cot value according to the different probes and their ratios. Decreasing the concentration of FAD in the hybridization mixtures, adjusting the washing rate after hybridization, and most especially, blocking the rice-specific repetitive sequences of BAC-DNA could improve the positive signals of BAC-FISH.

  4. Characterization of TcCYC6 from Trypanosoma cruzi, a gene with homology to mitotic cyclins.

    Science.gov (United States)

    Di Renzo, María Agostina; Laverrière, Marc; Schenkman, Sergio; Wehrendt, Diana Patricia; Tellez-Iñón, María Teresa; Potenza, Mariana

    2016-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is a protozoan parasite with a life cycle that alternates between replicative and non-replicative forms, but the components and mechanisms that regulate its cell cycle are poorly described. In higher eukaryotes, cyclins are proteins that activate cyclin-dependent kinases (CDKs), by associating with them along the different stages of the cell cycle. These cyclin-CDK complexes exert their role as major modulators of the cell cycle by phosphorylating specific substrates. For the correct progression of the cell cycle, the mechanisms that regulate the activity of cyclins and their associated CDKs are diverse and must be controlled precisely. Different types of cyclins are involved in specific phases of the eukaryotic cell cycle, preferentially activating certain CDKs. In this work, we characterized TcCYC6, a putative coding sequence of T. cruzi which encodes a protein with homology to mitotic cyclins. The overexpression of this sequence, fused to a tag of nine amino acids from influenza virus hemagglutinin (TcCYC6-HA), showed to be detrimental for the proliferation of epimastigotes in axenic culture and affected the cell cycle progression. In silico analysis revealed an N-terminal segment similar to the consensus sequence of the destruction box, a hallmark for the degradation of several mitotic cyclins. We experimentally determined that the TcCYC6-HA turnover decreased in the presence of proteasome inhibitors, suggesting that TcCYC6 degradation occurs via ubiquitin-proteasome pathway. The results obtained in this study provide first evidence that TcCYC6 expression and degradation are finely regulated in T. cruzi. PMID:26709077

  5. Ionizing radiation is a potent inducer of mitotic recombination in mouse embryonic stem cells

    International Nuclear Information System (INIS)

    Highlights: → Embryonic stem cells have a distinct mutational response to X-rays. → X-rays induce more mutations in embryonic stem cells than in somatic cells. → Mitotic recombination is more readily induced by X-rays in embryonic stem cells. → Radiation hazards may have different consequences on different types of cells. - Abstract: Maintenance of genomic integrity in embryonic cells is pivotal to proper embryogenesis, organogenesis and to the continuity of species. Cultured mouse embryonic stem cells (mESCs), a model for early embryonic cells, differ from cultured somatic cells in their capacity to remodel chromatin, in their repertoire of DNA repair enzymes, and in the regulation of cell cycle checkpoints. Using 129XC3HF1 mESCs heterozygous for Aprt, we characterized loss of Aprt heterozygosity after exposure to ionizing radiation. We report here that the frequency of loss of heterozygosity mutants in mESCs can be induced several hundred-fold by exposure to 5-10 Gy of X-rays. This induction is 50-100-fold higher than the induction reported for mouse adult or embryonic fibroblasts. The primary mechanism underlying the elevated loss of heterozygosity after irradiation is mitotic recombination, with lesser contributions from deletions and gene conversions that span Aprt. Aprt point mutations and epigenetic inactivation are very rare in mESCs compared to fibroblasts. Mouse ESCs, therefore, are distinctive in their response to ionizing radiation and studies of differentiated cells may underestimate the mutagenic effects of ionizing radiation on ESC or other stem cells. Our findings are important to understanding the biological effects of ionizing radiation on early development and carcinogenesis.

  6. Ionizing radiation is a potent inducer of mitotic recombination in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Denissova, Natalia G.; Tereshchenko, Irina V.; Cui, Eric [Department of Genetics, Rutgers University, Piscataway, 145 Bevier Rd, NJ 08854 (United States); Stambrook, Peter J. [Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267 (United States); Shao, Changshun [Department of Genetics, Rutgers University, Piscataway, 145 Bevier Rd, NJ 08854 (United States); Tischfield, Jay A., E-mail: jay@biology.rutgers.edu [Department of Genetics, Rutgers University, Piscataway, 145 Bevier Rd, NJ 08854 (United States)

    2011-10-01

    Highlights: {yields} Embryonic stem cells have a distinct mutational response to X-rays. {yields} X-rays induce more mutations in embryonic stem cells than in somatic cells. {yields} Mitotic recombination is more readily induced by X-rays in embryonic stem cells. {yields} Radiation hazards may have different consequences on different types of cells. - Abstract: Maintenance of genomic integrity in embryonic cells is pivotal to proper embryogenesis, organogenesis and to the continuity of species. Cultured mouse embryonic stem cells (mESCs), a model for early embryonic cells, differ from cultured somatic cells in their capacity to remodel chromatin, in their repertoire of DNA repair enzymes, and in the regulation of cell cycle checkpoints. Using 129XC3HF1 mESCs heterozygous for Aprt, we characterized loss of Aprt heterozygosity after exposure to ionizing radiation. We report here that the frequency of loss of heterozygosity mutants in mESCs can be induced several hundred-fold by exposure to 5-10 Gy of X-rays. This induction is 50-100-fold higher than the induction reported for mouse adult or embryonic fibroblasts. The primary mechanism underlying the elevated loss of heterozygosity after irradiation is mitotic recombination, with lesser contributions from deletions and gene conversions that span Aprt. Aprt point mutations and epigenetic inactivation are very rare in mESCs compared to fibroblasts. Mouse ESCs, therefore, are distinctive in their response to ionizing radiation and studies of differentiated cells may underestimate the mutagenic effects of ionizing radiation on ESC or other stem cells. Our findings are important to understanding the biological effects of ionizing radiation on early development and carcinogenesis.

  7. Automated high-throughput quantification of mitotic spindle positioning from DIC movies of Caenorhabditis embryos.

    Directory of Open Access Journals (Sweden)

    David Cluet

    Full Text Available The mitotic spindle is a microtubule-based structure that elongates to accurately segregate chromosomes during anaphase. Its position within the cell also dictates the future cell cleavage plan, thereby determining daughter cell orientation within a tissue or cell fate adoption for polarized cells. Therefore, the mitotic spindle ensures at the same time proper cell division and developmental precision. Consequently, spindle dynamics is the matter of intensive research. Among the different cellular models that have been explored, the one-cell stage C. elegans embryo has been an essential and powerful system to dissect the molecular and biophysical basis of spindle elongation and positioning. Indeed, in this large and transparent cell, spindle poles (or centrosomes can be easily detected from simple DIC microscopy by human eyes. To perform quantitative and high-throughput analysis of spindle motion, we developed a computer program ACT for Automated-Centrosome-Tracking from DIC movies of C. elegans embryos. We therefore offer an alternative to the image acquisition and processing of transgenic lines expressing fluorescent spindle markers. Consequently, experiments on large sets of cells can be performed with a simple setup using inexpensive microscopes. Moreover, analysis of any mutant or wild-type backgrounds is accessible because laborious rounds of crosses with transgenic lines become unnecessary. Last, our program allows spindle detection in other nematode species, offering the same quality of DIC images but for which techniques of transgenesis are not accessible. Thus, our program also opens the way towards a quantitative evolutionary approach of spindle dynamics. Overall, our computer program is a unique macro for the image- and movie-processing platform ImageJ. It is user-friendly and freely available under an open-source licence. ACT allows batch-wise analysis of large sets of mitosis events. Within 2 minutes, a single movie is processed

  8. A comprehensive characterization of the nuclear microRNA repertoire of post-mitotic neurons

    Directory of Open Access Journals (Sweden)

    Sharof Abdumalikovich Khudayberdiev

    2013-11-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs with important functions in the development and plasticity of post-mitotic neurons. In addition to the well-described cytoplasmic function of miRNAs in post-transcriptional gene regulation, recent studies suggested that miRNAs could also be involved in transcriptional and post-transcriptional regulatory processes in the nuclei of proliferating cells. However, whether miRNAs localize to and function within the nucleus of post-mitotic neurons is unknown. Using a combination of microarray hybridization and small RNA deep sequencing, we identified a specific subset of miRNAs which are enriched in the nuclei of neurons. Nuclear enrichment of specific candidate miRNAs (miR-25 and miR-92a could be independently validated by Northern blot, quantitative real-time PCR (qRT-PCR and fluorescence in situ hybridization (FISH. By cross-comparison to published reports, we found that nuclear accumulation of miRNAs might be linked to a down-regulation of miRNA expression during in vitro development of cortical neurons. Importantly, by generating a comprehensive isomiR profile of the nuclear and cytoplasmic compartment, we found a significant overrepresentation of guanine nucleotides at the 3’ terminus of nuclear-enriched isomiRs, suggesting the presence of neuron-specific mechanisms involved in miRNA nuclear localization. In conclusion, our results provide a starting point for future studies addressing the nuclear function of specific miRNAs and the detailed mechanisms underlying subcellular localization of miRNAs in neurons and possibly other polarized cell types.

  9. Action of caffeine on x-irradiated HeLa cells. III. enhancement of x-ray-induced killing during G2 arrest

    International Nuclear Information System (INIS)

    The ability of caffeine to enhance the expression of potentially lethal x-ray damage in HeLa S3 cells was examined as a function of the age of the cells in the generation cycle. Synchronous populations were irradiated at different times after mitotic collection and treated for various intervals with 1 mM caffeiene, which causes negligible killing of unirradiated cells. The response was thereby determined as a function of cell age at both the time of irradiation and the time of exposure to caffeine. The amount of cell killing depends strongly on when in the cycle caffeine is present and only weakly on when the cells are irradiated. If cells are irradiated in early G1, caffeine treatment enhances killing for 2 to 3 hr. No additional enhancement is observed until 16 to 17 hr postcollection, corresponding to G2; here they enter a second period of much greater sensitivity. Similarly, fluorodeoxyuridine resynchronized cells irradiated during S and treated with caffeine suffer no enhanced killing until they pass into this sensitive phase in G2, approximately 7 hr after release from the fluorodeoxyuridine block. The sensitive period appears to coincide with G2 arrest. The rate and extent of killing during this period are dependent upon the x-ray dose and the caffeine concentration. In the absence of caffeine, cells irradiated in G1 lose sensitivity to caffeine in about 9 hr; they do so faster in G2. It is concluded that the potentially lethal x-ray damage expressed on treatment with caffeine is retained for many hours in the presence of caffeine and is maximally manifested by G2-arrested cells

  10. Overexpression of cell cycle regulator CDCA3 promotes oral cancer progression by enhancing cell proliferation with prevention of G1 phase arrest

    International Nuclear Information System (INIS)

    Cell division cycle associated 3 (CDCA3), part of the Skp1-cullin-F-box (SCF) ubiquitin ligase, refers to a trigger of mitotic entry and mediates destruction of the mitosis inhibitory kinase. Little is known about the relevance of CDCA3 to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of CDCA3 in OSCC. We evaluated CDCA3 mRNA and protein expression in both OSCC-derived cell lines and primary OSCCs and performed functional analyses of CDCA3 in OSCC-derived cells using the shRNA system. The CDCA3 expression at both the mRNA and protein levels was frequently up-regulated in all cell lines examined and primary tumors (mRNA, 51/69, 74 %; protein, 79/95, 83 %) compared to normal controls (p < 0.001). In contrast, no significant level of CDCA3 protein expression was seen in oral premalignant lesions (OPLs) (n = 20) compared with the expression in OSCCs. Among the clinical variables analyzed, the CDCA3 expression status was closely related to tumor size (p < 0.05). In addition, suppression of CDCA3 expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells by arresting cell-cycle progression at the G1 phase. Further, there was up-regulation of the cyclin-dependent kinase inhibitors (p21Cip1, p27Kip1, p15INK4B, and p16INK4A) in the knockdown cells. The current results showed that overexpression of CDCA3 occurs frequently during oral carcinogenesis and this overexpression might be associated closely with progression of OSCCs by preventing the arrest of cell-cycle progression at the G1 phase via decreased expression of the cyclin-dependent kinase inhibitors

  11. Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma

    International Nuclear Information System (INIS)

    Tumor cell proliferation is a predictor of survival in cutaneous melanoma. The aim of the present study was to evaluate the prognostic impact of mitotic count, Ki-67 expression and novel proliferation markers phosphohistone H3 (PHH3), minichromosome maintenance protein 4 (MCM4) and mitosin, and to compare the results with histopathological variables. 202 consecutive cases of nodular cutaneous melanoma were initially included. Mitotic count (mitosis per mm2) was assessed on H&E sections, and Ki-67 expression was estimated by immunohistochemistry on standard sections. PHH3, MCM4 and mitosin were examined by staining of tissue microarrays (TMA) sections. Increased mitotic count and elevated Ki-67 expression were strongly associated with increased tumor thickness, presence of ulceration and tumor necrosis. Furthermore, high mitotic count and elevated Ki-67 expression were also associated with Clark's level of invasion and presence of vascular invasion. High expression of PHH3 and MCM4 was correlated with high mitotic count, elevated Ki-67 expression and tumor ulceration, and increased PHH3 frequencies were associated with tumor thickness and presence of tumor necrosis. Univariate analyses showed a worse outcome in cases with elevated Ki-67 expression and high mitotic count, whereas PHH3, MCM4 and mitosin were not significant. Tumor cell proliferation by Ki-67 had significant prognostic impact by multivariate analysis. Ki-67 was a stronger and more robust prognostic indicator than mitotic count in this series of nodular melanoma. PHH3, MCM4 and mitosin did not predict patient survival

  12. Hospital Variation in Survival After In‐hospital Cardiac Arrest

    Science.gov (United States)

    Merchant, Raina M.; Berg, Robert A.; Yang, Lin; Becker, Lance B.; Groeneveld, Peter W.; Chan, Paul S.

