WorldWideScience

Sample records for arsenite inhibits cytokine-induced

  1. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Cobo, J.M. [Universidad de Alcala de Henares, Madrid (Spain); Valdez, J.G.; Gurley, L.R. [Los Alamos National Lab., NM (United States)

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  2. Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death

    Science.gov (United States)

    Jo, Hyo Sang; Yeo, Hyeon Ji; Cha, Hyun Ju; Kim, Sang Jin; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Eum, Won Sik; Choi, Soo Young

    2016-01-01

    Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Both Tat-DJ-1 proteins were transduced into RINm5F cells. WT Tat-DJ-1 proteins significantly protected against cell death from cytokines by reducing intracellular toxicities. Also, WT Tat-DJ-1 proteins markedly regulated cytokines-induced pro- and anti-apoptosis proteins. However, M26I Tat-DJ-1 protein showed relatively low protective effects, as compared to WT Tat-DJ-1 protein. Our experiments demonstrated that WT Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death by suppressing intracellular toxicities and regulating apoptosisrelated protein expression. Thus, WT Tat-DJ-1 protein could potentially serve as a therapeutic agent for DM and cytokine related diseases. [BMB Reports 2016; 49(5): 297-302] PMID:26996344

  3. Viscum album exerts anti-inflammatory effect by selectively inhibiting cytokine-induced expression of cyclooxygenase-2.

    Directory of Open Access Journals (Sweden)

    Pushpa Hegde

    Full Text Available Viscum album (VA preparations are extensively used as complementary therapy in cancer and are shown to exert anti-tumor activities which involve the cytotoxic properties, induction of apoptosis, inhibition of angiogenesis and several other immunomodulatory mechanisms. In addition to their application in cancer therapy, VA preparations have also been successfully utilized in the treatment of several inflammatory pathologies. Owing to the intricate association of inflammation and cancer and in view of the fact that several anti-tumor phytotherapeutics also exert a potent anti-inflammatory effect, we hypothesized that VA exerts an anti-inflammatory effect that is responsible for its therapeutic benefit. Since, inflammatory cytokine-induced cyclo-oxygenase-2 (COX-2 and prostaglandin E2 (PGE2 play a critical role in the pathogenesis of inflammatory diseases, we investigated the anti-inflammatory effect of VA on regulation of cyclo-oxygenase expression and PGE2 biosynthesis by using human lung adenocarcinoma cells (A549 cells as a model. A549 cells were stimulated with IL-1β and treated with VA preparation (VA Qu Spez for 18 hours. PGE2 was analysed in the culture supernatants by enzyme immunoassay. Expression of COX-2 and COX-1 proteins was analyzed by immunoblotting and the expression of COX-2 mRNA was assessed by semi-quantitative RT-PCR. We found that VA Qu Spez inhibit the secretion of IL-1β-induced PGE2 in a dose-dependent manner. Further, we also show that this inhibitory action was associated with a reduced expression of COX-2 without modulating the COX-1 expression. Together these results demonstrate a novel anti-inflammatory mechanism of action of VA preparations wherein VA exerts an anti-inflammatory effect by inhibiting cytokine-induced PGE2 via selective inhibition of COX-2.

  4. Adaptation of a methanogenic consortium to arsenite inhibition.

    Science.gov (United States)

    Rodriguez-Freire, Lucia; Moore, Sarah E; Sierra-Alvarez, Reyes; Field, James A

    2015-12-01

    Arsenic (As) is a ubiquitous metalloid known for its adverse effects to human health. Microorganisms are also impacted by As toxicity, including methanogenic archaea, which can affect the performance of process in which biological activity is required (i.e. stabilization of activated sludge in wastewater treatment plants). The novel ability of a mixed methanogenic granular sludge consortium to adapt to the inhibitory effect of arsenic (As) was investigated by exposing the culture to approximately 0.92 mM of As(III) for 160 d in an arsenate (As(V)) reducing bioreactor using ethanol as the electron donor. The results of shaken batch bioassays indicated that the original, unexposed sludge was severely inhibited by arsenite (As(III)) as evidenced by the low 50% inhibition concentrations (IC50) determined, i.e., 19 and 90 μM for acetoclastic- and hydrogenotrophic methanogenesis, respectively. The tolerance of the acetoclastic and hydrogenotrophic methanogens in the sludge to As(III) increased 47-fold (IC50 = 910 μM) and 12-fold (IC50= 1100 μM), respectively, upon long-term exposure to As. In conclusion, the methanogenic community in the granular sludge demonstrated a considerable ability to adapt to the severe inhibitory effects of As after a prolonged exposure period.

  5. Sodium arsenite induces chromosome endoreduplication and inhibits protein phosphatase activity in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Rong-Nan Huang; I-Ching Ho; Ling-Hui Yih [Institute of Biomedical Sciences, Taiwan (China)] [and others

    1995-08-01

    Arsenic, strongly associated with increased risks of human cancers, is a potent clastogen in a variety of mammalian cell systems. The effect of sodium arsenite (a trivalent arsenic compound) on chromatid separation was studied in human skin fibroblasts (HFW). Human fibroblasts were arrested in S phase by the aid of serum starvation and aphidicolin blocking and then these cells were allowed to synchronously progress into G2 phase. Treatment of the G2-enriched HFW cells with sodium arsenite (0-200 {mu}M) resulted in arrest of cells in the G2 phase, interference with mitotic division, inhibition of spindle assembly, and induction of chromosome endoreduplication in their second mitosis. Sodium arsenite treatment also inhibited the activities of serine/threonine protein phosphatases and enhanced phosphorylation levels of a small heat shock protein (HSP27). These results suggest that sodium arsenite may mimic okadaic acid to induce chromosome endoreduplication through its inhibitory effect on protein phosphatase activity. 61 refs., 6 figs., 2 tabs.

  6. C1q/TNF-related protein-9 inhibits cytokine-induced vascular inflammation and leukocyte adhesiveness via AMP-activated protein kinase activation in endothelial cells.

    Science.gov (United States)

    Jung, Chang Hee; Lee, Min Jung; Kang, Yu Mi; Lee, Yoo La; Seol, So Mi; Yoon, Hae Kyeong; Kang, Sang-Wook; Lee, Woo Je; Park, Joong-Yeol

    2016-01-05

    Although recent studies have reported cardioprotective effects of C1q/TNF-related protein 9 (CTRP9), the closet adiponectin paralog, its role on cytokine-induced endothelial inflammation is unknown. We investigated whether CTRP9 prevented inflammatory cytokine-induced nuclear factor-kappa B (NF-κB) activation and inhibited the expression of adhesion molecules and a chemokine in the vascular endothelial cell. We used human aortic endothelial cells (HAECs) to examine the effects of CTRP9 on NF-κB activation and the expression of NF-κB-mediated genes, including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1). Tumor necrosis factor alpha (TNFα) was used as a representative proinflammatory cytokine. In an adhesion assay using THP-1 cells, CTRP9 reduced TNFα-induced adhesion of monocytes to HAECs. Treatment with CTRP9 significantly decreased TNFα-induced activation of NF-κB, as well as the expression of ICAM-1, VCAM-1, and MCP-1. In addition, treatment with CTRP9 significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), the downstream target of AMPK. The inhibitory effect of CTRP9 on the expression of ICAM-1, VCAM-1, and MCP-1 and monocyte adhesion to HAECs was abolished after transfection with an AMPKα1-specific siRNA. Our study is the first to demonstrate that CTRP9 attenuates cytokine-induced vascular inflammation in endothelial cells mediated by AMPK activation.

  7. Pertussis toxin, an inhibitor of G(αi PCR, inhibits bile acid- and cytokine-induced apoptosis in primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Golnar Karimian

    Full Text Available Excessive hepatocyte apoptosis is a common event in acute and chronic liver diseases leading to loss of functional liver tissue. Approaches to prevent apoptosis have therefore high potential for the treatment of liver disease. G-protein coupled receptors (GPCR play crucial roles in cell fate (proliferation, cell death and act through heterotrimeric G-proteins. G(αiPCRs have been shown to regulate lipoapoptosis in hepatocytes, but their role in inflammation- or bile acid-induced apoptosis is unknown. Here, we analyzed the effect of inhibiting G(αiPCR function, using pertussis toxin (PT, on bile acid- and cytokine-induced apoptosis in hepatocytes. Primary rat hepatocytes, HepG2-rNtcp cells (human hepatocellular carcinoma cells or H-4-II-E cells (rat hepatoma cells were exposed to glycochenodeoxycholic acid (GCDCA or tumor necrosis factor-α (TNFα/actinomycin D (ActD. PT (50-200 nmol/L was added 30 minutes prior to the apoptotic stimulus. Apoptosis (caspase-3 activity, acridine orange staining and necrosis (sytox green staining were assessed. PT significantly reduced GCDCA- and TNFα/ActD-induced apoptosis in rat hepatocytes (-60%, p<0.05 in a dose-dependent manner (with no shift to necrosis, but not in HepG2-rNtcp cells or rat H-4-II-E cells. The protective effect of pertussis toxin was independent of the activation of selected cell survival signal transduction pathways, including ERK, p38 MAPK, PI3K and PKC pathways, as specific protein kinase inhibitors did not reverse the protective effects of pertussis toxin in GCDCA-exposed hepatocytes.Pertussis toxin, an inhibitor of G(αiPCRs, protects hepatocytes, but not hepatocellular carcinoma cells, against bile acid- and cytokine-induced apoptosis and has therapeutic potential as primary hepatoprotective drug, as well as adjuvant in anti-cancer therapy.

  8. Nitric oxide contributes to cytokine-induced apoptosis in pancreatic beta cells via potentiation of JNK activity and inhibition of Akt

    DEFF Research Database (Denmark)

    Størling, J; Binzer, J; Andersson, Annica;

    2005-01-01

    Pro-inflammatory cytokines cause beta cell secretory dysfunction and apoptosis--a process implicated in the pathogenesis of type 1 diabetes. Cytokines induce the expression of inducible nitric oxide (NO) synthase (iNOS) leading to NO production. NO contributes to cytokine-induced apoptosis, but t...

  9. Lipoxin A4 inhibits the production of proinflammatory cytokines induced by β-amyloid in vitro and in vivo.

    Science.gov (United States)

    Wu, Jun; Wang, Aitao; Min, Zhe; Xiong, Yongjie; Yan, Qiuyue; Zhang, Jinping; Xu, Jie; Zhang, Suming

    2011-05-13

    Studies increasingly indicate that inflammation induced by β-amyloid (Aβ) contributes to the progression of Alzheimer's disease (AD). How to inhibit the enhanced production of proinflammatory cytokines stimulated by Aβ is an important research subject for the treatment of AD. In this study, we investigated the inhibitory effect and the molecular mechanism of the lipoxin A(4) (LXA(4)) on the production of interleukin-1β (IL-1β) and tumor necrosis factorα (TNFα) induced by β-amyloid in the cortex and hippocampus of mice, and in Aβ-stimulated BV2 cells, a mouse microglial cell line. LXA(4) down-regulated the protein expression of IL-1β and TNFα, attenuated the gene expressions of IL-1β and TNFα, inhibited the degradation of IκBα, inhibited translocation of NF-κB p65 subunit into the nucleus induced by β-amyloid in the cortex and hippocampus of mice, and in Aβ-stimulated BV2 cells, and the inhibitory effects were dose dependently elevated. Our findings suggest that LXA(4) inhibits the production of IL-1β and TNFα induced by β-amyloid in the cortex and hippocampus of mice, and in BV2 microglial cells via the NF-κB signal pathway.

  10. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  11. Cortex cinnamomi extract prevents streptozotocin- and cytokine-induced β-cell damage by inhibiting NF-κB

    Institute of Scientific and Technical Information of China (English)

    Kang-Beom Kwon; Eun-Kyung Kim; Eun-Sil Jeong; Young-Hoon Lee; Young-Rae Lee; Jin-Woo Park; Do-Gon Ryu; Byung-Hyun Park

    2006-01-01

    AIM: To clarify the mechanism underlying the antidiabetic activities of cortex cinnamomi extract (CCE).METHODS: To induce in vivo diabetes, mice were injected with streptozotocin (STZ) via a tail vein (100 mg STZ/kg body weight). To determine the effects of CCE,mice were administered CCE twice daily for 7 d by oral gavage starting 1 wk before the STZ injection. Blood glucose and plasma insulin concentration were measured as an index of diabetes. Also, to induce cytotoxicity of RINm5F cells, we treated with cytokines (IL-1β (2.0 ng/mL) and IFN-γ (100 U/mL)). Cell viability and nitric oxide production were measured colorimetrically.Inducible nitric oxide synthase (iNOS) mRNA and protein expression were determined by RT-PCR and Western blotting, respectively. The activation of NF-KB was assayed by using gel mobility shift assays of nuclear extracts.RESULTS: Treatment of mice with STZ resulted in hyperglycemia and hypoinsulinemia, which was further evidenced by immunohistochemical staining of islets. However, the diabetogenic effects of STZ were completely prevented when mice were pretreated with CCE. The inhibitory effect of CCE on STZ-induced hyperglycemia was mediated through the suppression of iNOS expression. In rat insulinoma RINm5F cells,CCE completely protected against interleukin-1β and interferon-y-mediated cytotoxicity. Moreover, RINm5F cells incubated with CCE showed significant reductions in interleukin-1β and interferon-y-induced nitric oxide production and in iNOS mRNA and protein expression,and these findings correlated well with in vivo observations.CONCLUSION: The molecular mechanism by which CCE inhibits iNOS gene expression appears to involve the inhibition of NF-κB activation. These results reveal the possible therapeutic value of CCE for the prevention of diabetes mellitus progression.

  12. Fasciola hepatica fatty acid binding protein inhibits TLR4 activation and suppresses the inflammatory cytokines induced by lipopolysaccharide in vitro and in vivo.

    Science.gov (United States)

    Martin, Ivelisse; Cabán-Hernández, Kimberly; Figueroa-Santiago, Olgary; Espino, Ana M

    2015-04-15

    TLR4, the innate immunity receptor for bacterial endotoxins, plays a pivotal role in the induction of inflammatory responses. There is a need to develop molecules that block either activation through TLR4 or the downstream signaling pathways to inhibit the storm of inflammation typically elicited by bacterial LPS, which is a major cause of the high mortality associated with bacterial sepsis. We report in this article that a single i.p. injection of 15 μg fatty acid binding protein from Fasciola hepatica (Fh12) 1 h before exposure to LPS suppressed significantly the expression of serum inflammatory cytokines in a model of septic shock using C57BL/6 mice. Because macrophages are a good source of IL-12p70 and TNF-α, and are critical in driving adaptive immunity, we investigated the effect of Fh12 on the function of mouse bone marrow-derived macrophages (bmMΦs). Although Fh12 alone did not induce cytokine expression, it significantly suppressed the expression of IL-12, TNF-α, IL-6, and IL-1β cytokines, as well as inducible NO synthase-2 in bmMΦs, and also impaired the phagocytic capacity of bmMΦs. Fh12 had a limited effect on the expression of inflammatory cytokines induced in response to other TLR ligands. One mechanism used by Fh12 to exert its anti-inflammatory effect is binding to the CD14 coreceptor. Moreover, it suppresses phosphorylation of ERK, p38, and JNK. The potent anti-inflammatory properties of Fh12 demonstrated in this study open doors to further studies directed at exploring the potential of this molecule as a new class of drug against septic shock or other inflammatory diseases.

  13. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  14. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells

    Science.gov (United States)

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-08-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells.

  15. Acanthopanax koreanum roots inhibit the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 in RAW 264.7 macrophages

    OpenAIRE

    2016-01-01

    Acanthopanax koreanum is a popular plant found on Jeju Island, Korea and is commonly used to prevent the side effects of consumption of alcoholic beverages. However, this plant has not been properly utilized as a medicinal material. In this study, we investigated the anti-inflammatory effects of the 70% ethanol extract of A. koreanum roots (AKR-E). The results indicated that the AKR-E (200 μg/mL) inhibited the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and prostaglandin ...

  16. Acanthopanax koreanum roots inhibit the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 in RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Eun-Jin Yang

    2016-03-01

    Full Text Available Acanthopanax koreanum is a popular plant found on Jeju Island, Korea and is commonly used to prevent the side effects of consumption of alcoholic beverages. However, this plant has not been properly utilized as a medicinal material. In this study, we investigated the anti-inflammatory effects of the 70% ethanol extract of A. koreanum roots (AKR-E. The results indicated that the AKR-E (200 μg/mL inhibited the lipopolysaccharide (LPS-induced production of nitric oxide (NO and prostaglandin E2 (PGE2 in RAW 264.7 macrophages by 41.2% and 78.9%, respectively. These effects were accompanied by concentration-dependent decreases in the expression levels of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2 proteins. Additionally, the AKR-E inhibited the expression of pro-inflammatory cytokines, including interleukin (IL-6 (22.7% and IL-1β (74%. These data showed that the AKR-E had protective effects against the induction of LPS-induced inflammation in RAW 264.7 macrophages.

  17. X-ray crystal structure of arsenite-inhibited xanthine oxidase: μ-sulfido,μ-oxo double bridge between molybdenum and arsenic in the active site.

    Science.gov (United States)

    Cao, Hongnan; Hall, James; Hille, Russ

    2011-08-17

    Xanthine oxidoreductase is a molybdenum-containing enzyme that catalyzes the hydroxylation reaction of sp(2)-hybridized carbon centers of a variety of substrates, including purines, aldehydes, and other heterocyclic compounds. The complex of arsenite-inhibited xanthine oxidase has been characterized previously by UV-vis, electron paramagnetic resonance, and X-ray absorption spectroscopy (XAS), and the catalytically essential sulfido ligand of the square-pyrimidal molybdenum center has been suggested to be involved in arsenite binding through either a μ-sulfido,μ-oxo double bridge or a single μ-sulfido bridge. However, this is contrary to the crystallographically observed single μ-oxo bridge between molybdenum and arsenic in the desulfo form of aldehyde oxidoreductase from Desulfovibrio gigas (an enzyme closely related to xanthine oxidase), whose molybdenum center has an oxo ligand replacing the catalytically essential sulfur, as seen in the functional form of xanthine oxidase. Here we use X-ray crystallography to characterize the molybdenum center of arsenite-inhibited xanthine oxidase and solve the structures of the oxidized and reduced inhibition complexes at 1.82 and 2.11 Å resolution, respectively. We observe μ-sulfido,μ-oxo double bridges between molybdenum and arsenic in the active sites of both complexes. Arsenic is four-coordinate with a distorted trigonal-pyramidal geometry in the oxidized complex and three-coordinate with a distorted trigonal-planar geometry in the reduced complex. The doubly bridged binding mode is in agreement with previous XAS data indicating that the catalytically essential sulfur is also essential for the high affinity of reduced xanthine oxidoreductase for arsenite.

  18. The inhibition of tissue respiration and alcoholic fermentation at different catabolic levels by ethyl carbamate (urethan) and arsenite

    NARCIS (Netherlands)

    Florijn, E.; Gruber, M.; Leijnse, B.; Huisman, T.H.J.

    1950-01-01

    1. A hypothesis is given concerning the action of urethan and arsenite on malignant growth. Two assumptionsares made:- (a) the enzyme system responsible for energy production in malignant tumours is working at maximal rate, contrary to the corresponding enzyme system in normal tissues. (b) a give

  19. Pregnane X Receptor Activation Attenuates Inflammation-Associated Intestinal Epithelial Barrier Dysfunction by Inhibiting Cytokine-Induced Myosin Light-Chain Kinase Expression and c-Jun N-Terminal Kinase 1/2 Activation.

    Science.gov (United States)

    Garg, Aditya; Zhao, Angela; Erickson, Sarah L; Mukherjee, Subhajit; Lau, Aik Jiang; Alston, Laurie; Chang, Thomas K H; Mani, Sridhar; Hirota, Simon A

    2016-10-01

    The inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex etiology. IBD is thought to arise in genetically susceptible individuals in the context of aberrant interactions with the intestinal microbiota and other environmental risk factors. Recently, the pregnane X receptor (PXR) was identified as a sensor for microbial metabolites, whose activation can regulate the intestinal epithelial barrier. Mutations in NR1I2, the gene that encodes the PXR, have been linked to IBD, and in animal models, PXR deletion leads to barrier dysfunction. In the current study, we sought to assess the mechanism(s) through which the PXR regulates barrier function during inflammation. In Caco-2 intestinal epithelial cell monolayers, tumor necrosis factor-α/interferon-γ exposure disrupted the barrier and triggered zonula occludens-1 relocalization, increased expression of myosin light-chain kinase (MLCK), and activation of c-Jun N-terminal kinase 1/2 (JNK1/2). Activation of the PXR [rifaximin and [[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-phosphonic acid tetraethyl ester (SR12813); 10 μM] protected the barrier, an effect that was associated with attenuated MLCK expression and JNK1/2 activation. In vivo, activation of the PXR [pregnenolone 16α-carbonitrile (PCN)] attenuated barrier disruption induced by toll-like receptor 4 activation in wild-type, but not Pxr-/-, mice. Furthermore, PCN treatment protected the barrier in the dextran-sulfate sodium model of experimental colitis, an effect that was associated with reduced expression of mucosal MLCK and phosphorylated JNK1/2. Together, our data suggest that the PXR regulates the intestinal epithelial barrier during inflammation by modulating cytokine-induced MLCK expression and JNK1/2 activation. Thus, targeting the PXR may prove beneficial for the treatment of inflammation-associated barrier disruption in the context of IBD.

  20. Arsenite transport in plants.

    Science.gov (United States)

    Ali, Waqar; Isayenkov, Stanislav V; Zhao, Fang-Jie; Maathuis, Frans J M

    2009-07-01

    Arsenic is a metalloid which is toxic to living organisms. Natural occurrence of arsenic and human activities have led to widespread contamination in many areas of the world, exposing a large section of the human population to potential arsenic poisoning. Arsenic intake can occur through consumption of contaminated crops and it is therefore important to understand the mechanisms of transport, metabolism and tolerance that plants display in response to arsenic. Plants are mainly exposed to the inorganic forms of arsenic, arsenate and arsenite. Recently, significant progress has been made in the identification and characterisation of proteins responsible for movement of arsenite into and within plants. Aquaporins of the NIP (nodulin26-like intrinsic protein) subfamily were shown to transport arsenite in planta and in heterologous systems. In this review, we will evaluate the implications of these new findings and assess how this may help in developing safer and more tolerant crops.

  1. Arsenite suppression of BMP signaling in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Marjorie A.; Qin, Qin [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States); Hu, Qin; Zhao, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Rice, Robert H., E-mail: rhrice@ucdavis.edu [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States)

    2013-06-15

    Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte

  2. Spontaneous and cytokine induced basophil adhesion evaluated by microtiter assay

    DEFF Research Database (Denmark)

    Quan, Sha; Poulsen, Lars K; Reimert, Claus Michael;

    2002-01-01

    We have developed a microtiter assay for evaluating basophil spontaneous adhesion to extracellular matrix (ECM) proteins exemplified by fibronectin and cytokine induced basophil adhesion to bovine serum albumin (BSA). The percentage of basophils adhering to either ECM or BSA was quantified...

  3. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  4. Diclofenac enhances proinflammatory cytokine-induced phagocytosis of cultured microglia via nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Kakita, Hiroki [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Aoyama, Mineyoshi, E-mail: ao.mine@med.nagoya-cu.ac.jp [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Nagaya, Yoshiaki; Asai, Hayato [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Hussein, Mohamed Hamed [Neonatal Intensive Care Unit, Pediatric Hospital, Cairo University, Cairo 11559 (Egypt); Maternal and Child Health Department, VACSERA, 51 Wizaret El-Zeraa-Agouza, Giza 22311 (Egypt); Suzuki, Mieko [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Kato, Shin [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Saitoh, Shinji [Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan); Asai, Kiyofumi [Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601 (Japan)

    2013-04-15

    Influenza-associated encephalopathy (IAE) is a central nervous system complication with a high mortality rate, which is increased significantly by the non-steroidal anti-inflammatory drug diclofenac sodium (DCF). In the present study, we investigated the effects of DCF on brain immune cells (i.e. microglia) stimulated with three proinflammatory cytokines, namely tumor necrosis factor-α, interleukin-1β, and interferon-γ. Similar to previous findings in astrocytes, all three cytokines induced the expression of inducible NO synthase (iNOS), as well as NO production, in microglia. The addition of DCF to the culture system augmented iNOS expression and NO production. Immunocytochemical analysis and the phagocytosis assay revealed that cytokine treatment induced morphological changes to and phagocytosis by the microglia. The addition of DCF to the culture system enhanced microglial activation, as well as the phagocytic activity of cytokine-stimulated microglia. Inhibitors of nuclear factor (NF)-κB inhibited iNOS gene expression in cytokine-stimulated microglia with or without DCF, suggesting that the NF-κB pathway is one of the main signaling pathways involved. The iNOS inhibitor N{sup G}-monomethyl-L-arginine (L-NMMA) reduced both cytokine-induced phagocytosis and phagocytosis induced by the combination of cytokines plus DCF. Furthermore, the NO donor sodium nitroprusside induced phagocytosis, indicating that NO production is a key regulator of microglial phagocytosis. In conclusion, DCF acts synergistically with proinflammatory cytokines to increase the production of NO in microglia, leading to phagocytic activity of the activated microglia. These findings, together with previous observations regarding astrocytes, may explain the significant increase in mortality of IAE patients treated with DCF. - Highlights: ► Influenza-associated encephalopathy (IAE) is associated with a high mortality rate. ► Hyperimmunization in the brain is believed to be responsible for

  5. The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Li, Yuan [Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); Li, Huiqiao [Qujing Center for Disease Control and Prevention, Qujing 655000, Yunnan (China); Pang, Ying; Zhao, Yue; Jiang, Rongrong; Shen, Lu [Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); Zhou, Jianwei; Wang, Xinru [The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu (China)

    2013-01-15

    The biphasic effects of arsenite, in which low levels of arsenite induce cell proliferation and high levels of arsenite induce DNA damage and apoptosis, apparently contribute to arsenite-induced carcinogenesis. However, the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the effects of different levels of arsenite on cell proliferation, DNA damage and apoptosis as well as on signal transduction pathways in human bronchial epithelial (HBE) cells. Our results show that a low level of arsenite activates extracellular signal-regulated kinases (ERK), which probably mediate arsenite-inhibited degradation of ubiquitinated hypoxia-inducible factor-2α (HIF-2α) in HBE cells. ERK inhibition blocks cell proliferation induced by a low level of arsenite, in part via HIF-2α. In contrast, a high level of arsenite activates c-Jun N-terminal kinases (JNK), which provoke a response to suppress ubiquitinated HIF-1α degradation. Down-regulation of HIF-1α by inhibiting JNK, however, increases the DNA damage but decreases the apoptosis induced by a high level of arsenite. Thus, data in the present study suggest that the accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in different levels of arsenite-induced biphasic effects, with low levels of arsenite inducing cell proliferation and high levels of arsenite inducing DNA damage and apoptosis in HBE cells. -- Highlights: ► Biphasic effects induced by different concentrations of arsenite. ► Different regulation of ERK or JNK signal pathway by arsenite. ► Different regulation of HIF1α or HIF 2α by arsenite.

  6. Effects of icariin on cytokine-induced ankylosing spondylitis with fibroblastic osteogenesis and its molecular mechanism.

    Science.gov (United States)

    Jia, Chunrong; Liu, Hongxiao; Li, Min; Wu, Zhikui; Feng, Xinghua

    2014-01-01

    The aim of this study is to explore the effects of icariin on cytokine induced ankylosing spondylitis fibroblast osteogenesis type expression and its molecular mechanism. The normal fibroblasts were collected as normal control group, and the fibroblasts of hip joint capsule of AS patients were collected, which were respectively added in fetal bovine serum (group AS), fetal bovine serum and cytokines (BMP-2+TGF-beta 1) (group AS), and cell factor solution (icariin group), and observed of the osteogenic expression of fibroblast, to evaluate the impact of Icariin on it. The ALP activity, the content of collagen, osteocalcin content and cbfa1mRNA and OCmRNA of fibroblast of AS group increased compared to the normal control group and AS control group (P < 0.01), indicating that icariin can significantly inhibit the above changes (P < 0.01). Icariin can inhibit fibroblast further osteogenic differentiation through inhibiting the effect of cytokines on the fibroblast osteogenesis type markers and osteogenic gene expression and osteogenic differentiation.

  7. Angiopoietin-2 is critical for cytokine-induced vascular leakage.

    Directory of Open Access Journals (Sweden)

    Andrew V Benest

    Full Text Available Genetic experiments (loss-of-function and gain-of-function have established the role of Angiopoietin/Tie ligand/receptor tyrosine kinase system as a regulator of vessel maturation and quiescence. Angiopoietin-2 (Ang-2 acts on Tie2-expressing resting endothelial cells as an antagonistic ligand to negatively interfere with the vessel stabilizing effects of constitutive Ang-1/Tie-2 signaling. Ang-2 thereby controls the vascular response to inflammation-inducing as well as angiogenesis-inducing cytokines. This study was aimed at assessing the role of Ang-2 as an autocrine (i.e. endothelial-derived regulator of rapid vascular responses (within minutes caused by permeability-inducing agents. Employing two independent in vivo assays to quantitatively assess vascular leakage (tracheal microsphere assay, 1-5 min and Miles assay, 20 min, the immediate vascular response to histamine, bradykinin and VEGF was analyzed in Ang-2-deficient (Ang-2(-/- mice. In comparison to the wild type control mice, the Ang2(-/- mice demonstrated a significantly attenuated response. The Ang-2(-/- phenotype was rescued by systemic administration (paracrine of an adenovirus encoding Ang-2. Furthermore, cytokine-induced intracellular calcium influx was impaired in Ang-2(-/- endothelioma cells, consistent with reduced phospholipase activation in vivo. Additionally, recombinant human Ang-2 (rhAng-2 alone was unable to induce vascular leakage. In summary, we report here in a definite genetic setting that Ang-2 is critical for multiple vascular permeability-inducing cytokines.

  8. Synergistic effect of radon and sodium arsenite on DNA damage in HBE cells.

    Science.gov (United States)

    Liu, Xing; Sun, Bin; Wang, Xiaojuan; Nie, Jihua; Chen, Zhihai; An, Yan; Tong, Jian

    2016-01-01

    Human epidemiological studies showed that radon and arsenic exposures are major risk factors for lung cancer in Yunnan tin miners. However, biological evidence for this phenomenon is absent. In this study, HBE cells were exposed to different concentrations of sodium arsenite, different radon exposure times, or a combination of these two factors. The results showed a synergistic effect of radon and sodium arsenite in cell cytotoxicity as determined by cell viability. Elevated intracellular ROS levels and increased DNA damage indexed by comet assay and γ-H2AX were detected. Moreover, DNA HR repair in terms of Rad51 declined when the cells were exposed to both radon and sodium arsenite. The synergistic effect of radon and sodium arsenite in HBE cells may be attributed to the enhanced DSBs and inhibited HR pathway upon co-exposure.

  9. Clinical Studies Applying Cytokine-Induced Killer Cells for the Treatment of Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Clara E. Jäkel

    2012-01-01

    Full Text Available Metastatic renal cell carcinoma (RCC seems to be resistant to conventional chemo- and radiotherapy and the general treatment regimen of cytokine therapy produces only modest responses while inducing severe side effects. Nowadays standard of care is the treatment with VEGF-inhibiting agents or mTOR inhibition; nevertheless, immunotherapy can induce complete remissions and long-term survival in selected patients. Among different adoptive lymphocyte therapies, cytokine-induced killer (CIK cells have a particularly advantageous profile as these cells are easily available, have a high proliferative rate, and exhibit a high antitumor activity. Here, we reviewed clinical studies applying CIK cells, either alone or with standard therapies, for the treatment of RCC. The adverse events in all studies were mild, transient, and easily controllable. In vitro studies revealed an increased antitumor activity of peripheral lymphocytes of participants after CIK cell treatment and CIK cell therapy was able to induce complete clinical responses in RCC patients. The combination of CIK cell therapy and standard therapy was superior to standard therapy alone. These studies suggest that CIK cell immunotherapy is a safe and competent treatment strategy for RCC patients and further studies should investigate different treatment combinations and schedules for optimal application of CIK cells.

  10. Cytokine-induced killer cells eradicate bone and soft-tissue sarcomas.

    Science.gov (United States)

    Sangiolo, Dario; Mesiano, Giulia; Gammaitoni, Loretta; Leuci, Valeria; Todorovic, Maja; Giraudo, Lidia; Cammarata, Cristina; Dell'Aglio, Carmine; D'Ambrosio, Lorenzo; Pisacane, Alberto; Sarotto, Ivana; Miano, Sara; Ferrero, Ivana; Carnevale-Schianca, Fabrizio; Pignochino, Ymera; Sassi, Francesco; Bertotti, Andrea; Piacibello, Wanda; Fagioli, Franca; Aglietta, Massimo; Grignani, Giovanni

    2014-01-01

    Unresectable metastatic bone sarcoma and soft-tissue sarcomas (STS) are incurable due to the inability to eradicate chemoresistant cancer stem-like cells (sCSC) that are likely responsible for relapses and drug resistance. In this study, we investigated the preclinical activity of patient-derived cytokine-induced killer (CIK) cells against autologous bone sarcoma and STS, including against putative sCSCs. Tumor killing was evaluated both in vitro and within an immunodeficient mouse model of autologous sarcoma. To identify putative sCSCs, autologous bone sarcoma and STS cells were engineered with a CSC detector vector encoding eGFP under the control of the human promoter for OCT4, a stem cell gene activated in putative sCSCs. Using CIK cells expanded from 21 patients, we found that CIK cells efficiently killed allogeneic and autologous sarcoma cells in vitro. Intravenous infusion of CIK cells delayed autologous tumor growth in immunodeficient mice. Further in vivo analyses established that CIK cells could infiltrate tumors and that tumor growth inhibition occurred without an enrichment of sCSCs relative to control-treated animals. These results provide preclinical proof-of-concept for an effective strategy to attack autologous sarcomas, including putative sCSCs, supporting the clinical development of CIK cells as a novel class of immunotherapy for use in settings of untreatable metastatic disease.

  11. Sodium arsenite down-regulates the expression of X-linked inhibitor of apoptosis protein via translational and post-translational mechanisms in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Hao, Yuqing; Wang, Lijing; Jia, Dongwei [Gene Research Center, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Ruan, Yuanyuan, E-mail: yuanyuanruan@fudan.edu.cn [Gene Research Center, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Gene Research Center, Shanghai Medical College, Fudan University, Shanghai 200032 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Sodium arsenite down-regulates the protein expression level of XIAP in HCC. Black-Right-Pointing-Pointer Sodium arsenite inhibits the de novo XIAP synthesis and its IRES activity. Black-Right-Pointing-Pointer Sodium arsenite decreases XIAP stability and promotes its proteasomal degradation. Black-Right-Pointing-Pointer Overexpression of XIAP attenuates the pro-apoptotic effect of sodium arsenite. -- Abstract: X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitors of apoptosis protein (IAP) family, and has been reported to exhibit elevated expression levels in hepatocellular carcinoma (HCC) and promote cell survival, metastasis and tumor recurrence. Targeting XIAP has proven effective for the inhibition of cancer cell proliferation and restoration of cancer cell chemosensitivity. Arsenic (or sodium arsenite) is a potent anti-tumor agent used to treat patients with acute promyelocytic leukemia (APL). Additionally, arsenic induces cell growth inhibition, cell cycle arrest and apoptosis in human HCC cells. In this study, we identified XIAP as a target for sodium arsenite-induced cytotoxicity in HCC. The exposure of HCC cell lines to sodium arsenite resulted in inhibition of XIAP expression in both a dose- and time-dependent manner. Sodium arsenite blocked the de novo XIAP synthesis and the activity of its internal ribosome entry site (IRES) element. Moreover, treatment with sodium arsenite decreased the protein stability of XIAP and induced its ubiquitin-proteasomal degradation. Overexpression of XIAP attenuated the pro-apoptotic effect of sodium arsenite in HCC. Taken together, our data demonstrate that sodium arsenite suppresses XIAP expression via translational and post-translational mechanisms in HCC.

  12. From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans.

    Science.gov (United States)

    Luz, Anthony L; Godebo, Tewodros R; Bhatt, Dhaval P; Ilkayeva, Olga R; Maurer, Laura L; Hirschey, Matthew D; Meyer, Joel N

    2016-08-01

    Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.

  13. Sorption of Arsenite onto Mackinawite Coated Sand

    Science.gov (United States)

    Gallegos, T. J.; Hayes, K. F.; Abriola, L. M.

    2004-05-01

    Arsenic contamination of groundwater is a widespread problem affecting aquifers in the United States as well as abroad. Recent strengthening of the US EPA MCL for arsenic has prompted the need for technology capable of removing both arsenite and arsenate from solution. Arsenite, the more toxic form of arsenic, is more difficult to remove from anoxic zones in the subsurface. Studies by others have demonstrated the affinity of some types of iron sulfides for arsenite, such as troilite, pyrite, amorphous iron sulfide and mackinawite. However, these studies have not provided a comprehensive investigation of the macroscopic behavior of arsenite in the presence of crystalline mackinawite in a form that can be readily applied to real-world treatment technologies. This study examines the behavior of arsenite in the presence of mackinawite coated sand. PH edge results demonstrate that arsenite sorption onto mackinawite coated sand increases with increasing pH, reaching maximum removal at pH 10. Arsenite removal, albeit slight, occurring below pH 5 is independent of pH indicative of a different removal mechanism. Isotherm studies show that at low concentrations, removal is Langmuirian in nature. Arsenite sorption abruptly converts to linear behavior at high concentrations, possibly attributed to the saturation of the monolayer. Ionic strength effects were assessed by comparing pH edge data developed for three different concentrations of NaCl background electrolyte solution. Increases in ionic strength enhance the removal of arsenite from solution, suggesting possible inner-sphere surface complexation removal mechanisms. Information gathered in this study can be used to further develop surface complexation models to describe and predict reactivity of arsenite in the presence of mackinawite coated sands in anoxic regions. Mackinawite coated sands investigated here may provide a feasible reactive medium for implementation in above-ground sorption reactors or subsurface

  14. Transduction of PEP-1-heme oxygenase-1 into insulin-producing INS-1 cells protects them against cytokine-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Jin; Kang, Hyung Kyung [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Song, Dong Keun [Department of Pharmacology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Eum, Won Sik; Park, Jinseu [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Kwon, Hyeok Yil, E-mail: hykwon@hallym.ac.kr [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2015-06-05

    Pro-inflammatory cytokines play a crucial role in the destruction of pancreatic β-cells, thereby triggering the development of autoimmune diabetes mellitus. We recently developed a cell-permeable fusion protein, PEP-1-heme oxygenase-1 (PEP-1-HO-1) and investigated the anti-inflammatory effects in macrophage cells. In this study, we transduced PEP-1-HO-1 into INS-1 insulinoma cells and examined its protective effect against cytokine-induced cell death. PEP-1-HO-1 was successfully delivered into INS-1 cells in time- and dose-dependent manner and was maintained within the cells for at least 48 h. Pre-treatment with PEP-1-HO-1 increased the survival of INS-1 cells exposed to cytokine mixture (IL-1β, IFN-γ, and TNF-α) in a dose-dependent manner. PEP-1-HO-1 markedly decreased cytokine-induced production of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). These protective effects of PEP-1-HO-1 against cytokines were correlated with the changes in the levels of signaling mediators of inflammation (iNOS and COX-2) and cell apoptosis/survival (Bcl-2, Bax, caspase-3, PARP, JNK, and Akt). These results showed that the transduced PEP-1-HO-1 efficiently prevented cytokine-induced cell death of INS-1 cells by alleviating oxidative/nitrosative stresses and inflammation. Further, these results suggested that PEP-1-mediated HO-1 transduction may be a potential therapeutic strategy to prevent β-cell destruction in patients with autoimmune diabetes mellitus. - Highlights: • We showed that PEP-1-HO-1 was efficiently delivered into INS-1 cells. • Transduced PEP-1-HO-1 exerted a protective effect against cytokine-induced cell death. • Transduced PEP-1-HO-1 inhibited cytokine-induced ROS and NO accumulation. • PEP-1-HO-1 suppressed cytokine-induced expression of iNOS, COX-2, and Bax. • PEP-1-HO-1 transduction may be an efficient tool to prevent β-cell destruction.

  15. A Comparative Study on Rat Intestinal Epithelial Cells and Resident Gut Bacteria (ii) Effect of Arsenite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to use facultative gut bacteria as an alternate to animals for the initial gastrointestinal toxicity screening of heavy metals, a comparative study on rat intestinal epithelial cells and resident gut bacteria was undertaken.Methods in vitro growth rate of four gut bacteria, dehydrogenase (DHA) and esterase (EA) activity test, intestinal epithelial and bacterial cell membrane enzymes and in situ effect of arsenite were analysed. Results Growth profile of mixed resident population of gut bacteria and pure isolates of Escherichia coli, Pseudomonas sp., Lactobacillus sp., and Staphylococcus sp.revealed an arsenite (2-20 ppm) concentration-dependent inhibition. The viability pattern of epithelial cells also showed similar changes. DHA and EA tests revealed significant inhibition (40%-72%) with arsenite exposure of 5 and 10 ppm in isolated gut bacteria and epithelial cells. Decrease in membrane alkaline phosphatase and Ca2+-Mg2+-ATPase activities was in the range of 33%-55% in four bacteria at the arsenite exposure of 10 ppm, whereas it was 60%-65% in intestinal epithelial villus cells. in situ incubation of arsenite using intestinal loops also showed more or less similar changes in membrane enzymes of resident gut bacterial population and epithelial cells. Conclusion The results indicate that facultative gut bacteria can be used as suitable in vitro model for the preliminary screening of arsenical gastrointestinal cytotoxic effects.

  16. Protective effects of St. John's wort extract and its component hyperforin against cytokine-induced cytotoxicity in a pancreatic beta-cell line.

    Science.gov (United States)

    Menegazzi, Marta; Novelli, Michela; Beffy, Pascale; D'Aleo, Valentina; Tedeschi, Elisa; Lupi, Roberto; Zoratti, Elisa; Marchetti, Piero; Suzuki, Hisanori; Masiello, Pellegrino

    2008-01-01

    In both type 1 and type 2 diabetes, increased production of cytokines on autoimmune or metabolic basis is supposed to trigger an inflammatory process leading to dysfunction and death of pancreatic beta-cells. Therefore, anti-inflammatory pharmacological approaches aimed at blocking cytokine signalling pathways and consequent cytotoxicity in beta-cells are highly advisable. Based on previous evidence of cytokine antagonistic effects in other cell types, we explored the protective action of Hypericum perforatum (St-John's-wort) extract and its component hyperforin against cytokine-induced functional impairment and apoptosis in the INS-1E beta-cell line, searching for the underlying mechanisms. The results showed that either St-John's-wort extract or hyperforin (at 1-3 microM) prevented cytokine-induced impairment in glucose-stimulated insulin secretion and protected cells against apoptosis in a dose-dependent fashion. Inducible-NO-synthase expression was also potently hindered by the vegetal compounds. Interestingly, cytokine-induced activations of the signal-transducer-and-activator-of-transcription-1 (STAT-1) and the nuclear-factor-kappaB (NF-kappaB) were both down-regulated by SJW extract or HPF (range 0.5-5 microM) when evaluated by electrophoretic-mobility-shift-assay. Other transcription factors (CBF-1, SP-1) were unaffected. Components of SJW extract other than HPF were much less effective in down-regulating cytokine signalling. Significantly, inhibition of cytokine-elicited STAT-1 and NF-kappaB activation was confirmed in isolated rat and human islets incubated in the presence of these vegetal compounds. In conclusion, St-John's-wort extract and hyperforin are non-peptidyl compounds which, at low concentrations, target key mechanisms of cytokine-induced beta-cell injury, thereby improving beta-cell function and survival. Thus, they are potentially valuable for the prevention or limitation of beta-cell loss in diabetes.

  17. Retention of cytokine-inducing substances inside high-flux dialyzers.

    Science.gov (United States)

    Lufft, V; Mahiout, A; Shaldon, S; Koch, K M; Schindler, R

    1996-01-01

    Reprocessing of dialyzers is often performed with nonsterile solutions possibly contaminated with bacterial-derived cytokine-inducing substances. We investigated the retention of cytokine-inducing substances inside the dialyzer during reprocessing in a closed loop in vitro hemodialysis system using a polyamide high flux membrane. After the first in vitro circulation of human whole blood, rinse of the blood compartment (BC) and reverse ultrafiltration (RUF) was performed with either cytokine-inducing substance-free saline or saline contaminated with filtrates from Pseudomonas cultures (6 ng/ml LAL-reactive material); subsequently, dialyzers were stored in 2% formaldehyde. Dialyzers were rinsed with approximately 15 liters pyrogen-free saline before the second circulation using blood from the same donor; the effluates were free of cytokine-inducing substances and formaldehyde. Before and after the blood circulations, peripheral blood mononuclear cells (PBMC) were separated and total production of IL-1 alpha and IL-1 beta was determined after overnight incubation. In noncirculated PBMC as well as in PBMC separated after whole blood circulation with pyrogen-free processed dialyzers, production of IL-1 beta was not detectable. After contaminated rinse of the BC, production of IL-1 beta could be observed (1,600 +/- 1,100 pg/ml, mean +/- SEM). When pyrogen-free RUF was performed after contaminated BC rinse, IL-1 beta production averaged 163 +/- 92 pg/ml when using reused dialyzers, but 1,820 +/- 880 pg/ml when using new dialyzers. After reuse with pyrogen-free BC-rinse and contaminated RUF no IL-1 beta synthesis was observed; however, when pyrogen-free BC-rinse and contaminated RUF was applied to new dialyzers, IL-1 beta synthesis averaged 1,620 +/- 1,200 pg/ml. We conclude that cytokine-inducing substances are retained inside the dialyzer, probably by adsorption to the membrane as well as to the protein layer covering the membrane and are still biologically active after

  18. Cytokine-induced killer cells/dendritic cells and cytokine-induced killer cells immunotherapy for the treatment of esophageal cancer in China: a meta-analysis

    Science.gov (United States)

    Liu, Yan; Mu, Ying; Zhang, Anqi; Ren, Shaoda; Wang, Weihua; Xie, Jiaping; Zhang, Yingxin; Zhou, Changhui

    2017-01-01

    Background Immunotherapy based on cytokine-induced killer cells or combination of dendritic cells and cytokine-induced killer cells (CIK/DC-CIK) showed promising clinical outcomes for treating esophageal cancer (EC). However, the clinical benefit varies among previous studies. Therefore, it is necessary to systematically evaluate the curative efficacy and safety of CIK/DC-CIK immunotherapy as an adjuvant therapy for conventional therapeutic strategies in the treatment of EC. Materials and methods Clinical trials published before October 2016 and reporting CIK/DC-CIK immunotherapy treatment responses or safety for EC were searched in Cochrane Library, EMBASE, PubMed, Wanfang and China National Knowledge Internet databases. Research quality and heterogeneity were evaluated before analysis, and pooled analyses were performed using random- or fixed-effect models. Results This research covered 11 trials including 994 EC patients. Results of this meta-analysis indicated that compared with conventional therapy, the combination of conventional therapy with CIK/DC-CIK immunotherapy significantly prolonged the 1-year overall survival (OS) rate, overall response rate (ORR) and disease control rate (DCR) (1-year OS: P=0.0005; ORR and DCR: Pimmunotherapy, lymphocyte percentages of CD3+ and CD3−CD56+ subsets (P0.05). Conclusion The combination of CIK/DC-CIK immunotherapy and conventional therapy is safe and markedly prolongs survival time, enhances immune function and improves the treatment efficacy for EC.

  19. Arsenite toxicity and uptake rate of rice (Oryza sativa L.) in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Holger, E-mail: hoffmann@bgt.uni-hannover.de [Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhaeuser Strasse 2, D-30419 Hannover (Germany); Schenk, Manfred K., E-mail: schenk@pflern.uni-hannover.de [Institute of Plant Nutrition, Leibniz University of Hannover, Herrenhaeuser Strasse 2, D-30419 Hannover (Germany)

    2011-10-15

    Toxicity threshold of arsenite on intact rice seedlings was determined and arsenite uptake characteristics were investigated using non-toxic concentrations of arsenite. The arsenite toxicity threshold was 2.4 {mu}M arsenite which reduced growth by 10% (EC{sub 10}). The two highest arsenite levels induced wilting of seedlings and reduced both, transpiration rate and net photosynthetic rate. Arsenic content in plant tissue increased up to 10.7 {mu}M arsenite and then declined with increasing arsenite concentration in the treatment solution. The contents of Si, P, K, and of micronutrients Cu, Fe, Mn and Zn in shoot d.m. were reduced by arsenite levels {>=} 5.3 {mu}M. In the non-toxic range, arsenite uptake rate was linearly related to arsenite concentration. High arsenite levels reduced growth without being taken up which might be due to increasing binding of arsenite to proteins at the outer side of the plasmalemma. - Highlights: > Arsenite toxicity and uptake rate were investigated with intact rice plants. > Arsenite toxicity threshold was 2.4 {mu}M arsenite. > Uptake rate was linearly related to arsenite concentration in the non-toxic range. > Arsenite concentrations above 10.6 {mu}M decreased arsenic content in plant matter. > Arsenite impaired uptake of arsenite, water and Si, P, K, Cu, Fe, Mn and Zn. - Uptake of arsenite, water, and nutrients by rice seedlings was impaired by arsenite concentrations higher than the toxicity threshold of 2.4 {mu}M.

  20. Cytokine-induced killer (CIK cell therapy for patients with hepatocellular carcinoma: efficacy and safety

    Directory of Open Access Journals (Sweden)

    Ma Yue

    2012-04-01

    Full Text Available Abstract Purpose To evaluate the efficacy of cytokine-induced killer (CIK cell therapy in the treatment of hepatocellular carcinoma. Materials and methods Randomized phase II and III trials on CIK cell-based therapy were identified by electronic searches using a combination of "hepatocellular carcinoma" and "cytokine-induced killer cells". Results The analysis showed significant survival benefit (one-year survival, p p p p p p +, CD4+, CD4+CD8+ and CD3+CD4+ T cells significantly increased in the CIK group, compared with the non-CIK group (p Conclusions CIK cell therapy demonstrated a significant superiority in prolonging the median overall survival, PFS, DCR, ORR and QoL of HCC patients. These results support further larger scale randomized controlled trials for HCC patients with or without the combination of other therapeutic methods.

  1. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Fei; Xu, Yuan [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Ling, Min [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Zhao, Yue; Xu, Wenchao [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Liang, Xiao [Mental Health Center of Xuhui-CDC, Shanghai 200232 (China); Jiang, Rongrong; Wang, Bairu [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); Bian, Qian [Jiangsu Center for Disease Control and Prevention, Nanjing 211166, Jiangsu (China); Liu, Qizhan, E-mail: drqzliu@hotmail.com [Institute of Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China); The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University (China)

    2013-11-15

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT.

  2. Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells

    DEFF Research Database (Denmark)

    Larsen, L; Tonnesen, M; Ronn, S G;

    2007-01-01

    by immunoblotting and by immunoblotting combined with electrophoretic mobility shift assay, respectively. Viability was analysed by 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and apoptosis by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay and histone...

  3. Apolipoprotein CIII Reduces Proinflammatory Cytokine-Induced Apoptosis in Rat Pancreatic Islets via the Akt Prosurvival Pathway

    DEFF Research Database (Denmark)

    Størling, Joachim; Juntti-Berggren, Lisa; Olivecrona, Gunilla;

    2011-01-01

    Apolipoprotein CIII (ApoCIII) is mainly synthesized in the liver and is important for triglyceride metabolism. The plasma concentration of ApoCIII is elevated in patients with type 1 diabetes (T1D), and in vitro ApoCIII causes apoptosis in pancreatic ß-cells in the absence of inflammatory stress...... µg/ml) did not cause apoptosis. In the presence of the islet-cytotoxic cytokines IL-1ß + interferon-¿, ApoCIII reduced cytokine-mediated islet cell death and impairment of ß-cell function. ApoCIII had no effects on mitogen-activated protein kinases (c-Jun N-terminal kinase, p38, and ERK) and had...... of the survival serine-threonine kinase Akt. Inhibition of the Akt signaling pathway by the phosphatidylinositol 3 kinase inhibitor LY294002 counteracted the antiapoptotic effect of ApoCIII on cytokine-induced apoptosis. We conclude that ApoCIII in the presence of T1D-relevant proinflammatory cytokines reduces...

  4. Autologous cytokine-induced killer cells in equal to liver protectant in a patient with metastatic rectal cancer

    Institute of Scientific and Technical Information of China (English)

    Yanyi Ren; Zhaozhe Liu; Zhenyu Ding; Xiaodong Xie

    2013-01-01

    The cytokine-induced killer (CIK) therapy was an effective treatment for many cancers. We report a patient with postoperative rectal cancer received autologous CIK therapy combined with raltitrexed chemotherapy. After the adjuvant therapy, the serum transaminase was persistently elevated, and lung metastases was observed. Due to hepatic injury, only cytokine-induced killer therapy was administered, and it rectified transaminase. The following regimens of CIK therapy and low-dose raltitrexed could diminish the metastatic lesion, improve the quality of life and prolong the survival time. It reveals that the CIK cells may repair the hepatic injury.

  5. Embryotoxicity of arsenite and arsenate. Distribution in pregnant mice and monkeys and effects on embryonic cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, A.; Danielsson, R.G.; Dencker, L. (Department of Toxicology, Biomedical Center, Uppsala University, Sweden); Vahter, M. (National Institute of Environmental Medicine, Stockholm, Sweden)

    1984-01-01

    The distribution of /sup 74/As-labelled and arsenite in pregnant mice and a monkey has been studied by autoradiography and gamma counting of isolated tissues, and their in vitro toxicity to a chondrogenic system has been investigated. With both arsenic forms, given as single intravenous injections to the mother, the /sup 74/As-arsenic appeared to pass the mouse placenta relatively freely and approximately to the same extent. The retention time in material tissues including the placenta was, however, around three times longer with arsenite than with arsenate. In early gestation, high activity was registered in the embryonic neuroepithelium, which correlates well with reported CNS malformations in rodents. In late gestation, the distribution pattern was more like that in the adults. Accumulation in skin and squamous epithelia of the upper gastrointestinal tract (oral cavity, oesophagus and oesophageal region of stomach) dominated the distribution picture, especially at a long survival interval. Arsenate, but not arsenite, showed affinity for the calcified areas of the skeleton. A marmoset monkey in late gestation receiving arsenite showed a somewhat lower rate of placental transfer than the mice. Skin and liver had the highest concentrations (at 8 hrs), both in mother and foetuses. This species is known not to methylate arsenic, resulting in stronger binding and longer retention times of arsenic as compared with other species. The stronger binding in maternal tissues may possibly explain the lower rate of placental transfer. Arsenite was shown to inhibit cartilage formation in a chick limb bud mesenchymal spot culture system (ED50 approximately 5-10..mu..M) while arsenate seemed to be without effect at concentrations up to 200 ..mu..M (highest tested). Arsenate, however, showed a potential of the arsenite toxicity.

  6. Embryotoxicity of arsenite and arsenate. Distribution in pregnant mice and monkeys and effects on embryonic cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, A.; Danielsson, R.G.; Dencker, L. (Department of Toxicology, Biomedical Center, Uppsala University, Sweden); Vahter, M. (National Institute of Environmental Medicine, Stockholm, Sweden)

    1984-01-01

    The distribution of /sup 74/As-labelled arsenate and arsenite in pregnant mice and a monkey has been studied by autoradiography and gamma counting of isolated tissues, and their in vitro toxicity to a chondrogenic system has been investigated. With both arsenic forms, given as single intravenous injections to the mother, the /sup 74/As-arsenic appeared to pass the mouse placenta relatively freely and approximately to the same extent. The retention time in material tissues including the placenta was, however, around three times longer with arsenite than with arsenate. In early gestation, high activity was registered in the embryonic neuroepithelium, which correlates well with reported CNS malformations in rodents. In late gestation, the distribution pattern was more like that in the adults. Accumulation in skin and squamous epithelia of the upper gastrointestinal tract (oral cavity, oesophagus and oesophageal region of stomach) dominated the distribution pucture, especially at a long survival interval. Arsenate, but not arsenite, showed affinity for the calcified areas of the skeleton. A marmoset monkey in late gestation receiving arsenite showed a somewhat lower rate of placental transfer than the mice. Skin and liver had the highest concentrations (at 8 hrs), both in mother and foetuses. This species is known not to methylate arsenic, resulting in stronger binding and longer retention times of arsenic as compared with other species. The stronger binding in maternal tissues may possibly explain the lower rate of placental transfer. Arsenite was shown to inhibit cartilage formation in a chick limb bud mesenchymal spot culture system (ED50 approximately 5-10..mu..M) while arsenate seemed to be without effect at concentrations up to 200 ..mu..M (highest tested). Arsenate, however, showed a potential of the arsenite toxicity.

  7. Cytokine-Induced NK-Like T Cells: From Bench to Bedside

    Directory of Open Access Journals (Sweden)

    Yeh Ching Linn

    2010-01-01

    Full Text Available Cytokine-induced killer (CIK cells are polyclonal T effector cells generated when cultured under cytokine stimulation. CIK cells exhibit potent, non-MHC-restricted cytolytic activities against susceptible tumor cells of both autologous and allogeneic origins. Over the past 20 years, CIK cells have evolved from experimental observations into early clinical studies with encouraging preliminary efficacy towards susceptible autologous and allogeneic tumor cells in both therapeutic and adjuvant settings. This paper is our attempt to summarize the available published literature related to CIK cells. Looking into the future, we anticipate that the continuous therapeutic application of CIK cells will likely be developed along two major directions: overcoming the challenge to organize large prospective randomized clinical trials to define the roles of CIK cells in cancer immunotherapy and expanding its spectrum of cytotoxicity towards resistant tumor cells through experimental manipulations.

  8. Bioaccumulation and oxidative stress in Daphnia magna exposed to arsenite and arsenate.

    Science.gov (United States)

    Fan, Wenhong; Ren, Jinqian; Li, Xiaomin; Wei, Chaoyang; Xue, Feng; Zhang, Nan

    2015-11-01

    Arsenic pollution and its toxicity to aquatic organisms have attracted worldwide attention. The bioavailability and toxicity of arsenic are highly related to its speciation. The present study investigated the differences in bioaccumulation and oxidative stress responses in an aquatic organism, Daphnia magna, induced by 2 inorganic arsenic species (As(III) and As(V)). The bioaccumulation of arsenic, Na(+) /K(+) -adenosine triphosphatase (ATPase) activity, reactive oxygen species (ROS) content, total superoxide dismutase (SOD) activity, total antioxidative capability, and malondialdehyde content in D. magna were determined after exposure to 500 µg/L of arsenite and arsenate for 48 h. The results showed that the oxidative stress and antioxidative process in D. magna exposed to arsenite and arsenate could be divided into 3 phases, which were antioxidative response, oxidation inhibition, and antioxidative recovery. In addition, differences in bioaccumulation, Na(+) /K(+) -ATPase activity, and total SOD activity were also found in D. magna exposed to As(III) and As(V). These differences might have been the result of the high affinity of As(III) with sulfhydryl groups in enzymes and the structural similarity of As(V) to phosphate. Therefore, arsenate could be taken up by organisms through phosphate transporters, could substitute for phosphate in biochemical reactions, and could lead to a change in the bioaccumulation of arsenic and activity of enzymes. These characteristics were the possible reasons for the different toxicity mechanisms in the oxidative stress process of arsenite and arsenate.

  9. Serum albumin protects from cytokine-induced pancreatic beta cell death by a phosphoinositide 3-kinase-dependent mechanism

    DEFF Research Database (Denmark)

    Kiaer, Caroline; Thams, Peter

    2009-01-01

    ) inhibitors LY294002 (25 micromol/l) and wortmannin (1 micromol/l), suggesting that albumin may rescue beta cells from cytokine-induced cell death by activation of PI3K. In accordance, albumin stimulated phosphorylation of Akt, a down-stream target for PI3K. In conclusion, it is suggested that albumin may...

  10. Corticosteroids reverse cytokine-induced block of survival and differentiation of oligodendrocyte progenitor cells from rats

    Directory of Open Access Journals (Sweden)

    Marx Romy

    2008-09-01

    Full Text Available Abstract Background Periventricular leukomalacia (PVL is a frequent complication of preterm delivery. Proinflammatory cytokines, such as interferon-γ (IFN-γ and tumor necrosis factor α (TNF-α released from astrocytes and microglia activated by infection or ischemia have previously been shown to impair survival and maturation of oligodendrocyte progenitors and could thus be considered as potential factors contributing to the generation of this disease. The first goal of the present study was to investigate whether exposure of oligodendrocyte precursors to these cytokines arrests the maturation of ion currents in parallel to its effects on myelin proteins and morphological maturation. Secondly, in the search for agents, that can protect differentiating oligodendrocyte precursor cells from cytokine-induced damage we investigated effects of coapplications of corticosteroids with proinflammatory cytokines on the subsequent survival and differentiation of oligodendrocyte progenitor cells. Methods To exclude influences from factors released from other cell types purified cultures of oligodendrocyte precursors were exposed to cytokines and/or steroids and allowed to differentiate for further 6 days in culture. Changes in membrane surface were investigated with capacitance recordings and Scanning Ion Conductance Microscopy. Na+- and K+- currents were investigated using whole cell patch clamp recordings. The expression of myelin specific proteins was investigated using western blots and the precursor cells were identified using immunostaining with A2B5 antibodies. Results Surviving IFN-γ and TNF-α treated cells continued to maintain voltage-activated Na+- and K+ currents characteristic for the immature cells after 6 days in differentiation medium. Corticosterone, dihydrocorticosterone and, most prominently dexamethasone, counteracted the deleterious effects of IFN-γ and TNF-α on cell survival, A2B5-immunostaining and expression of myelin basic

  11. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells

    Directory of Open Access Journals (Sweden)

    Rombo, Roman

    2016-04-01

    Full Text Available We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selectiveanti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer.

  12. Cytokine-induced killer (CIK) cells:from basic research to clinical translation

    Institute of Scientific and Technical Information of China (English)

    Yelei Guo; Weidong Han

    2015-01-01

    The accumulation of basic researches and clinical studies related to cytokine-induced killer (CIK) cells has confirmed their safety and feasibility in treating malignant diseases. This review summarizes the available published literature related to the biological characteristics and clinical applications of CIK cells in recent years. A number of clinical trials with CIK cells have been implemented during the progressive phases of cancer, presenting potential widespread applications of CIK cells for the future. Furthermore, this review briefly compares clinical applications of CIK cells with those of other adoptive immunotherapeutic cells. However, at present, there are no uniform criteria or large-scale preparations of CIK cells. The overall clinical response is difficult to evaluate because of the use of autologous CIK cells. Based on these observations, several suggestions regarding uniform criteria and universal sources for CIK cell preparations and the use of CIK cells either combined with chemotherapy or alone as a primary strategy are briefly proposed in this review. Large-scale, controlled, grouped, and multi-center clinical trials on CIK cell-based immunotherapy should be conducted under strict supervision. These interventions might help to improve future clinical applications and increase the clinical curative effects of CIK cells for a broad range of malignancies in the future.

  13. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Tomás [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina); Cavaliere, Victoria; Costantino, Susana N. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Kornblihtt, Laura [Servicio de Hematología, Hospital de Clínicas, José de San Martín (UBA), Buenos Aires (Argentina); Alvarez, Elida M. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Blanco, Guillermo A., E-mail: gblanco@ffyb.uba.ar [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina)

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect

  14. Ion Chromatographic Estimation of Arsenite and Arsenate at Trace Level

    Directory of Open Access Journals (Sweden)

    Chetan Chavan

    2011-01-01

    Full Text Available Present method shows simple and specific determination of traces of inorganic arsenic in water. This method enables simultaneous determination of arsenite by electrochemical detection and arsenate by suppressed conductivity detection. The applicability of this method was illustrated by determining the inorganic arsenite and arsenate content from bore-well water and river water samples without any special pretreatment. The present method for direct determination of arsenite and arsenate shows good sensitivity, selectivity, precision and accuracy. Detection limits determined using this procedure was found to be 2.0 μg/L for arsenite and 30.0 μg/L for Arsenate. The simplicity, ease of use, low detection limit and low running cost of this method makes it appealing for increasing capability of testing in the lab.

  15. Industrial experiment of copper electrolyte purification by copper arsenite

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ya-jie; XIAO Fa-xin; WANG Yong; LI Chun-hua; XU Wei; JIAN Hong-sheng; MA Yut-ian

    2008-01-01

    Copper electrolyte was purified by copper arsenite that was prepared with As2O3. And electrolysis experiments of purified electrolyte were carried out at 235 and 305 A/m2, respectively. The results show that the yield of copper arsenite is up to 98.64% when the molar ratio of Cu to As is 1.5 in the preparation of copper arsenite. The removal rates of Sb and Bi reach 74.11% and 65.60% respectively after copper arsenite is added in electrolyte. The concentrations of As, Sb and Bi in electrolyte nearly remain constant during electrolysis of 13 d. The appearances of cathode copper obtained at 235 and 305 A/m2 are slippery and even, and the qualification rate is 100% according to the Chinese standard of high-pure cathode copper(GB/T467-97).

  16. Photoinduced Oxidation of Arsenite to Arsenate on Ferrihydrite

    Energy Technology Data Exchange (ETDEWEB)

    N Bhandari; R Reeder; D Strongin

    2011-12-31

    The photochemistry of an aqueous suspension of the iron oxyhydroxide, ferrihydrite, in the presence of arsenite has been investigated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption near edge structure (XANES), and solution phase analysis. Both ATR-FTIR and XANES show that the exposure of ferrihydrite to arsenite in the dark leads to no change in the As oxidation state, but the exposure of this arsenite-bearing surface, which is in contact with pH 5 water, to light leads to the conversion of the majority of the adsorbed arsenite to the As(V) bearing species, arsenate. Analysis of the solution phase shows that ferrous iron is released into solution during the oxidation of arsenite. The photochemical reaction, however, shows the characteristics of a self-terminating reaction in that there is a significant suppression of this redox chemistry before 10% of the total iron making up the ferrihydrite partitions into solution as ferrous iron. The self-terminating behavior exhibited by this photochemical arsenite/ferrihydrite system is likely due to the passivation of the ferrihydrite surface by the strongly bound arsenate product.

  17. The molecular pathway of low concentration of sodium arsenite in inducing differentiation of liver cancer stem cells by down-regulating promyelocytic leukemia protein expression

    Directory of Open Access Journals (Sweden)

    Shi-long JIN

    2016-01-01

    Full Text Available Objective  To study the molecular pathway of low concentration of sodium arsenite in inducing differentiation of liver cancer stem cells. Methods  Western blotting analysis, immunofluorescence assay and quantitative PCR were used to examine the gene and protein expression of promyelocytic leukemia (PML, Oct4 and Sox2 in HCC tissue and cell lines, and the molecule pathway of low concentration of sodium arsenite inducing differentiation of liver cancer stem cells was confirmed by comparing the changes in the gene and protein expression of PML,Oct4 and Sox2 in HCC cells and biological function of LCSCs after the treatment with low concentration of sodium arsenite. Results  0.5μg/ml of sodium arsenite was shown to alter the biological characteristics of LCSCs in HuH7 and primary HCC cells, including the ability to form tumor spheres, resistance to pirarubicin (P<0.01, and the capability of forming tumors after allogeneic transplantation (P<0.05. Both HCC cells and tissues expressed the gene and protein of PML,Oct4 and Sox2, and 0.5μg/ml of sodium arsenite not only downregulated the gene and protein expression of Oct4 (P<0.05 and Sox2 in HCC cells (P<0.05, but also downregulated the protein expression of PML (P<0.05. In contrast, sodium arsenite did not inhibit the gene expression of PML in Hep3B, HepG2, SMCC-7721, HuH7 and primary HCC cells. Furthermore, through down-regulated PML protein expression with arsenite, the biological characteristics of HuH7 and primary HCC cells containing LCSCs was simultaneously altered, and the expression of stem gene Oct4 and Sox2 was downregulated (P<0.05, while HCC cells proliferation was inhibited as well. Conclusions  Both HCC tissues and cells can express the PML gene and PML protein. Low concentrations of sodium arsenite would directly bind to PML protein in HCC cells, resulting in degradation of the PML protein, followed by collapse of PML-NBs, inhibition of transcription of the proliferation

  18. Accumulation of heme oxygenase-1 (HSP32) in Xenopus laevis A6 kidney epithelial cells treated with sodium arsenite, cadmium chloride or proteasomal inhibitors.

    Science.gov (United States)

    Music, Ena; Khan, Saad; Khamis, Imran; Heikkila, John J

    2014-11-01

    The present study examined the effect of sodium arsenite, cadmium chloride, heat shock and the proteasomal inhibitors MG132, withaferin A and celastrol on heme oxygenase-1 (HO-1; also known as HSP32) accumulation in Xenopus laevis A6 kidney epithelial cells. Immunoblot analysis revealed that HO-1 accumulation was not induced by heat shock but was enhanced by sodium arsenite and cadmium chloride in a dose- and time-dependent fashion. Immunocytochemistry revealed that these metals induced HO-1 accumulation in a granular pattern primarily in the cytoplasm. Additionally, in 20% of the cells arsenite induced the formation of large HO-1-containing perinuclear structures. In cells recovering from sodium arsenite or cadmium chloride treatment, HO-1 accumulation initially increased to a maximum at 12h followed by a 50% reduction at 48 h. This initial increase in HO-1 levels was likely the result of new synthesis as it was inhibited by cycloheximide. Interestingly, treatment of cells with a mild heat shock enhanced HO-1 accumulation induced by low concentrations of sodium arsenite and cadmium chloride. Finally, we determined that HO-1 accumulation was induced in A6 cells by the proteasomal inhibitors, MG132, withaferin A and celastrol. An examination of heavy metal and proteasomal inhibitor-induced HO-1 accumulation in amphibians is of importance given the presence of toxic heavy metals in aquatic habitats.

  19. Use of Synthetic Derivatives To Determine the Minimal Active Structure of Cytokine-Inducing Lipoteichoic Acid▿

    Science.gov (United States)

    Deininger, Susanne; Figueroa-Perez, Ignacio; Sigel, Stefanie; Stadelmaier, Andreas; Schmidt, Richard R.; Hartung, Thomas; von Aulock, Sonja

    2007-01-01

    Lipoteichoic acid (LTA) from gram-positive bacteria is the counterpart to lipopolysaccharide from gram-negative bacteria. LTA, which activates Toll-like receptor 2 (TLR2), induces a unique cytokine and chemokine pattern. The chemical synthesis of LTA proved its immunostimulatory properties. To determine the minimal active structure of LTA, we reduced synthetic LTA in a number of steps down to the synthetic anchor and employed these molecules to stimulate interleukin-8 (IL-8) release in human whole blood. Ten times more of the synthetic structures with four to six d-alanine-substituted polyglycerophosphate units (50 nM) than of the native LTA preparation was required to induce IL-8 release. A further reduction to three backbone units with two or no d-alanine residues resulted in cytokine induction only from 500 nM. The synthetic anchor was not able to induce IL-8 release even at 5 μM. When the LTA derivatives were used at 500 nM, they induced increasing levels of IL-8 and tumor necrosis factor alpha with increasing elongation of the backbone. Peritoneal macrophages were less responsive than human blood to the synthetic structures. Therefore, TLR2 dependency could be shown only with cells from TLR2-deficient mice for the two largest synthetic structures. This was confirmed by using TLR2-transfected HEK 293 cells. Taken together, these data indicate that although the synthetic anchor (which, unlike the native anchor, contains only myristic acid) cannot induce cytokine release, the addition of three backbone units, even without d-alanine substituents, confers this ability. Lengthening of the chain with d-alanine-substituted backbone units results in increased cytokine-inducing potency and a more sensitive response. PMID:17928431

  20. Revving up natural killer cells and cytokine-induced killer cells against hematological malignancies

    Directory of Open Access Journals (Sweden)

    Gianfranco ePittari

    2015-05-01

    Full Text Available Natural killer (NK cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors (KIR, NK Group 2 member D (NKG2D, NKG2A/CD94, NKp46 and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols.Cytokine-induced killer (CIK cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming.NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.

