WorldWideScience

Sample records for arsenic-induced malignant transformation

  1. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    International Nuclear Information System (INIS)

    Jensen, Taylor J.; Wozniak, Ryan J.; Eblin, Kylee E.; Wnek, Sean M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2009-01-01

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation

  2. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    International Nuclear Information System (INIS)

    Sun Yang; Kojima, Chikara; Chignell, Colin; Mason, Ronald; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm 2 ) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: → Arsenic transformation adapted to UV-induced apoptosis. → Arsenic transformation diminished oxidant response. → Arsenic transformation enhanced UV-induced DNA damage.

  3. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States)

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  4. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    International Nuclear Information System (INIS)

    Zhang, Zhuo; Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Kim, Donghern; Shi, Xianglin

    2015-01-01

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H 2 O 2 ) and superoxide dismutase 2 (SOD2, antioxidant against O 2 ·− ) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous report. The

  5. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration

    Energy Technology Data Exchange (ETDEWEB)

    Ngalame, Ntube N.O., E-mail: ngalamenn@niehs.nih.gov; Makia, Ngome L., E-mail: makianl@niehs.nih.gov; Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov; Tokar, Erik J., E-mail: tokare@mail.nih.gov

    2016-12-01

    Inorganic arsenic, an environmental contaminant and a human carcinogen is associated with prostate cancer. Emerging evidence suggests that cancer stem cells (CSCs) are the driving force of carcinogenesis. Chronic arsenic exposure malignantly transforms the human normal prostate stem/progenitor cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs), through unknown mechanisms. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. In prior work, miR-143 was markedly downregulated in As-CSCs, suggesting a role in arsenic-induced malignant transformation. In the present study, we investigated whether loss of miR-143 expression is important in arsenic-induced transformation of prostate SCs. Restoration of miR-143 in As-CSCs was achieved by lentivirus-mediated miR-143 overexpression. Cells were assessed bi-weekly for up to 30 weeks to examine mitigation of cancer phenotype. Secreted matrix metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but miR-143 restoration decreased secreted MMP-2 and MMP-9 enzyme activities compared with scramble controls. Increased cell proliferation and apoptotic resistance, two hallmarks of cancer, were decreased upon miR-143 restoration. Increased apoptosis was associated with decreased BCL2 and BCL-XL expression. miR-143 restoration dysregulated the expression of SC/CSC self-renewal genes including NOTCH-1, BMI-1, OCT4 and ABCG2. The anticancer effects of miR-143 overexpression appeared to be mediated by targeting and inhibiting LIMK1 protein, and the phosphorylation of cofilin, a LIMK1 substrate. These findings clearly show that miR-143 restoration mitigated multiple cancer characteristics in the As-CSCs, suggesting a potential role in arsenic-induced transformation of prostate SCs. Thus, miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer. - Highlights: • Chronic arsenic exposure

  6. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration

    International Nuclear Information System (INIS)

    Ngalame, Ntube N.O.; Makia, Ngome L.; Waalkes, Michael P.; Tokar, Erik J.

    2016-01-01

    Inorganic arsenic, an environmental contaminant and a human carcinogen is associated with prostate cancer. Emerging evidence suggests that cancer stem cells (CSCs) are the driving force of carcinogenesis. Chronic arsenic exposure malignantly transforms the human normal prostate stem/progenitor cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs), through unknown mechanisms. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. In prior work, miR-143 was markedly downregulated in As-CSCs, suggesting a role in arsenic-induced malignant transformation. In the present study, we investigated whether loss of miR-143 expression is important in arsenic-induced transformation of prostate SCs. Restoration of miR-143 in As-CSCs was achieved by lentivirus-mediated miR-143 overexpression. Cells were assessed bi-weekly for up to 30 weeks to examine mitigation of cancer phenotype. Secreted matrix metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but miR-143 restoration decreased secreted MMP-2 and MMP-9 enzyme activities compared with scramble controls. Increased cell proliferation and apoptotic resistance, two hallmarks of cancer, were decreased upon miR-143 restoration. Increased apoptosis was associated with decreased BCL2 and BCL-XL expression. miR-143 restoration dysregulated the expression of SC/CSC self-renewal genes including NOTCH-1, BMI-1, OCT4 and ABCG2. The anticancer effects of miR-143 overexpression appeared to be mediated by targeting and inhibiting LIMK1 protein, and the phosphorylation of cofilin, a LIMK1 substrate. These findings clearly show that miR-143 restoration mitigated multiple cancer characteristics in the As-CSCs, suggesting a potential role in arsenic-induced transformation of prostate SCs. Thus, miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer. - Highlights: • Chronic arsenic exposure

  7. Cellular shear stiffness reflects progression of arsenic-induced transformation during G1

    DEFF Research Database (Denmark)

    Muñoz, Alexandra; Eldridge, Will J; Jakobsen, Nina Munkholt

    2017-01-01

    epithelial cells were exposed to sodium arsenite to initiate early stages of transformation. Exposed cells were cultured in soft agar to further transformation and select for clonal populations exhibiting anchorage independent growth. Shear stiffness of various cell populations in G1 was assessed using...... reduced stiffness relative to control clonal lines, which were cultured in soft agar but did not receive arsenic treatment. The relative standard deviation of the stiffness of Arsenic clones was reduced compared to control clones, as well as to the arsenic exposed cell population. Cell stiffness...

  8. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium

    International Nuclear Information System (INIS)

    Pelch, Katherine E.; Tokar, Erik J.; Merrick, B. Alex; Waalkes, Michael P.

    2015-01-01

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10 μM Cd for 11 weeks (CTPE) or 5 μM iAs for 29 weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (> 25-fold) and S100P (> 40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (> 15-fold) and NTM (> 1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. - Highlights: • Cd and iAs are known human carcinogens, yet neither appears directly mutagenic. • Prior data suggest epigenetic modification plays a role in Cd or iAs induced cancer. • Altered methylation of four misregulated genes was found in Cd or iAs transformants. • The resulting altered gene expression may be relevant to cellular

  9. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Pelch, Katherine E.; Tokar, Erik J. [National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Merrick, B. Alex [Molecular Toxicology and Informatics Group, Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Morrisville, NC 27560 (United States); Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov [National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States)

    2015-08-01

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10 μM Cd for 11 weeks (CTPE) or 5 μM iAs for 29 weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (> 25-fold) and S100P (> 40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (> 15-fold) and NTM (> 1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. - Highlights: • Cd and iAs are known human carcinogens, yet neither appears directly mutagenic. • Prior data suggest epigenetic modification plays a role in Cd or iAs induced cancer. • Altered methylation of four misregulated genes was found in Cd or iAs transformants. • The resulting altered gene expression may be relevant to cellular

  10. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium.

    Science.gov (United States)

    Pelch, Katherine E; Tokar, Erik J; Merrick, B Alex; Waalkes, Michael P

    2015-08-01

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10μM Cd for 11weeks (CTPE) or 5μM iAs for 29weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (>25-fold) and S100P (>40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (>15-fold) and NTM (>1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. Published by Elsevier Inc.

  11. Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells

    International Nuclear Information System (INIS)

    Escudero-Lourdes, C.; Wu, T.; Camarillo, J.M.; Gandolfi, A.J.

    2012-01-01

    The association between chronic human exposure to arsenicals and bladder cancer development is well recognized; however, the underlying molecular mechanisms have not been fully determined. We propose that inflammatory responses can play a pathogenic role in arsenic-related bladder carcinogenesis. In previous studies, it was demonstrated that chronic exposure to 50 nM monomethylarsenous acid [MMA(III)] leads to malignant transformation of an immortalized model of urothelial cells (UROtsa), with only 3 mo of exposure necessary to trigger the transformation-related changes. In the three-month window of exposure, the cells over-expressed pro-inflammatory cytokines (IL-1β, IL-6 and IL-8), consistent with the sustained activation of NFKβ and AP1/c-jun, ERK2, and STAT3. IL-8 was over-expressed within hours after exposure to MMA(III), and sustained over-expression was observed during chronic exposure. In this study, we profiled IL-8 expression in UROtsa cells exposed to 50 nM MMA(III) for 1 to 5 mo. IL-8 expression was increased mainly in cells after 3 mo MMA(III) exposure, and its production was also found increased in tumors derived from these cells after heterotransplantation in SCID mice. UROtsa cells do express both receptors, CXCR1 and CXCR2, suggesting that autocrine cell activation could be important in cell transformation. Supporting this observation and consistent with IL-8 over-expression, CXCR1 internalization was significantly increased after three months of exposure to MMA(III). The expression of MMP-9, cyclin D1, bcl-2, and VGEF was significantly increased in cells exposed to MMA(III) for 3 mo, but these mitogen-activated kinases were significantly decreased after IL-8 gene silencing, together with a decrease in cell proliferation rate and in anchorage-independent colony formation. These results suggest a relevant role of IL-8 in MMA(III)-induced UROtsa cell transformation. -- Highlights: ► IL-8 is over-expressed in human MMA(III)-exposed urothelial

  12. Beam-induced redox transformation of arsenic during As K-edge XAS measurements: availability of reducing or oxidizing agents and As speciation.

    Science.gov (United States)

    Han, Young Soo; Jeong, Hoon Young; Hyun, Sung Pil; Hayes, Kim F; Chon, Chul Min

    2018-05-01

    During X-ray absorption spectroscopy (XAS) measurements of arsenic (As), beam-induced redox transformation is often observed. In this study, the As species immobilized by poorly crystallized mackinawite (FeS) was assessed for the susceptibility to beam-induced redox reactions as a function of sample properties including the redox state of FeS and the solid-phase As speciation. The beam-induced oxidation of reduced As species was found to be mediated by the atmospheric O 2 and the oxidation products of FeS [e.g. Fe(III) (oxyhydr)oxides and intermediate sulfurs]. Regardless of the redox state of FeS, both arsenic sulfide and surface-complexed As(III) readily underwent the photo-oxidation upon exposure to the atmospheric O 2 during XAS measurements. With strict O 2 exclusion, however, both As(0) and arsenic sulfide were less prone to the photo-oxidation by Fe(III) (oxyhydr)oxides than NaAsO 2 and/or surface-complexed As(III). In case of unaerated As(V)-reacted FeS samples, surface-complexed As(V) was photocatalytically reduced during XAS measurements, but arsenic sulfide did not undergo the photo-reduction.

  13. Imaging malignant and apparent malignant transformation of benign gynaecological disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.Y.; Poder, L.; Qayyum, A.; Wang, Z.J.; Yeh, B.M. [Department of Radiology, University of California San Francisco, San Francisco, CA (United States); Coakley, F.V., E-mail: Fergus.Coakley@radiology.ucsf.ed [Department of Radiology, University of California San Francisco, San Francisco, CA (United States)

    2010-12-15

    Common benign gynaecological diseases, such as leiomyoma, adenomyosis, endometriosis, and mature teratoma, rarely undergo malignant transformation. Benign transformations that may mimic malignancy include benign metastasizing leiomyoma, massive ovarian oedema, decidualization of endometrioma, and rupture of mature teratoma. The aim of this review is to provide a contemporary overview of imaging findings in malignant and apparent malignant transformation of benign gynaecological disease.

  14. Inhibition of the Hedgehog Signaling Pathway Depresses the Cigarette Smoke-Induced Malignant Transformation of 16HBE Cells on a Microfluidic Chip.

    Science.gov (United States)

    Qin, Yong-Xin; Yang, Zhi-Hui; Du, Xiao-Hui; Zhao, Hui; Liu, Yuan-Bin; Guo, Zhe; Wang, Qi

    2018-05-20

    The hedgehog signaling system (HHS) plays an important role in the regulation of cell proliferation and differentiation during the embryonic phases. However, little is known about the involvement of HHS in the malignant transformation of cells. This study aimed to detect the role of HHS in the malignant transformation of human bronchial epithelial (16HBE) cells. In this study, two microfluidic chips were designed to investigate cigarette smoke extract (CSE)-induced malignant transformation of cells. Chip A contained a concentration gradient generator, while chip B had four cell chambers with a central channel. The 16HBE cells cultured in chip A were used to determine the optimal concentration of CSE for inducing malignant transformation. The 16HBE cells in chip B were cultured with 12.25% CSE (Group A), 12.25% CSE + 5 μmol/L cyclopamine (Group B), or normal complete medium as control for 8 months (Group C), to establish the in vitro lung inflammatory-cancer transformation model. The transformed cells were inoculated into 20 nude mice as cells alone (Group 1) or cells with cyclopamine (Group 2) for tumorigenesis testing. Expression of HHS proteins was detected by Western blot. Data were expressed as mean ± standard deviation. The t-test was used for paired samples, and the difference among groups was analyzed using a one-way analysis of variance. The optimal concentration of CSE was 12.25%. Expression of HHS proteins increased during the process of malignant transformation (Group B vs. Group A, F = 7.65, P < 0.05). After CSE exposure for 8 months, there were significant changes in cellular morphology, which allowed the transformed cells to grow into tumors in 40 days after being inoculated into nude mice. Cyclopamine could effectively depress the expression of HHS proteins (Group C vs. Group B, F = 6.47, P < 0.05) and prevent tumor growth in nude mice (Group 2 vs. Group 1, t = 31.59, P < 0.01). The activity of HHS is upregulated during the CSE-induced malignant

  15. The Risk of Radiation-Induced Tumors or Malignant Transformation After Single-Fraction Intracranial Radiosurgery: Results Based on a 25-Year Experience

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bruce E., E-mail: pollock.bruce@mayo.edu [Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota (United States); Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota (United States); Link, Michael J. [Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota (United States); Department of Otorhinolaryngology, Mayo Clinic College of Medicine, Rochester, Minnesota (United States); Stafford, Scott L. [Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota (United States); Parney, Ian F. [Department of Neurological Surgery, Mayo Clinic College of Medicine, Rochester, Minnesota (United States); Garces, Yolanda I.; Foote, Robert L. [Department of Radiation Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota (United States)

    2017-04-01

    Purpose: To determine the risk of radiation-induced tumors or malignant transformation after single-fraction intracranial stereotactic radiosurgery (SRS). Methods and Materials: We performed a retrospective review of 1837 patients who received single-fraction SRS for arteriovenous malformation or benign tumor (meningioma, vestibular schwannoma, pituitary adenoma, glomus tumor) at a single center between 1990 and 2009. Patients were excluded if they refused research authorization (n=31), had a genetic predisposition to tumor development (n=84), received prior or concurrent radiation therapy (n=79), or had less than 5 years of imaging follow-up after SRS (n=501). The median imaging follow-up period for the remaining 1142 patients was 9.0 years (range, 5-24.9 years). Results: No radiation-induced tumors were identified in 11,264 patient-years of follow-up after SRS. The risk of a radiation-induced tumor developing after SRS was 0.0% at 5 years (95% confidence interval [CI], 0.0%-0.4%), 0.0% at 10 years (95% CI, 0.0%-0.9%), and 0.0% at 15 years (95% CI, 0.0%-2.8%). Malignant transformation occurred in 7 of 316 meningioma patients (2.2%) and 1 of 358 vestibular schwannoma patients (0.3%) at a median of 4.9 years (range, 2.8-13.8 years) after SRS. No cases of malignant transformation were noted in patients with pituitary adenomas (n=188) or glomus tumors (n=47). The 5-, 10-, and 15-year risk of malignant transformation was 0.5% (95% CI, 0.0%-0.9%), 0.8% (95% CI, 0.0%-1.8%), and 2.4% (95% CI, 0.0%-5.5%), respectively. Patients who underwent prior resection (hazard ratio, 14.56; 95% CI, 1.79-118.33; P=.01) and who had meningioma pathology (hazard ratio, 11.72; 95% CI, 1.44-96.15; P=.02) were at increased risk of malignant transformation. Conclusions: The risk of radiation-induced tumors or malignant transformation after SRS is very low and should not be used as a justification for choosing alternative treatment approaches (surgical resection, observation) over SRS

  16. The Risk of Radiation-Induced Tumors or Malignant Transformation After Single-Fraction Intracranial Radiosurgery: Results Based on a 25-Year Experience

    International Nuclear Information System (INIS)

    Pollock, Bruce E.; Link, Michael J.; Stafford, Scott L.; Parney, Ian F.; Garces, Yolanda I.; Foote, Robert L.

    2017-01-01

    Purpose: To determine the risk of radiation-induced tumors or malignant transformation after single-fraction intracranial stereotactic radiosurgery (SRS). Methods and Materials: We performed a retrospective review of 1837 patients who received single-fraction SRS for arteriovenous malformation or benign tumor (meningioma, vestibular schwannoma, pituitary adenoma, glomus tumor) at a single center between 1990 and 2009. Patients were excluded if they refused research authorization (n=31), had a genetic predisposition to tumor development (n=84), received prior or concurrent radiation therapy (n=79), or had less than 5 years of imaging follow-up after SRS (n=501). The median imaging follow-up period for the remaining 1142 patients was 9.0 years (range, 5-24.9 years). Results: No radiation-induced tumors were identified in 11,264 patient-years of follow-up after SRS. The risk of a radiation-induced tumor developing after SRS was 0.0% at 5 years (95% confidence interval [CI], 0.0%-0.4%), 0.0% at 10 years (95% CI, 0.0%-0.9%), and 0.0% at 15 years (95% CI, 0.0%-2.8%). Malignant transformation occurred in 7 of 316 meningioma patients (2.2%) and 1 of 358 vestibular schwannoma patients (0.3%) at a median of 4.9 years (range, 2.8-13.8 years) after SRS. No cases of malignant transformation were noted in patients with pituitary adenomas (n=188) or glomus tumors (n=47). The 5-, 10-, and 15-year risk of malignant transformation was 0.5% (95% CI, 0.0%-0.9%), 0.8% (95% CI, 0.0%-1.8%), and 2.4% (95% CI, 0.0%-5.5%), respectively. Patients who underwent prior resection (hazard ratio, 14.56; 95% CI, 1.79-118.33; P=.01) and who had meningioma pathology (hazard ratio, 11.72; 95% CI, 1.44-96.15; P=.02) were at increased risk of malignant transformation. Conclusions: The risk of radiation-induced tumors or malignant transformation after SRS is very low and should not be used as a justification for choosing alternative treatment approaches (surgical resection, observation) over SRS

  17. Ground water pollution by arsenic and its effects on health. Involvement of metabolic methylation in arsenic-induced genetic damage and tumorigenesis; Muki hiso no mechiru ka taisha to idenshi shogaisei narabini shuyo yuhatsusei

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, K. [Nihon Univ., Tokyo (Japan)] Okada, S. [Shizuoka Prefecture (Japan)

    1997-07-10

    Drinking water contamination has become a worldwide problem. It is pointed out that re-evaluation of genetic damage with carcinogen is considered as an important problem particularly arsenic`s effects on health. To explain the genetic damage development mechanism of arsenic compound, results of the research conducted on the action of arsenic compound which develops during metabolic methylation process and inorganic arsenic are explained in this paper. The results of the study are summarized as follows. Arsenic genetic damage mutation is caused by dimethyl arsenic in main metabolism than inorganic arsenic. Lung DNA damage is induced by the interaction of O2 and arsenic peroxide radical. Dimethyl arsenic shows very important effect on lung cancer formation process which is induced based on 4-nitroquinoline-1-oxide (4NQO). It not only promotes lung cancer but it also plays an important role in malignant tumor`s mutation. 25 refs., 2 figs.

  18. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J., E-mail: tokare@niehs.nih.gov

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  19. Arsenic exposure induces the Warburg effect in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  20. Arsenic exposure induces the Warburg effect in cultured human cells

    International Nuclear Information System (INIS)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-01-01

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect

  1. Involvement of p53 Mutation and Mismatch Repair Proteins Dysregulation in NNK-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ying Shen

    2014-01-01

    Full Text Available Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers.

  2. Multiple Bowen's disease and epithelioid malignant peripheral nerve sheath tumor in a patient who experienced chronic arsenic poisoning

    Directory of Open Access Journals (Sweden)

    Ching-En Chen

    2017-01-01

    Full Text Available The Southwest coastal plain of Taiwan is an endemic area of arsenic contamination. Residents who lived there before the 1970s and who used raw groundwater for drinking have a higher risk of arsenic poisoning. In 1968, Tseng et al. described Blackfoot disease as a peripheral vascular disease caused by chronic exposure to arsenic, thereby introducing the concept of arsenic-induced systemic illness in Taiwan. Multiple Bowen's disease (BD is one of the characteristic consequences of chronic arsenic poisoning and it usually presents as cutaneous carcinoma in situ. Multiple BD can also be associated with squamous cell carcinoma and basal cell carcinoma of the skin, as well as lung, liver, gastrointestinal, and bladder cancers. We encountered a 79-year-old male from Yun-Lin, a county in Southwest Taiwan, who presented with a progressing tumor in his right anterior chest wall. In addition, numerous keratoses and scaly skin lesions were noted on his trunk and extremities, some of which were combined with erosions. The patient was diagnosed with chronic arsenic poisoning with multiple BD and the huge tumor was confirmed as an epithelioid malignant peripheral nerve sheath tumor.

  3. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Hitron, John Andrew [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Wise, James T.F. [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo [Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Xu, Mei; Luo, Jia [Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin, E-mail: xshi5@uky.edu [Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2015-10-15

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  4. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    International Nuclear Information System (INIS)

    Wang, Lei; Hitron, John Andrew; Wise, James T.F.; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Xu, Mei; Luo, Jia; Shi, Xianglin

    2015-01-01

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of both NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.

  5. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Wang, Dapeng [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Yamanaka, Kenzo [Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba (Japan); An, Yan, E-mail: dranyan@126.com [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China)

    2015-12-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  6. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Yang, Xu; Wang, Dapeng; Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian; Yamanaka, Kenzo; An, Yan

    2015-01-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  7. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    International Nuclear Information System (INIS)

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As 2 O 3

  8. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stueckle, Todd A., E-mail: tstueckle@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Lu, Yongju, E-mail: yongju6@hotmail.com [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Davis, Mary E., E-mail: mdavis@wvu.edu [Department of Physiology, West Virginia University, Morgantown, WV 26506 (United States); Wang, Liying, E-mail: lmw6@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Jiang, Bing-Hua, E-mail: bhjiang@jefferson.edu [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Holaskova, Ida, E-mail: iholaskova@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Schafer, Rosana, E-mail: rschafer@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Barnett, John B., E-mail: jbarnett@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon, E-mail: yrojan@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  9. Markers of Oral Lichen Planus Malignant Transformation

    Science.gov (United States)

    Tampa, Mircea; Mitran, Madalina; Mitran, Cristina; Matei, Clara; Georgescu, Simona-Roxana

    2018-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease of unknown etiology with significant impact on patients' quality of life. Malignant transformation into oral squamous cell carcinoma (OSCC) is considered as one of the most serious complications of the disease; nevertheless, controversy still persists. Various factors seem to be involved in the progression of malignant transformation; however, the mechanism of this process is not fully understood yet. Molecular alterations detected in OLP samples might represent useful biomarkers for predicting and monitoring the malignant progression. In this review, we discuss various studies which highlight different molecules as ominous predictors of OLP malignant transformation. PMID:29682099

  10. Malignant transformation of guinea pig cells after exposure to ultraviolet-irradiated guinea pig cytomegalovirus

    International Nuclear Information System (INIS)

    Isom, H.C.; Mummaw, J.; Kreider, J.W.

    1983-01-01

    Guinea pig cells were malignantly transformed in vitro by ultraviolet (uv)-irradiated guinea pig cytomegalovirus (GPCMV). When guinea pig hepatocyte monolayers were infected with uv-irradiated GPCMV, three continuous epithelioid cell lines which grew in soft agarose were established. Two independently derived GPCMV-transformed liver cells and a cell line derived from a soft agarose clone of one of these lines induced invasive tumors when inoculated subcutaneously or intraperitoneally into nude mice. The tumors were sarcomas possibly derived from hepatic stroma or sinusoid. Transformed cell lines were also established after infection of guinea pig hepatocyte monolayers with human cytomegalovirus (HCMV) or simian virus 40 (SV40). These cell lines also formed colonies in soft agarose and induced sarcomas in nude mice. It is concluded that (i) GPCMV can malignantly transform guinea pig cells; (ii) cloning of GPCMV-transformed cells in soft agarose produced cells that induced tumors with a shorter latency period but with no alteration in growth rate or final tumor size; and (iii) the tumors produced by GPCMV-and HCMV-transformed guinea pig cells were more similar to each other in growth rate than to those induced by SV40-transformed guinea pig cells

  11. Arsenic and skin cancer – Case report with chemoprevention

    Directory of Open Access Journals (Sweden)

    Uwe Wollina

    2016-04-01

    Full Text Available ABSTRACT Introduction: Arsenic is a potentially hazardous metalloid that can cause skin cancer. We want to demonstrate a case of chronic arsenicosis and the potential of chemoprevention with retinoids. Case Report: This is a case report of a 72-year-old male patient who was exposed to arsenics by dust and direct skin contact over 3 years in a chemical plant in the late fourties. He developed multiple arsenic keratosis clincialll resembling actinic keratoses, Bowen’s disease and palmar minute keratoses. To prevent a transformation into invasive cancer and to lower the burden of precancerous and in situ cancer lesions, he was treated orally with acitretin 20 mg/day. During 9 months of chemopreventive retinoid therapy a partial response of pre-existent skin lesions was noted. Treatment was well tolerated. During follow-up of 5 years no invasive malignancy developed. Conclusions: Intense exposure to arsenics during a relatively short period of 3 years bears a life-long health hazard with the delayed development of multiple in situ carcinomas and precancerous lesions. Chemoprevention with retinoids can induce a partial response.

  12. Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation.

    Science.gov (United States)

    Jebelli, Mohammad Ahmadi; Maleki, Afshin; Amoozegar, Mohammad Ali; Kalantar, Enayatollah; Shahmoradi, Behzad; Gharibi, Fardin

    2017-06-01

    Arsenic is a known human carcinogen. Arsenite [As(III), H 3 AsO 3 ] and arsenate [As(V), H 2 AsO 4 - and HAsO 4 2- ] are the two predominant compounds of As found in surface water and groundwater. The aim of this study was to explore a bioremediation strategy for biotransformation of arsenite to arsenate by microorganisms. In this study, Babagorgor Spring, located west of Iran, was selected as the arsenic-contaminated source and its physicochemical characteristics and in situ microbiological composition were analyzed. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) analysis indicated that the arsenic level was 614μg/l. Fourteen arsenic tolerant indigenous bacteria were isolated from arsenic-contaminated water using chemically defined medium (CDM), supplemented with 260-3900mg/l arsenite and 1560-21800mg/l arsenate. Among the isolates, a strain As-11 exhibited high ability of arsenic transformation. Biochemical tests were used for bacterial identification and confirmation was conducted by 16S rRNA sequence analysis. Results confirmed that As-11 was related to the genus Pseudomonas. This bacterium showed maximum tolerable concentration to arsenite up to 3250mg/l and arsenate up to 20280mg/l. Under heterotrophic conditions, the bacterium exhibited 48% of As(III) and 78% of As(V) transformation from the medium amended with 130 and 312mg/l of sodium arsenite and sodium arsenate, respectively. Moreover, under chemolithotrophic conditions, bacterium was able to transform 41% of 130mg/l of As(III) from the medium amended with nitrate as the terminal electron acceptor. Pseudomonas strain As-11 was reported as an arsenic transformer, for the first time. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  14. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    International Nuclear Information System (INIS)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-01-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  15. Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

    Science.gov (United States)

    Wu, Chin-Han; Tseng, Ya-Shih; Yang, Chao-Chun; Kao, Yu-Ting; Sheu, Hamm-Ming; Liu, Hsiao-Sheng

    2013-11-01

    Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive. Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5 μM and 1 μM for 2-7 days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4 weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer

  16. Malignant transformation of fibrous dysplasia into chondroblastic osteosarcoma

    International Nuclear Information System (INIS)

    Kaushik, Shaifali; Smoker, Wendy R.K.; Frable, William J.

    2002-01-01

    A case of malignant transformation of polyostotic fibrous dysplasia into maxillary chondroblastic osteosarcoma is presented. The clinical, radiographic, CT, MR imaging features and pathological findings of polyostotic fibrous dysplasia and its malignant transformation are described. Malignant transformation of fibrous dysplasia is rare and has not previously been described in the English literature in this location in McCune-Albright syndrome and in the absence of radiation treatment. (orig.)

  17. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Jiang, Yue; Jing, Yi; He, Jun; Rojanasakul, Yon; Liu, Ling-Zhi; Jiang, Bing-Hua

    2011-01-01

    Highlights: ► Chronic exposure to arsenite induces cell proliferation and transformation. ► Arsenite-induced transformation increases ROS production and downstream signalings. ► Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. ► Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.

  18. Cancer Stem-Like Cells Accumulated in Nickel-Induced Malignant Transformation

    Science.gov (United States)

    Wang, Lei; Fan, Jia; Hitron, John Andrew; Son, Young-Ok; Wise, James T.F.; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Pratheeshkumar, Poyil; Zhang, Zhuo; Shi, Xianglin

    2016-01-01

    Nickel compounds are known as human carcinogens. Chronic environmental exposure to nickel is a worldwide health concern. Although the mechanisms of nickel-induced carcinogenesis are not well understood, recent studies suggest that stem cells/cancer stem cells are likely important targets. This study examines the role of cancer stem cells in nickel-induced cell transformation. The nontransformed human bronchial epithelial cell line (Beas-2B) was chronically exposed to nickel chloride for 12 months to induce cell transformation. Nickel induced Beas-2B cell transformation, and cancer stem-like cells were enriched in nickel-transformed cell (BNiT) population. The BNiT cancer stem-like cells demonstrated enhanced self-renewal and distinctive differentiation properties. In vivo tumorigenesis studies show that BNiT cancer stem-like cells possess a high tumor-initiating capability. It was also demonstrated that superoxide dismutase 1 was involved in the accumulation of cancer stem-like cells; the regulation of superoxide dismutase 1 expression was different in transformed stem-like cells and nontransformed. Overall, the accumulation of stem-like cells and their enhanced stemness functions contribute to nickel-induced tumorigenesis. Our study provides additional insight into the mechanisms by which metals or other chemicals can induce carcinogenesis. PMID:26962057

  19. Malignant transformation potentials of human umbilical cord mesenchymal stem cells both spontaneously and via 3-methycholanthrene induction.