    2014-01-01

    Background In‐hospital cardiac arrest (IHCA) is common and often fatal. However, the extent to which hospitals vary in survival outcomes and the degree to which this variation is explained by patient and hospital factors is unknown. Methods and Results Within Get with the Guidelines‐Resuscitation, we identified 135 896 index IHCA events at 468 hospitals. Using hierarchical models, we adjusted for demographics comorbidities and arrest characteristics (eg, initial rhythm, etiology, arrest location) to generate risk‐adjusted rates of in‐hospital survival. To quantify the extent of hospital‐level variation in risk‐adjusted rates, we calculated the median odds ratio (OR). Among study hospitals, there was significant variation in unadjusted survival rates. The median unadjusted rate for the bottom decile was 8.3% (range: 0% to 10.7%) and for the top decile was 31.4% (28.6% to 51.7%). After adjusting for 36 predictors of in‐hospital survival, there remained substantial variation in rates of in‐hospital survival across sites: bottom decile (median rate, 12.4% [0% to 15.6%]) versus top decile (median rate, 22.7% [21.0% to 36.2%]). The median OR for risk‐adjusted survival was 1.42 (95% CI: 1.37 to 1.46), which suggests a substantial 42% difference in the odds of survival for patients with similar case‐mix at similar hospitals. Further, significant variation persisted within hospital subgroups (eg, bed size, academic). Conclusion Significant variability in IHCA survival exists across hospitals, and this variation persists despite adjustment for measured patient factors and within hospital subgroups. These findings suggest that other hospital factors may account for the observed site‐level variations in IHCA survival. PMID:24487717

  13. HPV16-E2 induces prophase arrest and activates the cellular DNA damage response in vitro and in precursor lesions of cervical carcinoma.

    Science.gov (United States)

    Xue, Yuezhen; Toh, Shen Yon; He, Pingping; Lim, Thimothy; Lim, Diana; Pang, Chai Ling; Abastado, Jean-Pierre; Thierry, Françoise

    2015-10-27

    Cervical intraepithelial neoplasia (CIN) is caused by human papillomavirus (HPV) infection and is the precursor to cervical carcinoma. The completion of the HPV productive life cycle depends on the expression of viral proteins which further determines the severity of the cervical neoplasia. Initiation of the viral productive replication requires expression of the E2 viral protein that cooperates with the E1 viral DNA helicase. A decrease in the viral DNA replication ability and increase in the severity of cervical neoplasia is accompanied by simultaneous elevated expression of E6 and E7 oncoproteins. Here we reveal a novel and important role for the HPV16-E2 protein in controlling host cell cycle during malignant transformation. We showed that cells expressing HPV16-E2 in vitro are arrested in prophase alongside activation of a sustained DDR signal. We uncovered evidence that HPV16-E2 protein is present in vivo in cells that express both mitotic and DDR signals specifically in CIN3 lesions, immediate precursors of cancer, suggesting that E2 may be one of the drivers of genomic instability and carcinogenesis in vivo. PMID:26474276

  14. Synchronizing Progression of Schizosaccharomyces pombe Cells from G2 through Repeated Rounds of Mitosis and S Phase with cdc25-22 Arrest Release.

    Science.gov (United States)

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Transient inactivation of the cdc25(+) gene product by manipulation of the culture temperature for cdc25-22 cells is the most commonly exploited approach to mitotic synchronization in fission yeast. Because Cdc25 removes the inhibitory phosphate placed on Cdk1 by Wee1, inactivation of Cdc25 arrests cells at the G2/M boundary. Incubation at the restrictive temperature of 36°C for just over one generation time forces all cells in the culture to accumulate at the G2/M boundary. Restoration of Cdc25 function via a return to the permissive temperature or chemical inhibition of Wee1 activity at 36°C can then promote a highly synchronous wave of cell division throughout the culture. These approaches can be performed on any scale and thus support simultaneous assessment of numerous events within a single culture. After describing this simple and widely applicable procedure, we discuss frequently overlooked issues that can have a considerable impact on the interpretation of data from cdc25-22 induction-synchronized cultures. PMID:27480720

  15. Cardiac arrest caused by multiple recurrent pulmonary embolism

    DEFF Research Database (Denmark)

    Hannig, Kjartan Eskjaer; Husted, Steen Elkjaer; Grove, Erik Lerkevang

    2011-01-01

    Pulmonary embolism is a common condition with a high mortality. We describe a previously healthy 68-year-old male who suffered three pulmonary embolisms during a short period of time, including two embolisms while on anticoagulant treatment. This paper illustrates three important points. (1) The...... importance of optimal anticoagulant treatment in the prevention of pulmonary embolism reoccurrence. (2) The benefit of immediate accessibility to echocardiography in the handling of haemodynamically unstable patients with an unknown underlying cause. (3) Thrombolytic treatment should always be considered and...... may be life-saving in patients with cardiac arrest suspected to be caused by pulmonary embolism....

  16. Axial crack propagation and arrest in pressurized fuselage

    Science.gov (United States)

    Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.

    1994-01-01

    The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.

  17. Bleeding following deep hypothermia and circulatory arrest in children.

    Science.gov (United States)

    Mossad, Emad B; Machado, Sandra; Apostolakis, John

    2007-03-01

    Deep hypothermic circulatory arrest (DHCA) is a technique of extracorporeal circulation commonly used in children with complex congenital heart defects undergoing surgical repairs. The use of profound cooling (20 degrees C) and complete cessation of circulation allow adequate exposure and correction of these complex lesions, with enhanced cerebral protection. However, the profound physiologic state of DHCA results in significant derangement of the coagulation system and a high incidence of postoperative bleeding. This review examines the impact of DHCA on bleeding and transfusion requirements in children and the pathophysiology of DHCA-induced platelet dysfunction. It also focuses on possible pharmacologic interventions to decrease bleeding following DHCA in children. PMID:17484172

  18. Cerebral blood flow in humans following resuscitation from cardiac arrest

    International Nuclear Information System (INIS)

    Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient in whom the first measurement was delayed until 28 hours after resuscitation, by which time cerebral blood flow was increased). The cause of the delayed-onset increase in cerebral blood flow is not known, but the increase may have adverse effects on brain function and may indicate the onset of irreversible brain damage

  19. Venoarterial Extracorporeal Membrane Oxygenation in Adults With Cardiac Arrest.

    Science.gov (United States)

    Patel, Jignesh K; Schoenfeld, Elinor; Parnia, Sam; Singer, Adam J; Edelman, Norman

    2016-07-01

    Cardiac arrest (CA) is a major cause of morbidity and mortality worldwide. Despite the use of conventional cardiopulmonary resuscitation (CPR), rates of return of spontaneous circulation and survival with minimal neurologic impairment remain low. Utilization of venoarterial extracorporeal membrane oxygenation (ECMO) for CA in adults is steadily increasing. Propensity-matched cohort studies have reported outcomes associated with ECMO use to be superior to that of conventional CPR alone in in-hospital patients with CA. In this review, we discuss the mechanism, indications, complications, and evidence for ECMO in CA in adults. PMID:25922385

  20. Development of New Type Gap Arrester for Earth Fault Protection in AC Feeding System

    Science.gov (United States)

    Ajiki, Kohji; Morimoto, Hiroaki; Hisamizu, Yasuzi; Kinoshita, Nobuo; Takai, Wataru; Sato, Ryogo

    A gap arrester is being used for ground fault protection in AC Feeding System. However there are faults in which a conventional gap arrester burns down in a normal state of circuit. We investigated the cause of the fault in which a gap arrester burns. Then, it was found out that the cause of the fault was the discharge of AC current from the surge voltage. Therefore, we developed a new type gap arrester which does not burn down. The new type gap arrester is composed of a discharge tube and a zinc oxide element which are connected in series. Unnecessary AC current discharge is prevented by this structure. The new type gap arrester is actually used at the railroad track.

  1. Developmentally arrested structures preceding cerebellar tumors in von Hippel–Lindau disease

    OpenAIRE

    Shively, Sharon B; Falke, Eric A; Li, Jie; Tran, Maxine G B; Thompson, Eli R; Maxwell, Patrick H; Roessler, Erich; Oldfield, Edward H; Lonser, Russell R.; Vortmeyer, Alexander O

    2011-01-01

    There is increasing evidence that suggests that knockout of tumor-suppressor gene function causes developmental arrest and protraction of cellular differentiation. In the peripheral nervous system of patients with the tumor-suppressor gene disorder, von Hippel–Lindau disease, we have demonstrated developmentally arrested structural elements composed of hemangioblast progenitor cells. Some developmentally arrested structural elements progress to a frank tumor, hemangioblastoma. However, in von...

  2. Crack propagation and arrest in CFRP materials with strain softening regions

    Science.gov (United States)

    Dilligan, Matthew Anthony

    Understanding the growth and arrest of cracks in composite materials is critical for their effective utilization in fatigue-sensitive and damage susceptible applications such as primary aircraft structures. Local tailoring of the laminate stack to provide crack arrest capacity intermediate to major structural components has been investigated and demonstrated since some of the earliest efforts in composite aerostructural design, but to date no rigorous model of the crack arrest mechanism has been developed to allow effective sizing of these features. To address this shortcoming, the previous work in the field is reviewed, with particular attention to the analysis methodologies proposed for similar arrest features. The damage and arrest processes active in such features are investigated, and various models of these processes are discussed and evaluated. Governing equations are derived based on a proposed mechanistic model of the crack arrest process. The derived governing equations are implemented in a numerical model, and a series of simulations are performed to ascertain the general characteristics of the proposed model and allow qualitative comparison to existing experimental results. The sensitivity of the model and the arrest process to various parameters is investigated, and preliminary conclusions regarding the optimal feature configuration are developed. To address deficiencies in the available material and experimental data, a series of coupon tests are developed and conducted covering a range of arrest zone configurations. Test results are discussed and analyzed, with a particular focus on identification of the proposed failure and arrest mechanisms. Utilizing the experimentally derived material properties, the tests are reproduced with both the developed numerical tool as well as a FEA-based implementation of the arrest model. Correlation between the simulated and experimental results is analyzed, and future avenues of investigation are identified

  3. Brazilian production development of class 2 polymeric surge arresters for transmission line application

    Energy Technology Data Exchange (ETDEWEB)

    Dellallibera, Adriano A. [Industria Eletromecanica Balestro, Mogi Mirim, SP (Brazil)], E-mail: adrianoad@balestro.com; Andrade, Antonio Donizetti de; Bezerra, Ana Cristina Guara; Duarte, Jose Vicente Pereira; Gois, Paulo Marcio Batista; Markiewicz, Rubens Leopoldo [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)], Emails: andonize@cemig.com.br, anacris@cemig.com.br, vicente@cemig.com.br, pgois@cemig.com.br, rlmark@cemig.com.br

    2007-07-01

    This paper shows the steeps of Brazilian class 2 ZnO lightning surge arrester development and production, aiming to attend the goal of CEMIG transmission lines performance improvement against lightning discharges action. The description of CEMIG transmission lines performance, before and after the ZnO lightning arresters installation, the necessity of use of ZnO lightning surge arrester, the prototypes manufacture, tests, problems and solutions are presented. (author)

  4. Using force in arrests against those who are not resisting can mean more violent prisoners.

    OpenAIRE

    Klahm, Charles; Steiner, Benjamin; Meade, Benjamin

    2015-01-01

    Recent events have seen a re-evaluation of the relationship between the police and citizens, with increased concern about the use of force during arrests. In new research, Charles Klahm, Benjamin Steiner, and Benjamin Meade find another consequence of police using violent force during arrests: once in prison, inmates who did not resist their arrests were more likely to be involved in rule violations, including acts of violence. They argue that these inmates’ beliefs that their treatment was u...