  1. Revving up Natural Killer Cells and Cytokine-Induced Killer Cells Against Hematological Malignancies

    Science.gov (United States)

    Pittari, Gianfranco; Filippini, Perla; Gentilcore, Giusy; Grivel, Jean-Charles; Rutella, Sergio

    2015-01-01

    Natural killer (NK) cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors, NK Group 2 member D (NKG2D), NKG2A/CD94, NKp46, and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL)-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols. Cytokine-induced killer (CIK) cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming. NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies. PMID:26029215

  2. Quantitative analysis of cytokine-induced vascular toxicity and vascular leak in the mouse brain.

    Science.gov (United States)

    Irwan, Yetty Y; Feng, Yi; Gach, H Michael; Symanowski, James T; McGregor, John R; Veni, Gopalkrishna; Schabel, Matthias; Samlowski, Wolfram E

    2009-09-30

    A storm of inflammatory cytokines is released during treatment with pro-inflammatory cytokines, such as interleukin-2 (IL-2), closely approximating changes initially observed during sepsis. These signals induce profound changes in neurologic function and cognition. Little is known about the mechanisms involved. We evaluated a number of experimental methods to quantify changes in brain blood vessel integrity in a well-characterized IL-2 treatment mouse model. Measurement of wet versus dry weight and direct measurement of small molecule accumulation (e.g. [(3)H]-H(2)O, sodium fluorescein) were not sensitive or reliable enough to detect small changes in mouse brain vascular permeability. Estimation of brain water content using proton density magnetic resonance imaging (MRI) measurements using a 7T mouse MRI system was sensitive to 1-2% changes in brain water content, but was difficult to reproduce in replicate experiments. Successful techniques included use of immunohistochemistry using specific endothelial markers to identify vasodilation in carefully matched regions of brain parenchyma and dynamic contrast enhanced (DCE) MRI. Both techniques indicated that IL-2 treatment induced vasodilation of the brain blood vessels. DCE MRI further showed a 2-fold increase in the brain blood vessel permeability to gadolinium in IL-2 treated mice compared to controls. Both immunohistochemistry and DCE MRI data suggested that IL-2 induced toxicity in the brain results from vasodilation of the brain blood vessels and increased microvascular permeability, resulting in perivascular edema. These experimental techniques provide us with the tools to further characterize the mechanism responsible for cytokine-induced neuropsychiatric toxicity.

  3. The role of plasma coating on the permeation of cytokine-inducing substances through dialyser membranes.

    Science.gov (United States)

    Lonnemann, G; Schindler, R; Lufft, V; Mahiout, A; Shaldon, S; Koch, K M

    1995-01-01

    We studied the effects of coating of dialyser membranes with plasma proteins on the permeation of bacteria-derived cytokine-inducing substances (CIS). An in vitro dialysis circuit using polysulphone (PS) or modified cellulose triacetate (mCT) dialysers was used. Precoating of the dialysers was performed by recirculation of 10% normal human plasma for 30 min in the blood compartment and subsequent rinse with pyrogen-free saline. Samples from the blood compartment were tested for induction of interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF alpha) at various time points after challenging the dialysate with sterile culture supernatants from Pseudomonas aeruginosa. Contamination of the dialysate resulted in the appearance of CIS in the blood compartment of both polysuphone modified cellulose triacetate (IL-1 alpha: PS, time 0: 81 +/- 11 pg/ml, time 60 min: 4747 +/- 1822 pg/ml, P < 0.05; mCT, time 0: 235 +/- 141 pg/ml, time 60 min: 1632 +/- 531 pg/ml, P < 0.05). The plasma protein layer reduced the penetration of CIS significantly only for polysulphone (IL-1 alpha: PS, time 60: 4747 +/- 1822 versus 880 +/- 525 pg/ml, P < 0.05; modified cellulose triacetate, time 60 min: 1632 +/- 531 pg/ml versus 930 +/- 326 pg/ml). Samples from the blood compartment contained < 6 pg/ml LAL-reactive material at all time points. We conclude that plasma coating of polysulphone dialysers reduces the permeability for CIS derived from Pseudomonas, either by reducing the effective pore size or by adsorption of proteins that bind CIS.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Establishment of Adoptive Immunotherapy Transfusion Time of Cytokine-induced Killer Cells

    Institute of Scientific and Technical Information of China (English)

    Wu Changping; Deng Haifeng; Jiang Jingting

    2013-01-01

    Objective:To investigate the variation of immunophenotype and cytotoxic activity of autologous cytokine-induced killer (CIK) cells in patients with malignant tumors, and explore the best time of adoptive immunotherapy infusion of CIK cells. Methods:Peripheral blood mononuclear cells (PBMC) in 40 patients with malignant tumors were collected and cultivated into CIK cells in vitro by biotechnology under induction of several kinds of cytokines including interferon γ (IFN-γ), recombinant human interleukin 1α (rhIL-1α), CD3 monoclonal antibody (CD3McAb) and recombinant human interleukin 2 (rhIL-2). Immunophenotypes were dynamically monitored by lfow cytometry (FCM), and cytotoxic activity was analyzed by methyl thiazolyl tetrazolium (MTT) method. Results:After induction and expansion at different time, CD3+, CD3+CD8+and CD3+CD56+in mononuclear cells (MNC) had an up-regulated tendency. CD3+CD4+reached the peak on day 7, and then decreased slowly;CD25 reached the peak in earlier period of cultivation (3-7 days), and decreased slowly in 7-14 days, and then decreased rapidly in 14-21 days. Human leukocyte antigen DR (HLA-DR) was on the rise in 0-14 days, and decreased rapidly after reaching the peak on day 14. The cytotoxic activity of mature CIK cells was signiifcantly higher than that of non-activated PBMC, and the difference was statistically signiifcant (P Conclusion:PBMC can be induced into typical CIK cells for about 14 days when CD3+CD56+cells are at the logarithmic phase. The best time of CIK cell adoptive immunotherapy transfusion for the patients with malignant tumors is on day 14.

  5. Plasma leptin, insulin and free tryptophan contribute to cytokine-induced anorexia.

    Science.gov (United States)

    Sato, Tomoi; Laviano, Alessandro; Meguid, Michael M; Rossi-Fanelli, Filippo

    2003-01-01

    Cytokines contribute to anorexia of diseases. Tumor Necrosis Factor (TNF) and/or interleukin-1 (IL-1) stimulate leptin release, but not insulin. Both affect hypothalamus to decrease food intake (FI). Hypothalamic serotonin (5HT) decreases FI. Its synthesis depends on brain availability of precursor, tryptophan (TRP), which depends on plasma free TRP. Purpose is to test involvement of plasma leptin, insulin, TRP, and thus hypothalamic 5HT in cytokine-induced anorexia in rats. In male rats, IL-1alpha (10 mg/kg/d; n=9), TNFalpha (30 mg/kg/d; n=9), Il-1alpha+TNFalpha (10:30 mg/kg/d; n=9), TRP (100 mg/kg/d, n=8) and saline (n=8; Control) were injected sc for 2 days. FI, BW, plasma free and total TRP, leptin and insulin, and body fat were measured. Data analyzed via ANOVA. IL-1alpha and IL-1alpha+TNFalpha vs others decreased FI and BW. TNFalpha and TRP did not change FI and BW. Plasma total TRP was higher in TRP vs IL-1alpha, TNFalpha, and IL-1alpha+TNFalpha. Plasma free TRP was higher in IL-1alpha and IL-1alpha+TNFalpha vs Control. IL-1alpha and IL-1alpha+TNFalpha decreased leptin and body fat. Insulin in Control was lower than others. Data suggest: i) IL-1alpha increases plasma free TRP, but not total TRP, thus increases hypothalamic 5HT synthesis, resulting in anorexia; ii) leptin does not mediate anorexia, but; iii) insulin may contribute to anorexia induced by cytokines.

  6. Rapid response of advanced squamous non-small cell lung cancer with thrombocytopenia after first-line treatment with pembrolizumab plus autologous cytokine-induced killer cells

    Directory of Open Access Journals (Sweden)

    Zhenzhen eHui

    2015-12-01

    Full Text Available We present the first clinical evidence of advanced squamous non-small cell lung cancer with severe thrombocytopenia showing dramatic improvement after first-line treatment with pembrolizumab plus cytokine-induced killer cells.

  7. Arsenite Oxidation and Arsenite Resistance by Bacillus sp. PNKP-S2

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2015-01-01

    Full Text Available Arsenic causes human health problems after accumulate in the body for 10-15 years and arsenite [As(III] is generally regarded as being more mobile and toxic than other oxidation states. In this study, two-hundred and three bacterial strains were isolated from groundwater and soil samples collecting in Ubon Ratchathani Province, Thailand. All strains were screened for arsenic tolerant efficiency at 1-10 mM of sodium arsenite. Eighteen selected strains which had the highest resistance to 10 mM of As(III were further studied for their As(III-oxidizing activity and growth in enrichment and growth medium (EG medium supplemented with 0.58 mM of As(III. It was found that strain PNKP-S2 was able to grow in the medium with As(III as a sole energy source and had 89.11% As(III removal within 48 h. The PCR-based 16S rDNA sequencing analysis revealed that the strain PNKP-S2 was closed relative to Bacillus sp. This is the first report on Bacillus sp. chemolithoautotrophic As(III-oxidizer and this strain could be a potential candidate for application in arsenic remediation of contaminated water.

  8. Preliminary Study of Local Immunotherapy with Autologous Cytokine-Induced Killer Cells for Glioma Patients

    Institute of Scientific and Technical Information of China (English)

    Li Lin; Yonggao Mu; Zhongping Chen

    2008-01-01

    OBJECTIVE Cytokine-induced killer (CIK) cells are T-cells that display effective anti-tumor activity. In this study, we investigated the anti-tumor activity of CIK cells in vitro, and conducted a preliminary investigation using autologous CIK cells to treat glioma patients through local administration.METHODS The CIK cells were derived from peripheral blood monocytes (PBMCs) of the glioma patients. The anti-tumor activity of the CIK cells against human T98-G glioma cell was tested In vitro. In addition, the autologous CIK cells were locally administrated into the tumor cavity in the malignant glioma patients through an Ommaya reservoir which was pre-inserted during tumor resection. The 4×108 CIK cells in a 5 ml suspension were injected once a week 2 times per cycle. Five hundreds KU of IL-2 was injected every other day.RESULTS (I) With incubation, the CIK cells showed dual staining of CD3+CD56+ with a positive rate of 3.45% on day 10 and 55.2% on day 30. In vitro anti-tumor activity (againstT98-G cells) of the CIK cells reached the highest level after 18 days of incubation with different effector/target (E:T) ratios. (ii)Six patients received autologous CIK cell treatment (10 cycles).Two patients showed no recurrence and are still alive (24 and 10 months), while 4 cases had a recurrence 3 of which have died. The mean survival time from the first CIK cell treatment to the end of follow-up was 12.5 months. The main side-effects of the local CIK cell treatment was brain edema, which was controlled by mannitol in most of the cases. However for one patient injection of CIK cells and IL-2 had to be discontinued.CONCLUSION In vitro CIK cells are effective anti-glioma T-cells. Local therapy with CIK cells has potential anti-glioma efficacy and tolerable side-effects.

  9. Lubricin/Proteoglycan 4 Binding to CD44 Receptor: A Mechanism of Lubricin’s suppression of Pro-inflammatory Cytokine Induced Synoviocyte Proliferation

    Science.gov (United States)

    Al-Sharif, Afnan; Jamal, Maha; Zhang, Ling; Larson, Katherine; Schmidt, Tannin; Jay, Gregory; Elsaid, Khaled

    2015-01-01

    Objective To evaluate recombinant human proteoglycan 4 (rhPRG4) binding to CD44 receptor and its consequence on cytokine induced synoviocyte proliferation. Methods rhPRG4 binding to CD44 and competition with high molecular weight hyaluronic acid (HMW HA) was evaluated using a direct enzyme linked immunosorbent assay (ELISA) and surface plasmon resonance. Sialidase-A and O-glycosidase digestion of rhPRG4 was performed and CD44 binding was evaluated using ELISA. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) were stimulated with interleukin-1 beta (IL-1β) or tumor necrosis factor alpha (TNF-α) for 48 hours in the presence or absence of rhPRG4 or HMW HA at 20, 40 and 80μg/ml and cell proliferation was measured. CD44 contribution was assessed by co-incubation with a CD44 antibody (IM7). The anti-proliferative effect of rhPRG4 was investigated following treatment of Prg4−/− synoviocytes with IL-1β or TNF-α in the presence or absence of IM7. Results rhPRG4 binds CD44 and interferes with HMW HA CD44 binding. Removal of sialic acid and O-glycosylations significantly increased CD44 binding by rhPRG4 (p<0.001). rhPRG4 and HMW HA at 40 and 80μg/ml significantly suppressed IL-1β induced RA-FLS proliferation (p<0.05). rhPRG4 at 20, 40 and 80μg/ml significantly suppressed TNF-α induced RA-FLS proliferation (p<0.05). CD44 neutralization reversed the effect of rhPRG4 on IL-1β and TNF-α stimulated RA-FLS and the effect of HMW HA on IL-1β stimulated RA-FLS. rhPRG4 inhibited cytokine-induced proliferation of Prg4−/− synoviocytes which could be prevented by blocking CD44. Conclusion Lubricin is a novel putative ligand for CD44 and may control synoviocyte overgrowth in inflammatory arthropathies via a CD44-mediated mechanism. PMID:25708025

  10. Dendritic cells decreased the concomitant expanded Tregs and Tregs related IL-35 in cytokine-induced killer cells and increased their cytotoxicity against leukemia cells.

    Science.gov (United States)

    Pan, Ying; Tao, Qianshan; Wang, Huiping; Xiong, Shudao; Zhang, Rui; Chen, Tianping; Tao, Lili; Zhai, Zhimin

    2014-01-01

    Regulatory T cells (Tregs) are potent immunosuppressive cells and essential for inducing immune tolerance. Recent studies have reported that Tregs and Tregs related cytokines can inhibit the antitumor activity of cytokine-induced killer (CIK) cells, but dendritic cells co-cultured CIK (DC-CIK) cells can be used for induction of a specific immune response by blocking of Tregs and TGF-β, IL-10. As a novel identified cytokine, IL-35 is specially produced by Tregs and plays an essential role in immune regulation. However, it remains unknown whether IL-35 roles in tumor immunotherapy mediated by CIK and DC-CIK cells. In this study, we cultured CIK and DC-CIK cells from the same healthy adult samples, and investigated their phenotype, proliferation, cytotoxic activity against leukemia cell lines K562 and NB4 by FCM and CCK-8, measured IL-35, TGF-β and IL-10 protein by ELISA, detected Foxp3, IL-35 and IL-35 receptor mRNA by Real-time PCR, respectively. We found Tregs and IL-35 concomitantly expanded by a time-dependent way during the generation of CIK cells, but DC significantly down-regulated the expression of them and simultaneously up-regulated the proliferation ability as well as cytotoxic activity of CIK cells against leukemia cell lines. Therefore, our data suggested that DC decreased concomitant expanded Tregs and Tregs related IL-35 in CIK cells and might contribute to improve their cytotoxicity against leukemia cells in vitro.

  11. Arsenite exposure compromises early embryonic development in the Golden hamster.

    Science.gov (United States)

    Unis, Dave; Osborne, Cassandra; Diawara, Moussa M

    2009-11-01

    The toxicity of arsenite to 8-cell stage hamster embryos was evaluated. Females were superovulated and mated; embryos were collected and grown for 72 h in culture medium containing vehicle control, 25, 50, 250, 500, or 750 nM arsenite. Morphological observations were taken at 0 and 24h increments. A TUNEL assay was used for determining DNA damage. Survival was expressed by the ability to undergo zona escape. The control group had 78% survival and no evidence of deformities. Embryos in the 25, 50 and 250 nM groups had survival rates of 63%, 55% and 27%, respectively. Arsenite exposure caused total embryo lethality, major deformities, complete failure to undergo zona lysis, and significantly higher number of cells with fragmented DNA in embryos at the 500 and 750 nM concentrations. The study underscores the sensitivity of preimplantation stage embryos to the presence of even relatively small amounts of arsenic in luminal fluid.

  12. The role of the rice aquaporin Lsi1 in arsenite efflux from roots.

    Science.gov (United States)

    Zhao, Fang-Jie; Ago, Yukiko; Mitani, Namiki; Li, Ren-Ying; Su, Yu-Hong; Yamaji, Naoki; McGrath, Steve P; Ma, Jian Feng

    2010-04-01

    *When supplied with arsenate (As(V)), plant roots extrude a substantial amount of arsenite (As(III)) to the external medium through as yet unidentified pathways. The rice (Oryza sativa) silicon transporter Lsi1 (OsNIP2;1, an aquaporin channel) is the major entry route of arsenite into rice roots. Whether Lsi1 also mediates arsenite efflux was investigated. *Expression of Lsi1 in Xenopus laevis oocytes enhanced arsenite efflux, indicating that Lsi1 facilitates arsenite transport bidirectionally. *Arsenite was the predominant arsenic species in arsenate-exposed rice plants. During 24-h exposure to 5 mum arsenate, rice roots extruded arsenite to the external medium rapidly, accounting for 60-90% of the arsenate uptake. A rice mutant defective in Lsi1 (lsi1) extruded significantly less arsenite than the wild-type rice and, as a result, accumulated more arsenite in the roots. By contrast, Lsi2 mutation had little effect on arsenite efflux to the external medium. *We conclude that Lsi1 plays a role in arsenite efflux in rice roots exposed to arsenate. However, this pathway accounts for only 15-20% of the total efflux, suggesting the existence of other efflux transporters.

  13. In Vitro Protective Potentials of Annona muricata Leaf Extracts Against Sodium Arsenite-induced Toxicity.

    Science.gov (United States)

    George, Vazhappilly Cijo; Kumar, Devanga Ragupathi Naveen; Suresh, Palamadai Krishnan; Kumar, Rangasamy Ashok

    2015-01-01

    Sodium arsenite (NaAsO2) is a metalloid which is present widely in the environment and its chronic exposure can contribute to the induction of oxidative stress, resulting in disturbances in various metabolic functions including liver cell death. Hence, there is a need to develop drugs from natural sources, which can reduce arsenic toxicity. While there have been reports regarding the antioxidant and protective potentials of Annona muricataleaf extracts, our study is the first ofits kind to extend these findings by specifically evaluating its ability to render protection against sodium arsenite (NaAsO2) induced toxicity (10 μM) in WRL-68 (human hepatic cells) and human erythrocytes by employing XTT and haemolysis inhibition assays respectively. The methanolic extract exhibited higher activity than the aqueous extract in both assays. The results showed a dose-dependent decrease in arsenic toxicity in both WRL-68 cells and erythrocytes, suggesting the protective nature of Annona muricatato mitigate arsenic toxicity. Hence the bioactive extracts can further be scrutinized for the identification and characterization of their principal contributors.

  14. The Effect of PSD-93 Deficiency on the Expression of Early Inflammatory Cytokines Induced by Ischemic Brain Injury.

    Science.gov (United States)

    Zhang, Qingxiu; Cheng, Hongyu; Rong, Rong; Yang, Hui; Ji, Qiuhong; Li, Qingjie; Rong, Liangqun; Hu, Gang; Xu, Yun

    2015-12-01

    The aim of the study was to explore the effect of PSD-93 deficiency on the expression of early inflammatory cytokines induced by cerebral ischemia/reperfusion injury. Ten- to twelve-week-old male PSD-93 knockout (PSD-93 KO) mice (C57BL/6 genetic background) and wild-type (WT) littermates were randomly divided into sham and ischemia/reperfusion (I/R) group. The focal cerebral I/R model was established by middle cerebral artery occlusion (MCAO) suture method. RT-PCR was used to detect the mRNA expression of IL-6, IL-10, Cox-2, iNOS, and TNF-α4h following reperfusion. Infarct volume at different time points after I/R was analyzed using 2,3,5-triphenyl tetrazolium staining, and neurological damage score (neurological severity scores, NSS) was used to evaluate the effect of PSD-93 gene knockout on the MCAO-induced neurological injury. In WT mice, early I/R injury led to the increase in the mRNA expression of proinflammatory cytokines IL-6, Cox-2, iNOS, and TNF-α that coincided with the decrease in the expression of anti-inflammatory cytokine IL-10, as compared to the sham group (P cytokines induced by cerebral ischemia.

  15. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  16. The genetic basis of anoxygenic photosynthetic arsenite oxidation

    Science.gov (United States)

    Hernandez-Maldonado, Jamie; Sanchez-Sedillo, Benjamin; Stoneburner, Brendon; Boren, Alison; Miller, Laurence G.; McCann, Shelley; Rosen, Michael R.; Oremland, Ronald S.; Saltikov, Chad W.

    2017-01-01

    “Photoarsenotrophy”, the use of arsenite as an electron donor for anoxygenic photosynthesis, is thought to be an ancient form of phototrophy along with the photosynthetic oxidation of Fe(II), H2S, H2, and NO2-. Photoarsenotrophy was recently identified from Paoha Island's (Mono Lake, CA) arsenic-rich hot springs. The genomes of several photoarsenotrophs revealed a gene cluster, arxB2AB1CD, where arxA is predicted to encode for the sole arsenite oxidase. The role of arxA in photosynthetic arsenite oxidation was confirmed by disrupting the gene in a representative photoarsenotrophic bacterium, resulting in the loss of light-dependent arsenite oxidation. In situ evidence of active photoarsenotrophic microbes was supported by arxA mRNA detection for the first time, in red-pigmented microbial mats within the hot springs of Paoha Island. This work expands on the genetics for photosynthesis coupled to new electron donors and elaborates on known mechanisms for arsenic metabolism, thereby highlighting the complexities of arsenic biogeochemical cycling.

  17. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  18. Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway.

    Science.gov (United States)

    Petecchia, Loredana; Sabatini, Federica; Usai, Cesare; Caci, Emanuela; Varesio, Luigi; Rossi, Giovanni A

    2012-08-01

    Epithelial barrier permeability is altered in inflammatory respiratory disorders by a variety of noxious agents through modifications of the epithelial cell structure that possibly involve tight junction (TJ) organization. To evaluate in vitro whether pro-inflammatory cytokines involved in the pathogenesis of respiratory disorders could alter TJ organization and epithelial barrier integrity, and to characterize the signal transduction pathway involved Calu-3 airway epithelial cells were exposed to TNF-a, IL-4 and IFN-g to assess changes in: (a) TJ assembly, that is, occludin and zonula occludens (ZO)-1 expression and localization, evaluated by confocal microscopy; (b) apoptotic activity, quantified using terminal transferase deoxyuridine triphosphate nick-end labeling staining; (c) epithelial barrier integrity, detected as transmembrane electrical resistance and expressed as G(T) values; (d) epidermal growth factor receptor (EGFR)-dependent mitogenactivated protein (MAP) kinase (MAPK)/extracellular signal-regulated kinases (ERK)1/2 phosphorylation, assessed by western blotting. Exposure to cytokines for 48 h induced a noticeable downregulation of the TJ transmembrane proteins. The degree ZO-1 and occludin colocalization was 62±2% in control cultures and significantly decreased in the presence of TNF-a (47±3%), IL-4 (43±1%) and INF-g (35±3%). Although no apoptosis induction was detected following exposure to cytokines, changes in the epithelial barrier integrity were observed, with a significant enhancement in paracellular conductance. G(T) values were, respectively, 1.030±0.0, 1.300±0.04, 1.260±0.020 and 2.220±0.015 (mS/cm²)1000 in control cultures and in those exposed to TNF-a, IFN-g and IL-4. The involvement of EGFR-dependent MAPK/ERK1/2 signaling pathway in cytokine-induced damage was demonstrated by a significant increase in threonine/tyrosine phosphorylation of ERK1/2, already detectable after 5 min incubation. All these cytokine-induced changes were

  19. Implication of combined PD-L1/PD-1 blockade with cytokine-induced killer cells as a synergistic immunotherapy for gastrointestinal cancer

    Science.gov (United States)

    Geng, Ruixuan; Ge, Xiaoxiao; Tang, Wenbo; Chang, Jinjia; Wu, Zheng; Liu, Xinyang; Lin, Ying; Zhang, Zhe; Li, Jin

    2016-01-01

    Cytokine-induced killer (CIK) cells represent a realistic approach in cancer immunotherapy with confirmed survival benefits in the context of metastatic solid tumors. However, therapeutic effects are limited to a fraction of patients. In this study, immune-resistance elements and ideal combination therapies were explored. Initially, phenotypic analysis was performed to document CD3, CD56, NKG2D, DNAM-1, PD-L1, PD-1, CTLA-4, TIM-3, 2B4, and LAG-3 on CIK cells. Upon engagement of CIK cells with the tumor cells, expression of PD-1 on CIK cells and PD-L1 on both cells were up-regulated. Over-expression of PD-L1 levels on tumor cells via lentiviral transduction inhibited tumoricidal activity of CIK cells, and neutralizing of PD-L1/PD-1 signaling axis could enhance their tumor-killing effect. Conversely, blockade of NKG2D, a major activating receptor of CIK cells, largely caused dysfunction of CIK cells. Functional study showed an increase of NKG2D levels along with PD-L1/PD-1 blockade in the presence of other immune effector molecule secretion. Additionally, combined therapy of CIK infusion and PD-L1/PD-1 blockade caused a delay of in vivo tumor growth and exhibited a survival advantage over untreated mice. These results provide a preclinical proof-of-concept for simultaneous PD-L1/PD-1 pathways blockade along with CIK infusion as a novel immunotherapy for unresectable cancers. PMID:26871284

  20. The oxidative and adsorptive effectiveness of hydrous manganese dioxide for arsenite removal

    Institute of Scientific and Technical Information of China (English)

    Liu Ruiping; Yuan Baoling; Li Xing; Xia Shengji; Yang Yanling; Li Guibai

    2006-01-01

    This study focuses on the effectiveness of hydrous manganese dioxides (δMnO2) removing arsenite (As(Ⅲ)) from aqueous solution. Effects of such factors as permanganate oxidation, pH, humic acid and Ca2+ on As removal and possible mechanisms involved in have been investigated. Permanganate oxidation increases As removal to a certain extent; the higher pH results in the formation of more easily adsorbed As species, contributing to higher As removal; humic acid occupies adsorbing sites and decreases ζ potential of δMnO2, therefore inhibiting As removal; Ca2+ facilitates As adsorption on δMnO2, mainly through increasing ζ potential and decreasing repulsive forces between As and surface sites. δMnO2 exhibits oxidative and adsorptive potential for As(Ⅲ), and may be employed as adsorbents or filter coating for As removal in water treatment process.

  1. Unique proliferation response in odontoblastic cells derived from human skeletal muscle stem cells by cytokine-induced matrix metalloproteinase-3

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Aichi (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Aichi (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-02-01

    A pro-inflammatory cytokine mixture (CM: interleukin (IL)-1β, tumor necrosis factor-α and interferon-γ) and IL-1β-induced matrix metalloproteinase (MMP)-3 activity have been shown to increase the proliferation of rat dental pulp cells and murine stem cell-derived odontoblast-like cells. This suggests that MMP-3 may regulate wound healing and regeneration in the odontoblast-rich dental pulp. Here, we determined whether these results can be extrapolated to human dental pulp by investigating the effects of CM-induced MMP-3 up-regulation on the proliferation and apoptosis of purified odontoblast-like cells derived from human skeletal muscle stem cells. We used siRNA to specifically reduce MMP-3 expression. We found that CM treatment increased MMP-3 mRNA and protein levels as well as MMP-3 activity. Cell proliferation was also markedly increased, with no changes in apoptosis, upon treatment with CM and following the application of exogenous MMP-3. Endogenous tissue inhibitors of metalloproteinases were constitutively expressed during all experiments and unaffected by MMP-3. Although treatment with MMP-3 siRNA suppressed cell proliferation, it also unexpectedly increased apoptosis. This siRNA-mediated increase in apoptosis could be reversed by exogenous MMP-3. These results demonstrate that cytokine-induced MMP-3 activity regulates cell proliferation and suppresses apoptosis in human odontoblast-like cells. - Highlights: • Pro-inflammatory cytokines induce MMP-3 activity in human odontoblast-like cells. • Increased MMP-3 activity can promote cell proliferation in odontoblasts. • Specific loss of MMP-3 increases apoptosis in odontoblasts. • MMP-3 has potential as a promising new target for pupal repair and regeneration.

  2. Methanogenic inhibition by arsenic compounds.

    Science.gov (United States)

    Sierra-Alvarez, Reyes; Cortinas, Irail; Yenal, Umur; Field, Jim A

    2004-09-01

    The acute acetoclastic methanogenic inhibition of several inorganic and organic arsenicals was assayed. Trivalent species, i.e., methylarsonous acid and arsenite, were highly inhibitory, with 50% inhibitory concentrations of 9.1 and 15.0 microM, respectively, whereas pentavalent species were generally nontoxic. The nitrophenylarsonate derivate, roxarsone, displayed moderate toxicity.

  3. Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Li Dan [Department of Genetics, National Research Institute for Family Planning, Beijing (China); Graduate School of Peking Union Medical College, Beijing (China); Lu Cailing [Department of Genetics, National Research Institute for Family Planning, Beijing (China); Wang Ju; Hu Wei; Cao Zongfu; Sun Daguang [Department of Genetics, National Research Institute for Family Planning, Beijing (China); Graduate School of Peking Union Medical College, Beijing (China); Xia Hongfei [Department of Genetics, National Research Institute for Family Planning, Beijing (China); Ma Xu [Department of Genetics, National Research Institute for Family Planning, Beijing (China) and Graduate School of Peking Union Medical College, Beijing (China) and Department of Reproductive Genetics, WHO Collaborative Center for Research in Human Reproduction, Beijing (China)], E-mail: genetic@263.net.cn

    2009-02-19

    Arsenic usually accumulates in soil, water and airborne particles, from which it is taken up by various organisms. Exposure to arsenic through food and drinking water is a major public health problem affecting some countries. At present there are limited laboratory data on the effects of arsenic exposure on early embryonic development and the mechanisms behind its toxicity. In this study, we used zebrafish as a model system to investigate the effects of arsenite on early development. Zebrafish embryos were exposed to a range of sodium arsenite concentrations (0-10.0 mM) between 4 and 120 h post-fertilization (hpf). Survival and early development of the embryos were not obviously influenced by arsenite concentrations below 0.5 mM. However, embryos exposed to higher concentrations (0.5-10.0 mM) displayed reduced survival and abnormal development including delayed hatching, retarded growth and changed morphology. Alterations in neural development included weak tactile responses to light (2.0-5.0 mM, 30 hpf), malformation of the spinal cord and disordered motor axon projections (2.0 mM, 48 hpf). Abnormal cardiac function was observed as bradycardia (0.5-2.0 mM, 60 hpf) and altered ventricular shape (2.0 mM, 48 hpf). Furthermore, altered cell proliferation (2.0 mM, 24 hpf) and apoptosis status (2.0 mM, 24 and 48 hpf), as well as abnormal genomic DNA methylation patterning (2.0 mM, 24 and 48 hpf) were detected in the arsenite-treated embryos. All of these indicate a possible relationship between arsenic exposure and developmental failure in early embryogenesis. Our studies suggest that the negative effects of arsenic on vertebrate embryogenesis are substantial.

  4. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan; Zhao, Yue; Xu, Wenchao; Luo, Fei; Wang, Bairu; Li, Yuan; Pang, Ying; Liu, Qizhan, E-mail: drqzliu@hotmail.com

    2013-10-15

    Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis. - Highlights: • Arsenite induces inflammation. • Arsenite-induced the increases of IL-6 and IL-8 via HIF-2α. • Inflammation is involved in arsenite-induced carcinogenesis.

  5. Cytokine-induced proapoptotic gene expression in insulin-producing cells is related to rapid, sustained, and nonoscillatory nuclear factor-kappaB activation

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Cardozo, Alessandra K; Crispim, Daisy

    2006-01-01

    Cytokines, such as IL-1beta and TNF-alpha, contribute to pancreatic beta-cell death in type 1 diabetes mellitus. The transcription factor nuclear factor-kappaB (NF-kappaB) mediates cytokine-induced beta-cell apoptosis. Paradoxically, NF-kappaB has mostly antiapoptotic effects in other cell types....

  6. Clinical efficacy of immunotherapy of dendritic cell and cytokine-induced killer cell combined with chemotherapy for treatment of multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    钟国成

    2013-01-01

    Objective This research was aimed to evaluate the immune mechanism and clinical effect of immunotherapy of dendritic cells(DC) and cytokine-induced killer cell(CIK) combined with chemotherapy on multiple myeloma(MM). Methods 60 patients with MM were randomly

  7. Spontaneous and cytokine induced expression and activity of matrix metalloproteinases in human colonic epithelium

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Kirkegaard, T;

    2009-01-01

    for MMP cleavage. HT-29 and DLD-1 expressed several MMPs and levels of MMP-3, -10 and -13 mRNA expression were increased significantly by tumour necrosis factor (TNF)-alpha exposure. Transcripts of MMP-1, -3, -7, -9, -10 and -12 were detected in CECs and all, except MMP12, at significantly increased...... levels in cells from inflamed IBD mucosa. MMP-2 and -8 mRNA were expressed inconsistently and MMP-11, -13 and -14 mRNA undetectable. Proteolytic MMP activity was detected in CEC supernatants and the level was increased significantly in inflamed IBD epithelium. The enzyme activity was inhibited strongly...... by a specific MMP inhibitor (GM 6001). A significant TNF-alpha-mediated increase in MMP enzyme activity was also detected in HT-29 cells in vitro. In conclusion, the expression of several MMPs as well as the level of functional MMPactivity is increased in CEC from patients with active IBD. The results suggest...

  8. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1

    Science.gov (United States)

    Oremland, R.S.; Hoeft, S.E.; Santini, J.M.; Bano, N.; Hollibaugh, R.A.; Hollibaugh, J.T.

    2002-01-01

    Arsenite [As(III)]-enriched anoxic bottom water from Mono Lake, California, produced arsenate [As(V)] during incubation with either nitrate or nitrite. No such oxidation occurred in killed controls or in live samples incubated without added nitrate or nitrite. A small amount of biological As(III) oxidation was observed in samples amended with Fe(III) chelated with nitrolotriacetic acid, although some chemical oxidation was also evident in killed controls. A pure culture, strain MLHE-1, that was capable of growth with As(III) as its electron donor and nitrate as its electron acceptor was isolated in a defined mineral salts medium. Cells were also able to grow in nitrate-mineral salts medium by using H2 or sulfide as their electron donor in lieu of As(III). Arsenite-grown cells demonstrated dark 14CO2 fixation, and PCR was used to indicate the presence of a gene encoding ribulose-1,5-biphosphate carboxylase/oxygenase. Strain MLHE-1 is a facultative chemoautotroph, able to grow with these inorganic electron donors and nitrate as its electron acceptor, but heterotrophic growth on acetate was also observed under both aerobic and anaerobic (nitrate) conditions. Phylogenetic analysis of its 16S ribosomal DNA sequence placed strain MLHE-1 within the haloalkaliphilic Ectothiorhodospira of the ??-Proteobacteria. Arsenite oxidation has never been reported for any members of this subgroup of the Proteobacteria.

  9. Intestinal ellagitannin metabolites ameliorate cytokine-induced inflammation and associated molecular markers in human colon fibroblasts.

    Science.gov (United States)

    Giménez-Bastida, Juan A; Larrosa, Mar; González-Sarrías, Antonio; Tomás-Barberán, Francisco; Espín, Juan C; García-Conesa, María-Teresa

    2012-09-12

    Pomegranate ellagitannins (ETs) are transformed in the gut to ellagic acid (EA) and its microbiota metabolites, urolithin A (Uro-A) and urolithin B (Uro-B). These compounds exert anti-inflammatory effects in vitro and in vivo. The aim of this study was to investigate the effects of Uro-A, Uro-B, and EA on colon fibroblasts, cells that play a key role in intestinal inflammation. CCD18-Co colon fibroblasts were exposed to a mixture of Uro-A, Uro-B, and EA, at concentrations comparable to those found in the colon (40 μM Uro-A, 5 μM Uro-B, 1 μM EA), both in the presence or in the absence of IL-1β (1 ng/mL) or TNF-α (50 ng/mL), and the effects on fibroblast migration and monocyte adhesion were determined. The levels of several growth factors and adhesion cytokines were also measured. The mixture of metabolites significantly inhibited colon fibroblast migration (∼70%) and monocyte adhesion to fibroblasts (∼50%). These effects were concomitant with a significant down-regulation of the levels of PGE(2), PAI-1, and IL-8, as well as other key regulators of cell migration and adhesion. Of the three metabolites tested, Uro-A exhibited the most significant anti-inflammatory effects. The results show that a combination of the ET metabolites found in colon, urolithins and EA, at concentrations achievable in the intestine after the consumption of pomegranate, was able to moderately improve the inflammatory response of colon fibroblasts and suggest that consumption of ET-containing foods has potential beneficial effects on gut inflammatory diseases.

  10. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis.

    Science.gov (United States)

    Liu, Wen-Ju; Wood, B Alan; Raab, Andrea; McGrath, Steve P; Zhao, Fang-Jie; Feldmann, Jörg

    2010-04-01

    Complexation of arsenite [As(III)] with phytochelatins (PCs) is an important mechanism employed by plants to detoxify As; how this complexation affects As mobility was little known. We used high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray ionization-mass spectrometry coupled to HPLC to identify and quantify As(III)-thiol complexes and free thiol compounds in Arabidopsis (Arabidopsis thaliana) exposed to arsenate [As(V)]. As(V) was efficiently reduced to As(III) in roots. In wild-type roots, 69% of As was complexed as As(III)-PC4, As(III)-PC3, and As(III)-(PC2)2. Both the glutathione (GSH)-deficient mutant cad2-1 and the PC-deficient mutant cad1-3 were approximately 20 times more sensitive to As(V) than the wild type. In cad1-3 roots, only 8% of As was complexed with GSH as As(III)-(GS)3 and no As(III)-PCs were detected, while in cad2-1 roots, As(III)-PCs accounted for only 25% of the total As. The two mutants had a greater As mobility, with a significantly higher accumulation of As(III) in shoots and 4.5 to 12 times higher shoot-to-root As concentration ratio than the wild type. Roots also effluxed a substantial proportion of the As(V) taken up as As(III) to the external medium, and this efflux was larger in the two mutants. Furthermore, when wild-type plants were exposed to l-buthionine sulfoximine or deprived of sulfur, both As(III) efflux and root-to-shoot translocation were enhanced. The results indicate that complexation of As(III) with PCs in Arabidopsis roots decreases its mobility for both efflux to the external medium and for root-to-shoot translocation. Enhancing PC synthesis in roots may be an effective strategy to reduce As translocation to the edible organs of food crops.

  11. Increased Efficacy of Brentuximab Vedotin (SGN-35) in Combination with Cytokine-Induced Killer Cells in Lymphoma

    Science.gov (United States)

    Esser, Laura; Weiher, Hans; Schmidt-Wolf, Ingo

    2016-01-01

    Brentuximab vedotin (SGN-35) is an antibody–drug conjugate with a high selectivity against CD30+ cell lines and more than 300-fold less activity against antigen-negative cells. In the last years, the results of many in vitro and in vivo studies have led to the fast approval of this drug to treat lymphoma patients. Another innovative method to treat tumor cells including lymphoma cells is the use cytokine-induced killer (CIK) cells, which have also been approved and proven to be a safe treatment with only minor adverse events. In this study, a possible additive effect when combining SGN-35 with CIK cells was investigated. The combinational treatment showed that it reduces the viability of CD30+ cell lines significantly in vitro. Additionally, the amount of lymphoma cells was significantly reduced when exposed to CIK cells as well as when exposed to SGN-35. A significant negative effect of SGN-35 on the function of CIK cells could be excluded. These results lead to the assumption that SGN-35 and CIK cells in combination might achieve better results in an in vitro setting compared to the single use of SGN-35 and CIK cells. Further investigations in in vivo models must be conducted to obtain a better understanding of the exact mechanisms of both treatments when applied in combination. PMID:27376285

  12. HSF-1 is involved in attenuating the release of inflammatory cytokines induced by LPS through regulating autophagy.

    Science.gov (United States)

    Tong, Zhongyi; Jiang, Bimei; Zhang, Lingli; Liu, Yanjuan; Gao, Min; Jiang, Yu; Li, Yuanbin; Lu, Qinglan; Yao, Yongming; Xiao, Xianzhong

    2014-05-01

    Autophagy plays a protective role in endotoxemic mice. Heat shock factor 1 (HSF-1) also plays a crucial protective role in endotoxemic mice by decreasing inflammatory cytokines. The purpose of this study was to determine whether HSF-1 is involved in attenuating the release of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated mice and peritoneal macrophages (PMs) through regulating autophagy activity. Autophagosome formation in HSF-1(+/+) and HSF-1(-/-) mice and PMs stimulated by LPS was examined by Western blotting and immunofluorescence. Lipopolysaccharide-induced autophagy and inflammatory cytokines were examined in HSF-1(+/+) and HSF-1(-/-) PMs treated with 3-methyladenine (3-MA) or rapamycin. Results showed that LPS-induced autophagy was elevated transiently at 12 h but declined at 24 h in the livers and lungs of mice. Higher levels of inflammatory cytokines and lower autophagy activity were detected in HSF-1(-/-) mice and PMs compared with HSF-1(+/+) mice and PMs. Interestingly, LPS-induced release of inflammatory cytokines did not further increase in HSF-1(-/-) PMs treated with 3-MA but aggravated in HSF-1(+/+) PMs. Lipopolysaccharide-induced autophagy did not decrease in HSF-1(-/-) PMs treated with 3-MA but decreased in HSF-1 PMs(+/+). Taken together, our results suggested that HSF-1 attenuated the release of inflammatory cytokines induced by LPS by regulating autophagy activity.

  13. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  14. The role of germline promoters and I exons in cytokine-induced gene-specific class switch recombination.

    Science.gov (United States)

    Dunnick, Wesley A; Shi, Jian; Holden, Victoria; Fontaine, Clinton; Collins, John T

    2011-01-01

    Germline transcription precedes class switch recombination (CSR). The promoter regions and I exons of these germline transcripts include binding sites for activation- and cytokine-induced transcription factors, and the promoter regions/I exons are essential for CSR. Therefore, it is a strong hypothesis that the promoter/I exons regions are responsible for much of cytokine-regulated, gene-specific CSR. We tested this hypothesis by swapping the germline promoter and I exons for the murine γ1 and γ2a H chain genes in a transgene of the entire H chain C-region locus. We found that the promoter/I exon for γ1 germline transcripts can direct robust IL-4-induced recombination to the γ2a gene. In contrast, the promoter/I exon for the γ2a germline transcripts works poorly in the context of the γ1 H chain gene, resulting in expression of γ1 H chains that is type level. Nevertheless, the small amount of recombination to the chimeric γ1 gene is induced by IFN-γ. These results suggest that cytokine regulation of CSR, but not the magnitude of CSR, is regulated by the promoter/I exons.

  15. Cytokine-induced killer cells interact with tumor lysate-pulsed dendritic cells via CCR5 signaling.

    Science.gov (United States)

    Lee, Hong Kyung; Kim, Yong Guk; Kim, Ji Sung; Park, Eun Jae; Kim, Boyeong; Park, Ki Hwan; Kang, Jong Soon; Hong, Jin Tae; Kim, Youngsoo; Han, Sang-Bae

    2016-08-10

    The antitumor activity of cytokine-induced killer (CIK) cells can be increased by co-culturing them with tumor lysate-pulsed dendritic cells (tDCs); this phenomenon has been studied mainly at the population level. Using time-lapse imaging, we examined how CIK cells gather information from tDCs at the single-cell level. tDCs highly expressed CCL5, which bound CCR5 expressed on CIK cells. tDCs strongly induced migration of Ccr5(+/+) CIK cells, but not that of Ccr5(-/-) CIK cells or Ccr5(+/+) CIK cells treated with the CCR5 antagonist Maraviroc. Individual tDCs contacted Ccr5(+/+) CIK cells more frequently and lengthily than with Ccr5(-/-) CIK cells. Consequently, tDCs increased the antitumor activity of Ccr5(+/+) CIK cells in vitro and in vivo, but did not increase that of Ccr5(-/-) CIK cells. Taken together, our data provide insight into the mechanism of CIK cell activation by tDCs at the single-cell level.

  16. [Curative effect of decitabine combined with cytokine-induced killer cells in two elderly patients with acute myeloid leukemia].

    Science.gov (United States)

    Chang, Cheng; Yang, Bo; Zhang, Lin; Zhu, Hong-Li; Lu, Xue-Chun; Guo, Bo; Cai, Li-Li; Han, Wei-Dong; Wang, Yao; Fan, Hui; Li, Su-Xia; Liu, Yang; Yang, Yang; Zhai, Bing; Ran, Hai-Hong; Lin, Jie; Zhang, Feng

    2013-02-01

    This study was aimed to evaluate the effectiveness and safety of low methylation drug decitabine combined with autologous cytokine induced killer cells (CIK) to treat the elderly patients with acute myeloid leukemia (AML). Two AML patients aged over 80 years old were diagnosed and treated in our department from 2006 to 2012; both company with MDS history, and one case was M4-type, another case was M6-type according to FAB classification. The changes in lymphocyte subsets, hematologic response, transfusion frequency, leukemic gene expression, obtaining CR or PR, quality of life and survival time of the patients with different treatment regimen (decitabine alone; CIK alone; decitabine combined with CIK) were systematically observed. The results showed that therapy of decitabine combined with CIK cells could reduce bone marrow suppression extent, decrease the frequency and volume of blood transfusion, and prolong the duration of partial remission, compared with the single use of CIK cell infusion and single use of decitabine treatment. Meanwhile, the kinds of expressed genes associated with leukemia decreased and the survival time was prolonged obviously. The patients' life quality significantly improved. It is concluded that decitabine combined with CIK for treatment of elderly patients with AML is safe and effective.

  17. Suppressor of cytokine signaling 1 protects rat pancreatic islets from cytokine-induced apoptosis through Janus kinase/signal transducers and activators of transcription pathway

    Institute of Scientific and Technical Information of China (English)

    SUN Qi; XIANG Ruo-lan; YANG Yan-li; FENG Kai; ZHANG Kui; DING Wen-yi

    2013-01-01

    Background Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytokine signaling pathway involved in negative feedback loops.Although SOCS1 is an important intracellular suppressor of apoptosis in a variety of cell types,its role in cytokine-induced pancreatic β-cell apoptosis remains unclear.The present study investigated potential effects of SOCS1 on the cytokine-induced pancreatic β-cell apoptosis.Methods After successfully transfected with SOCS1/pEGFP-C1 or pEGFP-C1 plasmids to overexpress SOCS1,RINm5F (rat insulinoma cell line) cells were exposed to cytokines,interferon (IFN)-γ alone,IFN-γ+interleukin (IL)-1β,IFN-y+IL-1β+tumor necrosis factor (TNF)-α respectively.Pancreatic β-cell apoptosis was assessed by using MTT,FACS,and caspase-3 activity assays.Protein phosphorylation of Janus kinase 2 (JAK2) and signal transducers and activators of transcription 1 (STAT1) were verified by Western blotting and mRNA expression of inducible nitric oxide synthase (iNOS),NF-κB and Fas were analyzed by RT-PCR.Results Overexpression of SOCS1 in RINm5F cells was shown to attenuate IFN-γ alone,IFN-γ+IL-1β and IFN-γ+TNF-α+IL-1β mediated apoptosis.Phosphorylation of JAK2 and STAT1 significantly decreased in RINm5F cells which overexpressed SOCS1 protein.Overexpression of SOCS1 significantly suppressed cytokine-induced iNOS mRNA levels.Conclusion Overexpression of SOCS1 protects pancreatic islets from cytokine-induced cell apoptosis via the JAK2/STAT1 pathway.

  18. Autologous cytokine-induced killer cells therapy on the quality of life of patients with breast cancer after adjuvant chemotherapy: A prospective study

    Institute of Scientific and Technical Information of China (English)

    梁雪峰

    2013-01-01

    Objective To explore the effect of autologous cytokine-induced killer cells on the quality of life in patient with breast cancer who have already finished the adjuvant chemotherapy.Methods One hundred and twenty-eight postoperative patients with breast cancer who underwent anthracycline-based adjuvant chemotherapy were enrolled in this prospective study,and they were randomized into2 groups,i.e.,treatment group,which received the therapy of CIK cells transfusion,and control group,

  19. Aqueous and ethanolic leaf extracts of Ocimum basilicum (sweet basil) protect against sodium arsenite-induced hepatotoxicity in Wistar rats.

    Science.gov (United States)

    Gbadegesin, M A; Odunola, O A

    2010-11-25

    We evaluated the effects of aqueous and ethanolic leaf extracts of Ocimum basilicum (sweet basil) on sodium arsenite-induced hepatotoxicity in Wistar rats. We observed that treatment of the animals with the extracts before or just after sodium arsenite administration significantly (p basilicum before the administration of sodium arsenite resulted in the attenuation of the sodium arsenite-induced aspartate and alanine aminotransferase activities: ALT (from 282.6% to 167.7% and 157.8%), AST (from 325.1% to 173.5% and 164.2%) for the group administered sodium arsenite alone, the aqueous extracts plus sodium arsenite, and ethanolic extracts plus sodium arsenite respectively, expressed as percentage of the negative control. These findings support the presence of hepatoprotective activity in the O.basilicum extracts.

  20. Influence of autologous dendritic cells on cytokine-induced killer cell proliferation, cell phenotype and antitumor activity in vitro.

    Science.gov (United States)

    Cao, Jingsong; Chen, Cong; Wang, Yuhuan; Chen, Xuecheng; Chen, Zeying; Luo, Xiaoling

    2016-09-01

    Dendritic cell (DCs) are essential antigen processing and presentation cells that play a key role in the immune response. In this study, DCs were co-cultured with cytokine-induced killer cells (DC-CIKs) in vitro to detect changes in cell proliferation, cell phenotype and cell cytotoxicity. The results revealed that the DCs were suitable for co-culture with CIKs at day 7, and that cell quantity of DC-CIKs was lower than that of CIKs until day 11, but it was significantly improved to 1.17-fold that of CIKs at day 13. Flow cytometry was used to detect the cell phenotype of CIKs and DC-CIKs. Compared with CIKs at day 13, the percentage of CD3(+), CD3(+)CD4(+), CD3(+)CD8(+) and CD3(+)CD56(+) T cells in DC-CIKs was significantly improved 1.02, 1.79, 1.26 and 2.44-fold, respectively. In addition, trypan blue staining analysis demonstrated that the cell viability of CIKs and DC-CIKs was 96% and 98%, respectively. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis verified that CIK and DC-CIK cytotoxicity in Hela cells was 58% and 80%, respectively, with a significant difference. Taken together, our results indicate that the cell proliferation, cell phenotype and antitumor activity of CIKs were all enhanced following co-culture with DCs in vitro. These results are likely to be useful for DC-CIK application in antitumor therapies.

  1. Curative Effects of Dendritic Cells Combined with Cytokine-Induced Killer Cells in Patients with Malignant Pericardial Effusion

    Science.gov (United States)

    Wang, Hongmin; Cui, Yuzhong; Wang, Sheng; Zhao, Rusen; Sun, Ming

    2016-01-01

    Background To determine the effects of dendritic cells (DCs) and cytokine-induced killer (CIK) cells in patients with malignant pericardial effusion. Material/Methods All patients underwent pericardial puncture and indwelling catheter insertion. After pericardial drainage, the 16 patients in the treatment group received an infusion of 20 mL DCs and CIK cells (>1.0×1010 cells) and 500,000 U interleukin (IL)-2 for 3 successive days. The 15 control-group patients received 30 mg/m2 cisplatin and 500,000 U IL-2 for 3 successive days. The treatment effects were assessed using imaging data. Results The total efficiency and complete remission rates were higher in the treatment group than in the control group at 4 weeks (total efficiency: 87.50% vs. 73.33%; complete remission: 62.50% vs. 46.67%) and 3 months after the treatment (total efficiency: 81.25% vs. 66.67%; complete remission: 50.00% vs. 40.00%; P<0.05 for all). In both groups, the Karnofsky scores for quality of life improved after treatment. However, the curative effects were better in the treatment group than in the control group (P<0.05). The following adverse reactions occurred: fever, 6 treatment-group patients and 3 control-group patients; chest pain, 2 treatment-group patients and 7 control-group patients; gastrointestinal reactions, 1 treatment-group patient and 6 control-group patients; and bone marrow suppression, 1 treatment-group patient and 5 control-group patients. The between-group differences in adverse reactions were significant (P<0.05). Conclusions The combination of DCs and CIK cells effectively treated malignant pericardial effusion, produced few side effects, and improved the patients’ quality of life. PMID:27806024

  2. Arsenite exposure accelerates aging process regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans.

    Science.gov (United States)

    Yu, Chan-Wei; How, Chun Ming; Liao, Vivian Hsiu-Chuan

    2016-05-01

    Arsenic is a known human carcinogen and high levels of arsenic contamination in food, soils, water, and air are of toxicology concerns. Nowadays, arsenic is still a contaminant of emerging interest, yet the effects of arsenic on aging process have received little attention. In this study, we investigated the effects and the underlying mechanisms of chronic arsenite exposure on the aging process in Caenorhabditis elegans. The results showed that prolonged arsenite exposure caused significantly decreased lifespan compared to non-exposed ones. In addition, arsenite exposure (100 μM) caused significant changes of age-dependent biomarkers, including a decrease of defecation frequency, accumulations of intestinal lipofuscin and lipid peroxidation in an age-dependent manner in C. elegans. Further evidence revealed that intracellular reactive oxygen species (ROS) level was significantly increased in an age-dependent manner upon 100 μM arsenite exposure. Moreover, the mRNA levels of transcriptional makers of aging (hsp-16.1, hsp-16.49, and hsp-70) were increased in aged worms under arsenite exposure (100 μM). Finally, we showed that daf-16 mutant worms were more sensitive to arsenite exposure (100 μM) on lifespan and failed to induce the expression of its target gene sod-3 in aged daf-16 mutant under arsenite exposure (100 μM). Our study demonstrated that chronic arsenite exposure resulted in accelerated aging process in C. elegans. The overproduction of intracellular ROS and the transcription factor DAF-16/FOXO play roles in mediating the accelerated aging process by arsenite exposure in C. elegans. This study implicates a potential ecotoxicological and health risk of arsenic in the environment.

  3. Effect of arsenite-oxidizing bacterium B. laterosporus on arsenite toxicity and arsenic translocation in rice seedlings.

    Science.gov (United States)

    Yang, Gui-Di; Xie, Wan-Ying; Zhu, Xi; Huang, Yi; Yang, Xiao-Jun; Qiu, Zong-Qing; Lv, Zhen-Mao; Wang, Wen-Na; Lin, Wen-Xiong

    2015-10-01

    Arsenite [As (III)] oxidation can be accelerated by bacterial catalysis, but the effects of the accelerated oxidation on arsenic toxicity and translocation in rice plants are poorly understood. Herein we investigated how an arsenite-oxidizing bacterium, namely Brevibacillus laterosporus, influences As (III) toxicity and translocation in rice plants. Rice seedlings of four cultivars, namely Guangyou Ming 118 (GM), Teyou Hang II (TH), Shanyou 63 (SY) and Minghui 63 (MH), inoculated with or without the bacterium were grown hydroponically with As (III) to investigate its effects on arsenic toxicity and translocation in the plants. Percentages of As (III) oxidation in the solutions with the bacterium (100%) were all significantly higher than those without (30-72%). The addition of the bacterium significantly decreased As (III) concentrations in SY root, GM root and shoot, while increased the As (III) concentrations in the shoot of SY, MH and TH and in the root of MH. Furthermore, the As (III) concentrations in the root and shoot of SY were both the lowest among the treatments with the bacterium. On the other hand, its addition significantly alleviated the As (III) toxicity on four rice cultivars. Among the treatments amended with B. laterosporus, the bacterium showed the best remediation on SY seedlings, with respect to the subdued As (III) toxicity and decreased As (III) concentration in its roots. These results indicated that As (III) oxidation accelerated by B. laterosporus could be an effective method to alleviate As (III) toxicity on rice seedlings.

  4. Arsenite Sorption by Drinking-Water Treatment Residuals: Redox Effects

    Science.gov (United States)

    Makris, K. C.; Sarkar, D.; Datta, R.

    2005-05-01

    Arsenic (As) is a major human carcinogen and could pose a serious human health risk at concentrations as low as 50 ppb in drinking water. Elevated As concentrations in soils currently used for residential purposes (located on former agricultural lands amended with arsenical pesticides) have increased the possibility of human contact with soil-As. Studies have shown that As bioavailability in the environment is primarily a function of its chemical speciation, which depends upon the redox potential. Arsenic toxicity and carcinogenicity to living organisms is primarily due to exposure to the reduced species of As - arsenite, i.e., As(III), rather than the oxidized species - arsenate, i.e., As(V); the mobility of As(III) is much higher than As(V). One of the most promising methods to decrease the mobility of arsenite in the soil-water system is promoting its retention onto amorphous Fe/Al hydroxides. Drinking-Water Treatment Residuals (WTRs) are an inexpensive source of such Fe/Al hydroxides, which can be land-applied following the USEPA-regulated biosolids application rules. The WTRs are byproducts of drinking-water purification processes and generally contain sediment, organic carbon, and Al/Fe hydroxides. The hydroxides are typically amorphous and have tremendous affinity for oxyanions (e.g., arsenate). Preliminary work showed that WTRs are characterized by large internal surface area and porosity that partly explains their high affinity for As(V). The current study examines the potential of two WTRs (Fe-based and Al-based) to adsorb arsenite from solution. We hypothesize that As(III) adsorption onto the Fe-based WTR (whose stability is highly redox-sensitive) would be vastly different from the adsorption of As(III) onto the redox-insensitive Al-based WTR. Our main objective is to characterize As(III) sorption by both Fe- and Al-based WTRs by changing critical factors, such as the solid:solution ratio, contact time, and initial As(III) load. Results from this study

  5. Thymoglobulin, interferon-γ and interleukin-2 efficiently expand cytokine-induced killer (CIK cells in clinical-grade cultures

    Directory of Open Access Journals (Sweden)

    Corallo Maria

    2010-12-01

    Full Text Available Abstract Background Cytokine-induced killer (CIK cells are typically differentiated in vitro with interferon (IFN-γ and αCD3 monoclonal antibodies (mAb, followed by the repeated provision of interleukin (IL-2. It is presently unknown whether thymoglobulin (TG, a preparation of polyclonal rabbit γ immunoglobulins directed against human thymocytes, can improve the generation efficiency of CIK cells compared with αCD3 mAb in a clinical-grade culture protocol. Methods Peripheral blood mononuclear cells (PBMC from 10 healthy donors and 4 patients with solid cancer were primed with IFN-γ on day 0 and low (50 ng/ml, intermediate (250 ng/ml and high (500 ng/ml concentrations of either αCD3 mAb or TG on day 1, and were fed with IL-2 every 3 days for 21 days. Aliquots of cells were harvested weekly to monitor the expression of representative members of the killer-like immunoglobulin receptor (KIR, NK inhibitory receptor, NK activating receptor and NK triggering receptor families. We also quantified the frequency of bona fide regulatory T cells (Treg, a T-cell subset implicated in the down-regulation of anti-tumor immunity, and tested the in vitro cytotoxic activity of CIK cells against NK-sensitive, chronic myeloid leukaemia K562 cells. Results CIK cells expanded more vigorously in cultures supplemented with intermediate and high concentrations of TG compared with 50 ng/ml αCD3 mAb. TG-driven CIK cells expressed a constellation of NK activating/inhibitory receptors, such as CD158a and CD158b, NKp46, NKG2D and NKG2A/CD94, released high quantities of IL-12p40 and efficiently lysed K562 target cells. Of interest, the frequency of Treg cells was lower at any time-point compared with PBMC cultures nurtured with αCD3 mAb. Cancer patient-derived CIK cells were also expanded after priming with TG, but they expressed lower levels of the NKp46 triggering receptor and NKG2D activating receptor, thus manifesting a reduced ability to lyse K562 cells

  6. Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Fu-Sheng Wang; Ming-Xu Liu; Bing Zhang; Ming Shi; Zhou-Yun Lei; Wen-Bing Sun; Qing-You Du; Ju-Mei Chen

    2002-01-01

    AIM: To characterize the anticancer function of cytokine-induced killer cells (CIK) and develop an adoptiveimmunotherapy for the patients with primary hepatocellularcarcinoma (HCC), we evaluated the proliferation rate,phenotype and the antitumor activity of human CIK cellsfrom healthy donors and HCC patients in vitro and in vivo.METHODS: Peripheral blood mononuclear cells (PBMC) fronhealthy donors and patients with primary HCC were incubatedin vitro and induced into ClK cells in the presence of variouscytokines such as interferon-gamma (IFN-γ), interleukin-1(IL-1), IL-2, and monoclonal antibody (mAb) against CD3.The phenotype and characterization of CIK cells wereidentified by flow cytometric analysis. The cytotoxicity of CIKcells was determined by 51 Cr release assay.RESULTS: The CIK cells were shown to be a heterogeneouspopulation with different cellular phenotypes. Thepercentage of CD3+/CD56+ positive cells, the dominanteffector cells, in total CIK cells from healthy donors andHCC patients, significantly increased from 0.1-0.13 % at day0 to 19.0-20.5 % at day 21 incubation, which suggested thatthe CD3+ CD56+ positive cells proliferated faster than othercell populations of CIK cells in the protocol used in thisstudy. After 28 day in vitro incubation, the ClK cells frompatients with HCC and healthy donors increased by morethan 300-fold and 500-fold in proliferation cell number,respectively. CIK cells originated from HCC patientspossessed a higher in vitro antitumor cytotoxic activity onautologous HCC cells than the autologous lymphokine-activated killer (LAK) cells and PBMC cells. In in vivoanimal experiment, CIK cells had stronger effects on theinhibition of tumor growth in Balb/c nude mice bearing BEL-7402-producing tumor than LAK cells (mean inhibitory rate,84.7 % vs 52.8 %, P < 0.05) or PBMC (mean inhibitoryrate, 84.7% vs37.1%, P<0.01).CONCLUSION: Autologous CIK cells are of highly efficientcytotoxic effector cells against primary hepatocellularcarcinoma

  7. Altered Hepatic Transport by Fetal Arsenite Exposure in Diet-Induced Fatty Liver Disease.

    Science.gov (United States)

    Ditzel, Eric J; Li, Hui; Foy, Caroline E; Perrera, Alec B; Parker, Patricia; Renquist, Benjamin J; Cherrington, Nathan J; Camenisch, Todd D

    2016-07-01

    Non-alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet-induced fatty liver disease. This study examines the effects of arsenite potentiated diet-induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet-only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.

  8. COMPARATIVE GENOTOXIC RESPONSES TO ARSENITE IN GUINEA PIG, MOUSE, RAT AND HUMAN LYMPHOCYTES

    Science.gov (United States)

    Comparative genotoxic responses to arsenite in guinea pig, mouse, rat and human lymphocytes.Inorganic arsenic is a known human carcinogen causing skin, lung, and bladder cancer following chronic exposures. Yet, long-term laboratory animal carcinogenicity studies have ...

  9. Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells.

    Science.gov (United States)

    Naranmandura, Hua; Ogra, Yasumitsu; Iwata, Katsuya; Lee, Jane; Suzuki, Kazuo T; Weinfeld, Michael; Le, X Chris

    2009-07-15

    Arsenic toxicity is dependent on its chemical species. In humans, the bladder is one of the primary target organs for arsenic-induced carcinogenicity. However, little is known about the mechanisms underlying arsenic-induced carcinogenicity, and what arsenic species are responsible for this carcinogenicity. The present study aimed at comparing the toxic effect of DMMTA(V) with that of inorganic arsenite (iAs(III)) on cell viability, uptake efficiency and production of reactive oxygen species (ROS) toward human bladder cancer EJ-1 cells. The results were compared with those of a previous study using human epidermoid carcinoma A431 cells. Although iAs(III) was known to be toxic to most cells, here we show that iAs(III) (LC(50)=112 microM) was much less cytotoxic than DMMTA(V) (LC(50)=16.7 microM) in human bladder EJ-1 cells. Interestingly, pentavalent sulfur-containing DMMTA(V) generated a high level of intracellular ROS in EJ-1 cells. However, this was not observed in the cells exposed to trivalent inorganic iAs(III) at their respective LC(50) dose. Furthermore, the presence of N-acetyl-cysteine completely inhibited the cytotoxicity of DMMTA(V) but not iAs(III), suggesting that production of ROS was the main cause of cell death from exposure to DMMTA(V), but not iAs(III). Because the cellular uptake of iAs(III) is mediated by aquaporin proteins, and because the resistance of cells to arsenite can be influenced by lower arsenic uptake due to lower expression of aquaporin proteins (AQP 3, 7 and 9), the expression of several members of the aquaporin family was also examined. In human bladder EJ-1 cells, mRNA/proteins of AQP3, 7 and 9 were not detected by reverse transcription polymerase chain reaction (RT-PCR)/western blotting. In A431 cells, only mRNA and protein of AQP3 were detected. The large difference in toxicity between the two cell lines could be related to their differences in uptake of arsenic species.

  10. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2012-10-15

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examined the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.

  11. Silymarin protects plasma membrane and acrosome integrity in sperm treated with sodium arsenite

    Directory of Open Access Journals (Sweden)

    Farzaneh Eskandari

    2016-01-01

    Full Text Available Background: Exposure to arsenic is associated with impairment of male reproductive function by inducing oxidative stress. Silymarin with an antioxidant property scavenges free radicals. Objective: The aim of this study was to investigate if silymarin can prevent the adverse effects of sodium arsenite on ram sperm plasma membrane and acrosome integrity. Materials and Methods: Ram epidydimal spermatozoa were divided into five groups: spermatozoa at 0 hr, spermatozoa at 180 min (control, spermatozoa treated with silymarin (20 μM + sodium arsenite (10 μM for 180 min, spermatozoa treated with sodium arsenite (10 μM for 180 min and spermatozoa treated with silymarin (20 μM for 180 min. Double staining of Hoechst and propidium iodide was performed to evaluate sperm plasma membrane integrity, whereas comassie brilliant blue staining was used to assess acrosome integrity. Results: Plasma membrane (p< 0.001 and acrosome integrity (p< 0.05 of the spermatozoa were significantly reduced in sodium arsenite group compared to the control. In silymarin + sodium arsenite group, silymarin was able to significantly (p< 0.001 ameliorate the adverse effects of sodium arsenite on these sperm parameters compared to sodium arsenite group. The incubation of sperm for 180 min (control group showed a significant (p< 0.001 decrease in acrosome integrity compared to the spermatozoa at 0 hour. The application of silymarin alone for 180 min could also significantly (p< 0.05 increase sperm acrosome integrity compared to the control. Conclusion: Silymarin as a potent antioxidant could compensate the adverse effects of sodium arsenite on the ram sperm plasma membrane and acrosome integrity.

  12. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11.

    Science.gov (United States)

    Koechler, Sandrine; Arsène-Ploetze, Florence; Brochier-Armanet, Céline; Goulhen-Chollet, Florence; Heinrich-Salmeron, Audrey; Jost, Bernard; Lièvremont, Didier; Philipps, Muriel; Plewniak, Frédéric; Bertin, Philippe N; Lett, Marie-Claire

    2015-04-01

    Pseudomonas xanthomarina S11 is an arsenite-oxidizing bacterium isolated from an arsenic-contaminated former gold mine in Salsigne, France. This bacterium showed high resistance to arsenite and was able to oxidize arsenite to arsenate at concentrations up to 42.72 mM As[III]. The genome of this strain was sequenced and revealed the presence of three ars clusters. One of them is located on a plasmid and is organized as an "arsenic island" harbouring an aio operon and genes involved in phosphorous metabolism, in addition to the ars genes. Neither the aioXRS genes nor a specific sigma-54-dependent promoter located upstream of aioBA genes, both involved in regulation of arsenite oxidase expression in other arsenite-oxidizing bacteria, could be identified in the genome. This observation is in accordance with the fact that no difference was observed in expression of arsenite oxidase in P. xanthomarina S11, whether or not the strain was grown in the presence of As[III].

  13. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.

    Science.gov (United States)

    Ma, Jian Feng; Yamaji, Naoki; Mitani, Namiki; Xu, Xiao-Yan; Su, Yu-Hong; McGrath, Steve P; Zhao, Fang-Jie

    2008-07-22

    Arsenic poisoning affects millions of people worldwide. Human arsenic intake from rice consumption can be substantial because rice is particularly efficient in assimilating arsenic from paddy soils, although the mechanism has not been elucidated. Here we report that two different types of transporters mediate transport of arsenite, the predominant form of arsenic in paddy soil, from the external medium to the xylem. Transporters belonging to the NIP subfamily of aquaporins in rice are permeable to arsenite but not to arsenate. Mutation in OsNIP2;1 (Lsi1, a silicon influx transporter) significantly decreases arsenite uptake. Furthermore, in the rice mutants defective in the silicon efflux transporter Lsi2, arsenite transport to the xylem and accumulation in shoots and grain decreased greatly. Mutation in Lsi2 had a much greater impact on arsenic accumulation in shoots and grain in field-grown rice than Lsi1. Arsenite transport in rice roots therefore shares the same highly efficient pathway as silicon, which explains why rice is efficient in arsenic accumulation. Our results provide insight into the uptake mechanism of arsenite in rice and strategies for reducing arsenic accumulation in grain for enhanced food safety.