    Directory of Open Access Journals (Sweden)

    Qiuling Tang

    Full Text Available Human umbilical cord mesenchymal stem cells (HUMSCs are highly proliferative and can be induced to differentiate into advanced derivatives of all three germ layers. Thus, HUMSCs are considered to be a promising source for cell-targeted therapies and tissue engineering. However there are reports on spontaneous transformation of mesenchymal stem cells (MSCs derived from human bone marrows. The capacity for HUMSCs to undergo malignant transform spontaneously or via induction by chemical carcinogens is presently unknown. Therefore, we isolated HUMSCs from 10 donors and assessed their transformation potential either spontaneously or by treating them with 3-methycholanthrene (3-MCA, a DNA-damaging carcinogen. The malignant transformation of HUMSCs in vitro was evaluated by morphological changes, proliferation rates, ability to enter cell senescence, the telomerase activity, chromosomal abnormality, and the ability to form tumors in vivo. Our studies showed that HUMSCs from all 10 donors ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUMSCs from two of the 10 donors treated with 3-MCA displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. When these cells (tHUMSCs were injected into immunodeficient mice, they gave rise to sarcoma-like or poorly differentiated tumors. Moreover, in contrast to HUMSCs, tHUMSCs showed a positive expression of human telomerase reverse transcriptase (hTERT and did not exhibit a shortening of the relative telomere length during the long-term culture in vitro. Our studies demonstrate that HUMSCs are not susceptible to spontaneous malignant transformation. However, the malignant transformation could be induced by chemical carcinogen 3-MCA.

  20. Malignant Transformation Potentials of Human Umbilical Cord Mesenchymal Stem Cells Both Spontaneously and via 3-Methycholanthrene Induction

    Science.gov (United States)

    Lai, Xiulan; Liu, Sizheng; Chen, Yezeng; Zheng, Zexin; Xie, Qingdong; Maldonado, Martin; Cai, Zhiwei; Qin, Shan; Ho, Guyu; Ma, Lian

    2013-01-01

    Human umbilical cord mesenchymal stem cells (HUMSCs) are highly proliferative and can be induced to differentiate into advanced derivatives of all three germ layers. Thus, HUMSCs are considered to be a promising source for cell-targeted therapies and tissue engineering. However there are reports on spontaneous transformation of mesenchymal stem cells (MSCs) derived from human bone marrows. The capacity for HUMSCs to undergo malignant transform spontaneously or via induction by chemical carcinogens is presently unknown. Therefore, we isolated HUMSCs from 10 donors and assessed their transformation potential either spontaneously or by treating them with 3-methycholanthrene (3-MCA), a DNA-damaging carcinogen. The malignant transformation of HUMSCs in vitro was evaluated by morphological changes, proliferation rates, ability to enter cell senescence, the telomerase activity, chromosomal abnormality, and the ability to form tumors in vivo. Our studies showed that HUMSCs from all 10 donors ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUMSCs from two of the 10 donors treated with 3-MCA displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. When these cells (tHUMSCs) were injected into immunodeficient mice, they gave rise to sarcoma-like or poorly differentiated tumors. Moreover, in contrast to HUMSCs, tHUMSCs showed a positive expression of human telomerase reverse transcriptase (hTERT) and did not exhibit a shortening of the relative telomere length during the long-term culture in vitro. Our studies demonstrate that HUMSCs are not susceptible to spontaneous malignant transformation. However, the malignant transformation could be induced by chemical carcinogen 3-MCA. PMID:24339974

  1. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract

    International Nuclear Information System (INIS)

    Liu, Yi; Luo, Fei; Xu, Yuan; Wang, Bairu; Zhao, Yue; Xu, Wenchao; Shi, Le; Lu, Xiaolin; Liu, Qizhan

    2015-01-01

    The incidence of lung diseases, including cancer, caused by cigarette smoke is increasing, but the molecular mechanisms of gene regulation induced by cigarette smoke remain unclear. This report describes a long noncoding RNA (lncRNA) that is induced by cigarette smoke extract (CSE) and experiments utilizing lncRNAs to integrate inflammation with the epithelial-mesenchymal transition (EMT) in human bronchial epithelial (HBE) cells. The present study shows that, induced by CSE, IL-6, a pro-inflammatory cytokine, leads to activation of STAT3, a transcription activator. A ChIP assay determined that the interaction of STAT3 with the promoter regions of HOX transcript antisense RNA (HOTAIR) increased levels of HOTAIR. Blocking of IL-6 with anti-IL-6 antibody, decreasing STAT3, and inhibiting STAT3 activation reduced HOTAIR expression. Moreover, for HBE cells cultured in the presence of HOTAIR siRNA for 24 h, the CSE-induced EMT, formation of cancer stem cells (CSCs), and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates HOTAIR in an autocrine manner, contributes to the EMT and to CSCs induced by CSE. These data define a link between inflammation and EMT, processes involved in the malignant transformation of cells caused by CSE. This link, mediated through lncRNAs, establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • STAT3 directly regulates the levels of LncRNA HOTAIR. • LncRNA HOTAIR mediates the link between inflammation and EMT. • LncRNA HOTAIR is involved in the malignant transformation of cells caused by CSE

  2. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    The effects of NO on alleviating arsenic-induced oxidative damage in tall fescue leaves were investigated. Arsenic (25 M) treatment induced significantly accumulation of reactive oxygen species (ROS) and led to serious lipid peroxidation in tall fescue leaves and the application of 100 M SNP before arsenic stress resulted ...

  3. Meta-analysis of the predictive value of DNA aneuploidy in malignant transformation of oral potentially malignant disorders.

    Science.gov (United States)

    Alaizari, Nader A; Sperandio, Marcelo; Odell, Edward W; Peruzzo, Daiane; Al-Maweri, Sadeq A

    2018-02-01

    DNA aneuploidy is an imbalance of chromosomal DNA content that has been highlighted as a predictor of biological behavior and risk of malignant transformation. To date, DNA aneuploidy in oral potentially malignant diseases (OPMD) has been shown to correlate strongly with severe dysplasia and high-risk lesions that appeared non-dysplastic can be identified by ploidy analysis. Nevertheless, the prognostic value of DNA aneuploidy in predicting malignant transformation of OPMD remains to be validated. The aim of this meta-analysis was to assess the role of DNA aneuploidy in predicting malignant transformation in OPMD. The questions addressed were (i) Is DNA aneuploidy a useful marker to predict malignant transformation in OPMD? (ii) Is DNA diploidy a useful negative marker of malignant transformation in OPMD? These questions were addressed using the PECO method. Five studies assessing aneuploidy as a risk marker of malignant change were pooled into the meta-analysis. Aneuploidy was found to be associated with a 3.12-fold increased risk to progress into cancer (RR=3.12, 95% CI 1.86-5.24). Based on the five studies meta-analyzed, "no malignant progression" was more likely to occur in DNA diploid OPMD by 82% when compared to aneuploidy (RR=0.18, 95% CI 0.08-0.41). In conclusion, aneuploidy is a useful marker of malignant transformation in OPMD, although a diploid result should be interpreted with caution. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Arginine inhibits the malignant transformation induced by interferon-gamma through the NF-κB-GCN2/eIF2α signaling pathway in mammary epithelial cells in vitro and in vivo.

    Science.gov (United States)

    Ren, Wenbo; Li, Yang; Xia, Xiaojing; Guo, Wenfei; Zhai, Taiyu; Jin, Yuting; Che, Yanyi; Gao, Haidi; Duan, Xiumei; Ma, Hongxi; Huang, Tinghao; Huang, Jing; Lei, Liancheng

    2018-07-15

    Breast cancer is the most common female malignant tumors in the world. It seriously affects women's physical and mental health and the leading cause of cancer death among women. Our previous study demonstrated that diet-derived IFN-γ promoted the malignant transformation of primary bovine mammary epithelial cells by accelerating arginine depletion. The current study aimed to explore whether arginine addition could inhibit the degree of malignant transformation and its molecular mechanism. The results indicate that arginine addition could alleviate the malignant transformation of mammary epithelial cells induced by IFN-γ, including reducing cell proliferation, cell migration and colony formation, through the NF-κB-GCN2/eIF2α pathway. The in vivo experiments also consistently confirmed that arginine supplementation could significantly inhibit tumor growth in tumor-bearing mice. Furthermore, the investigation of the clinical data also revealed that the plasma or tissue from human breast cancer patients owned lower arginine level and higher IFN-γ level than that from patients with benign breast disease, showing IFN-γ may be a potential control target. Our findings demonstrate that arginine supplement could antagonize the malignant transformation of mammary epithelial cells induced by IFN-γ (nutritionally induced) both in vitro and in vivo, and IFN-γ was higher in breast cancer women. This might provide a novel strategy for the prevention and treatment of breast cancer regarding to nutrition. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  6. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    International Nuclear Information System (INIS)

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy

  7. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    Directory of Open Access Journals (Sweden)

    Fabrizio Bianchi

    2013-04-01

    Full Text Available The arsenic (As exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects.

  8. Appearance and evolution of the specific chromosomal rearrangements associated with malignant transformation of mouse m5S cells

    International Nuclear Information System (INIS)

    Kodama, S.; Okumura, Y.; Komatsu, K.; Sasaki, M.S.

    1991-01-01

    Chromosomal alterations were studied during the acquisition of malignant phenotypes in two karyotypically distinct cells isolated from transformed foci induced by x-irradiation in mouse m5S cells. Because the transformants, despite foci origin, showed low ability to grow in agar, they were cultured in vitro with serial transfer schedules to allow further cell generations and assayed for anchorage independence (AI) at each passage level. The AI frequency increased with the cell doubling numbers. Chromosome analysis showed that a focus was one cell origin, but the transformants showed karyotypic instability during cell proliferation, giving rise to the rearrangements clustered in the distal region of the specific chromosomes. These rearrangements appeared to be directed toward the acquisition of malignant phenotypes. Analysis of the types and sites of rearrangements indicated that a mechanism exists that induces frequent rearrangements of the specific region of a chromosome during the process of transformation into the malignant state

  9. Malignant transformation of nodular hyperplasia in the thyroid: a case report

    International Nuclear Information System (INIS)

    In, Hyun Sin; Kim, Dong Wook; Yoon, Hye Kyoung

    2007-01-01

    Thyroid carcinogenesis is traditionally thought to originate 'de novo'. However, it is debatable whether a malignant transformation can possibly arise from a benign thyroid nodule, as suggested for the malignant transformation of a thyroid adenoma. To the best of our knowledge, no studies have been performed addressing the malignant transformation of nodular hyperplasia in the thyroid gland. Here, we report a case of nodular hyperplasia with focally malignant degeneration

  10. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    2015-02-01

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% and 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.

  11. [A study on the relationship between drinking water with high arsenic content and incidence of malignant tumour in Heihe Village, western part of Huhehot, Inner Mongolia].

    Science.gov (United States)

    Luo, F J; Luo, Z D; Ma, L

    1995-10-01

    Since 1991, it has been repeatedly reported that endemic arsenism was noticed in the large areas in the middle and west parts of Inne Mongolian Autonomous Region. Heihe village is located in a geological area with rich natural arsenic. The inhabitants of the village have drunk the water with high arsenic content for a long time and many people have died of malignant tumours. A historical prospective method has been used in the study. The research has been carried out chronologically on the statistical relationship between drinking water with high arsenic content consumed by local inhabitants for 22 years and the mortality of malignant tumours. This study has confirmed that the accumulated mortality rate and the average mortality rate of Heihe villagers who had drunk the water with high arsenic content for a number of total 22 years (from January 1971 to January 1993) were 13 590/10(5) person-year and 642.01/10(5) person-year. In terms of the portion among all malignant tumour deaths, cancer for the lung takes the lead, followed by liver cancer and then bladder cancer. The risk of death of malignant tumours in the villagers who drink water with high arsenic content was 9.38 times to the risk in the inhabitants who do not drink water with high arsenic content.

  12. Accumulation and suppressive function of regulatory T cells in malignant ascites: Reducing their suppressive function using arsenic trioxide in vitro.

    Science.gov (United States)

    Hu, Zilong; Hu, Shidong; Wu, Youjun; Li, Songyan; He, Changzheng; Xing, Xiaowei; Wang, Yufeng; Du, Xiaohui

    2018-04-01

    Although adoptive cell therapy (ACT) has demonstrated effective and remarkable clinical responses in several studies, this approach does not lead to objective clinical responses in all cases. The function of ACT is often compromised by various tumor escape mechanisms, including the accumulation of immunoregulatory cells. As a result of peritoneal metastasis in the terminal stage, malignant ascites fluid lacks effectiveness and is a poor prognostic factor for gastric cancer. The present study assessed T-cell subsets in lymphocytes derived from malignant ascites, and investigated the effects of arsenic trioxide (As 2 O 3 ) on regulatory T cells (Tregs) and ascites-derived tumor-infiltrating lymphocytes (TILs) in vitro . In this study, lymphocytes were separated from malignant ascites and T-cell subsets were detected via flow cytometry. Forkhead box P3 (FoxP3) expression was assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. In addition, cytokines, including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and interferon-γ (IFN-γ), were measured by enzyme-linked immunosorbent assay (ELISA). Abundant Tregs were observed in ascites lymphocytes, which and exhibited a significantly increased frequency compared with that in the peripheral blood of patients. Furthermore, As 2 O 3 treatment significantly reduced Treg numbers and Foxp3 mRNA levels in vitro (P<0.05). IFN-γ levels in the supernatant of ascites-derived TILs were increased by As 2 O 3 , whereas IL-10 and TGF-β levels were significantly reduced (P<0.05). As 2 O 3 may induce selective depletion and inhibit immunosuppressive function of Tregs, and may enhance the cytotoxic activity of ascites-derived TILs.

  13. MALIGNANT TRANSFORMATION OF EROSIVE ORAL LICHEN PLANUS

    Directory of Open Access Journals (Sweden)

    Siti Chumaeroh

    2006-04-01

    Full Text Available Lichen planus is a relatively common inflammatory disorder which may have cutaneous and or mucosal manifestation. The malignant potential of oral lichen planus is still debatable. Some authors are sceptical about the premalignant nature of the disease, while other investigators have reported that malignant transformations occur in 1-10% of the cases. The aim of this study is to report a case of erosive lichen plans which shows malignant transformation of histopathologic examination. A man of 39 years old visited the Dental Department or Kajradi's Hospital with pain symptoms of the palate, buccal and gingival mucosa on both sides for 6 months. The physical examination shows the white lesion with striae configuration and pain, red erosive area inside the palate extends to the buccal mucosa and the gingival mucosa. The suspect diagnosis is erosive lichen planus, but the histopathologic examination shows epidermoid carcinoma. It is concluded that erosive oral lichen planus has the potential to transform into epidermoid carcinoma.

  14. Malignant transformation of breast fibroadenoma to malignant phyllodes tumor: long-term outcome of 36 malignant phyllodes tumors.

    Science.gov (United States)

    Abe, Makoto; Miyata, Satoshi; Nishimura, Seiichiro; Iijima, Kotaro; Makita, Masujiro; Akiyama, Futoshi; Iwase, Takuji

    2011-10-01

    Malignant phyllodes tumor of the breast is a rare neoplasm for which clinical findings remain insufficient for determination of optimal management. We examined the clinical behavior of these lesions in an attempt to determine appropriate management. We evaluated long-term outcome and clinical characteristics of malignant phyllodes tumors arising from fibroadenomas of the breast. A total of 173 patients were given a diagnosis of phyllodes tumor and underwent surgery at the Cancer Institute Hospital in Japan between January 1980 and December 1999. Of these patients, 39 (22.5%) were given a diagnosis of malignant phyllodes tumor; in three of these cases, detailed medical records were lost. Malignant phyllodes tumors were classified into two groups based on history of malignant transformation. Of the 36 malignant cases, 11 (30.6%) were primary and were given a diagnosis of fibroadenoma, experienced recurrence during the follow-up period, and were diagnosed with malignant phyllodes tumor (cases with a history of fibroadenoma). The other group was defined as cases without history of fibroadenoma and in whom lesions initially occurred as malignant phyllodes tumors. Based on differences between the two groups, overall survival curves were plotted using the Kaplan–Meier method, and statistical comparisons were performed using the log-rank test and Peto and Peto’s test. The outcome of cases with history of fibroadenoma was significantly better than that of cases without history of fibroadenoma. Patients with malignant phyllodes tumors but without prior history of malignant transformation who exhibit rapid growth within 6 months require aggressive treatment.

  15. Study on oxidative lipid and DNA damages in the malignant transformed BEP2D cells induced by α-particle exposure

    International Nuclear Information System (INIS)

    Gou Qiao; Wang Chunyan; Zhang Cuilan; Tong Peng; Su Xu

    2012-01-01

    Objective: To investigate the mechanism of malignant transformation in human bronchial epithelial cell line BEP2D exposed to α-particles. Methods: The levels of intracellular ROS and malonaldehyde (MDA) in BEP2D, RH22 (passage 22 of α-particle-irradiated BEP2D cells) and BERP35T-1 cells (derived from nude mice bearing malignant transformed cells generated from the passage 35 of α-particle-irradiated BEP2D cells) were assayed with DCFH-DA and MDA kit, respectively. The expressions of 8-OH-dG and γ-H2AX in BEP2D, RH23 (passage 23 of α-particle-irradiated BEP2D cells) and BERP35T-1 cells were also measured with immunocytochemistry and immunofluorescence staining. Results: Compared to BEP2D cells, the levels of ROS (t=4.30 and 3.94, P<0.05) and MDA (t=4.89 and 15.10, P<0.05) increased in RH22 and BERP35T-1 cells. The expressions of 8-OH-dG (t=3.80 and 2.92, P<0.05) and γ-H2AX (t=7.61 and 12.67, P<0.05) in RH23 and BERP35T-1 cells were also higher than those in BEP2D cells. Conclusions: Oxidative stress induces lipid peroxidation and DNA damage leading to genomic instability, which could contribute to cellular malignant transforming process in the human bronchial epithelial cell line BEP2D with α-particle exposure. (authors)

  16. Malignant transformation in vitro: criteria, biological markers, and application in environmental screening of carcinogens

    International Nuclear Information System (INIS)

    Borek, C.

    1979-01-01

    Biological markers which distinguish malignantly transformed fibroblasts from their normal counterpart include pleomorphic morphology, lowered requirement for nutritional factors, loss of density inhibition of growth, complex topography as discernible by scanning electron microscopy, loss in surface proteins, incomplete glycosylation of membrane glycolylipids and glycoproteins, increased production of specific proteases, decreased organization of the cytoskeleton, and acquisition of neoantigens. Several of these markers are not consistently found in transformed epithelial cells and therefore cannot serve to distinguish unequivocally neoplastic epithelial cells from the normal counterparts. The only criteria associated with the transformed nature of both fibroblasts and epithelial cells are the ability of the cells to proliferate in semisolid medium and to induce tumors in appropriate hosts. In vitro systems represent a powerful tool for screening the mutagenic/oncogenic potential of physical, chemical, and environmental agents. Fibroblasts rather than epithelial cells are preferred for this purpose at the present time because of the clear-cut phenotypic differences between the normal and the transformed cells. These systems have been useful in establishing that malignant transformation can be induced by doses as low as 1 rad of X rays or 0.1 rad of neutrons, and that fractionation at low dose levelsleads to enhanced transformation. They have been useful in identifying a large number of hazardous chemicals and in evaluating the relationship between the mutagenic and carcinogenic potential of radiation and chemicals

  17. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation

    International Nuclear Information System (INIS)

    Lu, Jian; Zhou, Zhongping; Zheng, Jianzhou; Zhang, Zhuyi; Lu, Rongzhu; Liu, Hanqing; Shi, Haifeng; Tu, Zhigang

    2015-01-01

    Cadmium is a toxic heavy metal present in the environment and in industrial materials. Cadmium has demonstrated carcinogenic activity that induces cell transformation, but how this occurs is unclear. We used 2D-DIGE and MALDI TOF/TOF MS combined with bioinformatics and immunoblotting to investigate the molecular mechanism of cadmium transformation. We found that small GTPases were critical for transformation. Additionally, proteins involved in mitochondrial transcription, DNA repair, and translation also had altered expression patterns in cadmium treated cells. Collectively, our results suggest that activation of small GTPases contributes to cadmium-induced transformation of colon cells. - Highlights: • Colon epithelial cell line is firstly successfully transformed by cadmium. • 2D-DIGE is applied to visualize the differentially expressed proteins. • RhoA plays an important role in cadmium induced malignant transformation. • Bioinformatic and experimental methods are combined to explore new mechanisms.

  18. 2D-DIGE and MALDI TOF/TOF MS analysis reveal that small GTPase signaling pathways may play an important role in cadmium-induced colon cell malignant transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jian, E-mail: lujian@ujs.edu.cn [School of Medicine, Jiangsu University, Zhenjiang 212013 (China); Institute of Life Sciences, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhongping [School of Medicine, Jiangsu University, Zhenjiang 212013 (China); Institute of Life Sciences, Jiangsu University, Zhenjiang 212013 (China); Zheng, Jianzhou [Department of Respiration Medicine, Changzhou No.2 People' s Hospital, Changzhou 213003 (China); Zhang, Zhuyi [School of Medicine, Jiangsu University, Zhenjiang 212013 (China); Institute of Life Sciences, Jiangsu University, Zhenjiang 212013 (China); Lu, Rongzhu [School of Medicine, Jiangsu University, Zhenjiang 212013 (China); Liu, Hanqing [School of Pharmacy, Jiangsu University, Zhenjiang 212013 (China); Shi, Haifeng [Institute of Life Sciences, Jiangsu University, Zhenjiang 212013 (China); Tu, Zhigang, E-mail: tuzg_ujs@ujs.edu.cn [Institute of Life Sciences, Jiangsu University, Zhenjiang 212013 (China)

    2015-10-01

    Cadmium is a toxic heavy metal present in the environment and in industrial materials. Cadmium has demonstrated carcinogenic activity that induces cell transformation, but how this occurs is unclear. We used 2D-DIGE and MALDI TOF/TOF MS combined with bioinformatics and immunoblotting to investigate the molecular mechanism of cadmium transformation. We found that small GTPases were critical for transformation. Additionally, proteins involved in mitochondrial transcription, DNA repair, and translation also had altered expression patterns in cadmium treated cells. Collectively, our results suggest that activation of small GTPases contributes to cadmium-induced transformation of colon cells. - Highlights: • Colon epithelial cell line is firstly successfully transformed by cadmium. • 2D-DIGE is applied to visualize the differentially expressed proteins. • RhoA plays an important role in cadmium induced malignant transformation. • Bioinformatic and experimental methods are combined to explore new mechanisms.

  19. Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan

    International Nuclear Information System (INIS)

    Chen, C.-J.; Hsu, L.-I; Wang, C.-H.

    2005-01-01

    Long-term exposure to inorganic arsenic from drinking water has been documented to induce cancers and vascular diseases in a dose-response relationship. A series of molecular environmental epidemiological studies have been carried out to elucidate biomarkers of exposure, effect, and susceptibility for arsenic-related health hazards in Taiwan. Arsenic levels in urine, hair, and nail are biomarkers for short-term (<1 year) internal dose, skin hyperpigmentation and palmoplantar hyperkeratosis are for long-term (many years) internal dose, and percentage of monomethylarsonic acid in total metabolites of inorganic arsenic in urine may be considered as an exposure marker for biologically effective dose. The biomarkers of early biological effects of ingested inorganic arsenic included blood levels of reactive oxidants and anti-oxidant capacity, genetic expression of inflammatory molecules, as well as cytogenetic changes including sister chromatid exchange, micronuclei, and chromosome aberrations of peripheral lymphocytes. Both mutation type and hot spots of p53 gene were significantly different in arsenic-induced and non-arsenic-induced TCCs. The frequency of chromosomal imbalances analyzed by comparative genomic hybridization and the frequency of loss of heterozygosity were significantly higher in arsenic-induced TCC than non-arsenic-induced TCC at specific sites. Biomarkers of susceptibility to arsenic-induced health hazards included genetic polymorphisms of enzymes involved in xenobiotic metabolism, DNA repair, and oxidative stress, as well as serum level of carotenoids. Gene-gene and gene-environment interactions are involved in arsenic-induced health hazards through toxicological mechanisms including genomic instability and oxidative stress

  20. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats

    International Nuclear Information System (INIS)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-01-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. - Highlights: • Arsenic exposure has been associated with a number of adverse health effects. • The molecular mechanisms involved in arsenic-induced cardiotoxicity remain unclear. • Differential proteins were identified in arsenic-exposed rat heart by proteomics. • Arsenic induces heart toxicity through the Akt/p38 MAPK signaling pathway. - Label-free quantitative proteomic analysis of rat heart reveals putative mechanisms and biomarkers for arsenic-induced cardiotoxicity.

  1. Transformation of benign fibroadenoma to malignant phyllodes tumor

    International Nuclear Information System (INIS)

    Sanders, Linda M; Daigle, Megan E; Tortora, Matthew; Panasiti, Ryane

    2015-01-01

    The transformation of a benign fibroadenoma into a phyllodes tumor is uncommon and unpredictable. We report the case of a 40-year-old woman with a core biopsy proven fibroadenoma that underwent transformation into a malignant phyllodes tumor after 3 years of size stability. We present ultrasound and magnetic resonance images, as well as pathology slides from core biopsy and surgical excision, to illustrate this transformation. It has been suggested that phyllodes tumors may be misdiagnosed as fibroadenomas by core biopsy. However, in this case, pathology supports correct initial diagnosis of fibroadenoma and demonstrates a portion of the original fibroadenoma along the periphery of the malignant phyllodes tumor

  2. Malignant Transformation of Oral Lichen Planus

    Directory of Open Access Journals (Sweden)

    Sangeeta Wanjari

    2010-01-01

    Full Text Available Oral lichen planus (OLP is a chronic inflammatory mucocutaneous disease that frequently involves the oral mucosa. It has been regarded by many authors as a premalignant condition. There has been a continuous debate regarding the possible malignant potential of OLP, and these patients have been recommended to have their lesions monitored two to four times annually. A case of a lichen planus transformed into malignancy is reported here. This case does not provide answers to the ongoing controversy about the innate propensity of OLP to become malignant. However, in view of common occurrence of OLP and unresolved issue regarding its malignant potential (MP, thus case report illustrates the need for histologic confirmation and close follow-up of patients with clinical lesions that have lichenoid features.

  3. Malignant transformation from benign papillomatosis of the external auditory canal.

    Science.gov (United States)

    Miah, Mohammed S; Crawford, Mairi; White, Sharon J; Hussain, Syed Shah Musheer

    2012-06-01

    Report a case of malignant transformation of benign ear canal papillomatosis to malignant squamous cell carcinoma (SCC) of the temporal bone. A 73-year-old with papillomata involving the posterior and inferior walls of the right external auditory canal (EAC), which subsequently transformed into SCC. Radical mastoidectomy and excision of the tumor and then radical radiotherapy. Loco-regional disease control. Recovery of facial nerve function. Approximately 20 months post-treatment, the patient remains disease free. No recovery of facial nerve function. Malignant transformation of a benign EAC papilloma to SCC of the temporal bone has not been reported previously. The association of human papillomavirus with temporal bone SCC has been reported in small number of studies with human papillomavirus subtypes 16 and 18 isolated in a high proportion of cases. With the increased availability in genotyping, the question over whether there should be further genetic analysis of benign lesions to assess their susceptibility to malignant transformation has merit.

  4. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ren, Xuefeng; Gaile, Daniel P.; Gong, Zhihong; Qiu, Wenting; Ge, Yichen; Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao; Olson, James R.; Kavanagh, Terrance J.; Wu, Hongmei

    2015-01-01

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  5. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Gaile, Daniel P. [Department of Biostatistics, School of Public Health and Health Professions, the State University of New York, Buffalo, NY 14214 (United States); Gong, Zhihong [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Qiu, Wenting [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Ge, Yichen [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Olson, James R. [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Kavanagh, Terrance J. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 (United States); Wu, Hongmei, E-mail: hongmeiwwu@hotmail.com [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China)

    2015-03-15

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  6. Malignant Transformation of Endometriosis in the Ischioanal Fossa

    Directory of Open Access Journals (Sweden)

    Jordan S. Klebanoff

    2018-01-01

    Full Text Available We present the case of a 28-year-old nulliparous female with malignant transformation of an ectopic focus of endometriosis in the right ischioanal fossa. A 28-year-old nulliparous patient with a past medical history of polycystic ovarian syndrome (PCOS was diagnosed with endometrioid adenocarcinoma in her right ischioanal fossa. Initially, patient presented to an emergency department and underwent a CT scan of the appendix to rule out appendicitis. A multiloculated cystic lesion adjacent to the right obturator internus muscle was found. She underwent surgical resection of the mass, which confirmed FIGO grade 2 endometrioid adenocarcinoma, followed by localized radiation therapy. Malignancy arising in endometriosis is rare, and the influence of PCOS on the rate of malignant transformation is not well established.