  5. Focused Cardiac Ultrasound Diagnosis of Cor Triatriatum Sinistrum in Pediatric Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Thompson Kehrl,

    2015-10-01

    Full Text Available Cardiac arrest in the adolescent population secondary to congenital heart disease (CHD is rare. Focused cardiac ultrasound (FoCUS in the emergency department (ED can yield important clinical information, aid in resuscitative efforts during cardiac arrest and is commonly integrated into the evaluation of patients with pulseless electrical activity (PEA. We report a case of pediatric cardiac arrest in which FoCUS was used to diagnose a critical CHD known as cor triatriatum sinistrum as the likely cause for PEA cardiac arrest and help direct ED resuscitation.

  6. Flow cytometric analysis of mitotic cycle perturbation by chemical carcinogens in cultured epithelial cells. [Effects of benzo(a)pyrene-diol-epoxide on mitotic cycle of cultural mouse liver epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, A.L.

    1978-08-01

    A system for kinetic analysis of mitotic cycle perturbation by various agents was developed and applied to the study of the mitotic cycle effects and dependency of the chemical carcinogen benzo(a)pyrene-diolepoxide, DE, upon a mouse lever epithelial cell line, NMuLi. The study suggests that the targets of DE action are not confined to DNA alone but may include cytoplasmic structures as well. DE was found to affect cells located in virtually every phase of the mitotic cycle, with cells that were actively synthesizing DNA showing the strongest response. However, the resulting perturbations were not confined to S-phase alone. DE slowed traversal through S-phase by about 40% regardless of the cycle phase of the cells exposed to it, and slowed traversal through G/sub 2/M by about 50%. When added to G/sub 1/ cells, DE delayed recruitment of apparently quiescent (G/sub 0/) cells by 2 hours, and reduced the synchrony of the cohort of cells recruited into active proliferation. The kinetic analysis system consists of four elements: tissue culture methods for propagating and harvesting cell populations; an elutriation centrifugation system for bulk synchronization of cells in various phases of the mitotic cycle; a flow cytometer (FCM), coupled with appropriate staining protocols, to enable rapid analysis of the DNA distribution of any given cell population; and data reduction and analysis methods for extracting information from the DNA histograms produced by the FCM. The elements of the system are discussed. A mathematical analysis of DNA histograms obtained by FCM is presented. The analysis leads to the detailed implementation of a new modeling approach. The new modeling approach is applied to the estimation of cell cycle kinetic parameters from time series of DNA histograms, and methods for the reduction and interpretation of such series are suggested.

  7. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    Science.gov (United States)

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  8. Student perceptions of sudden cardiac arrest: a qualitative inquiry.

    Science.gov (United States)

    McDonough, Annette; Callan, Krista; Egizio, Katelyn; Kenney, Kaye; Gray, Gillian; Mundry, Gillian; Re, Gillian

    Sudden cardiac arrest (SCA) is the number one cause of death in young athletes in high school and university settings. Survival and outcomes of SCA is dependent on appropriate recognition of symptoms and immediate cardiopulmonary resuscitation (CPR), along with a shock from an automatic external defibrillator (AED). The three aims of the authors' study presented in this article were: to describe university students' perceptions and beliefs about sudden cardiac arrest, to describe university students' understanding of an AED and their level of preparedness to recognize and respond to a life threatening emergency event, and to identify university students' experiences of responding to handling life-threatening emergency events. Qualitative methodology was employed using semi-structured interviews and thematic analysis. Three major themes emerged from data analysis: confusion, uncertainty, and fear/uncomfortableness. These themes characterised participant's perceptions about SCA. The authors concluded that a lack of understanding of what SCA is and participants' inability to respond to an emergency event was evident. PMID:22585265

  9. Variation in Out-of-Hospital Cardiac Arrest Management

    Directory of Open Access Journals (Sweden)

    Jason M. Jones

    2016-01-01

    Full Text Available Objective. To evaluate variation in airway management strategies in one suburban emergency medical services system treating patients experiencing out-of-hospital cardiac arrest (OHCA. Method. Retrospective chart review of all adult OHCA resuscitation during a 13-month period, specifically comparing airway management decisions. Results. Paramedics demonstrated considerable variation in their approaches to airway management. Approximately half of all OHCA patients received more than one airway management attempt (38/77 [49%], and one-quarter underwent three or more attempts (25/77 [25%]. One-third of patients arrived at the emergency department with a different airway device than initially selected (25/77 [32%]. Conclusion. This study confirmed our hypothesis that paramedics’ selection of ventilation strategies in cardiac arrest varies considerably. This observation raises concern because airway management diverts time and energy from interventions known to improve outcomes in OHCA management, such as cardiopulmonary resuscitation and defibrillation. More research is needed to identify more focused airway management strategies for prehospital care providers.

  10. Experience with bretylium tosylate by a hospital cardiac arrest team.

    Science.gov (United States)

    Holder, D A; Sniderman, A D; Fraser, G; Fallen, E L

    1977-03-01

    The effect of bretylium tosylate (BT) was determined in 27 consecutive cases of resistant ventricular fibrillation (VF) encountered by a hospital cardiac arrest team. The VF was sustained and completely resistant to multiple injections of lidocaine, sequential DC shocks at 400 watt-sec and one or a combination of intravenous propranolol, diphenylhydantoin or procainamide. Following 30 min of sustained cardiac massage, BT (5 mg/kg i.v.) was administered. In 20 patients, VF was terminated within 9-12 min after DC shock. Eight of these patients failed to recover while 12 (44%) of all patients resuscitated survived to be discharged from hospital. Eleven out of 20 (55%) of all patients who had a cardiac arrest outside the CCU were survivors; only one out of seven in the CCU were successfully resuscitated. While receiving maintanance BT post-resuscitation (5 mg/kg i.m. q 8-12 hrs x 48 hrs), half the patients developed hypotension and three required vasopressors and/or fluid replacement. The data indicate that BT is a useful agent in patients with sustained VF refractory to repeated lidocaine injections, some other antiarrhythmic agents, and multiple DC shocks. PMID:837490

  11. Non-equilibrium theory of arrested spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP (Mexico)

    2015-11-07

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

  12. Interphase APC/C-Cdc20 inhibition by cyclin A2-Cdk2 ensures efficient mitotic entry

    DEFF Research Database (Denmark)

    Hein, Jamin B; Nilsson, Jakob

    2016-01-01

    window of the cell cycle, if any, is unknown. Here we show that cyclin A2-Cdk2 binds and phosphorylates Cdc20 in interphase and this inhibits APC/C-Cdc20 activity. Preventing Cdc20 phosphorylation results in pre-mature activation of the APC/C-Cdc20 and several substrates, including cyclin B1 and A2, are...... destabilized which lengthens G2 and slows mitotic entry. Expressing non-degradable cyclin A2 but not cyclin B1 restores mitotic entry in these cells. We have thus uncovered a novel positive feedback loop centred on cyclin A2-Cdk2 inhibition of interphase APC/C-Cdc20 to allow further cyclin A2 accumulation and...

  13. A Decrease in Ambient Temperature Induces Post-Mitotic Enlargement of Palisade Cells in North American Lake Cress.

    Directory of Open Access Journals (Sweden)

    Rumi Amano

    Full Text Available In order to maintain organs and structures at their appropriate sizes, multicellular organisms orchestrate cell proliferation and post-mitotic cell expansion during morphogenesis. Recent studies using Arabidopsis leaves have shown that compensation, which is defined as post-mitotic cell expansion induced by a decrease in the number of cells during lateral organ development, is one example of such orchestration. Some of the basic molecular mechanisms underlying compensation have been revealed by genetic and chimeric analyses. However, to date, compensation had been observed only in mutants, transgenics, and γ-ray-treated plants, and it was unclear whether it occurs in plants under natural conditions. Here, we illustrate that a shift in ambient temperature could induce compensation in Rorippa aquatica (Brassicaceae, a semi-aquatic plant found in North America. The results suggest that compensation is a universal phenomenon among angiosperms and that the mechanism underlying compensation is shared, in part, between Arabidopsis and R. aquatica.

  14. 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress

    DEFF Research Database (Denmark)

    Lukas, Claudia; Savic, Velibor; Bekker-Jensen, Simon;

    2011-01-01

    Completion of genome duplication is challenged by structural and topological barriers that impede progression of replication forks. Although this can seriously undermine genome integrity, the fate of DNA with unresolved replication intermediates is not known. Here, we show that mild replication...... bodies shield chromosomal fragile sites sequestered in these compartments against erosion. Together, these data indicate that restoration of DNA or chromatin integrity at loci prone to replication problems requires mitotic transmission to the next cell generations....... increases after genetic ablation of BLM, a DNA helicase associated with dissolution of entangled DNA. Conversely, 53BP1 nuclear bodies are partially suppressed by knocking down SMC2, a condensin subunit required for mechanical stability of mitotic chromosomes. Finally, we provide evidence that 53BP1 nuclear...

  15. Maternal embryonic leucine zipper kinase is stabilized in mitosis by phosphorylation and is partially degraded upon mitotic exit

    International Nuclear Information System (INIS)

    MELK (maternal embryonic leucine zipper kinase) is a cell cycle dependent protein kinase involved in diverse cell processes including cell proliferation, apoptosis, cell cycle and mRNA processing. Noticeably, MELK expression is increased in cancerous tissues, upon cell transformation and in mitotically-blocked cells. The question of how MELK protein level is controlled is therefore important. Here, we show that MELK protein is restricted to proliferating cells derived from either cancer or normal tissues and that MELK protein level is severely decreased concomitantly with other cell cycle proteins in cells which exit the cell cycle. Moreover, we demonstrate in human HeLa cells and Xenopus embryos that approximately half of MELK protein is degraded upon mitotic exit whereas another half remains stable during interphase. We show that the stability of MELK protein in M-phase is dependent on its phosphorylation state.

  16. Effect of lymphocytes culture variations on the mitotic index and on the dicentric yield following gamma radiation exposure

    International Nuclear Information System (INIS)

    Fundamentals of biological dosimetry are described in the International Atomic Energy Agency manual, but all over the world each laboratory is using its own protocol. To test the influence of protocol variations, some blood samples were exposed to 0.5 Gy of gamma radiation and mitotic index and dicentric rates were measured under different experimental conditions. The effect of seven parameters [bromodeoxyuridine (BrdU), phytohaemagglutinin and colcemide concentrations, blood and medium volumes, culture duration and incubation temperature] was tested using a Placket and Burman experimental design. The analysis reveals that the mitotic index was influenced by the concentration of BrdU, medium and blood volumes, the culture duration and the temperature. However, none of the factors has a significant impact on the yield of dicentrics. The dicentric assay is robust against reagent variations within the range tested. These results could be used by relevant laboratories as elements of their procedures robustness in any event requiring such demonstration. (authors)

  17. The effect of X-rays on the mitotic activity of the adrenal gland, jejunum, lymph node and epidermis of the mouse

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, N.P. Jr.; Hempelmann, L.H.

    1949-04-19

    In the search for a suitable method of determining quantitatively the effects of mammalian tissue of sublethal doses of ionizing radiation, the following study of the mitotic indices of various mouse tissues following whole body irradiation was undertaken.

  18. Mitotic phosphorylation of SOX2 mediated by Aurora kinase A is critical for the stem-cell like cell maintenance in PA-1 cells.

    Science.gov (United States)

    Qi, Dandan; Wang, Qianqian; Yu, Min; Lan, Rongfeng; Li, Shuiming; Lu, Fei

    2016-08-01

    Transcription factor SOX2 is multiple phosphorylated. However, the kinase and the timing regulating SOX2 phosphorylation remains poorly understood. Here we reported mitotic phosphorylation of SOX2 by Aurora kinase A (AURKA). AURKA inhibitors (VX680, Aurora kinase Inhibitor I) but not PLK1 inhibitors (BI2536, CBB2001) eliminate the mitotic phosphorylation of SOX2. Consistently, siRNA inhibition of AURKA can eliminate mitotic SOX2 phosphorylation. Ser220 and Ser251 are two sites that identified for mitotic phosphorylation on SOX2. Moreover, SOX2 mutants (S220A and S251A) can promote SOX2 induced OCT4 re-expression in differentiated cells. These findings reveal a novel regulation mechanism of SOX2 phosphorylation mediated by AURKA in mitosis and its function in stem cell pluripotency maintenance in cancer cells. PMID:27249336

  19. Kaposi's sarcoma herpesvirus C-terminal LANA concentrates at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes

    International Nuclear Information System (INIS)

    The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) tethers KSHV terminal repeat (TR) DNA to mitotic chromosomes to efficiently segregate episomes to progeny nuclei. LANA contains N- and C-terminal chromosome binding regions. We now show that C-terminal LANA preferentially concentrates to paired dots at pericentromeric and peri-telomeric regions of a subset of mitotic chromosomes through residues 996-1139. Deletions within C-terminal LANA abolished both self-association and chromosome binding, consistent with a requirement for self-association to bind chromosomes. A deletion abolishing TR DNA binding did not affect chromosome targeting, indicating LANA's localization is not due to binding its recognition sequence in chromosomal DNA. LANA distributed similarly on human and non-human mitotic chromosomes. These results are consistent with C-terminal LANA interacting with a cell factor that concentrates at pericentromeric and peri-telomeric regions of mitotic chromosomes

  20. Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae

    OpenAIRE

    Patterson, Melissa N.; Maxwell, Patrick H.