  14. Cytokine-induced killer cell combination with TACE in the treatment of hepatocellular cancers:a meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Biao Chen; Ximing Xu; Miao Xiang; Jiao Yang; Tingting Yu; Yi Hu

    2013-01-01

    Objective:The aim of the study was to evaluate the ef icacy and safety of cytokine-induced kil er (CIK) cellcombined with transcatheter arterial chemoembolization (TACE) therapy in the treatment of hepatocellular carcinoma (HCC). Methods:Randomized control ed trials (RCTs) on CIK cells combination with TACE based-therapy were identified by elec-tronic searches in the Cochrane Library, MEDLINE, Pubmed, Wanfang, VIP, CNKI and other electronic databases. We in-cluded any RCTs evaluating CIK cellcombination with TACE for the treatment of hepatocellular cancers. The quality of RCTs meeting inclusion criteria was evaluated and data on short-term and long-term curative ef ects, quality of life, liver function and immunologic function were extracted. For quantitative data, we conducted meta-analysis with ReMan 5.1 software and the GRADE System was used to rate the level of evidence and strength of recommendation. For qualitative data, data mainly adopted descriptive methods. Results:The 9 RCTs involving 870 cases meeting the inclusion criteria were included. The meta-analysis showed significant survival benefit on 0.5-year survival rate (RR=1.51, 95%CI, 1.35-1.69, P<0.00001) in fa-vor of CIK based therapy. This ef ect was consistent at other prospective dates, including 1-year survival rate (RR=2.30, 95%CI, 1.94-2.72, P<0.00001), 2-year survival rate (RR=7.03, 95%CI, 3.83-12.91, P<0.0001). Meanwhile, the CIK-based group also demonstrated a significantly prolonged time-to-progression (TTP) (SD=1.62, 95%CI, 1.30-1.94, P<0.0001) and overal survival (OS) (SD=20.6, 95%CI, 20.2-21.18, P<0.0001). Moreover, a favored response rate (RR=CR+PR) (RR=2, 95%CI, 1.65-2.43, P<0.00001) and the quality of life improvement rate (KPS) (RR=1.76, 95%CI, 1.26-2.45, P=0.0008) were also observed in patients receiving CIK cells and TACE therapy. Furthermore, patients in the CIK group showed lower AFP (SD=-165.23, 95%CI,-178.51--151.94, P<0.00001), ALT (SD=-33.14, 95%CI,-40.30--36.37, P<0

  15. Arsenite alters heme synthesis in long-term cultures of adult rat hepatocytes.

    Science.gov (United States)

    Aguilar-González, M G; Hernández, A; López, M L; Mendoza-Figueroa, T; Albores, A

    1999-06-01

    Arsenite (As[III]) effects on the intermediate steps of heme biosynthesis were studied in adult rat hepatocytes seeded on a feeder layer of 3T3 cells (3T3-hepatocytes) and maintained for 2 weeks with culture medium non-supplemented or supplemented with 150 microM 5-aminolevulinic acid (ALA). The activities of the intracellular enzymes porphobilinogen deaminase (PBG-D), uroporphyrinogen III synthase (UROIII-S), and uroporphyrinogen III decarboxylase (URO-D), and the intermediary uroporphyrins (URO), coproporphyrins (COPRO) and protoporphyrin IX (PROTO) were determined in these cultures. The 3T3-hepatocytes maintained the activities of PBG-D, UROIII-S and URO-D during 2 weeks and ALA addition to the culture medium increased PBG-D (2-3-fold) and UROIII-S (50%) activities and porphyrin production, which accumulated as PROTO. Exposure to 3.9 microM As(III) inhibited UROIII-S activity (down to 34%), and PBG-D and URO-D activities to a lower extent; these effects were magnified by ALA supplementation. As(III) also produced an intracellular accumulation and a decreased excretion of PROTO, and a 31% reduction of the COPRO/URO ratio in the culture medium. Additionally, As(III) caused cytoplasmic vacuolization and lipid accumulation. Our results show that As(III) exposure selectively inhibits several intermediary enzymes of heme metabolism and affects the intra- and extracellular content of porphyrins and their ratio in the culture medium. They also confirm that 3T3-hepatocytes are a suitable in vitro model to study hepatic heme metabolism and its alterations by hepatotoxic chemicals.

  16. The defensive effect of benfotiamine in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Verma, Sanjali; Reddy, Krishna; Balakumar, Pitchai

    2010-10-01

    The present study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Sodium arsenite (1.5 mg(-1) kg(-1) day(-1) i.p., 2 weeks) was administered in rats to produce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating the serum and aortic concentrations of nitrite/nitrate. Further, the integrity of vascular endothelium in thoracic aorta was assessed by scanning electron microscopy. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of sodium arsenite markedly produced VED by attenuating acetylcholine-induced endothelium-dependent relaxation, decreasing serum and aortic concentrations of nitrite/nitrate, and impairing the integrity of vascular endothelium. Further, sodium arsenite produced oxidative stress by increasing serum TBARS and aortic superoxide generation. The treatment with benfotiamine (25, 50, and 100 mg(-1) kg(-1) day(-1) p.o.) or atorvastatin (30 mg(-1) kg(-1) day(-1) p.o., a standard agent) prevented sodium arsenite-induced VED and oxidative stress. However, the beneficial effects of benfotiamine in preventing the sodium arsenite-induced VED were attenuated by co-administration with N-omega-nitro-L: -arginine methyl ester (L: -NAME) (25 mg(-1) kg(-1) day(-1), i.p.), an inhibitor of NOS. Thus, it may be concluded that benfotiamine reduces oxidative stress and activates endothelial nitric oxide synthase to enhance the generation and bioavailability of NO and subsequently improves the integrity of vascular endothelium to prevent sodium arsenite-induced experimental VED.

  17. Physico chemical studies on the composition of complex arsenites of metals Part IV: conductometric and potentiometric studies on the composition of cadmium arsenite

    Directory of Open Access Journals (Sweden)

    M. S. Bhadraver

    1962-07-01

    Full Text Available The formation and precipitation of cadmium arsenite has been studied by conductometric and potentiometric titrations between cadmium nitrate and sodium arsenite (meta at different concentrations with either of the substances used as the reagent in titration. In the case of direct titrations (cadmium nitrate added to sodium arsenite in the conductivity cell, one distinct break in the curves is observed corresponding to the formation of the Cd (AsO/sub 2//sub 2/ where the molecular ratio is 2:1. The direct and reverse potentiometric titrations curves give one maxima in dE/dV at point corresponding to the formation of the complex Cd (AsO/sub/2/sub/2 where the molecular ratio of reactants Cd:AsO/sub/2 is 1:2. The composition has been arrived at by comparing the calculated values with observed values by conductometric and potentiometric titrations. The composition of cadmium arsenite arrived at both by conductometry and potentiometry is best representative as Cd(AsO/sub/2/sub/2

  18. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment.

  19. Efficacy of cytokine-induced killer cell infusion as an adjuvant immunotherapy for hepatocellular carcinoma: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Yu R

    2017-03-01

    Full Text Available Ruili Yu,1 Bo Yang,2 Xiaohua Chi,3 Lili Cai,4 Cui Liu,5 Lei Yang,6 Xueyan Wang,1 Peifeng He,7 Xuechun Lu2 1Department of Allergy, Beijing Shijitan Hospital, Affiliated to Capital Medical University, 2Department of Geriatric Hematology, Chinese PLA General Hospital, 3Department of Pharmacy, Chinese PLA Rocket Force General Hospital, 4Department of Geriatric Laboratory Medicine, 5Department of Geriatric Ultrasound, 6Medical Department, Nanlou Clinic, Chinese PLA General Hospital, Beijing, 7School of Medical Information Management, Shanxi Medical University, Taiyuan, People’s Republic of China Abstract: This study was designed to evaluate the efficacy and safety of cytokine-induced killer (CIK cell-based immunotherapy as an adjuvant therapy for hepatocellular carcinoma (HCC. Published studies were identified by searching Medline, Cochrane, EMBASE, and Google Scholar databases with the keywords: cytokine-induced killer cell, hepatocellular carcinoma, and immunotherapy. The outcomes of interest were overall survival, progression-free survival, and disease-free survival. Eight randomized controlled trials (RCTs, six prospective studies, and three retrospective studies were included. The overall analysis revealed that patients in the CIK cell-treatment group had a higher survival rate (pooled hazard ratio (HR =0.594, 95% confidence interval [CI] =0.501–0.703, P<0.001. Patients treated with CIK cells in non-RCTs had a higher progression-free survival rate (pooled HR =0.613, 95% CI =0.510–0.738, P<0.001. However, CIK cell-treated patients in RCTs had progression-free survival rates similar to those of the control group (pooled HR =0.700, 95% CI =0.452–1.084, P=0.110. The comparison between pooled results of RCTs and non-RCTs regarding the progression-free survival rate did not reach statistical significance. Patients in the CIK cell-treatment group had lower rates of relapse in RCTs (pooled HR =0.635, 95% CI =0.514–0.784, P<0.001. Similar

  20. Autecology of an arsenite chemolithotroph: sulfide constraints on function and distribution in a geothermal spring.

    Science.gov (United States)

    D'Imperio, Seth; Lehr, Corinne R; Breary, Michele; McDermott, Timothy R

    2007-11-01

    Previous studies in an acid-sulfate-chloride spring in Yellowstone National Park found that microbial arsenite [As(III)] oxidation is absent in regions of the spring outflow channel where H(2)S exceeds approximately 5 microM and served as a backdrop for continued efforts in the present study. Ex situ assays with microbial mat samples demonstrated immediate As(III) oxidation activity when H(2)S was absent or at low concentrations, suggesting the presence of As(III) oxidase enzymes that could be reactivated if H(2)S is removed. Cultivation experiments initiated with mat samples taken from along the H(2)S gradient in the outflow channel resulted in the isolation of an As(III)-oxidizing chemolithotroph from the low-H(2)S region of the gradient. The isolate was phylogenetically related to Acidicaldus and was characterized in vitro for spring-relevant properties, which were then compared to its distribution pattern in the spring as determined by denaturing gradient gel electrophoresis and quantitative PCR. While neither temperature nor oxygen requirements appeared to be related to the occurrence of this organism within the outflow channel, H(2)S concentration appeared to be an important constraint. This was verified by in vitro pure-culture modeling and kinetic experiments, which suggested that H(2)S inhibition of As(III) oxidation is uncompetitive in nature. In summary, the studies reported herein illustrate that H(2)S is a potent inhibitor of As(III) oxidation and will influence the niche opportunities and population distribution of As(III) chemolithotrophs.

  1. In vitro effect of sodium arsenite on Echinococcus granulosus protoscoleces.

    Science.gov (United States)

    Xing, Guoqiang; Wang, Bo; Lei, Ying; Liu, Chunli; Wang, Zhuo; Shi, Hongjuan; Yang, Rentan; Qin, Wenjuan; Jiang, Yufeng; Lv, Hailong

    2016-06-01

    Cystic echinococcosis (CE) caused by the metacestodes of Echinococcus granulosus is an important cosmopolitan zoonosis. Surgery is the main treatment option for CE. Meanwhile, chemotherapy is used as an significant adjunct to surgery. However, the benzimidazole carbamate group and the existing scolicidal agents may not be as effective as hoped. In this study, we aimed to explore the in vitro effect of sodium arsenite (NaAsO2) on Echinococcus granulosus protoscoleces, the causative agents of CE. Protoscoleces of E. granulosus were incubated in vitro with 4, 8, 12, 16, and 20μM NaAsO2. Viability and changes in morphology were investigated by 0.1% eosin staining. The ultrastructural alterations were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, caspase-3 activity was measured by colorimetric assay. Obvious protoscolicidal effect was seen with NaAsO2 at concentrations of 16μM and 20μM. Protoscolex mortality was 83.24% (16μM) and 100% (20μM) after 6 days post-incubation. SEM showed that the primary site of drug damage was the tegument of the protoscoleces. TEM analysis demonstrated that the internal tissues were severely affected and revealed an increase in the number of lipid droplets and vacuoles after treatment with 16μM NaAsO2. Meanwhile, the caspase-3 activity significantly increased in protoscoleces after 24h of NaAsO2 incubation compared to the untreated controls. Our study demonstrated the clear in vitro scolicidal effect of NaAsO2 against E. granulosus protoscoleces. However, the in vivo efficacy, specific mechanism, and any possible side effects of NaAsO2 remain to be investigated.

  2. [Effectiveness of arsenite adsorption by ferric and alum water treatment residuals with different grain sizes].

    Science.gov (United States)

    Lin, Lu; Xu, Jia-Rui; Wu, Hao; Wang, Chang-Hui; Pei, Yuan-Sheng

    2013-07-01

    Effectiveness of arsenite adsorption by ferric and alum water treatment residuals (FARs) with different grain sizes was studied. The results indicated that the content of active Fe and Al, the specific surface area and pore volume in FARs with different grain sizes were in the range of 523.72-1 861.72 mmol x kg(-1), 28.15-265.59 m2 x g(-1) and 0.03-0.09 cm3 x g(-1), respectively. The contents of organic matter, fulvic acid, humic acid and humin were in the range of 46.97-91.58 mg x kg(-1), 0.02-32.27 mg x kg(-1), 22.27-34.09 mg x kg(-1) and 10.76-34.22 mg x kg(-1), respectively. Results of SEM and XRD analysis further demonstrated that FARs with different grain sizes were amorphousness. Batch experiments suggested that both the pseudo-first-order and pseudo-second-order equations could well describe the kinetics adsorption processes of arsenite by FARs. Moreover, the contents of arsenite absorbed by FARs increased with the increase of arsenite concentrations. The theoretical saturated adsorption capacities calculated from Langmuir isotherm model were in the range of 6.72-21.79 mg x g(-1). Interestingly, pH showed little effect on the arsenite adsorption capability of FARs. The capability of FARs had a close relationship with their physicochemical properties. Correlation analysis showed that the active Fe and Al contents and pore volume had major effects on the arsenite adsorption capability of FARs.

  3. Effect of rosiglitazone in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Kaur, Tajpreet; Goel, Rajesh Kumar; Balakumar, Pitchai

    2010-04-01

    The present study has been designed to investigate the effect of rosiglitazone, a peroxisome proliferator activated receptor gamma agonist in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. The rats were administered sodium arsenite (1.5 mg/kg/day, i.p., 2 weeks) to induce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum nitrite/nitrate concentration. Further, the integrity of the aortic endothelium was assessed histologically using haematoxylin-eosin staining. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances, aortic reactive oxygen species and reduced form of glutathione. The administration of sodium arsenite produced VED by impairing acetylcholine-induced endothelium dependent relaxation, diminishing the integrity of vascular endothelium and decreasing the serum nitrite/nitrate concentration. In addition, sodium arsenite was noted to produce oxidative stress as it increased serum thiobarbituric acid reactive substances and aortic reactive oxygen species and consequently decreased glutathione. Treatment with rosiglitazone (3 mg/kg/day, p.o., 2 weeks and 5 mg/kg/day, p.o., 2 weeks) significantly prevented sodium arsenite-induced VED by enhancing acetylcholine-induced endothelium dependent relaxation, improving the integrity of vascular endothelium, increasing the nitrite/nitrate concentration and decreasing the oxidative stress. However, the vascular protective effect of rosiglitazone was markedly abolished by co-administration of nitric oxide synthase inhibitor, N-Omega-Nitro-L-Arginine Methyl Ester (L-NAME) (25 mg/kg/day, i.p., 2 weeks). Thus, it may be concluded that rosiglitazone reduces oxidative stress, activates eNOS and enhances the generation of nitric oxide to prevent sodium arsenite-induced VED in rats.

  4. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings.

    Science.gov (United States)

    Mishra, Shruti; Jha, A B; Dubey, R S

    2011-07-01

    The effects of arsenite treatment on generation of reactive oxygen species, induction of oxidative stress, response of antioxidative system, and synthesis of phytochelatins were investigated in two indica rice (Oryza sativa L.) cvs. Malviya-36 and Pant-12 grown in sand cultures for a period of 5-20 days. Arsenite (As(2)O(3); 25 and 50 μM) treatment resulted in increased formation of superoxide anion (O (2) (.-) ), elevated levels of H(2)O(2) and thiobarbituric acid reactive substances, showing enhanced lipid peroxidation. An enhanced level of ascorbate (AA) and glutathione (GSH) was observed irrespective of the variation in the level of dehydroascorbate (DHA) and oxidized glutathione (GSSG) which in turn influenced redox ratios AA/DHA and GSH/GSSG. With progressive arsenite treatment, synthesis of total acid soluble thiols and phytochelatins (PC) increased in the seedlings. Among antioxidative enzymes, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), total ascorbate peroxidase (APX, EC 1.11.1.11), chloroplastic ascorbate peroxidase, guaiacol peroxidase (EC 1.11.1.7), monodehydroascorbate reductase (EC 1.6.5.4), and glutathione reductase (EC 1.6.4.2) increased in arsenite treated seedlings, while dehyroascorbate reductase (EC 1.8.5.1) activity declined initially during 5-10 days and increased thereafter. Results suggest that arsenite treatment causes oxidative stress in rice seedlings, increases the levels of many enzymatic and non-enzymatic antioxidants, and induces synthesis of thiols and PCs, which may serve as important components in mitigating arsenite-induced oxidative damage.

  5. Requirement for C-X-C chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) in IgG immune complex-induced lung injury

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Warner, R L

    1997-01-01

    The C-X-C chemokines of the IL-8 family possess potent chemotactic activity for neutrophils, but their in vivo role in inflammatory responses is not well understood. In the IgG immune complex-induced model of acute lung inflammatory injury in the rat we have evaluated the roles of two rat...... chemokines, macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC). Both mRNA and protein for MIP-2 and CINC appeared in a time-dependent manner after initiation of IgG immune complex deposition in lung. There exists a 69% homology between the amino acid sequences...... by 125I-labeled albumin leakage from the pulmonary vasculature) and reduced neutrophil accumulation in the lung (as determined by myeloperoxidase (MPO content) and neutrophil counts in bronchoalveolar lavage (BAL) fluids); however, no change in TNF-alpha levels in BAL fluids was found. Chemotactic...

  6. Infusions of recipient-derived cytokine-induced killer cells of donor origin eradicated residual disease in a relapsed leukemia patient after allo-hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhao-dong; LUO Yi; ZOU Ping; ZHENG Jin-e; YAO Jun-xia; HUANG Shi-ang; ZHOU Dong-feng; YOU Yong

    2012-01-01

    A female patient diagnosed with acute myelocytic leukemia M5a (AML-M5a) relapsed 986 days after her allogeneic peripheral blood stem cell transplantation (allo-PBSCT) from an unrelated male donor with matched human leukocyte antigen (HLA).Three re-induction chemotherapies were administered,and partial remission was achieved.The patient was given repetitive infusion of cytokine-induced killer (CIK) cells expanded from recipient peripheral mononuclear cells of full donor chimerism due to loss of contact of quondam donor for donor lymphocyte infusion (DLI) and rejection of second transplantation.The patient achieved complete cytogenetical remission.This strategy might overcome the obstacle of donor unavailability and present an appealing new therapeutic alternative to donor-recruited adoptive immunotherapy for relapsed disease at post-transplantation.

  7. Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.

    Science.gov (United States)

    Thorsen, Michael; Lagniel, Gilles; Kristiansson, Erik; Junot, Christophe; Nerman, Olle; Labarre, Jean; Tamás, Markus J

    2007-06-19

    Arsenic is ubiquitously present in nature, and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative transcriptome, proteome, and sulfur metabolite profiling. Arsenite exposure affected transcription of genes encoding functions related to protein biosynthesis, arsenic detoxification, oxidative stress defense, redox maintenance, and proteolytic activity. Importantly, we observed that nearly all components of the sulfate assimilation and glutathione biosynthesis pathways were induced at both gene and protein levels. Kinetic metabolic profiling evidenced a significant increase in the pools of sulfur metabolites as well as elevated cellular glutathione levels. Moreover, the flux in the sulfur assimilation pathway as well as the glutathione synthesis rate strongly increased with a concomitant reduction of sulfur incorporation into proteins. By combining comparative genomics and molecular analyses, we pinpointed transcription factors that mediate the core of the transcriptional response to arsenite. Taken together, our data reveal that arsenite-exposed cells channel a large part of assimilated sulfur into glutathione biosynthesis, and we provide evidence that the transcriptional regulators Yap1p and Met4p control this response in concert.

  8. Adsorption and oxidation of arsenite by iron minerals in the presence of microorganisms

    Science.gov (United States)

    Perelomov, Leonid; Corsini, Anna; Andreoni, Vincenza

    2010-05-01

    It is known the two most commonly occurring forms of As in the environment are anionic arsenate [AsO43-, As(V)] and arsenite [AsO33-, As(III)]. Arsenite has been found to be the more mobile and toxic species in soil environments (Tamaki and Frankenberger, 1992). Arsenic speciation and toxicity are functions of pH, redox potential, the presence and type of adsorbing surfaces, and microbial populations. Biotransformation of arsenic species (reduction or oxidation) is mainly enzymatic process, while biosorption is metabolism independent process that governed by physico-chemical interactions on the cell surface. Special ternary bio-mineral systems, consisting of iron minerals (synthetic goethite, and magnetite, which was prepared by oxidation from special commercial product - nano-iron), special strains of arsenite-oxidizing microorganisms (Ancylobacter dichlorometanicus) and arsenite solution, were constructed and processes of arsenic compounds adsorption and oxidation were studied. As control experiments without microorganisms or without minerals were carried out. For determination of arsenic species, adsorbed on the surface of the minerals, desorption experiments were carried out also. Desorption ability of several chemicals, used for arsenic extraction from soils, was tested. Magnetite and goethite, with very small size of particles, have high chemical affinity to arsenite at wide range of pH values, but at pH above 9 adsorption of arsenite decreased in comparison with pH below of the isoelectric points of the minerals. We carried out experiments at initial pH 7,2. Experiments on kinetics of adsorption showed that equilibrium time for adsorption is 2 hours. In the ternary bio-mineral systems consisting of fresh-prepared magnetite,the effect of arsenite-oxidizing microorganisms on the oxidation process was negligible in all cases, because magnetite demonstrated very high oxidation ability in comparison with bacteria. During 4 hours all arsenite, adsorbed on the

  9. Absorption of Arsenite on Several Iron (Hydro-)Oxides and Impact from Pre-processing Methods

    Institute of Scientific and Technical Information of China (English)

    YE Ying; JI Shanshan; WU Daidai; LI Jun; ZHANG Weirui

    2006-01-01

    The absorption reactions of arsenite on Fe (hydro-)oxides are studied. The three absorbent types are Fe(OH)3 gel and two Fe (hydro-)oxides, in which the Fe(OH)3 gel was dried in a microwave oven under vacuum at 80℃. It is found that pH changes from 9.71 to 10.36 in 6 minutes after the Fe (OH)3 gel was mixed with NaAsO2 solution, as the arsenite replaces the OH- in goethite and Fe(OH)3.At the 40th minute after the start of the reaction, pH decreases, which is most probably because that the monodentate surface complex of absorbed arsenite has changed into mononuclear-bidentate complex and released proton. The decline in pH values indicates not the end of the absorption but a change in the reaction type. Temperature and dissolved gas has little effect on these two types of reactions. The total absorption of arsenite increases after the absorbent is irradiated with ultrasound, which also lead to difficulty in separating the solids from solution. The absorption capacity for arsenite of Fe(OH)3 gel dried in a microwave oven under vacuum is 53.18% and 17.22% respectively better than that of Fe (OH)3 gel and gel dried at 80℃. The possible reasons are that the water molecules in the gel vibrates with high frequency under the effect of microwave irradiation, thereby producing higher porosity and improved surface activity.

  10. Effect of curcumin on kidney histopathological changes, lipid peroxidation and total antioxidant capacity of serum in sodium arsenite-treated mice.

    Science.gov (United States)

    Momeni, Hamid Reza; Eskandari, Najmeh

    2017-02-01

    Sodium arsenite is an environmental pollutant with the ability to generate free radicals and curcumin acts as a potent antioxidant. This study investigates the effect of curcumin on kidney histopathology, lipid peroxidation and antioxidant capacity of serum in the mice treated with sodium arsenite. Adult male mice were divided into four groups: control, sodium arsenite, curcumin and curcumin+sodium arsenite. The treatments were delivered for 5 weeks. After the treatment period, blood samples were collected and the concentrations of malondialdehyde (MDA) and total antioxidant capacity of serum were determined. Left kidney was dissected, weighed and used for histopathological and histomorphometrical studies. Sodium arsenite-treated mice showed a significant decrease in the diameter of glomerulus and proximal tubule, glomerular area, total antioxidant capacity of serum as well as a significant increase in serum concentration of MDA compared to the control group. However, no significant difference was found in kidney weight, area and diameter of Bowman's capsule as well as the diameter of distal tubule in mice treated with sodium arsenite compared to the control. In curcumin+sodium arsenite group, curcumin significantly reversed the adverse effects of sodium arsenite on the diameter of glomerulus and proximal tubule, glomerular area, total antioxidant capacity of serum and serum concentration of MDA compared to the sodium arsenite group. The application of curcumin alone significantly increased the total antioxidant capacity of serum compared to the control. Curcumin compensated the adverse effects of sodium arsenite on kidney tissue, lipid peroxidation and total antioxidant capacity of serum.

  11. Cultivable diversity of thermophilic arsenite/ferrous-oxidizing microorganisms in hot springs of Taiwan

    Science.gov (United States)

    Lu, G.; Lin, Y.; Chang, Y.; Wang, P.; Lin, L.

    2009-12-01

    Elevated levels of arsenic in groundwater and surface water bodies have posed a stringent threat to the deterioration of the water quality for drinking and agriculture purposes around the world. In particular, arsenic liberated from volcanic and sedimentary rocks at high temperatures would be immobilized through adsorption on iron oxide and/or crystallization of iron-bearing minerals downstream at low temperatures. Understanding how microbially-catalytic reactions are involved in the changes of the redox state of arsenic and iron along a flow path would provide important constraints on the arsenic mobility in natural occurrences. The aims of this study were to isolate and characterize thermophilic arsenite- and iron-oxidizing microbes that would facilitate to establish the linkages between microbial distribution and in situ Fe/As cycling processes. Four source waters (LH05, LH08, SYK and MT) from acid-sulfate springs (pH 2-3, 60-97oC) located in the Tatun volcanic area of northern Taiwan were collected and inoculated into media targeting on autotrophic ferrous iron (FC3), arsenite (AC3 ,ACC3, AC7, ACC7), arsenite-resistant hydrogen (AH23), arsenite-resistant hydrogen-sulfur (AH2S3), and arsenite-resistant sulfur oxidations(AS3), and heterotrophic arsenite oxidation(AH3, AH7) at pH 3, and 7 at temperatures of 50, 70 and 80oC. Samples from the Kuantzuling mud springs (KTL) in southwestern Taiwan known with elevated arsenic levels (0.4 ppm) were also collected, inoculated into the heterotrophic medium and incubated at 50, 60, 70 and 80oC. Isolates obtained from KTL were subject to test on the AH7 and ACC7. Two positive enrichments for iron oxidation at 50oC and 70oC were confirmed by the steadily decrease of ferrous iron and increase of precipitates over 4 transfers for samples from the SYK spring. Diverse morphological types of microbes were enriched in all types of arsenite-bearing media at 50oC except for AH23. At 70oC, positive enrichments were found in media

  12. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.; Kim, D.; Lee, E.K. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Kim, S. [Komipharm International Co. Ltd., 3188, Seongnam-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do 462-827 (Korea, Republic of); Choi, C.S. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Endocrinology, Internal Medicine, Gachon University Gil Medical Center, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Jun, H.S., E-mail: hsjun@gachon.ac.kr [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of)

    2015-04-15

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  13. Retrospective Comparative Study of the Effects of Dendritic Cell Vaccine and Cytokine-Induced Killer Cell Immunotherapy with that of Chemotherapy Alone and in Combination for Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Jingxiu Niu

    2014-01-01

    Full Text Available Purpose. This retrospective study determined the delayed-type hypersensitivity (DTH skin test and safety of dendritic cell (DC vaccine and cytokine-induced killer (CIK cell immunotherapy and the survival compared to chemotherapy in 239 colorectal cancer (CRC patients. Methods. DTH and safety of the immunotherapy were recorded. The overall survival (OS and disease free survival curves were compared according to the immunotherapy and/or chemotherapy received with Kaplan-Meier estimates. Results. Of the 70 patients who received immunotherapy, 62.86% had a positive DTH skin test, 38.57% developed fever, 47.14% developed insomnia, 38.57% developed anorexia, 4.29% developed joint soreness, and 11.43% developed skin rash. For 204 resectable CRC patients, median survival time (MST (198.00 days was significantly longer in patients with immunotherapy plus chemotherapy than with chemotherapy alone (106.00 days (P=0.02. For 35 patients with unresectable or postsurgery relapsed CRC and who were confirmed to be dead, no statistical difference was observed in the MST between the patients treated with immunotherapy and with chemotherapy (P=0.41. MST in the patients treated with chemotherapy plus immunotherapy was 154 days longer than that of patients treated with chemotherapy alone (P=0.41. Conclusions. DC vaccination and CIK immunotherapy did not cause severe adverse effects, induce immune response against CRC, and prolong OS.

  14. The influence of autologous cytokine-induced killer cell treatment on the objective efficacy and safety of gefitinib in advanced non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Shuxian Qu; Zhaozhe Liu Co-first author; Zhendong Zheng; Zhenyu Ding; Tao Han; Fang Guo; Jianing Qiu; Xiaodong Xie ; Dongchu Ma 

    2015-01-01

    Objective The aim of the study was to observe the influence of autologous cytokine-induced kil er cel (CIK) treatment on the objective ef icacy and safety of gefitinib in advanced non-smal cel lung cancer (NSCLC). Methods Sixty-six patients with NSCLC received gefitinib as second-line treatment. They were randomly divided into 2 groups, and informed consent forms were signed before grouping. Gefitinib was administrat-ed to the control group, and autologous CIK treatment was added to the observation group. The objective treatment and adverse reactions were evaluated in both groups. Results The objective response rate (ORR) and the disease control rate (DCR) of the observation group were slightly higher than those of the control group, although no statistical dif erences were found between the 2 groups (P > 0.05). The incidences of diarrhea, fatigue, anorexia, oral ulcers, and myelosuppression in the observation group were much lower than those in the control group (P 0.05). Conclusion Autologous CIK in combination with gefitinib is ef ective as second-line treatment for ad-vanced NSCLC, and can significantly reduce adverse reactions and improve the objective ef icacy.

  15. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans

    DEFF Research Database (Denmark)

    Wolden-Kirk, Heidi; Rondas, D; Bugliani, M

    2014-01-01

    . The aim of this study was to clarify the molecular mechanisms by which 1,25(OH)2D3 contributes to β-cell protection against cytokine-induced β-cell dysfunction and death. Human and mouse islets were exposed to IL-1β and interferon-γ in the presence or absence of 1,25(OH)2D3. Effects on insulin secretion....../phenotype. In conclusion, these findings demonstrate a direct protective effect of 1,25(OH)2D3 against inflammation-induced β-cell dysfunction and death in human and murine islets, with, in particular, alterations in chemokine production by the islets. These effects may contribute to the beneficial effects of 1,25(OH)2D3......Protection against insulitis and diabetes by active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), in nonobese diabetic mice has until now mainly been attributed to its immunomodulatory effects, but also protective effects of this hormone on inflammation-induced β-cell death have been reported...

  16. MDSC-decreasing chemotherapy increases the efficacy of cytokine-induced killer cell immunotherapy in metastatic renal cell carcinoma and pancreatic cancer.

    Science.gov (United States)

    Wang, Zibing; Liu, Yuqing; Zhang, Yong; Shang, Yiman; Gao, Quanli

    2016-01-26

    Adoptive immunotherapy using cytokine-induced killer (CIK) cells is a promising cancer treatment, but its efficacy is restricted by various factors, including the accumulation of myeloid-derived suppressor cells (MDSCs). In this study, we determine whether chemotherapeutic drugs that reduce MDSC levels enhance the efficacy of CIK cell therapy in the treatment of solid tumors. Fifty-three patients were included in this study; 17 were diagnosed with metastatic renal cell carcinoma (MRCC), 10 with advanced pancreatic cancer (PC), and 26 with metastatic melanoma (MM). These patients were divided into two groups: CIK cell therapy alone and CIK cell therapy combined with chemotherapy. Combining CIK cell therapy and chemotherapy increased 1-year survival rates and median survival times in MRCC and PC patients, but not in MM patients. The disease control rate did not differ between treatment groups for MRCC or MM patients, but was higher in PC patients receiving combined treatment than CIK cell treatment alone. These data suggest that addition of MDSC-decreasing chemotherapy to CIK cell therapy improves survival in MRCC and PC patients.

  17. Evaluation on the Clinical Efifcacy of Dendritic Cell-Activated Cytokine-Induced Killer Cells Combined with Conventional Therapy in the Treatment of Malignant Tumors

    Institute of Scientific and Technical Information of China (English)

    WEI Hong; HAN Na-na; CAI Xin-hua

    2016-01-01

    Objective: To evaluate the clinical efficacy of dendritic cell-activated cytokine-induced killer (DC-CIK) cells combined with conventional therapy in the treatment of malignant tumors. Methods: A total of 100 patients with malignant tumors were randomly divided into two groups. Treatment group received conventional therapy combined with DC-CIK while control group received conventional therapy alone. The short-term efficacy, adverse reactions and changes of lymphocyte subpopulation were all compared between two groups after treatment. Results: The overall response rate (ORR) was higher in treatment group (86.00%) than in control group (54.00%), the difference was statistically significant (P0.05). WBC reduced markedly, but the level of alanine aminotransferase (ALT) increased obviously after treatment in control group (P0.05). In treatment group, the levels of CD3+, CD3+CD4+, CD3+CD8+, and CD3+CD56+ increased (P0.05). In control group, the levels of CD3+ and CD3+CD4+ reduced (P0.05). The levels of CD3+, CD3+CD4+, CD3+CD8+and CD3+CD56+ in treatment group were higher than those in control group (P Conclusion:DC-CIK combined with conventional therapy, safe and effective, is capable of promoting the recovery of leukocytes and liver and kidney function, and improving the cellular immune function, which may provide a new therapeutic regimen for patients with malignant tumors.

  18. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.

    Science.gov (United States)

    Hatayama, Masayoshi; Sato, Takahiko; Shinoda, Kozo; Inoue, Chihiro

    2011-03-01

    The physiological responses of the arsenic-hyperaccumulator, Pteris vittata, such as arsenic uptake and chemical transformation in the fern, have been investigated. However, a few questions remain regarding arsenic treatment in hydroponics. Incubation conditions such as aeration, arsenic concentration, and incubation period might affect those responses of P. vittata in hydroponics. Arsenite uptake was low under anaerobic conditions, as previously reported. However, in an arsenite uptake experiment, phosphorous (P) starvation-dependent uptake of arsenate was observed under aerobic conditions. Time course-dependent analysis of arsenite oxidation showed that arsenite was gradually oxidized to arsenate during incubation. Arsenite oxidation was not observed in any of the control conditions, such as exposure to a nutrient solution or to culture medium only, or with the use of dried root; arsenite oxidation was only observed when live root was used. This result suggests that sufficient aeration allows the rhizosphere system to oxidize arsenite and enables the fern to efficiently take up arsenite as arsenate. X-ray absorption near edge structure (XANES) analyses showed that long-duration exposure to arsenic using a hydroponic system led to the accumulation of arsenate as the dominant species in the root tips, but not in the whole roots, partly because up-regulation of arsenate uptake by P starvation of the fern was caused and retained by long-time incubation. Analysis of concentration-dependent arsenate uptake by P. vittata showed that the uptake switched from a high-affinity transport system to a low-affinity system at high arsenate concentrations, which partially explains the increased arsenate abundance in the whole root.

  19. The novel role of fenofibrate in preventing nicotine- and sodium arsenite-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Kaur, Jagdeep; Reddy, Krishna; Balakumar, Pitchai

    2010-09-01

    The present study investigated the effect of fenofibrate, an agonist of PPAR-alpha, in nicotine- and sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg/kg/day, i.p., 4 weeks) and sodium arsenite (1.5 mg/kg/day, i.p., 2 weeks) were administered to produce VED in rats. The scanning electron microscopy study in thoracic aorta revealed that administration of nicotine or sodium arsenite impaired the integrity of vascular endothelium. Further, administration of nicotine or sodium arsenite significantly decreased serum and aortic concentrations of nitrite/nitrate and subsequently reduced acetylcholine-induced endothelium-dependent relaxation. Moreover, nicotine or sodium arsenite produced oxidative stress by increasing serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide generation. However, treatment with fenofibrate (30 mg/kg/day, p.o.) or atorvastatin (30 mg/kg/day p.o., a standard agent) significantly prevented nicotine- and sodium arsenite-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentrations of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium-dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Conversely, co-administration of L-NAME (25 mg/kg/day, i.p.), an inhibitor of nitric oxide synthase, markedly attenuated these vascular protective effects of fenofibrate. The administration of nicotine or sodium arsenite altered the lipid profile by increasing serum cholesterol and triglycerides and consequently decreasing high-density lipoprotein levels, which were significantly prevented by treatment with fenofibrate or atorvastatin. It may be concluded that fenofibrate improves the integrity and function of vascular endothelium, and the vascular protecting potential of fenofibrate in preventing the development of nicotine- and sodium arsenite-induced VED may be attributed to its

  20. Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action

    Directory of Open Access Journals (Sweden)

    Jana Subarna

    2006-02-01

    -HSD, 17 beta-HSD, and sorbitol dehydrogenase (SDH were significantly decreased, but those of acid phosphatase (ACP, alkaline phosphatase (ALP, and lactate dehydrogenase (LDH were significantly increased. A decrease in dopamine or an increase in noradrenaline and 5-HT in hypothalamus and pituitary were also noted after arsenic exposure. Histological evaluation revealed extensive degeneration of different varieties of germ cells at stage VII of spermatogenic cycle in arsenic exposed rats. Administration of human chorionic gonadotrophin (hCG along with sodium arsenite partially prevented the degeneration of germ cells and enhanced paired testicular weights, epididymal sperm count, plasma and intratesticular testosterone concentrations, activities of delta 5, 3beta-HSD, 17 beta-HSD and sorbitol dehydrogenase along with diminution in the activities of ACP, ALP and LDH. Since many of the observed arsenic effects could be enhanced by oestradiol, it is suggested that arsenic might somehow acts through an estrogenic mode of action. Conclusion The results indicate that arsenic causes testicular toxicity by germ cell degeneration and inhibits androgen production in adult male rats probably by affecting pituitary gonadotrophins. Estradiol treatment has been associated with similar effects on pituitary testicular axis supporting the hypothesis that arsenite might somehow act through an estrogenic mode of action.

  1. Organization and regulation of the arsenite oxidase operon of the moderately acidophilic and facultative chemoautotrophic Thiomonas arsenitoxydans.

    Science.gov (United States)

    Slyemi, Djamila; Moinier, Danielle; Talla, Emmanuel; Bonnefoy, Violaine

    2013-11-01

    Thiomonas arsenitoxydans is an acidophilic and facultatively autotrophic bacterium that can grow by oxidizing arsenite to arsenate. A comparative genomic analysis showed that the T. arsenitoxydans aioBA cluster encoding the two subunits of arsenite oxidase is distinct from the other clusters, with two specific genes encoding a cytochrome c and a metalloregulator belonging to the ArsR/SmtB family. These genes are cotranscribed with aioBA, suggesting that these cytochromes c are involved in arsenite oxidation and that this operon is controlled by the metalloregulator. The growth of T. arsenitoxydans in the presence of thiosulfate and arsenite, or arsenate, is biphasic. Real-time PCR experiments showed that the operon is transcribed during the second growth phase in the presence of arsenite or arsenate, whereas antimonite had no effect. These results suggest that the expression of the aioBA operon of T. arsenitoxydans is regulated by the electron donor present in the medium, i.e., is induced in the presence of arsenic but is repressed by more energetic substrates. Our data indicate that the genetic organization and regulation of the aioBA operon of T. arsenitoxydans differ from those of the other arsenite oxidizers.

  2. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases

    Science.gov (United States)

    Zargar, Kamrun; Conrad, Alison; Bernick, David L.; Lowe, Todd M.; Stolc, Viktor; Hoeft, Shelley; Oremland, Ronald S.; Stolz, John; Saltikov, Chad W.

    2012-01-01

    Arsenotrophy, growth coupled to autotrophic arsenite oxidation or arsenate respiratory reduction, occurs only in the prokaryotic domain of life. The enzymes responsible for arsenotrophy belong to distinct clades within the DMSO reductase family of molybdenum-containing oxidoreductases: specifically arsenate respiratory reductase, ArrA, and arsenite oxidase, AioA (formerly referred to as AroA and AoxB). A new arsenite oxidase clade, ArxA, represented by the haloalkaliphilic bacterium Alkalilimnicola ehrlichii strain MLHE-1 was also identified in the photosynthetic purple sulfur bacterium Ectothiorhodospira sp. strain PHS-1. A draft genome sequence of PHS-1 was completed and an arx operon similar to MLHE-1 was identified. Gene expression studies showed that arxA was strongly induced with arsenite. Microbial ecology investigation led to the identification of additional arxA-like sequences in Mono Lake and Hot Creek sediments, both arsenic-rich environments in California. Phylogenetic analyses placed these sequences as distinct members of the ArxA clade of arsenite oxidases. ArxA-like sequences were also identified in metagenome sequences of several alkaline microbial mat environments of Yellowstone National Park hot springs. These results suggest that ArxA-type arsenite oxidases appear to be widely distributed in the environment presenting an opportunity for further investigations of the contribution of Arx-dependent arsenotrophy to the arsenic biogeochemical cycle.

  3. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.

    Science.gov (United States)

    Fazi, Stefano; Crognale, Simona; Casentini, Barbara; Amalfitano, Stefano; Lotti, Francesca; Rossetti, Simona

    2016-07-01

    Microorganisms play an important role in speciation and mobility of arsenic in the environment, by mediating redox transformations of both inorganic and organic species. Since arsenite [As(III)] is more toxic than arsenate [As(V)] to the biota, the microbial driven processes of As(V) reduction and As(III) oxidation may play a prominent role in mediating the environmental impact of arsenic contamination. However, little is known about the ecology and dynamics of As(III)-oxidizing populations within native microbial communities exposed to natural high levels of As. In this study, two techniques for single cell quantification (i.e., flow cytometry, CARD-FISH) were used to analyze the structure of aquatic microbial communities across a gradient of arsenic (As) contamination in different freshwater environments (i.e., groundwaters, surface and thermal waters). Moreover, we followed the structural evolution of these communities and their capacity to oxidize arsenite, when experimentally exposed to high As(III) concentrations in experimental microcosms. Betaproteobacteria and Deltaproteobacteria were the main groups retrieved in groundwaters and surface waters, while Beta and Gammaproteobacteria dominated the bacteria community in thermal waters. At the end of microcosm incubations, the communities were able to oxidize up to 95 % of arsenite, with an increase of Alphaproteobacteria in most of the experimental conditions. Finally, heterotrophic As(III)-oxidizing strains (one Alphaproteobacteria and two Gammaproteobacteria) were isolated from As rich waters. Our findings underlined that native microbial communities from different arsenic-contaminated freshwaters can efficiently perform arsenite oxidation, thus contributing to reduce the overall As toxicity to the aquatic biota.

  4. Effect of arsenite on urea production by long-term cultures of adult rat hepatocytes.

    Science.gov (United States)

    Sierra-Santoyo, A; Hernández, A; López, M L; Mendoza-Figueroa, T

    1996-01-01

    Urea cycle is a hepatic metabolic pathway involving five enzymes and several intermediary metabolites and can be altered by different chemicals. To investigate the effect of arsenic, an ubiquitous hepatotoxic agent, on urea production we exposed long-term cultures of adult rat hepatocytes, which produce urea, to 1.33 and 6.67 microM arsenite for 2 weeks. In cultures exposed to 6.67 microM, urea production decreased 60-70% and cellular arginase activity decreased 30, 70 and 85% after 4, 7 and 14 days of exposure, respectively. The arginase activity released to the medium increased significantly after 4, 7 and 14 days, with a maximum value after 7 days of exposure that was 27-fold higher than that of the untreated controls. The total arginase activity also decreased 35, 52 and 82% after 4, 7 and 14 days of exposure and protein content decreased 57 and 65% after 7 and 14 days of exposure, respectively. Exposure to 6.67 microM arsenite also produced accumulation of intracytoplasmic lipid droplets, vacuolizations and enlargement of the intercellular spaces. On the other hand, exposure of hepatocytes to 1.33 microM arsenite caused an initial decrease of 20% in urea production, did not change cellular, released and total arginase activity and cellular protein content and produced accumulation of intracytoplasmic lipid droplets. These results show that long-term exposure of cultured rat hepatocytes to 6.67 microM arsenite decreases urea production, cellular and total arginase activity and protein content and increases the release of arginase into the culture medium. These alterations could be useful markers of hepatotoxicity in in vitro assays.

  5. Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal, India

    Directory of Open Access Journals (Sweden)

    Devanita eGhosh

    2014-11-01

    Full Text Available High arsenic (As concentration in groundwater has affected human health, particularly in South-East Asia putting millions of people at risk. Biogeochemical cycling of As carried out by different bacterial groups are suggested to control the As fluxes in aquifers. A functional diversity approach in link with As precipitation was adopted to study bacterial community structures and their variation within the As contaminated Bengal Delta Plain (BDP aquifers of India. Groundwater samples collected from two shallow aquifers in Karimpur II (West Bengal, India, during years 2010 and 2011, were investigated to trace the effects of inter-annual variability in precipitation on community structure and diversity of bacterial assemblages. The study focused on amplification, clone library generation and sequencing of the arsenite oxidase large sub-unit gene aioA and 16S rRNA marker, with respect to changes in elemental concentrations. New set of primers were designed to amplify the aioA gene as a phylogenetic marker to study taxonomically diverse arsenite oxidizing bacterial groups in these aquifers. Overall narrow distribution of bacterial communities based on aioA and 16S rRNA sequences observed was due to poor nutrient status and anoxic conditions in these As contaminated aquifers. Proteobacteria was the dominant phylum detected, within which Acidovorax, Hydrogenophaga, Albidiferax, Bosea and Polymorphum were the major arsenite oxidizing bacterial genera. The structure of bacterial assemblages including those of arsenite oxidizing bacteria were affected by an increase in major elemental concentrations (e.g., As, iron, sulfur, and silica within two sampling sessions, which was supported by PCA analysis. One of the significant findings of this study is detection of novel lineages of 16S rRNA-like bacterial sequences indicating presence of indigenous bacterial communities across both wells of BDP that can play important role in biogeochemical cycling of

  6. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  7. Effects of arsenic on modification of promyelocytic leukemia (PML): PML responds to low levels of arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Seishiro, E-mail: seishiro@nies.go.jp [Research Center for Environmental Risk, National Institute for Environmental Studies (Japan); Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Watanabe, Takayuki [Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Kobayashi, Yayoi [Graduate School of Pharmaceutical Sciences, Chiba University (Japan); Center for Environmental Health Sciences, National Institute for Environmental Studies (Japan)

    2013-12-15

    Inorganic arsenite (iAs{sup 3+}) is a two-edged sword. iAs{sup 3+} is a well-known human carcinogen; nevertheless, it has been used as a therapeutic drug for acute promyelocytic leukemia (APL), which is caused by a fusion protein comprising retinoic acid receptor-α and promyelocytic leukemia (PML). PML, a nuclear transcription factor, has a RING finger domain with densely positioned cysteine residues. To examine PML-modulated cellular responses to iAs{sup 3+}, CHO-K1 and HEK293 cells were each used to establish cell lines that expressed ectopic human PML. Overexpression of PML increased susceptibility to iAs{sup 3+} in CHO-K1 cells, but not in HEK293 cells. Exposure of PML-transfected cells to iAs{sup 3+} caused PML to change from a soluble form to less soluble forms, and this modification of PML was observable even with just 0.1 μM iAs{sup 3+} (7.5 ppb). Western blot and immunofluorescent microscopic analyses revealed that the biochemical changes of PML were caused at least in part by conjugation with small ubiquitin-like modifier proteins (SUMOylation). A luciferase reporter gene was used to investigate whether modification of PML was caused by oxidative stress or activation of antioxidant response element (ARE) in CHO-K1 cells. Modification of PML protein occurred faster than activation of the ARE in response to iAs{sup 3+}, suggesting that PML was not modified as a consequence of oxidative stress-induced ARE activation. - Highlights: • PML was found in nuclear microspecles in response to arsenite. • Arsenite triggers SUMOylation of PML. • Arsenite modifies PML at as low as 0.1 μM. • Modification of PML is not caused by ARE activation.

  8. Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children

    DEFF Research Database (Denmark)

    Lundh, M; Christensen, D P; Damgaard Nielsen, M

    2012-01-01

    of HDAC1, -2 and -3 rescued INS-1 cells from inflammatory damage. Small hairpin RNAs against HDAC1 and -3, but not HDAC2, reduced pro-inflammatory cytokine-induced beta cell apoptosis in INS-1 and primary rat islets. The protective properties of specific HDAC knock-down correlated with attenuated cytokine-induced......AIMS/HYPOTHESIS: Histone deacetylases (HDACs) are promising pharmacological targets in cancer and autoimmune diseases. All 11 classical HDACs (HDAC1-11) are found in the pancreatic beta cell, and HDAC inhibitors (HDACi) protect beta cells from inflammatory insults. We investigated which HDACs...... mediate inflammatory beta cell damage and how the islet content of these HDACs is regulated in recent-onset type 1 diabetes. METHODS: The rat beta cell line INS-1 and dispersed primary islets from rats, either wild type or HDAC1-3 deficient, were exposed to cytokines and HDACi. Molecular mechanisms were...

  9. Protective effect of Juglans nigra on sodium arsenite-induced toxicity in rats

    Directory of Open Access Journals (Sweden)

    Solomon E Owumi

    2013-01-01

    Full Text Available Background: Consumption of arsenic contaminated water has been implicated in metalloid-induced carcinogenesis. Dietary intake of certain plant products with chemoprotective properties may protect against the onset of diseases and promote maintenance of health. Objectives: We investigated the outcome of black walnut Juglans nigra (JN consumption on sodium arsenite (SA-induced toxicity in rats. Materials and Methods: Wister albino rats were treated as follows: Control, SA only (positive control (2.5 mg/kg body weight, JN only (100 mg/kg weight, and JN+SA coadministered. After 5 weeks animals were sacrificed whole blood, femur, liver and testis harvested were assessed for hepatic transaminases and clastogenicity. Histology of the liver, sperm morphology and quality were also assessed. Data were analyzed (ANOVA and expressed as means ±SD. Results: SA treatment elevated hepatic transaminases level in serum (P < 0.05, induced histological changes in liver: fibroplasia and periportal hepatocytes infiltration by mononuclear cells. These changes were ameliorated by JN (P < 0.05 coadministration. SA induced micronuclei formation (P < 0.05. Again JN decreased (P < 0.05 micronuclei formation by 50%. Sperm count and motility decreased (P < 0.05 in all groups compared to control. Conclusion: JN showed no protection against arsenite effect on sperm quality. Hepatoprotective and anticlastogenic effects were apparent suggesting a chemopreventive potential active against arsenite genotoxicity and chromosomal instability which have implication for metalloid-induced carcinogenesis.

  10. Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin.

    Science.gov (United States)

    Yousef, Mokhtar I; El-Demerdash, Fatma M; Radwan, Fatma M E

    2008-11-01

    The present study was undertaken to evaluate the therapeutic efficacy of curcumin in terms of normalization of altered biochemical parameters following sodium arsenite treatment in rats. Animals were divided into four groups. The first group was used as control. While, groups 2, 3 and 4 were orally treated with curcumin (Cur, 15 mg/kg BW), sodium arsenite (Sa, 5 mg/kg BW) and sodium arsenite plus curcumin, respectively. Results showed that the activities of transaminases and phosphatases were significantly decreased in liver due to Sa administration, whereas increased in plasma. The activity of brain and plasma acetylcholinesterase (AChE) was decreased in rats treated with Sa. Also, Sa significantly decreased plasma total protein (TP), albumin (Alb) and high density lipoprotein-cholesterol (HDL-c), while increased glucose, urea, creatinine, bilirubin, total lipid (TL), cholesterol, triglyceride (TG) and low density lipoprotein-cholesterol (LDL-c). Curcumin alone decreased the levels of glucose, urea, creatinine, TL, cholesterol, TG and LDL-c. Curcumin reduced Sa-induced transaminases, phosphatases, glucose, urea, creatinine, bilirubin, TL, cholesterol and TG. Moreover, curcumin induced Sa-reduced liver transaminases and phosphatases, plasma and brain AChE, and the levels of TP and Alb. Experimental results, therefore suggested that curcumin protects arsenic induced biochemical alterations in rats.

  11. Aquaglyceroporins are involved in uptake of arsenite into murine gastrointestinal tissues.

    Science.gov (United States)

    Wang, Chun; Chen, Gang; Jiang, Junkang; Qiu, Lianglin; Hosoi, Kazuo; Yao, Chenjuan

    2009-01-01

    Aquaglyceroporins (AQGPs) are members of aquaporin (AQP) family and belong to a subgroup of this water channel family; they are transmembrane proteins that transport water as well as glycerol and other solutes of small molecules. Recent studies have also identified that AQGPs are important transporters of trivalent metalloid in some mammalian cells. However, the uptake routes of arsenite in mammals are still less defined. In this study, to understand the routes of arsenite intake in mammals, mice were treated with Hg(II), glycerol, and As(III) and uptake of As(III) into the gastrointestinal tissues was measured. The level of inorganic arsenic (iAs) in gastrointestinal tissues after As(III) stimulation was much higher than Hg(II) +As(III) or glycerol+As(III) group. RT-PCR results showed that AQGPs were extensively expressed in gastrointestinal tissues of mice. We also treated Caco-2 cells with Hg(II) and As(III); the level of iAs in a group treated with Hg(II)+As(III) decreased compared with As(III)-treated group. Our results suggested that AQGPs could be important transporters in arsenite uptake into gastrointestinal tissues of mice, but more data are need to prove if AQGPs is the only pathway involved in As transport in mammals or just one of them.

  12. Arabidopsis NIP3;1 Plays an Important Role in Arsenic Uptake and Root-to-Shoot Translocation under Arsenite Stress Conditions.

    Science.gov (United States)

    Xu, Wenzhong; Dai, Wentao; Yan, Huili; Li, Sheng; Shen, Hongling; Chen, Yanshan; Xu, Hua; Sun, Yangyang; He, Zhenyan; Ma, Mi

    2015-05-01

    In Arabidopsis, the nodulin 26-like intrinsic protein (NIP) subfamily of aquaporin proteins consists of nine members, five of which (NIP1;1, NIP1;2, NIP5;1, NIP6;1, and NIP7;1) were previously identified to be permeable to arsenite. However, the roles of NIPs in the root-to-shoot translocation of arsenite in plants remain poorly understood. In this study, using reverse genetic strategies, Arabidopsis NIP3;1 was identified to play an important role in both the arsenic uptake and root-to-shoot distribution under arsenite stress conditions. The nip3;1 loss-of-function mutants displayed obvious improvements in arsenite tolerance for aboveground growth and accumulated less arsenic in shoots than those of the wild-type plants, whereas the nip3;1 nip1;1 double mutant showed strong arsenite tolerance and improved growth of both roots and shoots under arsenite stress conditions. A promoter-β-glucuronidase analysis revealed that NIP3;1 was expressed almost exclusively in roots (with the exception of the root tips), and heterologous expression in the yeast Saccharomyces cerevisiae demonstrated that NIP3;1 was able to mediate arsenite transport. Taken together, our results suggest that NIP3;1 is involved in arsenite uptake and root-to-shoot translocation in Arabidopsis, probably as a passive and bidirectional arsenite transporter.

  13. Spatio-temporal detection of the Thiomonas population and the Thiomonas arsenite oxidase involved in natural arsenite attenuation processes in the Carnoulès Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Agnès eHovasse

    2016-02-01

    Full Text Available The acid mine drainage (AMD impacted creek of the Carnoulès mine (Southern France is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with 16S rRNA gene sequence analysis based on pyrosequencing and FISH, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ.

  14. Cytokine-induced killer cells showing multidrug resistance and remaining cytotoxic activity to tumor cells after transfected with mdr1 cDNA

    Institute of Scientific and Technical Information of China (English)

    李惠芳; 杨永红; 石永进; 王逸群; 朱平

    2004-01-01

    Background Routine treatment of cancer such as surgery, radiation or chemotherapy is sometimes unable to erdiacate metastatic malignant cells. So we tried a new method and increased the adoptive immunotherapy of Cytokine-induced killer (CIK) cells in tumor patients and the multidrug resistance (mdr1) cDNA was transfected into CIK cells. Methods CIK cells were obtained from peripheral blood and induced by IFN-γ, anti-CD3 monoclonal antibody, IL-2 and IL-1. CIK cells were transfected with plasmid PHaMDR containing human mdr1 cDNA by electroporation. RT-PCR was used to detect mdr1 mRNA in transfected CIK cells. P-glycoprotein (P-gp) expressed on surface of CIK cells was assayed by FITC-conjugated anti-P-gp monoclonal antibody and flow cytometry. Multidrug resistance to doxorubicin and colchicine and cytotoxic activity to human breast cancer cell line MCF7 were performed using MTT method.Results mdr1 mRNA was detected in transfected CIK cells. P-gp was expressed on the surface of the transfected CIK cells, and the P-gp positive cells reached 21%-37% of the total CIK cells after transfection. The IC50 to doxorubicin increased to 22.3-45.8 times, and that to colchicines to 6.7-11.35 times, as compared to those of untransfected CIK cells. However, the cytotoxic activity to MCF7 cell line remained unaltered.Conclusions CIK cells were successfully transfected with mdr1 cDNA by using electroporation. The transfected CIK cells had the characteristics of multidrug resistance without change in their cytotoxic activity to tumor cells.

  15. A unique protein profile of peripheral neutrophils from COPD patients does not reflect cytokine-induced protein profiles of neutrophils in vitro

    Directory of Open Access Journals (Sweden)

    Koenderman Leo

    2011-09-01

    Full Text Available Abstract Background Inflammation, both local and systemic, is a hallmark of chronic obstructive pulmonary disease (COPD. Inflammatory mediators such as TNFα and GM-CSF are secreted by lung epithelium, alveolar macrophages and other inflammatory cells and are thought to be important contributors in the pathogenesis of COPD. Indeed, neutrophils are activated by these cytokines and these cells are one of the major inflammatory cell types recruited to the pulmonary compartment of COPD patients. Furthermore, these inflammatory mediators are found in the peripheral blood of COPD patients and, therefore, we hypothesized that TNFα/GM-CSF-induced protein profiles can be found in peripheral neutrophils of COPD patients. Methods Using fluorescence 2-dimensional difference gel electrophoresis we investigated differentially regulated proteins in peripheral neutrophils from COPD patients and healthy age-matched control subjects. Furthermore, protein profiles from COPD patients were compared with those of neutrophils of healthy age-matched controls that were stimulated with TNFα and/or GM-CSF in vitro. Protein gels were compared using DeCyder 7.0 software. Results We identified 7 significantly regulated protein spots between peripheral neutrophils from COPD patients and age-matched healthy control subjects. Stimulation of peripheral neutrophils with TNFα, GM-CSF or TNFα + GM-CSF in vitro resulted in 13, 20 and 22 regulated protein spots, respectively. However, these cytokine-induced protein differences did not correspond with the protein differences found in neutrophils from COPD patients. Conclusion These results show that neutrophils from COPD patients have a unique protein profile compared to neutrophils from healthy age-matched controls. Furthermore, the neutrophil profiles of COPD patients do not reflect putative dominant signals induced by TNFα, GM-CSF or their combination. Our results indicate that systemic neutrophil responses in COPD patients

  16. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants.

    Science.gov (United States)

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Mcdermott, Joseph; Liu, Zijuan; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2012-12-01

    Rice accumulates high level of arsenic (As) in its edible parts and thus plays an important role in the transfer of As into the food chain. However, the mechanisms of As uptake and its detoxification in rice are not well understood. Recently, members of the Nodulin 26-like intrinsic protein (NIP) subfamily of plant aquaporins were shown to transport arsenite in rice and Arabidopsis. Here we report that members of the rice plasma membrane intrinsic protein (PIP) subfamily are also involved in As tolerance and transport. Based on the homology search with the mammalian AQP9 and yeast Fps1 arsenite transporters, we identified and cloned five rice PIP gene subfamily members. qRT-PCR analysis of PIPs in rice root and shoot tissues revealed a significant down regulation of transcripts encoding OsPIP1;2, OsPIP1;3, OsPIP2;4, OsPIP2;6, and OsPIP2;7 in response to arsenite treatment. Heterologous expression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Xenopus laevis oocytes significantly increased the uptake of arsenite. Overexpression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Arabidopsis yielded enhanced arsenite tolerance and higher biomass accumulation. Further, these transgenic plants showed no significant accumulation of As in shoot and root tissues in long term uptake assays. Whereas, short duration exposure to arsenite caused both active influx and efflux of As in the roots. The data suggests a bidirectional arsenite permeability of rice PIPs in plants. These rice PIPs genes will be highly useful for engineering important food and biofuel crops for enhanced crop productivity on contaminated soils without increasing the accumulation of toxic As in the biomass or edible tissues.

  17. Syntheses, crystal structures and characterizations of new vanadium arsenites and arsenates

    Energy Technology Data Exchange (ETDEWEB)

    Liu Junhui [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); He Zhangzhen; Kong Fang; Xu Xiang [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Sun Chuanfu [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Mao Jianggao, E-mail: mjg@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China)

    2012-08-15

    Systematic explorations in vanadium arsenites and arsenates led to the isolation four new compounds, namely, {alpha}-(V{sup IV}O){sub 3}(As{sup III}O{sub 3}){sub 2} (1), {beta}-(V{sup IV}O){sub 3}(As{sup III}O{sub 3}){sub 2} (2), (V{sup IV}O)[V{sup IV}O(H{sub 2}O)]{sub 2}(As{sup V}O{sub 4}){sub 2} (3), V{sup III}V{sup IV}O{sub 2}(As{sup V}O{sub 4}) (4). Compounds 1, 2 and 4 were synthesized by standard solid-state reactions, and compound 3 is a vanadium arsenate dihydrate synthesized through hydrothermal reactions. Compounds 1 and 2 are isomers, and they represent the first examples of ternary inorganic vanadium(IV) arsenites. Single crystal X-ray diffraction analysis indicated that the four compounds display four different structural types. Magnetic property measurements for compound 1 indicated that it exhibits ferromagnetism with the Curie temperature T{sub c}=65 K. Thermal stability and optical properties for compounds 1 and 3 were also investigated. - Graphical abstract: Hydrothermal or solid state reactions of V{sub 2}O{sub 5} (or VO{sub 2}) and As{sub 2}O{sub 3} yielded four new ternary compounds with four different types of structures, namely, {alpha}-(VO){sub 3}(AsO{sub 3}){sub 2} (1), {beta}-(VO){sub 3}(AsO{sub 3}){sub 2} (2), (VO)[VO(H{sub 2}O)]{sub 2}(AsO{sub 4}){sub 2} (3), (VO){sub 2}(AsO{sub 4}) (4). {alpha}-(VO){sub 3}(AsO{sub 3}){sub 2} (1), {beta}-(VO){sub 3}(AsO{sub 3}){sub 2} (2) represent the first examples of ternary inorganic vanadium(IV) arsenites. Highlights: Black-Right-Pointing-Pointer Hydrothermal or solid state reactions of V{sub 2}O{sub 5} (or VO{sub 2}) and As{sub 2}O{sub 3} yielded two new arsenites. Black-Right-Pointing-Pointer They represent the first examples of ternary vanadium arsenites. Black-Right-Pointing-Pointer Two new ternary vanadium arsenates were also obtained. Black-Right-Pointing-Pointer They exhibit four different structural types.

  18. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.

    Science.gov (United States)

    Hamamura, N; Macur, R E; Korf, S; Ackerman, G; Taylor, W P; Kozubal, M; Reysenbach, A-L; Inskeep, W P

    2009-02-01

    The identification and characterization of genes involved in the microbial oxidation of arsenite will contribute to our understanding of factors controlling As cycling in natural systems. Towards this goal, we recently characterized the widespread occurrence of aerobic arsenite oxidase genes (aroA-like) from pure-culture bacterial isolates, soils, sediments and geothermal mats, but were unable to detect these genes in all geothermal systems where we have observed microbial arsenite oxidation. Consequently, the objectives of the current study were to measure arsenite-oxidation rates in geochemically diverse thermal habitats in Yellowstone National Park (YNP) ranging in pH from 2.6 to 8, and to identify corresponding 16S rRNA and aroA genotypes associated with these arsenite-oxidizing environments. Geochemical analyses, including measurement of arsenite-oxidation rates within geothermal outflow channels, were combined with 16S rRNA gene and aroA functional gene analysis using newly designed primers to capture previously undescribed aroA-like arsenite oxidase gene diversity. The majority of bacterial 16S rRNA gene sequences found in acidic (pH 2.6-3.6) Fe-oxyhydroxide microbial mats were closely related to Hydrogenobaculum spp. (members of the bacterial order Aquificales), while the predominant sequences from near-neutral (pH 6.2-8) springs were affiliated with other Aquificales including Sulfurihydrogenibium spp., Thermocrinis spp. and Hydrogenobacter spp., as well as members of the Deinococci, Thermodesulfobacteria and beta-Proteobacteria. Modified primers designed around previously characterized and newly identified aroA-like genes successfully amplified new lineages of aroA-like genes associated with members of the Aquificales across all geothermal systems examined. The expression of Aquificales aroA-like genes was also confirmed in situ, and the resultant cDNA sequences were consistent with aroA genotypes identified in the same environments. The aroA sequences

  19. Evaluation on the Clinical Efficacy of Dendritic Cell-Activated Cytokine-Induced Killer Cells Combined with Conventional Therapy in the Treatment of Malignant Tumors

    Directory of Open Access Journals (Sweden)

    Hong WEI

    2016-06-01

    Full Text Available Objective: To evaluate the clinical efficacy of dendritic cell-activated cytokine-induced killer (DC-CIK cells combined with conventional therapy in the treatment of malignant tumors.Methods: A total of 100 patients with malignant tumors were randomly divided into two groups. Treatment group received conventional therapy combined with DC-CIK while control group received conventional therapy alone. The short-term efficacy, adverse reactions and changes of lymphocyte subpopulation were all compared between two groups after treatment.Results: The overall response rate (ORR was higher in treatment group (86.00% than in control group (54.00%, the difference was statistically significant (P<0.05. White blood cell count (WBC reduced after treatment when compared with treatment before (P=0.001, but liver and kidney function had no obvious change in treatment group (P>0.05. WBC reduced markedly, but the level of alanine aminotransferase (ALT increased obviously after treatment in control group (P<0.001. WBC was higher, but the level of ALT was lower in treatment group than in control group (P<0.001. However, there was no difference between two groups regarding serum creatinine (Scr and blood urea nitrogen (BUN (P>0.05. In treatment group, the levels of CD3+, CD3+CD4+, CD3+CD8+, and CD3+CD56+ increased (P<0.05, but the level of CD4+/CD8+ had no significant change (P>0.05. In control group, the levels of CD3+ and CD3+CD4+ reduced (P<0.05, while the levels of CD3+CD8+, CD3+CD56+ and CD4+/CD8+ had no significant change (P>0.05. The levels of CD3+, CD3+CD4+, CD3+CD8+ and CD3+CD56+ in treatment group were higher than those in control group (P<0.01, whereas CD4+/CD8+ was lower than that in control group (P<0.01.Conclusion: DC-CIK combined with conventional therapy, safe and effective, is capable of promoting the recovery of leukocytes and liver and kidney function, and improving the cellular immune function, which may provide a new therapeutic regimen for

  20. Possible vasculoprotective role of linagliptin against sodium arsenite-induced vascular endothelial dysfunction.

    Science.gov (United States)

    Jyoti, Uma; Kansal, Sunil Kumar; Kumar, Puneet; Goyal, Sandeep

    2016-02-01

    Vascular endothelial dysfunction (VED) interrupts the integrity and function of endothelial lining through enhanced markers of oxidative stress and decrease endothelial nitric oxide synthase (eNOS) expression. The main aim of the present study has been designed to investigate the possible vasculoprotective role of linagliptin against sodium arsenite-induced VED. Sodium arsenite (1.5 mg/kg, i.p., 2 weeks) abrogated the acetylcholine-induced, endothelium-dependent vasorelaxation by depicting the decrease in serum nitrite/nitrate concentration, reduced glutathione level, and simultaneously enhance the thiobarbituric acid reactive substances (TBARS) level, superoxide level, and tumor necrosis factor-alpha. These elevated markers interrupt the integrity of endothelial lining of thoracic aorta which was assessed histologically. The study elicits dose dependent effect of linagliptin (1.5 mg/kg, i.p. and 3 mg/kg, i.p.) or atorvastatin (30 mg/kg, p.o.) treatment, improved the endothelium-dependent independent relaxation, improve the integrity of endothelium lining which was assessed histologically by enhancing the serum nitrite/nitrate level, reduced glutathione level and simultaneously decreasing the TBARS level, superoxide anion level and tumor necrosis factor-alpha (TNF-α) level. L-NAME (25 mg/kg, i.p.), eNOS inhibitor, abrogated the ameliorative potential of linagliptin. However, the ameliorative potential of linagliptin has been enhanced by l-arginine (200 mg/kg, i.p.) which elicits that ameliorative potential of linagliptin was through eNOS signaling cascade and it may be concluded that linagliptin 3 mg/kg, i.p. has more significantly activated the eNOS and decreased the oxidative markers than linagliptin 1.5 mg/kg, i.p. and prevented sodium arsenite-induced VED.

  1. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

    Energy Technology Data Exchange (ETDEWEB)

    Gonsebatt, M.E. [UNAM, Ciudad Universitaria, Dept. Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Mexico (Mexico); Razo, L.M. del; Sanchez-Pena, L.C. [Seccion de Toxicologia, CINVESTAV, Mexico (Mexico); Cerbon, M.A. [Facultad de Quimica, UNAM, Departamento de Biologia, Mexico (Mexico); Zuniga, O.; Ramirez, P. [Facultad de Estudios Superiores Cuautitlan, UNAM, Laboratorio de Toxicologia Celular, Coordinacion General de Estudios de Posgrado e Investigacion, Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2007-09-15

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 {mu}M of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function. (orig.)

  2. Low Dose and Long Term Toxicity of Sodium Arsenite Caused Caspase Dependent Apoptosis Based on Morphology and Biochemical Character

    Directory of Open Access Journals (Sweden)

    Mohammad Hussein Abnosi

    2012-01-01

    Full Text Available Objective: Although arsenite is toxic it is currently recommended for the treatment of malignancies. In this study the effects of sub-micromolar concentrations of sodium arsenite on the viability, morphology and mechanism of cell death of rat bone marrow mesenchymal stem cells (BMCs over 21 days was investigated.Materials and Methods: In this experimental study, BMCs were extracted in Dulbecco’s Modified Eagles Medium (DMEM containing 15% of fetal bovine serum (FBS and expanded till the 3rd passage. The cells were treated with 1, 10, 25, 50, 75 and 100 nM of sodium arsenite for 21 days and the viability of the cells estimated using 3-(4, 5-dimethylthiazol-2-yl-2, 5 diphenyl tetrazolium (MTT and trypan blue staining. Cells were then treated with the selected dose (25 nM of sodium arsenite to determine their colony forming ability (CFA and population doubling number (PDN. Morphology of the cells was studied using florescent dyes, and the integrity of the DNA was investigated using the comet assay and agarose gel electrophoresis. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL and the caspase 3 assay were then applied to understand the mechanism of cell death. Data was analyzed using one way ANOVA, Tukey test.Results: A significant reduction of viability, PDN and CFA was found following treatment of BMCs with 25 nM sodium arsenite (p<0.05. Cytoplasm shrinkage and a significant decrease in the diameter of the nuclei were also seen. Comet assay and agarose gel electrophoresis revealed DNA breakage, while positive TUNEL and activated caspase 3 confirmed the apoptosis.Conclusion: A low concentration of sodium arsenite (25 nM caused reduction of viability due to induction of apoptosis. Therefore, long term exposure to low dose of this chemical may have unwanted effects on BMCs.