  7. Protective effect of nitric oxide against arsenic-induced oxidative ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... 1Department of Soil and Water Science, College of Resources and Environment, ... alleviated arsenic-induced electrolyte leakage and malondiadehyde (MDA) content in ..... gene construct for environmental arsenic detection.

  8. Late malignant transformation of vestibular schwannoma in the absence of irradiation

    DEFF Research Database (Denmark)

    Bashir, Asma; Poulsgaard, Lars; Broholm, Helle

    2016-01-01

    Late malignant transformation of vestibular schwannoma (VS) following irradiation has previously been reported 29 times in the literature. Here, the authors report the first late malignant transformation of VS unrelated to neurofibromatosis or radiation exposure. After undergoing a near-total exc...

  9. Studying arsenic trioxide-induced apoptosis of Colo-16 cells with ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... induced apoptosis at the single cell level. Key words: Two-photon laser scanning microscopy, confocal laser scanning microscopy, human skin squamous carcinoma cells (Colo-16 cells), arsenic trioxide, apoptosis. INTRODUCTION. Although arsenic is poisonous and chronic arsenic exposure from ...

  10. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Pranay [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Yadav, Rajesh S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003 (India); Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Dwivedi, Hari N. [Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 227 015 (India); Pant, Aditiya B. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Khanna, Vinay K., E-mail: vkkhanna1@gmail.com [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India)

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  11. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    International Nuclear Information System (INIS)

    Srivastava, Pranay; Yadav, Rajesh S.; Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S.; Dwivedi, Hari N.; Pant, Aditiya B.; Khanna, Vinay K.

    2014-01-01

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  12. Fibroblast Growth Factor (FGF-2) and Its Receptors FGFR-2 and FGFR-3 May Be Putative Biomarkers of Malignant Transformation of Potentially Malignant Oral Lesions into Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Nayak, Seema; Goel, Madhu Mati; Makker, Annu; Bhatia, Vikram; Chandra, Saumya; Kumar, Sandeep; Agarwal, S P

    2015-01-01

    There are several factors like angiogenesis, lymphangiogenesis, genetic alterations, mutational factors that are involved in malignant transformation of potentially malignant oral lesions (PMOLs) to oral squamous cell carcinoma (OSCC). Fibroblast growth factor-2 (FGF-2) is one of the prototypes of the large family of growth factors that bind heparin. FGF-2 induces angiogenesis and its receptors may play a role in synthesis of collagen. FGFs are involved in transmission of signals between the epithelium and connective tissue, and influence growth and differentiation of a wide variety of tissue including epithelia. The present study was undertaken to analyze expression of FGF-2 and its receptors FGFR-2 and FGFR-3 in 72 PMOLs, 108 OSCC and 52 healthy controls, and their role in risk assessment for malignant transformation of Leukoplakia (LKP) and Oral submucous fibrosis (OSMF) to OSCC. Immunohistochemistry was performed using antibodies against FGF-2, FGFR-2 and FGFR-3. IHC results were validated by Real Time PCR. Expression of FGF-2, FGFR-2 and FGFR-3 was upregulated from PMOLs to OSCC. While 90% (9/10) of PMOLs which showed malignant transformation (transformed) expressed FGF-2, only 24.19% cases (15/62) of PMOLs which were not transformed (untransformed) to OSCC expressed FGF-2. Similarly, FGFR-2 expression was seen in 16/62 (25.81%) of untransformed PMOLs and 8/10 (80%) cases of transformed PMOLs. FGFR-3 expression was observed in 23/62 (37.10%) cases of untransformed PMOLs and 6/10 (60%) cases of transformed PMOLs. A significant association of FGF-2 and FGFR-2 expression with malignant transformation from PMOLs to OSCC was observed both at phenotypic and molecular level. The results suggest that FGF-2 and FGFR-2 may be useful as biomarkers of malignant transformation in patients with OSMF and LKP.

  13. Specific histone modification responds to arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Li, Jun [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Chen, Wen, E-mail: chenwen@mail.sysu.edu.cn [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Zhang, Aihua, E-mail: aihuagzykd@163.com [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China)

    2016-07-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  14. Specific histone modification responds to arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ma, Lu; Li, Jun; Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei; Chen, Wen; Zhang, Aihua

    2016-01-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO 2 treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  15. Oral submucous fibrosis: An update on pathophysiology of malignant transformation.

    Science.gov (United States)

    Arakeri, Gururaj; Patil, Shekar Gowda; Aljabab, Abdulsalam S; Lin, Kuan-Chou; Merkx, M A W; Gao, Shan; Brennan, Peter A

    2017-07-01

    Oral submucous fibrosis (OSMF) is a potentially malignant condition associated with areca nut chewing. Formerly confined to the Indian subcontinent, it is now often seen in Asian populations of the United Kingdom, USA and other developed countries, and is therefore a serious problem for global health. What makes it more sinister is the malignant transformation rate, which has been reported to be around 7.6% over a 17-year period. In this concise article, we review the current trends in the pathophysiology of malignant transformation of OSMF. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. IDENTIFICATION OF INTERSPECIES CONCORDANCE OF MECHANISMS OF ARSENIC INDUCED BLADDER CANCER BY GENE EXPRESSION.

    Science.gov (United States)

    Arsenic is a human carcinogen that induces urinary bladder cancer. Several mechanisms have been proposed for arsenic-induced cancer. Although inorganic arsenic (iAs) does not induce tumors in adult rodents, dimethylarsinic acid (DMA), a major metabolite of iAs, is a rat bladder c...

  17. Malignant transformation of oral leukoplakia: a retrospective cohort study of 218 Chinese patients

    International Nuclear Information System (INIS)

    Liu, Wei; Wang, Yu-Feng; Zhou, Hai-Wei; Shi, Peng; Zhou, Zeng-Tong; Tang, Guo-Yao

    2010-01-01

    Oral leukoplakia (OL) is the best-known potentially malignant disorder. A new binary system to grade dysplasia was proposed by WHO, but the biological significance in predicting malignant transformation risk is unknown. The objective of this study is to estimate the rate of malignant transformation in a long-term follow-up cohort, explore the usefulness of the new binary system of grading dysplasia and identify significant risk factors of OL malignant transformation in China. A total of 218 patients with clinical and histopathologic diagnosis of OL were retrospectively reviewed. They were selected among all archived files at the Department of Oral Mucosal Diseases, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. The mean follow-up period was 5.3 years. Among 218 cases, 39 (17.9%) OL patients developed oral cancer, with a mean duration of 5.2 years. Cox regression analysis revealed that dysplasia was an independent risk factor for OL malignant transformation, but age, gender, lesion site, diet habit, smoking and ethanol intake were not risk factors. High-risk dysplastic OL was associated with a 4.57-fold (95% confidence interval, 2.36-8.84; P < 0.001) increased risk of malignant transformation, compared with low-risk dysplasia. Consistent with this result, high-risk dysplastic OL had signicantly higher malignant incidence than low-risk dysplasia, particularly during the first 2-3 years of follow-up, by Kaplan-Meier analysis (Log-rank test, P < 0.001). The new binary system's function in predicting OL malignant transformation risk was investigated in this survey. The utilization of high-risk dysplasia as a significant indicator for evaluating malignant transformation risk in patients with OL was suggested, which may be helpful to guide treatment selection in clinical practice

  18. α-Lipoic Acid Mitigates Arsenic-Induced Hematological Abnormalities in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Sonali Ghosh

    2017-05-01

    Full Text Available Background: Arsenic toxicity is a major global health problem and exposure via contaminated drinking water has been associated with hematological and other systemic disorders. The present investigation has been conducted in adult male rats to evaluate the protective ability of α-lipoic acid (ALA against such hematological disorders. Methods: Twenty-four adult male Wister rats (b.wt.130±10g were grouped and accordingly group I (control received the normal diet, group II (treated was given arsenic orally for 28 consecutive days as arsenic trioxide (3 mg/kgbw/rat/day whereas group III (supplemented received the same dose of arsenic along with ALA (25 mg/kgbw/rat/day as oral supplement. Hematological profile, plasma oxidant/antioxidant status, and erythrocyte morphology were assessed. Statistical analysis was done by one-way ANOVA using SPSS software (version 16.0. Results: Arsenic exposure caused reduction of erythrocyte (P=0.021, leucocyte (P<0.001, and hemoglobin (P=0.031 associated with echinocytic transformation as evidenced by light and scanning electron microscopic studies. The other significantly altered parameters include increased mean corpuscular volume (P=0.041 and lymphocytopenia (P<0.001 with insignificant neutropenia and eosinophilia. Altered serum oxidative balance as evidenced by decreased TAS (P<0.001 and increased TOS (P<0.001 with OSI (P<0.001 was also noted. The dietary supplementation of ALA has a beneficial effect against the observed (P<0.05 arsenic toxicities. It brings about the protection by restoring the hematological redox and inflammatory status near normal in treated rats. Arsenic-induced morphological alteration of erythrocytes was also partially attenuated by ALA supplementation. Conclusion: It is concluded that arsenicosis is associated with hematological alterations and ALA co-supplementation can partially alleviate these changes in an experimental male rat model.

  19. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.

    2013-11-15

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential

  20. Arsenic toxicity induced endothelial dysfunction and dementia: Pharmacological interdiction by histone deacetylase and inducible nitric oxide synthase inhibitors

    International Nuclear Information System (INIS)

    Sharma, Bhupesh; Sharma, P.M.

    2013-01-01

    Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment of learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in

  1. Malignant Transformation in a Mature Teratoma with Metastatic Deposits in the Omentum: A Case Report

    Directory of Open Access Journals (Sweden)

    Shramana Mandal

    2012-01-01

    Full Text Available Malignant transformation of a mature cystic teratoma (MCT is a very rare complication with an incidence of 0.17–2%;. The most common form of malignant transformation of the MCT is squamous cell carcinoma. Other tumors arising in MCT include basal cell carcinoma, sebaceous tumor, malignant melanoma, adenocarcinoma, sarcoma, and neuroectodermal tumor. However malignant transformation with metastatic deposits in the omentum is extremely rare. The present case highlights the rarity of the occurrence of an omental deposits in a case of mature cystic teratoma with malignant transformation.

  2. Induction of malignant transformation in CHL-1 cells by exposure to tritiated water

    International Nuclear Information System (INIS)

    Zou Shu'ai; Wang Hui

    1992-01-01

    The induction of neoplastic transformation in CHL-1 cells by low-dose-rate exposure to tritiated water was reported. CHL-1 cells were exposed to tritiated water (9.25 x 10 5 - 3.7 x 10 6 Bq/mL) for 24-96 hours and the accumulated doses were estimated to be 0.055-0.88 Gy, respectively. Neoplastic transformation was found in all exposed cell groups. The morphological study and transplantation test was carried out for demonstration malignancy of the transformed cells and the results show that they are with the morphology and behaviour for malignant tumour cells. For CHL-1 cells exposed to various doses of tritiated water, transformation rates were found to be from 3.28% to 13.0% at dose of 0.055-0.88 Gy. In order to estimate RBE of tritium for malignant transformation in CHL-1 cells, the induction of malignant transformation in CHL-1 cells by exposure to 137 Cs gamma-rays was carried out at dose rates of 0.359 Gy/24 hr and transformation rates for irradiated CHL-1 cells were found to be from 2.59% to 13.4%. Based on these data, RBE of tritium for malignant transformation in CHL-1 cells was estimated to be 1.6

  3. The potential biological mechanisms of arsenic-induced diabetes mellitus

    International Nuclear Information System (INIS)

    Tseng, C.-H.

    2004-01-01

    Although epidemiologic studies carried out in Taiwan, Bangladesh, and Sweden have demonstrated a diabetogenic effect of arsenic, the mechanisms remain unclear and require further investigation. This paper reviewed the potential biological mechanisms of arsenic-induced diabetes mellitus based on the current knowledge of the biochemical properties of arsenic. Arsenate can substitute phosphate in the formation of adenosine triphosphate (ATP) and other phosphate intermediates involved in glucose metabolism, which could theoretically slow down the normal metabolism of glucose, interrupt the production of energy, and interfere with the ATP-dependent insulin secretion. However, the concentration of arsenate required for such reaction is high and not physiologically relevant, and these effects may only happen in acute intoxication and may not be effective in subjects chronically exposed to low-dose arsenic. On the other hand, arsenite has high affinity for sulfhydryl groups and thus can form covalent bonds with the disulfide bridges in the molecules of insulin, insulin receptors, glucose transporters (GLUTs), and enzymes involved in glucose metabolism (e.g., pyruvate dehydrogenase and α-ketoglutarate dehydrogenase). As a result, the normal functions of these molecules can be hampered. However, a direct effect on these molecules caused by arsenite at physiologically relevant concentrations seems unlikely. Recent evidence has shown that treatment of arsenite at lower and physiologically relevant concentrations can stimulate glucose transport, in contrary to an inhibitory effect exerted by phenylarsine oxide (PAO) or by higher doses of arsenite. Induction of oxidative stress and interferences in signal transduction or gene expression by arsenic or by its methylated metabolites are the most possible causes to arsenic-induced diabetes mellitus through mechanisms of induction of insulin resistance and β cell dysfunction. Recent studies have shown that, in subjects with chronic

  4. Malignant transformation of diploid human fibroblasts by transfection of oncogenes: Progress report, July 1986--June 1989

    International Nuclear Information System (INIS)

    McCormick, J.J.; Maher, V.M.

    1989-01-01

    Although there is good evidence that carcinogen exposure is a major cause of human cancer, it has proven impossible to transform normal human fibroblasts or epithelial cells in culture into malignant cells by treating them with carcinogens. This failure may reflect an inability to identify and isolate cells containing one or more premalignant changes so that these can be expanded and exposed to carcinogens a second time to induce additional required changes. A second serious roadblock to the sequential introduction of changes and expansion of clonally-derived cells containing such premalignant changes in the finite life span of human cells in culture. Using transfection of specific human oncogenes in a series of specially-selected vectors, we have overcome these obstacles and have recently succeeded in generating an infinite life span diploid human cell strain MSU-1.0, which appears to be normal in all other characteristics. From that cell a second cell strain, MSU-1.1, was generated which we have been able to transform into a malignant state not only by transfecting the cells with oncogenes but also by treating them with chemical carcinogens. We now have evidence that there is not just a single linear process which results in malignant transformation. Rather, cells appear to progress to malignancy on a series of parallel, sometimes overlapping tracks. We now propose to carry out detailed studies of the specific mechanisms of malignant cell transformation using the cell strains available in this laboratory to achieve the goal of building relevant quantitative models of carcinogenesis. 29 refs

  5. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats.

    Science.gov (United States)

    Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Sankhwar, Madhu L; Ansari, Reyaz W; Shukla, Pradeep K; Pant, Aditya B; Khanna, Vinay K

    2011-12-01

    Our recent studies have shown that curcumin protects arsenic induced neurotoxicity by modulating oxidative stress, neurotransmitter levels and dopaminergic system in rats. As chronic exposure to arsenic has been associated with cognitive deficits in humans, the present study has been carried out to implore the neuroprotective potential of curcumin in arsenic induced cholinergic dysfunctions in rats. Rats treated with arsenic (sodium arsenite, 20mg/kg body weight, p.o., 28 days) exhibited a significant decrease in the learning activity, assessed by passive avoidance response associated with decreased binding of (3)H-QNB, known to label muscarinic-cholinergic receptors in hippocampus (54%) and frontal cortex (27%) as compared to controls. Decrease in the activity of acetylcholinesterase in hippocampus (46%) and frontal cortex (33%), staining of Nissl body, immunoreactivity of choline acetyltransferase (ChAT) and expression of ChAT protein in hippocampal region was also observed in arsenic treated rats as compared to controls. Simultaneous treatment with arsenic and curcumin (100mg/kg body weight, p.o., 28 days) increased learning and memory performance associated with increased binding of (3)H-QNB in hippocampus (54%), frontal cortex (25%) and activity of acetylcholinesterase in hippocampus (41%) and frontal cortex (29%) as compared to arsenic treated rats. Increase in the expression of ChAT protein, immunoreactivity of ChAT and staining of Nissl body in hippocampal region was also observed in rats simultaneously treated with arsenic and curcumin as compared to those treated with arsenic alone. The results of the present study suggest that curcumin significantly modulates arsenic induced cholinergic dysfunctions in brain and also exhibits neuroprotective efficacy of curcumin. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C. [Bose Institute, Department of Chemistry, Kolkata, West Bengal (India)

    2008-03-15

    Arsenic, one of the most harmful metalloids, is ubiquitous in the environment. The present study has been carried out to investigate the protective role of a triterpenoid saponin, arjunolic acid (AA) against arsenic-induced cardiac oxidative damage. In the study, NaAsO{sub 2} was chosen as the source of arsenic. The free radical scavenging activity and the effect of AA on the intracellular antioxidant power were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of NaAsO{sub 2} at a dose of 10 mg/kg body weight for 2 days caused significant accumulation of arsenic in cardiac tissues of the experimental mice in association with the reduction in cardiac antioxidant enzymes activities, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase. Arsenic intoxication also decreased the cardiac glutathione (GSH) and total thiol contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products and protein carbonyl content. Treatment with AA at a dose of 20 mg/kg body weight for 4 days prior to NaAsO{sub 2} intoxication protected the cardiac tissue from arsenic-induced oxidative impairment. In addition to oxidative stress, arsenic administration increased total cholesterol level as well as the reduced high-density lipoprotein cholesterol level in the sera of the experimental mice. AA pretreatment, however, could prevent this hyperlipidemia. Histological studies on the ultrastructural changes in cardiac tissue supported the protective activity of AA also. Combining all, results suggest that AA could protect cardiac tissues against arsenic-induced oxidative stress probably due to its antioxidant property. (orig.)

  7. Malignant transformation of Taiwanese patients with oral leukoplakia: A nationwide population-based retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Tung-Yuan Wang

    2018-05-01

    Full Text Available Background/Purpose: Oral leukoplakia (OL is one of the clinically diagnosed oral potentially malignant disorders (OPMDs with an increased risk of oral cancer development. In this study, we investigated the malignant transformation of OL in Taiwanese population. Methods: A retrospective cohort study was analyzed from Taiwan's National Health Insurance Research Database. A comparison cohort was randomly frequency-matched with the OL cohort according to age, sex, and index year. Oral submucous fibrosis (OSF and oral lichen planus (OLP were further stratified to evaluate the possible synergistic effects for OL-associated malignant transformation. Results: In this cohort, 102 (5.374% of 1898 OL patients were observed to transform into oral cancer. The malignant transformation rate was 26.40-fold in the OL cohort than in the comparison cohort after adjustment (95% confidence intervals 18.46–37.77. To further stratify with OSF and OLP, OL with OSF (58.38; 95% confidence intervals 34.61–98.50 and OL with OLP (36.88; 95% confidence intervals 8.90–152.78 had higher risk of malignant transformation rate than OL alone (27.01; 95% confidence intervals 18.91–38.59. The Kaplan–Meier plot revealed the free of malignant transformation rate was significant over the 13 years follow-up period (log-rank test, p < 0.001. Conclusion: OL patients exhibited a significantly higher risk of malignant transformation than those without OL. In addition, both OSF and OLP could enhance malignant transformation in patients with OL. However, further studies are required to identify the histopathological and clinical parameters in the pathogenesis of malignant transformation among OPMDs. Keywords: Oral leukoplakia, Oral submucous fibrosis, Oral lichen planus, Malignant transformation, Nationwide population, Cohort study, Taiwan

  8. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  9. [Arsenical keratosis treated by dermatome shaving].

    Science.gov (United States)

    Kjerkegaard, Ulrik Knap; Heje, Jens Martin; Vestergaard, Christian; Stausbøl-Grøn, Birgitte; Stolle, Lars Bjørn

    2014-05-05

    Cutaneous malignancy in association with arsenic exposure is a rare but well-documented phenomenon. Signs of chronic arsenic exposure are very rare in Denmark today. However, arsenic was used in the medical treatment of psoriasis vulgaris up till the 1980's and several patients suffer from this arsenic treatment today. This case report shows that arsenical keratosis can be treated by dermatome shaving, a superficial destructive therapy.

  10. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.

    Science.gov (United States)

    Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya

    2016-12-01

    Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols. Copyright

  11. Fluoxetine treatment ameliorates depression induced by perinatal arsenic exposure via a neurogenic mechanism

    Science.gov (United States)

    Tyler, Christina R.; Solomon, Benjamin R.; Ulibarri, Adam L.; Allan, Andrea M.

    2014-01-01

    Several epidemiological studies have reported an association between arsenic exposure and increased rates of psychiatric disorders, including depression, in exposed populations. We have previously demonstrated that developmental exposure to low amounts of arsenic induces depression in adulthood along with several morphological and molecular aberrations, particularly associated with the hippocampus and the hypothalamic–pituitary–adrenal (HPA) axis. The extent and potential reversibility of this toxin-induced damage has not been characterized to date. In this study, we assessed the effects of fluoxetine, a selective serotonin reuptake inhibitor antidepressant, on adult animals exposed to arsenic during development. Perinatal arsenic exposure (PAE) induced depressive-like symptoms in a mild learned helplessness task and in the forced swim task after acute exposure to a predator odor (2,4,5-trimethylthiazoline, TMT). Chronic fluoxetine treatment prevented these behaviors in both tasks in arsenic-exposed animals and ameliorated arsenic-induced blunted stress responses, as measured by corticosterone (CORT) levels before and after TMT exposure. Morphologically, chronic fluoxetine treatment reversed deficits in adult hippocampal neurogenesis (AHN) after PAE, specifically differentiation and survival of neural progenitor cells. Protein expression of BDNF, CREB, the glucocorticoid receptor (GR), and HDAC2 was significantly increased in the dentate gyrus of arsenic animals after fluoxetine treatment. This study demonstrates that damage induced by perinatal arsenic exposure is reversible with chronic fluoxetine treatment resulting in restored resiliency to depression via a neurogenic mechanism. PMID:24952232

  12. Malignant transformation of Taiwanese patients with oral leukoplakia: A nationwide population-based retrospective cohort study.

    Science.gov (United States)

    Wang, Tung-Yuan; Chiu, Yu-Wei; Chen, Yi-Tzu; Wang, Yu-Hsun; Yu, Hui-Chieh; Yu, Chuan-Hang; Chang, Yu-Chao

    2018-05-01

    Oral leukoplakia (OL) is one of the clinically diagnosed oral potentially malignant disorders (OPMDs) with an increased risk of oral cancer development. In this study, we investigated the malignant transformation of OL in Taiwanese population. A retrospective cohort study was analyzed from Taiwan's National Health Insurance Research Database. A comparison cohort was randomly frequency-matched with the OL cohort according to age, sex, and index year. Oral submucous fibrosis (OSF) and oral lichen planus (OLP) were further stratified to evaluate the possible synergistic effects for OL-associated malignant transformation. In this cohort, 102 (5.374%) of 1898 OL patients were observed to transform into oral cancer. The malignant transformation rate was 26.40-fold in the OL cohort than in the comparison cohort after adjustment (95% confidence intervals 18.46-37.77). To further stratify with OSF and OLP, OL with OSF (58.38; 95% confidence intervals 34.61-98.50) and OL with OLP (36.88; 95% confidence intervals 8.90-152.78) had higher risk of malignant transformation rate than OL alone (27.01; 95% confidence intervals 18.91-38.59). The Kaplan-Meier plot revealed the free of malignant transformation rate was significant over the 13 years follow-up period (log-rank test, p < 0.001). OL patients exhibited a significantly higher risk of malignant transformation than those without OL. In addition, both OSF and OLP could enhance malignant transformation in patients with OL. However, further studies are required to identify the histopathological and clinical parameters in the pathogenesis of malignant transformation among OPMDs. Copyright © 2018. Published by Elsevier B.V.

  13. Malignant transformation of oral submucous fibrosis in Taiwan: A nationwide population-based retrospective cohort study.

    Science.gov (United States)

    Yang, Po-Yu; Chen, Yi-Tzu; Wang, Yu-Hsun; Su, Ni-Yu; Yu, Hui-Chieh; Chang, Yu-Chao

    2017-11-01

    Oral submucous fibrosis (OSF) is one of the well-recognized oral potentially malignant disorders. In this study, we investigated the malignant transformation of OSF in a Taiwanese population. A retrospective cohort study was analyzed from Taiwan's National Health Insurance Research Database. A comparison cohort was randomly frequency-matched with the OSF cohort according to age, sex, and index year. Oral leukoplakia (OL) was further stratified to evaluate for the possible synergistic effects of OSF-associated malignant transformation. In this cohort, 71 (9.13%) of 778 cases of OSF were observed to transform into oral cancer. The malignant transformation rate was 29.26-fold in the OSF cohort than in the comparison cohort after adjustment (95% confidence intervals 20.55-41.67). To further stratify with OL, OSF with OL (52.46%; 95% confidence intervals 34.88-78.91) had higher risk of malignant transformation rate than OSF alone (29.84%; 95% confidence intervals 20.99-42.42). The Kaplan-Meier plot revealed the rate free of malignant transformation was significant over the 13-year follow-up period (log-rank test, Ptransformation was 5.1, 2.7, and 2.2 years for non-OSF, OSF alone, and OSF with OL, respectively. Oral submucous fibrosis patients exhibited a significantly higher risk of malignant transformation than those without OSF. OL could enhance malignant transformation in patients with OSF. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells.

    Directory of Open Access Journals (Sweden)

    Victor O Okoh

    Full Text Available The purpose of this study was to investigate the effects of 17-β-estradiol (E2-induced reactive oxygen species (ROS on the induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2, a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2 induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control the expression of these genes - nuclear respiratory factor-1 (NRF-1 was significantly up-regulated during the 4-OH-E2-mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2, PRC1 and PCNA, and the transcription factor - NRF-1. In summary, our study has demonstrated that: (i 4-OH-E2 is one of the main estrogen metabolites that induce mammary tumorigenesis and (ii ROS-mediated signaling leading to the activation of PI3K/AKT pathway plays an important role in the generation of 4-OH-E2

  15. New knowledge and insights about the malignant transformation of endometriosis.

    Science.gov (United States)

    Taniguchi, Fuminori

    2017-07-01

    Endometriosis may be a definitive risk factor for ovarian cancer, the most fatal gynecological cancer. The ability of endometriosis to transform into malignancy, first described by Dr. Sampson in 1925, is considered a rare occurrence, affecting approximately 1% of ovarian endometriomas. Recently we conducted a retrospective study regarding the malignant transformation of endometriosis in Japanese women. Many studies have reported a consistent correlation between endometriosis and ovarian cancer according to histological subtypes. However, the existing epidemiological evidence linking this association is insufficient to define the role of endometriosis as a cause of ovarian cancer and to influence changes to current clinical practice. Prospective cohort studies are therefore needed to clarify this issue. Additionally, the results of many molecular studies are conflicting, and earlier studies showing the molecular aberrations involved in genomic instability and mutation that enable malignant transformation have not been replicated in later studies. Careful long-term observation of a patient with endometrioma is required to detect possible subsequent incidence of malignant transformation. More importantly, a precise strategy should be set up for better prevention, early detection, specific diagnosis and treatment targeting molecular pathogenesis to understand the mechanisms of endometriosis-associated ovarian cancer. Clinicians need to be aware of the increased ovarian cancer risk in women with endometriosis. © 2017 Japan Society of Obstetrics and Gynecology.

  16. Malignancy-Induced Hypercalcemia—Diagnostic Challenges

    Directory of Open Access Journals (Sweden)

    Claire Hoyoux

    2017-11-01

    Full Text Available Hypercalcemia in children is a rare metabolic finding. The clinical picture is usually non-specific, and the etiology includes several entities (metabolic, nutritional, drug-induced, inflammatory, cancer-associated, or genetic depending on the age at presentation, but severe hypercalcemia is associated mainly with malignancy in childhood and sepsis in neonates. Severe parathyroid hormone (PTH-suppressed hypercalcemia is challenging and requires multidisciplinary diagnostic and therapeutic approaches to (i confirm or rule out a malignant cause, (ii treat it and its potentially dangerous complications. We report a case of severe and complicated PTH-independent hypercalcemia in a symptomatic 3-year-old boy. His age, severity of hypercalcemia and its complicated course, and the first imaging reports were suggestive of malignancy. The first bone and kidney biopsies and bone marrow aspiration were normal. The definitive diagnosis was a malignant-induced hypercalcemia, and we needed 4 weeks to assess other differential diagnoses and to confirm, on histopathological and immunochemical base, the malignant origin of hypercalcemia. Using this case as an illustrative example, we suggest a diagnostic approach that underlines the importance of repeated histology if the clinical suspicion is malignancy-induced hypercalcemia. Effective treatment is required acutely to restore calcium levels and to avoid complications.