    2014-01-01

    Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For i...

  1. Bovine Papillomavirus Type 1 Genomes and the E2 Transactivator Protein Are Closely Associated with Mitotic Chromatin

    OpenAIRE

    Skiadopoulos, Mario H.; Alison A McBride

    1998-01-01

    The bovine papillomavirus type 1 E2 transactivator protein is required for viral transcriptional regulation and DNA replication and may be important for long-term episomal maintenance of viral genomes within replicating cells (M. Piirsoo, E. Ustav, T. Mandel, A. Stenlund, and M. Ustav, EMBO J. 15:1–11, 1996). We have evidence that, in contrast to most other transcriptional transactivators, the E2 transactivator protein is associated with mitotic chromosomes in dividing cells. The shorter E2-T...

  2. Dimerization of the Papillomavirus E2 Protein Is Required for Efficient Mitotic Chromosome Association and Brd4 Binding▿

    OpenAIRE

    Cardenas-Mora, Juan; Spindler, Jonathan E.; Jang, Moon Kyoo; Alison A McBride

    2008-01-01

    The E2 proteins of several papillomaviruses link the viral genome to mitotic chromosomes to ensure retention and the efficient partitioning of genomes into daughter cells following cell division. Bovine papillomavirus type 1 E2 binds to chromosomes in a complex with Brd4, a cellular bromodomain protein. Interaction with Brd4 is also important for E2-mediated transcriptional regulation. The transactivation domain of E2 is crucial for interaction with the Brd4 protein; proteins lacking or mutat...

  3. Identification of a BET family Bromodomain / Casein Kinase II / TAF-containing complex as a regulator of mitotic condensin function

    OpenAIRE

    Kim, Hyun-Soo; Mukhopadhyay, Rituparna; Rothbart, Scott B.; Silva, Andrea C.; Vanoosthuyse, Vincent; Radovani, Ernest; Kislinger, Thomas; Roguev, Assen; Ryan, Colm J.; Xu, Jiewei; Jahari, Harlizawati; Hardwick, Kevin G.; Greenblatt, Jack F.; Krogan, Nevan J.; Fillingham, Jeffrey S.

    2014-01-01

    Condensin is a central regulator of mitotic genome structure, with mutants showing poorly condensed chromosomes and profound segregation defects. Here we identify NCT complex, comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), Casein Kinase II (CKII) and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions, but only briefly co-localize during the periods of chromosome condensation and decondensation. This pattern ...

  4. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance.

    Science.gov (United States)

    Khongkow, P; Gomes, A R; Gong, C; Man, E P S; Tsang, J W-H; Zhao, F; Monteiro, L J; Coombes, R C; Medema, R H; Khoo, U S; Lam, E W-F

    2016-02-25

    FOXM1 has been implicated in taxane resistance, but the molecular mechanism involved remains elusive. In here, we show that FOXM1 depletion can sensitize breast cancer cells and mouse embryonic fibroblasts into entering paclitaxel-induced senescence, with the loss of clonogenic ability, and the induction of senescence-associated β-galactosidase activity and flat cell morphology. We also demonstrate that FOXM1 regulates the expression of the microtubulin-associated kinesin KIF20A at the transcriptional level directly through a Forkhead response element (FHRE) in its promoter. Similar to FOXM1, KIF20A expression is downregulated by paclitaxel in the sensitive MCF-7 breast cancer cells and deregulated in the paclitaxel-resistant MCF-7Tax(R) cells. KIF20A depletion also renders MCF-7 and MCF-7Tax(R) cells more sensitive to paclitaxel-induced cellular senescence. Crucially, resembling paclitaxel treatment, silencing of FOXM1 and KIF20A similarly promotes abnormal mitotic spindle morphology and chromosome alignment, which have been shown to induce mitotic catastrophe-dependent senescence. The physiological relevance of the regulation of KIF20A by FOXM1 is further highlighted by the strong and significant correlations between FOXM1 and KIF20A expression in breast cancer patient samples. Statistical analysis reveals that both FOXM1 and KIF20A protein and mRNA expression significantly associates with poor survival, consistent with a role of FOXM1 and KIF20A in paclitaxel action and resistance. Collectively, our findings suggest that paclitaxel targets the FOXM1-KIF20A axis to drive abnormal mitotic spindle formation and mitotic catastrophe and that deregulated FOXM1 and KIF20A expression may confer paclitaxel resistance. These findings provide insights into the underlying mechanisms of paclitaxel resistance and have implications for the development of predictive biomarkers and novel chemotherapeutic strategies for paclitaxel resistance. PMID:25961928

  5. Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression.

    Science.gov (United States)

    Thu, Yee Mon; Van Riper, Susan Kaye; Higgins, LeeAnn; Zhang, Tianji; Becker, Jordan Robert; Markowski, Todd William; Nguyen, Hai Dang; Griffin, Timothy Jon; Bielinsky, Anja Katrin

    2016-05-10

    Loss of minichromosome maintenance protein 10 (Mcm10) causes replication stress. We uncovered that S. cerevisiae mcm10-1 mutants rely on the E3 SUMO ligase Mms21 and the SUMO-targeted ubiquitin ligase complex Slx5/8 for survival. Using quantitative mass spectrometry, we identified changes in the SUMO proteome of mcm10-1 mutants and revealed candidates regulated by Slx5/8. Such candidates included subunits of the chromosome passenger complex (CPC), Bir1 and Sli15, known to facilitate spindle assembly checkpoint (SAC) activation. We show here that Slx5 counteracts SAC activation in mcm10-1 mutants under conditions of moderate replication stress. This coincides with the proteasomal degradation of sumoylated Bir1. Importantly, Slx5-dependent mitotic relief was triggered not only by Mcm10 deficiency but also by treatment with low doses of the alkylating drug methyl methanesulfonate. Based on these findings, we propose a model in which Slx5/8 allows for passage through mitosis when replication stress is tolerable. PMID:27134171

  6. B microchromosomes in the family Curimatidae (Characiformes: mitotic and meiotic behavior

    Directory of Open Access Journals (Sweden)

    Tatiane Ramos Sampaio

    2011-11-01

    Full Text Available In the present work, six curimatid species were analyzed: Cyphocharax voga (Hensel, 1870, C. spilotus (Vari, 1987, C. saladensis (Meinken, 1933, C. modestus (Fernández-Yépez, 1948, Steindachnerina biornata (Braga & Azpelicueta, 1987 and S. insculpta (Fernández-Yépez, 1948 collected from two hydrographic basins. All samples presented 2n=54 meta-submetacentric (m-sm chromosomes and FN equal to 108, and 1 or 2 B microchromosomes in the mitotic and meiotic cells of the six sampled populations showing inter-and intraindividual variation. The analysis of the meiotic cells in C. saladensis, C. spilotus, and C. voga showed a modal number of 54 chromosomes in the spermatogonial metaphases and 27 bivalents in the pachytene, diplotene, diakinesis and in metaphase I stages, and 27 chromosomes in metaphase II; in C. modestus, S. biornata, and S. insculpta, spermatogonial metaphases with 54 chromosomes and pachytene and metaphase I with 27 bivalents were observed. The B microchromosome was observed as univalent in the spermatogonial metaphase of C. spilotus, in the pachytene stage in the other species, with the exception of C. saladensis, and S. biornata in metaphase I. New occurrences of the B microchromosome in C. voga, C. saladensis and S. biornata were observed, confirming that the presence of this type of chromosome is a striking characteristic of this group of fish.

  7. Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression

    Directory of Open Access Journals (Sweden)

    Yee Mon Thu

    2016-05-01

    Full Text Available Loss of minichromosome maintenance protein 10 (Mcm10 causes replication stress. We uncovered that S. cerevisiae mcm10-1 mutants rely on the E3 SUMO ligase Mms21 and the SUMO-targeted ubiquitin ligase complex Slx5/8 for survival. Using quantitative mass spectrometry, we identified changes in the SUMO proteome of mcm10-1 mutants and revealed candidates regulated by Slx5/8. Such candidates included subunits of the chromosome passenger complex (CPC, Bir1 and Sli15, known to facilitate spindle assembly checkpoint (SAC activation. We show here that Slx5 counteracts SAC activation in mcm10-1 mutants under conditions of moderate replication stress. This coincides with the proteasomal degradation of sumoylated Bir1. Importantly, Slx5-dependent mitotic relief was triggered not only by Mcm10 deficiency but also by treatment with low doses of the alkylating drug methyl methanesulfonate. Based on these findings, we propose a model in which Slx5/8 allows for passage through mitosis when replication stress is tolerable.

  8. Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore

    Directory of Open Access Journals (Sweden)

    Jan Huwald

    2013-07-01

    Full Text Available A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models.

  9. Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum.

    Science.gov (United States)

    Lázaro-Diéguez, Francisco; Ispolatov, Iaroslav; Müsch, Anne

    2015-04-01

    All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule-mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning. PMID:25657320

  10. Mitotic spindle asymmetry in rodents and primates:2D versus 3D measurement methodologies

    Directory of Open Access Journals (Sweden)

    Delphine eDelaunay

    2015-02-01

    Full Text Available Recent data have uncovered that spindle size asymmetry (SSA is a key component of asymmetric cell division in the mouse cerebral cortex (Delaunay et al., 2014. In the present study we show that SSA also occurs during cortical progenitor divisions in the ventricular zone of the macaque cerebral cortex, pointing to a conserved mechanism in the mammalian lineage. Because SSA magnitude is smaller in cortical precursors than in invertebrate neuroblasts, the unambiguous demonstration of volume differences between the two half spindles is considered to require 3D reconstruction of the mitotic spindle (Delaunay et al., 2014. Although straightforward, the 3D analysis of SSA is time consuming, which is likely to hinder SSA identification and prevent further explorations of SSA related mechanisms in generating asymmetric cell division. We therefore set out to develop an alternative method for accurately measuring spindle asymmetry. Based on the mathematically demonstrated linear relationship between 2D and 3D analysis, we show that 2D assessment of spindle size in metaphase cells is as accurate and reliable as 3D reconstruction provided a specific procedure is applied. We have examined the experimental accuracy of the two methods by applying them to different sets of in vivo and in vitro biological data, including mouse and primate cortical precursors. Linear regression analysis demonstrates that the results from 2D and 3D reconstructions are equally powerful. We therefore provide a reliable and efficient technique to measure SSA in mammalian cells.

  11. ATF-2 immunoreactivity in post-mitotic and terminally differentiated human odontoblasts.

    Science.gov (United States)

    Keklikoglu, Nurullah; Akinci, Sevtap

    2015-09-01

    Activating transcription factor 2 (ATF-2/CRE-BP1; cAMP-responsive element binding protein 1) is a member of nuclear transcription factor activator protein-1 (AP-1) family. AP-1 regulates cellular processes including growth, proliferation, differentiation and apoptosis. However, biological relationship of cellular process to each member of the AP-1 family is not clear yet. The objective of the present study was to compare the ATF-2 immunoreactivity in the post-mitotic and terminally differentiated odontoblasts and in the pulpal fibroblasts which can be divided by mitosis when required. Fibroblasts at various stages of differentiation co-exist in the human dental pulp. ATF-2 was investigated immunohistochemically in 20 permanent human teeth. According to the findings obtained, the mean percentage of ATF-2 positive cells was 68.5 ± 19.2% in the odontoblasts and 22.8 ± 13.7% in the pulpal fibroblasts. The comparison of ATF-2 positivity revealed a statistically significant difference between odontoblasts and pulpal fibroblasts. These findings have suggested that ATF-2 is more associated with cell survival rather than cell proliferation, and revealed much of effectiveness in maintaining terminal differentiation than the various differentiation stages of the cells. PMID:25417007

  12. Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins.

    Science.gov (United States)

    Meek, Sarah E M; Lane, William S; Piwnica-Worms, Helen

    2004-07-30

    14-3-3 proteins regulate the cell division cycle and play a pivotal role in blocking cell cycle advancement after activation of the DNA replication and DNA damage checkpoints. Here we describe a global proteomics analysis to identify proteins that bind to 14-3-3s during interphase and mitosis. 14-3-3-binding proteins were purified from extracts of interphase and mitotic HeLa cells using specific peptide elution from 14-3-3 zeta affinity columns. Proteins that specifically bound and eluted from the affinity columns were identified by microcapillary high pressure liquid chromatography tandem mass spectrometry analysis. Several known and novel 14-3-3-interacting proteins were identified in this screen. Identified proteins are involved in cell cycle regulation, signaling, metabolism, protein synthesis, nucleic acid binding, chromatin structure, protein folding, proteolysis, nucleolar function, and nuclear transport as well as several other cellular processes. In some cases 14-3-3 binding was cell cycle-dependent, whereas in other cases the binding was shown to be cell cycle-independent. This study adds to the growing list of human 14-3-3-binding proteins and implicates a role for 14-3-3 proteins in a plethora of essential biological processes. PMID:15161933

  13. Cell cycle dependence of mitotic delay in X-irradiated normal and ataxia-telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    An investigation has been made of the relationship between suppression in the mitotic index and inhibition of DNA synthesis in normal (N) and ataxia-telangiectasia (A-T) skin fibroblasts, using tritiated thymidine as a marker of the cell cycle. The delay in progression of X-irradiated cells through the cell cycle, which is more pronounced in normal than in A-T fibroblasts, was greatest for cells in G2 at the time of irradiation. The greater effect of radiation on the initiation of DNA synthesis in N than in A-T cells was reflected in the shape of the percent labelled mitosis curves after 3H-thymidine treatment. The duration of the S phase in unirradiated A-T cells was greater than in N cells. It is pointed out that any explanation of the underlying defect in A-T must account not only for the reduced radiosensitivity of DNA synthesis but for the lesser delay in G2. The authors claim that their data support the hypothesis that DNA is the principal target for radiation-induced G2 delay. (U.K.)