  3. Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging.

    Science.gov (United States)

    Lee, Chih-Hung; Hsu, Chia-Yen; Huang, Pei-Yu; Chen, Ching-Iue; Lee, Yao-Chang; Yu, Hsin-Su

    2016-03-22

    Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC) are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP)-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR) reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR) microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR) imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type) and short-chain (regular type) glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor) pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein-linked glycan

  4. Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging

    Directory of Open Access Journals (Sweden)

    Chih-Hung Lee

    2016-03-01

    Full Text Available Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type and short-chain (regular type glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein

  5. Acute Sodium Arsenite-Induced Hematological and Biochemical Changes in Wistar Rats: Protective Effects of Ethanol Extract of Ageratum conyzoides

    Science.gov (United States)

    Ola-Davies, Olufunke Eunice; Akinrinde, Akinleye Stephen

    2016-01-01

    Background: Ageratum conyzoides L. (Asteraceae) is an annual herbaceous plant used in folklore medicine for the treatment of a wide range of diseases. Objective: To investigate the protective effect of the ethanol leaf extract of A. conyzoides (EEAC) against hematological, serum biochemical and histological alterations induced by Sodium arsenite administration to Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly assigned into four groups of five rats each. Group I received propylene glycol and Group II rats were given the (EEAC, 100 mg/kg b.w.) orally for 7 days. Group III were given a single oral dose of sodium arsenite (NaAsO2, 2.5 mg/kg b.w.). Animals in Group IV were pretreated with 100 mg/kg EEAC for 7 days followed by a single oral dose of sodium arsenite. Results: Arsenic exposure resulted in significant reductions (P produced significant reversal of the reduction in the erythrocytic indices (packed cell volume, red blood cell, and Hb) caused by sodium arseniteSodium arsenite-induced slight elevations in serum aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), correlating with the histopathological lesions observedAgeratum conyzoides produced only slight reductions in AST, ALT, and ALP compared to the sodium arsenite group, but significantly reduced the severity of histopathological lesions. Abbreviations Used: EEAC: Ethanol extract of Ageratum conyzoides; RBC: Red blood cell; WBC: White blood cell; Hb: Hemoglobin; ALT: Alanine transaminase; AST: Aspartate transaminase or Aspartate aminotransferase; ALP: Alkaline phosphatase; GGT: Gamma glutamyl transferase. PMID:27114688

  6. The Respiratory Arsenite Oxidase: Structure and the Role of Residues Surrounding the Rieske Cluster

    Science.gov (United States)

    Warelow, Thomas P.; Oke, Muse; Schoepp-Cothenet, Barbara; Dahl, Jan U.; Bruselat, Nicole; Sivalingam, Ganesh N.; Leimkühler, Silke; Thalassinos, Konstantinos; Kappler, Ulrike; Naismith, James H.; Santini, Joanne M.

    2013-01-01

    The arsenite oxidase (Aio) from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA) with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB) which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively). A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26) for a threonine as in the A. faecalis AioB explains a −20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter. PMID:24023621

  7. The respiratory arsenite oxidase: structure and the role of residues surrounding the rieske cluster.

    Directory of Open Access Journals (Sweden)

    Thomas P Warelow

    Full Text Available The arsenite oxidase (Aio from the facultative autotrophic Alphaproteobacterium Rhizobium sp. NT-26 is a bioenergetic enzyme involved in the oxidation of arsenite to arsenate. The enzyme from the distantly related heterotroph, Alcaligenes faecalis, which is thought to oxidise arsenite for detoxification, consists of a large α subunit (AioA with bis-molybdopterin guanine dinucleotide at its active site and a 3Fe-4S cluster, and a small β subunit (AioB which contains a Rieske 2Fe-2S cluster. The successful heterologous expression of the NT-26 Aio in Escherichia coli has resulted in the solution of its crystal structure. The NT-26 Aio, a heterotetramer, shares high overall similarity to the heterodimeric arsenite oxidase from A. faecalis but there are striking differences in the structure surrounding the Rieske 2Fe-2S cluster which we demonstrate explains the difference in the observed redox potentials (+225 mV vs. +130/160 mV, respectively. A combination of site-directed mutagenesis and electron paramagnetic resonance was used to explore the differences observed in the structure and redox properties of the Rieske cluster. In the NT-26 AioB the substitution of a serine (S126 in NT-26 for a threonine as in the A. faecalis AioB explains a -20 mV decrease in redox potential. The disulphide bridge in the A. faecalis AioB which is conserved in other betaproteobacterial AioB subunits and the Rieske subunit of the cytochrome bc 1 complex is absent in the NT-26 AioB subunit. The introduction of a disulphide bridge had no effect on Aio activity or protein stability but resulted in a decrease in the redox potential of the cluster. These results are in conflict with previous data on the betaproteobacterial AioB subunit and the Rieske of the bc 1 complex where removal of the disulphide bridge had no effect on the redox potential of the former but a decrease in cluster stability was observed in the latter.

  8. Photocatalytic oxidation and removal of arsenite by titanium dioxide supported on granular activated carbon.

    Science.gov (United States)

    Yao, Shu Hua; Jia, Yong Feng; Zhao, Shan Lin

    2012-01-01

    Arsenic contamination in drinking water is a worldwide concern. Photocatalysis can rapidly oxidize arsenite, i.e. As(III), to less labile arsenate, i.e. As(V), which then can be removed by adsorption on to various adsorbents. This study investigated the photocatalytic oxidation of arsenite in aqueous solution by granular activated carbon supporting a titanium dioxide photocatalyst (GAC-TiO2). The effects of photocatalyst dosage, solution pH values, initial concentration of As(III) and co-anions (SO4(2-), PO4(3-), SiO3(2-) and Cl-) on the oxidation of As(III) were studied. The photocatalytic oxidation of As(III) took place in minutes and followed first-order kinetics. The presence of phosphate and silicate significantly decreased As(III) oxidation, while the effect of sulphate, chloride was insignificant. The oxidation efficiency of As(III) was observed to increase with increasing pH. The results suggest that the supported photocatalyst developed in this study is an ideal candidate for pre-oxidation treatment of arsenic-contaminated water.

  9. Effect of sodium arsenite on spermatogenesis,plasma gonadotrophins and testosterone in rats

    Institute of Scientific and Technical Information of China (English)

    MahitoshSarkar; GargiRayChaudhuri; AlokeChattopadhyay; NarendraMohanBiswas

    2003-01-01

    Aim:To investigate the effect of arsenic on spermatogenesis.Methods:Mature(4 months old)Wistar rats were intraperitoneally administered sodium arsenite at doses of 4,5 or 6mg·kg-1·day-1 for 26 days.Different varieties of germ cells at stage Ⅶ seminiferous epithelium cycle,namely,type A spermatogonia(ASg),preleptotene spermatocytes(pLSc),midpachytene spermatocytes(mPSc) and step 7 spermatids(7Sd) were quantitatively evaluated, along with radioimmunoassay of plasma follicle-stimulating hormone(FSH),lutuneizing hormone(LH),testosterone and assessment of the epididymal sperm count.Results:In the 5 and 6 mg/kg groups,there were significant dosedependent decreases in the accessory sex organ weights,epididymal sperm count and plasma concentrations of LH,FSH and testosterone with massive degeneration of all the germ cells at stage Ⅶ,The changes were insignificant in the 4 mg/kg group.Conclusion:Arsenite has a suppressive influence on spermatogenesis and gonadotrophin and testosterone release in rats.

  10. Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guang Dong Electric Power Design Institute, China Energy Engineering Group Co. Ltd., Guangzhou 510663 (China); Cai, Xiaojiao [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jingwei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); The 718th Research Institute of CSIC, Handan 056027 (China); Zhou, Shimin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Na, Ping, E-mail: naping@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-01-01

    Graphical abstract: - Highlights: • An iron and titanium co-pillared montmorillonite (Fe-Ti/MMT) was synthesized for arsenite removal. • Variety of characterization results indicated that Fe and Ti species were pillared in MMT. • A possible mechanism of arsenite adsorption/oxidation with UV light was established. • The participation of Fe component can promote the process of photocatalytic oxidation in Fe-Ti/MMT + As(III) system. • Fe-Ti/MMT can function as both photocatalyst and adsorbent for arsenite removal. - Abstract: A series of iron and titanium co-pillared montmorillonites (Fe-Ti/MMT) were prepared using hydrolysis of inserted titanium and different iron content in montmorillonite (MMT). The Fe-Ti/MMT were characterized by X-ray fluorescence, N{sub 2} adsorption and desorption, X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirming the effective insertion of Fe species and TiO{sub 2} in the MMT. The Fe-Ti/MMT was used to remove arsenite (As(III)) from aqueous solutions under different conditions. The result of As(III) adsorption under UV irradiation showed that the photo activity can be enhanced by incorporating Fe and Ti in MMT. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the hydroxyl groups bonded to metal oxide (M–OH) played an important role in the adsorption of As(III)

  11. Fate of arsenite and arsenate in flooded and not flooded soils of southwest Bangladesh irrigated with arsenic contaminated water.

    Science.gov (United States)

    Martin, Maria; Violante, Antonio; Barberis, Elisabetta

    2007-10-01

    In Bangladesh and West Bengal, India, tons of arsenic are added every year to wide extensions of agricultural soils after irrigation with arsenic polluted groundwater, and the fate of the added arsenic in these water-soil environments is not yet clear. This work was aimed to investigate the accumulation and potential release of arsenite [As(III)] and arsenate [As(V)] in two adjacent soils of Bangladesh, irrigated with arsenic contaminated groundwater and cultivated under flooded or not flooded conditions. Both soils showed a scarce As accumulation, in spite of a good adsorption capacity, higher for As(III) than for As(V). The poorly ordered Fe oxides dominated As adsorption in the topsoil of the flooded soil, whereas the crystalline forms were more important in the well aerated soil. A high percentage of the native arsenic was exchangeable with phosphate and the freshly added arsenate or arsenite were even much more mobile. In our experimental conditions, the high As mobility was not dependent on the surface coverage, and, in the flooded soil, 60-70% of the freshly added arsenite or arsenate were desorbed with an infinite sink method, while in the not flooded soil arsenate was less desorbed than arsenite. Depending on their characteristics, some soils, in particular when cultivated under flooded conditions, can represent only a temporary sink for the added As, that can be easily released to waters and possibly enter the food chain from the water-soil system.

  12. Differential binding of monomethylarsonous acid compared to arsenite and arsenic trioxide with zinc finger peptides and proteins.

    Science.gov (United States)

    Zhou, Xixi; Sun, Xi; Mobarak, Charlotte; Gandolfi, A Jay; Burchiel, Scott W; Hudson, Laurie G; Liu, Ke Jian

    2014-04-21

    Arsenic is an environmental toxin that enhances the carcinogenic effect of DNA-damaging agents, such as ultraviolet radiation and benzo[a]pyrene. Interaction with zinc finger proteins has been shown to be an important molecular mechanism for arsenic toxicity and cocarcinogenesis. Arsenicals such as arsenite, arsenic trioxide (ATO), and monomethylarsonous acid (MMA(III)) have been reported to interact with cysteine residues of zinc finger domains, but little is known about potential differences in their selectivity of interaction. Herein we analyzed the interaction of arsenite, MMA(III), and ATO with C2H2, C3H1, and C4 configurations of zinc fingers using UV-vis, cobalt, fluorescence, and mass spectrometry. We observed that arsenite and ATO both selectively bound to C3H1 and C4 zinc fingers, while MMA(III) interacted with all three configurations of zinc finger peptides. Structurally and functionally, arsenite and ATO caused conformational changes and zinc loss on C3H1 and C4 zinc finger peptide and protein, respectively, whereas MMA(III) changed conformation and displaced zinc on all three types of zinc fingers. The differential selectivity was also demonstrated in zinc finger proteins isolated from cells treated with these arsenicals. Our results show that trivalent inorganic arsenic compounds, arsenite and ATO, have the same selectivity and behavior when interacting with zinc finger proteins, while methylation removes the selectivity. These findings provide insights on the molecular mechanisms underlying the differential effects of inorganic versus methylated arsenicals, as well as the role of in vivo arsenic methylation in arsenic toxicity and carcinogenesis.

  13. Investigation of the Interaction Between Sodium(meta) Arsenite and Catechin via ESI Tandem Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    CUI Sheng-yun; WEN Jin-feng; KIM Seung-jin; LEE Yong-ill

    2007-01-01

    Catechin, one of the main components of green tea, is considered to have the remedy effect of arsenic poison,although the chemical mechanism is not well known. In this study, sodium(meta) selenite, which is used as herbisolution to investigate the interaction between toxic inorganic arsenic compound and catechin via ESI tandem mass spectrometry. The interaction products of mono-methylated arsenic with catechin in the presence of methanol were identified in the negative mode. Collission induced dissociation(CID) mass spectrometric measurements indicate that monomethylated arsenic was "alkylated" strongly by conjugation at the sites of C2' and C5' in the phenyl ring B of the catechin. The interaction mechanism between sodium(meta) arsenite and catechin was proposed. The results provide useful information to understand the chemical pathway of the detoxification of the arsenic toxicity by catechin.

  14. Comparative Molecular Docking Studies with ABCC1 and Aquaporin 9 in the Arsenite Complex Efflux

    Science.gov (United States)

    Poojan, Shiv; Dhasmana, Anupam; Jamal, Qazi Mohammad Sajid; Haneef, Mohd; Lohani, Mohtashim

    2014-01-01

    Arsenic is the most toxic metalloid present in the natural environment in both organic and inorganic arsenic forms. Inorganic arsenic is often more hazardous than the organic form. Arsenite and arsenate compounds are the major inorganic forms which are toxic causing severe human health dysfunction including cancer. Excretion of arsenic from the system is found elusive. Therefore, it is of interest to screen channel proteins with the arsenic complex in the different combination of arsenic, GSH (glutathione) and arsenic, selenium using docking methods. The mode of arsenic removal. The complex structure revealed the mode of arsenic binding efficiency with the receptor aquaporine 9 and ABCC1 channel protein. This provides insights to understand the mechanism of arsenic efflux. These inferences find application in the design, identification and development of novel nutracetucal or any other formulation useful in the balance of arsenic efflux. PMID:25258480

  15. Comparative Molecular Docking Studies with ABCC1 and Aquaporin 9 in the Arsenite Complex Efflux.

    Science.gov (United States)

    Poojan, Shiv; Dhasmana, Anupam; Jamal, Qazi Mohammad Sajid; Haneef, Mohd; Lohani, Mohtashim

    2014-01-01

    Arsenic is the most toxic metalloid present in the natural environment in both organic and inorganic arsenic forms. Inorganic arsenic is often more hazardous than the organic form. Arsenite and arsenate compounds are the major inorganic forms which are toxic causing severe human health dysfunction including cancer. Excretion of arsenic from the system is found elusive. Therefore, it is of interest to screen channel proteins with the arsenic complex in the different combination of arsenic, GSH (glutathione) and arsenic, selenium using docking methods. The mode of arsenic removal. The complex structure revealed the mode of arsenic binding efficiency with the receptor aquaporine 9 and ABCC1 channel protein. This provides insights to understand the mechanism of arsenic efflux. These inferences find application in the design, identification and development of novel nutracetucal or any other formulation useful in the balance of arsenic efflux.

  16. Sodium arsenite reduces severity of dextran sulfate sodium-induced ulcerative colitis in rats

    Institute of Scientific and Technical Information of China (English)

    Joshua J. MALAGO; Hortensia NONDOLI

    2008-01-01

    The histopathological features and the associated clinical findings of ulcerative colitis (UC) are due to persistent inflammatory response in the colon mucosa. Interventions that suppress this response benefit UC patients. We tested whether sodium arsenite (SA) benefits rats with dextran sulfate sodium (DSS)-colitis. The DSS-colitis was induced by 5% DSS in drinking water. SA (10 mg/kg; intraperitoneally) was given 8 h before DSS treatment and then every 48 h for 3 cycles of 7,14 or 21 d. At the end of each cycle rats were sacrificed and colon sections processed for histological examination. DSS induced diarrhea, loose stools, hemoccult positive stools, gross bleeding, loss of body weight, loss of epithelium, crypt damage, depletion of goblet cells and infiltration of inflammatory cells. The severity of these changes increased ir the order of Cycles 1,2 and 3. Treatment of rats with SA significantly reduced this severity and improved the weight gain.

  17. Characterization of adsorption of aqueous arsenite and arsenate onto charred dolomite in microcolumn systems.

    Science.gov (United States)

    Salameh, Yousef; Al-Muhtaseb, Ala'a H; Mousa, Hasan; Walker, Gavin M; Ahmad, Mohammad N M

    2014-01-01

    In this work, the removal of arsenite, As(III), and arsenate, As(V), from aqueous solutions onto thermally processed dolomite (charred dolomite) via microcolumn was evaluated. The effects of mass of adsorbent (0.5-2 g), initial arsenic concentration (50-2000 ppb) and particle size (dolomite in a microcolumn were investigated. It was found that the adsorption of As(V) and As(III) onto charred dolomite exhibited a characteristic 'S' shape. The adsorption capacity increased as the initial arsenic concentration increased. A slow decrease in the column adsorption capacity was noted as the particle size increased from>0.335 to 0.710-2.00 mm. For the binary system, the experimental data show that the adsorption of As(V) and As(III) was independent of both ions in solution. The experimental data obtained from the adsorption process were successfully correlated with the Thomas Model and Bed Depth Service Time Model.

  18. Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis.

    Science.gov (United States)

    Guo, Yuqing; Xue, Ximei; Yan, Yu; Zhu, Yongguan; Yang, Guidi; Ye, Jun

    2016-11-01

    Arsenic-contaminated water is a serious hazard for human health. Plankton plays a critical role in the fate and toxicity of arsenic in water by accumulation and biotransformation. Spirulina platensis (S. platensis), a typical plankton, is often used as a supplement or feed for pharmacy and aquiculture, and may introduce arsenic into the food chain, resulting in a risk to human health. However, there are few studies about how S. platensis biotransforms arsenic. In this study, we investigated arsenic biotransformation by S. platensis. When exposed to arsenite (As(III)), S. platensis accumulated arsenic up to 4.1mg/kg dry weight. After exposure to As(III), arsenate (As(V)) was the predominant species making up 64% to 86% of the total arsenic. Monomethylarsenate (MMA(V)) and dimethylarsenate (DMA(V)) were also detected. An arsenite S-adenosylmethionine methyltransferase from S. platensis (SpArsM) was identified and characterized. SpArsM showed low identity with other reported ArsM enzymes. The Escherichia coli AW3110 bearing SparsM gene resulted in As(III) methylation and conferring resistance to As(III). The in vitro assay showed that SpArsM exhibited As(III) methylation activity. DMA(V) and a small amount of MMA(V) were detected in the reaction system within 0.5hr. A truncated SpArsM derivative lacking the last 34 residues still had the ability to methylate As(III). The three single mutants of SpArsM (C59S, C186S, and C238S) abolished the capability of As(III) methylation, suggesting the three cysteine residues are involved in catalysis. We propose that SpArsM is responsible for As methylation and detoxification of As(III) and may contribute to As biogeochemistry.

  19. Molecular basis of arsenite (As+3-induced acute cytotoxicity in human cervical epithelial carcinoma cells

    Directory of Open Access Journals (Sweden)

    Muhammad Nauman Arshad

    2015-04-01

    Full Text Available Background: Rapid industrialization is discharging toxic heavy metals into the environment, disturbing human health in many ways and causing various neurologic, cardiovascular, and dermatologic abnormalities and certain types of cancer. The presence of arsenic in drinking water from different urban and rural areas of the major cities of Pakistan, for example, Lahore, Faisalabad, and Kasur, was found to be beyond the permissible limit of 10 parts per billion set by the World Health Organization. Therefore the present study was initiated to examine the effects of arsenite (As+3 on DNA biosynthesis and cell death. Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and flow cytometry. Results: We show that As+3 ions have a dose- and time-dependent cytotoxic effect through the activation of the caspase-dependent apoptotic pathway. In contrast to previous research, the present study was designed to explore the early cytotoxic effects produced in human cells during exposure to heavy dosage of As+3 (7.5 µg/ml. Even treatment for 1 h significantly increased the mRNA levels of p21 and p27 and caspases 3, 7, and 9. It was interesting that there was no change in the expression levels of p53, which plays an important role in G2/M phase cell cycle arrest. Conclusion: Our results indicate that sudden exposure of cells to arsenite (As+3 resulted in cytotoxicity and mitochondrial-mediated apoptosis resulting from up-regulation of caspases.

  20. EFFECTS OF ARSENITE IN TELOMERE AND TELOMERASE IN RELATION TO CELL PROLIFERATION AND APOPTOSIS IN HUMAN KERATINOCYTES AND LEUKEMIA CELLS IN VITRO

    Science.gov (United States)

    Telomeres are critical in maintaining chromosome and genomic stability. Arsenic, a human carcinogen as well as an anticancer agent, is known for its clastogenicity. To better understand molecular mechanisms of arsenic actions, we investigated arsenite effects on telomere and telo...

  1. Co-culture of neural crest stem cells (NCSC and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death.

    Directory of Open Access Journals (Sweden)

    Anongnad Ngamjariyawat

    Full Text Available PURPOSE: Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. PROCEDURES: Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry, nitrite production (Griess reagent, protein localization (immunofluorescence and protein phosphorylation (flow cytometry. RESULTS: We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii NCSC-derived laminin production; (iii decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv decreased beta-TC6 cell phosphorylation of ERK(T202/Y204, FAK(Y397 and FAK(Y576. Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. CONCLUSION: In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta

  2. [6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice.

    Science.gov (United States)

    Chakraborty, Debrup; Mukherjee, Avinaba; Sikdar, Sourav; Paul, Avijit; Ghosh, Samrat; Khuda-Bukhsh, Anisur Rahman

    2012-04-05

    Arsenic toxicity induces type 2 diabetes via stress mediated pathway. In this study, we attempt to reveal how sodium arsenite (iAs) could induce stress mediated impaired insulin signaling in mice and if an isolated active fraction of ginger, [6]-gingerol could attenuate the iAs intoxicated hyperglycemic condition of mice and bring about improvement in their impaired insulin signaling. [6]-Gingerol treatment reduced elevated blood glucose level and oxidative stress by enhancing activity of super oxide dismutase (SOD), catalase, glutathione peroxidase (GPx) and GSH. [6]-Gingerol also helped in increasing plasma insulin level, brought down after iAs exposure. iAs treatment to primary cell culture of β-cells and hepatocytes in vitro produced cyto-degenerative effect and accumulated reactive oxygen species (ROS) in pancreatic β-cells and hepatocytes of mice. [6]-Gingerol appeared to inhibit/intervene iAs induced cyto-degeneration of pancreatic β-cells and hepatocytes, helped in scavenging the free radicals. The over-expression of TNFα and IL6 in iAs intoxicated mice was down-regulated by [6]-gingerol treatment. iAs intoxication reduced expression levels of GLUT4, IRS-1, IRS-2, PI3K, AKT, PPARγ signaling molecules; [6]-gingerol mediated its action through enhancing the expressions of these signaling molecules, both at protein and mRNA levels. Thus, our results suggest that [6]-gingerol possesses an anti-hyperglycemic property and can improve impaired insulin signaling in arsenic intoxicated mice.

  3. IL-15 improves the cytotoxicity of cytokine-induced killer cells against leukemia cells by upregulating CD3+CD56+ cells and downregulating regulatory T cells as well as IL-35.

    Science.gov (United States)

    Tao, Qianshan; Chen, Tianping; Tao, Lili; Wang, Huiping; Pan, Ying; Xiong, Shudao; Zhai, Zhimin

    2013-01-01

    Cytokine-induced killer (CIK) cells are usually generated from peripheral blood mononuclear cells with the stimulation of IL-2 in vitro. Unlike the conventional IL-2-stimulated CIK cells (IL-2-CIK cells), we investigated the characteristics and potential mechanism of IL-15-stimulated CIK cells (IL-15-CIK cells) in this study. Compared with IL-2-CIK cells, the percentage of CD3CD56 cells was significantly increased in IL-15-CIK cells, but the expression of regulatory T (Treg) cells and IL-35 was significantly decreased in IL-15-CIK cells. Meanwhile, the in vitro cytotoxicity against human myeloid leukemia cells K562 of IL-15-CIK cells was significantly augmented compared with IL-2-CIK cells. These data suggest that IL-15 may improve the cytotoxicity of CIK cells against leukemia cells by upregulating CD3CD56 cells and downregulating Treg cells and IL-35.

  4. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  5. In vitro development of resistance to arsenite and chromium-VI in Lactobacilli strains as perspective attenuation of gastrointestinal disorder.

    Science.gov (United States)

    Upreti, Raj K; Sinha, Vartika; Mishra, Ritesh; Kannan, Ambrose

    2011-05-01

    Inadvertent intake of inorganic arsenic and chromium through drinking water and food causing their toxic insults is a major health problem. Intestinal bacteria including Lactobacilli play important regulatory roles on intestinal homeostasis, and their loss is known to cause gastrointestinal (GI) disorders. Probiotic Lactobacilli resistance to arsenite and chromium-VI could be an importantfactorfor the perspective attenuation of Gl-disorders caused by these toxic metals/metalloid. In the present study resistance of arsenite (up to 32 ppm), Cr-VI (up to 64 ppm), and arsenite plus Cr-VI (32 ppm each) were developed under in vitro condition following chronological chronic exposures in Lactobacilli strains. Comparative study of biochemical parameters such as membrane transport enzymes and structural constituents; dehydrogenase and esterase activity tests, which are respective indicators for respiratory and energy producing processes, and the general heterotrophic activity of cells, of resistant strains showed similarities with their respective normal parent strains. The resistant strains were also found to be sensitive to antibiotics. Findings indicate that these resistant probiotic Lactobacilli would be useful in the prophylactic interventions of arsenic and chromium GI-toxicity.

  6. Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana.

    Science.gov (United States)

    Krishnamurthy, Aparna; Rathinasabapathi, Bala

    2013-10-01

    The role of auxin in plant development is well known; however, its possible function in root response to abiotic stress is poorly understood. In this study, we demonstrate a novel role of auxin transport in plant tolerance to oxidative stress caused by arsenite. Plant response to arsenite [As(III)] was evaluated by measuring root growth and markers for stress on seedlings treated with control or As(III)-containing medium. Auxin transporter mutants aux1, pin1 and pin2 were significantly more sensitive to As(III) than the wild type (WT). Auxin transport inhibitors significantly reduced plant tolerance to As(III) in the WT, while exogenous supply of indole-3-acetic acid improved As(III) tolerance of aux1 and not that of WT. Uptake assays using H(3) -IAA showed As(III) affected auxin transport in WT roots. As(III) increased the levels of H2 O2 in WT but not in aux1, suggesting a positive role for auxin transport through AUX1 on plant tolerance to As(III) stress via reactive oxygen species (ROS)-mediated signalling. Compared to the WT, the mutant aux1 was significantly more sensitive to high-temperature stress and salinity, also suggesting auxin transport influences a common element shared by plant tolerance to arsenite, salinity and high-temperature stress.

  7. Arsenite activates NFκB through induction of C-reactive protein

    Energy Technology Data Exchange (ETDEWEB)

    Druwe, Ingrid L.; Sollome, James J.; Sanchez-Soria, Pablo; Hardwick, Rhiannon N.; Camenisch, Todd D.; Vaillancourt, Richard R., E-mail: vaillancourt@pharmacy.arizona.edu

    2012-06-15

    C-reactive protein (CRP) is an acute phase protein in humans. Elevated levels of CRP are produced in response to inflammatory cytokines and are associated with atherosclerosis, hypertension, cardiovascular disease and insulin resistance. Exposure to inorganic arsenic, a common environmental toxicant, also produces cardiovascular disorders, namely atherosclerosis and is associated with insulin-resistance. Inorganic arsenic has been shown to contribute to cardiac toxicities through production of reactive oxygen species (ROS) that result in the activation of NFκB. In this study we show that exposure of the hepatic cell line, HepG2, to environmentally relevant levels of arsenite (0.13 to 2 μM) results in elevated CRP expression and secretion. ROS analysis of the samples showed that a minimal amount of ROS are produced by HepG2 cells in response to these concentrations of arsenic. In addition, treatment of FvB mice with 100 ppb sodium arsenite in the drinking water for 6 months starting at weaning age resulted in dramatically higher levels of CRP in both the liver and inner medullary region of the kidney. Further, mouse Inner Medullary Collecting Duct cells (mIMCD-4), a mouse kidney cell line, were stimulated with 10 ng/ml CRP which resulted in activation of NFκB. Pretreatment with 10 nM Y27632, a known Rho-kinase inhibitor, prior to CRP exposure attenuated NFκB activation. These data suggest that arsenic causes the expression and secretion of CRP and that CRP activates NFκB through activation of the Rho-kinase pathway, thereby providing a novel pathway by which arsenic can contribute to metabolic syndrome and cardiovascular disease. -- Highlights: ► Exposure to arsenic can induce the expression and secretion of CRP. ► Mice treated with NaAsO{sub 2} showed higher levels of CRP in both the liver and kidney. ► mIMCD-3 were stimulated with CRP which resulted in activation of NFκB. ► CRP activates NFκB through activation of the Rho-kinase pathway. ► Data

  8. In vitro modulation of MMP-2 and MMP-9 in human cervical and ovarian cancer cell lines by cytokines, inducers and inhibitors.

    Science.gov (United States)

    Roomi, M W; Monterrey, J C; Kalinovsky, T; Rath, M; Niedzwiecki, A

    2010-03-01

    Matrix metalloproteinases (MMPs) secreted by cervical and ovarian cancer, especially MMP-2 and MMP-9, play crucial roles in tumor invasion and metastasis. We examined the effect of cytokines, mitogens, inducers and inhibitors on MMP-2 and MMP-9 expression in cervical and ovarian cancer cell lines. Human cervical (HeLa and DoTc2-4510) and ovarian (SK-OV-3) cell lines were cultured in appropriate media. At near confluence, the cells were washed with PBS and incubated in serum-free medium with various concentrations of several cytokines, mitogens and inhibitors. After 24 h the media were removed and analyzed for MMP-2 and MMP-9 by gelatinase zymography and quantitated by densitometry. HeLa and SK-OV-3 cell lines expressed MMP-2 whereas DoTc2-4510 cells expressed MMP-9. Treatment of cervical cancer cell lines (HeLa and DoTc2-4510) with PMA had no effect on MMP-2 expression and a moderate stimulatory effect in ovarian cancer cell line SK-OV-3. MMP-9 was stimulated by phorbol 12-myristate 13-acetate in HeLa cells and enhanced in DoTc2-4510. Tumor necrosis factor-alpha and interleukin-1beta, had slight inhibitory effect on HeLa cell expression of MMP-2 while lipopolysaccharide stimulated MMP-2 in HeLa cells. Doxycycline, epigallocatechin gallate, a nutrient mixture, actinomycin-D, cyclohexamide, retinoic acid and dexamethasone inhibited MMP-2 in HeLa and SK-OV-3 cell lines and inhibited MMP-9 in DoTc2-4510. Our results show that cytokines, mitogens, inducers and inhibitors have an up or down regulatory effect on MMP-2 and MMP-9 expression in ovarian and cervical cancer cell lines, suggesting these agents may be effective strategies to treat these cancers.

  9. Development of a biosorbent for arsenite: structural modeling based on X-ray spectroscopy.

    Science.gov (United States)

    Teixeira, Monica Cristina; Ciminelli, Virginia S T

    2005-02-01

    This work describes a biological route for direct sorption of aqueous As(III) species, which are the most toxic and mobile arsenic species found in soils. Based upon the biochemical mechanisms that explain arsenic toxicity, we propose that a waste biomass with a high fibrous protein content obtained from chicken feathers can be used for selective As(III) adsorption. Prior to adsorption, the disulfide bridges present in the biomass are reduced by thioglycolate. Our investigations demonstrated that As(III) is specifically adsorbed on the biomass and, contrary to the behavior observed with inorganic sorbents, the lower is the pH the more effective is the removal. Arsenic uptake reaches values of up to 270 micromol As(III)/g of biomass. Analyses by synchrotron light techniques, such as XANES, demonstrated that arsenic is adsorbed in its trivalent state, an advantage over conventional techniques for As uptake, which usually require a previous oxidation stage. EXAFS analyses showed that each As atom is directly bound to three S atoms with an estimated distance of 2.26 A. The uptake mechanism is explained in terms of the structural similarities between the As(III)-biomass complex structure and that of arsenite ions and Ars-Operon system encoded proteins and phytochelatins. The biological route presented here offers the perspective of a direct removal of arsenic in its reduced form.

  10. Protective effects of phyllanthus emblica leaf extract on sodium arsenite-mediated adverse effects in mice.

    Science.gov (United States)

    Sayed, Sadia; Ahsan, Nazmul; Kato, Masashi; Ohgami, Nobutaka; Rashid, Abdur; Akhand, Anwarul Azim

    2015-02-01

    Groundwater contamination of arsenic is the major cause of a serious health hazard in Bangladesh. No specific treatment is yet available to manage the large number of individuals exposed to arsenic. In this study, we evaluated the protective effects of Phyllanthus emblica (Indian gooseberry or Amla) leaf extract (PLE) on arsenic-mediated toxicity in experimental mice. Male Swiss albino mice were divided into three different groups (n=6/group). 'Control' mice received arsenic free water together with normal feed. Mice in the remaining two groups designated 'SA' and 'SA+PLE' were exposed to sodium arsenite (SA, 10 µg/g body weight/day) through drinking water in addition to receiving normal feed and PLE-supplemented feed, respectively. The weight gain of SA-exposed mice was decreased compared with the controls; however, this decrease in body weight gain was prevented when the feed was supplemented with PLE. A secondary effect of arsenic was enlargement of the liver, kidney and spleen of SA-group mice. Deposition of arsenic in those organs was demonstrated by ICP-MS. When PLE was supplemented in the feed the enlargement of the organs was minimized; however, the deposition of arsenic was not significantly reduced. These results indicated that PLE may not block arsenic deposition in tissue directly but rather may play a protective role to reduce arsenic-induced toxicity. Therefore, co-administration of PLE in arsenic-exposed animals might have a future therapeutic application for protecting against arsenic-mediated toxicity.

  11. Metalloid tolerance based on phytochelatins is not functionally equivalent to the arsenite transporter Acr3p.

    Science.gov (United States)

    Wysocki, Robert; Clemens, Stephan; Augustyniak, Daria; Golik, Pawel; Maciaszczyk, Ewa; Tamás, Markus J; Dziadkowiec, Dorota

    2003-05-01

    Active transport of metalloids by Acr3p and Ycf1p in Saccharomyces cerevisiae and chelation by phytochelatins in Schizosaccharomyces pombe, nematodes, and plants represent distinct strategies of metalloid detoxification. In this report, we present results of functional comparison of both resistance mechanisms. The S. pombe and wheat phytochelatin synthase (PCS) genes, when expressed in S. cerevisiae, mediate only modest resistance to arsenite and thus cannot functionally compensate for Acr3p. On the other hand, we show for the first time that phytochelatins also contribute to antimony tolerance as PCS fully complement antimonite sensitivity of ycf1Delta mutant. Remarkably, heterologous expression of PCS sensitizes S. cerevisiae to arsenate, while ACR3 confers much higher arsenic resistance in pcsDelta than in wild-type S. pombe. The analysis of PCS and ACR3 homologues distribution in various organisms and our experimental data suggest that separation of ACR3 and PCS genes may lead to the optimal tolerance status of the cell.

  12. Adsorption of Arsenite by Six Submerged Plants from Nansi Lake, China

    Directory of Open Access Journals (Sweden)

    Zhibin Zhang

    2014-01-01

    Full Text Available Nansi Lake is the largest and the most important freshwater lake in north China for the South-North Water Transfer Project. Due to long-time and large-scale fish farming of history, the excess fish food and excretion usually release pentavalent arsenic, which is converted into trivalent arsenic (As (III in the lake sediment and released into lake water. Adsorption of arsenite using six submerged plants (Mimulicalyx rosulatus, Potamogeton maackianus, Hydrilla, Watermifoil, Pteris vittata, and Potamogeton crispus as adsorbing materials was investigated. The experimental data obtained have been analyzed using Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models and the pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetics models. According to the results, the As (III equilibrium data agreed well with the Freundlich isotherm model. The adsorption capacity of the plants was in the following order: Potamogeton crispus > Pteris vittata > Potamogeton maackianus > Mimulicalyx rosulatus > Hydrilla > Watermifoil. The sorption system with the six submerged plants was better described by pseudo-second-order than by first-order kinetics. Moreover, the adsorption with Potamogeton crispus could follow intraparticle diffusion (IPD model. The initial adsorption and rate of IPD using Potamogeton crispus and Pteris vittata were higher than those using other plants studied.

  13. Bacterial community succession during the enrichment of chemolithoautotrophic arsenite oxidizing bacteria at high arsenic concentrations

    Institute of Scientific and Technical Information of China (English)

    Nguyen Ai Le; Akiko Sato; Daisuke Inoue; Kazunari Sei; Satoshi Soda; Michihiko Ike

    2012-01-01

    To generate cost-effective technologies for the removal of arsenic from water,we developed an enrichment culture of chemolithoautotrophic arsenite oxidizing bacteria (CAOs) that could effectively oxidize widely ranging concentrations of As(Ⅲ) to As(Ⅴ).In addition,we attempted to elucidate the enrichment process and characterize the microbial composition of the enrichment culture.A CAOs enrichment culture capable of stably oxidizing As(Ⅲ) to As(Ⅴ) was successfully constructed through repeated batch cultivation for more than 700 days,during which time the initial As(Ⅲ) concentrations were increased in a stepwise manner from l to 10-12 mmol/L.As(Ⅲ) oxidation activity of the enrichment culture gradually improved,and 10-12 mmol/L As(Ⅲ) was almost completely oxidized within four days.Terminal restriction fragment length polymorphism analysis showed that the dominant bacteria in the enrichment culture varied drastically during the enrichment process depending on the As(Ⅲ) concentration.Isolation and characterization of bacteria in the enrichment culture revealed that the presence of multiple CAOs with various As(Ⅲ) oxidation abilities enabled the culture to adapt to a wide range of As(Ⅲ) concentrations.The CAOs enrichment culture constructed here may he useful for pretreatment of water from which arsenic is being removed.

  14. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells.

    Science.gov (United States)

    Ruiz-Ramos, Ruben; López-Carrillo, Lizbeth; Albores, Arnulfo; Hernández-Ramírez, Raúl U; Cebrian, Mariano E

    2009-12-15

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 microM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations ( or =5 microM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  15. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture.

    Science.gov (United States)

    Jiang, Huidan; Liang, Yili; Yin, Huaqun; Xiao, Yunhua; Guo, Xue; Xu, Ying; Hu, Qi; Liu, Hongwei; Liu, Xueduan

    2015-01-01

    The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value) and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III) after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination.

  16. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture

    Directory of Open Access Journals (Sweden)

    Huidan Jiang

    2015-01-01

    Full Text Available The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination.

  17. An ArsR/SmtB family member is involved in the regulation by arsenic of the arsenite oxidase operon in Thiomonas arsenitoxydans.

    Science.gov (United States)

    Moinier, Danielle; Slyemi, Djamila; Byrne, Deborah; Lignon, Sabrina; Lebrun, Régine; Talla, Emmanuel; Bonnefoy, Violaine

    2014-10-01

    The genetic organization of the aioBA operon, encoding the arsenite oxidase of the moderately acidophilic and facultative chemoautotrophic bacterium Thiomonas arsenitoxydans, is different from that of the aioBA operon in the other arsenite oxidizers, in that it encodes AioF, a metalloprotein belonging to the ArsR/SmtB family. AioF is stabilized by arsenite, arsenate, or antimonite but not molybdate. Arsenic is tightly attached to AioF, likely by cysteine residues. When loaded with arsenite or arsenate, AioF is able to bind specifically to the regulatory region of the aio operon at two distinct positions. In Thiomonas arsenitoxydans, the promoters of aioX and aioB are convergent, suggesting that transcriptional interference occurs. These results indicate that the regulation of the aioBA operon is more complex in Thiomonas arsenitoxydans than in the other aioBA containing arsenite oxidizers and that the arsenic binding protein AioF is involved in this regulation. On the basis of these data, a model to explain the tight control of aioBA expression by arsenic in Thiomonas arsenitoxydans is proposed.

  18. Efficacy and safety of cord blood-derived dendritic cells plus cytokine-induced killer cells combined with chemotherapy in the treatment of patients with advanced gastric cancer: a randomized Phase II study

    Directory of Open Access Journals (Sweden)

    Mu Y

    2016-07-01

    Full Text Available Ying Mu,1,* Wei-hua Wang,2,* Jia-ping Xie,1 Ying-xin Zhang,2 Ya-pei Yang,2 Chang-hui Zhou2 1Department of Gastroenterology, 2Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, People’s Republic of China *These authors contributed equally to this work Background: Cellular immunotherapy has been widely used in the treatment of solid tumors. However, the clinical application of cord blood-derived dendritic cells and cytokine-induced killer cells (CB-DC-CIK for the treatment of gastric cancer has not been frequently reported. In this study, the efficacy and safety of CB-DC-CIK for the treatment of gastric cancer were evaluated both in vitro and in vivo. Methods: The phenotypes, cytokines, and cytotoxicity of CB-DC-CIK were detected in vitro. Patients with advanced gastric cancer were divided into the following two groups: the experimental group (CB-DC-CIK combined with chemotherapy and the control group (chemotherapy alone. The curative effects and immune function were compared between the two groups. Results: First, the results showed that combination therapy significantly increased the overall disease-free survival rate (P=0.0448 compared with chemotherapy alone. The overall survival rate (P=0.0646, overall response rate (P=0.410, and disease control rate (P=0.396 were improved in the experimental group, but these changes did not reach statistical significance. Second, the percentage of T-cell subsets (CD4+, CD3-CD56+, and CD3+CD56+ and the levels of IFN-γ, TNF-α, and IL-2, which reflect immune function, were significantly increased (P<0.05 after immunotherapy. Finally, no serious side effects appeared in patients with gastric cancer after the application of cellular immunotherapy based on CB-DC-CIK. Conclusion: CB-DC-CIK combined with chemotherapy is effective and safe for the treatment of patients with advanced gastric cancer. Keywords: cord

  19. Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates.

    Science.gov (United States)

    Dickson, Dionne; Liu, Guangliang; Cai, Yong

    2017-01-15

    Iron (Fe) nanoparticles, e.g., zerovalent iron (ZVI) and iron oxide nanoparticles (IONP), have been used for remediation and environmental management of arsenic (As) contamination. These Fe nanoparticles, although originally nanosized, tend to form aggregates, in particular in the environment. The interactions of As with both nanoparticles and micron-sized aggregates should be considered when these Fe nanomaterials are used for mitigation of As issue. The objective of this study was to compare the adsorption kinetics and isotherm of arsenite (As(III)) and arsenate (As(V)) on bare hematite nanoparticles and aggregates and how this affects the fate of arsenic in the environment. The adsorption kinetic process was investigated with regards to the aggregation of the nanoparticles and the type of sorbed species. Kinetic data were best described by a pseudo second-order model. Both As species had similar rate constants, ranging from 3.82 to 6.45 × 10(-4) g/(μg·h), as rapid adsorption occurred within the first 8 h regardless of particle size. However, hematite nanoparticles and aggregates showed a higher affinity to adsorb larger amounts of As(V) (4122 ± 62.79 μg/g) than As(III) (2899 ± 71.09 μg/g) at equilibrium. We were able to show that aggregation and sedimentation of hematite nanoparticles occurs during the adsorption process and this might cause the immobilization and reduced bioavailability of arsenic. Isotherm studies were described by the Freundlich model and it confirmed that hematite nanoparticles have a significantly higher adsorption capacity for both As(V) and As(III) than hematite aggregates. This information is useful and can assist in predicting arsenic adsorption behavior and assessing the role of iron oxide nanoparticles in the biogeochemical cycling of arsenic.

  20. An Oxidoreductase AioE is Responsible for Bacterial Arsenite Oxidation and Resistance

    Science.gov (United States)

    Wang, Qian; Han, Yushan; Shi, Kaixiang; Fan, Xia; Wang, Lu; Li, Mingshun; Wang, Gejiao

    2017-01-01

    Previously, we found that arsenite (AsIII) oxidation could improve the generation of ATP/NADH to support the growth of Agrobacterium tumefaciens GW4. In this study, we found that aioE is induced by AsIII and located in the arsenic island near the AsIII oxidase genes aioBA and co-transcripted with the arsenic resistant genes arsR1-arsC1-arsC2-acr3-1. AioE belongs to TrkA family corresponding the electron transport function with the generation of NADH and H+. An aioE in-frame deletion strain showed a null AsIII oxidation and a reduced AsIII resistance, while a cytC mutant only reduced AsIII oxidation efficiency. With AsIII, aioE was directly related to the increase of NADH, while cytC was essential for ATP generation. In addition, cyclic voltammetry analysis showed that the redox potential (ORP) of AioBA and AioE were +0.297 mV vs. NHE and +0.255 mV vs. NHE, respectively. The ORP gradient is AioBA > AioE > CytC (+0.217 ~ +0.251 mV vs. NHE), which infers that electron may transfer from AioBA to CytC via AioE. The results indicate that AioE may act as a novel AsIII oxidation electron transporter associated with NADH generation. Since AsIII oxidation contributes AsIII detoxification, the essential of AioE for AsIII resistance is also reasonable. PMID:28128323

  1. Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.).

    Science.gov (United States)

    Dave, Richa; Singh, Pradyumna Kumar; Tripathi, Preeti; Shri, Manju; Dixit, Garima; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh Kumar; Sharma, Yogesh Kumar; Dhankher, Om Prakash; Corpas, Francisco Javier; Barroso, Juan B; Tripathi, Rudra Deo

    2013-02-01

    Thiol metabolism is the primary detoxification strategy by which rice plants tolerate arsenic (As) stress. In light of this, it is important to understand the importance of harmonised thiol metabolism with As accumulation and tolerance in rice plant. For this aim, tolerant (T) and sensitive (S) genotypes were screened from 303 rice (Oryza sativa) genotypes on exposure to 10 and 25 μM arsenite (As(III)) in hydroponic culture. On further As accumulation estimation, contrasting (13-fold difference) T (IC-340072) and S (IC-115730) genotypes were selected. This difference was further evaluated using biochemical and molecular approaches to understand involvement of thiolic metabolism vis-a-vis As accumulation in these two genotypes. Various phytochelatin (PC) species (PC(2), PC(3) and PC(4)) were detected in both the genotypes with a dominance of PC(3). However, PC concentrations were greater in the S genotype, and it was noticed that the total PC (PC(2) + PC(3 )+ PC(4))-to-As(III) molar ratio (PC-SH:As(III)) was greater in T (2.35 and 1.36 in shoots and roots, respectively) than in the S genotype (0.90 and 0.15 in shoots and roots, respectively). Expression analysis of several metal(loid) stress-related genes showed significant upregulation of glutaredoxin, sulphate transporter, and ascorbate peroxidase in the S genotype. Furthermore, enzyme activity of phytochelatin synthase and cysteine synthase was greater on As accumulation in the S compared with the T genotype. It was concluded that the T genotype synthesizes adequate thiols to detoxify metalloid load, whereas the S genotype synthesizes greater but inadequate levels of thiols to tolerate an exceedingly greater load of metalloids, as evidenced by thiol-to-metalloid molar ratios, and therefore shows a phytotoxicity response.

  2. An aquaporin PvTIP4;1 from Pteris vittata may mediate arsenite uptake.

    Science.gov (United States)

    He, Zhenyan; Yan, Huili; Chen, Yanshan; Shen, Hongling; Xu, Wenxiu; Zhang, Haiyan; Shi, Lei; Zhu, Yong-Guan; Ma, Mi

    2016-01-01

    The fern Pteris vittata is an arsenic hyperaccumulator. The genes involved in arsenite (As(III)) transport are not yet clear. Here, we describe the isolation and characterization of a new P. vittata aquaporin gene, PvTIP4;1, which may mediate As(III) uptake. PvTIP4;1 was identified from yeast functional complement cDNA library of P. vittata. Arsenic toxicity and accumulating activities of PvTIP4;1 were analyzed in Saccharomyces cerevisiae and Arabidopsis. Subcellular localization of PvTIP4;1-GFP fusion protein in P. vittata protoplast and callus was conducted. The tissue expression of PvTIP4;1 was investigated by quantitative real-time PCR. Site-directed mutagenesis of the PvTIP4;1 aromatic/arginine (Ar/R) domain was studied. Heterologous expression in yeast demonstrates that PvTIP4;1 was able to facilitate As(III) diffusion. Transgenic Arabidopsis showed that PvTIP4;1 increases arsenic accumulation and induces arsenic sensitivity. Images and FM4-64 staining suggest that PvTIP4;1 localizes to the plasma membrane in P. vittata cells. A tissue location study shows that PvTIP4;1 transcripts are mainly expressed in roots. Site-directed mutation in yeast further proved that the cysteine at the LE1 position of PvTIP4;1 Ar/R domain is a functional site. PvTIP4;1 is a new represented tonoplast intrinsic protein (TIP) aquaporin from P. vittata and the function and location results imply that PvTIP4;1 may be involved in As(III) uptake.

  3. Arsenite Removal from Simulated Groundwater by Biogenic Schwertmannite: A Column Trial

    Institute of Scientific and Technical Information of China (English)

    XIE Yue; ZHOU Li-Xiang

    2013-01-01

    To assess the feasibility of biogenic schwertmannite to act as a sorbent for removing arsenite from groundwater,a series of biogenic schwertmannite-packed column adsorption experiments were conducted on simulated As(Ⅲ)-containing groundwater.Empty bed contact time (EBCT),As(Ⅲ) concentration in effluent,and the removal efficiency of As(Ⅲ) through the column were investigated at pH 8.0 and temperature 25 ± 0.5 ℃.The results showed that the breakthrough curves were mainly dependent on EBCT values when the influent As(Ⅲ) concentration was 500 μg L-1 and the optimum EBCT was 4.0 min.When the effluent As(Ⅲ) concentration reached 10 and 50 μg L-1,the breakthrough volumes for the schwertmannite adsorption column were 4200 and 5600 bed volume (BV),with As(Ⅲ) adsorption capacity of 2.1 and 2.8 mg g-1,respectively.Biogenic schwertmannite could be regenerated by 1.0 mol L-1 NaOH solution,and more than 80% of As(Ⅲ) adsorbed on the surface of schwertmannite could be released after 3 successive regenerations.The breakthrough volume for the regenerated schwertmannite-packed column still maintained 4 000-4 200 BV when the As(Ⅲ) concentration in effluent was below 10 μg L-1.Compared with other sorbents for As(Ⅲ) removal,the biogenic schwertmannitepacked column had a higher breakthrough volume and a much higher adsorption capacity,implying that biogenic schwertmannite was a highly efficient and potential sorbent to purify As(Ⅲ)-contaminated groundwater.

  4. Combined effects of fluoride and arsenite on the expression of Runx-related transcription 2 mRNA in bone of rats

    Institute of Scientific and Technical Information of China (English)

    郑冲

    2014-01-01

    Objective To explore the combined effects of fluoride and arsenite on the expression of Runx-related transcription 2(Runx2)mRNA in bone of Sprague Dawley(SD)rats.Methods Fifty four SD rats were selected[body mass(109.71±10.52)g,half male and half female].3×3 Factorial experimental design was used to evaluate the combined effects of fluoride and arsenite on the expression of Runx2 mRNA by random number table.

  5. IL-1beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells

    DEFF Research Database (Denmark)

    Jacobsen, M L B; Rønn, S G; Bruun, C;

    2008-01-01

    AIMS/HYPOTHESIS: Chemokines recruit activated immune cells to sites of inflammation and are important mediators of insulitis. Activation of the pro-apoptotic receptor Fas leads to apoptosis-mediated death of the Fas-expressing cell. The pro-inflammatory cytokines IL-1beta and IFN-gamma regulate...... the transcription of genes encoding the Fas receptor and several chemokines. We have previously shown that suppressor of cytokine signalling (SOCS)-3 inhibits IL-1beta- and IFN-gamma-induced nitric oxide production in a beta cell line. The aim of this study was to investigate whether SOCS-3 can influence cytokine......-induced Fas and chemokine expression in beta cells. METHODS: Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas m...

  6. Stress-induced Start Codon Fidelity Regulates Arsenite-inducible Regulatory Particle-associated Protein (AIRAP) Translation*

    Science.gov (United States)

    Zach, Lolita; Braunstein, Ilana; Stanhill, Ariel

    2014-01-01

    Initial steps in protein synthesis are highly regulated processes as they define the reading frame of the translation machinery. Eukaryotic translation initiation is a process facilitated by numerous factors (eIFs), aimed to form a “scanning” mechanism toward the initiation codon. Translation initiation of the main open reading frame (ORF) in an mRNA transcript has been reported to be regulated by upstream open reading frames (uORFs) in a manner of re-initiation. This mode of regulation is governed by the phosphorylation status of eIF2α and controlled by cellular stresses. Another mode of translational initiation regulation is leaky scanning, and this regulatory process has not been extensively studied. We have identified arsenite-inducible regulatory particle-associated protein (AIRAP) transcript to be translationally induced during arsenite stress conditions. AIRAP transcript contains a single uORF in a poor-kozak context. AIRAP translation induction is governed by means of leaky scanning and not re-initiation. This induction of AIRAP is solely dependent on eIF1 and the uORF kozak context. We show that eIF1 is phosphorylated under specific conditions that induce protein misfolding and have biochemically characterized this site of phosphorylation. Our data indicate that leaky scanning like re-initiation is responsive to stress conditions and that leaky scanning can induce ORF translation by bypassing poor kozak context of a single uORF transcript. PMID:24898249

  7. Complexation of arsenite with dissolved organic matter: conditional distribution coefficients and apparent stability constants.

    Science.gov (United States)

    Liu, Guangliang; Cai, Yong

    2010-11-01

    The complexation of arsenic (As) with dissolved organic matter (DOM), although playing an important role in regulating As mobility and transformation, is poorly characterized, as evidenced by scarce reporting of fundamental parameters of As-DOM complexes. The complexation of arsenite (AsIII) with Aldrich humic acid (HA) at different pHs was characterized using a recently developed analytical technique to measure both free and DOM-bound As. Conditional distribution coefficient (KD), describing capacity of DOM in binding AsIII from the mass perspective, and apparent stability constant (Ks), describing stability of resulting AsIII-DOM complexes, were calculated to characterize AsIII-DOM complexation. LogKD of AsIII ranged from 3.7 to 2.2 (decreasing with increase of As/DOM ratio) at pH 5.2, from 3.6 to 2.6 at pH 7, and from 4.3 to 3.2 at pH=9.3, respectively. Two-site ligand binding models can capture the heterogeneity of binding sites and be used to calculate Ks by classifying the binding sites into strong (S1) and weak (S2) groups. LogKs for S1 sites are 7.0, 6.5, and 5.9 for pH 5.2, 7, and 9.3, respectively, which are approximately 1-2 orders of magnitude higher than for weak S2 sites. The results suggest that AsIII complexation with DOM increases with pH, as evidenced by significant spikes in concentrations of DOM-bound AsIII and in KD values at pH 9.3. In contrary to KD, logKs decreased with pH, in particular for S1 sites, probably due to the presence of negatively charged H2AsO3- and the involvement of metal-bridged AsIII-DOM complexation at pH 9.3.

  8. ARSENATE AND ARSENITE REMOVAL BY ZERO-VALENT IRON: EFFECTS OF PHOSPHATE, SILICATE, CARBONATE, BORATE, SULFATE, CHROMATE, MOLYBDATE, AND NITRATE, RELATIVE TO CHLORIDE

    Science.gov (United States)

    Batch tests were performed to evaluate the effects of inorganic anion competition on the kinetics of arsenate (As(V)) and arsenite (As(III)) removal by zerovalent iron (Peerless Fe0) in aqueous solution. The oxyanions underwent either sorption-dominated reactions (phosphate, sil...

  9. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.

    Science.gov (United States)

    Chang, Jin-Soo

    2015-11-01

    The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35-40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses.

  10. Ribosomal protein S7 regulates arsenite-induced GADD45α expression by attenuating MDM2-mediated GADD45α ubiquitination and degradation.

    Science.gov (United States)

    Gao, Ming; Li, Xiaoguang; Dong, Wen; Jin, Rui; Ma, Hanghang; Yang, Pingxun; Hu, Meiru; Li, Yi; Hao, Yi; Yuan, Shengtao; Huang, Junjian; Song, Lun

    2013-05-01

    The stress-responding protein, GADD45α, plays important roles in cell cycle checkpoint, DNA repair and apoptosis. In our recent study, we demonstrate that GADD45α undergoes a dynamic ubiquitination and degradation in vivo, which process can be blocked by the cytotoxic reagent, arsenite, resulting in GADD45α accumulation to activate JNKs cell death pathway, thereby revealing a novel mechanism for the cellular GADD45α functional regulation. But the factors involved in GADD45α stability modulations are unidentified. Here, we demonstrated that MDM2 was an E3 ubiquitin ligase for GADD45α. One of MDM2-binding partner, ribosomal protein S7, interacted with and stabilized GADD45α through preventing the ubiquitination and degradation of GADD45α mediated by MDM2. This novel function of S7 is unrelated to p53 but seems to depend on S7/MDM2 interaction, for the S7 mutant lacking MDM2-binding ability lost its function to stabilize GADD45α. Further investigations indicated that arsenite treatment enhanced S7-MDM2 interaction, resulting in attenuation of MDM2-dependent GADD45α ubiquitination and degradation, thereby leading to GADD45α-dependent cell death pathway activation. Silencing S7 expression suppressed GADD45α-dependent cytotoxicity induced by arsenite. Our findings thus identify a novel function of S7 in control of GADD45α stabilization under both basal and stress conditions and its significance in mediating arsenite-induced cellular stress.

  11. Cytokine-Induced Modulation of Colorectal Cancer.

    Science.gov (United States)

    Mager, Lukas F; Wasmer, Marie-Hélène; Rau, Tilman T; Krebs, Philippe

    2016-01-01

    The emergence of novel immunomodulatory cancer therapies over the last decade, above all immune checkpoint blockade, has significantly advanced tumor treatment. For colorectal cancer (CRC), a novel scoring system based on the immune cell infiltration in tumors has greatly improved disease prognostic evaluation and guidance to more specific therapy. These findings underline the relevance of tumor immunology in the future handling and therapeutic approach of malignant disease. Inflammation can either promote or suppress CRC pathogenesis and inflammatory mediators, mainly cytokines, critically determine the pro- or anti-tumorigenic signals within the tumor environment. Here, we review the current knowledge on the cytokines known to be critically involved in CRC development and illustrate their mechanisms of action. We also highlight similarities and differences between CRC patients and murine models of CRC and point out cytokines with an ambivalent role for intestinal cancer. We also identify some of the future challenges in the field that should be addressed for the development of more effective immunomodulatory therapies.

  12. Effects of intermedin 1-53 on nuclear factor-κB and cytokine-induced neutrophil chemoattractant -1 in lung ischemia-reperfusion injury of rats%中介素1-53对肺缺血再灌注损伤大鼠NF-κB和CINC-1的影响

    Institute of Scientific and Technical Information of China (English)

    赵卉; 刘妮; 杨淑娟; 李建强

    2011-01-01

    Objective To investigate the effects of IMD1-53 on the protein expression of nuclear Fac-tor-κB (NF-κBp65) and cytokine-induced neutrophil chemoattractant-1 (CINC-1) in lung ischemia-reperfu-sion injury of rats. Methods Fifty-four healthy Wistar rats were randomly divided into 3 groups; surgical con-trols(C group) , ischemia- reperfusion group (IR group) and intermedin-pretreated group (D group). At each of 3 time spots (when rats were subjected to 45min of ischemia, then 60min and 120min of reperfusion) , 6 rats from each group were killed to collect plasma sample and the whole right lung. After observing histopatho-logical changes, we examined the wet /dry weight ratio W/D, MPO activity, CINC-1 levels and NF-κBp65 protein expression of the lung tissue. Results The lung W/D, MPO activity, protein expression of CINC-1 and NF-κB p65 in IR increased progressively and were evidently higher than those of C group (P< 0. 05). However compared with the IR group, preadministration of IMD1-53 inhibited the increase of the indexes mentioned above. Pathological examination showed that the IR induced injury was also ameliorated by IMD1-53 pretreament. Conclusion Inhalation of IMD1-53 could protect against ischemia-reperfusion induced lung injury in rats by inhibiting the infiltration of PMN in the lung possibly through inhibiting the activation of lung NF-kB and the attenuating expression of CINC-1 during lung ischemia-reperfusion in rats.%目的 探讨中介素1-53对大鼠肺缺血再灌注损伤后核因子-κB(NF-κBp65)和细胞因子诱导的中性粒细胞趋化物(CINC-1)蛋白表达的影响.方法 将健康Wistar大鼠54只随机分为手术对照组(C组)、缺血再灌注组(IR组)、中介素干预组(D组).每组分别在缺血45min,再灌注60min、120min 3个时点处死6只大鼠,观察肺组织病理形态变化,测定肺组织湿干质量比值(W/D)、髓过氧化物酶(MPO)活性,肺组织匀浆CINC-1蛋白含量及 NF-κBp65蛋白的表达.结果 IR

  13. A possible relationship between bumblefoot responsive to potassium arsenite and micrococci in the blood of three birds of prey.

    Science.gov (United States)

    Tarello, W

    2002-01-01

    Pododermatitis (bumblefoot) is a major health problem of falcons world-wide because healing processes in the talons are difficult and lengthy. A peregrine (Falco peregrinus), a merlin (Falco columbarius) and a saker falcon (Falco cherrug) with bumblefoot at different stages ranging from III to V, were all found to be carriers of micrococcus-like organisms in the blood and two of them were successfully treated with 0.5% potassium arsenite in low dosage given intravenously. A number of considerations are made on the immune dysfunction aspects of bumblefoot in birds of prey and on the emerging role of arsenic-based medicaments in the treatment of animal and human immune dysfunction syndromes.

  14. A Raman spectroscopic study of arsenite and thioarsenite species in aqueous solution at 25°C

    Directory of Open Access Journals (Sweden)

    Janecky David R

    2002-02-01

    Full Text Available The Raman spectra of thioarsenite and arsenite species in aqueous solution were obtained at room temperature. Solutions at constant ΣAs + ΣS of 0.1 and 0.5 mol kg-1 were prepared with various ΣS/ΣAs ratios (0.1–9.0 and pH values (~7–13.2. Our data suggest that the speciation of As under the conditions investigated is more complicated than previously thought. The Raman measurements offer evidence for at least six separate S-bearing As species whose principal bands are centered near 365, 385, 390, 400, 415 and 420 cm-1. The data suggest that at least two different species may give rise to bands at 385 cm-1, bringing the probable minimum number of species to seven. Several additional species are possible but could not be resolved definitively. In general, the relative proportions of these species are dependent on total As concentration, ΣS/ΣAs ratio and pH. At very low ΣS/ΣAs ratios we also observe Raman bands attributable to the dissociation products of H3AsO3(aq. Although we were unable to assign precise stoichiometries for the various thioarsenite species, we were able to map out general pH and ΣS/ΣAs conditions under which the various thioarsenite and arsenite species are predominant. This study provides a basis for more detailed Raman spectroscopic and other types of investigations of the nature of thioarsenite species.

  15. Elevated connexin 43 expression in arsenite-and cadmium-transformed human bladder cancer cells, tumor transplants and selected high grade human bladder cancers.

    Science.gov (United States)

    Zhang, Ruowen; Wang, Liping; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R; Zhou, Xu Dong; Somji, Seema

    2016-10-01

    Connexin 43 has been shown to play a role in cell migration and invasion; however, its role in bladder cancer is not well defined. Previous studies from our laboratory have shown that the environmental pollutants arsenite and cadmium can cause malignant transformation of the immortalized urothelial cell line UROtsa. These transformed cells can form tumors in immune-compromised mice. The goal of the present study was to determine if connexin 43 is expressed in the normal human bladder, the arsenite and cadmiun-transformed UROtsa cells as well as human urothelial cancer. The results obtained showed that connexin 43 is not expressed in the epithelial cells of the human bladder but is expressed in immortalized cultures of human urothelial cells and the expression is variable in the arsenite and cadmium- transformed urothelial cell lines derived from these immortalized cells. Tumor heterotransplants generated from the transformed cells expressed connexin 43 and the expression was localized to areas of squamous differentiation. Immuno-histochemical analysis of human bladder cancers also showed that the expression of connexin 43 was localized to areas of the tumor that showed early features of squamous differentiation. Treatment of UROtsa cells with various concentrations of arsenite or cadmium did not significantly alter the expression level of connexin 43. In conclusion, our results show that the expression of connexin 43 is localized to the areas of the tumor that show squamous differentiation, which may be an indicator of poor prognosis. This suggests that connexin 43 has the potential to be developed as a biomarker for bladder cancer that may have the ability to invade and metastasize.

  16. Sodium arsenite mediated immuno-disruption through alteration of transcription profile of cytokines in chicken splenocytes under in vitro system.

    Science.gov (United States)

    Das, Subhashree; Pan, Diganta; Bera, Asit Kumar; Rana, Tanmoy; Bhattacharya, Debasis; Bandyapadyay, Subhasis; De, Sumanta; Sreevatsava, V; Bhattacharya, Somnath; Das, Subrata Kumar; Bandyopadhayay, Sandip

    2011-01-01

    Arsenic is a ubiquitously found metalloid that commonly contaminates drinking water and agricultural food. To understand the ecotoxicological effects of arsenic in environment, it is essential to ameliorate the deleterious effects on human and animal health, particularly on the immune response. We investigated the effects of inorganic arsenic (iAs) on the immune response of chicken splenocytes. Both 1 and 10 mM concentrations of sodium arsenite treatment significantly reduced (Ptreatment also revealed time dependent differences. Relative quantification of expression of IFNγ and IL2 revealed that both genes were significantly down regulated (P<0.001) at both concentrations at each time point. iNOS gene was rapidly down regulated in splenocytes at 24 h at the high doses of As treated splenocyte, a gradual decreasing trend at low doses. Down regulation of IL-2 gene expression in response to As was further evidenced by a significant reduction (P<0.001) in the release of IL-2 into the splenocyte culture medium. We suggest that arsenic, a potent immunotoxic agent, modulates non-specific immune responses and alters the expression of cytokines in a dose and time dependent manner.

  17. Prenatal Exposure to Sodium Arsenite Alters Placental Glucose 1, 3, and 4 Transporters in Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Daniela Sarahí Gutiérrez-Torres

    2015-01-01

    Full Text Available Inorganic arsenic (iAs exposure induces a decrease in glucose type 4 transporter (GLUT4 expression on the adipocyte membrane, which may be related to premature births and low birth weight infants in women exposed to iAs at reproductive age. The aim of this study was to analyze the effect of sodium arsenite (NaAsO2 exposure on GLUT1, GLUT3, and GLUT4 protein expression and on placental morphology. Female Balb/c mice (n=15 were exposed to 0, 12, and 20 ppm of NaAsO2 in drinking water from 8th to 18th day of gestation. Morphological changes and GLUT1, GLUT3, and GLUT4 expression were evaluated in placentas by immunohistochemical and image analysis and correlated with iAs and arsenical species concentration, which were quantified by atomic absorption spectroscopy. NaAsO2 exposure induced a significant decrease in fetal and placental weight (P<0.01 and increases in infarctions and vascular congestion. Whereas GLUT1 expression was unchanged in placentas from exposed group, GLUT3 expression was found increased. In contrast, GLUT4 expression was significantly lower (P<0.05 in placentas from females exposed to 12 ppm. The decrease in placental GLUT4 expression might affect the provision of adequate fetal nutrition and explain the low fetal weight observed in the exposed groups.

  18. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish.

  19. Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Dave, Richa; Tripathi, Rudra Deo; Dwivedi, Sanjay; Tripathi, Preeti; Dixit, Garima; Sharma, Yogesh Kumar; Trivedi, Prabodh Kumar; Corpas, Francisco J; Barroso, Juan B; Chakrabarty, Debasis

    2013-11-15

    Carcinogenic arsenic (As) concentrations are found in rice due to irrigation with contaminated groundwater in South-East Asia. The present study evaluates comparative antioxidant property and specific amino acid accumulation in contrasting rice genotypes corresponding to differential As accumulation during arsenate (As(V)) and arsenite (As(III)) exposures. The study was conducted on two contrasting As accumulating rice genotypes selected from 303 genotype accessions, in hydroponic conditions. Maximum As accumulation was up to 1181 μg g(-1) dw in the roots of high As accumulating genotype (HARG), and 89 μg g(-1) dw in low As accumulating genotype (LARG) under As(III) exposures. The inorganic As was correlated more significantly upon exposures to As(III) than As(V). In the presence of As(V) various antioxidant enzymes guiacol peroxidase (GPX), ascorbate peroxidase (APX) and superoxide dismutase (SOD) were highly stimulated in HARG. The stress responsive amino acids proline, cysteine, glycine, glutamic acid and methionine showed higher accumulation in HARG than LARG. A clear correlation was found between stress responsive amino acids, As accumulation and antioxidative response. The comparisons between the contrasting genotypes helped to determine the significance of antioxidants and specific amino acid response to As stress.

  20. Protective effects of the dietary supplementation of turmeric (Curcuma longa L.) on sodium arsenite-induced biochemical perturbation in mice.

    Science.gov (United States)

    Karim, Md Rezaul; Haque, Abedul; Islam, Khairul; Ali, Nurshad; Salam, Kazi Abdus; Saud, Zahangir Alam; Hossain, Ekhtear; Fajol, Abul; Akhand, Anwarul Azim; Himeno, Seiichiro; Hossain, Khaled

    2010-12-01

    The present study was undertaken to evaluate the protective effect of turmeric powder on arsenic toxicity through mice model. Swiss albino male mice were divided into four groups. The first group was used as control, while groups 2, 3, and 4 were treated with turmeric powder (T, 50 mg/kg body weight/day), sodium arsenite (Sa, 10 mg/kg body weight/day) and turmeric plus Sa (T+Sa), respectively. Results showed that oral administration of Sa reduced the weight gain of the mice compared to the control group and food supplementation of turmeric prevented the reduction of weight gain. Turmeric abrogated the Sa-induced elevation of serum urea, glucose, triglyceride (TG) level and alanine aminotransferase (ALT) activity except the activity of alkaline phosphatase (ALP). Turmeric also prevented the Sa-induced perturbation of serum butyryl cholinesterase activity (BChE). Therefore, ameliorating effect of turmeric on Sa-treated mice suggested the future application of turmeric to reduce or to prevent arsenic toxicity in human.