  17. Environmental Arsenic Exposure and Microbiota in Induced Sputum

    Directory of Open Access Journals (Sweden)

    Allison G. White

    2014-02-01

    Full Text Available Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb. To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%, Proteobacteria (17% and Bacteriodetes (12% were the main phyla in all samples, with Neisseriaceae (15%, Prevotellaceae (12% and Veillonellacea (7% being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  18. Promotion of TNF-α on malignant transformation of syrian hamster embryo cells irradiated with α-particles

    International Nuclear Information System (INIS)

    Zhu Maoxiang; Guo Renfeng; Yang Zhihua; GongYifen

    1999-01-01

    Objective: To illustrate the role of tumor necrosis factor-α (TNF-α) in radiation-induced cancer and regulatory mechanism of protein tyrosine phosphorylation. Methods: Taking Syrian hamster embryo cells exposed to 0.5 Gy α-particles as the target, an array of biological indicators such as cell growth curve, transformation frequency (TF), colony formation efficiency (CFE) and tumor formation in nude mice were observed, and the activities of protein tyrosine kinases and protein tyrosine phosphatases were measured. Results: Neither 0.5 Gy α-particle irradiation nor TNF-α alone could induce transformation of SHE cells morphologically, but the TF, CFE and levels of protein tyrosine phosphorylation were obviously increased in SHE cells treated with 600 U/ml TNF-α after exposure to 0.5 Gy α-particles, and malignant transformation was proved by tumorigenicity assays. Conclusion: TNF-α promotes significantly the transformation of SHE cells induced by α-particles, and protein tyrosine phosphorylation is probably involved in regulation of the process

  19. Malignant transformation of superficial peritoneal endometriosis lesion.

    Science.gov (United States)

    Marchand, Eva; Hequet, Delphine; Thoury, Anne; Barranger, Emmanuel

    2013-08-26

    A 63-year-old woman with no medical history underwent an abdominal surgery with hysterectomy and bilateral salpingo-oophorectomy for a 10 cm peritoneal cyst with increased cancer antigene-125. A large suspicious tumour of the Douglas space, with contact to the uterus and the rectal wall was described. The rest of the exploration was normal, specially the rest of the peritoneum. Histopathology revealed a malignant transformation of a superficial peritoneal endometriosis. Secondary surgery was thus completed by laparoscopy with bilateral pelvic and para-aortic lymph node dissections, omentectomy and multiple peritoneal biopsies. All staging samples were free of cancer; therefore no complementary therapy was administered. After 18 months of follow-up, consisting of clinical examination and pelvis magnetic resonance imaging every 6 months, we did not observe any recurrence. Malignant transformation of superficial peritoneal endometriosis is a rare disease and surgical management seems to be the main treatment.

  20. Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats.

    Science.gov (United States)

    Yadav, Rajesh S; Shukla, Rajendra K; Sankhwar, Madhu Lata; Patel, Devendra K; Ansari, Reyaz W; Pant, Aditya B; Islam, Fakhrul; Khanna, Vinay K

    2010-09-01

    Our recent studies have shown that arsenic-induced neurobehavioral toxicity is protected by curcumin by modulating oxidative stress and dopaminergic functions in rats. In addition, the neuroprotective effect of curcumin has been investigated on arsenic-induced alterations in biogenic amines, their metabolites and nitric oxide (NO), which play an important role in neurotransmission process. Decrease in the levels of dopamine (DA, 28%), norepinephrine (NE, 54%), epinephrine (EPN, 46%), serotonin (5-HT, 44%), 3,4-dihydroxyphenylacetic acid (DOPAC, 20%) and homovanillic acid (HVA, 31%) in corpus striatum; DA (51%), NE (22%), EPN (47%), 5-HT (25%), DOPAC (34%) and HVA (41%) in frontal cortex and DA (35%), NE (35%), EPN (29%), 5-HT (54%), DOPAC (37%) and HVA (46%) in hippocampus, observed in arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) treated rats exhibited a trend of recovery in rats simultaneously treated with arsenic and curcumin (100 mg/kg body weight, p.o., 28 days). Increased levels of NO in corpus striatum (2.4-fold), frontal cortex (6.1-fold) and hippocampus (6.2-fold) in arsenic-treated rats were found decreased in rats simultaneously treated with arsenic and curcumin. It is evident that curcumin modulates levels of brain biogenic amines and NO in arsenic-exposed rats and these results further strengthen its neuroprotective efficacy. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Late Malignant Transformation of a Vestibular Schwannoma without Association to NFII or Radiotherapy

    DEFF Research Database (Denmark)

    Bashir, Asma; Poulsgaard, Lars; Broholm, Helle

    Late malignant transformation of vestibular schwannoma (VS) following irradiation has previously been reported 29 times in the literature. Here, the authors report the first late malignant transformation of VS unrelated to neurofibromatosis or radiation exposure. After undergoing a near-total exc...

  2. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats.

    Science.gov (United States)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-10-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Antioxidant ability and radiosensitivity in malignant transformed human bronchial epithelial cell line BEP2D induced by α-particle irradiation

    International Nuclear Information System (INIS)

    Gou Qiao; Zhang Wei; Wang Chunyan; Su Xu

    2011-01-01

    Objective: To investigate the antioxidant ability and radiosensitivity in the malignant transformed human bronchial epithelial cell line BEP2D induced by α-particle exposure. Methods: Glutathione Peroxidase (GPX), Catalase (CAT) and Glutathione (GSH) assay kits were employed to detect GPX and CAT enzyme abilities and the levels of GSH in BEP2D, RH21 (passage 21 of α-particle-irradiated BEP2D cells), and BERP35T-1 cells (derived from nude mice bearing malignant transformed cells generated from cells of passage 35 of α-particle-irradiated BEP2D cells). MTT assay were used to test the growth rate of BEP2D, RH21 and BERP35T-1 cells treated with 0, 30, 60, 90, 120, and 150 μmoL/L H 2 O 2 . Colony-forming test and MTT assay were used to examine the cell survival fraction and the growth rate of BEP2D, RH21 and BERP35T-1 cells exposed to 0, 2, 4, and 8 Gy of γ-rays,respectively. Results: GPX and CAT enzyme activities in RH21 and BERP35T-1 cells were obviously lower than in BEP2D (t=5.75-67.92, P<0.05). CAT enzyme activity in BERP35T-1 was lower than that in RH21 cells (t=22.25, P<0.01). Compared to BEP2D cells, decreased level of GSH was detected in BERP35T-1 cells (t=7.76, P<0.05), but there was no change in RH21. After treatment with 30, 60, 90, 120, and 150 μmol/L H 2 O 2 , the growth rates of BEP2D were all higher than those of BERP35T-1 cells (t=10.37-58.36, P<0.01). Meanwhile,the growth rates of BEP2D were all higher than those of RH21 cells after treatment with 60, 90, 120, and 150 μ mol/L H 2 O 2 (t =29.90-84.68, P<0.01). In addition,compared to BEP2D cells,decreased cell survival fraction and growth rate of BERP35T-1 cells were observed after irradiation with 2, 4, and 8 Gy of y-rays (t=5.87-34.17, P<0.05). The cell survival fraction and growth rate of RH21 were all lower than those of BEP2D cells at 4 and 8 Gy post-irradiation (t=6.33- 45.00, P<0.05). Conclusion: The function of antioxidant system decreased in the α-particle-induced transformed cells

  4. Multicentric malignant transformation of multiple exostoses

    International Nuclear Information System (INIS)

    Ozaki, T.; Hillmann, A.; Winkelmann, W.; Blasius, S.; Link, T.

    1998-01-01

    We treated a patient with large multiple chondrosarcomas derived from multiple cartilaginous exostoses. One sarcoma originated in the left pubic bone and the other sarcoma in the posterior aspect of the greater trochanter of the left femur. Thirty months after hindquarter amputation, the patient is alive without relapse. This is the first report of a patient with synchronous multiple malignant transformation of multiple cartilaginous exostoses. (orig.)

  5. Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage.

    Science.gov (United States)

    Das, Sujata; Pradhan, Goutam Kumar; Das, Subhadip; Nath, Debjani; Das Saha, Krishna

    2015-12-05

    Chronic exposure to arsenic over a period of time induces toxicity, primarily in liver but gradually in all systems of the body. Andrographolide (AG), a major diterpene lactone of Andrographis paniculata, shows a wide array of physiological functions including hepatoprotection. Therapeutic applications of AG are however seriously constrained because of its insolubility, poor bioavailability, and short plasma half-life. Nanoparticulation of AG is a possible solution to these problems. In the present study we investigated the effectiveness of polylactide co-glycolide (PLGA) nanocapsulated andrographolide (NA) against arsenic induced liver damage in mice. NA of average diameter 65.8 nm and encapsulation efficiency of 64% were prepared. Sodium arsenite at a dose of 40 mg/L supplied via drinking water in mice significantly raised the serum level of liver function markers such as AST, ALT, and ALP, and caused arsenic deposition in liver and ROS generation, though it did not show any lethality up to 30 days of exposure. However, even liver toxicity was not observed when mice were given AG and NA orally at doses up to 100 mg/kg bwt and 20 mg/kg bwt respectively on alternate days for one month. Treatment of non-toxic doses of AG or NA on alternate days along with arsenic significantly decreased the arsenic induced elevation of the serum level of ALT, AST and ALP, and arsenic deposition in liver. AG and NA increased the level of hepatic antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), and the level of reduced glutathione (GSH). Also, the ROS level was lowered in mice exposed to arsenic but treated with AG or NA. Protective efficiency of NA is about five times more than that of AG. Administration of NA to arsenic-treated mice caused signs of improvement in liver tissue architecture. In conclusion, the results of this study suggest that NA could be beneficial against arsenic-induced liver toxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights

  6. Kinetic of martensitic transformations induced by hydrogen in the austenite

    International Nuclear Information System (INIS)

    Oliveira, Sergio P. de; Saavedra, A.; Miranda, P.E.V. de

    1986-01-01

    The X-ray diffractometry technique was used, with an automatic data acquisition system to determine the kinetics of hydrogen induced martensitic phase transformations in an AISI 304 austenitic stainless steel type, used in nuclear power plants. Hydrogenation was performed cathodically in a 1N sulfuric acid solution, containing 100 mg/l of arsenic trioxide, at 50 0 C, during 2 hours and with a current density of 200 A/m 2 . It was found that the microstructure of the steel plays a role on the generation of hydrogen induced martensitic phases and surface micro cracks. Both kinetics were slower on a pre-cold rolled steel. (Author) [pt

  7. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis

    International Nuclear Information System (INIS)

    Chang, Soo Im; Jin, Bohwan; Youn, Pilju; Park, Changbo; Park, Jung-Duck; Ryu, Doug-Young

    2007-01-01

    Oxidative stress has been suggested to be a major cause of male reproductive failure. Here, we investigated whether arsenic, which impairs male reproductive functions in rodent models, acts by inducing oxidative stress. Male 8-week-old ICR mice were given drinking water containing 20 or 40 mg/l sodium arsenite with or without 0.75 or 1.5 g/l of the antioxidant ascorbic acid for 5 weeks. The arsenic-treated mice showed decreased epididymidal sperm counts and testicular weights compared to untreated mice. These effects were reversed in mice that were co-treated with ascorbic acid. Similarly, arsenic treatment lowered the activities of testicular 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD, which play important roles in steroidogenesis, and this was reversed by co-treatment with ascorbic acid. The testicles of arsenic-treated mice had decreased glutathione (GSH) levels (which correlate inversely with the degree of cellular oxidative stress) and elevated levels of protein carbonyl (a marker of oxidative damage to tissue proteins). Ascorbic acid co-treatment reversed both of these effects. Thus, ascorbic acid blocks both the adverse effects of arsenic on male reproductive functions and the arsenic-induced testicular oxidative changes. These observations support the notion that arsenic impairs male reproductive function by inducing oxidative stress

  8. Arsenic induced apoptosis in rat liver following repeated 60 days exposure

    International Nuclear Information System (INIS)

    Bashir, Somia; Sharma, Yukti; Irshad, M.; Nag, T.C.; Tiwari, Monica; Kabra, M.; Dogra, T.D.

    2006-01-01

    Background: Accumulation of the wide spread environmental toxin arsenic in liver results in hepatotoxcity. Exposure to arsenite and other arsenicals has been previously shown to induce apoptosis in certain tumor cell lines at low (1-3 μM) concentration. Aim: The present study was focused to elucidate the role of free radicals in arsenic toxicity and to investigate the nature of in vivo sodium arsenite induced cell death in liver. Methods: Male wistar rats were exposed to arsenite at three different doses of 0.05, 2.5 and 5 mg/l for 60 days. Oxidative stress in liver was measured by estimating pro-oxidant and antioxidant activity in liver. Histopathological examination of liver was carried out by light and transmission electron microscopy. Analysis of DNA fragmentation by gel electrophoresis was used to identify apoptosis after the exposure. Terminal deoxy-nucleotidyl transferase mediated dUTP Nick end-labeling (TUNEL) assay was used to qualify and quantify apoptosis. Results: A significant increase in cytochrome-P450 and lipid peroxidation accompanied with a significant alteration in the activity of many of the antioxidants was observed, all suggestive of arsenic induced oxidative stress. Histopathological examination under light and transmission electron microscope suggested a combination of ongoing necrosis and apoptosis. DNA-TUNEL showed an increase in apoptotic cells in liver. Agarose gel electrophoresis of DNA of hepatocytes resulted in a characteristic ladder pattern. Conclusion: Chronic arsenic administration induces a specific pattern of apoptosis called post-mitotic apoptosis

  9. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    International Nuclear Information System (INIS)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy; Suresh, Subramaniyam; Gupta, Priyanka; Vijayakaran, Karunakaran; Sankar, Palanisamy; Kurade, Nitin Pandurang; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91 st day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E max of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic-induced

  10. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    Energy Technology Data Exchange (ETDEWEB)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy; Suresh, Subramaniyam; Gupta, Priyanka; Vijayakaran, Karunakaran; Sankar, Palanisamy; Kurade, Nitin Pandurang; Mishra, Santosh Kumar; Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com

    2014-10-01

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic-induced

  11. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats

    DEFF Research Database (Denmark)

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen

    2017-01-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative...... proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33...... proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb...

  12. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-01-01

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT

  13. Study of arsenic accumulation in rice and evaluation of protective effects of Chorchorus olitorius leaves against arsenic contaminated rice induced toxicities in Wistar albino rats.

    Science.gov (United States)

    Hosen, Saeed Mohammed Imran; Das, Dipesh; Kobi, Rupkanowar; Chowdhury, Dil Umme Salma; Alam, Md Jibran; Rudra, Bashudev; Bakar, Muhammad Abu; Islam, Saiful; Rahman, Zillur; Al-Forkan, Mohammad

    2016-10-14

    In the present study, we investigated the arsenic accumulation in different parts of rice irrigated with arsenic contaminated water. Besides, we also evaluated the protective effects of Corchorus olitorius leaves against arsenic contaminated rice induced toxicities in animal model. A pot experiment was conducted with arsenic amended irrigation water (0.0, 25.0, 50.0 and 75.0 mg/L As) to investigate the arsenic accumulation in different parts of rice. In order to evaluate the protective effects of Corchorus olitorius leaves, twenty Wistar albino rats were divided into four different groups. The control group (Group-I) was supplied with normal laboratory pellets while groups II, III, and IV received normal laboratory pellets supplemented with arsenic contaminated rice, C. olitorius leaf powder (4 %), arsenic contaminated rice plus C. olitorius leaf powder (4 %) respectively. Different haematological parameters and serum indices were analyzed to evaluate the protective effects of Corchorus olitorius leaves against arsenic intoxication. To gather more supportive evidences of Corchorus olitorius potentiality against arsenic intoxication, histopathological analysis of liver, kidney, spleen and heart tissues was also performed. From the pot experiment, we have found a significant (p ≤ 0.05) increase of arsenic accumulation in different parts of rice with the increase of arsenic concentrations in irrigation water and the trend of accumulation was found as root > straw > husk > grain. Another part of the experiment revealed that supplementation of C. olitorius leaves with arsenic contaminated rice significantly (p rice induced toxicities. Arsenic accumulation in different parts of rice increased dose-dependently. Hence, for irrigation purpose arsenic contaminated water cannot be used. Furthermore, arsenic contaminated rice induced several toxicities in animal model, most of which could be minimized with the food supplementation of Corchorus olitorius

  14. Possible mechanisms for arsenic-induced proliferative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wetterhahn, K.E.; Dudek, E.J.; Shumilla, J.A. [Dartmouth College and Medical School, Hanover, NH (United States)] [and others

    1996-12-31

    Possible mechanisms for cardiovascular diseases and cancers which have been observed on chronic exposure to arsenic have been investigated. We tested the hypothesis that nonlethal levels of arsenic are mitogenic, cause oxidative stress, increase nuclear translocation of trans-acting factors, and increase expression of genes involved in proliferation. Cultured porcine vascular (from aorta) endothelial cells were used as a model cell system to study the effects of arsenic on the target cells for cardiovascular diseases. Treatment of postconfluent cell cultures with nonovertly toxic concentrations of arsenite increased DNA synthesis, similar to the mitogenic response observed with hydrogen peroxide. Within 1 hour of adding noncytotoxic concentrations of arsenite, cellular levels of oxidants increased relative to control levels, indicating that arsenite promotes cellular oxidations. Arsenite treatment increased nuclear translocation of NF-{kappa}B, an oxidative stress-responsive transcription factor, in a manner similar to that observed with hydrogen peroxide. Pretreatment of intact cells with the antioxidants N-acetylcysteine and dimethylfumarate prevented the arsenite-induced increases in cellular oxidant formation and NF-KB translocation. Arsenite had little or no effect on binding of NF-KB to its DNA recognition sequence in vitro, indicating that it is unlikely that arsenite directly affects NF-KB. The steady-state mRNA levels of intracellular adhesion molecule and urokinase-like plasminogen activator, genes associated with the active endothelial phenotype in arteriosclerosis and cancer metastasis, were increased by nontoxic concentrations of arsenite. These data suggest that arsenite promotes proliferative diseases like heart disease and cancer by activating oxidant-sensitive endothelial cell signaling and gene expression. It is possible that antioxidant therapy would be useful in preventing arsenic-induced cardiovascular disease and cancer.

  15. Cell-surface associated with transformation of human hepatocytes to the malignant phenotype

    International Nuclear Information System (INIS)

    Wilson, B.; Ozturk, M.; Takahashi, H.; Motte, P.; Kew, M.; Isselbacher, K.J.; Wands, J.R.

    1988-01-01

    Hepatocellular carcinoma is one of the leading causes of cancer death in the world. To understand the cellular changes associated with transformation of hepatocytes to the malignant state, the authors have made several libraries of monoclonal antibodies against the hepatocellular carcinoma cell line FOCUS and have found six antibodies (AF-20, SF-25, SF-31, SF-90, XF-4, and XF-8) that recognize antigens expressed at consistently higher levels on hepatoma cells. They have studied malignant and nontransformed liver tissue from the same individual by using direct 125 I-labeled antibody binding and immunoperoxidase staining techniques. For each of these antibodies, they found striking increases in antigen expression on the transformed tissues. These antigens were found to be expressed throughout the tumor and on distant metastases, with little, if any, expression on the nontransformed adjacent liver. These antibodies demonstrate that hepatic transformation may be accompanied by stereotyped and predictable antigenic changes. The uniformity of such antigenic changes suggests an association between these cell-surface alterations and the malignant transformation process

  16. Malignant Transformation of Radiotherapy-Naïve Craniopharyngioma.

    Science.gov (United States)

    Chunhui, Liu; Chuzhong, Li; Zhenye, Li; Yilin, Sun; Yazhuo, Zhang

    2016-04-01

    Craniopharyngioma is a rare benign intracranial neoplasm that is successfully managed with surgery or adjuvant radiotherapy. The malignant transformation of craniopharyngioma has seldom been reported. A 30-year-old woman presented with a 5-month history of amenorrhea and was admitted to the hospital. She underwent surgical resection for three times and died at last. MRI revealed a new solid component of craniopharyngioma. Pathologic examination revealed malignant changes in the craniopharyngioma. In addition, We analyzed the expression of Ki-67, p53, VEGF, and MMP-9 in this malignant case after the third operation and in samples from 9 benign craniopharyngiomas. Immunohistochemical analysis showed that the Ki-67 index was higher in malignant craniopharyngiomas (50%) compared with benign craniopharyngiomas (3.0% ± 1.5%; range, 1.0%-6.0%). The p53, MMP-9, and VEGF protein levels were higher in the malignant craniopharyngioma compared with the benign craniopharyngiomas. Patients with a high Ki-67 index and high p53, MMP-9, and VEGF protein levels and a new solid component of craniopharyngioma on MRI may benefit from aggressive treatment and close surveillance. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin, E-mail: clshao@shmu.edu.cn

    2014-05-09

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway.

  18. Long-term low-dose α-particle enhanced the potential of malignant transformation in human bronchial epithelial cells through MAPK/Akt pathway

    International Nuclear Information System (INIS)

    Liu, Weili; Xiao, Linlin; Dong, Chen; He, Mingyuan; Pan, Yan; Xie, Yuexia; Tu, Wenzhi; Fu, Jiamei; Shao, Chunlin

    2014-01-01

    Highlights: • Multi-exposures of 25 mGy α-ray enhanced cell proliferation, adhesion, and invasion. • MAPK/Akt but not JNK/P66 was positively correlated with cell invasive phenotypes. • LDR of α-irradiation triggers cell malignant transformation through MAPK/Akt. - Abstract: Since the wide usage of ionizing radiation, the cancer risk of low dose radiation (LDR) (<0.1 Gy) has become attractive for a long time. However, most results are derived from epidemiologic studies on atomic-bomb survivors and nuclear accidents surrounding population, and the molecular mechanism of this risk is elusive. To explore the potential of a long-term LDR-induced malignant transformation, human bronchial epithelial cells Beas-2B were fractionally irradiated with 0.025 Gy α-particles for 8 times in total and then further cultured for 1–2 months. It was found that the cell proliferation, the abilities of adhesion and invasion, and the protein expressions of p-ERK, p-Akt, especially p-P38 were not only increased in the multiply-irradiated cells but also in their offspring 1–2 months after the final exposure, indicating high potentiality of cell malignant transformation. On opposite, the expressions of p-JNK and p-P66 were diminished in the subcultures of irradiated cells and thus may play a role of negative regulation in canceration. When the cells were transferred with p38 siRNA, the LDR-induced enhancements of cell adhesion and invasion were significantly reduced. These findings suggest that long-term LDR of α-particles could enhance the potential of malignant transformation incidence in human bronchial epithelial cells through MAPK/Akt pathway

  19. Clinicopathological Profile and Malignant Transformation in Oral Lichen Planus: A Retrospective Study

    Science.gov (United States)

    Bandyopadhyay, Alokenath; Behura, Shyam Sundar; Nishat, Roquaiya; Dash, Kailash Chandra; Bhuyan, Lipsa; Ramachandra, Sujatha

    2017-01-01

    Objectives: The aim of this study was to analyze the histopathologically diagnosed cases of oral lichen planus (OLP) in terms of age, gender, clinical variant, site, hyperpigmentation, systemic illness, grade of dysplasia, and associated malignant transformation. This study also intended to do a review of reported cases of OLP with malignant transformation. Materials and Methods: One hundred and forty-three cases of histopathologically diagnosed OLP between 2010 and 2016 were retrospectively reviewed. Demographic and clinicopathological data including malignant transformation were obtained. The data obtained were analyzed using the Statistical Package for the Social Sciences (SPSS) software for Windows version 20.0 (IBM SPSS, SPSS Inc., Chicago, IL, USA). A review of published literature on OLP with malignant transformation was also done from 1988 to 2017 and tabulated. Results: OLP in this study showed a male predilection with most of the patients in the third decade. The buccal mucosa (bilateral presentation) was the most common site (79.72%), and reticular type was the most common clinical type (79.02%) followed by erosive type (20.98%). The majority (92.31%) of cases were diagnosed with OLP without dysplasia. The rest (7.69%) of dysplastic cases were predominantly seen in the buccal mucosa of 58 years and above, female patients manifesting mainly as erosive type. Two patients (1.4%) previously diagnosed clinically and histopathologically as OLP developed oral squamous cell carcinoma. Conclusion: The present investigation revealed the predominance of OLP among middle-aged male population and the prevalence of bilateral involvement of buccal mucosa. Two of our cases showed malignant transformation over an average period of 3.5 years. The outcome of this study emphasizes the role of clinical follow-up of patients with OLP. PMID:28584781

  20. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes

    International Nuclear Information System (INIS)

    Walton, Felecia S.; Harmon, Anne W.; Paul, David S.; Drobna, Zuzana; Patel, Yashomati M.; Styblo, Miroslav

    2004-01-01

    Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or with critical steps in glucose metabolism. We have examined effects of iAs and methylated arsenicals that contain trivalent or pentavalent arsenic on glucose uptake by 3T3-L1 adipocytes. Treatment with inorganic and methylated pentavalent arsenicals (up to 1 mM) had little or no effect on either basal or insulin-stimulated glucose uptake. In contrast, trivalent arsenicals, arsenite (iAs III ), methylarsine oxide (MAs III O), and iododimethylarsine (DMAs III O) inhibited insulin-stimulated glucose uptake in a concentration-dependent manner. Subtoxic concentrations of iAs III (20 μM), MAs III O (1 μM), or DMAs III I (2 μM) decreased insulin-stimulated glucose uptake by 35-45%. Basal glucose uptake was significantly inhibited only by cytotoxic concentrations of iAs III or MAs III O. Examination of the components of the insulin-stimulated signal transduction pathway showed that all trivalent arsenicals suppressed expression and possibly phosphorylation of protein kinase B (PKB/Akt). The concentration of an insulin-responsive glucose transporter (GLUT4) was significantly lower in the membrane region of 3T3-L1 adipocytes treated with trivalent arsenicals as compared with untreated cells. These results suggest that trivalent arsenicals inhibit insulin-stimulated glucose uptake by interfering with the PKB/Akt-dependent mobilization of GLUT4 transporters in adipocytes. This mechanism may be, in part, responsible for the development of type-2 diabetes in individuals chronically exposed to iAs

  1. Malignant Transformation of Vagal Nerve Schwannoma in to ...

    African Journals Online (AJOL)

    Vagal schwannomas are benign, rare peripheral nerve sheath tumors in the head and neck region. Some physicians opt to closely observe cases of schwannoma of the neck on an outpatient basis rather than to perform radical surgery. However, there is a possibility, albeit rare, of malignant transformation of a.

  2. Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis.

    Science.gov (United States)

    Rahman, Md Mostafizur; Uson-Lopez, Rachael A; Sikder, Md Tajuddin; Tan, Gongxun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki

    2018-04-01

    Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Differences in oral habit and lymphocyte subpopulation affect malignant transformation of patients with oral precancer

    Directory of Open Access Journals (Sweden)

    Chien-Yang Yeh

    2016-04-01

    Conclusion: These results suggest that age, alcohol consumption, and early activation of T cells, B cells, and natural killer cells are crucial in the malignant transformation of oral precancer. Analysis of patient's lymphocyte populations may help predict the malignant transformation of oral precancer.

  4. Malignant Transformation of Vagal Nerve Schwannoma in to ...

    African Journals Online (AJOL)

    Schwannomas are benign, rare peripheral nerve sheath tumors that occur in the head and neck region. Some physicians opt to closely observe cases of schwannoma of the neck on an outpatient basis rather than to perform radical surgery. However, there is a possibility, albeit rare, of malignant transformation of a benign ...

  5. Study on the toxic effects induced by different arsenicals in primary cultured rat astroglia

    International Nuclear Information System (INIS)

    Jin Yaping; Sun Guifan; Li Xin; Li Gexin; Lu Chunwei; Qu Long

    2004-01-01

    Arsenic toxicity is a global health problem affecting millions of people. The objectives of this study were to determine if the toxic effects on primary cultured rat astroglia would be induced by different arsenicals. Based on alamarBlue assay and the single cell gel electrophoresis (SCGE, comet assay), the cell viability and DNA damage in the cells exposed to different arsenicals were evaluated. Treatment of astroglia with methylated arsenicals, that is, pentavalent monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV), resulted in no obvious changes in cell viability and DNA damage at micromolar concentrations. However, treatment of astroglia with inorganic arsenicals, that is, arsenite and arsenate, caused decreased cell viability and increased DNA damage at micromolar levels, and showing a dose-related decrease in mean alamarBlue reduced rate and a dose-related increase in mean comet length. Our study is therefore highly suggestive for a link between inorganic exposure and cellular toxicity or DNA damage. Based on the results of this study, the toxic effects induced by arsenite were stronger than those induced by arsenate

  6. Inhibition of radiation-induced transformation in vitro by bacterial endotoxins

    International Nuclear Information System (INIS)

    Carew, J.A.; Collins, M.F.; Kennedy, A.R.

    1988-01-01

    Bacterial endotoxins (lipopolysaccharides) were found to suppress X-ray-induced malignant transformation of C3H/10T1/2 cells. Endotoxins were effective if present either throughout the 6-week transformation assay period, or for the final 4-week phase, but not when present only for the initial 2-week phase. Neither growth nor survival of C3H/10T1/2 cells, or a radiation-transformed cell line derived from them, were affected by endotoxins. Also, the endotoxins did not affect the formation of foci by the radiation transformed cells when these cells were co-cultured with untransformed cells. These results suggest that endotoxins exert their effect directly upon the transformation process itself, perhaps at a 'late' step in the conversion of an untransformed to a transformed cell. (author)

  7. Inhibition of radiation-induced transformation in vitro by bacterial endotoxins

    Energy Technology Data Exchange (ETDEWEB)

    Carew, J A; Collins, M F; Kennedy, A R

    1988-05-01

    Bacterial endotoxins (lipopolysaccharides) were found to suppress X-ray-induced malignant transformation of C3H/10T1/2 cells. Endotoxins were effective if present either throughout the 6-week transformation assay period, or for the final 4-week phase, but not when present only for the initial 2-week phase. Neither growth nor survival of C3H/10T1/2 cells, or a radiation-transformed cell line derived from them, were affected by endotoxins. Also, the endotoxins did not affect the formation of foci by the radiation transformed cells when these cells were co-cultured with untransformed cells. These results suggest that endotoxins exert their effect directly upon the transformation process itself, perhaps at a 'late' step in the conversion of an untransformed to a transformed cell.