  14. Human papillomavirus type 16 E7 perturbs DREAM to promote cellular proliferation and mitotic gene expression.

    Science.gov (United States)

    DeCaprio, J A

    2014-07-31

    The study of the small DNA tumor viruses continues to provide valuable new insights into oncogenesis and fundamental biological processes. Although much has already been revealed about how the human papillomaviruses (HPVs) can transform cells and contribute to cervical and oropharyngeal cancer, there clearly is much more to learn. In this issue of Oncogene, Pang et al., doi:10.1038/onc.2013.426, demonstrate that the high-risk HPV16 E7 oncogene can promote cellular proliferation by interacting with the DREAM (DP, RB-like, E2F and MuvB) complex at two distinct phases of the cell cycle. Consistent with earlier work, HPV16 E7 can bind to the retinoblastoma tumor suppressor (RB) family member p130 (RBL2) protein and promote its proteasome-mediated destruction thereby disrupting the DREAM complex and can prevent exit from the cell cycle into quiescence. In addition, they demonstrate that HPV16 E7 can bind to MuvB core complex in association with BMYB and FOXM1 and activate gene expression during the G2 and M phase of the cell cycle. Thus, HPV16 E7 acts to prevent exit from the cell cycle entry and promotes mitotic proliferation and may account for the high levels of FOXM1 often observed in poor-risk cervical cancers. PMID:24166507

  15. Human papillomavirus type 16 E7 perturbs DREAM to promote cellular proliferation and mitotic gene expression

    Science.gov (United States)

    DeCaprio, James A.

    2014-01-01

    Study of the small DNA tumor viruses continues to provide valuable new insights into oncogenesis and fundamental biological processes. While much has already been revealed about how the human papillomaviruses (HPVs) can transform cells and contribute to cervical and oropharyngeal cancer, there clearly is much more to learn. In this issue of Oncogene, Pang et al. demonstrate that the high-risk HPV16 E7 oncogene can promote cellular proliferation by interacting with the DREAM (DP, RB-like, E2F and MuvB) complex at two distinct phases of the cell cycle (1). Consistent with earlier work, HPV16 E7 can bind to the retinoblastoma tumor suppressor (RB) family member p130 (RBL2) protein and promote its proteasome-mediated destruction thereby disrupting the DREAM complex and prevent exit from the cell cycle into quiescence. In addition, they demonstrate that HPV16 E7 can bind to MuvB core complex in association with BMYB and FOXM1 and activate gene expression during the G2 and M phase of the cell cycle. Thus, HPV16 E7 acts to prevent exit from the cell cycle entry and promotes mitotic proliferation and may account for the high levels of FOXM1 often observed in poor risk cervical cancers. PMID:24166507

  16. Non-anti-mitotic concentrations of taxol reduce breast cancer cell invasiveness

    International Nuclear Information System (INIS)

    Taxol is widely used in breast cancer chemotherapy. Its effects are primarily attributed to its anti-mitotic activity. Microtubule perturbators also exert antimetastatic activities which cannot be explained solely by the inhibition of proliferation. Voltage-dependent sodium channels (NaV) are abnormally expressed in the highly metastatic breast cancer cell line MDA-MB-231 and not in MDA-MB-468 cell line. Inhibiting NaV activity with tetrodotoxin is responsible for an approximately 0.4-fold reduction of MDA-MB-231 cell invasiveness. In this study, we focused on the effect of a single, 2-h application of 10 nM taxol on the two cell lines MDA-MB-231 and MDA-MB-468. At this concentration, taxol had no effect on proliferation after 7 days and on migration in any cell line. However it led to a 40% reduction of transwell invasion of MDA-MB-231 cells. There was no additive effect when taxol and tetrodotoxin were simultaneously applied. NaV activity, as assessed by patch-clamp, indicates that it was changed by taxol pre-treatment. We conclude that taxol can exert anti-tumoral activities, in cells expressing NaV, at low doses that have no effect on cell proliferation. This effect might be due to a modulation of signalling pathways involving sodium channels.

  17. UV-induced mitotic co-segregation of genetic markers in Candida albicans: Evidence for linkage

    International Nuclear Information System (INIS)

    Parasexual genetic studies of the medically important yeast Candida albicans were performed using the method of UV-induced mitotic segregation. UV-irradiation of the Hoffmann-La Roche type culture of C. albicans yielded a limited spectrum of mutants at a relatively high fequency. This observation suggested natural heterozygosity. Canavanine-sensitive (CanS) segregants were induced at a frequency of 7.6 . 10-3. Double mutants that were both CanS and methionine (Met-) auxotrophs were induced at a frequency of 7.4 . 10-3. The single Met- segregant class was missing indicating linkage. UV-induced CanS or Met-CanS segregants occurred occasionally in twin-sectored colonies. Analyses of the sectors as well as the observed and missing classes of segregants indicated that genes met and can are linked in the cis configuration. The proposed gene order is: centromere - met - can. Thus, it is concluded that the Hoffmann-La Roche strain of C. albicans is naturally heterozygous at two linked loci. These findings are consistent with diploidy. (orig.)

  18. Establishment and mitotic characterization of new Drosophila acentriolar cell lines from DSas-4 mutant

    Directory of Open Access Journals (Sweden)

    Nicolas Lecland

    2013-01-01

    In animal cells the centrosome is commonly viewed as the main cellular structure driving microtubule (MT assembly into the mitotic spindle apparatus. However, additional pathways, such as those mediated by chromatin and augmin, are involved in the establishment of functional spindles. The molecular mechanisms involved in these pathways remain poorly understood, mostly due to limitations inherent to current experimental systems available. To overcome these limitations we have developed six new Drosophila cell lines derived from Drosophila homozygous mutants for DSas-4, a protein essential for centriole biogenesis. These cells lack detectable centrosomal structures, astral MT, with dispersed pericentriolar proteins D-PLP, Centrosomin and γ-tubulin. They show poorly focused spindle poles that reach the plasma membrane. Despite being compromised for functional centrosome, these cells could successfully undergo mitosis. Live-cell imaging analysis of acentriolar spindle assembly revealed that nascent MTs are nucleated from multiple points in the vicinity of chromosomes. These nascent MTs then grow away from kinetochores allowing the expansion of fibers that will be part of the future acentriolar spindle. MT repolymerization assays illustrate that acentriolar spindle assembly occurs “inside-out” from the chromosomes. Colchicine-mediated depolymerization of MTs further revealed the presence of a functional Spindle Assembly Checkpoint (SAC in the acentriolar cells. Finally, pilot RNAi experiments open the potential use of these cell lines for the molecular dissection of anastral pathways in spindle and centrosome assembly.

  19. Mitotic recombination in callus of Arabidopsis thaliana (L.) Heynh. after fast-neutron treatment

    International Nuclear Information System (INIS)

    A threefold heterozygote plant, with marker genes as, py and er linked on chromosome 2, was used as material for this study. Six-week-old callus from leaves of this plant was irradiated with 15, 20 and 30 Gy of fast neutrons. A normal segregation was observed in the F2 progenies of about 65% of the callus-derived plants. On the other hand, a statistically significant deviation from the expected ratio of 3:1 was found in progenies of 17 other callus-derived plants. Only wild-type plants were observed in progenies of two plants from irradiated callus. Similar wild-type plants were present, at much higher frequencies than expected, in progenies of 15 other plants from irradiated callus. The mitotic recombination between the er gene and centromere in callus cells could be a reason for the appearance of only wild-type forms in progenies of callus-derived plants. These and other results presented in the paper suggest that fast-neutron irradiation may significantly increase the level of somatic crossing-over in callus cells. (author)

  20. Knob-associated tandem repeats on mitotic chromosomes in maize, Zea diploperennis and their hybrids

    Institute of Scientific and Technical Information of China (English)

    XIONG Zhiyong; GAO Yuan; HE Guanyuan; GU Mingguang; GUO Lequn; SONG Yunchun

    2004-01-01

    Knob-associated tandem repeats, 180-bp repeats and TR-1 elements, together with 45S rDNA were located on mitotic chromosomes of Zea diploperennis (DP),maize inbred line F102 and their hybrid. In DP, knobs on the short arm of chromosomes 1 and 4 and on the long arm of the chromosomes 4 and 5 are composed predominantly of the 180-bp repeats. In addition, 180-bp repeats existed together with TR-1 elements were also detected on the short arm of chromosomes 2 and 5 and on the long arm of the chromosomes 2, 6, 7, 8 and 9. In maize inbred line F102, 180-bp repeats were present in chromosomes 7S and one homologue of chromosomes 8L. TR-1 elements appeared on satellite of chromosome 6 and no detectable hybridization site co-located with 180-bp repeats was observed in maize F102. Polymorphism of size, number, and distribution of 180-bp and TR-1 signals were revealed among different chromosomes in these two species and heteromorphism existed between some homologous chromosomes in the same species.Using these excellent landmarks, the interspecific hybrid of maize and DP were identified. The results suggest that comparative analysis of 180-bp repeats and TR-1 elements may help understand the genome organization and the evolution in Zea.

  1. Mitotic segregation in intergeneric hybrids of yeast to give novel genetic segregants

    International Nuclear Information System (INIS)

    Two strains of yeast, Yarrowia lipolytica and Saccharomycopsis fibuligera, have a filamentous growth form in addition to budding cells. Y. lipolytica produces lipases and is used in the production of citric acid while W. fibuligera produces amylases and is used in the production of rice wine. In the present report, we made a study of the following: (i) karyotypes of the two yeast strains to obtain a better understanding of their genetic relatedness, (ii) genetic crosses between the two strains to produce intergeneric hybrids, and (iii) pattern of genetic segregation of the intergeneric hybrids via the mitotic process. The results of our studies showed that the two yeast strains were genetically related and that putative intergeneric hybrids were obtained by a genetic crossing of the strains. The hybrids were relatively stable in mitosis as compared to their parent strains. However, in prolonged vegetative propagation, the hybrids gave rise to genetic segregants, most of which were of either of the two parent phenotypes. A number of the segregants had phenotypes which combined those of the parental types. Of considerable significance was that yet a few others were novel as they exhibited phenotypes not hitherto seen for both parent strains. (author). 9 refs, 5 tabs

  2. C646, a selective small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe

    International Nuclear Information System (INIS)

    Background and purpose: Chromatin remodeling through histone modifications, including acetylation, plays an important role in the appropriate response to DNA damage induced by ionizing radiation (IR). Here we investigated the radiosensitizing effect of C646, a selective small molecule inhibitor of p300 histone acetyltransferase, and explored the underlying mechanisms. Materials and methods: A549, H157 and H460 human non-small cell lung carcinoma (NSCLC) cells, and HFL-III human lung fibroblasts were assessed by clonogenic survival assay. Apoptosis and necrosis were assessed by annexin V staining. Senescence was assessed by Senescence-associated β-galactosidase staining. Mitotic catastrophe was assessed by evaluating nuclear morphology with DAPI staining. Cell cycle profiles were analyzed by flow cytometry. Protein expression was analyzed by immunoblotting. Results: C646 sensitized A549, H460 and H157 cells to IR with a dose enhancement ratio at 10% surviving fraction of 1.4, 1.2 and 1.2, respectively. C646 did not radiosensitize HFL-III cells. In A549 cells, but not in HFL-III cells, C646 (i) enhanced mitotic catastrophe but not apoptosis, necrosis, or senescence after IR; (ii) increased the hyperploid cell population after IR; and (iii) suppressed the phosphorylation of CHK1 after IR. Conclusions: C646 radiosensitizes NSCLC cells by enhancing mitotic catastrophe through the abrogation of G2 checkpoint maintenance

  3. Bovine papillomavirus type 1 genomes and the E2 transactivator protein are closely associated with mitotic chromatin.

    Science.gov (United States)

    Skiadopoulos, M H; McBride, A A

    1998-03-01

    The bovine papillomavirus type 1 E2 transactivator protein is required for viral transcriptional regulation and DNA replication and may be important for long-term episomal maintenance of viral genomes within replicating cells (M. Piirsoo, E. Ustav, T. Mandel, A. Stenlund, and M. Ustav, EMBO J. 15:1-11, 1996). We have evidence that, in contrast to most other transcriptional transactivators, the E2 transactivator protein is associated with mitotic chromosomes in dividing cells. The shorter E2-TR and E8/E2 repressor proteins do not bind to mitotic chromatin, and the N-terminal transactivation domain of the E2 protein is necessary for the association. However, the DNA binding function of E2 is not required. We have found that bovine papillomavirus type 1 genomes are also associated with mitotic chromosomes, and we propose a model in which E2-bound viral genomes are transiently associated with cellular chromosomes during mitosis to ensure that viral genomes are segregated to daughter cells in approximately equal numbers. PMID:9499063

  4. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors.