  1. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress.

    Science.gov (United States)

    de Andrade, Sara Adrian Lopez; Domingues, Adilson Pereira; Mazzafera, Paulo

    2015-09-01

    The metalloid arsenic (As) increases in agricultural soils because of anthropogenic activities and may have phytotoxic effects depending on the available concentrations. Plant performance can be improved by arbuscular mycorrhiza (AM) association under challenging conditions, such as those caused by excessive soil As levels. In this study, the influence of AM on CO2 assimilation, chlorophyll a fluorescence, SPAD-chlorophyll contents and plant growth was investigated in rice plants exposed to arsenate (AsV) or arsenite (AsIII) and inoculated or not with Rhizophagus irregularis. Under AsV and AsIII exposure, AM rice plants had greater biomass accumulation and relative chlorophyll content, increased water-use efficiency, higher carbon assimilation rate and higher stomatal conductance and transpiration rates than non-AM rice plants did. Chlorophyll a fluorescence analysis revealed significant differences in the response of AM-associated and -non-associated plants to As. Mycorrhization increased the maximum and actual quantum yields of photosystem II and the electron transport rate, maintaining higher values even under As exposure. Apart from the negative effects of AsV and AsIII on the photosynthetic rates and PSII efficiency in rice leaves, taken together, these results indicate that AM is able to sustain higher rice photosynthesis efficiency even under elevated As concentrations, especially when As is present as AsV.

  2. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    Science.gov (United States)

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements.

  3. Tissue distribution and subcellular binding of arsenic in marmoset monkeys after injection of /sup 74/As-arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Vahter, M.; Marafante, E.; Lindgren, A.; Dencker, L.

    1982-10-01

    The distribution and retention of arsenic in Marmoset monkeys, given /sup 74/As-arsenite (0.4 mg As/kg body weight) i.p., were studied by means of whole-body autoradiography and determination of /sup 74/As-levels in tissues and excreta. Only about 30% of the dose was eliminated over 4 days, mainly via the kidneys. All of the arsenic in urine and tissues was found to be in inorganic form. Tissues with highest accumulation 4 days after dosing were liver (about 20% of the dose), squamous epithelium of oral cavity and esophagus, kidney cortex, skin, testes (mainly tubuli seminiferi) and intestinal wall. As a rule the major part of the arsenic in these tissues was found to be associated with cellular organelles. In the liver about 50% of the arsenic was strongly bound to the rough microsomal membranes. In the soluble extract of tissues, arsenic was mainly associated with macromolecular constituents. The long retention time and tight binding of arsenic could partly be explained by the fact that no biotransformation into methylated arsenic occurred, in contrast to all other species studied so far.

  4. Genetically Engineering Bacillus subtilis with a Heat-Resistant Arsenite Methyltransferase for Bioremediation of Arsenic-Contaminated Organic Waste.

    Science.gov (United States)

    Huang, Ke; Chen, Chuan; Shen, Qirong; Rosen, Barry P; Zhao, Fang-Jie

    2015-10-01

    Organic manures may contain high levels of arsenic (As) due to the use of As-containing growth-promoting substances in animal feed. To develop a bioremediation strategy to remove As from organic waste, Bacillus subtilis 168, a bacterial strain which can grow at high temperature but is unable to methylate and volatilize As, was genetically engineered to express the arsenite S-adenosylmethionine methyltransferase gene (CmarsM) from the thermophilic alga Cyanidioschyzon merolae. The genetically engineered B. subtilis 168 converted most of the inorganic As in the medium into dimethylarsenate and trimethylarsine oxide within 48 h and volatized substantial amounts of dimethylarsine and trimethylarsine. The rate of As methylation and volatilization increased with temperature from 37 to 50°C. When inoculated into an As-contaminated organic manure composted at 50°C, the modified strain significantly enhanced As volatilization. This study provides a proof of concept of using genetically engineered microorganisms for bioremediation of As-contaminated organic waste during composting.

  5. Suppression of PAI-1 expression through inhibition of the EGFR-mediated signaling cascade in rat kidney fibroblast by ascofuranone.

    Science.gov (United States)

    Cho, Hyun-Ji; Kang, Jeong-Han; Kim, Teoan; Park, Kwang-Kyun; Kim, Cheorl-Ho; Lee, In-Seon; Min, Kwan-Sik; Magae, Junji; Nakajima, Hiroo; Bae, Young-Seuk; Chang, Young-Chae

    2009-05-15

    Fibrosis in glomerulosclerosis causes progressive loss of renal function. Transforming growth factor (TGF)-beta, one of the major profibrotic cytokines, induces the synthesis of plasminogen activator inhibitor (PAI)-1, a factor that plays a crucial role in the development of fibrosis. Here, we found that an isoprenoid antibiotic, ascofuranone, suppresses expression of profibrotic factors including matrix proteins and PAI-1 induced by TGF-beta in renal fibroblasts. Ascofuranone selectively inhibits phosphorylation of epidermal growth factor receptor (EGFR), and downstream kinases such as Raf-1, MEK-1/2, and ERK-1/2. PAI-1 transcription also is suppressed by treatment with kinase inhibitors for MEK-1/2 or EGFR, and with small interfering RNA for EGFR. Ascofuranone inhibits cellular metalloproteinase activity, and an inhibitor of metalloproteinases suppresses EGFR phosphorylation and PAI-1 transcription. These results suggest that ascofuranone suppresses expression of profibrotic factors through the inhibition of an EGFR-dependent signal transduction pathway activated by metalloproteinases.

  6. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Borsi, Enrica, E-mail: enrica.borsi2@unibo.it [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy); Perrone, Giulia [Fondazione IRCCS Istituto Nazionale dei Tumori, Hematology Department, Via Venezian 1, 20133 Milano (Italy); Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy)

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  7. 地塞米松在免疫细胞治疗恶性肿瘤中的作用%Effects of Dexamethasone in Immunotherapy with Dendritic Cells and Cytokine-induced Killer Cells Therapy for Cancer

    Institute of Scientific and Technical Information of China (English)

    朱慧; 蔡玉梅; 张天宇; 颜立志; 李敬; 庞雁; 李佳丽

    2016-01-01

    Objective To determine the effects of premedication with dexamethasone on fever, skin rash, and immune response in immunotherapy with dendritic cells and cytokine-induced killer cells therapy for can⁃cer. Methods There were 127 cases in group A and 316 cases in group B, according to the premedication re⁃ceived before reinfusion. Peripheral blood monocytes were collected on day 0, and DCs and CIK cells were pre⁃pared. 1 × 107 DCs were reinfused intravenously on days 8, 15, and 22, and intradermally on days 29, 36, 43.1 × 109 CIK cells were reinfused intravenously on days 11, 12, 13, and 14. Results The incidence of skin rash was 4.2%in the group A and 1.0%in the group B, and there was no statistical difference between the two groups (P=0.088). The incidence of high fever and moderate fever was 14.2% and 25.8% in the group A, and 6.3%and 13.4% in the group B, which were statistically significantly lower in group B than in the group A(P=0.016 and P=0.003). The total incidence of fever in the group B was statistically significantly lower than in the group A (P=0.000).The incidence of delayed type hypersensitivity (DTH) test was 66.9% in the group A and 67.1% in the group B. There was no statistical difference between the two groups(P=0.974). The incidence of quality of life was 54.3% in the group A and 56.0% in the group B, with no statistical difference between the two groups (P=0.772).Dexamethasone had no effect on overall survival showed by Cox regression analysis. Conclusion Premedication with dexamethasone can be considered as an effective option in the immunotherapy with DCs and CIK cells for cancer.%目的::确定树突状细胞和细胞因子诱导的杀伤细胞免疫治疗恶性肿瘤中地塞米松对发热和过敏副作用的预防作用及其对免疫杀伤作用的影响。方法:443例恶性肿瘤患者,根据回输之前是否接收地塞米松治疗回顾性分为两组:A组127例接受地塞米松治疗,B组316例未接受地塞

  8. Tumor tropism and safety of cytokine-induced killer cells in nude mouse xenograft model%CIK细胞在荷瘤鼠体内的肿瘤靶向性与安全性

    Institute of Scientific and Technical Information of China (English)

    刘霞; 胡奇婵; 王涛; 黄睿; 崔静; 王丽; 杨举伦

    2014-01-01

    目的:探讨CIK细胞对肿瘤组织的靶向性及其在荷瘤鼠体内的运行轨迹和对主要脏器的影响。方法分离制备人CIK细胞,采用体外Transwell迁移试验观察CIK细胞对人乳腺癌细胞MDA-MB-435的靶向迁移效应;以该细胞系接种BALB/c裸鼠建立乳腺癌移植瘤模型,尾静脉注射DiI标记的CIK细胞,应用活体成像和病理学检查观察CIK细胞运行轨迹及对主要脏器的影响。结果 CIK细胞在体外培养14~20天时,细胞增殖达到高峰,CD3+CD56+ T细胞的比例也达到最高值。体外Tr-answell迁移实验显示,随着肿瘤细胞上清液浓度的增加,CIK细胞的迁移数量也随之增多。荷瘤裸鼠尾静脉注射DiI标记的CIK细胞后,活体成像显示肿瘤组织24 h开始出现荧光信号,48 h达到最强;HE和免疫组化染色结果显示,注射后6 h肿瘤周围开始聚集CIK细胞,48 h最多,第14天时肿瘤部位仍有CIK细胞存在,各脏器均未发现由CIK细胞导致的病理组织学损伤。结论 CIK细胞在体内外对肿瘤组织均具有靶向性,对正常组织有安全性,可作为一种有潜力的细胞载体应用于肿瘤的靶向治疗。%Purpose To evaluate the tumor tropism of cytokine-induced killer ( CIK) cells, the movement track in nude mice bearing breast carcinoma and the influence on major organs of nude mice. Methods Separated and prepared CIK cells using human peripheral blood. The transwell migration assay was used to study the migratory response of CIK cells to human MDA-MB-435 breast carcinoma cells. A nude mouse xenograft model ( BALB/c) was established by injection of human MDA-MB-435 breast carcinoma cells. CIK cells labelled with DiI were injected into caudal vein of the nude mice bearing transplantation tumor. Movement track of CIK cells in vi-vo and influence on major organs were observed by living imaging technology, histopathology and immunohistopathology. Results When cultured in vitro during 14 ~20 days, CIK cells

  9. The best transfusion time of autologous cytokine-induced killer cell for malignant tumor patients accepted adoptive immunotherapy%自体CIK过继免疫治疗恶性肿瘤的最佳输注时间

    Institute of Scientific and Technical Information of China (English)

    邓海峰; 吴昌平; 蒋敬庭; 陆明洋; 徐斌; 郑晓; 李敏; 刘检; 周怡; 孙青; 石红兵

    2011-01-01

    目的 研究恶性肿瘤患者自体细胞因子诱导的杀伤细胞(CIK)的免疫表型与细胞毒活性的变化规律,探讨肿瘤患者CIK过继免疫治疗输注的最佳时间.方法 采集40例恶性肿瘤患者外周血单个核细胞(PBMC),由IFN-γ、rhIL-1 α、rhIL-2等细胞因子和CD3单克隆抗体体外诱导培养成CIK.用流式细胞术动态监测免疫表型,MTT法分析细胞毒活性.结果 随着诱导时间的延长,PBMC中CD3+、CD3+CD8+、CD3+ CD56+表型细胞所占比例呈上升趋势.CD3+ CD4+细胞在7d达到峰值,随后缓慢下降.CD25+细胞在培养的早期(3~7 d)即达峰值,7~14 d缓慢下降,14~21 d快速下降.HLA-DR+细胞在0~14d处于上升期,14 d达峰值后快速下降.成熟CIK细胞毒活性[(52.49±7.70)%]较未活化的PBMC[( 7.02±2.00)%]显著增高(P<0.01).结论 14 d左右能诱导出典型的CIK,CD3+ CD56+细胞处于对数生长期.确立自体CIK过继免疫治疗恶性肿瘤的最佳输注时间为第14天.%Objective To investigate the change rule of immunophenotype and cytotoxic activity of autologous cytokine-induced killer (CIK) cells, and explore the best transfusion time of CIK cell during the adoptive iramunotherapy for malignant tumor patients. Methods Peripheral blood mononuclear cells (PBMC) of 40 patients with malignant tumors were collected and induced into CIK cells in vitro by incubation with several kinds of cytokines including IFN-γ, rhIL-lα, rhIL-2 and CD3 monoclonal antibody (McAb). Dynamic state of immunophenotype of CIK cells was determined by flow cytometry, and the cytotoxicity of CIK cells was analyzed by MTT method. Results Following induction with mononuclear cells, the number of cells with phenotype of CD3 + , CD3 + CD8 + and CD3 + CD56+ showed upward trend. The number of CD3 + CD4+ cells Teached the peak value after 7 days, and then decreased slowly. The CD25 cells reached the peak value in earlier phase (after induction of 3-7 days) , and decreased slowly

  10. St. John's wort extract and hyperforin inhibit multiple phosphorylation steps of cytokine signaling and prevent inflammatory and apoptotic gene induction in pancreatic β cells.

    Science.gov (United States)

    Novelli, Michela; Menegazzi, Marta; Beffy, Pascale; Porozov, Svetlana; Gregorelli, Alex; Giacopelli, Daniela; De Tata, Vincenzo; Masiello, Pellegrino

    2016-12-01

    The extract of the herbaceous plant St. John's wort (SJW) and its phloroglucinol component hyperforin (HPF) were previously shown to inhibit cytokine-induced STAT-1 and NF-κB activation and prevent damage in pancreatic β cells. To further clarify the mechanisms underlying their protective effects, we evaluated the phosphorylation state of various factors of cytokine signaling pathways and the expression of target genes involved in β-cell function, inflammatory response and apoptosis induction. In the INS-1E β-cell line, exposed to a cytokine mixture with/without SJW extract (2-5μg/ml) or HPF (1-5μM), protein phosphorylation was assessed by western blotting and expression of target genes by real-time quantitative PCR. SJW and HPF markedly inhibited, in a dose-dependent manner (from 60 to 100%), cytokine-induced activating phosphorylations of STAT-1, NF-κB p65 subunit and IKK (NF-κB inhibitory subunit IκBα kinase). MAPK and Akt pathways were also modulated by the vegetal compounds through hindrance of p38 MAPK, ERK1/2, JNK and Akt phosphorylations, each reduced by at least 65% up to 100% at the higher dose. Consistently, SJW and HPF a) abolished cytokine-induced mRNA expression of pro-inflammatory genes; b) avoided down-regulation of relevant β-cell functional/differentiation genes; c) corrected cytokine-driven imbalance between pro- and anti-apoptotic factors, by fully preventing up-regulation of pro-apoptotic genes and preserving expression or function of anti-apoptotic Bcl-2 family members; d) protected INS-1E cells against cytokine-induced apoptosis. In conclusion, SJW extract and HPF exert their protective effects through simultaneous inhibition of multiple phosphorylation steps along various cytokine signaling pathways and consequent restriction of inflammatory and apoptotic gene expression. Thus, they have a promising therapeutic potential for the prevention or limitation of immune-mediated β-cell dysfunction and damage leading to type 1 diabetes.

  11. Co-delivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy

    Science.gov (United States)

    Zhang, Lu; Xiao, Hong; Li, Jingguo; Cheng, Du; Shuai, Xintao

    2016-06-01

    Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX.HCl) and arsenite (As). The dual stimulation-sensitive design of the vesicle gave rise to rapid release of the physically entrapped DOX.HCl and arsenite inside acidic lysosomes, and chemically conjugated DOX inside the cytosol with high glutathione (GSH) concentration. In the optimized concentration range, arsenite previously recognized as a promising anticancer agent from traditional Chinese medicine can down-regulate the expressions of anti-apoptotic and multidrug resistance proteins to sensitize cancer cells to chemotherapy. Consequently, the DOX-As-co-loaded vesicle demonstrated potent anticancer activity. Compared to the only DOX-loaded vesicle, the DOX-As-co-loaded one induced more than twice the apoptotic ratio of MCF-7/ADR breast cancer cells at a low As concentration (0.5 μM), due to the synergistic effects of DOX and As. The drug loading strategy integrating chemical conjugation and physical encapsulation in stimulation-sensitive carriers enabled efficient drug loading in the formulation.Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX.HCl) and arsenite (As). The dual stimulation-sensitive design of the vesicle gave rise to rapid release of the physically entrapped DOX.HCl and arsenite inside acidic lysosomes, and chemically conjugated DOX inside the cytosol with high glutathione (GSH) concentration. In the

  12. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption.

    Science.gov (United States)

    Yu, Lian; Peng, Xianjia; Ni, Fan; Li, Jin; Wang, Dongsheng; Luan, Zhaokun

    2013-02-15

    A novel Fe-Ti binary oxide magnetic nanoparticles which combined the photocatalytic oxidation property of TiO(2) and the high adsorption capacity and magnetic property of γ-Fe(2)O(3) have been synthesized using a coprecipitation and simultaneous oxidation method. The as-prepared samples were characterized by powder XRD, TEM, TG-DTA, VSM and BET methods. Photocatalytic oxidation of arsenite, the effect of solution pH values and initial As(III) concentration on arsenite removal were investigated in laboratory experiments. Batch experimental results showed that under UV light, As(III) can be efficiently oxidized to As(V) by dissolved O(2) in γ-Fe(2)O(3)-TiO(2) nanoparticle suspensions at various pH values. At the same time, As(V) was effectively removed by adsorption onto the surface of nanoparticles. The maximum removal capability of the nano-material for arsenite was 33.03 mg/g at pH 7.0. Among all the common coexisting ions investigated, phosphate was the greatest competitor with arsenic for adsorptive sites on the nano-material. Regeneration studies verified that the γ-Fe(2)O(3)-TiO(2) nanoparticles, which underwent five successive adsorption-desorption processes, still retained comparable catalysis and adsorption performance, indicating the excellent stability of the nanoparticles. The excellent photocatalytic oxidation performance and high uptake capability of the magnetic nano-material make it potentially attractive material for the removal of As(III) from water.

  13. 小檗碱对脂多糖诱导的THP-1细胞相关炎性反应因子的影响%Effects of berberine on inflammatory cytokines induced by lipopolysaccharide in THP-1 cells

    Institute of Scientific and Technical Information of China (English)

    刘司漩; 刘云峰; 尹建红; 章毅; 许林鑫; 杨静

    2014-01-01

    Objective To observe the effects of berberine (BBR) on expression of inflammatory cytokines in THP-1 cells induced by lipopolysaccharide (LPS),and investigate the anti-inflammatory effects of BBR.Methods For analysing the toxicity of BBR on THP-1 cells,THP-1 cells were divided into control group,and different concentrations of BBR groups (BBR 5,10,20,50 μmol/L).After incubation for 6,24 and 48 hours,lactate dehydrogenase (LDH) released from THP-1 cells was used to assay the cytotoxicity of BBR.For analysis of the effects of BBR on inflammatory cytokines induced by LPS in THP-1 cells,THP-1 cells were divided into control group,LPS group (1 μg/mL LPS),and different concentrations of BBR with LPS groups (BBR 5,10 and 20 μmol/L + 1 μg/mL LPS).After 6,24 or 48 hours of incubation,the concentrations of inter4eukin (IL)-1 β,IL-6,IL-8 and tumor necrosis factor(TNF)-α in the culture medium were measured by enzyme-linked immunosorbent assay (ELISA).Results The survival rates of THP-1 cells were all over 90%after treated with BBR lower than 20 μmol/L for 6,24 and 48 hours.BBR decreased the release of IL-1β,IL-6,IL-8 and TNF-α from THP-1 cells in a dose-dependent manner.After 6 hours,20 μmol/L of BBR decreased the secretion of IL-1 β,IL-8 and TNF-α significantly compared with LPS group (P < 0.05).After 24 hours,the secretion of IL-8 and TNF-α was decreased significantly in 20 μmol/L of BBR + LPS group compared with those in LPS group (P < 0.05).After 48 hours,the secretion of TNF-α was decreased signifi-cantly (F=92.625,P < 0.05) in 5 μmol/L BBR + LPS group,the secrection of IL-1β、IL-6 and TNF-α were decreased (all P < 0.05) in 10 μmol/L BBR + LPS group,and the secretion of IL-1β,IL-6 and TNF-α were decreased in 20 μmol/L BBR + LPS group compared with those in LPS group (all P < 0.05).Conclusion BBR can decrease the secretion of inflammatory cytokines in THP-1 cells induced by LPS in a dose-dependent manner.%目的 通过观察小檗碱对

  14. Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle.

    Science.gov (United States)

    Srivastava, S; Mishra, S; Tripathi, R D; Dwivedi, S; Trivedi, P K; Tandon, P K

    2007-04-15

    Serious contamination of aquatic systems by arsenic (As) in different parts of the world calls for the development of an in situ cost-effective phytoremediation technology. In the present investigation, plants of Hydrilla verticillata (L.f.) Royle were exposed to various concentrations of arsenate (As(V)) (0-250 microM) and arsenite (AsIII) (0-25 microM) and analyzed for accumulation responses vis-à-vis biochemical changes. Total As accumulation was found to be higher in plants exposed to AsIII (315 microg g(-1) dw at 25 microM) compared to As(V) (205 microg g(-1) dw at 250 microM) after 7 d of treatment. Plants tolerated low concentrations of As(III) and As(V) by detoxifying the metalloid through augmented synthesis of thiols such as phytochelatins and through increased activity of antioxidant enzymes. While As(V) predominantly stimulated antioxidant enzyme activity, As(III) primarily caused enhanced levels of thiols. The maximum amount of As chelated by PCs was found to be about 39% in plants exposed to As(III) (at 10 microM) and 35% in As(V) exposed plants (at 50 microM) after 4 d. Only the respective highest concentrations of As(III) (25 microM) and As(V) (250 microM) proved toxic for normal plant growth after prolonged treatment. Thus, H. verticillata forms a promising candidate for the phytoremediation of As contaminated water.

  15. Arsenite tolerance in rice (Oryza sativa L.) involves coordinated role of metabolic pathways of thiols and amino acids.

    Science.gov (United States)

    Tripathi, Preeti; Tripathi, Rudra Deo; Singh, Rana Pratap; Dwivedi, Sanjay; Chakrabarty, Debasis; Trivedi, Prabodh K; Adhikari, Bijan

    2013-02-01

    Thiolic ligands and several amino acids (AAs) are known to build up in plants against heavy metal stress. In the present study, alteration of various AAs in rice and its synchronized role with thiolic ligand was explored for arsenic (As) tolerance and detoxification. To understand the mechanism of As tolerance and stress response, rice seedlings of one tolerant (Triguna) and one sensitive (IET-4786) cultivar were exposed to arsenite (0-25 μM) for 7 days for various biochemical analyses using spectrophotometer, HPLC and ICPMS. Tolerant and sensitive cultivars respond differentially in terms of thiol metabolism, essential amino acids (EEAs) and nonessential amino acids (NEEAs) vis-á-vis As accumulation. Thiol biosynthesis-related enzymes were positively correlated to As accumulation in Triguna. Conversely, these enzymes, cysteine content and GSH/GSSG ratio declined significantly in IET-4786 upon As exposure. The level of identified phytochelatin (PC) species (PC(2), PC(3) and PC(4)) and phytochelatin synthase activity were also more pronounced in Triguna than IET-4786. Nearly all EAAs were negatively affected by As-induced oxidative stress (except phenylalanine in Triguna), but more significantly in IET-4786 than Triguna. However, most of the stress-responsive NEAAs like glutamic acid, histidine, alanine, glycine, tyrosine, cysteine and proline were enhanced more prominently in Triguna than IET-4786 upon As exposure. The study suggests that IET-4786 appears sensitive to As due to reduction of AAs and thiol metabolic pathway. However, a coordinated response of thiolic ligands and stress-responsive AAs seems to play role for As tolerance in Triguna to achieve the effective complexation of As by PCs.

  16. Arsenite and ferrous iron oxidation linked to chemolithotrophic denitrification for the immobilization of arsenic in anoxic environments

    Science.gov (United States)

    Sun, W.; Sierra-Alvarez, R.; Milner, L.; Oremland, R.; Field, J.A.

    2009-01-01

    The objective of this study was to explore a bioremediation strategy based on injecting NO3- to support the anoxic oxidation of ferrous iron (Fe(II)) and arsenite (As(III)) in the subsurface as a means to immobilize As in the form of arsenate (As(V)) adsorbed onto biogenic ferric (Fe(III)) (hydr)oxides. Continuous flows and filled columns were used to simulate a natural anaerobic groundwater and sediment system with co-occurring As(III) and Fe(II) in the presence (column SF1) or absence (column SF2) of nitrate, respectively. During operation for 250 days, the average influent arsenic concentration of 567 ??g L-1 was reduced to 10.6 (??9.6) ??g L-1 in the effluent of column SF1. The cumulative removal of Fe(II) and As(III) in SF1 was 6.5 to 10-fold higher than that in SF2. Extraction and measurement of the mass of iron and arsenic immobilized on the sand packing of the columns were close to the iron and arsenic removed from the aqueous phase during column operation. The dominant speciation of the immobilized iron and arsenic was Fe(III) and As(V) in SF1, compared with Fe(II) and As(III) in SF2. The speciation was confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicate that microbial oxidation of As(III) and Fe(II) linked to denitrification resulted in the enhanced immobilization of aqueous arsenic in anaerobic environments by forming Fe(III) (hydr)oxide coated sands with adsorbed As(V). ?? 2009 American Chemical Society.

  17. Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China.

    Science.gov (United States)

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Wu, Geng; Dong, Hailiang; Wang, Yanhong; Li, Bing; Wang, Yanxin; Guo, Qinghai

    2014-01-01

    A total of 12 samples were collected from the Tengchong geothermal areas of Yunnan, China, with the goal to assess the arsenite (AsIII) oxidation potential of the extant microbial communities as inferred by the abundance and diversity of the AsIII oxidase large subunit gene aioA relative to geochemical context. Arsenic concentrations were higher (on average 251.68 μg/L) in neutral or alkaline springs than in acidic springs (on average 30.88 μg/L). aioA abundance ranged from 1.63 × 10(1) to 7.08 × 10(3) per ng of DNA and positively correlated with sulfide and the ratios of arsenate (AsV):total dissolved arsenic (AsTot). Based on qPCR estimates of bacterial and archaeal 16S rRNA gene abundance, aioA-harboring organisms comprised as much as ~15% of the total community. Phylogenetically, the major aioA sequences (270 total) in the acidic hot springs (pH 3.3-4.4) were affiliated with Aquificales and Rhizobiales, while those in neutral or alkaline springs (pH 6.6-9.1) were inferred to be primarily bacteria related to Thermales and Burkholderiales. Interestingly, aioA abundance at one site greatly exceeded bacterial 16S rRNA gene abundance, suggesting these aioA genes were archaeal even though phylogenetically these aioA sequences were most similar to the Aquificales. In summary, this study described novel aioA sequences in geothermal features geographically far removed from those in the heavily studied Yellowstone geothermal complex.

  18. Arsenite oxidation-enhanced photocatalytic degradation of phenolic pollutants on platinized TiO2.

    Science.gov (United States)

    Kim, Jaesung; Kim, Jungwon

    2014-11-18

    The effect of As(III) on the photocatalytic degradation of phenolic pollutants such as 4-chlorophenol (4-CP) and bisphenol A (BPA) in a suspension of platinized TiO2 (Pt/TiO2) was investigated. In the presence of As(III), the photocatalytic degradation of 4-CP and BPA was significantly enhanced, and the simultaneous oxidation of As(III) to As(V) was also achieved. This positive effect of As(III) on the degradation of phenolic pollutants is attributed to the adsorption of As(V) (generated from As(III) oxidation) on the surface of Pt/TiO2, which facilitates the production of free OH radicals ((•)OHf) that are more reactive than surface-bound OH radicals ((•)OHs) toward phenolic pollutants. The generation of (•)OHf was indirectly verified by using coumarin as an OH radical trapper and comparing the yields of coumarin--OH adduct (i.e., 7-hydroxycoumarin) formed in the absence and presence of As(V). In repeated cycles of 4-CP degradation, the degradation efficiency of 4-CP gradually decreased in the absence of As(III), whereas it was mostly maintained in the presence of As(III), which was either initially present or repeatedly injected at the beginning of each cycle. The positive effect of As(III) on 4-CP degradation was observed over a wide range of As(III) concentrations (up to mM levels) with Pt/TiO2. However, a high concentration of As(III) (hundreds of μM) inhibited the degradation of 4-CP with bare TiO2. Therefore, Pt/TiO2 can be proposed as a practical photocatalyst for the simultaneous oxidation of phenolic pollutants and As(III) in industrial wastewaters.

  19. Role of angiotensin Ⅱ type 1 receptor in the production of pro-inflammatory cytokines induced by lipopolysaccharide in RAW264.7 microphage%血管紧张素Ⅱ1型受体在脂多糖诱导RAW264.7巨噬细胞促炎性细胞因子产生中的作用

    Institute of Scientific and Technical Information of China (English)

    郭峰; 陈旭林; 王飞; 王永杰; 孙业祥

    2011-01-01

    Objective To investigate the role of angiotensin Ⅱ type 1receptor in the production of pro-inflammatory cytokines induced by lipopolysaccharide ( LPS ) in RAW264. 7 microphage and characterize the mechanism. Methods RAW264. 7 macrophages were randomly divided into four groups: control group,ZD7155 group, LPS group and ZD7155 + LPS group. The protein and mRNA expressions of tumor necrosis factor α ( TNF-α ) and interleukin-1β ( IL-1β ) in the cells were determined by enzyme-linked immunosorbent assay ( ELISA ) and reverse transcription polymerase chain reaction ( RT-PCR ) respectively. Electrophoretic mobility shift assay ( EMSA ) was preformed to determine the activities of nuclear factor kappaB ( NF-KB ) and activator protein 1 ( AP-1 ). Results Compared with control group,supernatant TNF-β and IL-1β of ZD7155 group were not found statistically significant difference ( P >0. 05 ). However, LPS stimulation increased the levels of TNF-α and IL-1β in the supernatant which were significantly higher than control group ( P <0. 01 ) and ZD7155 group ( P <0. 05 ). However, administration of LPS not only enhanced the mRNA expressions of TNF-αand IL-1β to 2. 19-fold ( P <0. 01 ) and 1. 77-fold ( P <0. 01 ) of control group, but also elevated the activities of NF-KB and AP-1 to 1. 43-fold ( P <0. 01 ) and 1. 90-fold ( P <0. 01 ) of control group. But compared with LPS group, the expression of TNF-α and IL-1β was inhibited significantly by the preincubation with ZD7155, intracellular TNF-α and IL-1β mRNA expression decreased by 34. 7% ( P <0. 01 ) and 49. 72% ( P <0. 01 ). Furthermore, compared with LPS group, the intracellular NF-KB and AP-1 activity of ZD7155 + LPS group decreased by 46. 15% ( P <0. 05 ) and 48. 42% ( P <0. 05 ). Conclusion Angiotensin n i receptor mediates the production and release of pro-inflammatory cytokines TNF-αand IL-1β in macrophages induced by LPS via the activation of transcription factor NF

  20. Effect of treatment of autologous cytokine-induced killer cells (CIKs) on the suppression of hepatitis B virus and its mechanism%自体CIKs治疗对乙肝病毒的抑制作用及机制分析

    Institute of Scientific and Technical Information of China (English)

    汤紫荣; 施明; 张冰; 福军亮; 张晖; 王福生

    2011-01-01

    目的 探讨细胞因子诱导的杀伤细胞(CIKs)治疗对乙肝病毒(HBV)的抑制作用及其机制.方法 选取2009年4月-2010年12月于解放军302医院住院,且未经抗病毒药物及其他免疫治疗的慢性乙肝患者16例,采集外周血单个核细胞(PBMC)经细胞因子鸡尾酒诱导培养成CIK细胞后,经静脉回输患者体内.观察CIK细胞治疗后24周内患者体内HBV DNA水平、CD3+CD56+细胞频率的变化,以及髓样树突状细胞(mDCs)和浆样树突状细胞(pDCs)频率的改变.结果 自体CIK回输后,9例患者产生病毒学应答,其体内HBV DNA水平分别于第4、12及24周(分别为5.70、5.09和4.0810g10拷贝/ml)出现明显降低(P<0.05或P<0.01);7例患者表现为病毒学无应答,其体内HBV DNA水平均与在基线时(6.39log10拷贝/ml)无明显差异(P>0.05).经14d的诱导培养后,病毒学应答者CIK细胞的主要效应细胞CD3+ CD56+细胞比例为17.21%,明显高于无应答者(8.97%,P<0.05).经CIKs治疗后,病毒学应答者pDCs频率由治疗前的0.27%上升至治疗后4周的0.39%( P<0.05)和治疗后12周的0.34%( P<0.05),而病毒学无应答者无明显改变.CIK细胞回输后无明显不良反应.结论CIK细胞治疗慢性乙肝安全性好,能抑制HBV复制,其机制部分是通过提高pDCs频率实现的.%Objective To investigate the effect of cytokine-induced killer cells (CIKs) treatment on the suppression of HBV replication and its mechanism. Methods Sixteen patients with chronic hepatitis B (CHB), hospitalized from Apr. 2009 to Dec. 2010 in 302 Hospital I having not received antiviral drugs treatment or immunotherapy, were enrolled in present study. The peripheral blood mononuclear cells (PBMC) were collected and induced into CIKs by cytokine cocktail, and transfused back to patients via intravenous injection. The effects of CK-cell transfusion on HBV DNA load, changes of the cell frequency of CD3+ CD56+ , myeloid dendritic cells (mDCs) and plasmacytoid

  1. Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26.

    Science.gov (United States)

    Andres, Jérémy; Arsène-Ploetze, Florence; Barbe, Valérie; Brochier-Armanet, Céline; Cleiss-Arnold, Jessica; Coppée, Jean-Yves; Dillies, Marie-Agnès; Geist, Lucie; Joublin, Aurélie; Koechler, Sandrine; Lassalle, Florent; Marchal, Marie; Médigue, Claudine; Muller, Daniel; Nesme, Xavier; Plewniak, Frédéric; Proux, Caroline; Ramírez-Bahena, Martha Helena; Schenowitz, Chantal; Sismeiro, Odile; Vallenet, David; Santini, Joanne M; Bertin, Philippe N

    2013-01-01

    Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions.

  2. Arsenite as an electron donor for anoxygenic photosynthesis: Description of three strains of Ectothiorhodospria from Mono Lake, California, and Big Soda Lake, Nevada

    Science.gov (United States)

    McCann, Shelley; Boren, Alison; Hernandez-Maldonado, Jaime; Stoneburner, Brendon; Saltikov, Chad W; Stolz, John F.; Oremland, Ronald S.

    2017-01-01

    Three novel strains of photosynthetic bacteria from the family Ectothiorhodospiraceae were isolated from soda lakes of the Great Basin Desert, USA by employing arsenite (As(III)) as the sole electron donor in the enrichment/isolation process. Strain PHS-1 was previously isolated from a hot spring in Mono Lake, while strain MLW-1 was obtained from Mono Lake sediment, and strain BSL-9 was isolated from Big Soda Lake. Strains PHS-1, MLW-1, and BSL-9 were all capable of As(III)-dependent growth via anoxygenic photosynthesis and contained homologs of arxA, but displayed different phenotypes. Comparisons were made with three related species: Ectothiorhodospira shaposhnikovii DSM 2111, Ectothiorhodospira shaposhnikovii DSM 243T, and Halorhodospira halophila DSM 244. All three type cultures oxidized arsenite to arsenate but did not grow with As(III) as the sole electron donor. DNA–DNA hybridization indicated that strain PHS-1 belongs to the same species as Ect. shaposhnikovii DSM 2111 (81.1% sequence similarity), distinct from Ect. shaposhnikovii DSM 243T (58.1% sequence similarity). These results suggest that the capacity for light-driven As(III) oxidation is a common phenomenon among purple photosynthetic bacteria in soda lakes. However, the use of As(III) as a sole electron donor to sustain growth via anoxygenic photosynthesis is confined to novel isolates that were screened for by this selective cultivation criterion.

  3. Investigation of sodium arsenite, thioacetamide, and diethanolamine in the alkaline comet assay: Part of the JaCVAM comet validation exercise.

    Science.gov (United States)

    Beevers, Carol; Henderson, Debbie; Lillford, Lucinda

    2015-07-01

    As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the in vivo rat alkaline comet assay (comet assay), we examined sodium arsenite, thioacetamide, and diethanolamine. Using the JaCVAM approved study protocol version 14.2, each chemical was tested in male rats up to maximum tolerated dose levels and DNA damage in the liver and stomach was assessed approximately 3h after the final administration by gavage. Histopathology assessments of liver and stomach sections from the same animals were also examined for evidence of cytotoxicity or necrosis. No evidence of DNA damage was observed in the stomach of animals treated with sodium arsenite at 7.5, 15, or 30 mg/kg/day. However, equivocal findings were found in the liver, where increases in DNA migration were observed in two independent experiments, but not in all treated animals and not at the same dose levels. Thioacetamide caused an increase in DNA migration in the stomach of rats treated at 19, 38, and 75 mg/kg/day, but not in the liver, despite evidence of marked hepatotoxicity following histopathology assessments. No evidence of DNA damage was observed in the stomach or liver of animals treated with diethanolamine at 175, 350, or 700 mg/kg/day.

  4. Overexpression of rice glutaredoxins (OsGrxs) significantly reduces arsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast.

    Science.gov (United States)

    Verma, Pankaj Kumar; Verma, Shikha; Meher, Alok Kumar; Pande, Veena; Mallick, Shekhar; Bansiwal, Amit Kumar; Tripathi, Rudra Deo; Dhankher, Om Parkash; Chakrabarty, Debasis

    2016-09-01

    Arsenic (As) is an acute poison and class I carcinogen, can cause a serious health risk. Staple crops like rice are the primary source of As contamination in human food. Rice grown on As contaminated areas accumulates higher As in their edible parts. Based on our previous transcriptome data, two rice glutaredoxins (OsGrx_C7 and OsGrx_C2.1) were identified that showed up-regulated expression during As stress. Here, we report OsGrx_C7 and OsGrx_C2.1 from rice involved in the regulation of intracellular arsenite (AsIII). To elucidate the mechanism of OsGrx mediated As tolerance, both OsGrxs were cloned and expressed in Escherichia coli (Δars) and Saccharomyces cerevisiae mutant strains (Δycf1, Δacr3). The expression of OsGrxs increased As tolerance in E. coli (Δars) mutant strain (up to 4 mM AsV and up to 0.6 mM AsIII). During AsIII exposure, S. cerevisiae (Δacr3) harboring OsGrx_C7 and OsGrx_C2.1 have lower intracellular AsIII accumulation (up to 30.43% and 24.90%, respectively), compared to vector control. Arsenic accumulation in As-sensitive S. cerevisiae mutant (Δycf1) also reduced significantly on exposure to inorganic As. The expression of OsGrxs in yeast maintained intracellular GSH pool and increased extracellular GSH concentration. Purified OsGrxs displays in vitro GSH-disulfide oxidoreductase, glutathione reductase and arsenate reductase activities. Also, both OsGrxs are involved in AsIII extrusion by altering the Fps1 transcripts in yeast and protect the cell by maintaining cellular GSH pool. Thus, our results strongly suggest that OsGrxs play a crucial role in the maintenance of the intracellular GSH pool and redox status of the cell during both AsV and AsIII stress and might be involved in regulating intracellular AsIII levels by modulation of aquaporin expression and functions.

  5. Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology.

    Science.gov (United States)

    Jana, Animesh; Bhattacharya, Priyankari; Swarnakar, Snehasikta; Majumdar, Swachchha; Ghosh, Sourja

    2015-11-01

    Blue green algae Anabaena sp. was cultivated in synthetic arsenite solution to investigate its bio-oxidation potential for arsenic species. Response surface methodology (RSM) was employed based on a 3-level full factorial design considering four factors, viz. initial arsenic (III) concentration, algal dose, temperature and time. Bio-oxidation (%) of arsenic (III) was considered as response for the design. The study revealed that about 100% conversion of As (III) to As (V) was obtained for initial As (III) concentration of 2.5-7.5 mg/L at 30 °C for 72 h of exposure using 3 g/L of algal dose signifying a unique bio-oxidation potential of Anabaena sp. The dissolved CO2 (DCO2) and oxygen (DO) concentration in solution was monitored during the process and based on the data, a probable mechanism was proposed wherein algal cell acts like a catalytic membrane surface and expedites the bio-oxidation process. Bioaccumulation of arsenic, as well as, surface adsorption on algal cell was found considerably low. Lipid content of algal biomass grown in arsenite solution was found slightly lower than that of algae grown in synthetic media. Toxicity effects on algal cells due to arsenic exposure were evaluated in terms of comet assay and chlorophyll a content which indicated DNA damage to some extent along with very little decrease in chlorophyll a content. In summary, the present study explored the potential application of Anabaena sp. as an ecofriendly and sustainable option for detoxification of arsenic contaminated natural water with value-added product generation.

  6. N-acetylcysteine and meso-2,3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats

    Science.gov (United States)

    Abu El-Saad, Ahmed M; Al-Kahtani, Mohammed A; Abdel-Moneim, Ashraf M

    2016-01-01

    Environmental exposure to arsenic represents a serious challenge to humans and other animals. The aim of the present study was to test the protective effect of antioxidant N-acetylcysteine (NAC) either individually or in combination with a chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA), against sodium arsenite oral toxicity in male rats. Five groups were used: control; arsenic group (orally administrated in a concentration of 2 mg/kg body weight [b.w.]); the other three groups were orally administrated sodium arsenite in a concentration of 2 mg/kg b.w. followed by either NAC (10 mg/kg b.w., intraperitoneally [i.p.]), DMSA (50 mg/kg b.w., i.p.) or NAC plus DMSA. Arsenic toxicity caused significant rise in serum aspartate aminotransferase, alanine aminotransferase and total bilirubin, and a significant decrease in total protein (TP) and albumin levels after 3 weeks of experimental period. In addition, arsenic-treated rats showed significantly higher arsenic content in liver and significant rise in hepatic malondialdehyde level. By contrast, sharp decreases in glutathione content and catalase and glutathione reductase activities were discernible. NAC and/or DMSA counteracted most of these physiologic and biochemical defects. NAC monotherapy was more effective than DMSA in increasing TP, while DMSA was more effective in decreasing alanine aminotransferase. The combined treatment was superior over monotherapies in recovery of TP and glutathione. Biochemical data were well supported by histopathological and ultrastructural findings. In conclusion, the combination therapy of NAC and DMSA may be an ideal choice against oxidative insult induced by arsenic poisoning.

  7. Expansion of new type cytokine induced killer cells in vitro with peripheral blood mononuclearcells in ad-vanced breast cancer in PBMC%应用晚期乳腺癌患者外周血单个核细胞体外增殖诱导新型CIK细胞的实验研究

    Institute of Scientific and Technical Information of China (English)

    鲁祥石; 宋传健; 崔静; 秦莉; 梅芬; 张艳桥; 赵娟; 吕慧敏; 张本宁

    2014-01-01

    目的:应用晚期乳腺癌患者外周血来源的单个核细胞体外培养诱导产生新型( Cytokine in-duced killer cells ,CIK)细胞的可能性,为乳腺癌患者应用自体免疫细胞治疗提供理论基础。方法取8例晚期乳腺癌患者外周血提取单个核细胞,经体外培养诱导增殖,并应用细胞计数法和流式细胞仪检测增殖细胞表面特异性标志CD3、CD16和CD56,应用51Cr release assay 及MTT方法测定其对MCF7及BT20乳腺癌细胞株的杀伤能力。应用ELISA试验方法对诱导得到的新型CIK细胞的培养上清液进行解析。结果经过体外18天培养,平均得到8.2×108个以上纯度为95.2%~98.1%的CD16+、CD56+和CD16+CD56+阳性高纯度NK细胞的新型CIK细胞,且对乳腺癌细胞株MCF7及BT20具有明显的抑制作用。结论成功应用晚期乳腺癌外周血单个核细胞选择性扩增诱导高纯度NK细胞的新型CIK细胞,且证明其对MCF7及BT20乳腺癌细胞具有明显抑制作用,为应用自体高纯度NK细胞的新型CIK细胞为基础的过继性免疫细胞治疗乳腺癌提供理论研究基础。%Objective To investigate new type cytokine induced killer cells expansion using advanced breast cancer′s peripheral blood .Methods peripheral blood mononuclear cells were isolated from 8 advanced breast cancer volunteers and co -cultured with Cytokine induced killer cells .These cells were placed in plastic flasks containing CIK-MediumTM supplemented with 10% auto-plasma in the presence of IL -2 ( 1 000 IU/mL) .The cultures were fed with CIK-MediumTM supplemented with IL -2 following the proliferation capacity . Cell proliferation was measured by cell counting during the cultivation .Fourteen days after cultivation ,cell mark-ers CD3/CD16/CD56 were examined by flow cytometry .51Cr and MTT assays were employed in cytotoxicity as-says.Cytokines were assayed by ELISA method .Results CD16+,CD16+CD56+,CD56+CIK cells were 5

  8. 三价砷氧化细菌Acidovorax sp.GW2中As(Ⅲ)氧化酶基因和调控序列的克隆鉴定%Isolation and identification of arsenite oxidase gene and regulatory sequences in an arsenite-oxidizing bacterium Acidovorax sp. GW2

    Institute of Scientific and Technical Information of China (English)

    赵凯; 黄银燕; 王倩; 王革娇

    2011-01-01

    Using reverse transcriptase PCR method and a bacterial fosmid library screening, an arsenite oxidase gene cluster were isolated from an arsenite-oxidizing bacterium Acidovorax sp. GW2. There are seven genes including aoxRSXABCD putatively encoding the transcriptional regulator AoxR of a two-component signal transduction system (68% identity), a periplasmic sensor histidine kinase AoxS (55 % identity), a periplasmic binding protein AoxX (55 % identity), arsenite oxidase AoxAB(74 % and 71% identity, respectively), nitroreductase AoxC (46 % identity) and cytochrome c AoxD (63 % identity) respectively. According to the reverse transcriptase PCR experiments,aoxR and aoxS encoding for a two-component system proteins are co-transcribed and located in opposite to structural genes aoxABCD.aoxX and aoxRS are not in the same operon. Functional analyses through gene knock-out of aoxS, aoxX and aoxD showed that aoxS and aoxX are the essential genes in arsenite oxidation of GW2, and the loss of aoxD did not show significant effects on arsenite oxidation.%通过反向PCR和细菌Fosmid文库筛选,克隆得到1株二三价砷[As(Ⅲ)]氧化细菌Acidovorax sp.GW2的As(Ⅲ)氧化酶Aox基因簇,包括aoxRSXABCD 7个基因,分别预测编码双组分信号传导系统转录调控子AoxR(同源性68%),周质感应组氨酸激酶AoxS(同源性55%),周质结合蛋白AoxX(同源性55%),砷氧化酶AoxAB(同源性分别为74%和71%),硝基还原酶AoxC(同源性46%),细胞色素C AoxD(同源性63%).反转录PCR结果显示,编码双组分系统的aoxRS基因共转录,而与之转录方向相反的结构基因aoxABCD处于同一操纵子中,aoxX基因和aoxRS基因不在同一操纵子中.通过对aoxS、aoxX、aoxD的基因敲除功能研究发现aoxS和aoxX基因为GW2三价砷氧化的必需基因,aoxD的功能丧失减慢了三价砷的氧化速率,但非关键基因.

  9. H2 inhibits TNF-α-induced lectin-like oxidized LDL receptor-1 expression by inhibiting nuclear factor κB activation in endothelial cells.

    Science.gov (United States)

    Song, Guohua; Tian, Hua; Liu, Jia; Zhang, Hongle; Sun, Xuejun; Qin, Shucun

    2011-09-01

    H(2) is a therapeutic antioxidant that can reduce oxidative stress. Oxidized low-density lipoprotein, which plays roles in atherosclerosis, may promote endothelial dysfunction by binding the cell-surface receptor LOX-1. LOX-1 expression can be upregulated by various stimuli, including TNF-α. Thus, we aimed to examine whether the upregulation of LOX-1 by different stimuli could be blocked by H(2) in endothelial cells. H(2) significantly abolished the upregulation of LOX-1 by different stimuli, including TNF-α, at the protein and mRNA levels. The TNF-α-induced upregulation of LOX-1 was also attenuated by the NF-κB inhibitor N-acetyl-L-cysteine. H(2) inhibited the TNF-α-induced activation of NF-κB and the phosphorylation of IκB-α. Furthermore, H(2) inhibited the expression of LOX-1 and the activation of NF-κB in apolipoprotein E knockout mice, an animal model of atherosclerosis. Thus, H(2) probably inhibits cytokine-induced LOX-1 gene expression by suppressing NF-κB activation.

  10. Involvement of NO in sodium arsenite-induced yeast cell death%NO参与亚砷酸钠诱导酵母细胞死亡的调控

    Institute of Scientific and Technical Information of China (English)

    吴丽华; 仪慧兰; 张虎芳

    2012-01-01

    以模式生物酵母细胞为材料,研究亚砷酸钠胁迫对细胞死亡率和胞内NO水平的影响,以探讨NO在砷诱导细胞死亡中的作用.结果显示,浓度为1~7mmol·L^-1的亚砷酸钠可降低酵母细胞活性,诱导细胞死亡,随着处理浓度的升高和作用时间的延长,细胞死亡率增高;死细胞出现核固缩和核降解等凋亡特征;凋亡抑制剂Z-Asp-CH2-DCB(2"mol·L^-1)与3mmol·L^-1亚砷酸钠共同作用后,酵母细胞死亡率下降.在亚砷酸钠胁迫的过程中,酵母细胞内NO水平升高;一定浓度的NO清除剂c-PTIO(0.2mmol·L^-1)或NO生成抑制剂NaN3(1mmol·L^-1)均可降低亚砷酸钠引起的酵母细胞死亡率.结果表明,砷胁迫诱导的胞内NO升高是酵母细胞死亡的一个诱因,亚砷酸钠诱发的酵母细胞死亡中可能存在细胞凋亡过程.%Arsenic is a toxic metalloid widely distributed in the environment. Chronic exposure to arsenic is associated with increased risk of various diseases, such as neurotoxicity, birth defects and metabolic disorders. People exposed to high levels of arsenic are prone to skin, bladder, and lung cancer and occlusive vascular disease. However, the exact mechanisms of arsenic toxicity are not yet well understood. In this study, cytotoxie effects of sodium arsenite on yeast Saccharomyees cerevisiae were investigated with or without some antagonists. For arsenic treatments, yeast cells harvested from the early log phase were incubated in the fresh yeast extract peptone dextrose (YPD) media containing varying amounts of sodium arsenite. For other combination treatments, selected antagonists including broad caspase inhibitor Z-Asp-2,6-dichlorobenzoyloxymethylketone (Z-Asp-CH2-DCB), nitric oxide (NO) scavenger 2-( 4-carboxyphenyl)-4,4,5,5-teramethylimidazoline-l-oxyl-3-oxide ( c-PTIO ) and nitrate reductase inhibitor NaN3 were respectively added into YPD media in the presence of 3 mmol. L^-1 sodium arsenite. The results showed that

  11. Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis.

    Science.gov (United States)

    Madan, Babita; Patel, Mehul B; Zhang, Jiandong; Bunte, Ralph M; Rudemiller, Nathan P; Griffiths, Robert; Virshup, David M; Crowley, Steven D

    2016-05-01

    Activated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.

  12. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  13. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor

    Science.gov (United States)

    Hoeft, S.E.; Blum, J.S.; Stolz, J.F.; Tabita, F.R.; Witte, B.; King, G.M.; Santini, J.M.; Oremland, R.S.

    2007-01-01

    A facultative chemoautotrophic bacterium, strain MLHE-1T, was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1T were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1T could oxidize but not grow on CO, while CH4 neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1T assimilated inorganic carbon via the Calvin-Benson-Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1T grew over broad ranges of pH (7.3-10.0; optimum, 9.3), salinity (115-190 g l-1; optimum 30 g l-1) and temperature (113-40 ??C; optimum, 30 ??C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1T in the class Gammaproteobacteria (family Ectothiorhodospiraceae) and most closely related to Alkalispirillum mobile (98.5%) and Alkalilimnicola halodurans (98.6%), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1T was able to oxidize As(III). On the basis of physiological characteristics and DNA-DNA hybridization data, it is suggested that strain MLHE-1T represents a novel species within the genus Alkalilimnicola for which the name Alkalilimnicola ehrlichii is proposed. The type strain is MLHE-1T (=DSM 17681T =ATCC BAA-1101T). Aspects of the annotated full genome of Alkalilimnicola ehrlichii are discussed in the light of its physiology. ?? 2007 IUMS.

  14. N-acetylcysteine and meso-2,3 dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats

    Directory of Open Access Journals (Sweden)

    Abu El-Saad AM

    2016-10-01

    Full Text Available Ahmed M Abu El-Saad,1,4 Mohammed A Al-Kahtani,2 Ashraf M Abdel-Moneim3,4 1Department of Biology, Faculty of Medicine, Dammam University, Dammam, Saudi Arabia; 2Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; 3Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia; 4Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt Abstract: Environmental exposure to arsenic represents a serious challenge to humans and other animals. The aim of the present study was to test the protective effect of antioxidant N-acetylcysteine (NAC either individually or in combination with a chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA, against sodium arsenite oral toxicity in male rats. Five groups were used: control; arsenic group (orally administrated in a concentration of 2 mg/kg body weight [b.w.]; the other three groups were orally administrated sodium arsenite in a concentration of 2 mg/kg b.w. followed by either NAC (10 mg/kg b.w., intraperitoneally [i.p.], DMSA (50 mg/kg b.w., i.p. or NAC plus DMSA. Arsenic toxicity caused significant rise in serum aspartate aminotransferase, alanine aminotransferase and total bilirubin, and a significant decrease in total protein (TP and albumin levels after 3 weeks of experimental period. In addition, arsenic-treated rats showed significantly higher arsenic content in liver and significant rise in hepatic malondialdehyde level. By contrast, sharp decreases in glutathione content and catalase and glutathione reductase activities were discernible. NAC and/or DMSA counteracted most of these physiologic and biochemical defects. NAC monotherapy was more effective than DMSA in increasing TP, while DMSA was more effective in decreasing alanine aminotransferase. The combined treatment was superior over monotherapies in recovery of TP and glutathione. Biochemical data were well supported by histopathological and

  15. Inhibition of PMA-induced endothelial cell activation and adhesion by over-expression of domain negative IκBα protein

    Institute of Scientific and Technical Information of China (English)

    Jian-Feng Wei; Ke Sun; Shi-Guo Xu; Hai-Yang Xie; Shu-Sen Zheng

    2005-01-01

    AIM: NF-κB, regulate the expression of cytokine-inducible genes involving immune and inflammatory responses, will be potential therapy approach for allograft from rejection. In this study, we use pCMV-IκBαM vector to inhibit NF-κB activation and investigate the effect of pCMV-IκBαM in inhibition of T cells adhesion to endothelial cells. METHODS: The NF-κB activity was detected with pNF-κB reporter gene and electrophoretic mobility shift assay. Expression of cell surface molecules was detected by RT-PCR and flow cytometer. The cell-cell adhesion assay was performed to determine the effect of pCMV-IκBαM in inhibition of T cells adhesion to endothelial cells. RESULTS: We could find that NF-κB activity is inhibited by over-expression of non-degraded IκBα protein. Expression of adhesion molecules like ICAM-1, VCAM-1, and P-selectin as well as cell-cell adhesion were inhibited significantly by transfection of the pCMV-IκBαM vector. CONCLUSION: Our results indicate that the pCMVIκBαM, which inhibit the activity of NF-κB through over-expression of non-degraded IκBα protein, can be used for gene therapy in diseases involving NF-κB activation abnormally like organ transplantation via inhibiting cell adhesion.

  16. Characterization and antagonism of cytokine-induced eosinophil priming

    NARCIS (Netherlands)

    Rosas Rosas, Ana Marcela

    2006-01-01

    Allergic asthma is an inflammatory disease characterized by bronchial hyper-responsiveness, airway inflammation, and reversible obstruction of the airways. In humans, cytokine activated eosinophils are thought to be important players in this process since they can release inflammatory mediators afte

  17. Spontaneous and cytokine induced basophil adhesion evaluated by microtiter assay

    DEFF Research Database (Denmark)

    Quan, Sha; Poulsen, Lars K; Reimert, Claus Michael

    2002-01-01

    by the histamine content of the adhering basophils. The spontaneous adhesion to fibronectin was higher than to laminin and collagen type I. Both spontaneous adhesion to fibronectin and interleukin-3 (IL-3), interleukin-5 (IL-5), granulocyte/macrophage colony stimulating factor (GM-CSF) induced adhesion to BSA...

  18. The small heat shock protein, HSP30, is associated with aggresome-like inclusion bodies in proteasomal inhibitor-, arsenite-, and cadmium-treated Xenopus kidney cells.

    Science.gov (United States)

    Khan, Saad; Khamis, Imran; Heikkila, John J

    2015-11-01

    In the present study, treatment of Xenopus laevis A6 kidney epithelial cells with the proteasomal inhibitor, MG132, or the environmental toxicants, sodium arsenite or cadmium chloride, induced the accumulation of the small heat shock protein, HSP30, in total and in both soluble and insoluble protein fractions. Immunocytochemical analysis revealed the presence of relatively large HSP30 structures primarily in the perinuclear region of the cytoplasm. All three of the stressors promoted the formation of aggresome-like inclusion bodies as determined by immunocytochemistry and laser scanning confocal microscopy using a ProteoStat aggresome dye and additional aggresomal markers, namely, anti-γ-tubulin and anti-vimentin antibodies. Further analysis revealed that HSP30 co-localized with these aggresome-like inclusion bodies. In most cells, HSP30 was found to envelope or occur within these structures. Finally, we show that treatment of cells with withaferin A, a steroidal lactone with anti-inflammatory, anti-tumor, and proteasomal inhibitor properties, also induced HSP30 accumulation that co-localized with aggresome-like inclusion bodies. It is possible that proteasomal inhibitor or metal/metalloid-induced formation of aggresome-like inclusion bodies may sequester toxic protein aggregates until they can be degraded. While the role of HSP30 in these aggresome-like structures is not known, it is possible that they may be involved in various aspects of aggresome-like inclusion body formation or transport.

  19. Separation/Preconcentration and Speciation Analysis of Trace Amounts of Arsenate and Arsenite in Water Samples Using Modified Magnetite Nanoparticles and Molybdenum Blue Method

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karimi

    2014-01-01

    Full Text Available A new, simple, and fast method for the separation/preconcentration and speciation analysis of arsenate and arsenite ions using cetyltrimethyl ammonium bromide immobilized on alumina-coated magnetite nanoparticles (CTAB@ACMNPs followed by molybdenum blue method is proposed. The method is based on the adsorption of arsenate on CTAB@ACMNPs. Total arsenic in different samples was determined as As(V after oxidation of As(III to As(V using potassium permanganate. The arsenic concentration has been determined by UV-Visible spectrometric technique based on molybdenum blue method and amount of As(III was calculated by subtracting the concentration of As(V from total arsenic concentration. MNPs and ACMNPs were characterized by VSM, XRD, SEM, and FT-IR spectroscopy. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range, and relative standard deviation (RSD of arsenate were 175 (for 350 mL of sample solution, 0.028 μg mL−1, 0.090–4.0 μg mL−1, and 2.8% (for 2.0 μg mL−1, n=7, respectively. This method avoided the time-consuming column-passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of arsenic in different water samples and suitable recoveries were obtained.

  20. p27{sup Kip1} inhibits tissue factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Breitenstein, Alexander, E-mail: alexander.breitenstein@usz.ch [Cardiology, University Heart Center, University Hospital Zurich (Switzerland); Cardiovascular Research, Physiology Institute, University of Zurich (Switzerland); Center for Integrative Human Physiology (ZHIP), University of Zurich (Switzerland); Akhmedov, Alexander; Camici, Giovanni G.; Lüscher, Thomas F.; Tanner, Felix C. [Cardiology, University Heart Center, University Hospital Zurich (Switzerland); Cardiovascular Research, Physiology Institute, University of Zurich (Switzerland); Center for Integrative Human Physiology (ZHIP), University of Zurich (Switzerland)

    2013-10-04

    Highlights: •p27{sup Kip1}regulates the expression of tissue factor at the transcriptional level. •This inhibitory effect of p27{sup Kip1} is independently of its cell regulatory action. •The current study provides new insights into a pleiotrophic function of p27{sup Kip1}. -- Abstract: Background: The cyclin-dependent kinase inhibitor (CDKI) p27{sup Kip1} regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27{sup Kip1} influences the expression of TF. Methods and results: p27{sup Kip1} overexpression in human aortic endothelial cells was achieved by adenoviral transfection. Cells were rendered quiescent for 24 h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n = 4; P < 0.001) in cells transfected with p27{sup Kip1}. In line with this, p27{sup Kip1} overexpression reduced cytokine-induced TF mRNA expression (n = 4; P < 0.01) and TF promotor activity (n = 4; P < 0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27{sup Kip1} overexpression. Conclusion: This in vitro study suggests that p27{sup Kip1} inhibits TF expression at the transcriptional level. These data indicate an interaction between p27{sup Kip1} and TF in important pathological alterations such as atherosclerosis and vascular remodeling.

  1. Poly(ADP-ribose) polymerase 1 inhibition protects human aortic endothelial cells against LPS-induced inflammation response

    Institute of Scientific and Technical Information of China (English)

    Xiaonu Peng; Wenjun Li; Wei Zhang

    2012-01-01

    Atherosclerosis is a chronic inflammatory disease.Tolllike receptor 4 (TLR4) is an important signaling receptor and plays a critical role in the inflammatory response.Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that can regulate the expression of various inflammatory genes.In this study,we investigated the role and the underlying mechanisms of PARP1 on lipopolysaccharide (LPS)-induced inflammation in human aortic endothelial cells.Compared with the control,LPS stimulation increased the protein expression of TLR4 and PARP1.TLR4 inhibition reduced LPS-induced upregulation of inducible nitric oxide synthase (iNOS) and ICAM-1 as well as PARP1. Nuclear factor κB (NF-κB) inhibition decreased ICAM-1 and iNOS expression.Inhibition of PARP1 decreased protein expression of inflammatory cytokines induced by LPS stimulation,probably through preventing NF-KB nuclear translocation. Our study demonstrated that LPS increased ICAM-1 and iNOS expression via TLR4/PARP1/NF-KB pathway.PARP1 might be an indispensable factor in TLR4-mediated inflammation after LPS stimulation.PARP1 inhibition might shed light on the treatment of LPS-induced inflammatory cytokines expression during atherosclerosis.

  2. The distribution of arsenate and arsenite in shoots and roots of Holcus lanatus is influenced by arsenic tolerance and arsenate and phosphate supply.

    Science.gov (United States)

    Quaghebeur, Mieke; Rengel, Zdenko

    2003-07-01

    The recent discovery that phytochelatins are important for arsenic (As) detoxification in terrestrial plants results in the necessity to understand As speciation and metabolism in plant material. A hydroponic study was therefore conducted to examine the effects of different levels of phosphate and arsenate [As(V)] on As speciation and distribution in tolerant and non-tolerant clones of Holcus lanatus. Speciation of As in tissue (using high-performance liquid chromatography-inductively coupled plasma mass spectrometry) revealed that the predominant species present were the inorganic As species (As(V) and arsenite [As(III)]), although small levels (<1%) of organic As species (dimethylarsinic acid and monomethylarsonic acid) were detected in shoot material. In roots, the proportion of total As present as As(III) generally increased with increasing levels of As(V) in the nutrient solution, whereas in shoots, the proportion of total As present as As(III) generally decreased with increasing levels of As(V). H. lanatus plants growing in the high-phosphorus (P) (100 micro M) solution contained a higher proportion of As(V) (with regard to total As) in both roots and shoots than plants supplied with low P (10 micro M); in addition, tolerant clones generally contained a higher proportion of As(V) with regard to total As than non-tolerant clones. The study further revealed that As(V) can be reduced to As(III) in both roots and shoots. Although the reduction capacity was limited, the reduction was closely regulated by As influx for all treatments. The results therefore provide a new understanding about As metabolism in H. lanatus.

  3. Gastrointestinal protective efficacy of Kolaviron (a bi-flavonoid from Garcinia kola following a single administration of sodium arsenite in rats: Biochemical and histopathological studies

    Directory of Open Access Journals (Sweden)

    Akinleye S Akinrinde

    2015-01-01

    Full Text Available Background: Arsenic intoxication is known to produce symptoms including diarrhea and vomiting, which are indications of gastrointestinal dysfunction. Objective: We investigated whether Kolaviron (KV administration protected against sodium arsenite (NaAsO 2 -induced damage to gastric and intestinal epithelium in rats. Materials and Methods: Control rats (Group I were given a daily oral dose of corn oil. Rats in other groups were given a single dose of NaAsO 2 (100 mg/kg; intraperitoneal alone (Group II or after pretreatment for 7 days with KV at 100 mg/kg (Group III and 200 mg/kg (Group IV. Rats were sacrificed afterward and portions of the stomach, small intestine and colon were processed for histopathological examination. Hydrogen peroxide, reduced glutathione, malondialdehyde (MDA concentrations as well as activities of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPX, glutathione S-transferase (GST and myeloperoxidase (MPO were measured in the remaining portions of the different gastrointestinal tract (GIT segments. Results: NaAsO 2 caused significant increases (P < 0.05 in MDA levels and MPO activity, with significant reductions (P < 0.05 in GST, GPX, CAT and SOD activities in the stomach and intestines. KV significantly reversed the changes (P < 0.05 in a largely dose-dependent manner. The different segments had marked inflammatory cellular infiltration, with hyperplasia of the crypts, which occurred to much lesser degrees with KV administration. Conclusion: The present findings showed that KV might be a potent product for mitigating NaAsO 2 toxicity in the GIT.

  4. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes.

    Science.gov (United States)

    Yoshino, Yuta; Yuan, Bo; Kaise, Toshikazu; Takeichi, Makoto; Tanaka, Sachiko; Hirano, Toshihiko; Kroetz, Deanna L; Toyoda, Hiroo

    2011-12-01

    Arsenic trioxide (arsenite, As(III)) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As(III) on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As(III) on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As(III)-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As(III) were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As(III) than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As(III) in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As(III)-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As(III) cytotoxicity between these cells.

  5. 5'-nitro-indirubinoxime inhibits inflammatory response in TNF-alpha stimulated human umbilical vein endothelial cells.

    Science.gov (United States)

    Kim, Eun-Jung; Park, Won-Hwan; Ahn, Sang-Gun; Yoon, Jung-Hoon; Kim, Si-Wouk; Kim, Soo-A

    2010-07-01

    Inflammation plays a critical role in the development of atherosclerosis and TNF-alpha, a major inflammatory cytokine, induces inflammatory responses by enhancing the expression of adhesion molecules and the secretion of inflammatory mediators. Indirubin is an active compound of Polygonum tinctorium Lour (P. tinctorium) that has the ability to suppress inflammation. Previously, we described the novel indirubin derivative, 5'-nitro-indirubinoxime (5'-NIO), and demonstrated that it has potent anti-proliferative activity against various human cancer cells. In this study, we examined the effect of 5'-NIO on the TNF-alpha induced inflammatory conditions of human umbilical vein endothelial cells (HUVECs). We found that 5'-NIO inhibited TNF-alpha induced MCP-1 and IL-8 expression at the RNA and protein levels in HUVECs. Specifically, 5'-NIO significantly inhibited the TNF-alpha stimulated release of MCP-1 and IL-8, with levels that were only 19.8% and 30.9% of those of untreated control cells, respectively. Furthermore, 5'-NIO largely inhibited the adhesion of U937 cells to HUVECs by decreasing the expression level of ICAM-1 and VCAM-1. Overall, these observations suggest that 5'-NIO has the potential for use as an anti-atherosclerotic agent.

  6. Simvastatin inhibits inflammation in ischemia-reperfusion injury.

    Science.gov (United States)

    Zhao, Yilin; Feng, Qingzhao; Huang, Zhengjie; Li, Wenpeng; Chen, Baisheng; Jiang, Long; Wu, Binglin; Ding, Weiji; Xu, Gang; Pan, Heng; Wei, Wei; Luo, Weiyuan; Luo, Qi

    2014-10-01

    Ischemia/reperfusion (I/R) is associated with leukocyte accumulation and tissue injury. The aim of this research was to investigate the protective effect of simvastatin on hind limb I/R inflammation and tissue damage. Mice were subjected to hind limb ischemic insult for 2 h and were simultaneously administered an intraperitoneal injection of simvastatin (5 mg/kg); this was followed by 36 h of reperfusion. Myeloperoxidase (MPO) levels in the muscles of the hind limb were determined. CXC chemokines and pro-inflammatory cytokines, such as macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant (KC), interleukin (IL)-6, tumor necrosis factor (TNF)-α, and P-selectin, were assessed using enzyme-linked immunosorbent assay (ELISA). Leukocyte rolling and adhesion in vitro was assessed to indicate leukocyte recruitment at the site of inflammation. Quantitative measurement of skeletal muscle tissue injury was performed. The fluorescent dye level in tissue and serum was used to determine hind limb vascular leakage and tissue edema after I/R. Systemic and differentiated leukocytes were also counted. Simvastatin significantly reduced MIP-2, KC, TNF-α, MPO, IL-6, and P-selectin levels compared to the sham group and I/R plus pretreatment with phosphate-buffered saline (PBS) group (Pinflammation, vascular leakage, and muscular damage (P<0.05). Simvastatin also significantly inhibited leukocyte rolling and adhesion compared to PBS (P<0.05). Our results suggest that simvastatin may be an effective protectant against tissue injury associated with I/R.