  8. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Katharine J. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Holloway, Adele [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Cook, Anthony L. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Chin, Suyin P. [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia)

    2014-11-15

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  9. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    International Nuclear Information System (INIS)

    Herbert, Katharine J.; Holloway, Adele; Cook, Anthony L.; Chin, Suyin P.; Snow, Elizabeth T.

    2014-01-01

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  10. Unfolded Protein Response Signaling and MAP Kinase Pathways Underlie Pathogenesis of Arsenic-induced Cutaneous Inflammation

    OpenAIRE

    Li, Changzhao; Xu, Jianmin; Li, Fugui; Chaudhary, Sandeep C.; Weng, Zhiping; Wen, Jianming; Elmets, Craig A.; Ahsan, Habibul; Athar, Mohammad

    2011-01-01

    Arsenic exposure through drinking water is a major global public health problem and is associated with an enhanced risk of various cancers including skin cancer. In human skin, arsenic induces precancerous melanosis and keratosis, which may progress to basal cell and squamous cell carcinoma. However, the mechanism by which these pathophysiological alterations occur remains elusive. In this study, we showed that sub-chronic arsenic exposure to SKH-1 mice induced unfolded protein response (UPR)...

  11. Uptake and transformation of arsenic during the vegetative life stage of terrestrial fungi

    International Nuclear Information System (INIS)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2015-01-01

    Many species of terrestrial fungi produce fruiting bodies that contain high proportions of arsenobetaine (AB), an arsenic compound of no known toxicity. It is unknown whether fungi produce or accumulate AB from the surrounding environment. The present study targets the vegetative life stage (mycelium) of fungi, to examine the role of this stage in arsenic transformations and potential formation of AB. The mycelia of three different fungi species were cultured axenically and exposed to AB, arsenate (As(V)) and dimethylarsinoyl acetic acid for 60 days. Agaricus bisporus was additionally exposed to hypothesized precursors for AB and the exposure time to As(V) and dimethlyarsinic acid was also extended to 120 days. The mycelia of all fungi species accumulated all arsenic compounds with two species accumulating significantly more AB than other compounds. Few biotransformations were observed in these experiments indicating that it is unlikely that the mycelium of the fungus is responsible for biosynthesizing AB. - Highlights: • Mycelia of terrestrial fungi were exposed to arsenobetaine (AB) and potential precursors. • Mycelium may be selectively accumulating AB and transporting it to fruiting bodies. • Mycelium did not biosynthesize AB. - Mycelia of edible mushrooms preferentially accumulate arsenobetaine but do not biosynthesize this non-toxic arsenical

  12. Transformed chest chardomas in malignant fibrous histiocytorme: presentation of case and reviewing of literature

    International Nuclear Information System (INIS)

    Capelastegui, A.; Mateos, B.; Astigarraga, E.; Pastor, A.; Pomposo, I.; Egurbide, M.V.

    1994-01-01

    Chest chordomas are rare neoplasms, and their transformation into malignant fibrous histiocytoma (MFH) is even more exceptional. We present a new case, including magnetic resonance (MR) images. The literature on the subject is reviewed, focussing especially on the dorsal location of these neoplasms and their possible malignant transformation, as well as the role of MR in the assessment of these lesions. (Author)

  13. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water

    NARCIS (Netherlands)

    Cavalca, L.; Corsini, A.; Zaccheo, P.; Andreoni, V.; Muyzer, G.

    2013-01-01

    Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This

  14. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    International Nuclear Information System (INIS)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  15. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Pillai, Ayyappan Harikrishna [Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Harikumar, Sankaran Kutty; Mishra, Santosh Kumar [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India)

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  16. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    Science.gov (United States)

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The effects of arsenic or the combination of arsenic and radiation exposure is enhanced through the overexpression of the GSTO family member p28

    International Nuclear Information System (INIS)

    Giri, U.; Story, M.D.; Terry, N.H.A.; Giri, D.K.; Calkins, P.R.

    2003-01-01

    Full text: p28 is a member of the GST omega superfamily and has dehydroascorbate reductase, GST, and glutaredoxin activities. Furthermore, p28 is the rate-limiting enzyme in the bio-transformation of arsenic. The monomethyl arsenous reducatase activity of p28 produces dimethylarseniate, the most toxic form of arsenic. We investigated how p28 modulated arsenic cellular sensitivity in two mammalian models: 1) in LY-ar and LY-as cells where p28 is over-expressed and not expressed, respectively; and 2) in stably transfected A549 cells where p28 is over-expressed via a CMV promoter. The LY-ar mouse lymphoma cell line is radio and chemo-resistant and apoptosis refractory, whereas the parental cell line, LY-as, is radiosensitive and apoptotically permissive. In addition, we studied the effect of arsenic as a radiosensitizer in both cell systems. In LY-ar cells arsenic induced a dose- and time- dependent increase in apoptosis, which is comparable to that seen in LY-as cells. Arsenic plus 2.5Gy radiation induced apoptosis in LY-ar cells, which was more than additive. Survival in LY-ar cells was reduced to that of LY-as cells as well as p28 overexpression induced G2/M arrest in A549 cells and the combination of radiation with arsenic decreased the clonogenic survival of both the A549 and A549-p28 cells but the effect is more pronounced in the A549-P28 cell line. A549 and A549-p28 cells did not show a differential response to Taxol, which induces G2/M arrest and cell death via an inhibition of tubulin depolarization. Arsenic modulated the level of reduced GSH in both cell systems in a dose- and time- dependent manner, which correlated with survival outcome. This study illustrated that arsenic acts as a radiosensitizer and p28 augmented the potential of arsenic in inducing apoptosis, G2/M arrest, and radiosensitization. Further studies are underway to examine the bio-chemical pathways involved in arsenic-mediated cell death and the role of p28 therein

  18. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB.

    Directory of Open Access Journals (Sweden)

    Bao-Fei Sun

    Full Text Available High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g. was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF and phosphorylated cAMP-response element binding protein (pCREB in the CA1 and dentate gyrus areas (DG of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.

  19. Cytogenetic insights into DNA damage and repair of lesions induced by a monomethylated trivalent arsenical

    Science.gov (United States)

    Arsenic is a human carcinogen, and only recently have animal models been developed that are useful in investigating its carcinogenic mode ofaction (MOA). However, how arsenic induces cancer is still an open question. In a previous paper, we proposed a model detailing how arsenic ...

  20. Chronic exposure to arsenic, estrogen, and their combination causes increased growth and transformation in human prostate epithelial cells potentially by hypermethylation-mediated silencing of MLH1.

    Science.gov (United States)

    Treas, Justin; Tyagi, Tulika; Singh, Kamaleshwar P

    2013-11-01

    Chronic exposure to arsenic and estrogen is associated with risk of prostate cancer, but their mechanism is not fully understood. Additionally, the carcinogenic effects of their co-exposure are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic, estrogen, and their combination, on cell growth and transformation, and identify the mechanism behind these effects. RWPE-1 human prostate epithelial cells were chronically exposed to arsenic and estrogen alone and in combination. Cell growth was measured by cell count and cell cycle, whereas cell transformation was evaluated by colony formation assay. Gene expression was measured by quantitative real-time PCR and confirmed at protein level by Western blot analysis. MLH1 promoter methylation was determined by pyrosequencing method. Exposure to arsenic, estrogen, and their combinations increases cell growth and transformation in RWPE-1 cells. Increased expression of Cyclin D1 and Bcl2, whereas decreased expression of mismatch repair genes MSH4, MSH6, and MLH1 was also observed. Hypermethylation of MLH1 promoter further suggested the epigenetic inactivation of MLH1 expression in arsenic and estrogen treated cells. Arsenic and estrogen combination caused greater changes than their individual treatments. Findings of this study for the first time suggest that arsenic and estrogen exposures cause increased cell growth and survival potentially through epigenetic inactivation of MLH1 resulting in decreased MLH1-mediated apoptotic response, and consequently increased cellular transformation. © 2013 Wiley Periodicals, Inc.

  1. Malignant transformation of diploid human fibroblasts by transfection of oncogenes. Part 2, Progress report, July 1989--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J.J.

    1992-12-31

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  2. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    International Nuclear Information System (INIS)

    Cheng, Tain-Junn; Chuu, Jiunn-Jye; Chang, Chia-Yu; Tsai, Wan-Chen; Chen, Kuan-Jung; Guo, How-Ran

    2011-01-01

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor β (LXRβ) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXRβ activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXRβ and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: → Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. → Arsenic may promote atherosclerosis with transient increase in HSP 70 and hs

  3. Transformation and characterization of an arsenic gene operon from urease-positive thermophilic Campylobacter (UPTC) in Escherichia coli.

    Science.gov (United States)

    Matsuda, M; Kuribayashi, T; Yamamoto, S; Millar, B C; Moore, J E

    2016-01-01

    An arsenate susceptibility test was performed with transformed and cultured Escherichia coli DH5α cells, which carried recombinant DNA of full-length arsenic (ars) operon, namely a putative membrane permease, ArsP; a transcriptional repressor, ArsR; an arsenate reductase, ArsC; and an arsenical-resistance membrane transporter, Acr3, from the Japanese urease-positive thermophilic Campylobacter lari (UPTC) CF89-12. The E. coli DH5α transformant showed reduced susceptibility to arsenate (~1536 μg/mL), compared to the control. Thus, these ars four-genes from the UPTC CF89-12 strain cells could confer a reduced susceptibility to arsenate in the transformed and E. coli DH5α cells. E. coli transformants with truncated ars operons, acr3 (acr3) and arsC-acr3 (∆arsC-acr3), of the ars operon, showed an MIC value of 384 μg/mL (~384 μg/mL), similar to the E. coli cells which carried the pGEM-T vector (control). Reverse transcription PCR confirmed in vivo transcription of recombinant full-length ars operon and deletion variants (∆acr3 and ∆arsC-acr3) in the transformed E. coli cells.

  4. Fibrous dysplasia: rapid malignant transformation into osteogenic sarcoma - A rare occurance

    Directory of Open Access Journals (Sweden)

    S Gon

    2012-09-01

    Full Text Available Malignant transformation of fibrous dysplasia is rare, occurring in less than 1% of cases with a mean lag period of 13.5 years. We report a case of Osteogenic Sarcoma with chondroid differentiation in a pre-existing Fibrous Dysplasia occurring within one year of surgical resection and without any history of exposure to radiation. To the best of our knowledge and extensive search of literature, malignant transformation of Fibrous Dysplasia in such a short period of time, and without history of radiation exposure has never been reported from India.Journal of Pathology of Nepal (2012 Vol. 2, 335-337DOI: http://dx.doi.org/10.3126/jpn.v2i4.6891

  5. Imaging features of maxillary osteoblastoma and its malignant transformation

    International Nuclear Information System (INIS)

    Ueno, Hiroshi; Ariji, Ei-ichiro; Tanaka, Takemasa; Kanda, Shigenobu; Mori, Shin-ichiro; Goto, Masaaki; Mizuno, Akio; Okabe, Haruo; Nakamura, Takashi

    1994-01-01

    We report two cases of osteoblastoma, one of them an unusual case in a 32-year-old woman in whom a maxillary tumor was confidently diagnosed as an osteoblastoma at the time of primary excision and subsequently transformed into an osteosarcoma 7 years after the onset of clinical symptoms. The other patient developed osteosarcoma arising in the maxilla, which was diagnosed 3 years after the primary excision and is very suggestive of malignant transformation in osteoblastoma. We present the radiological features, including computed tomographic and magnetic resonance imaging studies, of this unusual event of transformed tumor and compare imaging features of benign and dedifferentiated counterparts of this rare tumor complex. (orig.)

  6. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine

    International Nuclear Information System (INIS)

    Santra, Amal; Chowdhury, Abhijit; Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna

    2007-01-01

    Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology. Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects

  7. ATM suppresses SATB1-induced malignant progression in breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ellen Ordinario

    Full Text Available SATB1 drives metastasis when expressed in breast tumor cells by radically reprogramming gene expression. Here, we show that SATB1 also has an oncogenic activity to transform certain non-malignant breast epithelial cell lines. We studied the non-malignant MCF10A cell line, which is used widely in the literature. We obtained aliquots from two different sources (here we refer to them as MCF10A-1 and MCF10A-2, but found them to be surprisingly dissimilar in their responses to oncogenic activity of SATB1. Ectopic expression of SATB1 in MCF10A-1 induced tumor-like morphology in three-dimensional cultures, led to tumor formation in immunocompromised mice, and when injected into tail veins, led to lung metastasis. The number of metastases correlated positively with the level of SATB1 expression. In contrast, SATB1 expression in MCF10A-2 did not lead to any of these outcomes. Yet DNA copy-number analysis revealed that MCF10A-1 is indistinguishable genetically from MCF10A-2. However, gene expression profiling analysis revealed that these cell lines have significantly divergent signatures for the expression of genes involved in oncogenesis, including cell cycle regulation and signal transduction. Above all, the early DNA damage-response kinase, ATM, was greatly reduced in MCF10A-1 cells compared to MCF10A-2 cells. We found the reason for reduction to be phenotypic drift due to long-term cultivation of MCF10A. ATM knockdown in MCF10A-2 and two other non-malignant breast epithelial cell lines, 184A1 and 184B4, enabled SATB1 to induce malignant phenotypes similar to that observed for MCF10A-1. These data indicate a novel role for ATM as a suppressor of SATB1-induced malignancy in breast epithelial cells, but also raise a cautionary note that phenotypic drift could lead to dramatically different functional outcomes.

  8. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    Science.gov (United States)

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (Pwater were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, Pwater was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  9. Arsenic-induced cutaneous hyperplastic lesions are associated with the dysregulation of Yap, a Hippo signaling-related protein

    International Nuclear Information System (INIS)

    Li, Changzhao; Srivastava, Ritesh K.; Elmets, Craig A.; Afaq, Farrukh; Athar, Mohammad

    2013-01-01

    Highlights: •Arsenic activates canonical Hippo signaling pathway and up-regulates αCatenin in the skin. •Arsenic activates transcriptional activity of Yap by its nuclear translocation. •Yap is involved in the disruption of tight/adherens junctions in arsenic-exposed animals. -- Abstract: Arsenic exposure in humans causes a number of toxic manifestations in the skin including cutaneous neoplasm. However, the mechanism of these alterations remains elusive. Here, we provide novel observations that arsenic induced Hippo signaling pathway in the murine skin. This pathway plays crucial roles in determining organ size during the embryonic development and if aberrantly activated in adults, contributes to the pathogenesis of epithelial neoplasm. Arsenic treatment enhanced phosphorylation-dependent activation of LATS1 kinase and other Hippo signaling regulatory proteins Sav1 and MOB1. Phospho-LATS kinase is known to catalyze the inactivation of a transcriptional co-activator, Yap. However, in arsenic-treated epidermis, we did not observed its inactivation. Thus, as expected, unphosphorylated-Yap was translocated to the nucleus in arsenic-treated epidermis. Yap by binding to the transcription factors TEADs induces transcription of its target genes. Consistently, an up-regulation of Yap-dependent target genes Cyr61, Gli2, Ankrd1 and Ctgf was observed in the skin of arsenic-treated mice. Phosphorylated Yap is important in regulating tight and adherens junctions through its binding to αCatenin. We found disruption of these junctions in the arsenic-treated mouse skin despite an increase in αCatenin. These data provide evidence that arsenic-induced canonical Hippo signaling pathway and Yap-mediated disruption of tight and adherens junctions are independently regulated. These effects together may contribute to the carcinogenic effects of arsenic in the skin

  10. [Malignant diseases of the inner nose--epidemiology and occupational medicine aspects].

    Science.gov (United States)

    Hartung, M

    1989-06-01

    Squamous cell carcinomas are the most frequent malignancies of the inner nose, followed by adenocarcinomas, adenoid cystic carcinomas, and other malignant neoplasms. Carcinomas of the nose can be recognized as occupational diseases if there has been a professional exposition to ionizing rays, certain arsenic compounds, hexavalent chrome compounds, nickel, oak or beech wood dust. The sources of danger relevant in industrial medicine are indicated. At present, adenocarcinomas induced by dust of wood are of special significance: 16 out of 22 carcinomas of the nose recognized as occupational diseases between 1978 and 1986 are due to oak and beech wood dust.

  11. Predictive Factors of Potential Malignant Transformation in Recurrent Calcifying Cystic Odontogenic Tumor: Review of the Literature

    Directory of Open Access Journals (Sweden)

    Sepideh Mokhtari

    2013-01-01

    Full Text Available Calcifying cystic odontogenic tumor (CCOT demonstrates considerable diversity in histopathology and clinical behavior. Ghost cell odontogenic carcinoma (GCOC is the rare malignant counterpart of CCOT and it frequently arises from malignant transformation of a recurrent CCOT. In this paper, we present a case of CCOT and discuss its distinct histopathologic features in recurrence. Then, we will have a review on clinical, histopathological, and immunohistochemical aspects of GCOC in the literature. Predictive factors of malignant transformation in a benign CCOT will also be discussed.

  12. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  13. Radiation-induced transformation in oncogene primed C3H/10T1/2 cells; a new system for analysis of multi-step transformation in vitro

    International Nuclear Information System (INIS)

    Drozdoff, V.V.

    1988-01-01

    Several established rodent cell lines, such as C3H/10T1/2 fibroblasts, have been developed to study radiation and chemically-induced malignant transformation. Most experimental evidence has supported the idea that transformation in 10T1/2 cells involved at least two steps but that the apparent frequency of transformation depends on the density of plated cells. A new approach is presented here for studying radiation-induced transformation. An oncogene primed cell system (C3H-myc) was developed by introducing a constitutively active mouse c-myc gene into 10T1/2 cells. A primary goal was to determine if the introduction of an activated oncogene could substitute for one of the required steps in radiation-induced transformation. Results are presented that show that the expression of the exogenous myc gene significantly increased the frequency of radiation-induced transformation in these cells. Subculture experiments performed to analyze the kinetics of transformation in C3H-myc cells and reconstruction experiments allowing the effects of normal cells on radiation-induced transformants to be determined indicated that transformed cells arose very shortly after irradiation. These results support the conclusion that a radiation-induced event can complement the effect of myc in C3H-myc cells and directly result in transformation. This system thus provides an opportunity to isolate early steps in radiation-induced transformation and should facilitate the identification and analysis of these events

  14. Environmental biochemistry of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, S.; Frankenberger, W.T. Jr. (Department of Soil and Environmental Sciences, University of California, Riverside (United States))

    1992-01-01

    Microorganisms are involved in the redistribution and global cycling of arsenic. Arsenic can accumulate and can be subject to various biotransformations including reduction, oxidation, and methylation. Bacterial methylation of inorganic arsenic is coupled to the methane biosynthetic pathway in methanogenic bacteria under anaerobic conditions and may be a mechanism for arsenic detoxification. The pathway proceeds by reduction of arsenate to arsenite followed by methylation to dimethylarsine. Fungi are also able to transform inorganic and organic arsenic compounds into volatile methylarsines. The pathway proceeds aerobically by arsenate reduction to arsenite followed by several methylation steps producing trimethylarsine. Volatile arsine gases are very toxic to mammals because they destroy red blood cells (LD50 in rats; 3.0 mg kg-1). Further studies are needed on dimethylarsine and trimethylarsine toxicity tests through inhalation of target animals. Marine algae transform arsenate into non-volatile methylated arsenic compounds (methanearsonic and dimethylarsinic acids) in seawater. This is considered to be a beneficial step not only to the primary producers, but also to the higher trophic levels, since non-volatile methylated arsenic is much less toxic to marine invertebrates. Freshwater algae like marine algae synthesize lipid-soluble arsenic compounds and do not produce volatile methylarsines. Aquatic plants also synthesize similar lipid-soluble arsenic compounds. In terrestrial plants, arsenate is preferentially taken up 3 to 4 times the rate of arsenite. In the presence of phosphate, arsenate uptake is inhibited while in the presence of arsenate, phosphate uptake is only slightly inhibited. There is a competitive interaction between arsenate and phosphate for the same uptake system in terrestrial plants.

  15. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei, E-mail: fchen@wayne.edu

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  16. MicroRNA-200b Suppresses Arsenic-transformed Cell Migration by Targeting Protein Kinase Cα and Wnt5b-Protein Kinase Cα Positive Feedback Loop and Inhibiting Rac1 Activation*

    Science.gov (United States)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2014-01-01

    MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3′-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation. PMID:24841200

  17. MicroRNA-200b suppresses arsenic-transformed cell migration by targeting protein kinase Cα and Wnt5b-protein kinase Cα positive feedback loop and inhibiting Rac1 activation.

    Science.gov (United States)

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2014-06-27

    MicroRNA-200b (miR-200b) is a member of miR-200 family that has been found to inhibit cell migration and cancer metastasis; however, the underlying mechanism is not well understood. We previously reported that miR-200 expression is depleted in arsenic-transformed human bronchial epithelial cells with highly migratory and invasive characteristics, whereas stably re-expressing miR-200b strongly suppresses arsenic-transformed cell migration. This study was performed to investigate how miR-200b inhibits arsenic-transformed cell migration. We found that protein kinase Cα (PKCα) is significantly up-regulated in arsenic-transformed cells. Combining bioinformatics analysis with PKCα 3'-untranslated region vector luciferase reporter assays, we showed that PKCα is a direct target of miR-200b. Inhibiting PKCα activity or knocking down PKCα expression drastically reduced cell migration, phenocoping the inhibitory effect of overexpressing miR-200b. In contrast, forced expression of PKCα in miR-200b overexpressing cells impaired the inhibitory effect of miR-200b on cell migration. In addition, we also found a positive feedback loop between Wnt5b and PKCα in arsenic-transformed cells. Knocking down Wnt5b expression reduced phospho-PKC levels and cell migration; and knocking down PKCα expression decreased Wnt5b level and cell migration. Moreover, forced expression of PKCα increased Wnt5b and phospho-PKC levels and cell migration. Further mechanistic studies revealed that Rac1 is highly activated in arsenic-transformed cells and stably expressing miR-200b abolishes Rac1 activation changing actin cytoskeleton organization. Manipulating PKCα or Wnt5b expression levels significantly altered the level of active Rac1. Together, these findings indicate that miR-200b suppresses arsenic-transformed cell migration by targeting PKCα and Wnt5b-PKCα positive feedback loop and subsequently inhibiting Rac1 activation. © 2014 by The American Society for Biochemistry and Molecular

  18. Malignant transformation of oral lichen planus by a chronic inflammatory process. Use of topical corticosteroids to prevent this progression?

    Science.gov (United States)

    Otero-Rey, Eva Maria; Suarez-Alen, Fatima; Peñamaria-Mallon, Manuel; Lopez-Lopez, Jose; Blanco-Carrion, Andres

    2014-11-01

    Oral lichen planus is a potentially malignant disorder with a capacity, although low, for malignant transformation. Of all the factors related to the process of malignant transformation, it is believed that the chronic inflammatory process plays a key role in the development of oral cancer. This inflammatory process is capable of providing a microenvironment based on different inflammatory cells and molecules that affect cellular growth, proliferation and differentiation. The objectives of our study are: to review the available evidence about the possible relationship between the chronic inflammatory process present in oral lichen planus and its malignant transformation, to discuss the potential therapeutic implications derived from this relationship and to study the role that topical corticosteroids play in the control of oral lichen planus inflammation and its possible progression to malignant transformation. The maintenance of a minimum dose of topical corticosteroids could prevent the inflammatory progression of oral lichen planus to oral cancer.

  19. Arsenic Transformation in Swine Wastewater with Low-Arsenic Content during Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Weiwei Zhai

    2017-10-01

    Full Text Available In this study, the raw wastewater (RW, and effluents from the acidogenic phase (AP and methanogenic phase (MP in a swine wastewater treatment plant were collected to investigate the occurrence and transformation of arsenic (As, as well as the abundance of As metabolism genes during the anaerobic digestion (AD process. The results showed that total concentrations of As generally decreased by 33–71% after AD. Further analysis showed that the As species of the dissolved fractions were present mainly as dimethylarsinic acid (DMA, with arsenite (As(III and arsenate (As(V as the minor species. Moreover, real-time PCR (qPCR results showed that As metabolism genes (arsC, arsenate reduction gene; aioA, arsenite oxidation gene and arsM, arsenite methylation gene were highly abundant, with arsM being predominant among the metabolism genes. This study provides reliable evidence on As biotransformation in swine wastewater treatment process, suggesting that AD could be a valuable treatment to mitigate the risk of As in wastewater.

  20. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway

    International Nuclear Information System (INIS)

    Ghosh, Jyotirmoy; Das, Joydeep; Manna, Prasenjit; Sil, Parames C.

    2009-01-01

    Cardiac dysfunction is a major cause of morbidity and mortality worldwide due to its complex pathogenesis. However, little is known about the mechanism of arsenic-induced cardiac abnormalities and the use of antioxidants as the possible protective agents in this pathophysiology. Conditionally essential amino acid, taurine, accounts for 25% to 50% of the amino acid pool in myocardium and possesses antioxidant properties. The present study has, therefore, been carried out to investigate the underlying mechanism of the beneficial role of taurine in arsenic-induced cardiac oxidative damage and cell death. Arsenic reduced cardiomyocyte viability, increased reactive oxygen species (ROS) production and intracellular calcium overload, and induced apoptotic cell death by mitochondrial dependent caspase-3 activation and poly-ADP ribose polymerase (PARP) cleavage. These changes due to arsenic exposure were found to be associated with increased IKK and NF-κB (p65) phosphorylation. Pre-exposure of myocytes to an IKK inhibitor (PS-1145) prevented As-induced caspase-3 and PARP cleavage. Arsenic also markedly increased the activity of p38 and JNK MAPKs, but not ERK to that extent. Pre-treatment with SP600125 (JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated NF-κB and IKK phosphorylation indicating that p38 and JNK MAPKs are mainly involved in arsenic-induced NF-κB activation. Taurine treatment suppressed these apoptotic actions, suggesting that its protective role in arsenic-induced cardiomyocyte apoptosis is mediated by attenuation of p38 and JNK MAPK signaling pathways. Similarly, arsenic intoxication altered a number of biomarkers related to cardiac oxidative stress and other apoptotic indices in vivo and taurine supplementation could reduce it. Results suggest that taurine prevented arsenic-induced myocardial pathophysiology, attenuated NF-κB activation via IKK, p38 and JNK MAPK signaling pathways and could possibly provide a protection against As-induced

  1. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    International Nuclear Information System (INIS)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N.; Bibby, Kyle J.; Stolz, Donna B.; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L.; Barchowsky, Aaron; Stolz, John F.

    2015-01-01

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. - Highlights: • Arsenic exposure induces changes in host and host nitrogen metabolism that cause progresive change in the microbiome. • A polyphasic approach reveals changes

  2. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Dheer, Rishu; Patterson, Jena; Dudash, Mark [Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Stachler, Elyse N.; Bibby, Kyle J. [Department of Civil and Environmental Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261 (United States); Stolz, Donna B. [Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 (United States); Shiva, Sruti [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh 15261 (United States); Vascular Medicine Institute, University of Pittsburgh, Pittsburgh 15261 (United States); Wang, Zeneng; Hazen, Stanley L. [Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195 (United States); Barchowsky, Aaron, E-mail: aab20@pitt.edu [Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh 15261 (United States); Vascular Medicine Institute, University of Pittsburgh, Pittsburgh 15261 (United States); Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219 (United States); Stolz, John F. [Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282 (United States)

    2015-12-15

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. - Highlights: • Arsenic exposure induces changes in host and host nitrogen metabolism that cause progresive change in the microbiome. • A polyphasic approach reveals changes

  3. Malignant Transformation of Nodular Hidradenoma in the Lower Leg

    Directory of Open Access Journals (Sweden)

    Nhuan Ngo

    2018-05-01

    Full Text Available Nodular hidradenoma (NH is a benign adnexal tumor that arises from either eccrine or apocrine sweat glands. NH can originate from any cutaneous site, but the most common sites are the head and anterior surface of the trunk, with very rare cases in the extremities. Long-standing NH has been reported to undergo malignant transformation to malignant NH (MNH; however, its occurrence in the lower leg is extremely rare with only one other case reported to date. In this report, we present a rare case of MNH occurring in the lower leg which was resected with the intent to make a diagnosis. At the final follow-up after 11 months, no local recurrence or metastasis has been observed.

  4. Evaluation of Potential Risk Factors that contribute to Malignant Transformation of Oral Lichen Planus: A Literature Review.

    Science.gov (United States)

    Agha-Hosseini, Farzaneh; Sheykhbahaei, Nafiseh; SadrZadeh-Afshar, Maryam-Sadat

    2016-08-01

    Many studies have suggested that a lesion originally diagnosed as oral lichen planus (OLP) has different possibilities of undergoing malignant transformation in time, although these findings remain a controversial issue; for example, some studies reported different values of potential malignancy of OLP. World Health Organization (WHO) classifies OLP as a "potentially malignant disorder" with unspecified malignant transformation risk, and suggests that OLP patients should be closely monitored. Numerous studies have attempted to confirm the malignant transformation potential of OLP. The Cochrane Controlled Trials Register, Medline and EMBASE databases, PubMed, Google Scholar, Ovid, Up To Date, BMJ Clinical Evidence, MD Consult, and Science Direct were searched for papers published between 1997 and 2015. The medical subject heading search terms were "lichen planus," "oral lichen planus," "erosive oral lichen planus," "dysplasia," "oral precancerous condition," "oral premalignant condition," oral cancer, oral squamous cell carcinoma (OSCC), and atrophic lichen planus. A total of 120 English language abstracts were reviewed, and 50 relevant articles identified. Because of the extensive literature on the association between OLP and SCC, we have divided the data into genetic and non-genetic factors for more accurate assessment. In this evidence base, malignant transformation ranges from 0 to 37% with a mean of 4.59%. The highest rate of malignancy was noted in erythematosus and erosive lesions. In this way, follow-up of OLP patients could be carried out more efficiently and appropriately. Oral lichen planus is a premalignant lesion. All types of OLP in any site of oral mucosa must be monitored regularly.