    Directory of Open Access Journals (Sweden)

    Chunyan Dai

    Full Text Available Mitotic chromosomal instability (CIN plays important roles in tumor progression, but what causes CIN is incompletely understood. In general, tumor CIN arises from abnormal mitosis, which is caused by either intrinsic or extrinsic factors. While intrinsic factors such as mitotic checkpoint genes have been intensively studied, the impact of tumor microenvironmental factors on tumor CIN is largely unknown. We investigate if glucose deprivation and lactic acidosis--two tumor microenvironmental factors--could induce cancer cell CIN. We show that glucose deprivation with lactic acidosis significantly increases CIN in 4T1, MCF-7 and HCT116 scored by micronuclei, or aneuploidy, or abnormal mitosis, potentially via damaging DNA, up-regulating mitotic checkpoint genes, and/or amplifying centrosome. Of note, the feature of CIN induced by glucose deprivation with lactic acidosis is similar to that of aneuploid human tumors. We conclude that tumor environmental factors glucose deprivation and lactic acidosis can induce tumor CIN and propose that they are potentially responsible for human tumor aneuploidy.

  5. Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes.

    Science.gov (United States)

    Ohta, Shinya; Montaño-Gutierrez, Luis F; de Lima Alves, Flavia; Ogawa, Hiromi; Toramoto, Iyo; Sato, Nobuko; Morrison, Ciaran G; Takeda, Shunichi; Hudson, Damien F; Rappsilber, Juri; Earnshaw, William C

    2016-08-01

    Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression. PMID:27231315

  6. Killing the umpire: cooperative defects in mitotic checkpoint and BRCA2 genes on the road to transformation

    International Nuclear Information System (INIS)

    Recent findings from mouse models of BRCA2 genetic lesions have provided intriguing insights and important questions concerning modes of tumor development in familial breast and ovarian cancers. Fibroblasts from mice homozygous for the BRCA2Tr allele grow poorly and display an array of chromosomal abnormalities that are consistent with a role for BRCA2 in DNA repair. This growth defect can be overcome and cellular transformation promoted by the expression of defective, dominant negative alleles of p53 and of the mitotic checkpoint gene Bub1, both of which are known to induce chromosome instability. These findings are mirrored in the genetic lesions sustained in tumors found in the rare BRCA2Tr/Trmice that survive to adulthood, which include defects in p53 as well as the mitotic checkpoint proteins Bub1 and Mad3L. Together, these data hint that tumors in these mice evolve from an unusually intense selective pressure to remove DNA damage checkpoints, which in turn might be facilitated by chromosomal abolition of mitotic checkpoints and the consequent increase in shuffling of genetic information. How these genetic lesions co-operate to yield transformed cells and how these data relate to BRCA1 and BRCA2 defects in the human population are important questions raised by this work

  7. Aurora A Kinase Regulates Mammary Epithelial Cell Fate by Determining Mitotic Spindle Orientation in a Notch-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Joseph L. Regan

    2013-07-01

    Full Text Available Cell fate determination in the progeny of mammary epithelial stem/progenitor cells remains poorly understood. Here, we have examined the role of the mitotic kinase Aurora A (AURKA in regulating the balance between basal and luminal mammary lineages. We find that AURKA is highly expressed in basal stem cells and, to a lesser extent, in luminal progenitors. Wild-type AURKA expression promoted luminal cell fate, but expression of an S155R mutant reduced proliferation, promoted basal fate, and inhibited serial transplantation. The mechanism involved regulation of mitotic spindle orientation by AURKA and the positioning of daughter cells after division. Remarkably, this was NOTCH dependent, as NOTCH inhibitor blocked the effect of wild-type AURKA expression on spindle orientation and instead mimicked the effect of the S155R mutant. These findings directly link AURKA, NOTCH signaling, and mitotic spindle orientation and suggest a mechanism for regulating the balance between luminal and basal lineages in the mammary gland.

  8. Cold-sensitive mutants of p34cdc2 that suppress a mitotic catastrophe phenotype in fission yeast.

    Science.gov (United States)

    Ayscough, K; Hayles, J; MacNeill, S A; Nurse, P

    1992-04-01

    The p34cdc2 protein kinase plays a central role in the regulation of the eukaryotic cell cycle, being required both in late G1 for the commitment to S-phase and in late G2 for the initiation of mitosis. p34cdc2 also determines the precise timing of entry into mitosis in fission yeast, where a number of gene products that regulate p34cdc2 activity have been identified and characterised. To investigate further the mitotic role of p34cdc2 in this organism we have isolated new cold-sensitive p34cdc2 mutants. These are defective only in their G2 function and are extragenic suppressors of the lethal premature entry into mitosis brought about by mutating the mitotic inhibitor p107wee1 and overproducing the mitotic activator p80cdc25. One of the mutant proteins p34cdc2-E8 is only functional in the absence of p107wee1, and all the mutant strains have reduced histone H1 kinase activity in vitro. Each mutant allele has been cloned and sequenced, and the lesions responsible for the cold-sensitive phenotypes identified. All the mutations were found to map to regions that are conserved between the fission yeast p34cdc2 and functional homologues from higher eukaryotes. PMID:1316996

  9. Radiation-induced chromosome aberrations occurring during the first and second mitotic divisions of human lymphocytes after exposure to X-rays

    International Nuclear Information System (INIS)

    The study described elucidates the relationship between the number of chromosome aberrations/cell and the length of the individual culture periods. The BrdUrd staining technique used here permitted separate analyses of the aberration frequencies during the first and second mitotic divisions of lymphocyte chromosomes cultivated for different periods of time. The results thus obtained were subjected to further analysis to quantify errors attributable to non-separate observations of such mitotic processes and to determine the number of surviving cells observed to have dicentric chromosomes during the first mitotic division. An analysis of the results obtained for the first mitotic division alone failed to reveal any connection between the number of chromosome aberrations and the culture periods. The aberration rates established for the second mitotic division were clearly related to the culture periods. A steady state was reached after approx. 54 h, but the values determined here were much lower than those calculated for the first mitotic division. (orig./MG)

  10. 33 CFR Appendix A to Part 154 - Guidelines for Detonation Flame Arresters

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Guidelines for Detonation Flame... Appendix A to Part 154—Guidelines for Detonation Flame Arresters This appendix contains the draft ASTM standard for detonation flame arresters. Devices meeting this standard will be accepted by the...

  11. 38 CFR 3.375 - Determination of inactivity (complete arrest) in tuberculosis.

    Science.gov (United States)

    2010-07-01

    ... inactivity (complete arrest) in tuberculosis. 3.375 Section 3.375 Pensions, Bonuses, and Veterans' Relief...) in tuberculosis. (a) Pulmonary tuberculosis. A veteran shown to have had pulmonary tuberculosis will...) Nonpulmonary disease. Determination of complete arrest of nonpulmonary tuberculosis requires absence...

  12. Program Completion and Re-Arrest in a Batterer Intervention System

    Science.gov (United States)

    Bennett, Larry W.; Stoops, Charles; Call, Christine; Flett, Heather

    2007-01-01

    Objective: The authors examine the effects of batterer intervention program (BIP) completion on domestic violence re-arrest in an urban system of 30 BIPs with a common set of state standards, common program completion criteria, and centralized criminal justice supervision. Method: 899 men arrested for domestic violence were assessed and completed…

  13. 46 CFR 30.10-63 - Spark arrester-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Spark arrester-TB/ALL. 30.10-63 Section 30.10-63...-63 Spark arrester—TB/ALL. The term spark arrester means any device, assembly, or method of a... sparks in exhaust pipes from internal combustion engines....

  14. Mutations in the Kv1.5 channel gene KCNA5 in cardiac arrest patients

    DEFF Research Database (Denmark)

    Nielsen, Nathalie H; Winkel, Bo G; Kanters, Jørgen K; Schmitt, Nicole; Hofman-Bang, Jacob; Jensen, Henrik S; Bentzen, Bo H; Sigurd, Bjarne; Larsen, Lars Allan; Andersen, Paal S; Kjeldsen, Keld; Grunnet, Morten; Christiansen, Michael; Olesen, Søren-Peter; Haunsø, Stig

    2007-01-01

    Mutations in one of the ion channels shaping the cardiac action potential can lead to action potential prolongation. However, only in a minority of cardiac arrest cases mutations in the known arrhythmia-related genes can be identified. In two patients with arrhythmia and cardiac arrest, we identi...

  15. Same-Sex and Race-Based Disparities in Statutory Rape Arrests.

    Science.gov (United States)

    Chaffin, Mark; Chenoweth, Stephanie; Letourneau, Elizabeth J

    2016-01-01

    This study tests a liberation hypothesis for statutory rape incidents, specifically that there may be same-sex and race/ethnicity arrest disparities among statutory rape incidents and that these will be greater among statutory rape than among forcible sex crime incidents. 26,726 reported incidents of statutory rape as defined under state statutes and 96,474 forcible sex crime incidents were extracted from National Incident-Based Reporting System data sets. Arrest outcomes were tested using multilevel modeling. Same-sex statutory rape pairings were rare but had much higher arrest odds. A victim-offender romantic relationship amplified arrest odds for same-sex pairings, but damped arrest odds for male-on-female pairings. Same-sex disparities were larger among statutory than among forcible incidents. Female-on-male incidents had uniformly lower arrest odds. Race/ethnicity effects were smaller than gender effects and more complexly patterned. The findings support the liberation hypothesis for same-sex statutory rape arrest disparities, particularly among same-sex romantic pairings. Support for race/ethnicity-based arrest disparities was limited and mixed. PMID:25416040

  16. A Summary and Analysis of Warrantless Arrest Statutes for Domestic Violence in the United States

    Science.gov (United States)

    Zeoli, April M.; Norris, Alexis; Brenner, Hannah

    2011-01-01

    In the United States, all 50 states and the District of Columbia have enacted statutes that allow police officers to make warrantless arrests for domestic violence given probable cause; however, state laws differ from one another in multiple, important ways. Research on domestic violence warrantless arrest laws rarely describe them as anything…

  17. [Thoracic lavage and open cardiac massage as treatment of hypothermic cardiac arrest--case report].

    Science.gov (United States)

    Koponen, Timo; Vänni, Ville; Kettunen, Minna; Reinikainen, Matti; Hakala, Tapio

    2016-01-01

    Cardiopulmonary bypass is the treatment of choice for a severely hypothermic patient with cardiac arrest. However, the treatment is not always available. We describe a successful three-and-a-half hour resuscitation of a hypothermic cardiac arrest patient with manual chest compressions followed by open cardiac massage and rewarming with thoracic lavage. PMID:27188092

  18. [Cardiopulmonary resuscitation and post-cardiac arrest brain injury].

    Science.gov (United States)

    Sakurai, Atsushi

    2016-02-01

    One of the most important topics in the field of resuscitation at present is the drafting of the 2015 version of the Consensus on Science and Treatment Recommendation (CoSTR) by the International Liaison Committee on Resuscitation. The Japan Resuscitation Council is preparing its 2015 Guideline based on this CoSTR and plans to release it in October 2015. A critical change in the upcoming CoSTR is the adoption of the GRADE system. The new Guideline incorporating the GRADE system will surely be more scientific than the previous Guideline issued in 2010. Meanwhile, an important finding appeared in a report from Nielsen et al.: hypothermia at a targeted temperature of 33 degrees C did not confer a benefit versus 36 degrees in unconscious survivors of out-of-hospital cardiac arrest of presumed cardiac cause. PMID:26915250

  19. A Unique Case of Cardiac Arrest following K2 Abuse

    Directory of Open Access Journals (Sweden)

    Saif Ibrahim

    2014-01-01

    Full Text Available Sudden cardiac death (SCD accounts for up to 450,000 deaths every year in the United States (Zipes et al. (2006. Most cases of sudden cardiac death occur in subjects with no prior history of heart disease (Myerburg et al. (1998. The incidence of sudden death in a general population has been shown to increase contemporaneously with substance abuse (Phillips et al. (1999. The causative association of sudden death with cocaine, methadone, and volatile agents is well established (Adgey et al. (1995 and Isner et al. (1986. We describe a case of out-of-hospital cardiac arrest temporally related to abuse of the synthetic cannabinoid street drug known as K2. To our knowledge, there are no previously documented cases of sudden cardiac death associated with synthetic cannabinoids although they have been linked to myocardial infarction in teenagers despite normal coronary angiography (Mir et al. (2011.