  7. Clinical Efficacy of Capecitabine Combined with Autologous Cytokine-induced Killer Cells Maintenance Therapy in Treatment of Metastatic Triple Negative Breast Cancer%自体CIK细胞联合卡培他滨维持治疗复发转移性三阴性乳腺癌效果观察

    Institute of Scientific and Technical Information of China (English)

    宋树玺; 刘永叶; 丁震宇; 于卉影; 韩雅玲; 谢晓冬

    2015-01-01

    Objective To analyze the clinical efficacy and safety of capecitabine combined with autologous cytokine-induced killer cells ( CIK) maintenance therapy in treatment of metastatic triple negative breast cancer ( MTNBC) . Methods The MTNBC patients undergoing capecitabine-based chemotherapy as first line treatment, whose therapeutic effect was SD or above were selected and divided into treatment group and control group randomly. The treatment group received capecitabine maintenance therapy with autologous CIK after the first line treatment. The control group underwent only capecitabine mainte-nance therapy. Baseline assessment was taken 15 d after the end of the last cycle of chemotherapy. The patients were followed up once every two cycles. The median follow-up time was 11. 2 months. T lymphocyte subpopulation in peripheral blood was measured, the side effects, PFS and OS of both groups were observed. Results CD3+CD8+CTL and CD4+CD25+Treg of treatment group were compared at the time of baseline assessment and 1 month after three cycles of chemotherapy. There was no statistically significant difference (P>0. 05). CD3+T, CD3+CD4+Th, CD3+CD56+CIK showed significant im-provement, compared with that before treatment (P0. 05). Conclusion Maintenance therapy of Capecitabine combined with autologous CIK cells in treatment of MTNBC after first-line treatment improves the immune function to enhance the ability of antitumor by natural immunity, which can prolong PFS, and is safe as well. In short, it can improve the therapeutic effect of maintenance therapy in patients with MTNBC.%目的 探讨自体细胞因子诱导杀伤细胞( CIK)免疫治疗联合卡培他滨治疗复发转移性三阴性乳腺癌( metastatic triple negative breast cancer, MTNBC)的临床效果和安全性. 方法 选取一线应用卡培他滨化疗后效果评价病情稳定( SD)或以上的MTNBC患者,随机分为治疗组和对照组. 两组均应用卡培他滨维持化疗,治疗组在此

  8. DC/CIKs细胞通过无 miRNA 的 exosome 蛋白刺激后能增强对胰腺癌细胞的免疫作用%Increasing the immune activity of exosomes:the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Ri-sheng QUE; Cheng LIN; Guo-ping DING; Zheng-rong WU; Li-ping CAO

    2016-01-01

    Background: Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. Objective: This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced kil er cel s (DC/CIKs) against pancreatic cancer (PC). Methods:PC-derived exosomes (PEs) were extracted from cultured PANC-1 cel supernatants and then ruptured; this was fol owed by ultrafiltered exosome lysates (UELs). DCs were stimulated with lipopolysaccharide (LPS), PE, and UEL, fol owed by co-culture with CIKs. The anti-tumor effects of DC/CIKs against PC were evaluated by proliferation and kil ing rates, tumor ne-crosis factor-α(TNF-α) and perforin secretion. Exosomal miRNAs were depleted after lysis and ultrafiltration, while 128 proteins were retained, including several immune-activating proteins. Results: UEL-stimulated DC/CIKs showed a higher killing rate than LPS- and PE-stimulated DC/CIKs. Conclusions: miRNA-depleted exosome proteins may be promising agonists for specifical y activating DC/CIKs against PC.%目的:本文通过分离提取无小 RNA(miRNA)的外来体(exosome)刺激树突细胞/细胞因子活化杀伤细胞(DC/CIKs),激活其对于胰腺癌细胞的免疫杀伤作用。  创新点:无 miRNA的 exosome超速离心裂解产物可以通过激活 DC/CIKs 细胞增强其对肿瘤细胞的杀伤作用。  方法:通过收集PANC-1细胞的上清并超速离心提取其中的exosome。提取的DC细胞分别通过脂多糖、肿瘤来源exosome及无miRNA的exosome刺激后,与CIK细胞共培养。通过计算增值与杀伤效率,肿瘤坏死因子-α(TNF-α)及穿孔素的分泌,比较各组间CIK细胞对胰腺癌细胞的杀伤作用。  结论:经

  9. 同种异体半相合细胞因子诱导的杀伤细胞治疗晚期肝癌的疗效及安全性评估%Curative effect and safety of haploidentical allogeneic cytokine-induced killer in treatment of advanced hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    杨帆; 郑小芳; 刘畅; 陈文捷; 程锦涛; 阳莉; 卢建溪; 张琪

    2015-01-01

    Objective To investigate the curative effect and safety of haploidentical allogeneic cytokine-induced killer (CIK)in treatment of advanced hepatocellular carcinoma.Methods The peripheral blood mononuclear cell (PBMC) of the healthy immediate family members of 21 patients with advanced hepatocellular carcinoma (HCC) were collected,induced into haploidentical allogeneic CIK in vitro and transfused to the patients for 4 cycles.The curative effect and safety were assessed.Results The 21 patients were followed up for half a year.The survival rate was 81 % (1 7 /21 ).Among the 21 patients,1 1 cases were with stable disease and 1 0 cases were with progressive disease (including 4 dead cases).Six patients developed fever of different degrees during the treatment and one patient developed rash.The platelet counts of the patients at the fourth cycle after the treatment decreased compared with that before the treatment ,with significance difference (P 0.05 ).Conclusions Haploidentical allogeneic CIK in treatment of advanced HCC may effectively improve the quality of life and the adverse reactions are tolerable,which is a relatively safe therapy.%目的:探讨同种异体半相合细胞因子诱导的杀伤(CIK)细胞治疗晚期肝癌的疗效及安全性。方法采集21例晚期肝细胞癌(肝癌)患者健康一级直系亲属的外周血单个核细胞,在体外诱导成异体半相合 CIK 细胞后回输给患者,回输4个周期。评估治疗效果和安全性。结果随访半年,21例患者的存活率为81%(17/21),疾病稳定患者11例,疾病进展患者10例(含4例死亡病例)。6例患者治疗期间出现不同程度的发热,1例出现皮疹。与治疗前相比,患者治疗后第4周期的血小板数量降低,差异有统计学意义(P <0.05),而患者治疗后第1、4周期的白细胞、中性粒细胞、淋巴细胞、血红蛋白,肝、肾功能差异均无统计学意义(均为 P >0.05)。

  10. Curative Effect of Decitabine Combined with Cytokine-Induced Killer Cells in Two Elderly Patients with Acute Myeloid Leukemia%地西他滨联合自体CIK细胞治疗2例高龄急性髓系白血病的疗效观察

    Institute of Scientific and Technical Information of China (English)

    常城; 杨波; 张琳; 朱宏丽; 卢学春; 郭搏; 蔡力力; 韩为东; 王瑶

    2013-01-01

    本研究旨在观察低甲基化药物地西他滨联合自体细胞因子诱导的杀伤细胞(CIK)治疗老年急性髓系白血病(AML)的安全性及有效性.本科于2006-2012年收治2例80岁以上老年AML患者(M4型和M6型),均继发于骨髓增生异常综合征.对这2例患者先后采取单用自体CIK细胞输注、地西他滨或(和)自体CIK细胞方案治疗,系统观察了2例CIK治疗前后淋巴细胞亚群、临床相关指标(血液学反应、输血频率、白血病相关基因表达、缓解情况、生活质量)及生存期的变化.结果表明,与单用自体CIK细胞输注和单用地西他滨治疗相比,地西他滨联合自体CIK细胞治疗方案可减轻骨髓抑制程度,降低输血频率及输血量,延长部分缓解持续时间,同时表达的白血病相关基因减少,生存期显著延长,患者生活质量得到明显改善.结论:地西他滨联合自体CIK细胞治疗老年AML患者安全有效.%This study was aimed to evaluate the effectiveness and safety of low methylation drug decitabine combined with autologous cytokine induced killer cells (CIK) to treat the elderly patients with acute myeloid leukemia (AML). Two AML patients aged over 80 years old were diagnosed and treated in our department from 2006 to 2012; both companied with MDS history, and one case was M4-type, another case was M6-type according to FAB classification. The changes in lymphocyte subsets, hematologic response, transfusion frequency, leukemic gene expression, obtaining CRorPR, quality of life and survival time of the patients with different treatment regimen (decitabine alone; CIK alone; decitabine combined with CIK) were systematically observed. The results showed that therapy of decitabine combined with CIK cells could reduce bone marrow suppression extent, decrease the frequency and volume of blood transfusion, and prolong the duration of partial remission, compared with the single use of CIK cell infusion and single use of decitabine

  11. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Yuta [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Yuan, Bo, E-mail: yuanbo@toyaku.ac.jp [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Kaise, Toshikazu [Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Takeichi, Makoto [Yoneyama Maternity Hospital, 2-12 Shin-machi, Hachioji, Tokyo 192-0065 (Japan); Tanaka, Sachiko; Hirano, Toshihiko [Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kroetz, Deanna L. [Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Toyoda, Hiroo [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)

    2011-12-15

    Arsenic trioxide (arsenite, As{sup III}) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As{sup III} on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As{sup III} on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As{sup III}-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As{sup III} were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As{sup III} than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As{sup III} in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As{sup III}-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As{sup III} cytotoxicity between these cells. -- Highlights: Black-Right-Pointing-Pointer Examination of effect of As{sup III} on primary cultured chorion (C) and amnion

  12. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Peng [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Sun, Guifan [School of Public Health, China Medical University, Shenyang 110001 (China); Andersen, Melvin E. [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  13. Protection against inflammatory β-cell damage by lysine deacetylase inhibition and microRNA expression?

    DEFF Research Database (Denmark)

    Vestergaard, Anna Lindeløv; Pallesen, Emil Marek Heymans; Novotny, Guy Wayne

    of oxidative stress proteins responsible for β-cell death. The aim of the study is to identify novel and specific therapeutic targets for β-cell protection by mapping the miR profile of β cells rescued from inflammatory assault by inhibition of lysine deacetylation, thereby identifying miR that repress......), and RT-qPCR-based miR array was performed. Regulation of several miR was verified by TaqMan RT-qPCR, and medium nitrite was determined with Griess’ reagent. Results: Following systematic analysis using NormFinder, miR-103 was chosen for normalization of the qPCR array data. Constitutive expression of 103......-mediated protection against cytokine-induced INS-1 cell destruction, and the inhibitory effect of HDAC1 knockdown on the β-cell pro-apoptotic miR-146a and other miR under investigation, warrants further investigations aiming to show a causal role of miR in HDAC inhibitor-mediated protection of pancreatic β cells...

  14. A pure polysaccharide from Ephedra sinica treating on arthritis and inhibiting cytokines expression.

    Science.gov (United States)

    Wang, Qiuhong; Shu, Zunpeng; Xing, Na; Xu, Bingqing; Wang, Changfu; Sun, Guibo; Sun, Xiaobo; Kuang, Haixue

    2016-05-01

    In our previous study, we found that the acidic polysaccharides of Ephedra sinica had immunosuppressive effect to treat rheumatoid arthritis and the pure polysaccharide ESP-B4 was the main composition of the acidic polysaccharides. At present, the exact molecular mechanism of ESP-B4 on treating arthritis is unclear. We are thus evaluating the properties of ESP-B4 on LPS-induced THP-1 pro-monocytic cells and adjuvant-induced arthritis in Wistar rats via TLR4. In vitro, ESP-B4 decreased the production of cytokines induced by LPS. In addition, ESP-B4 reduced the LPS-stimulated nuclear translocation of p65 subunit of NF-κB. Pretreatment with ESP-B4 significantly down-regulated the phosphorylation of MAPKs induced by LPS. Furthermore, in vivo, after 12 days of disease induced by adjuvant, rats were treated with ESP-B4 for 16 days. ESP-B4 significantly improved all parameters of inflammation. ESP-B4 reduced the release of inflammatory factors and cytokines by inhibiting the TLR4 signaling pathway to treat rheumatoid arthritis.

  15. Colonic insufflation with carbon monoxide gas inhibits the development of intestinal inflammation in rats

    Directory of Open Access Journals (Sweden)

    Takagi Tomohisa

    2012-09-01

    Full Text Available Abstract Background The pathogenesis of inflammatory bowel disease (IBD is complex, and an effective therapeutic strategy has yet to be established. Recently, carbon monoxide (CO has been reported to be capable of reducing inflammation by multiple mechanisms. In this study, we evaluated the role of colonic CO insufflation in acute colitis induced by trinitrobenzene sulfonic acid (TNBS in rats. Methods Acute colitis was induced with TNBS in male Wistar rats. Following TNBS administration, the animals were treated daily with 200 ppm of intrarectal CO gas. The distal colon was removed to evaluate various parameters of inflammation, including thiobarbituric acid (TBA-reactive substances, tissue-associated myeloperoxidase (MPO activity, and the expression of cytokine-induced neutrophil chemoattractant (CINC-1 in colonic mucosa 7 days after TNBS administration. Results The administration of TNBS induced ulceration with surrounding edematous swelling in the colon. In rats treated with CO gas, the colonic ulcer area was smaller than that of air-treated rats 7 days after TNBS administration. The wet colon weight was significantly increased in the TNBS-induced colitis group, which was markedly abrogated by colonic insufflation with CO gas. The increase of MPO activity, TBA-reactive substances, and CINC-1 expression in colonic mucosa were also significantly inhibited by colonic insufflation with CO gas. Conclusions Colonic insufflation with CO gas significantly ameliorated TNBS-induced colitis in rats. Clinical application of CO gas to improve colonic inflammatory conditions such as IBD might be useful.

  16. 不同剂量亚砷酸钠染毒大鼠唾液砷水平及其与血砷、尿砷间关系研究%Relations between saliva arsenic levels and serum arsenic and urinary arsenic of rats after exposed to different levels of sodium arsenite

    Institute of Scientific and Technical Information of China (English)

    王大朋; 张利明; 李建; 刘建; 金洹宇; 刘星; 纪春燕; 傅春玲; 安艳

    2012-01-01

    Objective To investigate the relations between saliva arsenic levels and serum arsenic and urinary arsenic of rats after exposed to different levels of sodium arsenite.Methods Thirty-two SD rats were randomly divided into four groups(8 rats in each group),namely the control group,the low,the medium,and the high doses of sodium arsenite exposure groups.Rats of the control group were given 0.9% NaCI by gavage,and other three groups were given sodium arsenite of 0.2,2.0,20.0 mg/kg body weight by gavage.All animals were administrated every other day for two weeks,then saliva,blood,urine and tissue organs were collected,organ coefficients were calculated,total arsenic concentrations in blood and urine were detected by Atomic Fluorescence Spectrometry(AFS-230) and total arsenic concentration in saliva was detected by Inductively Coupled Plasma Mass Spectrometer(ICP-MS).Results The weight gain values of rats exposed to sodium arsenite were lower than that of the control group,the difference was statistically significant between the highest dose group[(76.13 ± 17.19)g]and the control group[(103.00 ± 12.31)g,P < 0.05].The liver and kidney organ coefficients in the highest dose group [(3.92 ± 0.54)%,(0.96 ± 0.15)%]were significantly higher than that in the control group[(3.27 ± 0.35)%,(0.76 ± 0.05)%,P < 0.05 or < 0.01].The total arsenic concentrations in saliva[(0.044 ± 0.019),(0.211 ± 0.071),(1.128 ± 0.380)mg/L],blood[(11.832 ± 1.887),(45.032 ± 7.216),(121.839 ± 17.323)mg/L]and urine[(0.138 ± 0.085),(0.874 ± 0.328),(8.843 ± 1.754)mg/L]in the three treatment groups were significantly higher compared with that of the control group [(0.018 ± 0.014),(2.267 ± 0.370),(0.025 ± 0.011)mg/L,all P < 0.05],furthermore,there was a significant difference among the three treatment groups (all P < 0.05).The arsenic contents in saliva were significantly correlated with blood arsenic and urinary arsenic,the correlation coefficient was 0.934 and 0

  17. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages.

    Science.gov (United States)

    Hämäläinen, Mari; Nieminen, Riina; Vuorela, Pia; Heinonen, Marina; Moilanen, Eeva

    2007-01-01

    In inflammation, bacterial products and proinflammatory cytokines induce the formation of large amounts of nitric oxide (NO) by inducible nitric oxide synthase (iNOS), and compounds that inhibit NO production have anti-inflammatory effects. In the present study, we systematically investigated the effects of 36 naturally occurring flavonoids and related compounds on NO production in macrophages exposed to an inflammatory stimulus (lipopolysaccharide, LPS), and evaluated the mechanisms of action of the effective compounds. Flavone, the isoflavones daidzein and genistein, the flavonols isorhamnetin, kaempferol and quercetin, the flavanone naringenin, and the anthocyanin pelargonidin inhibited iNOS protein and mRNA expression and also NO production in a dose-dependent manner. All eight active compounds inhibited the activation of nuclear factor-kappaB (NF-kappaB), which is a significant transcription factor for iNOS. Genistein, kaempferol, quercetin, and daidzein also inhibited the activation of the signal transducer and activator of transcription 1 (STAT-1), another important transcription factor for iNOS. The present study characterises the effects and mechanisms of naturally occurring phenolic compounds on iNOS expression and NO production in activated macrophages. The results partially explain the pharmacological efficacy of flavonoids as anti-inflammatory compounds.

  18. Bioavailable constituents/metabolites of pomegranate (Punica granatum L preferentially inhibit COX2 activity ex vivo and IL-1beta-induced PGE2 production in human chondrocytes in vitro

    Directory of Open Access Journals (Sweden)

    Khan Khursheed A

    2008-06-01

    Full Text Available Abstract Several recent studies have documented that supplementation with pomegranate fruit extract inhibits inflammatory symptoms in vivo. However, the molecular basis of the observed effects has not been fully revealed. Although previous studies have documented the inhibition of nitric oxide and cyclooxygenase (COX activity in vitro by plant and fruit extracts added directly into the culture medium but whether concentrations of bioactive compounds sufficient enough to exert such inhibitory effects in vivo can be achieved through oral consumption has not been reported. In the present study we determined the effect of rabbit plasma obtained after ingestion of a polyphenol rich extract of pomegranate fruit (PFE on COX enzyme activity ex vivo and the IL-1β-induced production of NO and PGE2 in chondrocytes in vitro. Plasma samples collected before and 2 hr after supplementation with PFE were tested. Plasma samples collected after oral ingestion of PFE were found to inhibit the IL-1β-induced PGE2 and NO production in chondrocytes. These same plasma samples also inhibited both COX-1 and COX-2 enzyme activity ex vivo but the effect was more pronounced on the enzyme activity of COX-2 enzyme. Taken together these results provide additional evidence of the bioavailability and bioactivity of compounds present in pomegranate fruit after oral ingestion. Furthermore, these studies suggest that PFE-derived bioavailable compounds may exert an anti-inflammatory effect by inhibiting the inflammatory cytokine-induced production of PGE2 and NO in vivo.

  19. DC-CIK联合化疗治疗晚期非小细胞肺癌的临床疗效%Dendritic cell-cytokine induced killer cells combined with chemotherapy in treatment of advanced non-small cell lung cancer patients: The clinical effectiveness

    Institute of Scientific and Technical Information of China (English)

    张俊萍; 王江涛; 贾林梓; 毛光华; 史天良; 杨晓玲; 肖艳; 张丽彬; 冯慧晶; 韩亚萍; 智婷

    2011-01-01

    Objective: To evaluate the safety and therapeutic effect of dentritic cell (DC) -cytokine induced killer cells (CIKs) combined with chemotherapy in treatment of advanced non-small cell lung cancer (NSCLC) patients. Methods; Fifty patients with advanced NSCLC ( stage Ⅲ to Ⅳ ) , who were admitted to Tumor Hospital of Shanxi Province from August 2008 to January 2010, were treated by DC-CIK combined with chemotherapy (docetaxel + cisplatin) and were taken as the combined treatment group; another fifty advanced NSCLC patients who were treated with chemotherapy alone ( docetaxel + cisplatin) during the same period were taken as controls. The immune function, therapeutic effect, 1-year survival , life quality, and side effects were compared between the two groups. Furthermore, the safety and therapeutic effects of DC-CIK therapy were observed. Results; DC-CIK cells from NSCLC patients were successfully induced, the ratios of CD3+ CD8+ and CD3 + CD56+ cells in DC-CIK cells were significantly increased after culture (P <0.05). There were no obvious changes of T cell subsets in the peripheral blood after combined therapy, and the therapy increased IFN-γ level (P < 0.05). In the chemotherapy group, the ratios of CD3+CD4 + , CD3+ CD8+, CD3- CD56 + cells and IL-2, TNF-α levels were significantly decreased after cell culture (P < 0.05); and the ratios of CD3+ CD8+ , CD3+ CD56 + cells in DCCIK was increased ( P < 0.05 ) . The disease control rate ( DCR) of combined therapy group was higher than that in chemotherapy group (78.0% vs 56.0% , P <0.05) ; the 1-year survival rates of combined therapy group and chemotherapy group were 50% and 44% , respectively, showing no significant difference (P>0.05). The combined therapy group had less side effects(including bone marrow suppression, nausea and vomiting, and peripheral nerve toxicity) compared with the control chemotherapy group ( P < 0.05). The physical condition and appetite of NSCLC patients in the combined

  20. 1α, 25(OH)2D3 protects pancreatic β-cell line from cytokine-induced apoptosis and impaired insulin secretion%1α,25-二羟维生素D3对胰岛β细胞的保护作用及其机制探讨

    Institute of Scientific and Technical Information of China (English)

    王安平; 李霞; 超晨; 黄干; 刘碧莲; 彭健; 周智广

    2012-01-01

    Objective To explore the protective effects and potential mechanisms of 1α,25 (OH)2D3 (VitD3 ) on pancreatic β-cells.Methods The apoptosis of NIT-1 cells was induced by interleukin-1 β(IL-1 β ) and interferon-γ (IFN-γ) in vitro.Then the apoptotic rate of NIT-1 cells was determined by Hoechest33342 staining and Annexin V-FITC/PI flow cytometry.The insulin secretion level of NIT-1 cells was measured by ELISA.The NIT-1 cells were treated with VitD3 at the final concentrations of 10-8 mol/L or underwent transient transfection with vitamin D receptor (VDR)-SiRNA.Results After the treatment of VitD3,the apoptotic rate of NIT-1 cells decreased to 39.7%.There were significant differences in apoptotic rate between the VitD3 treatment and IL-1 β/IFN-γ groups (68.4%) ( P < 0.01 ).Similarly impaired glucose-stimulated insulin secretion (GSIS) of NIT-1 cells recovered ( (7.34 ± 0.21 ) ng/ml ) after the treatment of VitD3 as compared with the IL-1 β/IFN-γ group ( ( 4.88 ± 0.32 ) ng/ml,P < 0.01 ).Moreover,most of the protective effects of VitD3 on pancreatic β-cells could be blocked by the transfection of VDR-SiRNA.Conclusion VitD3 may protect pancreatic β-cells from cytokine-induced apoptosis and impaired insulin secretion through its conjugation with VDR.%目的 观察1α,25-二羟维生素D3(简称VitD3)抑制白介素1β (IL-1β)和干扰素γ(IFN-γ)诱导胰岛β细胞凋亡的作用及对胰岛素分泌功能的影响,探讨其可能的作用机制.方法 将VitD3和IL-1β/IFN-γ作用于细胞后,采用四甲基偶氮唑盐比色法检测细胞的生长增殖率、赫斯特荧光染色观察细胞凋亡形态变化、磷脂结合蛋白V/碘化丙啶双染色流式检测细胞凋亡率、酶联免疫分析检测葡萄糖刺激胰岛素分泌(GSIS).结果 IL-1 β/IFN-γ组细胞生长增殖率为32.0%±2.7%,不同浓度VitD3( 10 -10、10-9、10-8mol/L)+IL-1β/IFN-γ组细胞生长增殖率分别为54.0%±3.2%、59.0%±1.5%,73.0%±2.1

  1. Efficacy of polypeptide-loaded dendritic cells in combination with cytokine-induced killer cells on hormone refractory prostate cancer%多肽负载DC联合CIK治疗激素难治性前列腺癌的疗效

    Institute of Scientific and Technical Information of China (English)

    章烨; 朱寿兴; 申小苏; 朱为民; 马素娟; 时宏珍; 史央; 朱晨瑶; 李蔚

    2012-01-01

    多肽负载树突状细胞( dendritic cell,DC)联合细胞因子诱导的杀伤细胞(cytokine-induced killer cell,CIK)对激素难治性前列腺癌(hormone refractory metastatic prostate cancer,HRPC)患者免疫治疗的效果.方法:选择无锡市第四人民医院中西医结合科收治的HLA-A2+ HRPC患者26例,分离外周血单个核细胞,其中贴壁细胞经GM-CSF、IL-4联合诱导培养为成熟DC,负载前列腺癌特异性抗原(prostate specific antigen,PSA)、前列腺酸性磷酸酶(prostatic acid phosphatase,PAP)、前列腺特异性膜抗原(prostate specific membrane antigen,PSMA)三个多肽,制备成DC疫苗,经患者腹股沟皮内注射;未贴壁细胞经IFN-γ、IL-2、抗CD3单抗、IL-1体外诱导培养成CIK,经静脉回输给患者.在治疗后l周进行迟发型超敏反应(delayed type hypersensitivity,DTH)检测,在患者治疗前后进行血清中细胞因子和PSA检测,治疗结束后4周进行短期疗效评价.结果:26例HRPC患者对DC联合CIK治疗的耐受良好.治疗后患者血清中IL-2、IL-12、IFN-γ水平较治疗前显著升高(上升幅度分别为65.07%、67.69%和125.38%,P<0.05或P<0.01),TNF-α和IL-10水平变化不大;DTH的阳性率为43.5% (10/23);7例患者的CD8+ IFN-γ+T细胞比例较治疗前显著提高[(8.95±2.74)%vs(0.39±0.15)%,P<0.01];8/26例患者的PSA下降,降幅为13% ~66%.26例患者短期疗效评价,3例PR、4例PD、19例SD,所有患者治疗中未出现明显不良反应.结论:多肽负载DC联合CIK治疗HRPC能激发患者的免疫应答、诱导Th1型细胞因子的分泌,近期疗效良好,是一种安全的治疗方法.

  2. 自体DC-CIK细胞联合索拉非尼治疗晚期肾癌的临床效果%Clinical effect of autologous dendritic cells and cytokine induced killer cells combined with Sorafenib in the treatment of advanced renal cell car-cinoma

    Institute of Scientific and Technical Information of China (English)

    艾月琴; 赵华; 江龙委; 贾绍昌

    2015-01-01

    Objective To investigate the safety and efficacy of autologous dendritic cells (DC) and cytokine induced killer (CIK) cells combined with Sorafenib in the treatment of advanced renal cell carcinoma. Methods Twenty four cases of patients with advanced renal cell carcinoma who were failed by traditional therapy admitted to No.81st Hospi-tal of PLA from December 2011 to March 2014 were selected. The peripheral blood mononuclear cells (PBMCs) were collected by blood cell separator, DC and CIK cells were amplified from PBMCs through induction in v itro. Autologous DC and CIK cells combined with Sorafenib were taken to treat patients. Results After treatment, the detection of pe-ripheral blood lymphocyte subsets showed that CD3+was (67.80±8.50)%, CD4+was (40.40±7.71)%, CD4+/CD8+was (1.89±0.53)%, which were higher than before treatment [(55.97±11.71)%, (30.18±8.33)%, (1.08±0.60)%], the differences were statistically significant (P=0.018, 0.021, 0.011). After treatment, the ratio of CD8+T leukomonocyte was (17.34±4.52)%, the ratio of CD4+CD25+Treg was (4.57±1.56)%, which were lower than before treatment [(25.41±6.22)%, (7.12±1.71)%], the differences were statistically significant (P= 0.005, 0.034). Among 24 patients, there were 2 cases (8.3%) of com-plete remission (CR), 4 cases (16.7%) of partial remission (PR), 15 cases (62.5%) of stable disease (SD), 3 cases (12.5%) of progressive disease (PD); the response rate (RR) was 25.0%, the disease control rate (DCR) was 87.5%. Conclusion Sorafenib combined with autologous DC and CIK cells immunotherapy in treating advanced renal cell car-cinoma is safe, which can achieve certain clinical benefit even when the efficacy of traditional therapy is poor or failed.%目的:探讨自体树突状细胞(DC)与细胞因子诱导的杀伤细胞(CIK)联合索拉非尼治疗晚期肾癌的安全性和有效性。方法选择2011年12月~2014年3月解放军第八一医院经传统治疗失败后的晚期肾癌患者24例,经

  3. 不同价态无机砷染毒大鼠肝脏砷形态分析%Distribution of arsenic metabloite in liver of rats treated with arsenite and arsenate

    Institute of Scientific and Technical Information of China (English)

    吴军; 杨晓燕; 姜平; 张杰; 郑玉建

    2011-01-01

    Objective To analyze the difference in distribution of arsenic metabolite in liver of the rats treated with arsenite and arsenate, and to explore metabolism and toxicity of arsenic. Methods Seventy-two Wistar rats were devided into 7 groups. After three months' treatment, the liver samples of the rats were collected and kept in deep freeze refrigerator. With high efficiency liquid chromatography and hydride genesis atomic fluorescence spectroscopy( HPLC-HGAFS ), the speciation and concentrations of arsenate and arsenite and their metabolic products in the liver were determined. Meanwhile, the recovery rate of monomethylarsonic acid(MMA) was determined to estimate the accuracy of the results. The arsenic accumulation was evaluated based on the content of total arsenic in liver and the differences in pathway and capability of methylation were estimated according to levels of primary methylated index(PMI) and secondary methylated index(SMI) of arsenic in the liver. Results There were significant differences in the levels of total arsenic between high,moderate,and low arsenite groups( 1 142. 9 ±50. 4,484. 6 ± 37.4,323. 3 ±20. 2 ng/g wet weight) and between high,moderate,and low arsenate groups (3 695. 2 ± 345.9,1 833.8 ± 229. 6,1 170. 5 ± 77.4 ng/g wet weight) ( P < 0. 05 for all). Except high dose group,the level of iAs3 + ( 118.4 ± 23.9,252. 3 ± 14. 3 ng/g wet weight) and dimethylarsinic acid(DMA) ( 353.2 ± 45.6,55. 2 ±10. 6 ng/g wet weight) in the liver of moderate and low arsenite group were lower than the level of iAs3+ (558.7 ±39. 0,759. 5 ± 67.6 ng/g wet weight)and DMA ( 1269. 7 ± 219. 9,402. 1 ± 60. 5 ng/g wet weight)in moderate and low arsenate groups(P <0. 05). The level of MMA( 13.0 ±2. 88,15.8 ±3. 14 ng/g wet weight)in the liver of moderate and low arsenite group were higher than the level of MMA(5. 35 ± 1.18,8. 87 ± 1.66 ng/g wet weight) of the moderate and low arsenate groups( P <0. 05 ). The level of PMI and SMI of different

  4. 围手术期应用胸腺五肽联合术后细胞因子诱导的杀伤细胞治疗肾癌的临床疗效观察%Investigation of curative effect on renal cancer patients adopting thymopetidum combined with cytokine-induced killer cells in peroperative period

    Institute of Scientific and Technical Information of China (English)

    赵伟; 曹龙滨; 姜勇; 周士明; 李江松; 马征; 孙茸

    2015-01-01

    目的 观察围手术期应用胸腺五肽(TP-5)联合术后细胞因子诱导的杀伤细胞(CIK)治疗对肾癌患者细胞免疫功能的影响,评价二者联合应用的临床疗效.方法 回顾性分析术后应用CIK治疗的41例Ⅰ~Ⅲ期肾癌患者的临床资料,其中16例应用TP-5联合CIK治疗(联合组),25例单纯应用CIK治疗(CIK组).联合组于术前1d至术后3周给予10 mg TP-5臀部肌肉注射,每天1次,两组患者均于术后第1周采集外周血单个核细胞,采集后培养2周左右回输CIK.两组均于术后第1周(采集外周血单个核细胞前)、第3周(CIK回输前)、第4周(CIK回输后第1周)、第5周(CIK回输后第2周)时抽取外周空腹血,采用流式细胞仪检测外周血T细胞亚群(CD3+、CD4+、CD8+)及自然杀伤细胞(NK细胞)水平.结果 在CIK回输前,即术后第1周、第3周时,联合组CD3+、CD4+/CD8+及NK细胞水平明显高于CIK组,差异有统计学意义(术后第1周:0.542±0.063比0.491±0.054,0.94±0.09比0.90±0.12,0.247±0.025比0.223±0.033;术后第3周:0.641±0.058比0.587±0.062,1.71±0.13比1.02±0.07,0.319±0.038比0.264±0.047)(P<0.05).CIK回输后,即术后第4周时,联合组CD3+、CD4+/CD8+及NK细胞水平仍然高于CIK组,差异有统计学意义(0.698 ±0.041 比0.649 ±0.050,2.01 ±0.11比1.64±0.09,0.331±0.029比0.289±0.034)(P< 0.05),但术后第5周时两组上述指标比较差异无统计学意义(P>0.05).在术后第4,5周,两组外周血CD3+、CD4+/CD8+及NK细胞水平均明显高于本组术后第3周水平,差异有统计学意义(P<0.05).41例肾癌患者术后均未出现明显的四肢乏力、高热、寒战等不良反应.结论 肾癌患者围手术期给予TP-5可以促进细胞免疫功能的恢复,与术后CIK治疗具有协同作用,具有临床推广价值.%Objective To explore the change of cellular immune function in renal cancer patients adopting thymopetidum (TP-5) combined with cytokine-induced killer cells (CIK) in

  5. Down Regulation of CIAPIN1 Reverses Multidrug Resistance in Human Breast Cancer Cells by Inhibiting MDR1

    Directory of Open Access Journals (Sweden)

    Xuemei Wang

    2012-06-01

    Full Text Available Cytokine-induced apoptosis inhibitor 1 (CIAPIN1, initially named anamorsin, a newly indentified antiapoptotic molecule is a downstream effector of the receptor tyrosine kinase-Ras signaling pathway. Current study has revealed that CIAPIN1 may have wide and important functions, especially due to its close correlations with malignant tumors. However whether or not it is involved in the multi-drug resistance (MDR process of breast cancer has not been elucidated. To explore the effect of CIAPIN1 on MDR, we examined the expression of P-gp and CIAPIN1 by immunohistochemistry and found there was positive correlation between them. Then we successfully interfered with RNA translation by the infection of siRNA of CIAPIN1 into MCF7/ADM breast cancer cell lines through a lentivirus, and the expression of the target gene was significantly inhibited. After RNAi the drug resistance was reduced significantly and the expression of MDR1mRNA and P-gp in MCF7/ADM cell lines showed a significant decrease. Also the expression of P53 protein increased in a statistically significant way (p ≤ 0.01 after RNAi exposure. In addition, flow cytometry analysis reveals that cell cycle and anti-apoptotic enhancing capability of cells changed after RNAi treatment. These results suggested CIAPIN1 may participate in breast cancer MDR by regulating MDR1 and P53 expression, changing cell cycle and enhancing the anti-apoptotic capability of cells.

  6. Autologous cytokine-induced killer cells therapy on the quality of life of patients with breast cancer after adjuvant chemotherapy: A prospective study%自体细胞因子诱导的杀伤细胞治疗对辅助化疗后乳腺癌患者生活质量影响的前瞻性研究

    Institute of Scientific and Technical Information of China (English)

    梁雪峰; 马东初; 丁震宇; 刘兆喆; 郭放; 刘良; 于卉影; 韩雅玲; 谢晓冬

    2013-01-01

    Objective To explore the effect of autologous cytokine-induced killer cells on the quality of life in patient with breast cancer who have already finished the adjuvant chemotherapy.Methods One hundred and twenty-eight postoperative patients with breast cancer who underwent anthracycline-based adjuvant chemotherapy were enrolled in this prospective study,and they were randomized into 2 groups,i.e.,treatment group,which received the therapy of CIK cells transfusion,and control group,which was given regular follow-up.Meanwhile,patients with positive hormone receptor in the two groups were given endocrine therapy,and the patients with positive axillary lymph nodes were given radiotherapy to the chest wall and regional lymph nodes.The difference of quality of life between the two groups was analyzed according to the EORTC QLQ-BR53 quality of life questionnaire,and the adverse reactions were monitored.Results As regarding the functional evaluation,the physical function scores of patients of the treatment group were (83.43 ± 14.87) and (88.55 ± 11.62) at 3 and 6 months after the CIK cell therapy,respectively,significantly higher than the baseline value [(74.83 ± 13.82),P < 0.05)].Global health status/QOL scores were (83.30 ± 19.09) and (89.68 ± 10.81),significantly higher than the baseline value [(77.72 ±21.05),P <0.05].As regarding symptoms,the scores of fatigue,nausea,vomiting and loss of appetite of patients in the treatment group were higher than the baseline value,with significant differences (P <0.05).The nausea and vomiting scores in the control group at 3 and 6 months of followedup were (26.67 ± 22.56) and (21.47 ± 21.06),significantly lower than the baseline values [(33.31 ±27.07),P < 0.05].The scores of worrying about the future in the patients of treatment group were (47.56 ± 30.84) and (42.33 ±26.95) after 3 and 6 months,significantly better than the baseline value [(57.41 ±30.63),P <0.05].The systematic therapy side effects scores were

  7. Reciprocal inhibition in man.

    Science.gov (United States)

    Crone, C

    1993-11-01

    Reciprocal inhibition is the automatic antagonist alpha motor neurone inhibition which is evoked by contraction of the agonist muscle. This so-called natural reciprocal inhibition is a ubiquitous and pronounced phenomenon in man and must be suspected of playing a major role in the control of voluntary movements. The spinal pathways underlying this inhibitory phenomenon were studied. The disynaptic reciprocal Ia inhibitory pathway between the tibial anterior muscle and the soleus alpha motor neurones was identified and described in man. It was shown that the inhibition can be evoked in most healthy subjects at rest, but the degree of inhibition varies considerably from one subject to another. It was concluded that it corresponds to the disynaptic reciprocal Ia inhibitory pathway which has been extensively described in animal experiments. The disynaptic reciprocal inhibition was shown to increase during the dynamic phase of a dorsiflexion movement of the foot, but not during the tonic phase. However, when the peripheral afferent feedback from the contracting muscle was blocked by ischaemia, an increase of the inhibition was revealed also during the tonic phase of the dorsiflexion. The concealment of this increase during unrestrained peripheral feedback from the muscle was thought to be due to the post-activation depression mechanism; a mechanism which was described further and which probably involves reduced transmitter release at Ia afferent terminals as a result of previous activation of these afferent fibers. Hence the hypothesis was supported that alpha motor neurones and the corresponding inhibitory interneurones, which project reciprocal inhibition to the antagonist motor neurones, are activated in parallel during voluntary contraction of agonist muscles. An additional reciprocal inhibitory mechanism, the long latency reciprocal inhibition, was described between the tibial anterior muscle and the soleus alpha motor neurones. It was shown to be evoked by group I

  8. Lipoxin A4 inhibits immune cell binding to salivary epithelium and vascular endothelium.

    Science.gov (United States)

    Chinthamani, Sreedevi; Odusanwo, Olutayo; Mondal, Nandini; Nelson, Joel; Neelamegham, Sriram; Baker, Olga J

    2012-04-01

    Lipoxins are formed by leukocytes during cell-cell interactions with epithelial or endothelial cells. Native lipoxin A(4) (LXA(4)) binds to the G protein-coupled lipoxin receptors formyl peptide receptor 2 (FPR2)/ALX and CysLT1. Furthermore, LXA(4) inhibits recruitment of neutrophils, by attenuating chemotaxis, adhesion, and transmigration across vascular endothelial cells. LXA(4) thus appears to serve as an endogenous "stop signal" for immune cell-mediated tissue injury (Serhan CN; Annu Rev Immunol 25: 101-137, 2007). The role of LXA(4) has not been addressed in salivary epithelium, and little is known about its effects on vascular endothelium. Here, we determined that interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) receptor activation in vascular endothelium and salivary epithelium upregulated the expression of adhesion molecules that facilitates the binding of immune cells. We hypothesize that the activation of the ALX/FPR2 and/or CysLT1 receptors by LXA(4) decreases this cytokine-mediated upregulation of cell adhesion molecules that enhance lymphocyte binding to both the vascular endothelium and salivary epithelium. In agreement with this hypothesis, we observed that nanomolar concentrations of LXA(4) blocked IL-1β- and TNF-α-mediated upregulation of E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). Binding of Jurkat cells to stimulated HUVECs was abrogated by LXA(4). Furthermore, LXA(4) preincubation with human submandibular gland cell line (HSG) also blocked TNF-α-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) in these cells, and it reduced lymphocyte adhesion. These findings suggest that ALX/FPR2 and/or CysLT1 receptor activation in endothelial and epithelial cells blocks cytokine-induced adhesion molecule expression and consequent binding of lymphocytes, a critical event in the pathogenesis of Sjögren's syndrome (SS).

  9. RORγt-specific transcriptional interactomic inhibition suppresses autoimmunity associated with TH17 cells.

    Science.gov (United States)

    Park, Tae-Yoon; Park, Sung-Dong; Cho, Jen-Young; Moon, Jae-Seung; Kim, Na-Yeon; Park, Kyungsoo; Seong, Rho Hyun; Lee, Sang-Won; Morio, Tomohiro; Bothwell, Alfred L M; Lee, Sang-Kyou

    2014-12-30

    The nuclear hormone receptor retinoic acid-related orphan receptor gamma t (RORγt) is a transcription factor (TF) specific to TH17 cells that produce interleukin (IL)-17 and have been implicated in a wide range of autoimmunity. Here, we developed a novel therapeutic strategy to modulate the functions of RORγt using cell-transducible form of transcription modulation domain of RORγt (tRORγt-TMD), which can be delivered effectively into the nucleus of cells and into the central nerve system (CNS). tRORγt-TMD specifically inhibited TH17-related cytokines induced by RORγt, thereby suppressing the differentiation of naïve T cells into TH17, but not into TH1, TH2, or Treg cells. tRORγt-TMD injected into experimental autoimmune encephalomyelitis (EAE) animal model can be delivered effectively in the splenic CD4(+) T cells and spinal cord-infiltrating CD4(+) T cells, and suppress the functions of TH17 cells. The clinical severity and incidence of EAE were ameliorated by tRORγt-TMD in preventive and therapeutic manner, and significant reduction of both infiltrating CD4(+) IL-17(+) T cells and inflammatory cells into the CNS was observed. As a result, the number of spinal cord demyelination was also reduced after tRORγt-TMD treatment. With the same proof of concept, tTbet-TMD specifically blocking TH1 differentiation improved the clinical incidence of rheumatoid arthritis (RA). Therefore, tRORγt-TMD and tTbet-TMD can be novel therapeutic reagents with the natural specificity for the treatment of inflammatory diseases associated with TH17 or TH1. This strategy can be applied to treat various diseases where a specific transcription factor has a key role in pathogenesis.

  10. Chronic fatigue syndrome (CFS) associated with Staphylococcus spp. bacteremia, responsive to potassium arsenite 0.5% in a veterinary surgeon and his coworking wife, handling with CFS animal cases.

    Science.gov (United States)

    Tarello, W

    2001-10-01

    Chronic fatigue syndrome (CFS) in human patients remain a controversial and perplexing condition with emerging zoonotic aspects. Recent advances in human medicine seem to indicate a bacterial etiology and the condition has already been described in horses, dogs, cats and birds of prey in association with micrococci-like organisms in the blood. To evaluate the possibility of a chronic bacteremia, a veterinary surgeon (the author) and his coworking wife, both diagnosed with CFS and meeting the CDC working case definition, were submitted to rapid blood cultures and fresh blood smears investigations. Blood cultures proved Staph-positive and micrococci-like organisms in the blood were repeatedly observed in the 3-year period preceding the arsenical therapy, during which several medicaments, including antibiotics, proved unsuccessful. Following treatment with a low dosage arsenical drug (potassium arsenite 0.5%, im., 1 ml/12 h, for 10 days) both patients experienced complete remission. At the post-treatment control made 1 month later, micrococci had disappeared from the blood, and the CD4/CD8 ratio was raising.

  11. Biogenesis of photosynthetic complexes in the chloroplast of Chlamydomonas reinhardtii requires ARSA1, a homolog of prokaryotic arsenite transporter and eukaryotic TRC40 for guided entry of tail-anchored proteins.

    Science.gov (United States)

    Formighieri, Cinzia; Cazzaniga, Stefano; Kuras, Richard; Bassi, Roberto

    2013-03-01

    as1, for antenna size mutant 1, was obtained by insertion mutagenesis of the unicellular green alga Chlamydomonas reinhardtii. This strain has a low chlorophyll content, 8% with respect to the wild type, and displays a general reduction in thylakoid polypeptides. The mutant was found to carry an insertion into a homologous gene, prokaryotic arsenite transporter (ARSA), whose yeast and mammal counterparts were found to be involved in the targeting of tail-anchored (TA) proteins to cytosol-exposed membranes, essential for several cellular functions. Here we present the characterization in a photosynthetic organism of an insertion mutant in an ARSA-homolog gene. The ARSA1 protein was found to be localized in the cytosol, and yet its absence in as1 leads to a small chloroplast and a strongly decreased chlorophyll content per cell. ARSA1 appears to be required for optimal biogenesis of photosynthetic complexes because of its involvement in the accumulation of TOC34, an essential component of the outer chloroplast membrane translocon (TOC) complex, which, in turn, catalyzes the import of nucleus-encoded precursor polypeptides into the chloroplast. Remarkably, the effect of the mutation appears to be restricted to biogenesis of chlorophyll-binding polypeptides and is not compensated by the other ARSA homolog encoded by the C. reinhardtii genome, implying a non-redundant function.

  12. Isoliquiritigenin inhibits TNF-α-induced release of high-mobility group box 1 through activation of HDAC in human intestinal epithelial HT-29 cells.

    Science.gov (United States)

    Chi, Jin-Hua; Seo, Geom Seog; Cheon, Jae Hee; Lee, Sung Hee

    2017-02-05

    The suppression of pro-inflammatory cytokine-induced inflammation responses is an attractive pharmacological target for the development of therapeutic strategies for inflammatory bowel disease (IBD). In the present study, we evaluated the anti-inflammatory properties of flavonoid isoliquiritigenin (ISL) in intestinal epithelial cells and determined its mechanism of action. ISL suppressed the expression of inflammatory molecules, including IL-8, IL-1β and COX-2, in TNF-α-stimulated HT-29 cells. Moreover, ISL induced activation of Nrf2 and expression of its target genes, such as HO-1 and NQO1. ISL also inhibited the TNF-α-induced NF-κB activation in HT-29 cells. High-mobility group box 1 (HMGB1), which is one of the critical mediators of inflammation, is actively secreted from inflammatory cytokine-stimulated immune or non-immune cells. ISL inhibited HMGB1 secretion by preventing TNF-α-stimulated HMGB1 relocation, whereas the RNA and protein expression levels of cellular HMGB1 did not change in response to TNF-α or ISL. Moreover, we found that HMGB1 acetylation was associated with HMGB1 translocation to the cytoplasm and the extracellular release in TNF-α-stimulated HT-29 cells; however, ISL significantly decreased the amount of acetylated HMGB1 in both the cytoplasm and extracellular space of HT-29 cells. Histone deacetylase (HDAC) inhibition by Scriptaid abrogated ISL-induced HDAC activity and reversed the ISL-mediated decrease in acetylated HMGB1 release in TNF-α-stimulated HT-29 cells, suggesting that, at least in TNF-α-stimulated HT-29 cells, ISL suppresses acetylated HMGB1 release via the induction of HDAC activity. Together, the current results suggest that inhibition of HMGB1 release via the induction of HDAC activity using ISL may be a promising therapeutic intervention for IBD.

  13. Potentiation of latent inhibition.

    Science.gov (United States)

    Rodriguez, Gabriel; Hall, Geoffrey

    2008-07-01

    Rats were given exposure either to an odor (almond) or a compound of odor plus taste (almond plus saline), prior to training in which the odor served as the conditioned stimulus. It was found, for both appetitive and aversive procedures, that conditioning was retarded by preexposure (a latent inhibition effect), and the extent of the retardation was greater in rats preexposed to the compound (i.e., latent inhibition to the odor was potentiated by the presence of the taste). In contrast, the presence of the taste during conditioning itself overshadowed learning about the odor. We argue that the presence of the salient taste in compound with the odor enhances the rate of associative learning, producing a rapid loss in the associability of the odor. This loss of associability will generate both overshadowing and the potentiation of latent inhibition that is observed after preexposure to the compound.

  14. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  15. The Efficacy of Arsenite Combined with Rretinoic Acid and Chemotherapy on Acute Promyelocytic Leukemia%亚砷酸联合维甲酸化疗治疗急性早幼粒细胞白血病疗效观察

    Institute of Scientific and Technical Information of China (English)

    闻艳

    2016-01-01

    Objective: To observe the effect of arsenite combined retinoic acid and chemotherapy on treatment of acute promyelocytic leukemia. Methods:90 cases of acute early promyelocytic leukemia patients admitted in our hospital from April 2008 to April 2015 were selected to retrospective analyse, and according to the treatment plan was divided into two groups. The control group was treated with retinoic acid combined with chemotherapy, and the observation group was treated jointly arsenite. The curative effects of the two groups were compared. Results: The promyelocytic ratio and total number of white blood cells in the observation group improved than that in the control group ( P < 0.05) . Conclusion:For patients with acute promyelocytic leukemia,the treatment method of chemotherapy combined with arsenite and retinoic acid has a satisfactory effect.%目的::研究急性早幼粒细胞白血病行亚砷酸和维甲酸、化疗联合治疗效果。方法:资料取本院2008年4月至2015年4月急性早幼粒细胞白血病90例患者予回顾分析,按治疗方案分成两组,对照组行维甲酸与化疗,观察组联合亚砷酸,对比两组疗效。结果:观察组早幼粒细胞比例与总白细胞数改善效果比对照组优( P<0.05)。结论:急性早幼粒细胞白血病患者行亚砷酸和维甲酸、化疗联合治疗效果满意。

  16. Effects of Sodium Arsenite and Sodium Arsenate on Expression of DNA and Arsenic Methyltransferases in Rats%不同价态砷对DNA和砷甲基转移酶的影响

    Institute of Scientific and Technical Information of China (English)

    吴军; 师喆; 郑玉建; 刘冬梅; 姜平

    2012-01-01

    Objective To investigate the influence on arsenic methyltransferase (As3MT) and DNA methyltransferase (DNMT1, DNMT3A, DNMT3B) mRNA expression in rats liver treated with sodium arsenite and sodium arsenate and seek for the difference of DNA and arsenic methylation and both' s correlation between sodium arsenite and sodium arsenate (iAs3+ and iAs5+). Methods Different valence state and doses of arsenic were administrated through drinking water to Wistar rats,male rats were divided into seven group randomly,five in each group,control group (deionized water),sodium arsenite low dose group (1/45 LD50,2.33 mg/kg),moderate dose group (1/15 LD50,6.67 mg/kg),high dose group (1/5 LD50,20.00 mg/kg) administrated with different concentrations of sodium arsenite; sodium arsenate low dose group (1/45 LD50,2.33 mg/kg), moderate dose group (1/15 LD50,6.67 mg/kg),high dose group (1/5 LD50,20.00 mg/kg) administrated with different concentrations of sodium arsenate. The reagents were given through drinking water, for 90 consecutive days. At the end of the third month, the rats were sacrificed to collect the liver,and the expression of DNA and arsenic methyltransferase were detected by real-time PCR in liver genome mRNA. Results The difference of As3MT and DNA methyltransferase mRNA expression in every group was significant (P<0.05) compared with the control group; the expression of As3MT mRNA increased and the expression of DNMT3A and DNMT3B mRNA were decreased in arsenic the exposed group; the expression of DNMT1 mRNA increased in high and low iAs3+ exposed group and in high iAs5+ exposed group,the expression of DNMT1 mRNA decreased in moderate iAs3+ exposed group and in low iAs5+ exposed group. With the increasing dose of iAs3+,As3MT mRNA expression showed an increasing trend and DNMT3A and DNMT3B mRNA expression showed a decresing trend in iAs3+ group; with the increase of iAs5+ dose,As3MT mRNA expression showed a decreasing trend and DNMT3A,DNMT3B and DNMT1 mRNA expression

  17. 土壤中砷氧化菌的生理生化及转化砷特性研究%Arsenite Transformation Characteristics and Molecular Identification of Arsenic-oxidizing Bacteria Isolated from Soil

    Institute of Scientific and Technical Information of China (English)

    宋卫锋; 罗丽丽; 林梓河; 严明; 邓琪; 莫于婷

    2011-01-01

    [目的]通过外加砷源驯化肇庆市鼎湖山自然保护区土壤中细菌,研究砷氧化菌的生理生化及转化砷特性.[方法]采用富集、稀释平板、硝酸盐漫过、生理生化指标的测定等.[结果]从中分离、鉴定出具有氧化砷功能的产碱杆菌和土壤杆菌2种菌株.[结论]这2种菌株最适氧化砷温度为30℃,最适氧化砷pH为9.培养基中乳酸钠浓度对菌株氧化砷有一定的影响.%[ Objective ] Through domesticated bacteria from the applied arsenic source soil in Dinghushan Nature Reserve of Zhaoqing City,physiological,biochemical and transformation characteristics of arsenic oxide bacteria were studied. [ Method]The methods of concentration,plates serial dilution, silver nitrate overflowed, physiological characteristic were adopted. [ Result ] They were identified as alcaligenes castellani and agrobacterium conn respectively, which were able to oxidize arsenite ( As (Ⅲ) ) into arsenate ( As (Ⅴ) ). [ Conclusion ] The optimal temperature and pH were 30 ℃ and 9 respectively for two bacterial strains. In addition,sodium Lactate medium concentration had a certain impact to arsenicoxidizing.

  18. Effect of sodium arsenite on the gene and protein expression of p53, mdm2 and Kras in islet cells%亚砷酸钠对胰岛细胞中 p53、mdm2和Kras基因及蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    姚晓峰; 孙睿; 姜丽平; 耿成燕; 仲来福; 郑白璐; 杨光; 刘爽; 孙鲜策

    2014-01-01

    Objective To investigate the effect of sodium arsenite on p53, mdm2 and Kras expressions in islet βcells (INS-1) of rat.Methods The levels of wild type p53 (Tp53), mdm2 and Kras in sodium arsenite-treated rat islet βcells were detected by real-time PCR.The expression of mutant p53 and mdm2 protein were detected by western blot. Results After treatment with sodium arsenite, the level of Tp53 decreased, but those of mdm2、Kras increased.The protein expressions of mutant p53 and mdm2 increased.Conclusion Sodium arsenite could induce the transformation of Tp53 to mutant p53, and increase the level of mdm2 and Kras in INS-1 cells.%目的:探讨砷对大鼠胰岛β细胞(INS-1)p53、mdm2和Kras基因和蛋白表达的影响。方法荧光实时定量PCR法检测亚砷酸钠对大鼠胰岛β细胞中野生型p53(Tp53)、mdm2和Kras基因表达的影响,Western blot检测亚砷酸钠对大鼠胰岛β细胞突变型p53和mdm2蛋白表达的影响。结果亚砷酸钠作用于INS-1细胞后,Tp53基因水平降低,mdm2、Kras基因水平升高;突变型p53和mdm2蛋白表达增加。结论亚砷酸钠可使INS-1细胞中抑癌基因Tp53向突变型p53转变,癌基因mdm2和Kras的水平升高。

  19. R59949, a diacylglycerol kinase inhibitor, inhibits inducible nitric oxide production through decreasing transplasmalemmal L-arginine uptake in vascular smooth muscle cells.

    Science.gov (United States)

    Shimomura, Tomoko; Nakano, Tomoyuki; Goto, Kaoru; Wakabayashi, Ichiro

    2017-02-01

    Although diacylglycerol kinase (DGK) is known to be expressed in vascular smooth muscle cell, its functional significance remains to be clarified. We hypothesized that DGK is involved in the pathway of cytokine-induced nitric oxide (NO) production in vascular smooth muscle cells. The purpose of this study was to investigate the effects of R59949, a diacylglycerol kinase inhibitor, on inducible nitric oxide production in vascular smooth muscle cell. Cultured rat aortic smooth muscle cells (RASMCs) were used to elucidate the effects of R59949 on basal and interleukin-1β (IL-1β)-induced NO production. The effects of R59949 on protein and mRNA expression of induced nitric oxide synthase (iNOS) and on transplasmalemmal L-arginine uptake were also evaluated using RASMCs. Treatment of RASMCs with R59949 (10 μM) inhibited IL-1β (10 ng/ml)-induced NO production but not basal NO production. Neither protein nor mRNA expression level of iNOS after stimulation with IL-1β was significantly affected by R59949. Estimated enzymatic activities of iNOS in RASMCs were comparable in the absence and presence of R59949. Stimulation of RASMCs with IL-1β caused a marked increase in transplasmalemmal L-arginine uptake into RASMCs. L-Arginine uptake in the presence of IL-1β was markedly inhibited by R59949, while basal L-arginine uptake was not significantly affected by R59949. Both IL-1β-induced NO production and L-arginine uptake were abolished in the presence of cycloheximide (1 μM). The results indicate that R59949 inhibits inducible NO production through decreasing transplasmalemmal L-arginine uptake. DGK is suggested to be involved in cytokine-stimulated L-arginine transport and regulate its intracellular concentration in vascular smooth muscle cell.

  20. Potentized homeopathic drug Arsenicum Album 30C inhibits intracellular reactive oxygen species generation and up-regulates expression of arsenic resistance gene in arsenine-exposed bacteria Escherichia coli%顺势疗法药物白砷剂抑制暴露于三氧化二砷的大肠杆菌细胞内活性氧的产生并上调其抗三氧化二砷基因的表达

    Institute of Scientific and Technical Information of China (English)

    Arnab De; Durba Das; Suman Dutta; Debrup Chakraborty; Naoual Boujedaini; Anisur Rahman Khuda-Bukhsh

    2012-01-01

    -treated).A sub-set of untreated E.coli served as the negative control.Glucose uptake,specific activities of hexokinase,lipid peroxidase (LPO),superoxide dismutase (SOD) and catalase,intra- and extra-cellular sodium arsenite content,cell growth,cell membrane potential,DNA damage,intracellular reactive oxygen species (ROS),adenosine triphosphate (ATP) and free glutathione content and expressions of arsB and ptsG gene in normal control,sodium arsenite-treated,drug-treated and placebo-treated E.coli were analyzed.Treatments were blinded and randomized.RESULTS: In sodium arsenite-treated E.coli,glucose uptake,intracellular ROS,LPO and DNA damage increased along with decrease in the specific activities of hexokinase,SOD and catalase,intracellular ATP and free glutathione contents and cell membrane potential and growth,and there were increases in expression levels of arsB gene and ptsG gene.Ars AIb 30C administration reduced arsenic toxicity in E.coli by inhibiting generation of ROS and increasing tolerance to arsenite toxicity and cell growth.CONCLUSION: Ars AIb 30C ameliorated arsenic toxicity and DNA damage,validating efficacy of ultra-highly diluted remedies used in homeopathy.

  1. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  2. Inhibition and Brain Work

    OpenAIRE

    Buzsáki, György; Kaila, Kai; Raichle, Marcus

    2007-01-01

    The major part of the brain’s energy budget (~60%–80%) is devoted to its communication activities. While inhibition is critical to brain function, relatively little attention has been paid to its metabolic costs. Understanding how inhibitory interneurons contribute to brain energy consumption (brain work) is not only of interest in understanding a fundamental aspect of brain function but also in understanding functional brain imaging techniques which rely on measurements related to blood flow...

  3. Prednisone inhibits the IL-1β-induced expression of COX-2 in HEI-OC1 murine auditory cells through the inhibition of ERK-1/2, JNK-1 and AP-1 activity.

    Science.gov (United States)

    Hong, Hua; Jang, Byeong-Churl

    2014-12-01

    Hearing loss can be induced by multiple causes, including cochlear inflammation. Prednisone (PDN) is a well-known steroid clinically used in the treatment of hearing loss. In the present study, we investigated the inhibitory effects and the mechanisms of action of PDN on the expression of cyclooxygenase (COX)-2, an inflammatory enzyme involved in the production of prostaglandins (PGs), in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells (a murine auditory cell line) treated with the inflammatory cytokine, interleukin (IL)-1β. The exposure of HEI-OC1 cells to IL-1β increased COX-2 protein and mRNA expression, COX-2 promoter-driven luciferase activity and COX-2 enzymatic activity [as indicated by the increased production of prostaglandin E2 (PGE2), a major COX-2 metabolite]. However, PDN markedly inhibited the IL-1β-induced COX-2 protein and mRNA expression, COX-2 promoter activity and PGE2 production in the HEI-OC1 cells without affecting COX-2 protein and mRNA stability. PDN further inhibited the IL-1β-induced activation of extracellular signal-regulated kinase (ERK)-1/2 and c-Jun N-terminal kinase (JNK)-1, but had no effect on the cytokine-induced activation of p38 MAPK and proteolysis of IκB-α, a nuclear factor-κB (NF-κB) inhibitory protein. PDN also partially suppressed the IL-1β‑induced activation of activator protein (AP)-1 (but not that of NF-κB) promoter-driven luciferase activity. Of note, the inhibitory effects of PDN on the IL-1β-induced expression of COX-2 and the activation of ERK-1/2 and JNK-1 in the HEI-OC1 cells were significantly diminished by RU486, a glucocorticoid receptor (GR) antagonist, suggesting that PDN exerts its inhibitory effects through GR. To the best of our knowledge, our study demonstrates for the first time that PDN inhibits the IL-1β-induced COX-2 expression and activity in HEI-OC1 cells by COX-2 transcriptional repression, which is partly associated with the inhibition of ERK-1/2, JNK-1 and AP-1 activation.

  4. Icariin inhibits TNF-α/IFN-γ induced inflammatory response via inhibition of the substance P and p38-MAPK signaling pathway in human keratinocytes.

    Science.gov (United States)

    Kong, Lingwen; Liu, Jiaqi; Wang, Jia; Luo, Qingli; Zhang, Hongying; Liu, Baojun; Xu, Fei; Pang, Qi; Liu, Yingchao; Dong, Jingcheng

    2015-12-01

    /beta inhibitor, inhibited the secretion of inflammatory cytokines induced by TNF-α/IFN-γ in cultured HaCaT cells. The differential expression of TNF-α-R1 and IFN-γ-R1 was also observed after the stimulation of TNF-α/IFN-γ, which was significantly normalized after the icariin treatment. Collectively, we illustrated the anti-inflammatory property of icariin in human keratinocytes. These effects were mediated, at least partially, via the inhibition of substance P and the p38-MAPK signaling pathway, as well as by the regulation of the TNF-α-R1 and IFN-γ-R1 signals.

  5. Latent inhibition in schizophrenia.

    Science.gov (United States)

    Swerdlow, N R; Braff, D L; Hartston, H; Perry, W; Geyer, M A

    1996-05-01

    Latent inhibition (LI) refers to the retarded acquisition of a conditioned response that occurs if the subject being tested is first preexposed to the to-be-conditioned stimulus (CS) without the paired unconditioned stimulus (UCS). Because the 'irrelevance' of the to-be-conditioned stimulus is established during non-contingent preexposure, the slowed acquisition of the CS-UCS association is thought to reflect the process of overcoming this learned irrelevance. Latent inhibition has been reported to be diminished in acutely hospitalized schizophrenia patients. If acutely hospitalized schizophrenia patients are preexposed to the CS, they learn the association as fast as, and perhaps faster than, patients who are not preexposed to the CS. This finding has been interpreted as reflecting the inability of acute schizophrenia patients to ignore irrelevant stimuli. In this study, the LI paradigm was identical to the one used in previous reports of LI deficits in schizophrenia patients (Baruch et al., 1988). Latent inhibition was observed in normal control subjects (n = 73), including individuals identified as 'psychosis-prone' based on established screening criteria, and in anxiety (n = 19) and mood disorder (n = 13) patients. Learning scores (trials to criterion) in "acutely' hospitalized as well as "chronic' hospitalized schizophrenia patients (n = 45) were significantly elevated in both preexposed and non-preexposed subjects, compared to controls. Acute schizophrenia patients exhibited intact LI. Separate cohorts of acute and chronic schizophrenia patients (n = 23) and normal controls (n = 34) exhibited intact LI when tested in a new, easier-to-acquire computerized LI paradigm. These results fail to identify specific LI deficits in schizophrenia patients, and raise the possibility that previously observed LI deficits in schizophrenia patients may reflect, at least in part, performance deficits related to learning acquisition.

  6. Tumour necrosis factor-α inhibition with lenalidomide alleviates tissue oxidative injury and apoptosis in ob/ob obese mice.

    Science.gov (United States)

    Zhu, Xiaoling; Jiang, Shasha; Hu, Nan; Luo, Fuling; Dong, Hailong; Kang, Yu-Ming; Jones, Kyla R; Zou, Yunzeng; Xiong, Lize; Ren, Jun

    2014-07-01

    Lenalidomide (Revlimid; Selleck Chemicals, Houston, TX, USA), an analogue of thalidomide, possesses potent cytokine modulatory capacity through inhibition of cytokines such as tumour necrosis factor (TNF)-α, a cytokine pivotal for the onset and development of complications in obesity and diabetes mellitus. The present study was designed to evaluate the effect of lenalidomide on oxidative stress, protein and DNA damage in multiple organs in an ob/ob murine model of obesity. To this end, C57BL/6 lean and ob/ob obese mice were administered lenalidomide (50 mg/kg per day, p.o.) for 5 days. Oxidative stress, protein and DNA damage were assessed using the conversion of reduced glutathione (GSH) to oxidized glutathione (GSSG), carbonyl formation and Comet assay, respectively. Apoptosis was evaluated using caspase 3 activity, and levels of Bax, Bcl-2, Bip, caspase 8, caspase 9 and TNF-α were assessed using western blot analysis. Lenalidomide treatment did not affect glucose clearance in lean or ob/ob mice. Obese mice exhibited a reduced GSH/GSSG ratio in the liver, gastrocnemius skeletal muscle and small intestine, as well as enhanced protein carbonyl formation, DNA damage and caspase 3 activity in the liver, kidney, skeletal muscle and intestine; these effects were alleviated by lenalidomide, with the exception of obesity-associated DNA damage in the liver and kidney. Western blot analysis revealed elevated TNF-α, Bax, Bcl-2, Bip, caspase 8 and caspase 9 in ob/ob mice with various degrees of reversal by lenalidomide treatment. Together, these data indicate that lenalidomide protects against obesity-induced tissue injury and protein damage, possibly in association with antagonism of cytokine production and cytokine-induced apoptosis and oxidative stress.

  7. Beneficial bacteria inhibit cachexia.

    Science.gov (United States)

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny.

  8. Glossogyne tenuifolia Extract Inhibits TNF-α-Induced Expression of Adhesion Molecules in Human Umbilical Vein Endothelial Cells via Blocking the NF-kB Signaling Pathway.

    Science.gov (United States)

    Hsuan, Chin-Feng; Hsu, Hsia-Fen; Tseng, Wei-Kung; Lee, Thung-Lip; Wei, Yu-Feng; Hsu, Kwan-Lih; Wu, Chau-Chung; Houng, Jer-Yiing

    2015-09-17

    Chronic inflammation plays a pivotal role in the development of atherosclerosis, where the pro-inflammatory cytokine-induced expression of endothelial adhesion molecules and the recruitment of monocytes are the crucial events leading to its pathogenesis. Glossogyne tenuifolia ethanol extract (GTE) is shown to have potent anti-inflammatory and antioxidant activities. We evaluated the effects of GTE and its major components, luteolin (lut), luteolin-7-glucoside (lut-7-g), and oleanolic acid (OA) on TNF-α-induced expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results demonstrated that GTE, lut, and lut-7-g attenuated the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in TNF-α-activated HUVECs, and inhibited the adhesion of monocytes to TNF-α-activated HUVECs. The TNF-α-induced mRNA expression of ICAM-1 and VCAM-1 was also suppressed, revealing their inhibitory effects at the transcriptional level. Furthermore, GTE, lut, and lut-7-g blocked the TNF-α-induced degradation of nuclear factor-kB inhibitor (IkB), an indicator of the activation of nuclear factor-kB (NF-kB). In summary, GTE and its bioactive components were effective in preventing the adhesion of monocytes to cytokine-activated endothelium by the inhibition of expression of adhesion molecules, which in turn is mediated through blocking the activation and nuclear translocation of NF-kB. The current results reveal the therapeutic potential of GTE in atherosclerosis.

  9. Expression of pro-inflammatory mediators is inhibited by an avocado/soybean unsaponifiables and epigallocatechin gallate combination

    Science.gov (United States)

    2014-01-01

    Background Osteoarthritis (OA) is characterized by inflammation, joint immobility, and pain. Non-pharmacologic agents modulating pro-inflammatory mediator expression offer considerable promise as safe and effective treatments for OA. We previously determined the anti-inflammatory effect of an avocado/soybean unsaponifiables (ASU) and epigallocatechin gallate (EGCG) combination on prostaglandin E2 (PGE2) production and nuclear factor-kappa B (NF-κB) translocation. The aim of this study was to evaluate the effects of ASU + EGCG on pro-inflammatory gene expression. Findings Articular chondrocytes from carpal joints of mature horses were pre-incubated for 24 hours with control media alone or ASU (8.3 μg/mL) + EGCG (40 ng/mL), followed by one hour activation with interleukin-1 beta (IL-1β, 10 ng/mL) and tumor necrosis factor-alpha (TNF-α, 1 ng/mL). Total cellular RNA was isolated and real-time PCR performed to measure IL-1β, TNF-α, interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), and interleukin-8 (IL-8) gene expression. Intracellular localization of NF-κB was analyzed by immunohistochemistry and Western blot. Pre-treatment with ASU + EGCG significantly (P < 0.001) decreased gene expression of IL-1β, TNF-α, IL-6, COX-2, and IL-8 in cytokine-activated chondrocytes. Western blot and immunostaining confirmed NF-κB translocation inhibition. Conclusions We demonstrate that ASU + EGCG inhibits cytokine-induced gene expression of IL-1β, TNF-α, IL-6, COX-2, and IL-8 through modulation of NF-κB. Our results indicate that the activity of ASU + EGCG affects a wide array of inflammatory molecules in addition to decreasing PGE2 synthesis in activated chondrocytes. The responsiveness of chondrocytes to this combination supports its potential utility for the inhibition of joint inflammation. PMID:24678847

  10. Short-term Curative Efficacy of Autologous Cytokine Induced Killer Cells Combined with Low-dose IL-2 Regimen Containing Immune Enhancement by Thymic Peptide in Elderly Patients with B-Cell Chronic Lymphocytic Leukemia%含胸腺肽增强免疫的自体CIK细胞输注联合小剂量IL-2方案治疗老年人B-CLL的近期疗效观察

    Institute of Scientific and Technical Information of China (English)

    蔡力力; 代汉仁; 韩为东; 范辉; 李素霞; 刘洋; 冉海红; 林洁; 脱帅; 脱朝伟; 张峰; 杨洋; 曹军平; 姚善谦; 杨波; 朱宏丽; 卢学春; 张文英; 于睿莉; 迟小华; 王瑶

    2012-01-01

    本研究评价含胸腺肽增强免疫的自体细胞因子诱导的杀伤细胞(CIK)输注联合小剂量IL-2方案治疗老年人B细胞性慢性淋巴细胞白血病( B-CLL)的安全性及疗效.以胸腺肽α1作为增强免疫方案,用法为1.6 mg/d,皮下注射,14 d为1个周期.采集5例B-CLL老年患者外周血单个核细胞,每周采集1次,分别在应用胸腺肽α1前和应用1个周期后各采集3次,在体外经干扰素-γ(IFN-γ)、白介素-2(IL-2)及抗CD3单克隆抗体诱导成CIK细胞,观察对比应用胸腺肽α1前后CIK细胞在扩增数量、效应细胞扩增倍数、淋巴细胞亚群比例及体外杀瘤活性的变化.5例患者在接受胸腺肽α1治疗后开始进行自体CIK细胞联合小剂量IL-2方案免疫治疗,具体为:胸腺肽α1 1.6 mg/d,皮下注射,隔日1次;每次回输CIK细胞数为(4 -6)×109个,回输后应用IL-2 1 mU/d,皮下注射,第1 - 10天.28 d为1个疗程,动态观察CIK细胞治疗前后细胞免疫功能、肿瘤相关生物学指标、疾病缓解情况及感染频次、程度的变化.结果表明:胸腺肽α1增强免疫治疗后体外诱导CIK细胞在扩增数量、效应细胞扩增倍数、比例及体外杀瘤活性4个方面均明显高于胸腺肽α1治疗前(P<0.05).5例患者共接受46个疗程的CIK细胞联合IL-2治疗,未观察到明显不良反应.治疗后5例患者一般情况得到不同程度改善,CD3+、CD3+ CD8+、CD3+CD56+细胞比例明显升高(P<0.05),血清β2微球蛋白水平显著下降(P<0.05),感染频次减少,程度减轻(P<0.05);3例由部分缓解(PR)达到完全缓解,1例由疾病稳定(SD)达到PR,1例由疾病进展达到SD.结论:含胸腺肽增强免疫的自体CIK细胞联合小剂量IL-2方案治疗老年人B-CLL安全有效.%This study was purposed to evaluate the safety and curative effect of autologous cytokine induced killer cells (CIK) combined with low-dose IL-2 regimen containing immune enhancement of thymic peptide on elderly

  11. ATP Is Required and Advances Cytokine-Induced Gap Junction Formation in Microglia In Vitro

    Directory of Open Access Journals (Sweden)

    Pablo J. Sáez

    2013-01-01

    Full Text Available Microglia are the immune cells in the central nervous system. After injury microglia release bioactive molecules, including cytokines and ATP, which modify the functional state of hemichannels (HCs and gap junction channels (GJCs, affecting the intercellular communication via extracellular and intracellular compartments, respectively. Here, we studied the role of extracellular ATP and several cytokines as modulators of the functional state of microglial HCs and GJCs using dye uptake and dye coupling techniques, respectively. In microglia and the microglia cell line EOC20, ATP advanced the TNF-α/IFN-γ-induced dye coupling, probably through the induction of IL-1β release. Moreover, TNF-α/IFN-γ, but not TNF-α plus ATP, increased dye uptake in EOC20 cells. Blockade of Cx43 and Panx1 HCs prevented dye coupling induced by TNF-α/IFN-γ, but not TNF-α plus ATP. In addition, IL-6 prevented the induction of dye coupling and HC activity induced by TNF-α/IFN-γ in EOC20 cells. Our data support the notion that extracellular ATP affects the cellular communication between microglia through autocrine and paracrine mechanisms, which might affect the timing of immune response under neuroinflammatory conditions.