  5. Proteomic profiling reveals candidate markers for arsenic-induced skin keratosis.

    Science.gov (United States)

    Guo, Zhiling; Hu, Qin; Tian, Jijing; Yan, Li; Jing, Chuanyong; Xie, Heidi Qunhui; Bao, Wenjun; Rice, Robert H; Zhao, Bin; Jiang, Guibin

    2016-11-01

    Proteomics technology is an attractive biomarker candidate discovery tool that can be applied to study large sets of biological molecules. To identify novel biomarkers and molecular targets in arsenic-induced skin lesions, we have determined the protein profile of arsenic-affected human epidermal stratum corneum by shotgun proteomics. Samples of palm and foot sole from healthy subjects were analyzed, demonstrating similar protein patterns in palm and sole. Samples were collected from the palms of subjects with arsenic keratosis (lesional and adjacent non-lesional samples) and arsenic-exposed subjects without lesions (normal). Samples from non-exposed healthy individuals served as controls. We found that three proteins in arsenic-exposed lesional epidermis were consistently distinguishably expressed from the unaffected epidermis. One of these proteins, the cadherin-like transmembrane glycoprotein, desmoglein 1 (DSG1) was suppressed. Down-regulation of DSG1 may lead to reduced cell-cell adhesion, resulting in abnormal epidermal differentiation. The expression of keratin 6c (KRT6C) and fatty acid binding protein 5 (FABP5) were significantly increased. FABP5 is an intracellular lipid chaperone that plays an essential role in fatty acid metabolism in human skin. This raises a possibility that overexpression of FABP5 may affect the proliferation or differentiation of keratinocytes by altering lipid metabolism. KRT6C is a constituent of the cytoskeleton that maintains epidermal integrity and cohesion. Abnormal expression of KRT6C may affect its structural role in the epidermis. Our findings suggest an important approach for future studies of arsenic-mediated toxicity and skin cancer, where certain proteins may represent useful biomarkers of early diagnoses in high-risk populations and hopefully new treatment targets. Further studies are required to understand the biological role of these markers in skin pathogenesis from arsenic exposure. Copyright © 2016 Elsevier Ltd

  6. Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice

    International Nuclear Information System (INIS)

    Patterson, Rachel; Vega, Libia; Trouba, Kevin; Bortner, Carl; Germolec, Dori

    2004-01-01

    Previous studies in our laboratory indicate that arsenic alters secretion of growth promoting and inflammatory cytokines in the skin that can regulate the migration and maturation of Langerhans cells (LC) during allergic contact dermatitis. Therefore, we hypothesized that arsenic may modulate hypersensitivity responses to cutaneous sensitizing agents by altering cytokine production, LC migration, and T-cell proliferation. To investigate this hypothesis, we examined the induction and elicitation phases of dermal sensitization. Mice exposed to 50 mg/l arsenic in the drinking water for 4 weeks demonstrated a reduction in lymph node cell (LNC) proliferation and ear swelling following sensitization with 2,4-dinitrofluorobenzene (DNFB), compared to control mice. LC and T-cell populations in the draining lymph nodes of DNFB-sensitized mice were evaluated by fluorescence-activated cell sorting; activated LC were reduced in cervical lymph nodes, suggesting that LC migration may be altered following arsenic exposure. Lymphocytes from arsenic-treated animals sensitized with fluorescein isothiocyanate (FITC) exhibited reduced proliferative responses following T-cell mitogen stimulation in vitro; however, lymphocyte proliferation from nonsensitized, arsenic-treated mice was comparable to controls. Arsenic exposure also reduced the number of thioglycollate-induced peritoneal macrophages and circulating neutrophils. These studies demonstrate that repeated, prolonged exposure to nontoxic concentrations of sodium arsenite alters immune cell populations and results in functional changes in immune responses, specifically attenuation of contact hypersensitivity

  7. Induction of glutathione synthesis in human hepatocytes by acute and chronic arsenic exposure: Differential roles of mitogen-activated protein kinases

    International Nuclear Information System (INIS)

    Hou, Yongyong; Wang, Yi; Wang, Huihui; Xu, Yuanyuan

    2014-01-01

    Highlights: • Arsenic exposure increased intracellular levels of glutathione. • Mitogen-activated protein kinases were involved in glutathione homeostasis. • ERK contributed to glutathione synthesis during acute arsenic exposure. • Glutathione synthesis was regulated by p38 at least in part independent of NRF2 during chronic arsenic exposure. - Abstract: Glutathione (GSH) is a vital component of antioxidant defense which protects cells from toxic insults. Previously we found intracellular GSH was involved in cell resistance against arsenic-induced cytotoxicity. However, molecular mechanisms of GSH homeostasis during arsenic exposure are largely undefined. Here, we investigated roles of mitogen-activated protein kinases (MAPKs) in GSH synthesis pathway with two arsenic exposure strategies by using Chang human hepatocytes. In one strategy, acute arsenic exposure (20 μM, 24 h) was applied, as MAPK signaling is generally considered to be transient. In the other one, chronic arsenic exposure (500 nM, 20 weeks) was applied, which mimicked the general human exposure to arsenic. We found that acute arsenic exposure activated extracellular signal-regulated 1/2 kinases (ERK1/2) and c-Jun N-terminal kinase (JNK) in parallel with increased transcription and nuclear translocation of factor-erythroid 2-related factor 2 (NRF2) and enhanced expression of γ-glutamyl cysteine ligase catalytic subunit (GCLC), resulting in elevated intracellular GSH levels. Specific ERK inhibitor abolished arsenic-induced NRF2 nuclear translocation and GSH synthesis. During chronic arsenic exposure which induced a malignant cellular phenotype, continuous p38 activation and NRF2 nuclear translocation were observed with enhanced GSH synthesis. Specific p38 inhibitor attenuated arsenic-enhanced GSH synthesis without changing NRF2 nuclear translocation. Taken together, our results indicate MAPK pathways play an important role in cellular GSH homeostasis in response to arsenic. However, the

  8. Role and mechanism of arsenic in regulating angiogenesis.

    Directory of Open Access Journals (Sweden)

    Ling-Zhi Liu

    Full Text Available Arsenic is a wide spread carcinogen associated with several kinds of cancers including skin, lung, bladder, and liver cancers. Lung is one of the major targets of arsenic exposure. Angiogenesis is the pivotal process during carcinogenesis and chronic pulmonary diseases, but the role and mechanism of arsenic in regulating angiogenesis remain to be elucidated. In this study we show that short time exposure of arsenic induces angiogenesis in both human immortalized lung epithelial cells BEAS-2B and adenocarcinoma cells A549. To study the molecular mechanism of arsenic-inducing angiogenesis, we find that arsenic induces reactive oxygen species (ROS generation, which activates AKT and ERK1/2 signaling pathways and increases the expression of hypoxia-inducible factor 1 (HIF-1 and vascular endothelial growth factor (VEGF. Inhibition of ROS production suppresses angiogenesis by decreasing AKT and ERK activation and HIF-1 expression. Inhibition of ROS, AKT and ERK1/2 signaling pathways is sufficient to attenuate arsenic-inducing angiogenesis. HIF-1 and VEGF are downstream effectors of AKT and ERK1/2 that are required for arsenic-inducing angiogenesis. These results shed light on the mechanism of arsenic in regulating angiogenesis, and are helpful to develop mechanism-based intervention to prevent arsenic-induced carcinogenesis and angiogenesis in the future.

  9. Meningeal Melanomas Associated With Transforming Ota Nevus to Malignant Melanoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Seyed-Mohammad Fereshtehnejad

    2010-11-01

    Full Text Available Intracranial invasion of cellular blue nevus (CBN from the skin is extremely rare and such a condition with malignant transformation is even rarer.A case of meningeal melanoma with malignant transformation which was derived from an Ota   nevus is presented in this report.   A21-year-old man with a neurocutaneous syndrome since childhood was referred with headache and mild left hemiparesia. CT scan and MRI demonstrated intracranial lesions and conjunctival biopsy leads to the pathologic diagnosis of blue nevus.Thereafter his parietal lesion was operated by craniotomy with total gross excision.On histopathological examination, diagnosis of malignant melanoma was confirmed.Approximately 2 months after radiotherapy and chemotherapy, he afflicted to diplopia and blurred vision on the leftside due to enlargement of orbital and cavernous sinus lesion. Following one year follow-up,he was survived and thrived with diffuse leptomeningeal nodular enhancement in favor of melanoma dissemination.Primary intracranial melanomas are though rare, but it should be suspected especially in the presence of periorbital blue nevus or nevus of Ota. Moreover, although CBN is considered benign, scalp or periorbital CBN has the potential for intracranial invasion and malignant ransformation.

  10. Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes

    International Nuclear Information System (INIS)

    Huang, H.-S.; Liu, Z.-M.; Hong, D.-Y.

    2010-01-01

    Arsenic is well known as a carcinogen predisposing humans to some severe diseases and also as an effective medicine for treating acute promyelocytic leukemia, syphilis, and psoriasis. Multiple active mechanisms, including cell cycle arrest and apoptosis, have been proposed in therapy; however, the opposing effects of arsenic remain controversial. Our previous study found that arsenic trioxide (ATO)-induced activation of p21 WAF1/CIP1 (p21) led to A431 cell death through the antagonistic effects of the signaling of ERK1/2 and JNK1. In the current study, the inhibitory effects of JNK1 on ATO-induced p21 expression were explored. Over-expression of JNK1 in A431 cells could inhibit p21 expression, which was associated with HDAC1 and TGIF. Using the GST pull-down assay and fluorescence resonance energy transfer analysis, N-terminal domain (amino acids 1-108) of TGIF, critical to its binding with c-Jun, was found. Using reporter assays, requirement of the C-terminal domain (amino acids 138-272) of TGIF to suppress ATO-induced p21 expression was observed. Thus, the domains of TGIF that carried out its inhibitory effects on p21 were identified. Finally, treatment with JNK inhibitor SP600125 could enhance ATO-induced apoptosis of HaCaT keratinocytes by using flow cytometry.

  11. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  12. Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan

    International Nuclear Information System (INIS)

    Aggarwal, Manoj; Naraharisetti, Suresh Babu; Dandapat, S.; Degen, G.H.; Malik, J.K.

    2008-01-01

    The metalloid arsenic and the chlorinated insecticide endosulfan are common environmental contaminants. Humans, animals, and birds are exposed to these chemicals through water and food. Although health effects due to either arsenic or endosulfan exposure are documented, the toxicological impact of co-exposure to these environmental pollutants is unpredictable and unknown. The present study was undertaken to assess whether concurrent exposure to arsenic and endosulfan induces significant alterations in immunological functions. Day-old chicks were exposed to 3.7 ppm of arsenic via drinking water and to 30 ppm of endosulfan-mixed feed either individually or concurrently for up to 60 days. All the chicks were vaccinated with Ranikhet disease virus (F-strain; RD-F) on days 1 and 30. During the course of study and at term, parameters of cellular and humoral immunity were determined. None of the treatments altered the absolute body weight or body weight gain, except arsenic significantly reduced weight gain on day 60. Absolute, but not the relative, weights of spleen, thymus and bursa of Fabricius were significantly reduced in all the treatment groups. The metalloid and insecticide combination significantly depressed the ability of peripheral blood and splenic lymphocytes to proliferate in response to antigen RD-F and mitogen Con A. The delayed type hypersensitivity response to 2,4-dinitro-1-chlorobenzene or to PHA-P was also significantly decreased. Nitric oxide production by RD-F or lipopolysaccharide-stimulated peripheral blood and splenic mononuclear cells was significantly suppressed following concurrent exposure to arsenic and endosulfan. Furthermore, the combined exposure also decreased the antibody response to RD-F. The suppression of cellular and humoral immune responses was also evident following administration of individual compounds, and it was not exacerbated following concurrent exposure. To our knowledge, this is the first report describing the suppression

  13. High fat diet aggravates arsenic induced oxidative stress in rat heart and liver.

    Science.gov (United States)

    Dutta, Mousumi; Ghosh, Debosree; Ghosh, Arnab Kumar; Bose, Gargi; Chattopadhyay, Aindrila; Rudra, Smita; Dey, Monalisa; Bandyopadhyay, Arkita; Pattari, Sanjib K; Mallick, Sanjaya; Bandyopadhyay, Debasish

    2014-04-01

    Arsenic is a well known global groundwater contaminant. Exposure of human body to arsenic causes various hazardous effects via oxidative stress. Nutrition is an important susceptible factor which can affect arsenic toxicity by several plausible mechanisms. Development of modern civilization led to alteration in the lifestyle as well as food habits of the people both in urban and rural areas which led to increased use of junk food containing high level of fat. The present study was aimed at investigating the effect of high fat diet on heart and liver tissues of rats when they were co-treated with arsenic. This study was established by elucidating heart weight to body weight ratio as well as analysis of the various functional markers, oxidative stress biomarkers and also the activity of the antioxidant enzymes. Histological analysis confirmed the biochemical investigations. From this study it can be concluded that high fat diet increased arsenic induced oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation.

    Directory of Open Access Journals (Sweden)

    Emilios Gemenetzidis

    Full Text Available Cancer associated with smoking and drinking remains a serious health problem worldwide. The survival of patients is very poor due to the lack of effective early biomarkers. FOXM1 overexpression is linked to the majority of human cancers but its mechanism remains unclear in head and neck squamous cell carcinoma (HNSCC.FOXM1 mRNA and protein expressions were investigated in four independent cohorts (total 75 patients consisting of normal, premalignant and HNSCC tissues and cells using quantitative PCR (qPCR, expression microarray, immunohistochemistry and immunocytochemistry. Effect of putative oral carcinogens on FOXM1 transcriptional activity was dose-dependently assayed and confirmed using a FOXM1-specific luciferase reporter system, qPCR, immunoblotting and short-hairpin RNA interference. Genome-wide single nucleotide polymorphism (SNP array was used to 'trace' the genomic instability signature pattern in 8 clonal lines of FOXM1-induced malignant human oral keratinocytes. Furthermore, acute FOXM1 upregulation in primary oral keratinocytes directly induced genomic instability. We have shown for the first time that overexpression of FOXM1 precedes HNSCC malignancy. Screening putative carcinogens in human oral keratinocytes surprisingly showed that nicotine, which is not perceived to be a human carcinogen, directly induced FOXM1 mRNA, protein stabilisation and transcriptional activity at concentrations relevant to tobacco chewers. Importantly, nicotine also augmented FOXM1-induced transformation of human oral keratinocytes. A centrosomal protein CEP55 and a DNA helicase/putative stem cell marker HELLS, both located within a consensus loci (10q23, were found to be novel targets of FOXM1 and their expression correlated tightly with HNSCC progression.This study cautions the potential co-carcinogenic effect of nicotine in tobacco replacement therapies. We hypothesise that aberrant upregulation of FOXM1 may be inducing genomic instability through a

  15. Genetic polymorphisms in glutathione S-transferase (GST superfamily and risk of arsenic-induced urothelial carcinoma in residents of southwestern Taiwan

    Directory of Open Access Journals (Sweden)

    Hsueh Yu-Mei

    2011-07-01

    Full Text Available Abstract Background Arsenic exposure is an important public health issue worldwide. Dose-response relationship between arsenic exposure and risk of urothelial carcinoma (UC is consistently observed. Inorganic arsenic is methylated to form the metabolites monomethylarsonic acid and dimethylarsinic acid while ingested. Variations in capacity of xenobiotic detoxification and arsenic methylation might explain individual variation in susceptibility to arsenic-induced cancers. Methods To estimate individual susceptibility to arsenic-induced UC, 764 DNA specimens from our long-term follow-up cohort in Southwestern Taiwan were used and the genetic polymorphisms in GSTM1, GSTT1, GSTP1 and arsenic methylation enzymes including GSTO1 and GSTO2 were genotyped. Results The GSTT1 null was marginally associated with increased urothelial carcinoma (UC risk (HR, 1.91, 95% CI, 1.00-3.65, while the association was not observed for other GSTs. Among the subjects with cumulative arsenic exposure (CAE ≥ 20 mg/L*year, the GSTT1 null genotype conferred a significantly increased cancer risk (RR, 3.25, 95% CI, 1.20-8.80. The gene-environment interaction between the GSTT1 and high arsenic exposure with respect to cancer risk was statistically significant (multiplicative model, p = 0.0151 and etiologic fraction was as high as 0.86 (95% CI, 0.51-1.22. The genetic effects of GSTO1/GSTO2 were largely confined to high arsenic level (CAE ≥ 20. Diplotype analysis showed that among subjects exposed to high levels of arsenic, the AGG/AGG variant of GSTO1 Ala140Asp, GSTO2 5'UTR (-183A/G, and GSTO2 Asn142Asp was associated with an increased cancer risk (HRs, 4.91, 95% CI, 1.02-23.74 when compared to the all-wildtype reference, respectively. Conclusions The GSTs do not play a critical role in arsenic-induced urothelial carcinogenesis. The genetic effects of GSTT1 and GSTO1 on arsenic-induced urothelial carcinogenesis are largely confined to very high exposure level.

  16. Ameliorative potential of Psidium guajava in induced arsenic toxicity in Wistar rats

    Directory of Open Access Journals (Sweden)

    Manju Roy and Sushovan Roy

    2011-04-01

    Full Text Available The study was undertaken to determine the effect of Psidium.guajava leaf extract on arsenic induced biochemical alterations in Wistar rats. Significant (P<0.05 increased glucose serum urea nitrogen and serum creatinine was observed whereas non significant decrease in total protein, calcium and phosphorus was observed. It is concluded that kidney damage caused by arsenic can be repaired up to some extent by AEPG50. [Veterinary World 2011; 4(2.000: 82-83

  17. Arsenic-transforming microbes and their role in biomining processes

    OpenAIRE

    Drewniak, L.; Sklodowska, A.

    2013-01-01

    It is well known that microorganisms can dissolve different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital elements (e.g., P, Fe, S, Mg and Mo), but some may also contain toxic metals or metalloids, like arsenic. The toxicity of arsenic is disclosed after the dissolution of the mineral, which raises two important questions: (1) why do microorganisms dissolve arsenic-bearing minerals and release this metal into the environment in a tox...

  18. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment

    OpenAIRE

    Chen, Baowei; Cao, Fenglin; Yuan, Chungang; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X. Chris

    2013-01-01

    Arsenic trioxide has been successfully used as a therapeutic in the treatment of acute promyelocytic leukemia (APL). Detailed monitoring of the therapeutic arsenic and its metabolites in various accessible specimens of APL patients can contribute to improving treatment efficacy and minimizing arsenic-induced side effects. This article focuses on the determination of arsenic species in saliva samples from APL patients undergoing arsenic treatment. Saliva samples were collected from nine APL pa...

  19. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children

    Energy Technology Data Exchange (ETDEWEB)

    Phookphan, Preeyaphan; Navasumrit, Panida [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok (Thailand); Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education (Thailand); Waraprasit, Somchamai; Promvijit, Jeerawan; Chaisatra, Krittinee; Ngaotepprutaram, Thitirat [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Ruchirawat, Mathuros, E-mail: mathuros@cri.or.th [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education (Thailand)

    2017-02-01

    Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylation of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p < 0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p < 0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10–100 μM) and long-term low doses (0.5–1 μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p < 0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life. - Highlight: • Early-life arsenic exposure caused promoter hypomethylation of COX2, EGR1 and SOCS3. • Hypomethylation of these genes is

  20. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children

    International Nuclear Information System (INIS)

    Phookphan, Preeyaphan; Navasumrit, Panida; Waraprasit, Somchamai; Promvijit, Jeerawan; Chaisatra, Krittinee; Ngaotepprutaram, Thitirat; Ruchirawat, Mathuros

    2017-01-01

    Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylation of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p < 0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p < 0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10–100 μM) and long-term low doses (0.5–1 μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p < 0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life. - Highlight: • Early-life arsenic exposure caused promoter hypomethylation of COX2, EGR1 and SOCS3. • Hypomethylation of these genes is

  1. High soil and groundwater arsenic levels induce high body arsenic loads, health risk and potential anemia for inhabitants of northeastern Iran.

    Science.gov (United States)

    Taheri, Masumeh; Mehrzad, Jalil; Mahmudy Gharaie, Mohamad Hosein; Afshari, Reza; Dadsetan, Ahmad; Hami, Shakiba

    2016-04-01

    Arsenic bioavailability in rock, soil and water resources is notoriously hazardous. Geogenic arsenic enters the body and adversely affects many biochemical processes in animals and humans, posing risk to public health. Chelpu is located in NE Iran, where realgar, orpiment and pyrite mineralization is the source of arsenic in the macroenvironment. Using cluster random sampling strategy eight rocks, 23 soils, 12 drinking water resources, 36 human urine and hair samples and 15 adult sheep urine and wool samples in several large-scale herds in the area were randomly taken for quantification of arsenic in rock/soil/water, wool/hair/urine. Arsenic levels in rock/soil/water and wool/hair/urine were measured using inductively coupled plasma spectroscopy and atomic absorption spectrophotometry, respectively. While arsenic levels in rocks, soils and water resources hazardously ranged 9.40-25,873.3 mg kg(-1), 7.10-1448.80 mg kg(-1) and 12-606 μg L(-1), respectively, arsenic concentrations in humans' hair and urine and sheep's wool and urine varied from 0.37-1.37 μg g(-1) and 9-271.4 μg L(-1) and 0.3-3.11 μg g(-1) and 29.1-1015 μg L(-1), respectively. Local sheep and human were widely sick and slightly anemic. Hematological examination of the inhabitants revealed that geogenic arsenic could harm blood cells, potentially resulting in many other hematoimmunological disorders including cancer. The findings warn widespread exposure of animals and human in this agroecologically and geopolitically important region (i.e., its proximity with Afghanistan, Pakistan and Turkmenistan) and give a clue on how arsenic could induce infectious and non-infectious diseases in highly exposed human/animals.

  2. Radiation- and photoinduced processes in glass-like arsenic trisulfide and triselenide

    International Nuclear Information System (INIS)

    Matkovskij, A.O.; Shvarts, K.K.; Pirogov, F.V.; Shpotyuk, O.I.; Savitskij, I.V.

    1988-01-01

    Peculiarities of photo-structural transformations and results of gamma- and electron-radiation effect upon microhardness, optical absorption, IK and EPR spectra have been studied for glassy chalcogenide semiconductors (GCS). It has been shown that high-energy-radiation-induced changes in the GCS physical properties depend on radiation parameters, thermal conditions and the composition of the sample. Mechanisms of radiation-induced transformations (RIC) for glassy arsenic trisulfide and triselenide are discussed. The RIC is supposed to have been predetermined by the following correlated processes: destruction-polymerization, radiation defect formation, and impurity radiolysis. 77 refs.; 10 figs.; 2 tabs

  3. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    International Nuclear Information System (INIS)

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-01-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress

  4. [Malignant transformation of human fibroblasts by neutrons and by gamma radiation: Relationship to mutations induced

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    A brief overview if provided of selected reports presented at the International Symposium on Molecular Mechanisms of Radiation- and Chemical Carcinogen-Induced Cell Transformation held at Mackinac Island, Michigan on September 19-23, 1993.

  5. Giant hidradenocarcinoma: a report of malignant transformation from nodular hidradenoma.

    Science.gov (United States)

    Lim, S C; Lee, M J; Lee, M S; Kee, K H; Suh, C H

    1998-10-01

    A giant hidradenocarcinoma presented by a 75-year-old female is reported. The patient had a malignant transformation within a nodular hidradenoma involving the right postauricular area, which was treated by mass removal and a right radical neck dissection with a free-flap covering. Malignant hidradenocarcinoma is the least common adnexal tumor of uncertain origin. They are usually malignant from their inception, but some develop from a benign counterpart. To the authors' knowledge, only three cases have been reported previously. Two histologically distinct components were seen in this tumor: (i) typical nodular hidradenoma, which constituted a small part of the tumor; and (ii) carcinoma with areas of transition. The secretory cells of hidradenocarcinoma showed decapitation secretion on light and electron microscopic observations, which is evidence of apocrine differentiation. Histologically, this case was concluded as a hidradenocarcinoma arising from a long-standing nodular hidradenoma. A literature review is presented and the histological, immunohistochemical and ultrastructural features are described.

  6. Induction of Human Squamous Cell-Type Carcinomas by Arsenic

    International Nuclear Information System (INIS)

    Martinez, V. D.; Becker-Santos, D. D.; Vucic, E. A.; Lam, S.; Lam, W. L.

    2011-01-01

    Arsenic is a potent human carcinogen. Around one hundred million people worldwide have potentially been exposed to this metalloid at concentrations considered unsafe. Exposure occurs generally through drinking water from natural geological sources, making it difficult to control this contamination. Arsenic biotransformation is suspected to have a role in arsenic-related health effects ranging from acute toxicities to development of malignancies associated with chronic exposure. It has been demonstrated that arsenic exhibits preference for induction of squamous cell carcinomas in the human, especially skin and lung cancer. Interestingly, keratins emerge as a relevant factor in this arsenic-related squamous cell-type preference. Additionally, both genomic and epi genomic alterations have been associated with arsenic-driven neoplastic process. Some of these aberrations, as well as changes in other factors such as keratins, could explain the association between arsenic and squamous cell carcinomas in humans.

  7. Combination of arsenic and interferon-α inhibits expression of KSHV latent transcripts and synergistically improves survival of mice with primary effusion lymphomas.

    Science.gov (United States)

    El Hajj, Hiba; Ali, Jihane; Ghantous, Akram; Hodroj, Dana; Daher, Ahmad; Zibara, Kazem; Journo, Chloé; Otrock, Zaher; Zaatari, Ghazi; Mahieux, Renaud; El Sabban, Marwan; Bazarbachi, Ali; Abou Merhi, Raghida

    2013-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphomas (PEL). PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN) inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.

  8. Biological effects of radiation: The induction of malignant transformation and programmed cell death

    International Nuclear Information System (INIS)

    Servomaa, K.

    1991-04-01

    In the Chernobyl explosions and fire, powderized nuclear fuel was released from the reactor core, causing an unexpected fallout. X-ray analysis and scanning electron microscopy showed that the isolated single particles were essentially pure uranium. These uranium aerosols contained all of the nonvolatile fission products, including the b-emitters, 95 Zr, 103 Ru, 106 Ru, 141 Ce, and 144 Ce. The hot particles are extremely effective in inducing malignant transformation in mouse fibroblast cells in vitro. The major factor responsible for this effect is focus promotion caused by a wound-mediated permanent increase in cell proliferation (mitogenesis associated with mutagenesis). Transformed foci were analysed for the activation of c-abl, c-erb-A, c-erb-B, c-fms, c-fos, c-myb, c-myc, c-Ha-ras, c-Ki-ras, c-sis, and c-raf oncogenes at the transcriptional level. The pattern of oncogene activation was found to vary from focus to focus. Long interspersed repeated DNA (L1 or LINE makes up a class of mobile genetic elements which can amplify in the cell genome by retroposition. This element is spontaneously transcriptionally activated at a critical population density and later amplified in rat chloroleukaemia cells. UV light and ionizing radiation induce this activation prematurely, and the activation is followed by programmed cell death (apoptosis) in a sequence of events identical to that seen in LIRn activation occurring spontaneously

  9. Arsenic species in ecosystems affected by arsenic-rich spring water near an abandoned mine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.T. [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of); Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, H.O., E-mail: dunee@kbsi.re.k [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Yoon, C. [Nano Environment Materials Research Team, Korea Basic Science Institute, Seoul 136-600 (Korea, Republic of); Woo, N.C., E-mail: ncwoo@yonsei.ac.k [Department of Earth System Science, Yonsei University, 134 Shinchon-Dong, Sudaemoon-Gu, Seoul 120-749 (Korea, Republic of)

    2009-12-15

    The objectives of this study were to quantitatively estimate the distribution of arsenic with its speciation and to identify potential pathways for transformation of arsenic species from samples of water, sediments, and plants in the ecosystem affected by the Cheongog Spring, where As(V) concentration reached levels up to 0.270 mg L{sup -1}. After flowing about 100 m downstream, the arsenic level showed a marked reduction to 0.044 mg L{sup -1} (about 84% removal) without noticeable changes in major water chemistry. The field study and laboratory hydroponic experiments with the dominant emergent plants along the creek (water dropwort and thunbergian smartweed) indicated that arsenic distribution, reduction, and speciation appear to be controlled by, (i) sorption onto stream sediments in exchangeable fractions, (ii) bioaccumulation by and possible release from emergent plants, and (iii) transformation of As(V) to As(III) and organic species through biological activities. - Biogeochemical reactions with emergent plants and sediments control the fate of arsenic along creeks originating from a high-As Spring.