  20. Dynamical Arrest, Structural Disorder, and Optimization of Organic Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Gould, Ian; Dmitry, Matyushov

    2014-09-11

    This project describes fundamental experimental and theoretical work that relates to charge separation and migration in the solid, heterogeneous or aggregated state. Marcus theory assumes a system in equilibrium with all possible solvent (dipolar) configurations, with rapid interconversion among these on the ET timescale. This project has addressed the more general situation where the medium is at least partially frozen on the ET timescale, i.e. under conditions of dynamical arrest. The approach combined theory and experiment and includes: (1) Computer simulations of model systems, (2) Development of analytical procedures consistent with computer experiment and (3) Experimental studies and testing of the formal theories on this data. Electron transfer processes are unique as a consequence of the close connection between kinetics, spectroscopy and theory, which is an essential component of this work.

  1. Anaphylactic shock and cardiac arrest caused by thiamine infusion.

    Science.gov (United States)

    Juel, Jacob; Pareek, Manan; Langfrits, Christian Sigvald; Jensen, Svend Eggert

    2013-01-01

    Parenteral thiamine has a very high safety profile. The most common adverse effect is local irritation; however, anaphylactic or anaphylactoid reactions may occur, mostly related to intravenous administration. We describe a 44-year-old man, a chronic alcoholic, who was admitted with alcohol intoxication and developed cardiac arrest due to anaphylactic shock following intravenous thiamine infusion. The patient was successfully resuscitated after 15 min and repeated epinephrine administrations. He was discharged in good health after 14 days. This case report emphasises both the importance of recognising the symptoms of anaphylaxis and the fact that facilities for treating anaphylaxis and cardiopulmonary resuscitation should be available when thiamine or for that matter, any drug is given in-hospital. PMID:23853017

  2. Cardiopulmonary arrest induced by anaphylactoid reaction with contrast media.

    Science.gov (United States)

    Nakamura, Iwao; Hori, Shingo; Funabiki, Tomohiro; Sekine, Kazuhiko; Kimura, Hiroyuki; Fujishima, Seitaro; Aoki, Katsunori; Kuribayashi, Sachio; Aikawa, Naoki

    2002-05-01

    Anaphylactoid reactions to iodinated contrast media can cause life-threatening events and even death. A 44-year-old woman presented with cardiopulmonary arrest (CPA) immediately following the administration of nonionic iodinated contrast media for an intravenous pyelography. Her cardiac rhythm during CPA was asystole. She was successfully resuscitated by the radiologists supported by paged emergency physicians using the prompt intravenous administration of 1 mg of epinephrine. Neither laryngeal edema nor bronchial spasm was observed during the course of treatment, and she was discharged on the 4th day without any complications. The patient did not have a history of allergy, but had experienced a myocardial infarction and aortitis. She had undergone 11 angiographies and had been taking a beta-adrenergic receptor antagonist. Planned emergency medical backup is advisable to ensure resuscitation in the event of an anaphylactoid reaction to the use of contrast media in-hospital settings. PMID:12009227

  3. Cardiac arrest due to airway obstruction in hereditary angioedema.

    Science.gov (United States)

    Fuse, Takashi; Nakada, Taka-aki; Taniguchi, Masashi; Mizushima, Yasuaki; Matsuoka, Tetsuya

    2015-12-01

    Hereditary angioedema (HAE) is a rare genetic disease caused by a deficiency of functional C1 esterase inhibitor that causes swelling attacks in various body tissues. We hereby report a case of out-of-hospital cardiac arrest due to airway obstruction in HAE. Cutaneous swelling and abdominal pain attacks caused by gastrointestinal wall swelling are common symptoms in HAE, whereas laryngeal swelling is rare. Emergency physicians may have few chances to experience cases of life-threatening laryngeal edema resulting in a delay from symptom onset to the diagnosis of HAE. Hereditary angioedema is diagnosed by performing complement blood tests. Because safe and effective treatment options are available for the life-threatening swellings in HAE, the diagnosis potentially reduces the risk of asphyxiation in patients and their blood relatives. PMID:25913082

  4. Opiate Withdrawal Complicated by Tetany and Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Irfanali R. Kugasia

    2014-01-01

    Full Text Available Patients with symptoms of opiate withdrawal, after the administration of opiate antagonist by paramedics, are a common presentation in the emergency department of hospitals. Though most of opiate withdrawal symptoms are benign, rarely they can become life threatening. This case highlights how a benign opiate withdrawal symptom of hyperventilation led to severe respiratory alkalosis that degenerated into tetany and cardiac arrest. Though this patient was successfully resuscitated, it is imperative that severe withdrawal symptoms are timely identified and immediate steps are taken to prevent catastrophes. An easier way to reverse the severe opiate withdrawal symptom would be with either low dose methadone or partial opiate agonists like buprenorphine. However, if severe acid-base disorder is identified, it would be safer to electively intubate these patients for better control of their respiratory and acid-base status.

  5. Making Food Protein Gels via an Arrested Spinodal Decomposition.

    Science.gov (United States)

    Mahmoudi, Najet; Stradner, Anna

    2015-12-17

    We report an investigation of the structural and dynamic properties of mixtures of food colloid casein micelles and low molecular weight poly(ethylene oxide). A combination of visual observations, confocal laser scanning microscopy, diffusing wave spectroscopy, and oscillatory shear rheometry is used to characterize the state diagram of the mixtures and describe the structural and dynamic properties of the resulting fluid and solid-like structures. We demonstrate the formation of gel-like structures through an arrested spinodal decomposition mechanism. We discuss our observations in view of previous experimental and theoretical studies with synthetic and food colloids, and comment on the potential of such a route toward gels for food processing. PMID:26595592

  6. Electronic registration of out-of-hospital cardiac arrests

    DEFF Research Database (Denmark)

    Nielsen, Niels Dalsgaard; Dahl, Michael; Gade, John;

    2007-01-01

    patients according to whether they received first aid, the identity of the first aid provider and the initial cardiac rhythm as diagnosed by the patient monitor.   Results: 18,666 patients where in contact with an emergency ambulance in the study period. Of those 296 (89/100,000/year) met the definition of...... cardiac arrest. 83 of those (28 %) received first aid. The first aid was provided by layman (68 %), physicians (11 %), nurses (11 %) and first-aiders (4 %). In 6 % the identity of the first aid provider was unknown. The majority of the patients (n = 177 (58 %)) had asystole upon ambulance arrival. 37 (12...... considerably higher incidence rate for OHCA, than documented by the analogue nationwide registry. Further we discovered a high rate of first aid to OHCA-patients. Finally our data showed a high occurence of asystolia in patients who met the official criteria for OHCA....

  7. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest

    DEFF Research Database (Denmark)

    Westhall, Erik; Rossetti, Andrea O; van Rootselaar, Anne-Fleur; Wesenberg Kjaer, Troels; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Rosén, Ingmar; Åneman, Anders; Erlinge, David; Gasche, Yvan; Hassager, Christian; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wetterslev, Jørn; Wise, Matt P; Cronberg, Tobias

    2016-01-01

    OBJECTIVE: To identify reliable predictors of outcome in comatose patients after cardiac arrest using a single routine EEG and standardized interpretation according to the terminology proposed by the American Clinical Neurophysiology Society. METHODS: In this cohort study, 4 EEG specialists......, blinded to outcome, evaluated prospectively recorded EEGs in the Target Temperature Management trial (TTM trial) that randomized patients to 33°C vs 36°C. Routine EEG was performed in patients still comatose after rewarming. EEGs were classified into highly malignant (suppression, suppression with...... periodic discharges, burst-suppression), malignant (periodic or rhythmic patterns, pathological or nonreactive background), and benign EEG (absence of malignant features). Poor outcome was defined as best Cerebral Performance Category score 3-5 until 180 days. RESULTS: Eight TTM sites randomized 202...

  8. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest

    Science.gov (United States)

    Rossetti, Andrea O.; van Rootselaar, Anne-Fleur; Wesenberg Kjaer, Troels; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Rosén, Ingmar; Åneman, Anders; Erlinge, David; Gasche, Yvan; Hassager, Christian; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wetterslev, Jørn; Wise, Matt P.; Cronberg, Tobias

    2016-01-01

    Objective: To identify reliable predictors of outcome in comatose patients after cardiac arrest using a single routine EEG and standardized interpretation according to the terminology proposed by the American Clinical Neurophysiology Society. Methods: In this cohort study, 4 EEG specialists, blinded to outcome, evaluated prospectively recorded EEGs in the Target Temperature Management trial (TTM trial) that randomized patients to 33°C vs 36°C. Routine EEG was performed in patients still comatose after rewarming. EEGs were classified into highly malignant (suppression, suppression with periodic discharges, burst-suppression), malignant (periodic or rhythmic patterns, pathological or nonreactive background), and benign EEG (absence of malignant features). Poor outcome was defined as best Cerebral Performance Category score 3–5 until 180 days. Results: Eight TTM sites randomized 202 patients. EEGs were recorded in 103 patients at a median 77 hours after cardiac arrest; 37% had a highly malignant EEG and all had a poor outcome (specificity 100%, sensitivity 50%). Any malignant EEG feature had a low specificity to predict poor prognosis (48%) but if 2 malignant EEG features were present specificity increased to 96% (p < 0.001). Specificity and sensitivity were not significantly affected by targeted temperature or sedation. A benign EEG was found in 1% of the patients with a poor outcome. Conclusions: Highly malignant EEG after rewarming reliably predicted poor outcome in half of patients without false predictions. An isolated finding of a single malignant feature did not predict poor outcome whereas a benign EEG was highly predictive of a good outcome. PMID:26865516

  9. Arrest as a General Property of the Supercooled Liquid State.

    Science.gov (United States)

    Sluyters, Jan H; Sluyters-Rehbach, Margaretha

    2016-04-21

    Owing to the universal presence of intermolecular interactions, it has to be expected that at some well-defined lower temperature a liquid loses its dynamic properties like fluidity and self-diffusion. As a sequel to two earlier papers on the discovery of such an arrest temperature T0 for supercooled water at 243 K, where also the coexisting vapor pressure was found to become zero, in this paper a further study is undertaken of the behavior of a selection of other liquids. At first, two simple equations of state (van der Waals and virial) are shown in principle to predict a zero vapor pressure at a finite temperature. The interaction parameters B (second virial coefficient) and μJT (Joule-Thomson coefficient) of the vapor are found to become virtually infinite at a temperature T0,B, with a value equal or close to the T0 derived from the liquid properties. Just as earlier found for water, the latter is obtained by extrapolation of several available dynamic and equilibrium data, which should produce an intersection with the temperature axis at the same T0 value. With the exception of molten salts and liquid pure metals, this condition appears to be fulfilled quite accurately. Thus, the temperature of arrest is a general phenomenon for supercooled liquids. As an illustration, it is shown how the PVT diagram of carbon dioxide can be extended into the supercooled temperature region. It is argued that T0 is the temperature below which the Boltzmann energy, kT, is lower than the minimal energy needed for a molecule to break the interactions with its surrounding molecules. We propose to name this minimal energy, kT0, the multimolecular potential of the liquid object. The relationship of the liquid multimolecular potential with the pair potential, ε, of the molecular species is established for various examples and appears to be a proportionality with ε ≈ 2kT0. PMID:27070201

  10. Cardiac arrest during gamete release in chum salmon regulated by the parasympathetic nerve system.

    Directory of Open Access Journals (Sweden)

    Yuya Makiguchi

    Full Text Available Cardiac arrest caused by startling stimuli, such as visual and vibration stimuli, has been reported in some animals and could be considered as an extraordinary case of bradycardia and defined as reversible missed heart beats. Variability of the heart rate is established as a balance between an autonomic system, namely cholinergic vagus inhibition, and excitatory adrenergic stimulation of neural and hormonal action in teleost. However, the cardiac arrest and its regulating nervous mechanism remain poorly understood. We show, by using electrocardiogram (ECG data loggers, that cardiac arrest occurs in chum salmon (Oncorhynchus keta at the moment of gamete release for 7.39+/-1.61 s in females and for 5.20+/-0.97 s in males. The increase in heart rate during spawning behavior relative to the background rate during the resting period suggests that cardiac arrest is a characteristic physiological phenomenon of the extraordinarily high heart rate during spawning behavior. The ECG morphological analysis showed a peaked and tall T-wave adjacent to the cardiac arrest, indicating an increase in potassium permeability in cardiac muscle cells, which would function to retard the cardiac action potential. Pharmacological studies showed that the cardiac arrest was abolished by injection of atropine, a muscarinic receptor antagonist, revealing that the cardiac arrest is a reflex response of the parasympathetic nerve system, although injection of sotalol, a beta-adrenergic antagonist, did not affect the cardiac arrest. We conclude that cardiac arrest during gamete release in spawning release in spawning chum salmon is a physiological reflex response controlled by the parasympathetic nervous system. This cardiac arrest represents a response to the gaping behavior that occurs at the moment of gamete release.