  12. Cytokine-induced activation of Mixed Lineage Kinase 3 requires TRAF2 and TRAF6

    OpenAIRE

    Korchnak, Amanda C.; Zhan, Yu; Aguilar, Michael T.; Chadee, Deborah N.

    2009-01-01

    Mixed Lineage Kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates multiple mitogen activated protein kinase (MAPK) pathways in response to growth factors, stresses and the pro-inflammatory cytokine, tumor necrosis factor (TNF). MLK3 is required for optimal activation of stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling by TNF, however, the mechanism by which MLK3 is recruited and activated by the TNF receptor remains poorly und...

  13. Inflammatory Cytokines Induce Ubiquitination and Loss of the Prostate Suppressor Protein NKX3.1

    Science.gov (United States)

    2007-10-01

    foreign organisms. The inflammatory process is responsible for the removal of harmful stimuli and for cellular regeneration and healing. Acute...retinogenesis in zebrafish .(138) Regulation of Vsx-1 levels is mediated by C-terminal dependent ubiquitination.(139) In Kurtzman et al, truncation of the...FRANKS LM. Atrophy and hyperplasia in the prostate proper. J Pathol Bacteriol 1954; 68(2):617-621. (2) Liavag I. Atrophy and regeneration in the

  14. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition.

    Directory of Open Access Journals (Sweden)

    Ravi S Keshari

    Full Text Available Neutrophils (PMNs and cytokines have a critical role to play in host defense and systemic inflammatory response syndrome (SIRS. Neutrophil extracellular traps (NETs have been shown to extracellularly kill pathogens, and inflammatory potential of NETs has been shown. Microbial killing inside the phagosomes or by NETs is mediated by reactive oxygen and nitrogen species (ROS/RNS. The present study was undertaken to assess circulating NETs contents and frequency of NETs generation by isolated PMNs from SIRS patients. These patients displayed significant augmentation in the circulating myeloperoxidase (MPO activity and DNA content, while PMA stimulated PMNs from these patients, generated more free radicals and NETs. Plasma obtained from SIRS patients, if added to the PMNs isolated from healthy subjects, enhanced NETs release and free radical formation. Expressions of inflammatory cytokines (IL-1β, TNFα and IL-8 in the PMNs as well as their circulating levels were significantly augmented in SIRS subjects. Treatment of neutrophils from healthy subjects with TNFα, IL-1β, or IL-8 enhanced free radicals generation and NETs formation, which was mediated through the activation of NADPH oxidase and MPO. Pre-incubation of plasma from SIRS with TNFα, IL-1β, or IL-8 antibodies reduced the NETs release. Role of IL-1β, TNFα and IL-8 thus seems to be involved in the enhanced release of NETs in SIRS subjects.

  15. Antitumour activities of cytokine-induced killer cells and dendritic cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    ZHANG Song; JIANG Shu-juan; ZHANG Cai-qing; WANG Hong-mei; BAI Chun-xue

    2005-01-01

    @@ Solid tumour cells show a resistance to immunological effector cells in vitro.1 The resistance may be one reason why these tumours withstand immunotherapeutic approaches in humans.Dendritic cells (DC) play an important role in the immune response to tumour associated antigens in humans.DC in the periphery capture and process antigens,express lymphocyte costimulatory molecules,migrate to lymphoid organs and secrete cytokines to initiate immune response.

  16. Effects of Ganoderma lucidum polysaccharides on proliferation and cytotoxicity of cytokine-induced killer cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-ling ZHU; Zhi-bin LIN

    2005-01-01

    Aim: To study the effects (and the mechanisms thereof) of Ganoderma lucidum polysaccharides (Gl-PS) on the proliferation and the anti-tumor activity of cytokineinduced killer (CIK) cells, and to make use of CIK cells as a means to investigate the interactions between Gl-PS and cytokines. Methods: CIK cells were prepared by using the standard protocol as a positive control. Experimental groups also underwent the standard protocol, except that Gl-PS (400 mg/L or 100 mg/L) was added and the dose of anti-CD3 and interleukin-2 they received was reduced by 50% and 75%, respectively. For negative controls, Gl- PS in the experimental protocol was replaced with soluble starch or methylcellulose (400 mg/L or 100 mg/L).CIK cell proliferation, cytotoxicity, and phenotype weredetermined by using the Trypan blue exclusion method, MTT assay, and flow cytometry. Results: By synergizing cytokines, Gl-PS (400 mg/L or 100 mg/L) could decrease the amount of cytokine in lymphokine activated killer (LAK) cells and CIK cells culture, but had no significant effect on the proliferation, cytotoxicity, or phenotype of LAK cells, or CIK cells induced by cytokines at higher doses alone, in which CIK cells expanded about 80-fold and the main effectors, CD3+NK1.1+ cells, expanded by more than 15%. The cytotoxicity of CIK cells in experimental groups was 79.3%±4.7%, 76.9%±6.8% versus the positive control 80.7%±6.8% against P815 (P>0.05)and 88.9%±5.5%, 84.7%±7.9% versus the positive control 89.8%±4.5% against YAC-1 (P>0.05). The activity of Gl-PS could mostly be blocked by anti-CR3.Conclusion: Gl-PS was shown to be a promising biological response modifier and immune potentiator. The effect of Gl-PS on CIK cells is possibly mediated primarily through complement receptor type 3.

  17. Functional role of gap junctions in cytokine-induced leukocyte adhesion to endothelium in vivo

    Science.gov (United States)

    Véliz, Loreto P.; González, Francisco G.; Duling, Brian R.; Sáez, Juan C.; Boric, Mauricio P.

    2008-01-01

    To assess the hypothesis that gap junctions (GJs) participate on leukocyte-endothelium interactions in the inflammatory response, we compared leukocyte adhesion and transmigration elicited by cytokine stimulation in the presence or absence of GJ blockers in the hamster cheek pouch and also in the cremaster muscle of wild-type (WT) and endothelium-specific connexin 43 (Cx43) null mice (Cx43e−/−). In the cheek pouch, topical tumor necrosis factor-α (TNF-α; 150 ng/ml, 15 min) caused a sustained increment in the number of leukocytes adhered to venular endothelium (LAV) and located at perivenular regions (LPV). Superfusion with the GJ blockers 18-α-glycyrrhetinic acid (AGA; 75 μM) or 18-β-glycyrrhetinic acid (50 μM) abolished the TNF-α-induced increase in LAV and LPV; carbenoxolone (75 μM) or oleamide (100 μM) reduced LAV by 50 and 75%, respectively, and LPV to a lesser extent. None of these GJ blockers modified venular diameter, blood flow, or leukocyte rolling. In contrast, glycyrrhizin (75 μM), a non-GJ blocker analog of AGA, was devoid of effect. Interestingly, when AGA was removed 90 min after TNF-α stimulation, LAV started to rise at a similar rate as in control. Conversely, application of AGA 90 min after TNF-α reduced the number of previously adhered cells. In WT mice, intrascrotal injection of TNF-α (0.5 μg/0.3 ml) increased LAV (fourfold) and LPV (threefold) compared with saline-injected controls. In contrast to the observations in WT animals, TNF-α stimulation did not increase LAV or LPV in Cx43e−/− mice. These results demonstrate an important role for GJ communication in leukocyte adhesion and transmigration during acute inflammation in vivo and further suggest that endothelial Cx43 is key in these processes. PMID:18599597

  18. Effect of vitamin E succinate on inflammatory cytokines induced by high-intensity interval training

    Directory of Open Access Journals (Sweden)

    Hadi Sarir

    2015-01-01

    Full Text Available Aim and Scope: The anti-inflammatory effect of vitamin E under moderate exercises has been evaluated. However, the effect of vitamin E succinate, which has more potent anti-inflammatory effect than other isomers of vitamin E has not been evaluated. Therefore, the aim of the present study was to evaluate the effects of vitamin E succinate on tumor necrosis factor alpha (TNF-a and interleukin-6 (IL-6 production induced by high-intensity interval training (HIIT. Materials and Methods: In the present study, 24 rats were randomly divided into control (C, supplementation (S, HIIT, and HIIT + supplementation (HIIT+S groups. HIIT training protocol on a treadmill (at a speed of 40-54 m/min and vitamin E succinate supplementation (60 mg/kg/day was conducted for 6 weeks. Results: Serum IL-6 in the HIIT group significantly increased compared with the C group (350.42 ± 123.31 pg/mL vs 158.60 ± 41.96 pg/mL; P = 0.002. Also, serum TNF-a concentrations significantly enhanced (718.15 ± 133.42 pg/mL vs 350.87 ± 64.93 pg/mL; P = 0.001 in the HIIT group compared with the C group. Treatment of the training group with vitamin E numerically reduced IL-6 and TNF-a when compared with the HIIT group (217.31 ± 29.21 and 510.23 ± 217.88, respectively, P > 0.05. However, no significant changes were observed in serum TNF-a (P = 0.31 and IL-6 (P = 0.52 concentrations in the HIIT + S group compared with the C group. Conclusion: HIIT-induced IL-6 and TNF-α decreased by administration of Vitamin E succinate.

  19. Neospora caninum: Cloning and expression of a gene coding for cytokine-inducing Neospora caninum profilin

    Science.gov (United States)

    Profilins are actin-binding proteins that in T. gondii stimulate innate immunity in mice by binding Toll-like receptors (TLR) on dendritic cells (DC) leading to release of inflammatory cytokines, primarily IL-12 and IFN-'. The purpose of the present study was to characterize Neospora caninum profil...

  20. Cytokine-Induced Cell Surface Expression of Adhesion Molecules in Vascular Endothelial Cells In vitro

    Institute of Scientific and Technical Information of China (English)

    陈红辉; 刘昌勤; 孙圣刚; 梅元武; 童萼塘

    2001-01-01

    Regulation of the adhesion molecules expression by cytokine in vascular endothelial cells was investigated. Human umbilical vein endothelial cells (HUVEC) were stimulated with cytokines, TNF-α (1-250 U/ml) or IL-1β (0.1-50 U/ml) for 24 h. HUVEC were also cultured with cytokines, TNF-α (100 U/ml) or IL-1β (10 U/ml), for 4-72 h, cell surface expression of adhesion molecules (ICAM-1 and VCAM-1) were detected and quantitated by immunocytochemical methods and computerized imaging analysis technique. Adhesion molecules expression were up-regulated by TNF-α, IL-1β in a concentration- and time-dependent manner. Some significant differences were observed between the effects of cytokines on the ICAM-1 and on VCAM-1 expression. Cytokines might directly induce the expression of ICAM-1 and VCAM-1 in vascular endothelial cells. Our observations indicate differential functions of the two adhesion molecules during the evolution of inflammatory responses in stroke.

  1. Milk-derived tripeptides IPP (Ile-Pro-Pro and VPP (Val-Pro-Pro promote adipocyte differentiation and inhibit inflammation in 3T3-F442A cells.

    Directory of Open Access Journals (Sweden)

    Subhadeep Chakrabarti

    Full Text Available Milk derived tripeptides IPP (Ile-Pro-Pro and VPP (Val-Pro-Pro have shown promise as anti-hypertensive agents due to their inhibitory effects on angiotensin converting enzyme (ACE. Due to the key inter-related roles of hypertension, chronic inflammation and insulin resistance in the pathogenesis of metabolic syndrome, there is growing interest in investigating established anti-hypertensive agents for their effects on insulin sensitivity and inflammation. In this study, we examined the effects of IPP and VPP on 3T3-F442A murine pre-adipocytes, a widely used model for studying metabolic diseases. We found that both IPP and VPP induced beneficial adipogenic differentiation as manifested by intracellular lipid accumulation, upregulation of peroxisome proliferator-activated receptor gamma (PPARγ and secretion of the protective lipid hormone adiponectin by these cells. The observed effects were similar to those induced by insulin, suggesting potential benefits in the presence of insulin resistance. IPP and VPP also inhibited cytokine induced pro-inflammatory changes such as reduction in adipokine levels and activation of the nuclear factor kappa B (NF-κB pathway. Taken together, our findings suggest that IPP and VPP exert insulin-mimetic adipogenic effects and prevent inflammatory changes in adipocytes, which may offer protection against metabolic disease.

  2. The Expression of Human Cytomegalovirus MicroRNA MiR-UL148D during Latent Infection in Primary Myeloid Cells Inhibits Activin A-triggered Secretion of IL-6.

    Science.gov (United States)

    Lau, Betty; Poole, Emma; Krishna, Benjamin; Sellart, Immaculada; Wills, Mark R; Murphy, Eain; Sinclair, John

    2016-08-05

    The successful establishment and maintenance of human cytomegalovirus (HCMV) latency is dependent on the expression of a subset of viral genes. Whilst the exact spectrum and functions of these genes are far from clear, inroads have been made for protein-coding genes. In contrast, little is known about the expression of non-coding RNAs. Here we show that HCMV encoded miRNAs are expressed de novo during latent infection of primary myeloid cells. Furthermore, we demonstrate that miR-UL148D, one of the most highly expressed viral miRNAs during latent infection, directly targets the cellular receptor ACVR1B of the activin signalling axis. Consistent with this, we observed upregulation of ACVR1B expression during latent infection with a miR-UL148D deletion virus (ΔmiR-UL148D). Importantly, we observed that monocytes latently infected with ΔmiR-UL148D are more responsive to activin A stimulation, as demonstrated by their increased secretion of IL-6. Collectively, our data indicates miR-UL148D inhibits ACVR1B expression in latently infected cells to limit proinflammatory cytokine secretion, perhaps as an immune evasion strategy or to postpone cytokine-induced reactivation until conditions are more favourable. This is the first demonstration of an HCMV miRNA function during latency in primary myeloid cells, implicating that small RNA species may contribute significantly to latent infection.

  3. Lateral inhibition during nociceptive processing

    DEFF Research Database (Denmark)

    Quevedo, Alexandre S.; Mørch, Carsten Dahl; Andersen, Ole Kæseler

    2017-01-01

    of skin. Thus, the stimulation of the skin region between the endpoints of the lines appears to produce inhibition. These findings indicate that lateral inhibition limits spatial summation of pain and is an intrinsic component of nociceptive information processing. Disruption of such lateral inhibition......Spatial summation of pain is the increase of perceived intensity that occurs as the stimulated area increases. Spatial summation of pain is sub-additive in that increasing the stimulus area produces a disproportionately small increase in the perceived intensity of pain. A possible explanation...... for sub-additive summation may be that convergent excitatory information is modulated by lateral inhibition. To test the hypothesis that lateral inhibition may limit spatial summation of pain, we delivered different patterns of noxious thermal stimuli to the abdomens of 15 subjects using a computer...

  4. Rice varietal differences in arsenite metabolism

    Science.gov (United States)

    Plants utilize an assortment of survival mechanisms to reduce arsenic toxicity, such as exclusion, translocation, and detoxification. Detoxification is the primary method plants use to mediate mitigate heavy metal stress through formation of reactive oxygen species (ROS) and methylglyoxal (MG) meta...

  5. Comparison of the total arsenic concentration between saliva and blood after oral administration of sodium arsenite to rats%亚砷酸钠单次染毒大鼠后唾液及血液总砷含量变化比较

    Institute of Scientific and Technical Information of China (English)

    王大朋; 范丽丽; 张利明; 李建; 刘建; 金洹宇; 刘星; 安艳

    2012-01-01

    Objective To compare the total arsenic concentration between blood and saliva after oral administration of sodium arsenite to SD rats. Methods A single oral gavage dose of sodium arsenite (20mg/kg) was administrated to 21 adult male Sprague-Dawley rats. Then collected blood and saliva samples at 0, 1-2, 4-5 , 7-8, 11-12, 17-18, 23-24 hour for total arsenic detection. The blood samples were detected for total arsenic concentration by Atomic Fluorescence Spectrometry ( AFS-230) and the salivary arsenic were detected by inductively coupled plasma mass spectrometry ( ICP-MS). Results After intake of 20mg/kg BW sodium arsenite, the total arsenic concentration in blood of SD rats was increased rapidly, and reached the peak value at the 1-2 hour, then descended gradually. However, there was a second peak value at the 7-8 hour. The upward trend of salivary arsenic was more slowly than blood arsenic, and reached the peak value at the 7-8 hour, then descended gradually. The variation tendency of salivary arsenic and blood arsenic with time were basically the same. Besides, there was an obvious positive association between them, the correlation coefficient was 0.678, P < 0.01. Conclusion The excretion of arsenic in saliva was slower than that of blood samples after administrated a single oral gavage dose of sodium arsenite (20mg/kg) to SD rate, but the metabolism mode of arsenic in saliva was similar with that in blood, suggested that salivary arsenic can also well reflect the exposure level of arsenic in the body.%目的 比较亚砷酸钠单次染毒后大鼠血液及唾液中总砷含量随时间变化情况.方法 健康清洁级SD大鼠21只,适应性饲养一周后一次性灌服亚砷酸钠20mg/kg.于给药前(0 h)和给药后1~2、4~5、7~8、11 ~ 12、17 ~ 18和23 ~ 24 h时间段分别收集血液和唾液,利用原子荧光分光光度计(AFS-230)检测血砷含量,电感耦合-等离子体质谱(ICP-MS)测定唾液砷含量.结果 大鼠摄入亚砷酸

  6. Trans- but not cis-resveratrol impairs angiotensin-II-mediated vascular inflammation through inhibition of NF-κB activation and peroxisome proliferator-activated receptor-gamma upregulation.

    Science.gov (United States)

    Rius, Cristina; Abu-Taha, May; Hermenegildo, Carlos; Piqueras, Laura; Cerda-Nicolas, Jose-Miguel; Issekutz, Andrew C; Estañ, Luís; Cortijo, Julio; Morcillo, Esteban J; Orallo, Francisco; Sanz, Maria-Jesus

    2010-09-15

    Angiotensin II (Ang-II) displays inflammatory activity and is implicated in several cardiovascular disorders. This study evaluates the effect of cis- and trans (t)-resveratrol (RESV) in two in vivo models of vascular inflammation and identifies the cardioprotective mechanisms that underlie them. In vivo, Ang-II-induced arteriolar leukocyte adhesion was inhibited by 71% by t-RESV (2.1 mg/kg, i.v.), but was not affected by cis-RESV. Because estrogens influence the rennin-angiotensin system, chronic treatment with t-RESV (15 mg/kg/day, orally) inhibited ovariectomy-induced arteriolar leukocyte adhesion by 81%, partly through a reduction of cell adhesion molecule (CAM) expression and circulating levels of cytokine-induced neutrophil chemoattractant, MCP-1, and MIP-1alpha. In an in vitro flow chamber system, t-RESV (1-10 microM) undermined the adhesion of human leukocytes under physiological flow to Ang-II-activated human endothelial cells. These effects were accompanied by reductions in monocyte and endothelial CAM expression, chemokine release, phosphorylation of p38 MAPK, and phosphorylation of the p65 subunit of NF-kappaB. Interestingly, t-RESV increased the expression of peroxisome proliferator-activated receptor-gamma in human endothelial and mononuclear cells. These results demonstrate for the first time that the in vivo anti-inflammatory activity of RESV is produced by its t-RESV, which possibly interferes with signaling pathways that cause the upregulation of CAMs and chemokine release. Upregulation of proliferator-activated receptor-gamma also appears to be involved in the cardioprotective effects of t-RESV. In this way, chronic administration of t-RESV may reduce the systemic inflammatory response associated with the activation of the rennin-angiotensin system, thereby decreasing the risk of further cardiovascular disease.

  7. Activated sludge inhibition capacity index

    Directory of Open Access Journals (Sweden)

    V. Surerus

    2014-06-01

    Full Text Available Toxic compounds in sewage or industrial wastewater may inhibit the biological activity of activated sludge impairing the treatment process. This paper evaluates the Inhibition Capacity Index (ICI for the assessment of activated sludge in the presence of toxicants. In this study, activated sludge was obtained from industrial treatment plants and was also synthetically produced. Continuous respirometric measurements were carried out in a reactor, and the oxygen uptake rate profile obtained was used to evaluate the impact of inhibiting toxicants, such as dissolved copper, phenol, sodium alkylbenzene sulfonate and amoxicillin, on activated sludge. The results indicate that ICI is an efficient tool to quantify the intoxication capacity. The activated sludge from the pharmaceutical industry showed higher resistance than the sludge from other sources, since toxicants are widely discharged in the biological treatment system. The ICI range was from 58 to 81% when compared to the synthetic effluent with no toxic substances.

  8. Chikusetsusaponin IVa Butyl Ester (CS-IVa-Be), a Novel IL6R Antagonist, Inhibits IL6/STAT3 Signaling Pathway and Induces Cancer Cell Apoptosis.

    Science.gov (United States)

    Yang, Jie; Qian, Shihui; Cai, Xueting; Lu, Wuguang; Hu, Chunping; Sun, Xiaoyan; Yang, Yang; Yu, Qiang; Gao, S Paul; Cao, Peng

    2016-06-01

    The activation of IL6/STAT3 signaling is associated with the pathogenesis of many cancers. Agents that suppress IL6/STAT3 signaling have cancer-therapeutic potential. In this study, we found that chikusetsusaponin IVa butyl ester (CS-IVa-Be), a triterpenoid saponin extracted from Acanthopanas gracilistylus W.W.Smith, induced cancer cell apoptosis. CS-IVa-Be inhibited constitutive and IL6-induced STAT3 activation, repressed STAT3 DNA-binding activity, STAT3 nuclear translocation, IL6-induced STAT3 luciferase reporter activity, IL6-induced STAT3-regulated antiapoptosis gene expression in MDA-MB-231 cells, and IL6-induced TF-1 cell proliferation. Surprisingly, CS-IVa-Be inhibited IL6 family cytokines rather than other cytokines induced STAT3 activation. Further studies indicated that CS-IVa-Be is an antagonist of IL6 receptor via directly binding to the IL6Rα with a Kd of 663 ± 74 nmol/L and the GP130 (IL6Rβ) with a Kd of 1,660 ± 243 nmol/L, interfering with the binding of IL6 to IL6R (IL6Rα and GP130) in vitro and in cancer cells. The inhibitory effect of CS-IVa-Be on the IL6-IL6Rα-GP130 interaction was relatively specific as CS-IVa-Be showed higher affinity to IL6Rα than to LIFR (Kd: 4,910 ± 1,240 nmol/L) and LeptinR (Kd: 4,990 ± 915 nmol/L). We next demonstrated that CS-IVa-Be not only directly induced cancer cell apoptosis but also sensitized MDA-MB-231 cells to TRAIL-induced apoptosis via upregulating DR5. Our findings suggest that CS-IVa-Be as a novel IL6R antagonist inhibits IL6/STAT3 signaling pathway and sensitizes the MDA-MB-231 cells to TRAIL-induced cell death. Mol Cancer Ther; 15(6); 1190-200. ©2016 AACR.

  9. Homo economicus belief inhibits trust.

    Science.gov (United States)

    Xin, Ziqiang; Liu, Guofang

    2013-01-01

    As a foundational concept in economics, the homo economicus assumption regards humans as rational and self-interested actors. In contrast, trust requires individuals to believe partners' benevolence and unselfishness. Thus, the homo economicus belief may inhibit trust. The present three experiments demonstrated that the direct exposure to homo economicus belief can weaken trust. And economic situations like profit calculation can also activate individuals' homo economicus belief and inhibit their trust. It seems that people's increasing homo economicus belief may serve as one cause of the worldwide decline of trust.

  10. Islam Does Not Inhibit Science.

    Science.gov (United States)

    Shanavas, T. O.

    1999-01-01

    Compares the science/religion relationship in both Christian and Islamic countries. Presents Muslim scholars' ideas about the presence of humans on earth. Presents ideas on active nature, Noah's curse, and the age of the universe. Refutes the notion that Islam inhibited science and advocates the belief that Islam promoted science. (YDS)

  11. Testing of Biologically Inhibiting Surface

    DEFF Research Database (Denmark)

    Bill Madsen, Thomas; Larsen, Erup

    2003-01-01

    The main purpose of this course is to examine a newly developed biologically inhibiting material with regards to galvanic corrosion and electrochemical properties. More in detail, the concern was how the material would react when exposed to cleaning agents, here under CIP cleaning (Cleaning...

  12. Inhibition of carcinogenesis by tea.

    Science.gov (United States)

    Yang, Chung S; Maliakal, Pius; Meng, Xiaofeng

    2002-01-01

    Tea has received a great deal of attention because tea polyphenols are strong antioxidants, and tea preparations have inhibitory activity against tumorigenesis. The bioavailability and biotransformation of tea polyphenols, however, are key factors limiting these activities in vivo. The inhibition of tumorigenesis by green or black tea preparations has been demonstrated in animal models on different organ sites such as skin, lung, oral cavity, esophagus, forestomach, stomach, small intestine, colon, pancreas, and mammary gland. Epidemiological studies, however, have not yielded clear conclusions concerning the protective effects of tea consumption against cancer formation in humans. The discrepancy between the results from humans and animal models could be due to 1) the much higher doses of tea used in animals in comparison to human consumption, 2) the differences in causative factors between the cancers in humans and animals, and 3) confounding factors limiting the power of epidemiological studies to detect an effect. It is possible that tea may be only effective against specific types of cancer caused by certain etiological factors. Many mechanisms have been proposed for the inhibition of carcinogenesis by tea, including the modulation of signal transduction pathways that leads to the inhibition of cell proliferation and transformation, induction of apoptosis of preneoplastic and neoplastic cells, as well as inhibition of tumor invasion and angiogenesis. These mechanisms need to be evaluated and verified in animal models or humans in order to gain more understanding on the effect of tea consumption on human cancer.

  13. Strigolactone inhibition of shoot branching

    NARCIS (Netherlands)

    Gomez-Roldan, M.V.; Fermas, S.; Brewer, P.B.; Puech-Pages, V.; Dun, E.A.; Pillot, J.P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.C.; Bouwmeester, H.J.; Becard, G.; Beveridge, C.A.; Rameau, C.; Rochange, S.F.

    2008-01-01

    A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence

  14. Infant Predictors of Behavioural Inhibition

    Science.gov (United States)

    Moehler, Eva; Kagan, Jerome; Oelkers-Ax, Rieke; Brunner, Romuald; Poustka, Luise; Haffner, Johann; Resch, Franz

    2008-01-01

    Behavioural inhibition in the second year of life is a hypothesized predictor for shyness, social anxiety and depression in later childhood, adolescence and even adulthood. To search for the earliest indicators of this fundamental temperamental trait, this study examined whether behavioural characteristics in early infancy can predict behavioural…

  15. IL-1 beta-induced chemokine and Fas expression are inhibited by suppressor of cytokine signalling-3 in insulin-producing cells

    DEFF Research Database (Denmark)

    Jacobsen, M.L.B.; Ronn, S.G.; Bruun, C.

    2009-01-01

    -induced Fas and chemokine expression in beta cells. Using a beta cell line with inducible Socs3 expression or primary neonatal rat islet cells transduced with a Socs3-encoding adenovirus, we employed real-time RT-PCR analysis to investigate whether SOCS-3 affects cytokine-induced chemokine and Fas m...

  16. Corrosion Chemistry in Inhibited HDA.

    Science.gov (United States)

    1980-11-30

    Titanium and chromium have sufficiently low Flade potentials to pass- ivate in non-oxidising acids, but Iron will only exhibit self-passivity if the...inhibition e.g. involving organic and pickling inhibitors* the rest potential can actually 4.5,4.6become more negative " This is due to cathodic rather...media. 321 stainless steel, titanium stabilised, was the particular steel studied, being very similar in composition to the 347also stainless steel

  17. Conditioned inhibition and reinforcement rate.

    Science.gov (United States)

    Harris, Justin A; Kwok, Dorothy W S; Andrew, Benjamin J

    2014-07-01

    We investigated conditioned inhibition in a magazine approach paradigm. Rats were trained on a feature negative discrimination between an auditory conditioned stimulus (CS) reinforced at one rate versus a compound of that CS and a visual stimulus (L) reinforced at a lower rate. This training established L as a conditioned inhibitor. We then tested the inhibitory strength of L by presenting it in compound with other auditory CSs. L reduced responding when tested with a CS that had been reinforced at a high rate, but had less or even no inhibitory effect when tested with a CS that had been reinforced at a low rate. The inhibitory strength of L was greater if it signaled a decrease in reinforcement from an already low rate than if it signaled an equivalent decrease in reinforcement from a high rate. We conclude that the strength of inhibition is not a linear function of the change in reinforcement that it signals. We discuss the implications of this finding for models of learning (e.g., Rescorla & Wagner, 1972) that identify inhibition with a difference (subtraction) rule.

  18. Th2 cytokines inhibit lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Ira L Savetsky

    Full Text Available Lymphangiogenesis is the process by which new lymphatic vessels grow in response to pathologic stimuli such as wound healing, inflammation, and tumor metastasis. It is well-recognized that growth factors and cytokines regulate lymphangiogenesis by promoting or inhibiting lymphatic endothelial cell (LEC proliferation, migration and differentiation. Our group has shown that the expression of T-helper 2 (Th2 cytokines is markedly increased in lymphedema, and that these cytokines inhibit lymphatic function by increasing fibrosis and promoting changes in the extracellular matrix. However, while the evidence supporting a role for T cells and Th2 cytokines as negative regulators of lymphatic function is clear, the direct effects of Th2 cytokines on isolated LECs remains poorly understood. Using in vitro and in vivo studies, we show that physiologic doses of interleukin-4 (IL-4 and interleukin-13 (IL-13 have profound anti-lymphangiogenic effects and potently impair LEC survival, proliferation, migration, and tubule formation. Inhibition of these cytokines with targeted monoclonal antibodies in the cornea suture model specifically increases inflammatory lymphangiogenesis without concomitant changes in angiogenesis. These findings suggest that manipulation of anti-lymphangiogenic pathways may represent a novel and potent means of improving lymphangiogenesis.

  19. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  20. Self-regulation, ego depletion, and inhibition.

    Science.gov (United States)

    Baumeister, Roy F

    2014-12-01

    Inhibition is a major form of self-regulation. As such, it depends on self-awareness and comparing oneself to standards and is also susceptible to fluctuations in willpower resources. Ego depletion is the state of reduced willpower caused by prior exertion of self-control. Ego depletion undermines inhibition both because restraints are weaker and because urges are felt more intensely than usual. Conscious inhibition of desires is a pervasive feature of everyday life and may be a requirement of life in civilized, cultural society, and in that sense it goes to the evolved core of human nature. Intentional inhibition not only restrains antisocial impulses but can also facilitate optimal performance, such as during test taking. Self-regulation and ego depletion- may also affect less intentional forms of inhibition, even chronic tendencies to inhibit. Broadly stated, inhibition is necessary for human social life and nearly all societies encourage and enforce it.

  1. Graphene: corrosion-inhibiting coating.

    Science.gov (United States)

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  2. 尿碘的过硫酸铵消化-低砷量砷铈催化分光光度测定法的化学动力学研究与应用%Chemical kinetics study and application of a method with low usage amount of arsenic trioxide for determining urinary iodine by arsenite-ceric catalytic spectrophotometry using ammonium persulfate digestion

    Institute of Scientific and Technical Information of China (English)

    张亚平; 黄嫣红; 李呐; 张淑琼

    2013-01-01

    Objective To study the chemical kinetics characteristics in a new revised method with low usage amount of arsenic trioxide for determining urinary iodine by arsenite-ceric catalytic spectrophotometry using ammonium persulfate digestion,and to study the impact of operating bias in arsenite-ceric reaction temperature and reaction time on final results in this method.Methods The absorbances (A) of arsenite-ceric reaction of iodine standard series were measured at different reaction temperature and time,and the results were analyzed according to the chemical kinetics equation.The change values and half-life of A values of the new revised method and the current standard method were calculated.The chemical kinetics model of reaction system for this new revised method was deduced from experimental results.The calculation formula of result relative error for urinary iodine determination was deduced based on constants reaction temperature and reaction time and reaction rate constant factor.The result relative errors caused by operation deviation of reaction temperature or reaction time in the determination of urinary iodine were calculated.Results The usage amount of arsenious acid solution in the new revised method was only a quarter of usage amount of the current standard method(WS/T 107-2006).A values of each concentration of standard curve series at different reaction time t were obtained,the lnA to t mapping was a straight line,the linear correlation coefficients were-0.9995--0.9999.These results were in accord with the characteristic of chemical first-order reaction.Relationships between the reaction rate constant K and the reaction temperature T in the temperature range of 20-35 ℃ were well accord with Arrhenius equation.The A values and iodine concentrations (C) at various experimental temperatures showed good C =a + blnA linear relation,the absolute value of the linear correlation coefficient(| r |) > 0.9990.After calculation and comparison of changes in

  3. Suramin inhibits EV71 infection.

    Science.gov (United States)

    Wang, Yaxin; Qing, Jie; Sun, Yuna; Rao, Zihe

    2014-03-01

    Enterovirus-71 (EV71) is one of the major causative reagents for hand-foot-and-mouth disease. In particular, EV71 causes severe central nervous system infections and leads to numerous dead cases. Although several inactivated whole-virus vaccines have entered in clinical trials, no antiviral agent has been provided for clinical therapy. In the present work, we screened our compound library and identified that suramin, which has been clinically used to treat variable diseases, could inhibit EV71 proliferation with an IC50 value of 40 μM. We further revealed that suramin could block the attachment of EV71 to host cells to regulate the early stage of EV71 infection, as well as affected other steps of EV71 life cycle. Our results are helpful to understand the mechanism for EV71 life cycle and provide a potential for the usage of an approved drug, suramin, as the antiviral against EV71 infection.

  4. Greener Approach towards Corrosion Inhibition

    Directory of Open Access Journals (Sweden)

    Neha Patni

    2013-01-01

    Full Text Available Corrosion control of metals is technically, economically, environmentally, and aesthetically important. The best option is to use inhibitors for protecting metals and alloys against corrosion. As organic corrosion inhibitors are toxic in nature, so green inhibitors which are biodegradable, without any heavy metals and other toxic compounds, are promoted. Also plant products are inexpensive, renewable, and readily available. Tannins, organic amino acids, alkaloids, and organic dyes of plant origin have good corrosion-inhibiting abilities. Plant extracts contain many organic compounds, having polar atoms such as O, P, S, and N. These are adsorbed on the metal surface by these polar atoms, and protective films are formed, and various adsorption isotherms are obeyed. Various types of green inhibitors and their effect on different metals are mentioned in the paper.

  5. Latent inhibition in human adults without masking.

    Science.gov (United States)

    Escobar, Martha; Arcediano, Francisco; Miller, Ralph R

    2003-09-01

    Latent inhibition refers to attenuated responding to Cue X observed when the X-outcome pairings are preceded by X-alone presentations. It has proven difficult to obtain in human adults unless the preexposure (X-alone) presentations are embedded within a masking (i.e., distracting) task. The authors hypothesized that the difficulty in obtaining latent inhibition with unmasked tasks is related to the usual training procedures, in which the preexposure and conditioning experiences are separated by a set of instructions. Experiment 1 reports latent inhibition without masking in a task in which preexposure and conditioning occur without interruption. Experiments 2 and 3 demonstrate that this attenuation in responding to target Cue X does not pass a summation test for conditioned inhibition and is context specific, thereby confirming that it is latent inhibition. Experiments 3 and 4 confirm that introducing instructions between preexposure and conditioning disrupts latent inhibition.

  6. Enhanced latent inhibition in high schizotypy individuals

    OpenAIRE

    Granger, Kiri T.; Moran, Paula M.; Buckley, Matthew G.; Haselgrove, Mark

    2016-01-01

    Latent inhibition refers to a retardation in learning about a stimulus that has been rendered familiar by non-reinforced preexposure, relative to a non-preexposed stimulus. Latent inhibition has been shown to be inversely correlated with schizotypy, and abnormal in people with schizophrenia, but these findings are inconsistent. One potential contributing factor to this inconsistency is that many tasks that purport to measure latent inhibition are confounded by alternative effects that also re...

  7. Analysis of the capability of ultra-highly diluted glucose to increase glucose uptake in arsenite-stressed bacteria Escherichia coli%高度稀释的葡萄糖溶液提高含亚砷酸盐培养基中大肠埃希氏杆菌的葡萄糖摄取

    Institute of Scientific and Technical Information of China (English)

    Anisur Rahman Khuda-Bukhsh; Arnab De; Durba Das; Suman Dutta; Naoual Boujedaini

    2011-01-01

    Whether ultra-highly diluted homeopathic remedies can affect living systems is questionable.Therefore,this study sees value in the analysis of whether homeopathically diluted glucose 30C has any effect on Escherichia coli exposed to arsenite stress.Methods:E.coli were cultured to their log phase in standard Luria-Bertani medium and then treated with either 1 mmol/L or 2 mmol/L sodium arsenite,with or without supplementation of either 1% or 3% glucose,an ultra-highly diluted and agitated ethanolic solution (70%) of glucose (diluted 1060 times),glucose 30C or 70% ethanol (placebo) in the medium.Glucose uptake,specific activities of hexokinase and glucokinase,membrane potential,intracellular adenosine triphosphate (ATP) and expression of glucose permease in E.coli were analyzed at two different time intervals.Arsenic content in E.coli (intracellular) and in the spent medium (extracellular) was also determined.Results:In arsenite-exposed E.coli,the glucose uptake increased along with decreases in the specific activities of hexokinase and glucokinase,intracellular ATP and membrane potential and an increase in the gene expression level of glucose permease.Glucose uptake increased further by addition of 1%,3% or ultra-highly diluted glucose in the medium,but not by the placebo.Conclusion:The results demonstrated the efficacy of the ultra-highly diluted and agitated glucose in mimicking the action of actual glucose supplementation and its ability to modulate expressions of hexokinase and glucokinase enzymes and glucose permease genes,thereby validating the efficacy of ultra-high dilutions used in homeopathy.%目的:高度稀释的顺势疗法药物对活体系统的作用一直被质疑.因此,本研究检测依据顺势医学理论而高度稀释的葡萄糖溶液对暴露于亚砷酸盐的大肠埃希氏杆菌的作用.方法:大肠埃希氏杆菌在Luria-Bertani培养基中培养至对数期后分组.分别加入1%或3%的葡萄糖溶液、葡萄糖30C

  8. Inhibition of the dorsal premotor cortex does not repair surround inhibition in writer's cramp patients.

    Science.gov (United States)

    Veugen, Lidwien C; Hoffland, Britt S; Stegeman, Dick F; van de Warrenburg, Bart P

    2013-03-01

    Writer's cramp is a task-specific form of focal dystonia, characterized by abnormal movements and postures of the hand and arm during writing. Two consistent abnormalities in its pathophysiology are a loss of surround inhibition and overactivity of the dorsal premotor cortex (PMd). This study aimed to assess a possible link between these two phenomena by investigating whether PMd inhibition leads to an improvement of surround inhibition, in parallel with previously demonstrated writing improvement. Fifteen writer's cramp patients and ten controls performed a simple motor hand task during which surround inhibition was measured using transcranial magnetic stimulation. Motor cortical excitability was measured of the active and surround muscles at three phases of the task. Surround inhibition and writing performance were assessed before and after PMd inhibitory continuous theta burst stimulation. In contrast to healthy controls, patients did not show inhibition of the abductor digiti minimi muscle during movement initiation of the first dorsal interosseus muscle, confirming the loss of surround inhibition. PMd inhibition led to an improvement of writing speed in writer's cramp patients. However, in both groups, no changes in surround inhibition were observed. The results confirm a role for the PMd in the pathophysiology of writer's cramp. We show that PMd inhibition does not lead to restoration of the surround inhibition defect in writer's cramp, despite the improvement in writing. This questions the involvement of the PMd in the loss of surround inhibition, and perhaps also the direct link between surround inhibition and dystonia.

  9. Reduced surround inhibition in musicians.

    Science.gov (United States)

    Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H

    2012-06-01

    To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.

  10. Cytokine-induced impairment of short-chain fatty acid oxidation and viability in human colonic epithelial cells

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Horn, T;

    2000-01-01

    Pro-inflammatory cytokines may directly influence the viability and metabolic function of colonic epithelial cells (CEC) as an early event in the development of inflammatory bowel disease. We report here that TNF-alpha+IFN-gamma induced a synergistic, concentration-dependent decline in butyrate o...

  11. Proinflammatory cytokines induce bronchial hyperplasia and squamous metaplasia in smokers: implications for chronic obstructive pulmonary disease therapy.

    Science.gov (United States)

    Herfs, Michael; Hubert, Pascale; Poirrier, Anne-Lise; Vandevenne, Patricia; Renoux, Virginie; Habraken, Yvette; Cataldo, Didier; Boniver, Jacques; Delvenne, Philippe

    2012-07-01

    Tracheobronchial squamous metaplasia is common in smokers, and is associated with both airway obstruction in chronic obstructive pulmonary disease (COPD) and increased risk of lung cancer. Although this reversible epithelial replacement is almost always observed in association with chronic inflammation, the role of inflammatory mediators in the pathogenesis of squamous metaplasia remains unclear. In the present study, we investigated the implication of cigarette smoke-mediated proinflammatory cytokine up-regulation in the development and treatment of tracheobronchial epithelial hyperplasia and squamous metaplasia. Using immunohistological techniques, we showed a higher epithelial expression of TNF-α, IL-1β, and IL-6, as well as an activation of NF-κB and activator protein-1/mitogen-activated protein kinase signaling pathways in the respiratory tract of smoking patients, compared with the normal ciliated epithelium of nonsmoking patients. In addition, we demonstrated that these signaling pathways strongly influence the proliferation and differentiation state of in vitro-generated normal human airway epithelial basal cells. Finally, we exposed mice to cigarette smoke for 16 weeks, and demonstrated that anti-TNF-α (etanercept), anti-IL-1β (anakinra), and/or anti-IL-6R (tocilizumab) therapies significantly reduced epithelial hyperplasia and the development of squamous metaplasia. These data highlight the importance of soluble inflammatory mediators in the pathogenesis of tracheobronchial squamous metaplasia. Therefore, the administration of proinflammatory cytokine antagonists may have clinical applications in the management of patients with COPD.

  12. Growth factor protection against cytokine-induced apoptosis in neonatal rat islets of Langerhans: role of Fas.

    Science.gov (United States)

    Harrison, M; Dunger, A M; Berg, S; Mabley, J; John, N; Green, M H; Green, I C

    1998-09-18

    Treatment of neonatal rat islets of Langerhans with combined cytokines (interleukin-1beta 10(-10) M, tumour necrosis factor-alpha 10(-10) M, interferon-gamma 5 U/ml) led to extensive cell death, which was potentiated by Fas activation with the anti-Fas cytolytic antibody JO2. Pre-treatment with insulin (25 ng/ml) or insulin-like growth factor-1 (10(-8)M) gave only partial protection against cell killing, but prevented the Fas-mediated component. In the absence of cytokine treatment, Fas-mediated killing was not observed.

  13. Continuous infusion of proinflammatory cytokines into the brain to study brain cytokine induced local and systemic immune effects.

    Science.gov (United States)

    Schöning, B; Elepfandt, P; Lanksch, W R; Volk, H D; Woiciechowsky, C

    1999-07-01

    Proinflammatory cytokines are produced in the brain after various kinds of insult (ischemia, trauma, infection). In this process interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha are most important. These cytokines are key mediators of inflammation. Furthermore, these cytokines can act as neurotransmitters and develop direct effects on the central nervous system (CNS) including fever, sleep and stimulation of the neuroendocrine as well as sympathetic nervous system. Moreover, IL-1beta and TNF-alpha may also be involved in brain repair and regenerating processes. However, most of the data about the role of cytokines in the brain have been obtained from either in vitro studies or bolus injections into the brain parenchyma or cerebroventricular system. On the other hand, it is known that cytokines are released continuously into the brain after a cerebral insult over a period of 24 to 48 h. In order to further complete the knowledge about the interactions between neural and immune cells to overcome the primary insult and initiate repair and regeneration in the CNS, a new animal model of local inflammation reaction was established using chronic intracerebral infusion of rat recombinant cytokines.

  14. Cytokine-induced impairment of short-chain fatty acid oxidation and viability in human colonic epithelial cells

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Horn, T

    2000-01-01

    Pro-inflammatory cytokines may directly influence the viability and metabolic function of colonic epithelial cells (CEC) as an early event in the development of inflammatory bowel disease. We report here that TNF-alpha+IFN-gamma induced a synergistic, concentration-dependent decline in butyrate...... oxidation, an essential energy supply, in HT-29 and DLD-1 cells. TNF-alpha+IFN-gamma induced a parallel profound decline in cell viability in HT-29 cells, but not in DLD-1 cells, where impairment of butyrate oxidation seemed to precede later occurrence of cell damage. TNF-alpha+INF-gamma induced CEC damage...

  15. Cytokines inducing bone marrow SCA+ cells migration into pancreatic islet and conversion into insulin-positive cells in vivo.

    Directory of Open Access Journals (Sweden)

    LuGuang Luo

    Full Text Available We hypothesize that specific bone marrow lineages and cytokine treatment may facilitate bone marrow migration into islets, leading to a conversion into insulin producing cells in vivo. In this study we focused on identifying which bone marrow subpopulations and cytokine treatments play a role in bone marrow supporting islet function in vivo by evaluating whether bone marrow is capable of migrating into islets as well as converting into insulin positive cells. We approached this aim by utilizing several bone marrow lineages and cytokine-treated bone marrow from green fluorescent protein (GFP positive bone marrow donors. Sorted lineages of Mac-1(+, Mac-1(-, Sca(+, Sca(-, Sca(-/Mac-1(+ and Sca(+/Mac-1(- from GFP positive mice were transplanted to irradiated C57BL6 GFP negative mice. Bone marrow from transgenic human ubiquitin C promoter GFP (uGFP, with strong signal C57BL6 mice was transplanted into GFP negative C57BL6 recipients. After eight weeks, migration of GFP positive donor' bone marrow to the recipient's pancreatic islets was evaluated as the percentage of positive GFP islets/total islets. The results show that the most effective migration comes from the Sca(+/Mac(- lineage and these cells, treated with cytokines for 48 hours, were found to have converted into insulin positive cells in pancreatic islets in vivo. This study suggests that bone marrow lineage positive cells and cytokine treatments are critical factors in determining whether bone marrow is able to migrate and form insulin producing cells in vivo. The mechanisms causing this facilitation as well as bone marrow converting to pancreatic beta cells still need to be investigated.

  16. Gamma c-signaling cytokines induce a regulatory T cell phenotype in malignant CD4+ T lymphocytes

    DEFF Research Database (Denmark)

    Kasprzycka, Monika; Zhang, Qian; Witkiewicz, Agnieszka

    2008-01-01

    In this study, we demonstrate that malignant mature CD4(+) T lymphocytes derived from cutaneous T cell lymphomas (CTCL) variably display some aspects of the T regulatory phenotype. Whereas seven cell lines representing a spectrum of primary cutaneous T cell lymphoproliferative disorders expressed...... that the T regulatory cell features are induced in CTCL T cells by common gamma chain signaling cytokines such as IL-2 and do not represent a fully predetermined, constitutive phenotype independent of the local environmental stimuli to which these malignant mature CD4(+) T cells become exposed....

  17. HIV-1 DNA vaccine with adjuvant cytokines induces specific immune responses against HIV-1 infection in mice

    Institute of Scientific and Technical Information of China (English)

    WANG Fu-xiang; SUN Yong-tao; WANG Lin-xu; LIU Juan

    2006-01-01

    @@ There is mounting evidence that the induction of strong mucosal and cell-mediated immune responses is key element to consider in constructing efficacious HIV-1 vaccine. Therapeutic vaccines that induce high levels of CTL specific to HIV are currently being developed worldwide.

  18. Antiviral cytokines induce hepatic expression of the granzyme B inhibitors, proteinase inhibitor 9 and serine proteinase inhibitor 6.

    Science.gov (United States)

    Barrie, Mahmoud B; Stout, Heather W; Abougergi, Marwan S; Miller, Bonnie C; Thiele, Dwain L

    2004-05-15

    Expression of the granzyme B inhibitors, human proteinase inhibitor 9 (PI-9), or the murine orthologue, serine proteinase inhibitor 6 (SPI-6), confers resistance to CTL or NK killing by perforin- and granzyme-dependent effector mechanisms. In light of prior studies indicating that virally infected hepatocytes are selectively resistant to this CTL effector mechanism, the present studies investigated PI-9 and SPI-6 expression in hepatocytes and hepatoma cells in response to adenoviral infection and to cytokines produced during antiviral immune responses. Neither PI-9 nor SPI-6 expression was detected by immunoblotting in uninfected murine or human hepatocytes. Similarly, human Huh-7 hepatoma cells were found to express only very low levels of PI-9 relative to levels detected in perforin- and granzyme-resistant CTL or lymphokine-activated killer cells. Following in vivo adenoviral infection or in vitro culture with IFN-alphabeta or IFN-gamma, SPI-6 expression was induced in murine hepatocytes. Similarly, after culture with IFN-alpha, induction of PI-9 mRNA and protein expression was observed in human hepatocytes and Huh-7 cells. IFN-gamma and TNF-alpha also induced 4- to 10-fold higher levels of PI-9 mRNA expression in Huh-7 cells, whereas levels of mRNA encoding a related serine proteinase inhibitor, proteinase inhibitor 8, were unaffected by culture of Huh-7 cells with IFN-alpha, IFN-gamma, or TNF-alpha. These findings indicate that cytokines that promote antiviral cytopathic responses also regulate expression of the cytoprotective molecules, PI-9 and SPI-6, in hepatocytes that are potential targets of CTL and NK effector mechanisms.

  19. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain.

    Directory of Open Access Journals (Sweden)

    Yiyu Deng

    Full Text Available Hypoxic exposure in the perinatal period causes periventricular white matter damage (PWMD, a condition associated with myelination abnormalities. Under hypoxic conditions, glial cells were activated and released a large number of inflammatory mediators in the PWM in neonatal brain, which may result in oligodendrocyte (OL loss and axonal injury. This study aims to determine if astrocytes are activated and generate proinflammatory cytokines that may be coupled with the oligodendroglial loss and hypomyelination observed in hypoxic PWMD. Twenty-four 1-day-old Wistar rats were exposed to hypoxia for 2 h. The rats were then allowed to recover under normoxic conditions for 7 or 28 days before being killed. Another group of 24 rats kept outside the chamber was used as age-matched controls. Upregulated expression of TNF-α and IL-1β was observed in astrocytes in the PWM of P7 hypoxic rats by double immunofluorescence, western blotting and real time RT-PCR. This was linked to apoptosis and enhanced expression of TNF-R1 and IL-1R1 in APC(+ OLs. PLP expression was decreased significantly in the PWM of P28d hypoxic rats. The proportion of myelinated axons was markedly reduced by electron microscopy (EM and the average g-ratios were higher in P28d hypoxic rats. Upregulated expression of TNF-α and IL-1β in primary cultured astrocytes as well as their corresponding receptors in primary culture APC(+ oligodendrocytes were detected under hypoxic conditions. Our results suggest that following a hypoxic insult, astrocytes in the PWM of neonatal rats produce inflammatory cytokines such as TNF-α and IL-1β, which induce apoptosis of OLs via their corresponding receptors associated with them. This results in hypomyelination in the PWM of hypoxic rats.

  20. Phenotypic and functional characterization of cytokine-induced killer cells derived from preterm and term infant cord blood.

    Science.gov (United States)

    Zhang, Qian; Wang, Lili; Luo, Chenghan; Shi, Zanyang; Cheng, Xinru; Zhang, Zhen; Yang, Yi; Zhang, Yi

    2014-11-01

    Cord blood has gradually become an important source for hematopoietic stem cell transplantation (HSCT) in the human, particularly in pediatric patients. Adoptive cellular immunotherapy of patients with hematologic malignancies after umbilical cord blood transplant is crucial. Cytokine‑induced killer (CIK) cells derived from cord blood are a new type of antitumor immune effector cells in tumor prevention and treatment and have increasingly attracted the attention of researchers. On the other hand, it has been suggested that preterm infant cord blood retains an early differentiation phenotype suitable for immunotherapy. Therefore, we determined the phenotypic and functional characterization of CIK cells derived from preterm infant cord blood (PCB-CIK) compared with CIK cells from term infant cord blood (TCB-CIK). Twenty cord blood samples were collected and classified into two groups based on gestational age. Cord blood mononuclear cells (CBMCs) were isolated, cultured and induced to CIK cells in vitro. We used flow cytometry to detect cell surface markers, FlowJo software to analyze the proliferation profile and intracellular staining to test the secretion of cytokines. Finally, we evaluated the antitumor activity of CIK cells against K562 in vitro. Compared with TCB-CIK, PCB-CIK cells demonstrated faster proliferation and higher expression of activated cell surface markers. The secretion of IL-10 was lower in PCB-CIK cells while the expression of perforin and CD107a had no significant difference between the two cell groups. PCB-CIK cells exhibited a high proliferation rate while the cytotoxic activity had no difference between the PCB-CIK and TCB-CIK cells. Hence preterm infant cord blood may be a potential source for immunotherapy.

  1. Temporal profiling of cytokine-induced genes in pancreatic β-cells by meta-analysis and network inference

    DEFF Research Database (Denmark)

    Lopes, Miguel; Kutlu, Burak; Miani, Michela;

    2014-01-01

    Type 1 Diabetes (T1D) is an autoimmune disease where local release of cytokines such as IL-1β and IFN-γ contributes to β-cell apoptosis. To identify relevant genes regulating this process we performed a meta-analysis of 8 datasets of β-cell gene expression after exposure to IL-1β and IFN-γ. Two o...

  2. Nitric oxide-releasing agents enhance cytokine-induced tumor necrosis factor synthesis in human mononuclear cells

    NARCIS (Netherlands)

    Eigler, A; Sinha, B; Endres, S

    1993-01-01

    In septic shock tumor necrosis factor (TNF) leads to increased nitric oxide (NO) production by induction of NO synthase. An inverse regulatory effect, the influence of NO on cytokine synthesis, has rarely been investigated. The present study assessed the influence of NO-releasing agents on TNF produ

  3. Protective effect of trichostatin A and 5-azacitidine on cytokine-induced toxicity in pancreatic β-cells

    Institute of Scientific and Technical Information of China (English)

    候粲

    2014-01-01

    Objective To investigate the effect of trichostatin A(TSA)and 5-azacitidine(5-Aza C)on pancreaticβ-cells impaired by cytokine,via measuring the proliferation,apoptosis,and function of pancreaticβ-cells.Methods RIN-m5f was impaired by interleukin-1βand interferon-γin vitro,and treated with TSA and 5-Aza C.Experiment groups included blank control group,cytokine induction group,0.05/0.10μmol/L TSA group,0.63/1.25μmol/L 5-Aza C group,and 0.10μmol/L TSA

  4. Inflammatory Cytokines Induce Expression of Chemokines by Human Retinal Cells: Role in Chemokine Receptor Mediated Age-related Macular Degeneration.

    Science.gov (United States)

    Nagineni, Chandrasekharam N; Kommineni, Vijay K; Ganjbaksh, Nader; Nagineni, Krishnasai K; Hooks, John J; Detrick, Barbara

    2015-11-01

    Chemokine reeptor-3 (CCR-3) was shown to be associated with choroidal neovascularization (CNV) in age-related macular degeneration (AMD). AMD is a vision threatening retinal disease that affects the aging population world-wide. Retinal pigment epithelium and choroid in the posterior part of the retina are the key tissues targeted in the pathogenesis of CNV in AMD. We used human retinal pigment epithelial (HRPE) and choroidal fibroblast (HCHF) cells, prepared from aged adult human donor eyes, to evaluate the expression of major CCR-3 ligands, CCL-5, CCL -7, CCL-11,CCL-24 and CCL-26. Microarray analysis of gene expression in HRPE cells treated with inflammatory cytokine mix (ICM= IFN-γ+TNF-α+IL-1β) revealed 75 and 23-fold increase in CCL-5 and CCL-7 respectively, but not CCL-11, CCL-24 and CCL-26. Chemokine secretion studies of the production of CCL5 and CCL7 by HRPE corroborated with the gene expression analysis data. When the HRPE cells were treated with either individual cytokines or the ICM, both CCL-5 and CCL-7 were produced in a dose dependent manner. Similar to the gene expression data, the ICM did not enhance HRPE production of CCL-11, CCL-24 and CCL-26. CCL-11 and CCL-26 were increased with IL-4 treatment and this HRPE production was augmented in the presence of TNF-α and IL1β. When HCHF cells were treated with either individual cytokines or the ICM, both CCL-5 and CCL-7 were produced in a dose dependent fashion. IL-4 induced low levels of CCL-11 and CCL-26 in HCHF and this production was significantly enhanced by TNF-α. Under these conditions, neither HRPE nor HCHF were demonstrated to produce CCL-24. These data demonstrate that chronic inflammation triggers CCL-5 and CCL-7 release by HRPE and HCHF and the subsequent interactions with CCR3 may participate in pathologic processes in AMD.

  5. Autologous cytokine-induced killer cell therapy in clinical trial phase I is safe in patients with primary hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Ming Shi; Bing Zhang; Zi-Rong Tang; Zhou-Yun Lei; Hui-Fen Wang; Yong-Yi Feng; Zhen-Ping Fan; Dong-Ping Xu; Fu-Sheng Wang

    2004-01-01

    AIM: TO investigate the influence of autologous cytokineinduced killer (CIK) cells on the phenotypes of CIK effector cells, peripheral T lymphocyte subsets and dendritic cell subsets in patients with primary hepatocellular carcinoma (HCC).METHODS: Peripheral blood mononuclear cells (PBMC)were collected by a blood cell separator from 13 patients with HCC, then expanded by priming them with interferongamma (IFN-γ) followed by monoclonal antibody (mAb)against CD3 and interleukin-2 (IL-2) the next day. The phenotypic patterns of CIK cells were characterized by flow cytometry on d 0, 4, 7, 10, 13 and 15 of incubation,respectively. Then, 5 mL of venous blood was obtained from HCC patients before or 8-10 d after CIK cells were transfused into patients to assess the influence of CIK cells on the percentages of effector cells, and proportions of DC1 or DC2in peripheral blood by flow cytometry.RESULTS: After two weeks of in vitro incubation, the percentages of CD3+CD8+, CD3+CD56+, and CD25+ cells increased significantly from 33.5±10.1%, 7.7±2.8%, and 12.3±4.5% to 36.6±9.0% (P<0.05), 18.9±6.9% (P<0.01),and 16.4±5.9% (P<0.05), respectively. However, the percentages of CD3+CD4+ and NK cells had no significant difference. The percentages of CD3+ and CD3+CD8+ cells were kept at high levels during the whole incubation period, but those of CD25+, and CD3+CD56+ cells began to decrease on d 7 and 13, respectively. The proportions of type Ⅰ dendritic cell (DC1) and type Ⅱ dendriticcell (DC2) subsets increased from 0.59±0.23% and 0.26±0.12% before CIK cell therapy to 0.85±0.27% and 0.43±0.19% (all P<0.01) after CIK cell transfusion, respectively. The symptoms and characteristics of HCC patients were relieved without major side effects.CONCLUSION: Our results indicated that autologous CIK cells can efficiently improve the immunological status in HCC patients, and may provide a potent approach for HCC patients as the adoptive immunotherapy.

  6. A Qualitative Approach to Enzyme Inhibition

    Science.gov (United States)

    Waldrop, Grover L.

    2009-01-01

    Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K[subscript m] and V[subscript max] are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the…

  7. Quorum Sensing Inhibition, Relevance to Periodontics

    OpenAIRE

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  8. Inhibition: Mental Control Process or Mental Resource?

    Science.gov (United States)

    Im-Bolter, Nancie; Johnson, Janice; Ling, Daphne; Pascual-Leone, Juan

    2015-01-01

    The current study tested 2 models of inhibition in 45 children with language impairment and 45 children with normally developing language; children were aged 7 to 12 years. Of interest was whether a model of inhibition as a mental-control process (i.e., executive function) or as a mental resource would more accurately reflect the relations among…

  9. Inhibited and Uninhibited Types of Children.

    Science.gov (United States)

    Kagan, Jerome; And Others

    1989-01-01

    Investigates the preservation of inhibited and uninhibited behaviors in 100 children of 14, 20, 32, and 48 months. Children who had been extremely inhibited or uninhibited at 14 and 20 months differed significantly at 4 years of age in behavior and cardiac acceleration. (RJC)

  10. Quorum sensing inhibition, relevance to periodontics.

    Science.gov (United States)

    Yada, Sudheer; Kamalesh, B; Sonwane, Siddharth; Guptha, Indra; Swetha, R K

    2015-01-01

    Quorum sensing helps bacteria to communicate with each other and in coordinating their behavior. Many diseases of human beings, plants, and animals are mediated by quorum sensing. Various approaches are being tried to inhibit this communication to control the diseases caused by bacteria. Periodontal pathogens also communicate through quorum sensing and new approaches to treat periodontal disease using quorum sensing inhibition need to explored.

  11. Inhibition in Autism: Children with Autism Have Difficulty Inhibiting Irrelevant Distractors but Not Prepotent Responses

    Science.gov (United States)

    Adams, Nena C.; Jarrold, Christopher

    2012-01-01

    Resistance to distractor inhibition tasks have previously revealed impairments in children with autism. However, on the classic Stroop task and other prepotent response tasks, children with autism show intact inhibition. These data may reflect a distinction between prepotent response and resistance to distractor inhibition. The current study…

  12. Inhibition of ethylene production by rhizobitoxine

    Energy Technology Data Exchange (ETDEWEB)

    Owens, L.D.; Lieberman, M.; Kunishi, A.

    1970-01-01

    Rhizobitoxine, an inhibitor of methionine biosynthesis in Salmonella typhimurium, inhibited ethylene production about 75% in light-grown sorghum seedlings and in senescent apple tissue. Ethylene production stimulated by indoleacetic acid and kinetin in sorghum was similarly inhibited. With both apple and sorghum, the inhibition could only be partially relieved by additions of methionine. A methionine analogue, ..cap alpha..-keto-..gamma..-methylthiobutyric acid, which has been suggested as an intermediate between methionine and ethylene, had no effect on the inhibition. Incorporation of /sup 14/C from added methionine-/sup 14/C into ethylene was curtailed by rhizobitoxine to about the same extent as was ethylene production. These results suggest that rhizobitoxine interferes with ethylene biosynthesis by blocking the conversion of methionine to ethylene and not indirectly by inhibiting the biosynthesis of methionine. Ethylene production by Penicillium digitatum, a fungus which produces ethylene via pathways not utilizing methionine as a precursor, was not affected by rhizobitoxine. 16 references, 2 figures, 4 tables.

  13. Habituation, latent inhibition, and extinction.

    Science.gov (United States)

    Jordan, Wesley P; Todd, Travis P; Bucci, David J; Leaton, Robert N

    2015-06-01

    In two conditioned suppression experiments with a latent inhibition (LI) design, we measured the habituation of rats in preexposure, their LI during conditioning, and then extinction over days. In the first experiment, lick suppression, the preexposed group (PE) showed a significant initial unconditioned response (UR) to the target stimulus and significant long-term habituation (LTH) of that response over days. The significant difference between the PE and nonpreexposed (NPE) groups on the first conditioning trial was due solely to the difference in their URs to the conditioned stimulus (CS)-a habituated response (PE) and an unhabituated response (NPE). In the second experiment, bar-press suppression, little UR to the target stimulus was apparent during preexposure, and no detectable LTH. Thus, there was no difference between the PE and NPE groups on the first conditioning trial. Whether the UR to the CS confounds the interpretation of LI (Exp. 1) or not (Exp. 2) can only be known if the UR is measured. In both experiments, LI was observed in acquisition. Also in both experiments, rats that were preexposed and then conditioned to asymptote were significantly more resistant to extinction than were the rats not preexposed. This result contrasts with the consistently reported finding that preexposure either produces less resistance to extinction or has no effect on extinction. The effect of stimulus preexposure survived conditioning to asymptote and was reflected directly in extinction. These two experiments provide a cautionary procedural note for LI experiments and have shown an unexpected extinction effect that may provide new insights into the interpretation of LI.

  14. Fear inhibition in high trait anxiety.

    Science.gov (United States)

    Kindt, Merel; Soeter, Marieke

    2014-01-01

    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  15. BST2/Tetherin Inhibition of Alphavirus Exit

    Directory of Open Access Journals (Sweden)

    Yaw Shin Ooi

    2015-04-01

    Full Text Available Alphaviruses such as chikungunya virus (CHIKV and Semliki Forest virus (SFV are small enveloped RNA viruses that bud from the plasma membrane. Tetherin/BST2 is an interferon-induced host membrane protein that inhibits the release of many enveloped viruses via direct tethering of budded particles to the cell surface. Alphaviruses have highly organized structures and exclude host membrane proteins from the site of budding, suggesting that their release might be insensitive to tetherin inhibition. Here, we demonstrated that exogenously-expressed tetherin efficiently inhibited the release of SFV and CHIKV particles from host cells without affecting virus entry and infection. Alphavirus release was also inhibited by the endogenous levels of tetherin in HeLa cells. While rubella virus (RuV and dengue virus (DENV have structural similarities to alphaviruses, tetherin inhibited the release of RuV but not DENV. We found that two recently identified tetherin isoforms differing in length at the N-terminus exhibited distinct capabilities in restricting alphavirus release. SFV exit was efficiently inhibited by the long isoform but not the short isoform of tetherin, while both isoforms inhibited vesicular stomatitis virus exit. Thus, in spite of the organized structure of the virus particle, tetherin specifically blocks alphavirus release and shows an interesting isoform requirement.

  16. The IFITMs Inhibit Zika Virus Replication

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses.

  17. Lobelane inhibits methamphetamine-evoked dopamine release via inhibition of the vesicular monoamine transporter-2.

    Science.gov (United States)

    Nickell, Justin R; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P

    2010-02-01

    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [(3)H]dihydrotetrabenazine binding, inhibition of [(3)H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (K(i) = 45 nM) inhibiting vesicular [(3)H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC(50) = 0.65 microM; I(max) = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC(50) = 0.42 microM, I(max) = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for

  18. Lobelane Inhibits Methamphetamine-Evoked Dopamine Release via Inhibition of the Vesicular Monoamine Transporter-2S⃞

    Science.gov (United States)

    Nickell, Justin R.; Krishnamurthy, Sairam; Norrholm, Seth; Deaciuc, Gabriela; Siripurapu, Kiran B.; Zheng, Guangrong; Crooks, Peter A.

    2010-01-01

    Lobeline is currently being evaluated in clinical trials as a methamphetamine abuse treatment. Lobeline interacts with nicotinic receptor subtypes, dopamine transporters (DATs), and vesicular monoamine transporters (VMAT2s). Methamphetamine inhibits VMAT2 and promotes dopamine (DA) release from synaptic vesicles, resulting ultimately in increased extracellular DA. The present study generated structure-activity relationships by defunctionalizing the lobeline molecule and determining effects on [3H]dihydrotetrabenazine binding, inhibition of [3H]DA uptake into striatal synaptic vesicles and synaptosomes, the mechanism of VMAT2 inhibition, and inhibition of methamphetamine-evoked DA release. Compared with lobeline, the analogs exhibited greater potency inhibiting DA transporter (DAT) function. Saturated analogs, lobelane and nor-lobelane, exhibited high potency (Ki = 45 nM) inhibiting vesicular [3H]DA uptake, and lobelane competitively inhibited VMAT2 function. Lobeline and lobelane exhibited 67- and 35-fold greater potency, respectively, in inhibiting VMAT2 function compared to DAT function. Lobelane potently decreased (IC50 = 0.65 μM; Imax = 73%) methamphetamine-evoked DA overflow, and with a greater maximal effect compared with lobeline (IC50 = 0.42 μM, Imax = 56.1%). These results provide support for VMAT2 as a target for inhibition of methamphetamine effects. Both trans-isomers and demethylated analogs of lobelane had reduced or unaltered potency inhibiting VMAT2 function and lower maximal inhibition of methamphetamine-evoked DA release compared with lobelane. Thus, defunctionalization, cis-stereochemistry of the side chains, and presence of the piperidino N-methyl are structural features that afford greatest inhibition of methamphetamine-evoked DA release and enhancement of selectivity for VMAT2. The current results reveal that lobelane, a selective VMAT2 inhibitor, inhibits methamphetamine-evoked DA release and is a promising lead for the development of a

  19. Inhibition of urinary calculi -- a spectroscopic study

    Science.gov (United States)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  20. Toxicants inhibiting anaerobic digestion: a review.

    Science.gov (United States)

    Chen, Jian Lin; Ortiz, Raphael; Steele, Terry W J; Stuckey, David C

    2014-12-01

    Anaerobic digestion is increasingly being used to treat wastes from many sources because of its manifold advantages over aerobic treatment, e.g. low sludge production and low energy requirements. However, anaerobic digestion is sensitive to toxicants, and a wide range of compounds can inhibit the process and cause upset or failure. Substantial research has been carried out over the years to identify specific inhibitors/toxicants, and their mechanism of toxicity in anaerobic digestion. In this review we present a detailed and critical summary of research on the inhibition of anaerobic processes by specific organic toxicants (e.g., chlorophenols, halogenated aliphatics and long chain fatty acids), inorganic toxicants (e.g., ammonia, sulfide and heavy metals) and in particular, nanomaterials, focusing on the mechanism of their inhibition/toxicity. A better understanding of the fundamental mechanisms behind inhibition/toxicity will enhance the wider application of anaerobic digestion.