  10. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    International Nuclear Information System (INIS)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling; Yeh, Bi-Wen; Wu, Wen-Jeng; Huang, Huei-Sheng

    2015-01-01

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21 WAF1/CIP1 ) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF mediates

  11. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Yeh, Bi-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Wu, Wen-Jeng [Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Huang, Huei-Sheng, E-mail: huanghs@mail.ncku.edu.tw [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-05-15

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21{sup WAF1/CIP1}) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF

  12. Effect of Fluoride on Arsenic Uptake from Arsenic-Contaminated Groundwater using Pteris vittata L.

    Science.gov (United States)

    Zhao, Junying; Guo, Huaming; Ma, Jie; Shen, Zhaoli

    2015-01-01

    High-arsenic groundwater in inland basins usually contains high concentrations of fluoride. In the present study, the effects of fluoride on arsenic uptake by Pteris vittata and on arsenic transformation in growth media were investigated under greenhouse conditions. After P. vittata was hydroponically exposed to 66.8 μM As (V) in the presence of 1.05 mM F- in the form of NaF, KF, or NaF+KF for 10 d, no visible toxicity symptoms were observed, and there were not significant differences in the dry biomass among the four treatments. The results showed that P. vittata tolerated F- concentrations as high as 1.05 mM but did not accumulate fluoride in their own tissues. Arsenic uptake was inhibited in the presence of 1.05 mM F-. However, in hydroponic batches with 60 μM As (III) or 65 μM As (V), it was found that 210.6 and 316.0 μM F(-) promoted arsenic uptake. As(III) was oxidized to As(V) in the growth media in the presence and absence of plants, and F- had no effect on the rate of As(III) transformation. These experiments demonstrated that P. vittata was a good candidate to remediate arsenic-contaminated groundwater in the presence of fluoride. Our results can be used to develop strategies to remediate As-F-contaminated water using P. vittata.

  13. [Mediastinal teratoma with malignant transformation of the somatic component. Clinical report].

    Science.gov (United States)

    Gerardo, Rita; Morgado, Carolina; Calvo, Dolores; Pinto, Eugénia; Bravio, Ivan; Castelão, Nelson; Martelo, Fernando

    2009-01-01

    Mediastinal germ cell tumours (M-GCT) are rare forms of neoplasms compared with other tumours of the same location. They are classified in seminomas, malignant non-seminomatous GCT and teratomas. The malignant transformation of the somatic component of the teratoma, with sarcomatous or carcinomatous degeneration, is even more uncommon. We report the clinical case of a 32 year old man who presented with severe chest pain on the right hemithorax. The image exams revealed the existence of a large heterogeneous lesion with a diameter of 7.7 cm, with areas of lipomatous density and a calcic image with the appearance of a tooth, in the right projection of the anterior mediastinum, in the vicinity of the large vessels, compatible with teratoma. The transthoracic biopsy (CT guided) showed morphologic aspects of sarcoma. The patient was operated on with the en bloc resection of the mediastinal mass, right lung, a segment of the pericardium and the thymus. The pathological studies showed a teratoma with malignant transformation of the mesenquimatous component, with muscular differentiation into leiomiosarcoma and rabdomiosarcoma. After surgery, the patient was treated with a scheme of doxorubicin and ifosfamide. The most prominent concepts related to this clinical entity, as well as its treatment, are debated in this article, based on the most recent publications dedicated to the subject.

  14. IDENTIFICATION OF INTERSPECIES CONCORDANCE OF MECHANISMS OF ARSENIC-INDUCED BLADDER CANCER

    Science.gov (United States)

    Exposure to arsenic causes cancer by inducing a variety of responses that affect the expression of genes associated with numerous biological pathways leading to altered cell growth and proliferation, signaling, apoptosis and oxidative stress response. Affymetrix GeneChip® arrays ...

  15. Sequential pathological changes during malignant transformation of a craniopharyngioma: A case report and review of the literature

    Science.gov (United States)

    Negoto, Tetsuya; Sakata, Kiyohiko; Aoki, Takachika; Orito, Kimihiko; Nakashima, Shinji; Hirohata, Masaru; Sugita, Yasuo; Morioka, Motohiro

    2015-01-01

    Background: Malignant transformation of craniopharyngiomas is quite rare, and the etiology of transformation remains unclear. The prognosis of malignantly transformed craniopharyngiomas is very poor. Case Description: A 36-year-old male had five craniotomies, five transsphenoidal surgeries, and two radiation treatments until 31 years of age after diagnosis of craniopharyngioma at 12 years of age. All serial pathological findings indicated adamantinomatous craniopharyngioma including those of a surgery performed for tumor regrowth at 31 years of age. However, when the tumor recurred approximately 5 years later, the pathological findings showed squamous metaplasia. The patient received CyberKnife surgery, but the tumor rapidly regrew within 4 months. The tumor was resected with the cavernous sinus via a dual approach: Transcranial and transsphenoidal surgery with an extracranial-intracranial bypass using the radial artery. Pathologic examination of a surgical specimen showed that it consisted primarily of squamous cells; the lamina propria was collapsed, and the tumor cells had enlarged nuclei and clarification of the nucleolus. The tumor was ultimately diagnosed as malignant transformation of craniopharyngioma. After surgery, he received combination chemotherapy (docetaxel, cisplatin, and fluorouracil). The tumor has been well controlled for more than 12 months. Conclusion: Serial pathological changes of the craniopharyngioma and a review of the 20 cases reported in the literature suggest that radiation of the squamous epithelial cell component of the craniopharyngioma led to malignant transformation via squamous metaplasia. We recommend aggressive surgical removal of craniopharyngiomas and avoidance of radiotherapy if possible. PMID:25883842

  16. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    Directory of Open Access Journals (Sweden)

    Benjamin C Thompson

    Full Text Available Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV radiation and affects DNA damage and repair. Nicotinamide (vitamin B3 reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2 solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer.

  17. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic.

    Science.gov (United States)

    Molin, Marianne; Ulven, Stine Marie; Meltzer, Helle Margrete; Alexander, Jan

    2015-01-01

    Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  19. The studies of DNA double-strand break (DSB) rejoining and mRNA expression of repair gene XRCCs in malignant transformed cell lines of human bronchial epithelial cells generated by α-particles

    International Nuclear Information System (INIS)

    Sun Jingfen; Sui Jianli; Geng Yu; Zhou Pingkun; Wu Dechang

    2002-01-01

    Objective: To investigate the efficiency of γ-ray-induced DNA DSB rejoining and the mRNA expression of DNA repair genes in malignantly transformed cell lines of human bronchial epithelial cells generated by exposure to a-particles. Methods: Pulsed field gel electrophoresis (PFGE) was used to detect DNA. DSBs mRNA expression was analyzed by RT-PCR. Results: The residual DNA DSB damage level after 4hrs repair following 0-150 Gy of γ-irradiation in the malignantly transformed cell lines BERP35T-1 and BERP35T-4 was significantly higher than that in their parental BEP2D cells. The analysis of mRNA level revealed a 2.5-to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 (XRCC-5) in BERP35T-1 and BERP35T-4 cells as compared with the parental BEP2D cells. In contrast, the expression of DNA-PKcs(XRCC7) was 2.4-fold up-regulated in the transformed cell line BERP35T-4, in which there was a significantly higher proportion of polyploid cells. Conclusion: This study results show that the deficiency of DNA DSB rejoining and depressed mRNA expression of DNA repair genes could be involved in the malignant transformation process of BEP2D cells induced by exposure to α-particles

  20. First case of transformation for breast fibroadenoma to high-grade malignant cystosarcoma in an in vitro fertilization patient.

    Science.gov (United States)

    Pacchiarotti, Arianna; Frati, Paola; Caserta, Donatella; Pacchiarotti, Alessandro; Frega, Antonio; Moscarini, Massimo

    2011-11-01

    To evaluate the possible malignant transformation of fibroadenoma of the breast in patients undergoing an IVF cycle. Case report. Assisted reproduction center. A 41-year-old female patient undergoing assisted fertilization treatment. The patient underwent fine needle aspiration biopsy that confirmed fibroadenoma before the IVF attempt. She started a short stimulation protocol with triptorelin and recombinant FSH. After the first unsuccessful IVF attempt, she underwent a second short ovarian stimulation protocol with triptorelin and urinary FSH and she become pregnant. At 17 weeks, due to an increase in volume of the fibroadenoma, an excisional biopsy was performed that showed a malignant phyllode tumor. Then she underwent quadrantectomy. Malignant transformation of breast fibroadenoma. Cytologic examination of the first fine needle aspiration biopsy specimen showed a fibroadenoma of the breast; excisional biopsy showed a high-grade malignant cystosarcoma. Fibroadenoma was transformed into high-grade malignant cystosarcoma after ovarian stimulation in an IVF patient. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Combination of arsenic and interferon-α inhibits expression of KSHV latent transcripts and synergistically improves survival of mice with primary effusion lymphomas.

    Directory of Open Access Journals (Sweden)

    Hiba El Hajj

    Full Text Available BACKGROUND: Kaposi sarcoma-associated herpesvirus (KSHV is the etiologic agent of primary effusion lymphomas (PEL. PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. METHODOLOGY/PRINCIPAL FINDINGS: Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. CONCLUSION/SIGNIFICANCE: These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.

  2. All-trans retinoic acid protects against arsenic-induced uterine toxicity in female Sprague–Dawley rats

    International Nuclear Information System (INIS)

    Chatterjee, A.; Chatterji, U.

    2011-01-01

    Background and purpose: Arsenic exposure frequently leads to reproductive failures by disrupting the rat uterine histology, hormonal integrity and estrogen signaling components of the rat uterus, possibly by generating reactive oxygen species. All-trans retinoic acid (ATRA) was assessed as a prospective therapeutic agent for reversing reproductive disorders. Experimental approach: Rats exposed to arsenic for 28 days were allowed to either recover naturally or were treated simultaneously with ATRA for 28 days or treatment continued up to 56 days. Hematoxylin–eosin double staining was used to evaluate changes in the uterine histology. Serum gonadotropins and estradiol were assayed by ELISA. Expression of the estrogen receptor (ERα), an estrogen responsive gene vascular endothelial growth factor (VEGF), and cell cycle regulatory proteins, cyclin D1 and CDK4, was assessed by RT-PCR, immunohistochemistry and western blot analysis. Key results: ATRA ameliorated sodium arsenite-induced decrease in circulating estradiol and gonadotropin levels in a dose- and time-dependent manner, along with recovery of luminal epithelial cells and endometrial glands. Concomitant up regulation of ERα, VEGF, cyclin D1, CDK4 and Ki-67 was also observed to be more prominent for ATRA-treated rats as compared to the rats that were allowed to recover naturally for 56 days. Conclusions and implications: Collectively, the results reveal that ATRA reverses arsenic-induced disruption of the circulating levels of gonadotropins and estradiol, and degeneration of luminal epithelial cells and endometrial glands of the rat uterus, indicating resumption of their functional status. Since structural and functional maintenance of the pubertal uterus is under the influence of estradiol, ATRA consequently up regulated the estrogen receptor and resumed cellular proliferation, possibly by an antioxidant therapeutic approach against arsenic toxicity. Highlights: ► Arsenic disrupts the uterine histology and

  3. All-trans retinoic acid protects against arsenic-induced uterine toxicity in female Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, A.; Chatterji, U., E-mail: urmichatterji@gmail.com

    2011-12-15

    Background and purpose: Arsenic exposure frequently leads to reproductive failures by disrupting the rat uterine histology, hormonal integrity and estrogen signaling components of the rat uterus, possibly by generating reactive oxygen species. All-trans retinoic acid (ATRA) was assessed as a prospective therapeutic agent for reversing reproductive disorders. Experimental approach: Rats exposed to arsenic for 28 days were allowed to either recover naturally or were treated simultaneously with ATRA for 28 days or treatment continued up to 56 days. Hematoxylin-eosin double staining was used to evaluate changes in the uterine histology. Serum gonadotropins and estradiol were assayed by ELISA. Expression of the estrogen receptor (ER{alpha}), an estrogen responsive gene vascular endothelial growth factor (VEGF), and cell cycle regulatory proteins, cyclin D1 and CDK4, was assessed by RT-PCR, immunohistochemistry and western blot analysis. Key results: ATRA ameliorated sodium arsenite-induced decrease in circulating estradiol and gonadotropin levels in a dose- and time-dependent manner, along with recovery of luminal epithelial cells and endometrial glands. Concomitant up regulation of ER{alpha}, VEGF, cyclin D1, CDK4 and Ki-67 was also observed to be more prominent for ATRA-treated rats as compared to the rats that were allowed to recover naturally for 56 days. Conclusions and implications: Collectively, the results reveal that ATRA reverses arsenic-induced disruption of the circulating levels of gonadotropins and estradiol, and degeneration of luminal epithelial cells and endometrial glands of the rat uterus, indicating resumption of their functional status. Since structural and functional maintenance of the pubertal uterus is under the influence of estradiol, ATRA consequently up regulated the estrogen receptor and resumed cellular proliferation, possibly by an antioxidant therapeutic approach against arsenic toxicity. Highlights: Black-Right-Pointing-Pointer Arsenic

  4. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L

    International Nuclear Information System (INIS)

    Wei Shuhe; Ma, Lena Q.; Saha, Uttam; Mathews, Shiny; Sundaram, Sabarinath; Rathinasabapathi, Bala; Zhou Qixing

    2010-01-01

    This experiment examined the effects of sulfate (S) and reduced glutathione (GSH) on arsenic uptake by arsenic hyperaccumulator Pteris vittata after exposing to arsenate (0, 15 or 30 mg As L -1 ) with sulfate (6.4, 12.8 or 25.6 mg S L -1 ) or GSH (0, 0.4 or 0.8 mM) for 2-wk. Total arsenic, S and GSH concentrations in plant biomass and arsenic speciation in the growth media and plant biomass were determined. While both S (18-85%) and GSH (77-89%) significantly increased arsenic uptake in P. vittata, GSH also increased arsenic translocation by 61-85% at 0.4 mM (p < 0.05). Sulfate and GSH did not impact plant biomass or arsenic speciation in the media and biomass. The S-induced arsenic accumulation by P. vittata was partially attributed to increased plant GSH (21-31%), an important non-enzymatic antioxidant countering oxidative stress. This experiment demonstrated that S and GSH can effectively enhance arsenic uptake and translocation by P. vittata. - Sulfate and glutathione increased arsenic uptake and translocation in Pteris vittata.

  5. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    International Nuclear Information System (INIS)

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-01-01

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro(α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  6. Oxidative DNA damage of peripheral blood polymorphonuclear leukocytes, selectively induced by chronic arsenic exposure, is associated with extent of arsenic-related skin lesions

    International Nuclear Information System (INIS)

    Pei, Qiuling; Ma, Ning; Zhang, Jing; Xu, Wenchao; Li, Yong; Ma, Zhifeng; Li, Yunyun; Tian, Fengjie; Zhang, Wenping; Mu, Jinjun; Li, Yuanfei; Wang, Dongxing; Liu, Haifang; Yang, Mimi; Ma, Caifeng; Yun, Fen

    2013-01-01

    There is increasing evidence that oxidative stress is an important risk factor for arsenic-related diseases. Peripheral blood leukocytes constitute an important defense against microorganisms or pathogens, while the research on the impact of chronic arsenic exposure on peripheral blood leukocytes is much more limited, especially at low level arsenic exposure. The purpose of the present study was to explore whether chronic arsenic exposure affects oxidative stress of peripheral blood leukocytes and possible linkages between oxidative stress and arsenic-induced skin lesions. 75 male inhabitants recruited from an As-endemic region of China were investigated in the present study. The classification of arsenicosis was based on the degree of skin lesions. Arsenic levels were measured in drinking water and urine by Atomic Fluorescence Spectroscopy. Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) was tested by Enzyme-Linked Immunosorbent Assay. 8-OHdG of peripheral blood leukocytes was evaluated using immunocytochemical staining. 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes (PMNs), but not in monocytes (MNs). The 8-OHdG staining of PMN cytoplasm was observed in all investigated populations, while the 8-OHdG staining of PMN nuclei was frequently found along with the elevated amounts of cell debris in individuals with skin lesion. Urinary arsenic levels were increased in the severe skin lesion group compared with the normal group. No relationship was observed between drinking water arsenic or urine 8-OHdG and the degree of skin lesions. These findings indicated that the target and persistent oxidative stress in peripheral blood PMNs may be employed as a sensitive biomarker directly to assess adverse health effects caused by chronic exposure to lower levels of arsenic. -- Highlights: ► Male inhabitants were investigated from an As-endemic region of China. ► 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes (PMNs).

  7. The Role of Antioxidants in Biochemical Disorders Induced by Arsenic in Adult male Rats

    International Nuclear Information System (INIS)

    Hassanin, M.M.; Zaki, Z.T.; Emarah, E.A.M.; Hussein, A.M.M.

    2010-01-01

    The present investigation included biochemical, radiometric, molecular studies and histopathological examination to evaluate the protective role of Antox tablets toward Arsenic toxicity in adult male albino rats (Rattus rattus). Arsenic were given as sodium arsenate to different groups in drinking water at a dose of 100 mg/L, for 3 and 6 weeks led to severe tissue damage as revealed by an elevation of serum total protein and alteration of serum protein fractions. Using radioimmunoassay it was found that serum total testosterone level was significantly decreased. The decreased level of total testosterone paralleled the observed testicular damage. Treatment of male rats with antioxidant (Antox) along with arsenic led to an improvement in both the biochemical and histological alterations induced by arsenic. Thus the protective role of Antox is attributed to its antioxidant and free radicals scavenging properties of its components (selenium, vitamin A acetate, ascorbic acid and vitamin E).

  8. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-01-01

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  9. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination

    Directory of Open Access Journals (Sweden)

    Varaprasad Bandaru

    2016-06-01

    Full Text Available Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor arsenic in rice plants. Four arsenic levels were induced in hydroponically grown rice plants with application of 0, 5, 10 and 20 µmol·L−1 sodium arsenate. Reflectance spectra of upper fully expanded leaves were acquired over visible and infrared (NIR wavelengths. Additionally, canopy reflectance for the four arsenic levels was simulated using SAIL (Scattering by Arbitrarily Inclined Leaves model for various soil moisture conditions and leaf area indices (LAI. Further, sensitivity of various vegetative indices (VIs to arsenic levels was assessed. Results suggest that plants accumulate high arsenic amounts causing plant stress and changes in reflectance characteristics. All leaf spectra based VIs related strongly with arsenic with coefficient of determination (r2 greater than 0.6 while at canopy scale, background reflectance and LAI confounded with spectral signals of arsenic affecting the VIs’ performance. Among studied VIs, combined index, transformed chlorophyll absorption reflectance index (TCARI/optimized soil adjusted vegetation index (OSAVI exhibited higher sensitivity to arsenic levels and better resistance to soil backgrounds and LAI followed by red edge based VIs (modified chlorophyll absorption reflectance index (MCARI and TCARI suggesting that these VIs could prove to be valuable aids for monitoring arsenic in rice fields.

  10. Distinctive transforming genes in x-ray-transformed mammalian cells

    International Nuclear Information System (INIS)

    Borek, C.; Ong, A.; Mason, H.

    1987-01-01

    DNAs from hamster embryo cells and mouse C3H/10T1/2 cells transformed in vitro by x-irradiation into malignant cells transmit the radiation transformation phenotype by producing transformed colonies (transfectants) in two mouse recipient lines, the NIH 3T3 and C3H/101/2 cells, and in a rat cell line, the Rat-2 cells. DNAs from unirradiated cells or irradiated and visibly untransformed cells do not produce transformed colonies. The transfectant grow in agar and form tumors in nude mice. Treatment of the DNAs with restriction endonucleases prior to transfection indicates that the same transforming gene (oncogene) is present in each of the transformed mouse cells and is the same in each of the transformed hamster cells. Southern blot analysis of 3T3 or Rat-2 transfectants carrying oncogenes from radiation-transformed C3H/10T1/2 or hamster cells indicates that the oncogenes responsible for the transformation of 3T3 cells are not the Ki-ras, Ha-ras, N-ras genes, nor are they neu, trk, raf, abl, or fms. The work demonstrates that DNAs from mammalian cells transformed into malignancy by direct exposure in vitro to radiation contain genetic sequences with detectable transforming activity in three recipient cell lines. The results provide evidence that DNA is the target of radiation carcinogenesis induced at a cellular level in vitro. The experiments indicate that malignant radiogenic transformation in vitro of hamster embryo and mouse C3H/10T1/2 cells involves the activation of unique non-ras transforming genes, which heretofore have not been described

  11. A cross sectional study of anemia and iron deficiency as risk factors for arsenic-induced skin lesions in Bangladeshi women

    Directory of Open Access Journals (Sweden)

    Molly L. Kile

    2016-02-01

    Full Text Available Abstract Background In the Ganges Delta, chronic arsenic poisoning is a health concern affecting millions of people who rely on groundwater as their potable water source. The prevalence of anemia is also high in this region, particularly among women. Moreover, arsenic is known to affect heme synthesis and erythrocytes and the risk of arsenic-induced skin lesions appears to differ by sex. Methods We conducted a case-control study in 147 arsenic-exposed Bangladeshi women to assess the association between anemia and arsenic-induced skin lesions. Results We observed that the odds of arsenic-related skin lesions were approximately three times higher among women who were anemic (hemoglobin < 120 g/L compared to women with normal hemoglobin levels [Odds Ratio (OR = 3.32, 95 % Confidence Intervals (CI: 1.29, 8.52] after adjusting for arsenic levels in drinking water and other covariates. Furthermore, 75 % of the women with anemia had adequate iron stores (serum ferritin ≥12 μg/L, suggesting that the majority of anemia detected in this population was unrelated to iron depletion. Conclusions Considering the magnitude of arsenic exposure and prevalence of anemia in Bangladeshi women, additional research is warranted that identifies the causes of anemia so that effective interventions can be implemented while arsenic remediation efforts continue.

  12. Radiation-induced physical ageing in network arsenic-sulfide/selenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, M; Golovchak, R; Kozdras, A; Shpotyuk, O

    2010-01-01

    Effect of radiation-induced physical ageing is investigated by differential scanning calorimetry method in As x Se 100-x (10 ≤ x ≤ 42) and As x S 100-x (30 ≤ x ≤ 42) glasses. Obtained results are compared with conventional physical ageing at normal conditions. Significant radiation-induced physical ageing is recorded for glassy As x S 100-x within 30 ≤ x x Se 100-x glasses from the same compositional interval do not show any measurable changes in DSC curves after γ-irradiation. Observed difference in radiation-induced physical ageing in arsenic-sulfide/selenide glasses is explained by a greater lifetime of γ-induced excitations within sulfur-based network in comparison with selenium-based one.

  13. DETERMINATION OF ROXARSONE, AN ARSENIC ANIMAL-FEED ADDITIVE, AND ITS TRANSFORMATION PRODUCTS IN CHICKEN MANURE BY CE-ICPMS AND HPLC-ICPMS

    Science.gov (United States)

    Disposal of arsenic-bearing wastes from poultry houses is currently unregulated and poses a potential environmental concern. Determination of roxarsone and its transformation products in chicken manure is necessary to understand their possible impacts on human health and ...

  14. Arsenic may be involved in fluoride-induced bone toxicity through PTH/PKA/AP1 signaling pathway.

    Science.gov (United States)

    Zeng, Qi-bing; Xu, Yu-yan; Yu, Xian; Yang, Jun; Hong, Feng; Zhang, Ai-hua

    2014-01-01

    Chronic exposure to combined fluoride and arsenic continues to be a major public health problem worldwide, affecting thousands of people. In recent years, more and more researchers began to focus on the interaction between the fluorine and the arsenic. In this study, the selected investigation site was located in China. The study group was selected from people living in fluoride-arsenic polluted areas due to burning coal. The total number of participants was 196; including the fluoride-arsenic anomaly group (130) and the fluoride-arsenic normal group (63). By observing the changes in gene and protein expression of PTH/PKA/AP1 signaling pathway, the results show that fluoride can increase the expression levels of PTH, PKA, and AP1, but arsenic can only affect the expression of AP1; fluoride and arsenic have an interaction on the expression of AP1. Further study found that fluoride and arsenic can affect the mRNA expression level of c-fos gene (AP1 family members), and have an interaction on the expression of c-fos, but not c-jun. The results indicate that PTH/PKA/AP1 signaling pathway may play an important role in bone toxicity of fluoride. Arsenic can affect the expression of c-fos, thereby affecting the expression of transcription factor AP1, indirectly involved in fluoride-induced bone toxicity. Copyright © 2013. Published by Elsevier B.V.

  15. Environmentally-induced malignancies: An in vivo model to evaluate the health impact of chemicals in mixed waste. 1997 annual progress report

    International Nuclear Information System (INIS)

    Pallavicini, M.

    1997-01-01

    'Occupational or environmental exposure to organic ligands, solvents, fuel hydrocarbons, and polychlorinated biphenyls is linked to increased risk of developing leukemia, a blood cancer. The long term health effects of exposure to complex mixtures of chemicals and radionuclides are of particular concern because their biologic effects may synergize to increase risk of malignancy. Increased understanding of steps in the progression pathway of a normal cell to a cancer cell is important for biomonitoring, risk assessment and intervention in exposed individuals. Leukemias are characterized by multiple genetic aberrations. Accumulation of multiple genomic changes may reflect genomic instability in the affected ceils. Thus agents that induce DNA damage or genomic instability may increase accumulation of genomic alterations, thereby predisposing cells to transformation. However, not all DNA damaging agents predispose to transformation. Other factors such as genetic susceptibility, cell and tissue response to genotoxicity and cytotoxicity, DNA repair, etc. will impact malignant progression. The author proposed a progression model (Figure 1) of environmentally-induced leukemia that can be evaluated using mouse models.'

  16. Microrna-31 mediates radiation induced apoptosis selectively in malignant tumour cells with dysfunctional P53

    International Nuclear Information System (INIS)

    Kumar, Ashish; Mukherjee, Prabuddho; Babu, Bincy; Chandna, Sudhir

    2016-01-01

    The protein p53 has been recognized as an important radio-responsive protein which functions mainly through transcriptional control of its target genes and microRNAs that target multiple response pathways. In this study, we investigate a putative link between p53 functionality and microRNA-31 expression that largely contributes to cellular transformation/malignancy and also establishes the role of miR-31 in radiation-induced cell death. The expression of miR-31 is found to be attenuated in cells in successive stages of cancer progression

  17. Photo-induced cooperative covalent-bond switching in amorphous arsenic selenide

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-290031 (Ukraine); Balitska, V [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-290031 (Ukraine); Filipecki, J [Institute of Physics of Jan Dlugosz University, 13/15, Al. Armii Krajowej, Czestochowa, PL-42201 (Poland)

    2005-01-01

    A microstructural mechanism of photoinduced transformations in amorphous arsenic selenide films was studied with IR Fourier-spectroscopy technique in 300-100 cm{sup -1} region. It was shown that stage of irreversible photostructural changes was connected with cooperative process of coordination defect formation accompanied by homopolar chemical bonds switching in heteropolar ones. On the contrary, reversible photoinduced effects were caused by heteropolar chemical bonds switching in homopolar ones, as well as additional channel of bridge heteropolar bonds switching in short-layer ones. The both processes were associated with formation of anomalously coordinated defect pairs and accompanying atomic displacements at the level of medium-range ordering. The developed mathematical simulation procedure testified in a favour of defect-related origin of the reversible photo-thermallyinduced transformations, since their kinetics corresponded to known stretched-exponential dependence, tending to bimolecular behaviour rather then to single-exponential one.

  18. (--Epigallocatechin-3-Gallate Inhibits Arsenic-Induced Inflammation and Apoptosis through Suppression of Oxidative Stress in Mice

    Directory of Open Access Journals (Sweden)

    Nan-Hui Yu

    2017-04-01

    Full Text Available Background/Aims: Exposure to arsenic in individuals has been found to be associated with various health-related problems including skin lesions, cancer, and cardiovascular and immunological disorders. (--Epigallocatechin-3-gallate (EGCG, the main and active polyphenolic catechin present in green tea, has shown potent antioxidant, anti-apoptotic and anti-inflammatory activity in vivo and in vitro. Thus, the present study was conducted to investigate the protective effects of EGCG against arsenic-induced inflammation and immunotoxicity in mice. Methods: Serum IL-1β, IL-6 and TNF-α were determined by ELISA, tissue catalase (CAT, malonyldialdehyde (MDA, superoxide dismutase (SOD, glutathione (GSH, nitric oxide and caspase 3 by commercial kits, mitochondrial membrane potential with Rh 123, mitochondrial ROS with 2’,7’-dichlorofluorescin diacetate (DCFH-DA, apoptotic and necrotic cells and T-cell phenotyping with Flow cytometry analysis. Results: The results showed that arsenic treatment significantly increased oxidative stress levels (as indicated by catalase, malonyldialdehyde, superoxide dismutase, glutathione and reactive oxygen species, increased levels of inflammatory cytokines and promoted apoptosis. Arsenic exposure increased the relative frequency of the CD8+(Tc cell subpopulation (from 2.8 to 18.9% and decreased the frequency of CD4+(Th cells (from 5.2 to 2.7%. Arsenic exposure also significantly decreased the frequency of T(CD3 (from 32.5% to 19.2% and B(CD19 cells (from 55.1 to 32.5%. All of these effects induced by NaAsO2 were attenuated by EGCG. Conclusions: The present in vitro findings indicate that EGCG attenuates not only NaAsO2-induced immunosuppression but also inflammation and apoptosis.

  19. Malignant Transformation Six Months after Removal of Intracranial Epidermoid Cyst: A Case Report

    Directory of Open Access Journals (Sweden)

    Fayçal Lakhdar

    2011-01-01

    Full Text Available Intracranial epidermoid cysts are uncommon benign tumors of developmental origin; malignant transformation of benign epidermoid cysts is rare, and their prognosis remains poor. We report a case of squamous cell carcinoma arising in the cerebellopontine angle. A 52-year-old man presented with left facial paralysis and cerebellar ataxia. He had undergone total removal of a benign epidermoid cyst six months previously. Postoperative magnetic resonance imaging of the brain revealed a heterogeneous and cystic lesion in the left cerebellopontine angle with hydrocephalus. The cyst wall was enhanced by gadolinium. He underwent ventricle-peritoneal shunt and removal again; the histopathological examination revealed a squamous cell carcinoma possibly arising from an underlying epidermoid cyst. This entity is being reported for its rarity. The presence of contrast enhancement at the site of an epidermoid cyst combined with an acute, progressive neurological deficit should alert the neurosurgeon to the possibility of a malignant transformation.