  11. Association of Mitotic Regulation Pathway Polymorphisms with Pancreatic Cancer Risk and Outcome

    Science.gov (United States)

    Couch, Fergus J.; Wang, Xianshu; Bamlet, William R.; de Andrade, Mariza; Petersen, Gloria M.; McWilliams, Robert R.

    2009-01-01

    Background Mitosis is a highly regulated process that serves to ensure the fidelity of cell division. Disruption of mitotic regulators leading to aneuploidy and polyploidy is commonly observed in cancer cells. Single nucleotide polymorphisms (SNPs) in regulators of mitosis may promote chromosome mis-segregation and influence pancreatic cancer and/or survival. Methods Thirty four SNPs, previously associated with breast cancer risk, from 33 genes involved in regulation of mitosis, were investigated for associations with pancreatic cancer risk in 1,143 Caucasian patients with pancreatic adenocarcinoma and 1,097 unaffected controls from the Mayo Clinic. Associations with survival from pancreatic cancer were also assessed using 1,030 pancreatic cancer cases with known outcome. Results Two SNPs in the APC (rs2431238) and NIN (rs10145182) loci, out of 34 examined, were significantly associated with pancreatic cancer risk (p=0.035 and p=0.038, respectively). Further analyses of individuals categorized by smoking and BMI identified several SNPs displaying significant associations (p<0.05) with pancreatic cancer risk, including APC rs2431238 in individuals with high body mass index (BMI≥30) (p=0.031) and NIN rs10145182 in ever smokers (p=0.01). In addition, survival analyses detected significant associations between SNPs in EIF3S10 and overall survival (p=0.009), SNPs from five genes and survival in resected cancer cases (p<0.05), and SNPs from two other genes (p<0.05) and survival of locally advanced cancer cases. Conclusion Common variation in genes encoding regulators of mitosis may independently influence pancreatic cancer susceptibility and survival. PMID:20056645

  12. X-ray induced increase of mitotic crossovers in Nicotiana tabacum

    International Nuclear Information System (INIS)

    The mutant, sulfur, of Nicotiana tabacum L. is an incompletely dominant chlorophyll deficiency locus. Single dark green (D) or aurea (A), and double (Db) spots developed spontaneously in leaves of Su/su plants. When Su/su seedlings were exposed to 150 kVP X-rays (50, 150 or 300 R), the frequency of each kind of spot increased with exposure dose. If D, A, and Db spots were summed, the frequencies of spots per leaf were 0.458 +- 0.069, 2.317 +- 0.219, 11.95 +- 1.212, and 35.29 +-5.221 for 0 (control), 50, 150, and 300 R, respectively. Based on the number of leaves with increased spot frequency at 300 R, there were seven leaf initials present at the time of treatment, each at a different developmental stage. The mutation response curve obtained from the eventual seven leaves was similar to curves of mutation induction in other plant species. Uniform sensitivity of cells in leaf primordia to X-irradiation was inferred since D and A spot areas as percentages of the leaf blade area respectively remained equal from leaf to leaf. Spot frequency was also examined geographically over the leaf blade. Right versus left halves had equal frequency spotting; distal halves, with more cells by actual count than proximal halves, had a greater spot frequency. The dose responses of D and A spots had significant linear and non-linear components. The Db spot frequency in these experiments was used to calculate the frequency of mitotic crossing over. The values range from 3.34 x 10-6 to 9.64 x 10-4, extending an earlier estimate. (author)

  13. Mitotic evolution of Plasmodium falciparum shows a stable core genome but recombination in antigen families.

    Directory of Open Access Journals (Sweden)

    Selina E R Bopp

    Full Text Available Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level, parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing (totaling 14 terabases revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen evolved clones (avg. 5.4 per clone. In clones exposed to atovaquone, we found cytochrome b mutations as well as an amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1 on chromosome 1. We observed 18 large-scale (>1 kb on average deletions of telomere-proximal regions encoding multigene families, involved in immune evasion (9.5×10(-6 structural variants per base pair per generation. Six of these deletions were associated with chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P. falciparum (1.0-9.7×10(-9 mutations per base pair per generation, we can now model the frequency at which drug or immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum. These results will help improve our understanding of how P. falciparum

  14. 6-Nitro-2-(3-hydroxypropyl-1H-benz[de]isoquinoline-1,3-dione, a potent antitumor agent, induces cell cycle arrest and apoptosis

    Directory of Open Access Journals (Sweden)

    Singh Shashank K

    2010-12-01

    Full Text Available Abstract Background Anticancer activities of several substituted naphthalimides (1H-benz[de]isoquinoline-1,3-diones are well documented. Some of them have undergone Phase I-II clinical trials. Presently a series of ten N-(hydroxyalkyl naphthalimides (compounds 1a-j were evaluated as antitumor agents. Methods Compounds 1a-j were initially screened in MOLT-4, HL-60 and U-937 human tumor cell lines and results were compared with established clinical drugs. Cytotoxicities of compounds 1d and 1i were further evaluated in a battery of human tumor cell lines and in normal human peripheral blood mononuclear cells. Cell cycle analysis of compound 1i treated MOLT-4 cells was studied by flow cytometry. Its apoptosis inducing effect was carried out in MOLT-4 and HL-60 cells by flow cytometry using annexin V-FITC/PI double staining method. The activities of caspase-3 and caspase-6 in MOLT-4 cells following incubation with compound 1i were measured at different time intervals. Morphology of the MOLT-4 cells after treatment with 1i was examined under light microscope and transmission electron microscope. 3H-Thymidine and 3H-uridine incorporation in S-180 cells in vitro following treatment with 8 μM concentration of compounds 1d and 1i were studied. Results 6-Nitro-2-(3-hydroxypropyl-1H-benz[de]isoquinoline-1,3-dione (compound 1i, has exhibited maximum activity as it induced significant cytotoxicity in 8 out of 13 cell lines employed. Interestingly it did not show any cytotoxicity against human PBMC (IC50 value 273 μM. Cell cycle analysis of compound 1i treated MOLT-4 cells demonstrated rise in sub-G1 fraction and concomitant accumulation of cells in S and G2/M phases, indicating up-regulation of apoptosis along with mitotic arrest and/or delay in exit of daughter cells from mitotic cycle respectively. Its apoptosis inducing effect was confirmed in flow cytometric study in MOLT-4 and the action was mediated by activation of both caspase 3 and 6. Light and

  15. Ionic and Wigner Glasses, Superionic Conductors, and Spinodal Electrostatic Gels: Dynamically Arrested Phases of the Primitive Model

    International Nuclear Information System (INIS)

    Based on the recently proposed self-consistent generalized Langevin equation theory of dynamic arrest, in this letter we show that the ergodic-nonergodic phase diagram of a classical mixture of charged hard spheres (the so-called 'primitive model' of ionic solutions and molten salts) includes arrested phases corresponding to nonconducting ionic glasses, partially arrested states that represent solid electrolytes (or 'superionic' conductors), low-density colloidal Wigner glasses, and low-density electrostatic gels associated with arrested spinodal decomposition.

  16. A mitotic recombination map proximal to the APC locus on chromosome 5q and assessment of influences on colorectal cancer risk

    Directory of Open Access Journals (Sweden)

    Clark Susan

    2009-06-01

    Full Text Available Abstract Background Mitotic recombination is important for inactivating tumour suppressor genes by copy-neutral loss of heterozygosity (LOH. Although meiotic recombination maps are plentiful, little is known about mitotic recombination. The APC gene (chr5q21 is mutated in most colorectal tumours and its usual mode of LOH is mitotic recombination. Methods We mapped mitotic recombination boundaries ("breakpoints" between the centromere (~50 Mb and APC (~112 Mb in early colorectal tumours. Results Breakpoints were non-random, with the highest frequency between 65 Mb and 75 Mb, close to a low copy number repeat region (68–71 Mb. There were, surprisingly, few breakpoints close to APC, contrary to expectations were there constraints on tumorigenesis caused by uncovering recessive lethal alleles or if mitotic recombination were mechanistically favoured by a longer residual chromosome arm. The locations of mitotic and meiotic recombination breakpoints were correlated, suggesting that the two types of recombination are influenced by similar processes, whether mutational or selective in origin. Breakpoints were also associated with higher local G+C content. The recombination and gain/deletion breakpoint maps on 5q were not, however, associated, perhaps owing to selective constraints on APC dosage in early colorectal tumours. Since polymorphisms within the region of frequent mitotic recombination on 5q might influence the frequency of LOH, we tested the 68–71 Mb low copy number repeat and nearby tagSNPs, but no associations with colorectal cancer risk were found. Conclusion LOH on 5q is non-random, but local factors do not greatly influence the rate of LOH at APC or explain inter differential susceptibility to colorectal tumours.

  17. Arrest Decisions as Precludes To? An Evaluation of Policy Related Research. Volume I: Administrative Summary and Training Script.

    Science.gov (United States)

    Neithercutt, M. G.; And Others

    The document is the first part of a study conducted to evaluate policy-related research on police arrest discretion as an alternative solution to arrest. It presents the administrative summary of the Arrest Decisions as Preludes To? (ADAPT) project and contains scripts intended for use by police departments as a staff training device. The…

  18. Growth arrest and differentiation-associated phosphoproteins in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Cancer is thought to result from the expression of defects in the control of both cell proliferation and differentiation. In murine mesenchymal stem cells they have established that differentiation and proliferation can be mediated at a variety of distinct states in the G1 phase of the cell cycle. In order to evaluate the role of cellular phosphoprotein (PP) expression in these regulatory processes, five different growth and differentiation-dependent states were compared. Cells in the following states were studied: (1) exponential growth; (2) arrest in serum-deficient medium; (3) arrest at the predifferentiation arrest state; (4) arrest at a state of nonterminal differentiation; and (5) arrest at a state of terminal differentiation. Whole cell lysates from each group were phosphorylated in vitro using [γ-32P]ATP and analyzed by SDS-polyacrylamide gel electrophoresis. Two most interesting observations were established. First, a distinct PP with a molecular weight of 37 kD was expressed in all growth arrested cells but was not evident in rapidly growing cells. Second, two distinct differentiation-associated PP with molecular weights of 72 kD and 29 kD were expressed exclusively in nonterminally and terminally differentiated cells. Since the identification of the 37 kD cell cycle-dependent growth arrest-associated PP could be of great significance, they plan to further investigate the functional role of this phosphoprotein in the control of cellular proliferation

  19. Use of forces from instrumented Charpy V-notch testing to determine crack-arrest toughness

    International Nuclear Information System (INIS)

    The objective of this investigation is an estimation of the crack-arrest toughness, particularly of irradiated materials, from voltage versus time output of an instrumented setup during a test on a Charpy V-notch (CVN) specimen. This voltage versus time trace (which can be converted to force versus displacement) displays events during fracture of the specimen. Various stages of the fracture process can be identified on the trace, including an arrest point indicating arrest of brittle fracture. The force at arrest, Fa, versus test temperature, T, relationship is examined to explore possible relationships to other experimental measures of crack-arrest toughness such as the drop-weight nil-ductility temperature (NDT), or crack-arrest toughness, Ka. For a wide range of weld and plate materials, the temperature at which Fa = 2.45 kN correlates with NDT with a standard deviation, sigma, of about 11 K. Excluding the so-called low upper-shelf energy (USE) welds from the analysis resulted in Fa = 4.12 kN and σ = 6.6 K. The estimates of the correlation of the temperature for Fa = 7.4 kN with the temperature at 100-MPa√m level for a mean American Society of Mechanical Engineers (ASME) type KIa curve through crack-arrest toughness values show that prediction of conservative values of Ka are possible

  20. Experimental study and local approach of cleavage crack arrest in a bainitic steel

    International Nuclear Information System (INIS)

    EDF wants to complete the assessment of reactor pressure vessels, usually based on crack initiation concept, by crack arrest concept. The work aims at improving the knowledge of cleavage crack arrest in a reactor pressure vessel steel. For that purpose, isothermal crack arrest experiments were performed for temperatures ranging from - 150 C up to - 50 C on compact tensile specimens and on pre-cracked rings submitted to compressive loading. Fractographic observations revealed that the whole crack propagation and arrest occurs by cleavage even if ductile tearing occurs before initiation of the unstable crack propagation. A local cleavage crack arrest criterion is applied in finite element computations carried out in elasto-visco-plasticity and in full dynamics: the crack propagates since the largest principal stress reaches a critical stress. The application of this criterion on the experiments leads to a good prediction of the crack speed and of the crack length and shows that the critical stress increases with the temperature in relation with dissipation features observed on the fracture surfaces. Dependence to the geometry is observed; it can be due to the assumption used for the 2D computations. The study of the structural dynamic shows that the crack arrest phenomenon is very linked to the global dynamics of the structure: crack arrest and crack closure occur approximately at the same time. (author)