  1. Glycerol inhibition of ruminal lipolysis in vitro

    Science.gov (United States)

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of...

  2. Inhibited solid propellant composition containing beryllium hydride

    Science.gov (United States)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  3. The inhibition of monoamine oxidase by esomeprazole

    OpenAIRE

    2013-01-01

    Virtual screening of a library of drugs has suggested that esomeprazole, the S-enantiomer of omeprazole, may possess binding affinities for the active sites of the monoamine oxidase (MAO) A and B enzymes. Based on this finding, the current study examines the MAO inhibitory properties of esomeprazole. Using recombinant human MAO-A and MAO-B, IC50 values for the inhibition of these enzymes by esomeprazole were experimentally determined. To examine the reversibility of MAO inhibition by esomepra...

  4. Neomycin inhibits angiogenin-induced angiogenesis

    OpenAIRE

    1998-01-01

    A class of angiogenesis inhibitor has emerged from our mechanistic study of the action of angiogenin, a potent angiogenic factor. Neomycin, an aminoglycoside antibiotic, inhibits nuclear translocation of human angiogenin in human endothelial cells, an essential step for angiogenin-induced angiogenesis. The phospholipase C-inhibiting activity of neomycin appears to be involved, because U-73122, another phospholipase C inhibitor, has a similar effect. In contrast, genistein, oxophenylarsine, an...

  5. Piperine, a dietary phytochemical, inhibits angiogenesis

    OpenAIRE

    2012-01-01

    Angiogenesis plays an important role in tumor progression. Piperine, a major alkaloid constituent of black pepper, has diverse physiological actions including killing of cancer cells; however, the effect of piperine on angiogenesis is not known. Here we show that piperine inhibited the proliferation and G1/S transition of human umbilical vein endothelial cells (HUVECs) without causing cell death. Piperine also inhibited HUVEC migration and tubule formation in vitro, as well as collagen-induce...

  6. Inhibition of Heme Peroxidases by Melamine

    Directory of Open Access Journals (Sweden)

    Pattaraporn Vanachayangkul

    2012-01-01

    Full Text Available In 2008 melamine-contaminated infant formula and dairy products in China led to over 50,000 hospitalizations of children due to renal injuries. In North America during 2007 and in Asia during 2004, melamine-contaminated pet food products resulted in numerous pet deaths due to renal failure. Animal studies have confirmed the potent renal toxicity of melamine combined with cyanuric acid. We showed previously that the solubility of melamine cyanurate is low at physiologic pH and ionic strength, provoking us to speculate how toxic levels of these compounds could be transported through the circulation without crystallizing until passing into the renal filtrate. We hypothesized that melamine might be sequestered by heme proteins, which could interfere with heme enzyme activity. Four heme peroxidase enzymes were selected for study: horseradish peroxidase (HRP, lactoperoxidase (LPO, and cyclooxygenase-1 and -2 (COX-1 and -2. Melamine exhibited noncompetitive inhibition of HRP (9.5±0.7mM, and LPO showed a mixed model of inhibition (14.5±4.7mM. The inhibition of HRP and LPO was confirmed using a chemiluminescent peroxidase assay. Melamine also exhibited COX-1 inhibition, but inhibition of COX-2 was not detected. Thus, our results demonstrate that melamine inhibits the activity of three heme peroxidases.

  7. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  8. Scale Inhibition of Green Inhibitor Polyepoxysuccinic Sodium

    Institute of Scientific and Technical Information of China (English)

    Feng Hui-xia; Wang Yi; Yu Shu-rong; Liang Bao-feng

    2004-01-01

    Polyepoxysuccinic acid (PESA) is the green water treatment agents recognized all over the world[1-3]. It is found that when PESA is used alone, it had good scale inhibition. PESA should be included in the category of green scale inhibitor.PESA is synthesized with maleicanhydride in the presence of catalysts. The effect on scale-in-hibiting property of the product from amount and feed times of catalyst, the reaction temperature, the reaction time were investigated. The optimum reaction conditions are as follows:n(maleic anhydride):n(Ca(OH)2):n(NaOH)=1:0.05-0.2:0.5, reaction temperature 95C, reaction time 4h.In all the references about PESA, PESA is researched as a kind of highly effective scale inhibitor or chelate. In this paper, the performance of scale inhibition of PESA is evaluated by scale static inhibitor.The results are shown in Figture1.It is evident from our experimental data (Figture1) that when inhibition for CaCO3.With the increase of PESA dosage, scale inhibition increases. When dosage is more than 6mg/L, inhibition efficiency is over 50%. The formulas give scale inhibition efficiency more than 95% at 12mg/L of total dosage.

  9. Spatially reciprocal inhibition of inhibition within a stimulus selection network in the avian midbrain.

    Science.gov (United States)

    Goddard, C Alex; Mysore, Shreesh P; Bryant, Astra S; Huguenard, John R; Knudsen, Eric I

    2014-01-01

    Reciprocal inhibition between inhibitory projection neurons has been proposed as the most efficient circuit motif to achieve the flexible selection of one stimulus among competing alternatives. However, whether such a motif exists in networks that mediate selection is unclear. Here, we study the connectivity within the nucleus isthmi pars magnocellularis (Imc), a GABAergic nucleus that mediates competitive selection in the midbrain stimulus selection network. Using laser photostimulation of caged glutamate, we find that feedback inhibitory connectivity is global within the Imc. Unlike typical lateral inhibition in other circuits, intra-Imc inhibition remains functionally powerful over long distances. Anatomically, we observed long-range axonal projections and retrograde somatic labeling from focal injections of bi-directional tracers in the Imc, consistent with spatial reciprocity of intra-Imc inhibition. Together, the data indicate that spatially reciprocal inhibition of inhibition occurs throughout the Imc. Thus, the midbrain selection circuit possesses the most efficient circuit motif possible for fast, reliable, and flexible selection.

  10. Matrix metalloproteinase inhibition in atherosclerosis and stroke.

    Science.gov (United States)

    Roycik, M D; Myers, J S; Newcomer, R G; Sang, Q-X A

    2013-09-01

    Matrix metalloproteinases (MMPs) are a family of tightly regulated, zinc-dependent proteases that degrade extracellular matrix (ECM), cell surface, and intracellular proteins. Vascular remodeling, whether as a function of normal physiology or as a consequence of a myriad of pathological processes, requires degradation of the ECM. Thus, the expression and activity of many MMPs are up-regulated in numerous conditions affecting the vasculature and often exacerbate vascular dysfunction. A growing body of evidence supports the rationale of using MMP inhibitors for the treatment of cardiovascular diseases, stroke, and chronic vascular dementia. This manuscript will examine promising targets for MMP inhibition in atherosclerosis and stroke, reviewing findings in preclinical animal models and human patient studies. Strategies for MMP inhibition have progressed beyond chelating the catalytic zinc to functional blocking antibodies and peptides that target either the active site or exosites of the enzyme. While the inhibition of MMP activity presents a rational therapeutic avenue, the multiplicity of roles for MMPs and the non-selective nature of MMP inhibitors that cause unintended side-effects hinder full realization of MMP inhibition as therapy for vascular disease. For optimal therapeutic effects to be realized, specific targets for MMP inhibition in these pathologies must first be identified and then attacked by potent and selective agents during the most appropriate timepoint.

  11. Aspartate inhibits Staphylococcus aureus biofilm formation.

    Science.gov (United States)

    Yang, Hang; Wang, Mengyue; Yu, Junping; Wei, Hongping

    2015-04-01

    Biofilm formation renders Staphylococcus aureus highly resistant to conventional antibiotics and host defenses. Four D-amino acids (D-Leu, D-Met, D-Trp and D-Tyr) have been reported to be able to inhibit biofilm formation and disassemble established S. aureus biofilms. We report here for the first time that both D- and L-isoforms of aspartate (Asp) inhibited S. aureus biofilm formation on tissue culture plates. Similar biofilm inhibition effects were also observed against other staphylococcal strains, including S. saprophyticus, S. equorum, S. chromogenes and S. haemolyticus. It was found that Asp at high concentrations (>10 mM) inhibited the growth of planktonic N315 cells, but at subinhibitory concentrations decreased the cellular metabolic activity without influencing cell growth. The decreased cellular metabolic activity might be the reason for the production of less protein and DNA in the matrix of the biofilms formed in the presence of Asp. However, varied inhibition efficacies of Asp were observed for biofilms formed by clinical staphylococcal isolates. There might be mechanisms other than decreasing the metabolic activity, e.g. the biofilm phenotypes, affecting biofilm formation in the presence of Asp.

  12. Genistein inhibits differentiation of primary human adipocytes.

    Science.gov (United States)

    Park, Hea Jin; Della-Fera, Mary Anne; Hausman, Dorothy B; Rayalam, Srujana; Ambati, Suresh; Baile, Clifton A

    2009-02-01

    Genistein, a major soy isoflavone, has been reported to exhibit antiadipogenic and proapoptotic potential in vivo and in vitro. It is also a phytoestrogen which has high affinity to estrogen receptor beta. In this study, we determined the effect of genistein on adipogenesis and estrogen receptor (ER) alpha and beta expression during differentiation in primary human preadipocytes. Genistein inhibited lipid accumulation in a dose-dependent manner at concentrations of 6.25 microM and higher, with 50 microM genistein inhibiting lipid accumulation almost completely. Low concentrations of genistein (3.25 microM) increased cell viability and higher concentrations (25 and 50 microM) decreased it by 16.48+/-1.35% (P<.0001) and 50.68+/-1.34% (P<.0001). Oil Red O staining was used to confirm the effects on lipid accumulation. The inhibition of lipid accumulation was associated with inhibition of glycerol-3-phosphate dehydrogenase activity and down-regulation of expression of adipocyte-specific genes, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein alpha, glycerol-3-phosphate dehydrogenase, adipocyte fatty acid binding protein, fatty acid synthase, sterol regulatory element-binding protein 1, perilipin, leptin, lipoprotein lipase and hormone-sensitive lipase. These effects of genistein during the differentiation period were associated with down-regulation of ERalpha and ERbeta expression. This study adds to the elucidation of the molecular pathways involved in the inhibition of adipogenesis by phytoestrogens.

  13. Neomycin inhibits angiogenin-induced angiogenesis.

    Science.gov (United States)

    Hu, G F

    1998-08-18

    A class of angiogenesis inhibitor has emerged from our mechanistic study of the action of angiogenin, a potent angiogenic factor. Neomycin, an aminoglycoside antibiotic, inhibits nuclear translocation of human angiogenin in human endothelial cells, an essential step for angiogenin-induced angiogenesis. The phospholipase C-inhibiting activity of neomycin appears to be involved, because U-73122, another phospholipase C inhibitor, has a similar effect. In contrast, genistein, oxophenylarsine, and staurosporine, inhibitors of tyrosine kinase, phosphotyrosine phosphatase, and protein kinase C, respectively, do not inhibit nuclear translocation of angiogenin. Neomycin inhibits angiogenin-induced proliferation of human endothelial cells in a dose-dependent manner. At 50 microM, neomycin abolishes angiogenin-induced proliferation but does not affect the basal level of proliferation and cell viability. Other aminoglycoside antibiotics, including gentamicin, streptomycin, kanamycin, amikacin, and paromomycin, have no effect on angiogenin-induced cell proliferation. Most importantly, neomycin completely inhibits angiogenin-induced angiogenesis in the chicken chorioallantoic membrane at a dose as low as 20 ng per egg. These results suggest that neomycin and its analogs are a class of agents that may be developed for anti-angiogenin therapy.

  14. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    Science.gov (United States)

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  15. The role of (dis)inhibition in creativity: decreased inhibition improves idea generation.

    Science.gov (United States)

    Radel, Rémi; Davranche, Karen; Fournier, Marion; Dietrich, Arne

    2015-01-01

    There is now a large body of evidence showing that many different conditions related to impaired fronto-executive functioning are associated with the enhancement of some types of creativity. In this paper, we pursue the possibility that the central mechanism associated with this effect might be a reduced capacity to exert inhibition. We tested this hypothesis by exhausting the inhibition efficiency through prolonged and intensive practice of either the Simon or the Eriksen Flanker task. Performance on another inhibition task indicated that only the cognitive resources for inhibition of participants facing high inhibition demands were impaired. Subsequent creativity tests revealed that exposure to high inhibition demands led to enhanced fluency in a divergent thinking task (Alternate Uses Task), but no such changes occurred in a convergent task (Remote Associate Task; studies 1a and 1b). The same manipulation also led to a hyper-priming effect for weakly related primes in a Lexical Decision Task (Study 2). Together, these findings suggest that inhibition selectively affects some types of creative processes and that, when resources for inhibition are lacking, the frequency and the originality of ideas was facilitated.

  16. Anticancer Alkaloid Lamellarins Inhibit Protein Kinases

    Directory of Open Access Journals (Sweden)

    Laurent Meijer

    2008-10-01

    Full Text Available Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dualspecificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors.

  17. Mapuche Herbal Medicine Inhibits Blood Platelet Aggregation

    Directory of Open Access Journals (Sweden)

    Susan Skanderup Falkenberg

    2012-01-01

    Full Text Available 12 plant species traditionally used by the Mapuche people in Chile to treat wounds and inflammations have been evaluated for their direct blood platelet inhibition. Seven of the 12 tested plant species showed platelet inhibitory effect in sheep blood, and four of these were also able to inhibit the ADP- (5.0 μM and collagen- (2.0 μg/mL induced aggregations in human blood. These four species in respective extracts (in brackets were Blechnum chilense (MeOH, Luma apiculata (H2O, Amomyrtus luma (DCM : MeOH 1 : 1 and Cestrum parqui (DCM : MeOH 1 : 1. The platelet aggregating inhibitory effects of A. luma (DCM : MeOH 1 : 1, and L. apiculata (H2O were substantial and confirmed by inhibition of platelet surface activation markers.

  18. Vanadium inhibition of serine and cysteine proteases.

    Science.gov (United States)

    Guerrieri, N; Cerletti, P; De Vincentiis, M; Salvati, A; Scippa, S

    1999-03-01

    A study was made on the effect of vanadium, in both the tetravalent state in vanadyl sulphate and in the pentavalent state in sodium meta-vanadate, and ortho-vanadate, on the proteolysis of azocasein by two serine proteases, trypsin and subtilisin and two cysteine proteases bromelain and papain. Also the proteolysis of bovine azoalbumin by serine proteases was considered. An inhibitory effect was present in all cases, except meta-vanadate with subtilisin. The oxidation level of vanadium by itself did not determine the inhibition kinetics, which also depended on the type and composition of the vanadium containing molecule and on the enzyme assayed. The pattern of inhibition was similar for proteases belonging to the same class. The highest inhibition was obtained with meta-vanadate on papain and with vanadyl sulphate on bromelain.

  19. Silver-Palladium Surfaces Inhibit Biofilm Formation

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Schroll, Casper; Hilbert, Lisbeth Rischel

    2009-01-01

    Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition...... efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver......-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under...

  20. Inhibition of aluminum corrosion using Opuntia extract

    Energy Technology Data Exchange (ETDEWEB)

    El-Etre, A.Y

    2003-11-01

    The inhibitive action of the mucilage extracted from the modified stems of prickly pears, toward acid corrosion of aluminum, is tested using weight loss, thermometry, hydrogen evolution and polarization techniques. It was found that the extract acts as a good corrosion inhibitor for aluminum corrosion in 2.0 M HCl solution. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. It was found that the adsorption of the extract on aluminum surface is a spontaneous process. The inhibition efficiency (IE) increases as the extract concentration is increased. The effect of temperature on the IE was studied. It was found that the presence of extract increases the activation energy of the corrosion reaction. Moreover, the thermodynamic parameters of the adsorption process were calculated. It was found also that the Opuntia extract provides a good protection to aluminum against pitting corrosion in chloride ion containing solutions.

  1. Cellulase Inhibition by High Concentrations of Monosaccharides

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning;

    2014-01-01

    Biological degradation of biomass on an industrial scale culminates in high concentrations of end products. It is known that the accumulation of glucose and cellobiose, end products of hydrolysis, inhibit cellulases and decrease glucose yields. Aside from these end products, however, other...... monosaccharides such as mannose and galactose (stereoisomers of glucose) decrease glucose yields as well. NMR relaxometry measurements showed direct correlations between the initial T 2 of the liquid phase in which hydrolysis takes place and the total glucose production during cellulose hydrolysis, indicating...... that low free water availability contributes to cellulase inhibition. Of the hydrolytic enzymes involved, those acting on the cellulose substrate, that is, exo- and endoglucanases, were the most inhibited. The β -glucosidases were shown to be less sensitive to high monosaccharide concentrations except...

  2. Complete corrosion inhibition through graphene defect passivation.

    Science.gov (United States)

    Hsieh, Ya-Ping; Hofmann, Mario; Chang, Kai-Wen; Jhu, Jian Gang; Li, Yuan-Yao; Chen, Kuang Yao; Yang, Chang Chung; Chang, Wen-Sheng; Chen, Li-Chyong

    2014-01-28

    Graphene is expected to enable superior corrosion protection due to its impermeability and chemical inertness. Previous reports, however, demonstrate limited corrosion inhibition and even corrosion enhancement of graphene on metal surfaces. To enable the reliable and complete passivation, the origin of the low inhibition efficiency of graphene was investigated. Combining electrochemical and morphological characterization techniques, nanometer-sized structural defects in chemical vapor deposition grown graphene were found to be the cause for the limited passivation effect. Extremely fast mass transport on the order of meters per second both across and parallel to graphene layers results in an inhibition efficiency of only ∼50% for Cu covered with up to three graphene layers. Through selective passivation of the defects by atomic layer deposition (ALD) an enhanced corrosion protection of more than 99% was achieved, which compares favorably with commercial corrosion protection methods.

  3. Neural inhibition enables selection during language processing.

    Science.gov (United States)

    Snyder, Hannah R; Hutchison, Natalie; Nyhus, Erika; Curran, Tim; Banich, Marie T; O'Reilly, Randall C; Munakata, Yuko

    2010-09-21

    Whether grocery shopping or choosing words to express a thought, selecting between options can be challenging, especially for people with anxiety. We investigate the neural mechanisms supporting selection during language processing and its breakdown in anxiety. Our neural network simulations demonstrate a critical role for competitive, inhibitory dynamics supported by GABAergic interneurons. As predicted by our model, we find that anxiety (associated with reduced neural inhibition) impairs selection among options and associated prefrontal cortical activity, even in a simple, nonaffective verb-generation task, and the GABA agonist midazolam (which increases neural inhibition) improves selection, whereas retrieval from semantic memory is unaffected when selection demands are low. Neural inhibition is key to choosing our words.

  4. Pyrilamine inhibits nicotine-induced catecholamine secretion.

    Science.gov (United States)

    Kim, Dong-Chan; Yun, So Jeong; Park, Yong-Soo; Jun, Dong-Jae; Kim, Dongjin; Jiten Singh, N; Kim, Sanguk; Kim, Kyong-Tai

    2014-07-01

    Function of nicotine, which induces activation of all parts of the body including our brain, has been receiving much attention for a long period of time and also been actively studied by researchers for its pharmacological actions in the central nervous system. The modulation of nicotine concentration and the inhibition of nicotine binding on target receptors in the brain are the key factors for smoking addiction therapy. In previous studies showed that influx of nicotine at the blood-brain barrier was through the pyrilamine-sensitive organic cation transporters. But the direct interacting mechanism of pyrilamine on the nicotine binding target receptors has not yet been clarified. The aim of the present study is to investigate the direct binding mechanisms of a pyrilamine on the nicotinic acetylcholine receptors (nAChRs). We found that pyrilamine shares the same ligand binding pocket of nicotine (NCT) on nAChRs but interacts with more amino acid residues than NCT does. The extended part of pyrilamine interacts with additional residues in the ligand binding pocket of nAChRs which are located nearby the entrance of the binding pocket. The catecholamine (CA) secretion induced by nAChR agonist (NCT') was significantly inhibited by the pyrilamine pretreatment. Real time carbon-fiber amperometry confirmed the inhibition of the NCT'-induced exocytosis by pyrilamine in a single cell level. We also found that pyrilamine inhibited the NCT'-induced [Ca(2+)]i. In contrast, pyrilamine did not affect the increase in calcium induced by high K(+). Overall, these data suggest that pyrilamine directly docks into the ligand binding site of nAChRs and specifically inhibits the nAChR-mediated effects thereby causing inhibition of CA secretion. Therefore, pyrilamine may play an important role to explore new treatments to aid smoking cessation.

  5. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A

    2011-02-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB, a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS, several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF were infected with the Towne-GFP strain of HCMV (0.5 MOI, preincubated with peptides at a range of concentrations (78 nm to 100 μM, and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100

  6. Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis

    DEFF Research Database (Denmark)

    Kristensen, David M.; Skalkam, Maria L.; Audouze, Karine Marie Laure

    2011-01-01

    Background: Prostaglandins (PGs) play key roles in development and maintenance of homeostasis of the adult body. Despite these important roles, it remains unclear whether the PG pathway is a target for endocrine disruption. However, several known endocrine disrupting compounds (EDCs) share a high...... of endocrine disruption. Results: We found that many known EDCs inhibit the PG pathway in a mouse Sertoli cell line and in human primary mast cells. The EDCs also reduced PG synthesis in ex vivo rat testis and it was correlated with a reduced testosterone production. The inhibition of PG synthesis occurs...

  7. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    OpenAIRE

    Alicja Zajdel; Adam Wilczok; Ludmiła Węglarz; Zofia Dzierżewicz

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the deca...

  8. Inhibition of spinach bolting by growth regulators

    Directory of Open Access Journals (Sweden)

    Jan Borkowski

    2015-06-01

    Full Text Available Spinach (Spinacia oleracea L. plants must be harvested during a short period of time because they bolt just after producing some edible leaves. Maleic hydrazide (MH and its commercial preparation "Antyrost" were found to inhibit bolting very strongly. The preparation Off-shoot-O showed very weak activity in suppressing bolting but diminished markedly the resistance of spinach plants to fungus diseases. Triiodobenzoic acid stimulated bolting, and the retardant succinic acid-2-2-dimethylhydrazide (SADH did not affect bolting. Application of MH to inhibit spinach bolting cannot be recommended in practice before investigating the residues of this compound in leaves.

  9. Targeted inhibition of cancer-inflammation

    NARCIS (Netherlands)

    Gomes Coimbra, M.J.

    2012-01-01

    The new paradigm in cancer treatment that aims to inhibit the smoldering inflammatory response in tumors is explored to develop new anticancer treatments. It appears that targeted drug delivery is essential in this concept as high local levels of anti-inflammatory agents are needed to observe the be

  10. Stress kinase inhibition modulates acute experimental pancreatitis

    Institute of Scientific and Technical Information of China (English)

    F. Fleischer; R. Dabew; B. Goke; ACC Wagner

    2001-01-01

    AIM To examine the role of p38 during acute experimental cerulein pancreatitis.METHODS Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347)andy or a specific p38 inhbitor (SB203380) and pancreatic stress kinase activity wasdetermined. Parameters to assess pancreatitis included trypsin, amylase, lipase, pancreatic weight and histology.RESULTS JNK inhibition with CEP1347ameliorated pancreatitis, reducing pancreatic edema. In contrast, p38 inhibition with SB203580aggravated pancreatitis with higher trypsinlevels and, with induction of acinar necrosis not normally found after cerulein hyperstimulation.Simultaneous treatment with both CEP1347 and SB203580 mutually abolished the effects of either compound on cerulein pancreatitis.CONCLUSION Stress kinases modulatepancreatitis differentially. JNK seems to promote pancreatitis development, possibly by supporting inflammatory reactions such as edema formation while its inhibition ameliorates pancreatitis. In contrast, p38 may help reduce organ destruction while inhibition of p38 during induction of cerulein pancreatitis leads to the occurrence of acinar necrosis.

  11. Fear inhibition in high trait anxiety

    NARCIS (Netherlands)

    Kindt, M.; Soeter, M.

    2014-01-01

    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows f

  12. Serum amyloid P inhibits dermal wound healing

    Science.gov (United States)

    The repair of open wounds depends on granulation tissue formation and contraction, which is primarily mediated by myofibroblasts. A subset of myofibroblasts originates from bone-marrow-derived monocytes which differentiate into fibroblast-like cells called fibrocytes. Serum amyloid P (SAP) inhibits ...

  13. Search Asymmetry, Sustained Attention, and Response Inhibition

    Science.gov (United States)

    Stevenson, Hugh; Russell, Paul N.; Helton, William S.

    2011-01-01

    In the present experiment, we used search asymmetry to test whether the sustained attention to response task is a better measure of response inhibition or sustained attention. Participants performed feature present and feature absent target detection tasks using either a sustained attention to response task (SART; high Go low No-Go) or a…

  14. Target Predictability, Sustained Attention, and Response Inhibition

    Science.gov (United States)

    Carter, Leonie; Russell, Paul N.; Helton, William S.

    2013-01-01

    We examined whether the sustained attention to response task is a better measure of response inhibition or sustained attention. Participants performed a number detection task for 37.3 min using either a Sustained Attention to Response Task (SART; high Go low No-Go) or a more traditionally formatted vigilance task (TFT; high No-Go low Go) response…

  15. Inhibition of denitrification by ultraviolet radiation

    Science.gov (United States)

    Mancinelli, R. L.; White, M. R.

    It has been shown that UV-A (λ = 320- 400 nm) and UV-B (λ = 280 - 320 nm) inhibit photosynthesis, nitrogen fixation and nitrification. The purpose of this study was to determine the effects, if any, on denitrification in a microbial community inhabiting the intertidal. The community studied is the microbial mat consisting primarily of Lyngbya that inhabits the Pacific marine intertidal, Baja California, Mexico. Rates of denitrification were determined using the acetylene blockage technique. Pseudomonas fluorescens (ATCC # 17400) was used as a control organism, and treated similarly to the mat samples. Samples were incubated either beneath a PAR transparent, UV opaque screen (OP3), or a mylar screen to block UV-B, or a UV transparent screen (UVT) for 2 to 3 hours. Sets of samples were also treated with nitrapyrin to inhibit nitrification, or DCMU to inhibit photosynthesis and treated similarly. Denitrification rates were greater in the UV protected samples than in the UV exposed samples the mat samples as well as for the Ps. fluorescens cultures. Killed controls exhibited no activity. In the DCMU and nitrapyrin treated samples denitrification rates were the same as in the untreated samples. These data indicate that denitrification is directly inhibited by UV radiation.

  16. Inhibiting Intuitive Thinking in Mathematics Education

    Science.gov (United States)

    Thomas, Michael O. J.

    2015-01-01

    The papers in this issue describe recent collaborative research into the role of inhibition of intuitive thinking in mathematics education. This commentary reflects on this research from a mathematics education perspective and draws attention to some of the challenges that arise in collaboration between research fields with different cultures,…

  17. Nickel inhibits mitochondrial fatty acid oxidation.

    Science.gov (United States)

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  18. Targeted inhibition of tumor growth and angiogenesis

    NARCIS (Netherlands)

    van der Meel, R.

    2013-01-01

    Two main strategies have been pursued for the development of an effective and targeted anti-cancer treatment. The first strategy comprised the generation of a targeted nanomedicine for the inhibition of tumor cell proliferation by blocking growth factor receptor pathways. The epidermal growth factor

  19. Temporal Preparation, Response Inhibition and Impulsivity

    Science.gov (United States)

    Correa, Angel; Trivino, Monica; Perez-Duenas, Carolina; Acosta, Alberto; Lupianez, Juan

    2010-01-01

    Temporal preparation and impulsivity involve overlapping neural structures (prefrontal cortex) and cognitive functions (response inhibition and time perception), however, their interrelations had not been investigated. We studied such interrelations by comparing the performance of groups with low vs. high non-clinical trait impulsivity during a…

  20. Acidosis inhibits mineralization in human osteoblasts.

    Science.gov (United States)

    Takeuchi, Shoko; Hirukawa, Koji; Togari, Akifumi

    2013-09-01

    Osteoblasts and osteoclasts maintain bone volume. Acidosis affects the function of these cells including mineral metabolism. We examined the effect of acidosis on the expression of transcription factors and mineralization in human osteoblasts in vitro. Human osteoblasts (SaM-1 cells) derived from the ulnar periosteum were cultured with α-MEM containing 50 μg/ml ascorbic acid and 5 mM β-glycerophosphate (calcifying medium). Acidosis was induced by incubating the SaM-1 cells in 10 % CO₂ (pH approximately 7.0). Mineralization, which was augmented by the calcifying medium, was completely inhibited by acidosis. Acidosis depressed c-Jun mRNA and increased osteoprotegerin (OPG) production in a time-dependent manner. Depressing c-Jun mRNA expression using siRNA increased OPG production and inhibited mineralization. In addition, depressing OPG mRNA expression with siRNA enhanced mineralization in a dose-dependent manner. Acidosis or the OPG protein strongly inhibited mineralization in osteoblasts from neonatal mice. The present study was the first to demonstrate that acidosis inhibited mineralization, depressed c-Jun mRNA expression, and induced OPG production in human osteoblasts. These results suggest that OPG is involved in mineralization via c-Jun in human osteoblasts.

  1. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  2. Cerebellar cortical inhibition and classical eyeblink conditioning.

    Science.gov (United States)

    Bao, Shaowen; Chen, Lu; Kim, Jeansok J; Thompson, Richard F

    2002-02-01

    The cerebellum is considered a brain structure in which memories for learned motor responses (e.g., conditioned eyeblink responses) are stored. Within the cerebellum, however, the relative importance of the cortex and the deep nuclei in motor learning/memory is not entirely clear. In this study, we show that the cerebellar cortex exerts both basal and stimulus-activated inhibition to the deep nuclei. Sequential application of a gamma-aminobutyric acid type A receptor (GABA(A)R) agonist and a noncompetitive GABA(A)R antagonist allows selective blockade of stimulus-activated inhibition. By using the same sequential agonist and antagonist methods in behaving animals, we demonstrate that the conditioned response (CR) expression and timing are completely dissociable and involve different inhibitory inputs; although the basal inhibition modulates CR expression, the conditioned stimulus-activated inhibition is required for the proper timing of the CR. In addition, complete blockade of cerebellar deep nuclear GABA(A)Rs prevents CR acquisition. Together, these results suggest that different aspects of the memories for eyeblink CRs are encoded in the cerebellar cortex and the cerebellar deep nuclei.

  3. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A. [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States); Yap, Sook Fan [Faculty of Medicine and Health Sciences, Department of Pre-Clinical Sciences, University of Tunku Abdul Rahman (Malaysia); Ngeow, Yun Fong [Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chin, Khew-Voon, E-mail: khew-voon.chin@utoledo.edu [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Salinomycin inhibits preadipocyte differentiation into adipocytes. Black-Right-Pointing-Pointer Salinomycin inhibits transcriptional regulation of adipogenesis. Black-Right-Pointing-Pointer Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor {gamma}. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  4. Arsenite oxidation by three types of manganese oxides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Oxidation of As(Ⅲ) by three types of manganese oxides and the effects of pH, ion strength and tartaric acid on the oxidation were investigated by means of chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals, birnessite, cryptomelane, and hausmarnite, which widely occur in soil and sediments, could actively oxidize As(Ⅲ) to As(Ⅴ). However, their ability in As(Ⅲ)-oxidation varied greatly depending on their structure, composition and surface properties. Tunnel structured cryptomelane exhibited the highest ability of As (Ⅲ) oxidation, followed by the layer structured birnessite and the lower oxide hausmannite. The maximum amount of As (Ⅴ) produced by the oxidation was in the order (mmol/kg) ofcryptomelane (824.2) > birnessite (480.4) > hausmannite (117.9). As pH increased from the very low value(pH 2.5), the amount of As(Ⅲ) oxidized by the tested Mn oxides was firstly decreased, then negatively peaked in pH 3.0-6.5,and eventually increased remarkably. Oxidation of As(Ⅲ) by the Mn oxides had a buffering effects on the pH variation in the solution.It is proposed that the oxidative reaction processes between As( Ⅲ ) and birnessite(or cryptomelane) are as follows: (1) at lower pH condition: (MnO2)x + H3AsO3 + 0.5H+=0.5H2AsO4- + 0.5HAsO42- +Mn2++ (MnO2)x-1 + H2O; (2) at higher pH condition: (MnO2)x +cryptomelane decreased and was negatively correlated with ion strength. However, ion strength had little influence on As (Ⅲ) oxidation by the hausmannite. The presence of tartaric acid promoted oxidation of As(Ⅲ) by birnessite. As for cryptomelane and hausmannite, the same effect was observed when the concentration of tartaric acid was below 4 mmol/L, otherwise the oxidized As(Ⅲ)decreased. These findings are of great significance in improving our understanding of As geochemical cycling and controlling As contamination.

  5. Fenton Redox Chemistry: Arsenite Oxidation by Metallic Surfaces

    NARCIS (Netherlands)

    Borges Freitas, S.C.; Van Halem, D.; Badruzzaman, A.B.M.; Van der Meer, W.G.J.

    2014-01-01

    Pre-oxidation of As(III) is necessary in arsenic removal processes in order to increase its efficiency. Therefore, the Fenton Redox Chemistry is defined by catalytic activation of H2O2 and currently common used for its redox oxidative properties. In this study the effect of H2O2 production catalysed

  6. Arsenite tolerance and biotransformation potential in estuarine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    Nagvenkar, G.S.; Ramaiah, N.

    Bacterial isolates from water and sediment samples from freshwater, estuarine and marine regions were tested for their growth in the presence of different concentrations of arsenic. Despite the generation times being longer in case of all bacterial...

  7. Arsenite sorption and co-precipitation with calcite

    CERN Document Server

    Roman-Ross, Gabriela; Turrillas, Xavier; Fernandez-Martinez, Alejandro; Charlet, Laurent

    2008-01-01

    Sorption of As(III) by calcite was investigated as a function of As(III) concentration, time and pH. The sorption isotherm, i.e. the log As(III) vs. log [As(OH)3 degrees / Assat] plot is S-shaped and has been modelled on an extended version of the surface precipitation model. At low concentrations, As(OH)3 degrees is adsorbed by complexation to surface Ca surface sites, as previously described by the X-ray standing wave technique. The inflexion point of the isotherm, where As(OH)3 degrees is limited by the amount of surface sites (ST), yields 6 sites nm-2 in good agreement with crystallographic data. Beyond this value, the amount of sorbed arsenic increases linearly with solution concentration, up to the saturation of arsenic with respect to the precipitation of CaHAsO3(s). The solid solutions formed in this concentration range were examined by X-ray and neutron diffraction. The doped calcite lattice parameters increase with arsenic content while c/a ratio remains constant. Our results made on bulk calcite on...

  8. Bioluminescence inhibition of bacterial luciferase by aliphatic alcohol, amine and carboxylic acid: inhibition potency and mechanism.

    Science.gov (United States)

    Yamasaki, Shinya; Yamada, Shuto; Takehara, Kô

    2013-01-01

    The inhibitory effects of hydrophobic molecules on the bacterial luciferase, BL, luminescence reaction were analyzed using an electrochemically-controlled BL luminescence system. The inhibition potency of alkyl amines, C(n)NH(2), and fatty acids, C(m)COOH (m = n - 1), on the BL reaction increased with an increase in the alkyl chain-length of these aliphatic compounds. C(m)COOH showed lower inhibition potency than C(n)NH(2) and alkyl alcohols, C(n)OH, data for which have been previously reported. To make clear the inhibition mechanisms of the aliphatic compounds on the BL reaction, the initial rate of the BL reaction was measured and analyzed using the Dixon plot and Cornish-Bowden plot. The C(12)OH inhibited the BL reaction in competition with the substrate C(11)CHO, while C(12)NH(2) and C(11)COOH inhibited in an uncompetitive manner with the C(11)CHO. These results suggest that the alkyl chain-length and the terminal unit of the aliphatic compound determine the inhibition potency and the inhibition mechanism, respectively.

  9. Gold Nanoparticles Inhibit Matrix Metalloproteases without Cytotoxicity.

    Science.gov (United States)

    Hashimoto, M; Sasaki, J I; Yamaguchi, S; Kawai, K; Kawakami, H; Iwasaki, Y; Imazato, S

    2015-08-01

    Nanoparticles (NPs) are currently the focus of considerable attention for dental applications; however, their biological effects have not been fully elucidated. The long-term, slow release of matrix metalloproteases (MMPs) digests collagen fibrils within resin-dentin bonds. Therefore, MMP inhibitors can prolong the durability of resin-dentin bonds. However, there have been few reports evaluating the combined effect of MMP inhibition and the cytotoxic effects of NPs for dentin bonding. The aim of this study was to evaluate MMP inhibition and cytotoxic responses to gold (AuNPs) and platinum nanoparticles (PtNPs) stabilized by polyvinylpyrrolidone (PVP) in cultured murine macrophages (RAW264) by using MMP inhibition assays, measuring cell viability and inflammatory responses (quantitative reverse transcription polymerase chain reaction [RT-qPCR]), and conducting a micromorphological analysis by fluorescence and transmission electron microscopy. Cultured RAW264 cells were exposed to metal NPs at various concentrations (1, 10, 100, and 400 µg/mL). AuNPs and PtNPs markedly inhibited MMP-8 and MMP-9 activity. Although PtNPs were cytotoxic at high concentrations (100 and 400 µg/mL), no cytotoxic effects were observed for AuNPs at any concentration. Transmission electron microscopy images showed a significant nonrandom intercellular distribution for AuNPs and PtNPs, which were mostly observed to be localized in lysosomes but not in the nucleus. RT-qPCR analysis demonstrated inflammatory responses were not induced in RAW264 cells by AuNPs or PtNPs. The cytotoxicity of nanoparticles might depend on the core metal composition and arise from a "Trojan horse" effect; thus, MMP inhibition could be attributed to the surface charge of PVP, which forms the outer coating of NPs. The negative charge of the surface coating of PVP binds to Zn(2+) from the active center of MMPs by chelate binding and results in MMP inhibition. In summary, AuNPs are attractive NPs that effectively

  10. 卵磷脂对砷染毒非洲绿猴肾细胞细胞膜损伤的作用%Intervention effect of lecithin on cell membrane injury of African green monkey kidney exposed to sodium arsenite in vitro

    Institute of Scientific and Technical Information of China (English)

    王婷婷; 张亚楼; 刘继文; 王生玲

    2011-01-01

    Objective To observe the lecithin's effect on membrane of African green monkey kidney cells (Vero) exposed to sodium arsenite(NaAsO2). Methods Vero cells cultured in vitro were divided into 4 groups:control group (saline), model group (2.20 mg/L NaAsO2), high eoncentration of lecithin and arsenic group (53.33mg/L lecithin + 2.20 mg/L NaAsO2), low eoncentration of lecithin and arsenic group( 13.32 mg/L lecithin + 2.20 mg/L NaAsO2), 6 bottles of cells in each group, medium was changed every 2 days, cultured for 120 h. Na+ ,K+-ATPase activities of membrane were measured by spectrophotometry, and membrane phospholipids composition including phosphatidylserine (PS), phosphatidylethano-lamine (PE), phosphatidylcholine (PC) and sphingmyelin (SM) were measured by high performance liquid chromatography (HPLC). Results The Na~, K+-ATPase activities of membrane of control group, model group, high concentration of lecithin and arsenic group, low concentration of lecithin and arsenic group were (0.962 ± 0.081) × 106, (0.544 ± 0.037) × 106, (0.647 ± 0.043) x 106, (0.550±Compared with control group, the Na+ ,K+-ATPase activities of other 3 groups were significantly reduced (all P 0.05). Compared with control group[(0.087 ± 0.003), (0.127 ± 0.053), (0.588 ± 0.105),(0.071 ± 0.029)g/L], PS, PE, PC, SM levels in model group[(0.051 ± 0.018), (0.073 + 0.030), (0.240 ±0.038), (0.047 ± 0.121 )g/L] were significantly lower(all P 0.05), but SM[(0.057 ± 0.004)g/L] significantly decreased(P 0.05]. Compared with model group,the levels of PS, PE, PC, SM in high concentration of lecithin and arsenic group were significantly higher(all P 0.05), and PC was significantly higher(P 0.05).与对照组[(0.087±0.003)、(0.127±0.053)、(0.588±0.105)、(0.07l±0.029)g/L]比较,砷模型组PS、PE、PC、SM水平[(0.051±0.018)、(0.073±0.030)、(0.240 4-0.038)、(0.047±0.121)g/L]均明显降低(P均0.05),而SM[(0.057±0.004)g/L]明显降低(P0.05).与砷模型组比较,卵磷脂高剂

  11. WEE1 inhibition sensitizes osteosarcoma to radiotherapy

    Directory of Open Access Journals (Sweden)

    Helder Marco N

    2011-04-01

    Full Text Available Abstract Background The use of radiotherapy in osteosarcoma (OS is controversial due to its radioresistance. OS patients currently treated with radiotherapy generally are inoperable, have painful skeletal metastases, refuse surgery or have undergone an intralesional resection of the primary tumor. After irradiation-induced DNA damage, OS cells sustain a prolonged G2 cell cycle checkpoint arrest allowing DNA repair and evasion of cell death. Inhibition of WEE1 kinase leads to abrogation of the G2 arrest and could sensitize OS cells to irradiation induced cell death. Methods WEE1 expression in OS was investigated by gene-expression data analysis and immunohistochemistry of tumor samples. WEE1 expression in OS cell lines and human osteoblasts was investigated by Western blot. The effect of WEE1 inhibition on the radiosensitivity of OS cells was assessed by cell viability and caspase activation analyses after combination treatment. The presence of DNA damage was visualized using immunofluorescence microscopy. Cell cycle effects were investigated by flow cytometry and WEE1 kinase regulation was analyzed by Western blot. Results WEE1 expression is found in the majority of tested OS tissue samples. Small molecule drug PD0166285 inhibits WEE1 kinase activity. In the presence of WEE1-inhibitor, irradiated cells fail to repair their damaged DNA, and show higher levels of caspase activation. The inhibition of WEE1 effectively abrogates the irradiation-induced G2 arrest in OS cells, forcing the cells into premature, catastrophic mitosis, thus enhancing cell death after irradiation treatment. Conclusion We show that PD0166285, a small molecule WEE1 kinase inhibitor, can abrogate the G2 checkpoint in OS cells, pushing them into mitotic catastrophe and thus sensitizing OS cells to irradiation-induced cell death. This suggests that WEE1 inhibition may be a promising strategy to enhance the radiotherapy effect in patients with OS.

  12. Inhibition of lung tumorigenesis by tea.

    Science.gov (United States)

    Yang, Chung S; Liao, Jie; Yang, Guang-yu; Lu, Gary

    2005-01-01

    Tea and tea constituents have been shown by different investigators to inhibit lung tumorigenesis in different animal model systems. This includes lung tumorigenesis in A/J mice induced by 4-(methylnitrosamino)-1-(3pyridyl)-1-butanone (NNK), N-nitrosodiethylamine, benzo[a]pyrene, N-nitrosomethylurea, or cisplatin. Inhibition of lung tumorigenesis has also been demonstrated in C3H mice treated with N-nitrosodiethylamine. In most of these experiments, reduction in tumor number and tumor size has been observed in the tea-treated group, and in some experiments, decreased tumor incidence has also been observed. The green tea constituent, epigallocatechin-3-gallate (EGCG), and the black tea constituent, theaflavins, have also been shown to be effective. Black tea preparations have been shown to reduce the incidence and number of spontaneously generated lung adenocarcinomas and rhabdomyosarcoma in A/J mice, as well as inhibit the progression of lung adenoma to adenocarcinoma. The mechanisms for the inhibitory action have not been well elucidated. It may be related to the antiproliferative, proapoptotic, and antiangiogenic activities of tea constituents that have been demonstrated in some experiments. These activities may be a result of the inhibition of key protein kinases involved in signal transduction and cell cycle regulation. Tea catechins, such as EGCG, have been suggested to be the effective components. However, a study suggests that caffeine is the key effective constituent for the inhibitory activity of lung tumorigenesis in Fisher 344 rats by black tea. In many of the experiments, tea consumption resulted in the reduction of body fat and body weight; these factors may also contribute to the inhibition of tumorigenesis.

  13. Amiloride inhibits the initiation of Coxsackievirus and poliovirus RNA replication by inhibiting VPg uridylylation.

    Science.gov (United States)

    Ogram, Sushma A; Boone, Christopher D; McKenna, Robert; Flanegan, James B

    2014-09-01

    The mechanism of amiloride inhibition of Coxsackievirus B3 (CVB3) and poliovirus type 1 (PV1) RNA replication was investigated using membrane-associated RNA replication complexes. Amiloride was shown to inhibit viral RNA replication and VPgpUpU synthesis. However, the drug had no effect on polymerase elongation activity during either (-) strand or (+) strand synthesis. These findings indicated that amiloride inhibited the initiation of RNA synthesis by inhibiting VPg uridylylation. In addition, in silico binding studies showed that amiloride docks in the VPg binding site on the back of the viral RNA polymerase, 3D(pol). Since VPg binding at this site on PV1 3D(pol) was previously shown to be required for VPg uridylylation, our results suggest that amiloride inhibits VPg binding to 3D(pol). In summary, our findings are consistent with a model in which amiloride inhibits VPgpUpU synthesis and viral RNA replication by competing with VPg for binding to 3D(pol).

  14. Inhibition Controls Asynchronous States of Neuronal Networks

    Science.gov (United States)

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks. PMID:27274721

  15. Antibiotic inhibition of group I ribozyme function.

    Science.gov (United States)

    von Ahsen, U; Davies, J; Schroeder, R

    1991-09-26

    The discovery of catalytically active RNA has provided the basis for the evolutionary concept of an RNA world. It has been proposed that during evolution the functions of ancient catalytic RNA were modulated by low molecular weight effectors, related to antibiotics, present in the primordial soup. Antibiotics and RNA may have coevolved in the formation of the modern ribosome. Here we report that a set of aminoglycoside antibiotics, which are known to interact with the decoding region of the 16S ribosomal RNA of Escherichia coli, inhibit the second step of splicing of the T4 phage-derived td intron. Thus catalytic RNA seems to interact not only with a mononucleotide and an amino acid, but also with another class of biomolecules, the sugars. Splicing of other group I introns but not group II introns was inhibited. The similarity in affinity and specificity of these antibiotics for group I introns and rRNAs may result from recognition of evolutionarily conserved structures.

  16. Sulfate inhibition effect on sulfate reducing bacteria

    Directory of Open Access Journals (Sweden)

    Sulaiman Al Zuhair

    2008-12-01

    Full Text Available There is an increasing interest in the potential of bacterial sulfate reduction as an alternative method for sulfate removal from wastewater. Under anaerobic conditions, sulfate-reducing bacteria (SRB utilize sulfate to oxidize organic compounds and generate sulfide (S2-. SRB were successfully isolated from sludge samples obtained from a local petroleum refinery, and used for sulfate removal. The effects of initial sulfate concentration, temperature and pH on the rate of bacterial growth and anaerobic sulfate removal were investigated and the optimum conditions were identified. The experimental data were used to determine the parameters of two proposed kinetic model, which take into consideration substrate inhibition effect. Keywords: Sulfate Reducing Bacteria, Sulfate, Kinetic Model, Biotreatement, Inhibition Received: 31 August 2008 / Received in revised form: 18 September 2008, Accepted: 18 September 2008 Published online: 28 September 2008

  17. AMPA receptor inhibition by synaptically released zinc.

    Science.gov (United States)

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-12-22

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  18. Emotional inhibition: a discourse analysis of disclosure.

    Science.gov (United States)

    Ellis, Darren; Cromby, John

    2012-01-01

    Evidence generated within the emotional disclosure paradigm (EDP) suggests that talking or writing about emotional experiences produces health benefits, but recent meta-analyses have questioned its efficacy. Studies within the EDP typically rely upon a unidimensional and relatively unsophisticated notion of emotional inhibition, and tend to use quantitative forms of content analysis to identify associations between percentages of word types and positive or negative health outcomes. In this article, we use a case study to show how a qualitative discourse analysis has the potential to identify more of the complexity linking the disclosure practices and styles that may be associated with emotional inhibition. This may illuminate the apparent lack of evidence for efficacy of the EDP by enabling more comprehensive theorisations of the variations within it.

  19. How x rays inhibit amphibian limb regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Maden, M.; Wallace, H.

    1976-07-01

    The effects of an inhibiting dose of 2,000 rad of x-rays on the regenerating limbs of axolotl larvae have been examined in a histological and cytological study. Particular attention was paid to the mitotic indices of normal and irradiated epidermal and blastemal cells. Both the characteristic pattern of epidermal mitotic stimulation which normally follows amputation and the later increase in blastemal mitoses are suppressed by irradiation. In most cells the effects are permanent, but in a small proportion a mitotic delay is induced and upon subsequent division chromosome damage in the form of micronuclei is revealed. Thus irradiated cells which do divide almost certainly die. These results are discussed in relation to other theories of x-ray inhibition of regeneration with particular reference to the view that irradiated cells can be reactivated.

  20. Product inhibition of five Hypocrea jecorina cellulases

    DEFF Research Database (Denmark)

    Murphy, Leigh; Westh, Peter; Bohlin, Christina;

    2013-01-01

    Product inhibition of cellulolytic enzymes has been deemed a critical factor in the industrial saccharification of cellulosic biomass. Several investigations have addressed this problem using crude enzyme preparations or commercial (mixed) cellulase products, but quantitative information...... on individual cellulases hydrolyzing insoluble cellulose remains insufficient. Such knowledge is necessary to pinpoint and quantify inhibitory weak-links in cellulose hydrolysis, but has proven challenging to come by. Here we show that product inhibition of mono-component cellulases hydrolyzing unmodified...... cellulose may be monitored by calorimetry. The key advantage of this approach is that it directly measures the rate of hydrolysis while being essentially blind to the background of added product. We investigated the five major cellulases from Hypocrea jecorina (anamorph: Tricoderma reesei), Cel7A (formerly...

  1. Direct renin inhibition in chronic kidney disease

    DEFF Research Database (Denmark)

    Persson, Frederik; Rossing, Peter; Parving, Hans-Henrik

    2013-01-01

    that renin inhibition could hold potential for improved treatment in patients with chronic kidney disease, with diabetic nephropathy as an obvious group of patients to investigate, as the activity of the renin-angiotensin-aldosterone system is enhanced in these patients and as there is an unmet need....... In addition, combination treatment seemed safe and effective also in patients with impaired kidney function. These initial findings formed the basis for the design of a large morbidity and mortality trial investigating aliskiren as add-on to standard treatment. The study has just concluded, but was terminated...... early as a beneficial effect was unlikely and there was an increased frequency of side effects. Also in non-diabetic kidney disease a few intervention studies have been carried out, but there is no ongoing hard outcome study. In this review we provide the current evidence for renin inhibition in chronic...

  2. Cross-domain inhibition of TACE ectodomain

    DEFF Research Database (Denmark)

    Tape, Christopher J; Willems, Sofie H; Dombernowsky, Sarah L;

    2011-01-01

    Proteolytic release from the cell surface is an essential activation event for many growth factors and cytokines. TNF-a converting enzyme (TACE) is a membrane-bound metalloprotease responsible for solubilizing many pathologically significant membrane substrates and is an attractive therapeutic...... target for the treatment of cancer and arthritis. Prior attempts to antagonize cell-surface TACE activity have focused on small-molecule inhibition of the metalloprotease active site. Given the highly conserved nature of metalloprotease active sites, this paradigm has failed to produce a truly specific...... individual antibody variable domains to desired epitopes. The resulting "cross-domain" human antibody is a previously undescribed selective TACE antagonist and provides a unique alternative to small-molecule metalloprotease inhibition....

  3. Theobromine inhibits sensory nerve activation and cough.

    Science.gov (United States)

    Usmani, Omar S; Belvisi, Maria G; Patel, Hema J; Crispino, Natascia; Birrell, Mark A; Korbonits, Márta; Korbonits, Dezso; Barnes, Peter J

    2005-02-01

    Cough is a common and protective reflex, but persistent coughing is debilitating and impairs quality of life. Antitussive treatment using opioids is limited by unacceptable side effects, and there is a great need for more effective remedies. The present study demonstrates that theobromine, a methylxanthine derivative present in cocoa, effectively inhibits citric acid-induced cough in guinea-pigs in vivo. Furthermore, in a randomized, double-blind, placebo-controlled study in man, theobromine suppresses capsaicin-induced cough with no adverse effects. We also demonstrate that theobromine directly inhibits capsaicin-induced sensory nerve depolarization of guinea-pig and human vagus nerve suggestive of an inhibitory effect on afferent nerve activation. These data indicate the actions of theobromine appear to be peripherally mediated. We conclude theobromine is a novel and promising treatment, which may form the basis for a new class of antitussive drugs.

  4. Non-Classical Inhibition of Carbonic Anhydrase

    Science.gov (United States)

    Lomelino, Carrie L.; Supuran, Claudiu T.; McKenna, Robert

    2016-01-01

    Specific isoforms from the carbonic anhydrase (CA) family of zinc metalloenzymes have been associated with a variety of diseases. Isoform-specific carbonic anhydrase inhibitors (CAIs) are therefore a major focus of attention for specific disease treatments. Classical CAIs, primarily sulfonamide-based compounds and their bioisosteres, are examined as antiglaucoma, antiepileptic, antiobesity, antineuropathic pain and anticancer compounds. However, many sulfonamide compounds inhibit all CA isoforms nonspecifically, diluting drug effectiveness and causing undesired side effects due to off-target inhibition. In addition, a small but significant percentage of the general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy. Therefore, CAIs must be developed that are not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This review covers the classes of non-classical CAIs and the recent advances in the development of isoform-specific inhibitors based on phenols, polyamines, coumarins and their derivatives. PMID:27438828

  5. The Kinetics of Carrier Transport Inhibition

    DEFF Research Database (Denmark)

    Rosenberg, T.; Wilbrandt, Robert Walter

    1962-01-01

    The kinetical treatment of enzymatic carrier transports as given in previous communications has been extended to conditions of inhibition. Various possible types of inhibitors have been considered differing in the site of attack (enzyme or carrier), in the mode of action (competing...... with the substrate for the enzyme or the carrier or for both, competing with the carrier for the enzyme, or non-competitive) and in the ability of penetrating the membrane. Experiments are reported on the inhibition of glucose and fructose transport across the human red cell membrane by phlorizine, phloretine...... the first order asymmetry severalfold (“second order asymmetry”). It was shown that a substrate competitive mode of action involving competition both for the enzyme and for the enzyme-bound carrier will result in a behaviour resembling the observed “second order asymmetry”. It is felt, therefore...

  6. Blocking of potentiation of latent inhibition.

    Science.gov (United States)

    Hall, Geoffrey; Rodriguez, Gabriel

    2011-01-01

    We present a theory of latent inhibition based on the Pearce-Hall (Pearce & Hall, 1980) model for classical conditioning. Its central features are (1) that the associability of a stimulus declines as it comes to predict its consequences and (2) that nonreinforced exposure to a stimulus engages an associative learning process that makes the stimulus an accurate predictor of its consequences (in this case, the occurrence of no event). A formalization of this theory is shown to accommodate the finding that preexposure in compound with another cue can potentiate latent inhibition to the target cue. It further predicts that preexposure to the added cue will eliminate the potentiation effect. An experiment using rats and the flavor-aversion procedure confirmed this prediction.

  7. Inhibition Controls Asynchronous States of Neuronal Networks.

    Science.gov (United States)

    Treviño, Mario

    2016-01-01

    Computations in cortical circuits require action potentials from excitatory and inhibitory neurons. In this mini-review, I first provide a quick overview of findings that indicate that GABAergic neurons play a fundamental role in coordinating spikes and generating synchronized network activity. Next, I argue that these observations helped popularize the notion that network oscillations require a high degree of spike correlations among interneurons which, in turn, produce synchronous inhibition of the local microcircuit. The aim of this text is to discuss some recent experimental and computational findings that support a complementary view: one in which interneurons participate actively in producing asynchronous states in cortical networks. This requires a proper mixture of shared excitation and inhibition leading to asynchronous activity between neighboring cells. Such contribution from interneurons would be extremely important because it would tend to reduce the spike correlation between neighboring pyramidal cells, a drop in redundancy that could enhance the information-processing capacity of neural networks.

  8. Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase

    Directory of Open Access Journals (Sweden)

    Petr Dobes

    2013-05-01

    Full Text Available Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE and/or, butyrylcholinesterase (BChE, the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon’s plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was −6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

  9. Matrix Extracellular Phosphoglycoprotein Inhibits Phosphate Transport

    OpenAIRE

    Marks, J; Churchill, L J; Debnam, E. S.; Unwin, R J

    2008-01-01

    The role of putative humoral factors, known as phosphatonins, in phosphate homeostasis and the relationship between phosphate handling by the kidney and gastrointestinal tract are incompletely understood. Matrix extracellular phosphoglycoprotein (MEPE), one of several candidate phosphatonins, promotes phosphaturia, but whether it also affects intestinal phosphate absorption is unknown. Here, using the in situ intestinal loop technique, we demonstrated that short-term infusion of MEPE inhibits...

  10. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  11. Hydroxyapatite growth inhibition by osteopontin hexapeptide sequences.

    Science.gov (United States)

    Silverman, L D; Saadia, M; Ishal, J S; Tishbi, N; Leiderman, E; Kuyunov, I; Recca, B; Reitblat, C; Viswanathan, R

    2010-06-15

    The effects of three acidic hexapeptides on in vitro hydroxyapatite growth were characterized by pH-stat kinetic studies, adsorption isotherms, and molecular modeling. The three peptides, pSDEpSDE, SDESDE, and DDDDDD, are equal-length model compounds for the acidic sequences in osteopontin, a protein that inhibits mineral formation in both calcified and noncalcified tissues. Growth rates from 1.67 mM calcium and 1.00 mM phosphate solution were measured at pH 7.4 and 37 degrees C in 150 mM NaCl. pSDEpSDE was a strong growth inhibitor when preadsorbed onto hydroxyapatite (HA) seeds from > or = 0.67 mM solutions, concentrations where adsorption isotherms showed relatively complete surface coverage. The nonphosphorylated SDESDE control showed no growth inhibition. Although it adsorbed to almost the same extent as pSDEpSDE, it rapidly desorbed under the pH-stat growth conditions while pSDEpSDE did not. DDDDDD exhibited weak inhibition as its concentration was increased and similar adsorption/desorption behavior to pSDEpSDE. Molecular modeling yielded binding energy trends based on simple adsorption of peptides on the [100] surface that were consistent with observed inhibition, but not for the [001] surface. The relatively unfavorable binding energies for peptides on the [001] surface suggest that their absorption will be primarily on the [100] face. The kinetic and adsorption data are consistent with phosphorylation of osteopontin acting to control mineral formation.

  12. Evidence of dopaminergic processing of executive inhibition.

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    Full Text Available Inhibition of unwanted response is an important function of the executive system. Since the inhibitory system is impaired in patients with dysregulated dopamine system, we examined dopamine neurotransmission in the human brain during processing of a task of executive inhibition. The experiment used a recently developed dynamic molecular imaging technique to detect and map dopamine released during performance of a modified Eriksen's flanker task. In this study, young healthy volunteers received an intravenous injection of a dopamine receptor ligand ((11C-raclopride after they were positioned in the PET camera. After the injection, volunteers performed the flanker task under Congruent and Incongruent conditions in a single scan session. They were required to inhibit competing options to select an appropriate response in the Incongruent but not in the Congruent condition. The PET data were dynamically acquired during the experiment and analyzed using two variants of the simplified reference region model. The analysis included estimation of a number of receptor kinetic parameters before and after initiation of the Incongruent condition. We found increase in the rate of ligand displacement (from receptor sites and decrease in the ligand binding potential in the Incongruent condition, suggesting dopamine release during task performance. These changes were observed in small areas of the putamen and caudate bilaterally but were most significant on the dorsal aspect of the body of left caudate. The results provide evidence of dopaminergic processing of executive inhibition and demonstrate that neurochemical changes associated with cognitive processing can be detected and mapped in a single scan session using dynamic molecular imaging.

  13. An Activation Threshold Model for Response Inhibition

    Science.gov (United States)

    MacDonald, Hayley J.; McMorland, Angus J. C.; Stinear, Cathy M.; Coxon, James P.; Byblow, Winston D.

    2017-01-01

    Reactive response inhibition (RI) is the cancellation of a prepared response when it is no longer appropriate. Selectivity of RI can be examined by cueing the cancellation of one component of a prepared multi-component response. This substantially delays execution of other components. There is debate regarding whether this response delay is due to a selective neural mechanism. Here we propose a computational activation threshold model (ATM) and test it against a classical “horse-race” model using behavioural and neurophysiological data from partial RI experiments. The models comprise both facilitatory and inhibitory processes that compete upstream of motor output regions. Summary statistics (means and standard deviations) of predicted muscular and neurophysiological data were fit in both models to equivalent experimental measures by minimizing a Pearson Chi-square statistic. The ATM best captured behavioural and neurophysiological dynamics of partial RI. The ATM demonstrated that the observed modulation of corticomotor excitability during partial RI can be explained by nonselective inhibition of the prepared response. The inhibition raised the activation threshold to a level that could not be reached by the original response. This was necessarily followed by an additional phase of facilitation representing a secondary activation process in order to reach the new inhibition threshold and initiate the executed component of the response. The ATM offers a mechanistic description of the neural events underlying RI, in which partial movement cancellation results from a nonselective inhibitory event followed by subsequent initiation of a new response. The ATM provides a framework for considering and exploring the neuroanatomical constraints that underlie RI. PMID:28085907

  14. Inhibition of enveloped viruses infectivity by curcumin.

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Chen

    Full Text Available Curcumin, a natural compound and ingredient in curry, has antiinflammatory, antioxidant, and anticarcinogenic properties. Previously, we reported that curcumin abrogated influenza virus infectivity by inhibiting hemagglutination (HA activity. This study demonstrates a novel mechanism by which curcumin inhibits the infectivity of enveloped viruses. In all analyzed enveloped viruses, including the influenza virus, curcumin inhibited plaque formation. In contrast, the nonenveloped enterovirus 71 remained unaffected by curcumin treatment. We evaluated the effects of curcumin on the membrane structure using fluorescent dye (sulforhodamine B; SRB-containing liposomes that mimic the viral envelope. Curcumin treatment induced the leakage of SRB from these liposomes and the addition of the influenza virus reduced the leakage, indicating that curcumin disrupts the integrity of the membranes of viral envelopes and of liposomes. When testing liposomes of various diameters, we detected higher levels of SRB leakage from the smaller-sized liposomes than from the larger liposomes. Interestingly, the curcumin concentration required to reduce plaque formation was lower for the influenza virus (approximately 100 nm in diameter than for the pseudorabies virus (approximately 180 nm and the vaccinia virus (roughly 335 × 200 × 200 nm. These data provide insights on the molecular antiviral mechanisms of curcumin and its potential use as an antiviral agent for enveloped viruses.

  15. Inhibition of acetylcholinesterase by Tea Tree oil.

    Science.gov (United States)

    Mills, Clive; Cleary, Brian J; Gilmer, John F; Walsh, John J

    2004-03-01

    Pediculosis is a widespread condition reported in schoolchildren. Treatment most commonly involves the physical removal of nits using fine-toothcombs and the chemical treatment of adult lice and eggs with topical preparations. The active constituents of these preparations frequently exert their effects through inhibition of acetylcholinesterase (AChE, EC 3.1.1.7). Increasing resistance to many preparations has led to the search for more effective treatments. Tea Tree oil, otherwise known as Melaleuca oil, has been added to several preparations as an alternative treatment of head lice infestations. In this study two major constituents of Tea Tree oil, 1,8-cineole and terpinen-4-ol, were shown to inhibit acetylcholinesterase at IC50 values (inhibitor concentrations required to give 50% inhibition) of 0.04 and 10.30 mM, respectively. Four samples of Tea Tree oil tested (Tisserand, Body Treats, Main Camp and Irish Health Culture Association Pure Undiluted) showed anticholinesterase activity at IC50 values of 0.05, 0.10, 0.08 and 0.11 microL mL(-1), respectively. The results supported the hypothesis that the insecticidal activity of Tea Tree oil was attributable, in part, to the anticholinesterase activity of Tea Tree oil.

  16. Gabapentin inhibits central sensitization during migraine

    Institute of Scientific and Technical Information of China (English)

    Yanbo Zhang; Guo Shao; Wei Zhang; Sijie Li; Jingzhong Niu; Dongmei Hu; Mingfeng Yang; Xunming Ji

    2013-01-01

    Peripheral and central sensitizations are phenomena that occur during migraine. The role of pentin, a migraine preventive drug, on central sensitization remains unclear. In this study, a rat model of migraine was established by electrical stimulation of the trigeminal ganglion, and the an-imals were given intragastric gabapentin. Changes in amino acid content in the cerebrospinal fluid and protein kinase C membrane translocation in the spinal trigeminal nucleus were examined to clarify the mechanisms underlying the efficacy of gabapentin in the treatment of central sensitization during migraine. Electrophysiology, liquid chromatography-mass spectrometry and western blot analysis results revealed that gabapentin reduces neuronal excitability in the spinal nucleus in the trigeminal nerve, decreases excitatory amino acid content and inhibits the activation of protein ki-nase C. This provides evidence that excitatory amino acids and protein kinase C are involved in the formation and maintenance of central sensitization during migraine. Gabapentin inhibits migraine by reducing excitatory amino acid content in the cerebrospinal fluid and inhibiting protein kinase C ac-tivation.

  17. Trace element inhibition of phytase activity.

    Science.gov (United States)

    Santos, T; Connolly, C; Murphy, R

    2015-02-01

    Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.

  18. ROCK inhibition prevents early mouse embryo development.

    Science.gov (United States)

    Duan, Xing; Chen, Kun-Lin; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-08-01

    ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.

  19. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Directory of Open Access Journals (Sweden)

    Alicja Zajdel

    2013-01-01

    Full Text Available Phytic acid (PA has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II/ascorbate-induced peroxidation, as well as Fe(II/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II/ascorbate. The observed inhibitory effect of PA on Fe(II/ascorbate-induced lipid peroxidation was lower (10–20% compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II/ascorbate-induced peroxidation. In the absence of Fe(II/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  20. Phytic acid inhibits lipid peroxidation in vitro.

    Science.gov (United States)

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  1. Wnt signaling inhibits CTL memory programming.

    Science.gov (United States)

    Xiao, Zhengguo; Sun, Zhifeng; Smyth, Kendra; Li, Lei

    2013-12-01

    Induction of functional CTLs is one of the major goals for vaccine development and cancer therapy. Inflammatory cytokines are critical for memory CTL generation. Wnt signaling is important for CTL priming and memory formation, but its role in cytokine-driven memory CTL programming is unclear. We found that wnt signaling inhibited IL-12-driven CTL activation and memory programming. This impaired memory CTL programming was attributed to up-regulation of eomes and down-regulation of T-bet. Wnt signaling suppressed the mTOR pathway during CTL activation, which was different to its effects on other cell types. Interestingly, the impaired memory CTL programming by wnt was partially rescued by mTOR inhibitor rapamycin. In conclusion, we found that crosstalk between wnt and the IL-12 signaling inhibits T-bet and mTOR pathways and impairs memory programming which can be recovered in part by rapamycin. In addition, direct inhibition of wnt signaling during CTL activation does not affect CTL memory programming. Therefore, wnt signaling may serve as a new tool for CTL manipulation in autoimmune diseases and immune therapy for certain cancers.

  2. Deubiquitinase inhibition as a cancer therapeutic strategy.

    Science.gov (United States)

    D'Arcy, Padraig; Wang, Xin; Linder, Stig

    2015-03-01

    The ubiquitin proteasome system (UPS) is the main system for controlled protein degradation and a key regulator of fundamental cellular processes. The dependency of cancer cells on a functioning UPS has made this an attractive target for development of drugs that show selectivity for tumor cells. Deubiquitinases (DUBs, ubiquitin isopeptidases) are components of the UPS that catalyze the removal of ubiquitin moieties from target proteins or polyubiquitin chains, resulting in altered signaling or changes in protein stability. A number of DUBs regulate processes associated with cell proliferation and apoptosis, and as such represent candidate targets for cancer therapeutics. The majority of DUBs are cysteine proteases and are likely to be more "druggable" than E3 ligases. Cysteine residues in the active sites of DUBs are expected to be reactive to various electrophiles. Various compounds containing α,β-unsaturated ketones have indeed been demonstrated to inhibit cellular DUB activity. Inhibition of proteasomal cysteine DUB enzymes (i.e. USP14 and UCHL5) can be predicted to be particularly cytotoxic to cancer cells as it leads to blocking of proteasome function and accumulation of proteasomal substrates. We here provide an overall review of DUBs relevant to cancer and of various small molecules which have been demonstrated to inhibit DUB activity.

  3. Gas hydrate inhibition of drilling fluid additives

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolan, L.; Baojiang, S.; Shaoran, R. [China Univ. of Petroleum, Dongying (China). Inst. of Petroleum Engineering

    2008-07-01

    Gas hydrates that form during offshore well drilling can have adverse impacts on well operational safety. The hydrates typically form in the risers and the annulus between the casing and the drillstring, and can stop the circulation of drilling fluids. In this study, experiments were conducted to measure the effect of drilling fluid additives on hydrate inhibition. Polyalcohols, well-stability control agents, lubricating agents, and polymeric materials were investigated in a stirred tank reactor at temperatures ranging from -10 degree C to 60 degrees C. Pressure, temperature, and torque were used to detect onset points of hydrate formation and dissociation. The inhibitive effect of the additives on hydrate formation was quantified. Phase boundary shifts were measured in terms of temperature difference or sub-cooling gained when chemicals were added to pure water. Results showed that the multiple hydroxyl groups in polyalcohol chemicals significantly inhibited hydrate formation. Polymeric and polyacrylamide materials had only a small impact on hydrate formation, while sulfonated methyl tannins were found to increase hydrate formation. 6 refs., 1 tab., 4 figs.

  4. Inhibition of SIRT2 suppresses hepatic fibrosis.

    Science.gov (United States)

    Arteaga, Maribel; Shang, Na; Ding, Xianzhong; Yong, Sherri; Cotler, Scott J; Denning, Mitchell F; Shimamura, Takashi; Breslin, Peter; Lüscher, Bernhard; Qiu, Wei

    2016-06-01

    Liver fibrosis can progress to cirrhosis and result in serious complications of liver disease. The pathogenesis of liver fibrosis involves the activation of hepatic stellate cells (HSCs), the underlying mechanisms of which are not fully known. Emerging evidence suggests that the classic histone deacetylases play a role in liver fibrosis, but the role of another subfamily of histone deacetylases, the sirtuins, in the development of hepatic fibrosis remains unknown. In this study, we found that blocking the activity of sirtuin 2 (SIRT2) by using inhibitors or shRNAs significantly suppressed fibrogenic gene expression in HSCs. We further demonstrated that