  20. Radiation-induced physical ageing in network arsenic-sulfide/selenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, M; Golovchak, R; Kozdras, A; Shpotyuk, O, E-mail: shpotyuk@novas.lviv.ua

    2010-11-15

    Effect of radiation-induced physical ageing is investigated by differential scanning calorimetry method in As{sub x}Se{sub 100-x} (10 {<=} x {<=} 42) and As{sub x}S{sub 100-x} (30 {<=} x {<=} 42) glasses. Obtained results are compared with conventional physical ageing at normal conditions. Significant radiation-induced physical ageing is recorded for glassy As{sub x}S{sub 100-x} within 30 {<=} x < 40 range, while As{sub x}Se{sub 100-x} glasses from the same compositional interval do not show any measurable changes in DSC curves after {gamma}-irradiation. Observed difference in radiation-induced physical ageing in arsenic-sulfide/selenide glasses is explained by a greater lifetime of {gamma}-induced excitations within sulfur-based network in comparison with selenium-based one.

  1. Effects of 17 beta-estradiol on radiation transformation in vitro; inhibition of effects by protease inhibitors

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Weichselbaum, R.R.

    1981-01-01

    We have investigated the effects of 17 beta-estradiol, given both alone and with X-irradiation, on the induction of malignant transformation in vitro. Treatment with 10(-6)M 17 beta-estradiol for 6 weeks, or 10(-5)M 17 beta-estradiol for only 5 days, induced malignant transformation in C3H 10T1/2 cells. Estradiol also acted as a cocarcinogen for X-ray induced transformation; the results indicate an additive effect when the cells were exposed to both agents together. The protease inhibitors antipain and leupeptin suppressed estradiol induced transformation as well as the additive effect observed for estradiol-radiation transformation

  2. Effects of 17β-estradiol on radiation transformation in vitro; inhibition of effects by protease inhibitors

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Weichselbaum, R.R.

    1981-01-01

    The effects of 17β-estradiol, given either alone or with X-radiation, on the induction of malignant transformation were investigated in vitro. Treatment with 10 -6 M 17β-estradiol for 6 weeks, or 10 -5 M 17β-estradiol for only 5 days, induced malignant transformation in C3H 10T1/2 cells. Estradiol also acted as a cocarcinogen for X-ray induced transformation; the results indicated an additive effect when the cells were exposed to both agents together. The protease inhibitors antipain and leupeptin suppressed estradiol induced transformation as well as the additive effect observed for estradiol-radiation transformation. (author)

  3. Effects of 17 beta-estradiol on radiation transformation in vitro; inhibition of effects by protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, A.R.; Weichselbaum, R.R.

    1981-01-01

    We have investigated the effects of 17 beta-estradiol, given both alone and with X-irradiation, on the induction of malignant transformation in vitro. Treatment with 10(-6)M 17 beta-estradiol for 6 weeks, or 10(-5)M 17 beta-estradiol for only 5 days, induced malignant transformation in C3H 10T1/2 cells. Estradiol also acted as a cocarcinogen for X-ray induced transformation; the results indicate an additive effect when the cells were exposed to both agents together. The protease inhibitors antipain and leupeptin suppressed estradiol induced transformation as well as the additive effect observed for estradiol-radiation transformation.

  4. Vascular Hyperpermeability Response in Animals Systemically Exposed to Arsenic.

    Science.gov (United States)

    Chen, Shih-Chieh; Chang, Chao-Yuah; Lin, Ming-Lu

    2018-01-01

    The mechanisms underlying cardiovascular diseases induced by chronic exposure to arsenic remain unclarified. The objectives of this study were to investigate whether increased vascular leakage is induced by inflammatory mustard oil in mice systemically exposed to various doses of arsenic and whether an increased vascular leakage response is still present in arsenic-fed mice after arsenic discontinuation for 2 or 6 months. ICR mice were fed water or various doses of sodium arsenite (10, 15, or 20 mg/kg/day; 5 days/week) for 8 weeks. In separate experiments, the mice were treated with sodium arsenite (20 mg/kg) for 2 or 8 weeks, followed by arsenic discontinuation for 2 or 6 months. Vascular permeability to inflammatory mustard oil was quantified using Evans blue (EB) techniques. Both arsenic-exposed and water-fed (control) mice displayed similar basal levels of EB leakage in the ears brushed with mineral oil, a vehicle of mustard oil. The levels of EB leakage induced by mustard oil in the arsenic groups fed with sodium arsenite (10 or 15 mg/kg) were similar to those of water-fed mice. However, increased levels of EB leakage in response to mustard oil stimulation were significantly higher in mice treated with sodium arsenite (20 mg/kg; high dose) than in arsenic-fed (10 or 15 mg/kg; low and middle doses) or control mice. After arsenic discontinuation for 2 or 6 months, mustard oil-induced vascular EB leakage in arsenic-fed (20 mg/kg) mice was similar to that in control mice. Dramatic increases in mustard oil-induced vascular leakage were only present in mice systemically exposed to the high arsenic dose, indicating the synergistic effects of the high arsenic dose and mustard oil.

  5. Molecular basis for arsenic-Induced alteration in nitric oxide production and oxidative stress: implication of endothelial dysfunction

    International Nuclear Information System (INIS)

    Kumagai, Yoshito; Pi Jingbo

    2004-01-01

    Accumulated epidemiological studies have suggested that prolonged exposure of humans to arsenic in drinking water is associated with vascular diseases. The exact mechanism of how this occurs currently unknown. Nitric oxide (NO), formed by endothelial NO synthase (eNOS), plays a crucial role in the vascular system. Decreased availability of biologically active NO in the endothelium is implicated in the pathophysiology of several vascular diseases and inhibition of eNOS by arsenic is one of the proposed mechanism s for arsenic-induced vascular diseases. In addition, during exposure to arsenic, overproduction of reactive oxygen species (ROS) can occur, resulting in oxidative stress, which is another major risk factor for vascular dysfunction. The molecular basis for decreased NO levels and increased oxidative stress during arsenic exposure is poorly understood. In this article, evidence for arsenic-mediated alteration in NO production and oxidative stress is reviewed. The results of a cross-sectional study in an endemic area of chronic arsenic poisoning and experimental animal studies to elucidate a potential mechanism for the impairment of NO formation and oxidative stress caused by prolonged exposure to arsenate in the drinking water are also reviewed

  6. Arsenic and human health effects: A review.

    Science.gov (United States)

    Abdul, Khaja Shameem Mohammed; Jayasinghe, Sudheera Sammanthi; Chandana, Ediriweera P S; Jayasumana, Channa; De Silva, P Mangala C S

    2015-11-01

    Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    International Nuclear Information System (INIS)

    Appledorn, Daniel M; Dao, Kim-Hien T; O'Reilly, Sandra; Maher, Veronica M; McCormick, J Justin

    2010-01-01

    The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas transformed human cells, including their ability to form tumors in athymic

  8. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    Directory of Open Access Journals (Sweden)

    Dao Kim-Hien T

    2010-01-01

    Full Text Available Abstract Background The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Methods Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Results Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. Conclusion(s The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas

  9. Malignant transformation in a hybrid schwannoma/perineurioma: Addition to the spectrum of a malignant peripheral nerve sheath tumor

    Directory of Open Access Journals (Sweden)

    Bharat Rekhi

    2011-01-01

    Full Text Available Benign nerve sheath tumors include schwannomas, neurofibromas and perineuriomas. The malignant counterpart of a nerve sheath tumor is designated as a malignant peripheral nerve sheath tumor (MPNST. Lately, benign nerve sheath tumors comprising more than one component have been described, including hybrid schwannomas/perineuriomas. However, malignant transformation in a hybrid schwannoma/perineurioma has not been documented so far. Herein, we present a rare case of a young adult male who presented with a soft tissue mass in his right thigh that was excised elsewhere and submitted to us for histopathological review. One of the tissue sections displayed histopathological features of a hybrid schwannoma/perineurioma, including alternate arrangement of benign schwann and perineurial cells, reinforced with S100-P and epithelial membrane antigen positivity, respectively, along with low MIB1 and negative p53 immunostaining. The other two tissue sections showed a spindly sarcomatous tumor that was immunohistochemically positive for S100-P, CD34, p53 and exhibited high MIB1 (30-40%. Diagnosis of a MPNST arising in a hybrid schwannoma/perineurioma was made. This unusual case forms yet another addition to the spectrum of a MPNST.

  10. Serum Acetyl Cholinesterase as a Biomarker of Arsenic Induced Neurotoxicity in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-04-01

    cholinesterase is a candidate biomarker for arsenic-induced neurotoxicity in Sprague-Dawley rats.

  11. HuR and podoplanin expression is associated with a high risk of malignant transformation in patients with oral preneoplastic lesions.

    Science.gov (United States)

    Habiba, Umma; Kitamura, Tetsuya; Yanagawa-Matsuda, Aya; Higashino, Fumihiro; Hida, Kyoko; Totsuka, Yasunori; Shindoh, Masanobu

    2016-11-01

    The risk of malignant transformation in oral preneoplastic lesions (OPLs) is challenging to assess. The objective of the present study was to determine the expression of ELAV like RNA binding protein 1 (HuR) and podoplanin in OPLs, and to evaluate the use of each protein as biomarkers for the risk assessment of malignant transformations. Immunohistochemistry for HuR and podoplanin was performed on the tissues of 51 patients with OPL, including cases of low grade dysplasia (LGD) and high grade dysplasia (HGD). The association between the protein expression patterns and clinicopathological parameters, including oral cancer free survival (OCFS) time, was analyzed during the follow-up period. HuR and podoplanin expression was observed in 28 (55%) and 36 (71%) of 51 patients, respectively. Kaplan-Meier analysis showed that the expression of HuR and podoplanin was associated with the risk of progression to oral cancer (P<0.05). Multivariate analysis revealed that HuR and podoplanin expression was associated with a 2.93-fold (95% confidence interval (CI), 0.98-10.34; P=0.055) and 2.06-fold (95% CI, 0.55-8.01; P=0.283) increase in risk of malignant transformation, respectively. The risk of OPL malignant transformation was considerably increased with the coexpression of HuR and podoplanin compared with the histological grading (95% CI, 1.64-23.59; P=0.005). The results of the present study demonstrated that the expression of HuR and podoplanin associates with malignant transformation and suggests that the proteins may be used as biomarkers to identify OPL patients with an increased risk of cancer development.

  12. Arsenic-induced skin lesions among Atacameño people in Northern Chile despite good nutrition and centuries of exposure.

    Science.gov (United States)

    Smith, A H; Arroyo, A P; Mazumder, D N; Kosnett, M J; Hernandez, A L; Beeris, M; Smith, M M; Moore, L E

    2000-07-01

    It has been suggested that the indigenous Atacameño people in Northern Chile might be protected from the health effects of arsenic in drinking water because of many centuries of exposure. Here we report on the first intensive investigation of arsenic-induced skin lesions in this population. We selected 11 families (44 participants) from the village of Chiu Chiu, which is supplied with water containing between 750 and 800 microg/L inorganic arsenic. For comparison, 8 families (31 participants) were also selected from a village where the water contains approximately 10 microg/L inorganic arsenic. After being transported to the nearest city for blind assessment, participants were examined by four physicians with experience in studying arsenic-induced lesions. Four of the six men from the exposed village, who had been drinking the contaminated water for more than 20 years, were diagnosed with skin lesions due to arsenic, but none of the women had definite lesions. A 13-year-old girl had definite skin pigmentation changes due to arsenic, and a 19-year-old boy had both pigmentation changes and keratoses on the palms of his hands and the soles of his feet. Family interviews identified a wide range of fruits and vegetables consumed daily by the affected participants, as well as the weekly intake of red meat and chicken. However, the prevalence of skin lesions among men and children in the small population studied was similar to that reported with corresponding arsenic drinking water concentrations in both Taiwan and West Bengal, India--populations in which extensive malnutrition has been thought to increase susceptibility.

  13. Atmospheric Emissions, Depositions, and Transformations of Arsenic in Natural Ecosystem in Finland

    Directory of Open Access Journals (Sweden)

    Arun B. Mukherjee

    2002-01-01

    Full Text Available For the last 2 decades, special attention has been paid to arsenic due to its high concentration in groundwater in many regions of the globe. There are not very many reports on arsenic concentration in the Finnish ecosystem, although the metal has been known to be highly toxic since ancient times. For the majority of people in Finland, the leading exposure route to arsenic is through food consumption.

  14. Dynamic flow-through sequential extraction for assessment of fractional transformation and inter-element associations of arsenic in stabilized soil and sludge

    International Nuclear Information System (INIS)

    Buanuam, Janya; Wennrich, Rainer

    2010-01-01

    A dynamic flow-through extraction system was applied for the first time to ascertain the fractional transformation and inter-element associations of arsenic in stabilized environmental solids, as exemplified by the partitioning of soil and sludge stabilized with three additives, namely MnO 2 , Ca(OH) 2 and FeSO 4 . The extraction system used not only gave fractionation data, but also the extraction profiles (extractograms) which were used for investigation of the breaking down of phases, kinetic releasing of As and elemental association between As and inorganic additives. Five geochemical fractions of As were elucidated by accommodation in the flow manifold of a modified Wenzel's sequential extraction scheme, well established for fractionation of arsenic. The results revealed that MnO 2 and FeSO 4 have a slight effect on As phase transformation for soil and sludge samples amended for one week whereas the addition of Ca(OH) 2 increases As mobility due to the desorption of As from the solid Fe-oxides phase. The significant change in fractional transformation after 8 weeks of incubation can be seen in MnO 2 -treated soil. There was an increase of 17% in the non-mobilizable As fraction in MnO 2 -treated soil. From extractograms, arsenic in untreated soil was found to be rapidly leached and concurrently released with Fe. This may be evidence that the release of As is dependent on the dissolution of amorphous Fe oxides. In MnO 2 -treated soil, a strong affinity was observed between Mn and As in the amorphous Fe/Al oxides fraction, and this plays an important role in slowing down the kinetics of As releasing.

  15. Combined Efficacy of Gallic Acid and MiADMSA with Limited Beneficial Effects Over MiADMSA Against Arsenic-induced Oxidative Stress in Mouse.

    Science.gov (United States)

    Pachauri, Vidhu; Flora, Sjs

    2015-01-01

    Gallic acid is an organic acid known for its antioxidant and anticancer properties. The present study is focused on evaluating the role of gallic acid in providing better therapeutic outcomes against arsenic-induced toxicity. Animals pre-exposed to arsenic were treated with monoisoamyl meso-2,3-dimercaptosuccinic acid (MiADMSA), a new chelating drug, alone and in combination with gallic acid, consecutively for 10 days. The study suggests that (1) gallic acid in presence of MiADMSA is only moderately beneficial against arsenic, (2) monotherapy with gallic acid is more effective than in combination with MiADMSA after arsenic exposure in reducing oxidative injury, and (3) MiADMSA monotherapy as reported previously provides significant therapeutic efficacy against arsenic. Thus, based on the present results, we conclude that gallic acid is effective against arsenic-induced oxidative stress but provides limited additional beneficial effects when administered in combination with MiADMSA. We still recommend that lower doses of gallic acid be evaluated both individually and in combination with MiADMSA, as it might not exhibit the shortcomings we observed with higher doses in this study.

  16. ALDH1 and podoplanin expression patterns predict the risk of malignant transformation in oral leukoplakia.

    Science.gov (United States)

    Habiba, Umma; Hida, Kyoko; Kitamura, Tetsuya; Matsuda, Aya Yanagawa; Higashino, Fumihiro; Ito, Yoichi M; Ohiro, Yoichi; Totsuka, Yasunori; Shindoh, Masanobu

    2017-01-01

    Oral leukoplakia (OL) is a clinically diagnosed preneoplastic lesion of the oral cavity with an increased oral cancer risk. However, the risk of malignant transformation is still difficult to assess. The objective of the present study was to examine the expression patterns of aldehyde dehydrogenase 1 (ALDH1) and podoplanin in OL, and to determine their roles in predicting oral cancer development. In the present study, the expression patterns of ALDH1 and podoplanin were determined in samples from 79 patients with OL. The association between protein expression and clinicopathological parameters, including oral cancer-free survival, was analyzed during a mean follow-up period of 3.4 years. Expression of ALDH1 and podoplanin was observed in 61 and 67% patients, respectively. Kaplan-Meier analysis demonstrated that the expression of the proteins was correlated with the risk of progression to oral cancer. Multivariate analysis revealed that expression of ALDH1 and podoplanin was associated with 3.02- and 2.62-fold increased risk of malignant transformation, respectively. The malignant transformation risk of OL was considerably higher in cases with expression of both proteins. Point-prevalence analysis revealed that 66% of patients with co-expression of ALDH1 and podoplanin developed oral cancer. Taken together, our data indicate that ALDH1 and podoplanin expression patterns in OL are associated with oral cancer development, suggesting that ALDH1 and podoplanin may be useful biomarkers to identify OL patients with a substantially high oral cancer risk.

  17. Arsenic in Ground Water of the United States

    Science.gov (United States)

    ... Team More Information Arsenic in groundwater of the United States Arsenic in groundwater is largely the result of ... Gronberg (2011) for updated arsenic map. Featured publications United States Effects of human-induced alteration of groundwater flow ...

  18. Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Danni; Yuan, Zidan [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Shaofeng, E-mail: wangshaofeng@iae.ac.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Jia, Yongfeng, E-mail: yongfeng.jia@iae.ac.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Demopoulos, George P. [Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada)

    2015-12-30

    Highlights: • Quantitatively studied the incorporation of arsenic into the structure of gypsum. • Arsenic content in the solid increased with pH and initial arsenic concentration. • Calcium arsenate phase precipitated in addition to gypsum at higher pH values. • The structure of gypsum and its morphology was altered by the incorporated arsenate. • The incorporated arsenate formed sainfeldite-like local structure in gypsum. - Abstract: Gypsum precipitates as a major secondary mineral during the iron-arsenate coprecipitation process for the removal of arsenic from hydrometallurgical effluents. However, its role in the fixation of arsenic is still unknown. This work investigated the incorporation of arsenic into gypsum quantitatively during the crystallization process at various pHs and the initial arsenic concentrations. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray absorption near edge spectroscopy (XANES) and scanning electron microscopy (SEM) were employed to characterize the coprecipitated solids. The results showed that arsenate was measurably removed from solution during gypsum crystallization and the removal increased with increasing pH. At lower pH where the system was undersaturated with respect to calcium arsenate, arsenate ions were incorporated into gypsum structure, whereas at higher pH, calcium arsenate was formed and constituted the major arsenate bearing species in the precipitated solids. The findings may have important implications for arsenic speciation and stability of the hydrometallurgical solid wastes.

  19. A case of irradiation-induced malignant fibrous histiocytoma after an operation for rectal cancer

    International Nuclear Information System (INIS)

    Tahara, Hiroyuki; Kuroda, Yoshinori; Kuranishi, Fumito; Toyota, Kazuhiro; Nakahara Masahiro

    2004-01-01

    We recently observed a case of presumed irradiation-induced malignant fibrous histiocytoma (MFH), which developed 11 years after postoperative chemoradiotherapy for residual rectal cancer. A 65-year-old female underwent chemoradiotherapy for the residual tumor on the sacrum after abdominoperineal resection for rectal cancer in 1991. She showed no evidence of local recurrence or distant metastasis. Biopsy and MRI in 2002 suggested a retroperitoneal malignant tumor associated with invasion of the uterus and the sacrum, and the patient subsequently underwent surgery. Histopathologically the tumor was MFH. This case was considered to be an irradiation-induced secondary malignant tumor, according to the criteria developed by Arlen et al. In elderly patients and cases that underwent chemoradiotherapy, the latency period of irradiation-induced secondary malignant tumor tends to be shorter. If the progress of postoperative adjuvant chemotherapy increases the number of long-term surviving cases in the future, the incidence of irradiation-induced secondary malignant tumor will increase. It is therefore necessary to survey these cases over a longer period of time after surgery. (author)

  20. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.

    Science.gov (United States)

    Qin, Jie; Lehr, Corinne R; Yuan, Chungang; Le, X Chris; McDermott, Timothy R; Rosen, Barry P

    2009-03-31

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a T(opt) of 60-70 degrees C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases.

  1. Exiguobacterium mediated arsenic removal and its protective effect against arsenic induced toxicity and oxidative damage in freshwater fish, Channa striata

    Directory of Open Access Journals (Sweden)

    Neha Pandey

    2015-01-01

    Full Text Available Arsenic is a toxic metalloid existing widely in the environment, and its removal from contaminated water has become a global challenge. The use of bacteria in this regard finds a promising solution. In the present study, Exiguobacterium sp. As-9, which is an arsenic resistant bacterium, was selected with respect to its arsenic removal efficiency. Quantification of arsenic in the water treated with bacterium showed that Exiguobacterium efficiently removed up to 99% of arsenic in less than 20 h. In order to reveal the possible effect of this bacterium in removal of arsenic from water and protecting fishes from the detrimental effects of arsenic, we initiated a range of studies on fresh water fish, Channa striata. It was observed that the fishes introduced into bacteria treated water displayed no symptoms of arsenic toxicity which was marked by a decreased oxidative damage, whereas the fishes exposed to arsenic revealed a significant (p < 0.05 increase in the oxidative stress together with the elevated levels of malondialdehyde. Determination of the bioaccumulation of arsenic in the liver tissues of C. striata using hydride generation atomic absorption spectrophotometry (HG-AAS revealed an increased As(III accumulation in the fishes exposed to arsenic whereas the arsenic level in the control and bacteria treated fishes were found below the detectable limit. In conclusion, this study presents the strategies of bacterial arsenic removal with possible directions for future research.

  2. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution.

    Science.gov (United States)

    Drewniak, Lukasz; Styczek, Aleksandra; Majder-Lopatka, Malgorzata; Sklodowska, Aleksandra

    2008-12-01

    The aim of the present study was to find out if bacteria present in ancient gold mine could transform immobilized arsenic into its mobile form and increase its dissemination in the environment. Twenty-two arsenic-hypertolerant cultivable bacterial strains were isolated. No chemolithoautotrophs, which could use arsenite as an electron donor as well as arsenate as an electron acceptor, were identified. Five isolates exhibited hypertolerance to arsenic: up to 500mM of arsenate. A correlation between the presence of siderophores and high resistance to arsenic was found. The results of this study show that detoxification processes based on arsenate reductase activity might be significant in dissemination of arsenic pollution. It was concluded that the activity of the described heterotrophic bacteria contributes to the mobilization of arsenic in the more toxic As(III) form and a new mechanism of arsenic mobilization from a scorodite was proposed.

  3. Non-germ cell tumours arising in germ cell tumours (teratoma with malignant transformation) in men: CT and MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Athanasiou, A. [Department of Radiology, Institut Gustave-Roussy, Villejuif (France); Department of Radiology, Institut Curie, Paris (France)], E-mail: alexandra.athanasiou@curie.net; Vanel, D. [Department of Radiology, Institut Gustave-Roussy, Villejuif (France); Department of Radiology, Istituti Ortopedici Rizzoli, Bologna (Italy); El Mesbahi, O. [Department of Medicine, Institut Gustave-Roussy, Villejuif (France); Theodore, C. [Department of Medicine, Institut Gustave-Roussy, Villejuif (France); Department of Oncology, Hopital Foch, Suresnes (France); Fizazi, K. [Department of Medicine, Institut Gustave-Roussy, Villejuif (France)

    2009-02-15

    Purpose: To describe the imaging findings of germ cell tumours (GCT) containing non-germ cell malignant components (also designated teratoma with malignant transformation or TMT). Patients and methods: The records of 14 male patients with GCT and a non-germ cell histological component TMT were retrospectively reviewed. All patients had computed tomography (CT) and/or magnetic resonance (MR) studies before and after initial surgery and chemotherapy, as well as during follow-up. Imaging findings were correlated with the response to treatment and with overall survival. Pathological evaluation, immunohistochemistry, serum alpha-fetoprotein (AFP) and human chorionic gonadotropin (HCG) were also taken into consideration. Sarcoma was identified in 10 out of 14 patients, with rhabdomyosarcoma ranking first (n = 4), followed by osteosarcoma (n = 2), fusiform cell sarcoma (n = 1), undifferentiated sarcoma (n = 1), neurosarcoma (n = 1) and myxoid sarcoma (n = 1). Other histological types of malignant transformation included adenocarcinoma (n = 3) and bronchoalveolar carcinoma (n = 1). Overall, 9 patients relapsed at a median time of 84 months (range 60-168). Results: Non-GCT malignant transformation was identified in the retroperitoneum (5), testis (3), mediastinum (3), peritoneum (2) and lungs (1). The CT and MR imaging findings before treatment and after relapse were evaluated with emphasis on imaging features that could possibly imply the presence of malignant transformation (heterogeneously enhancing soft-tissue masses, ossified masses with calcified lymph nodes, diffuse epiploic thickening associated with ascites and peritoneal nodules, pulmonary alveolar infiltration with septal thickening). All but 1 patient with TMT presented with nodal and distant metastases. The prognosis was poor: within a median follow-up of 59 months (range 3-180), 4 out of 14 patients were alive. Conclusion: TMT is rare and associated with poorer survival compared to GCT. Imaging can be useful

  4. Arsenic uptake, transformation, and release by three freshwater algae under conditions with and without growth stress.

    Science.gov (United States)

    Xie, Shaowen; Liu, Jinxin; Yang, Fen; Feng, Hanxiao; Wei, Chaoyang; Wu, Fengchang

    2018-05-04

    This study was carried out using indoor controlled experiments to study the arsenic (As) uptake, biotransformation, and release behaviors of freshwater algae under growth stress. Three freshwater algae, Microcystis aeruginosa, Anabaena flosaquae, and Chlorella sp., were chosen. Two types of inhibitors, e.g., Cu 2+ and isothiazolinone, were employed to inhibit the growth of the algae. The algae were cultivated to a logarithmic stage in growth media containing 0.1 mg/L P; then, 0.8 mg/L As in the form of arsenate (iAs V ) was added, while both inhibitors were simultaneously added at dosages of 0.1 and 0.3 mg/L, with no addition of inhibitors in the control. After 2 days of exposure, the average growth rate (μ 2d ) was measured to represent the growth rates of the algae cells; the extra- and intracellular As concentrations in various forms, i.e., arsenate, arsenite (iAs III ), monomethyl arsenic (MMA), and dimethyl arsenic (DMA), were also measured. Without inhibitors, the average growth rate followed the order of M. aeruginosa, Chlorella sp., and A. flosaquae, with the growth rate of M. aeruginosa significantly higher than that of the other two algae. However, when Cu 2+ was added as an external inhibitor, the order of the average growth rate for the three algae became partially reversed, suggesting differentiation of the algae in response to the inhibitor. This differentiation can be seen by the reduction in the average growth rate of M. aeruginosa, which was as high as 1730% at the 0.3-mg/L Cu 2+ dosage when compared with the control, while for the other two algae, much fewer changes were seen. The great reduction in M. aeruginosa growth rate was accompanied by increases in extracellular iAs V and iAs III and intracellular iAs V concentrations in the algae, indicating that As transformation is related to the growth of this algae. Much fewer or neglectable changes in growth were observed that were consistent with the few changes in the extra- and intracellular

  5. Effects of Nrf2 deficiency on arsenic metabolism in mice.

    Science.gov (United States)

    Wang, Huihui; Zhu, Jiayu; Li, Lu; Li, Yongfang; Lv, Hang; Xu, Yuanyuan; Sun, Guifan; Pi, Jingbo

    2017-12-15

    Inorganic arsenic (iAs) is a known toxicant and carcinogen. Worldwide arsenic exposure has become a threat to human health. The severity of arsenic toxicity is strongly correlated with the speed of arsenic metabolism (methylation) and clearance. Furthermore, oxidative stress is recognized as a major mechanism for arsenic-induced toxicity. Nuclear factor-E2-related factor 2 (Nrf2), a key regulator in cellular adaptive antioxidant response, is clearly involved in alleviation of arsenic-induced oxidative damage. Multiple studies demonstrate that Nrf2 deficiency mice are more vulnerable to arsenic-induced intoxication. However, what effect Nrf2 deficiency might have on arsenic metabolism in mice is still unknown. In the present study, we measured the key enzymes involved in arsenic metabolism in Nrf2-WT and Nrf2-KO mice. Our results showed that basal transcript levels of glutathione S-transferase omega 2 (Gsto2) were significantly higher and GST mu 1 (Gstm1) lower in Nrf2-KO mice compared to Nrf2-WT control. Arsenic speciation and methylation rate in liver and urine was then studied in mice treated with 5mg/kg sodium arsenite for 12h. Although there were some alterations in arsenic metabolism enzymes between Nrf2-WT and Nrf2-KO mice, the Nrf2 deficiency had no significant effect on arsenic methylation. These results suggest that the Nrf2-KO mice are more sensitive to arsenic than Nrf2-WT mainly because of differences in adaptive antioxidant detoxification capacity rather than arsenic methylation capacity. Copyright © 2017. Published by Elsevier Inc.

  6. Bio-transformation and stabilization of arsenic (As) in contaminated soil using arsenic oxidizing bacteria and FeCl3 amendment.

    Science.gov (United States)

    Karn, Santosh Kumar; Pan, Xiangliang; Jenkinson, Ian R

    2017-05-01

    A combination of biological and chemical methods was applied in the present study to evaluate the removal of arsenic (As) from contaminated soil. The treatment involved As-oxidizing microbes aimed of transforming the more toxic As (III) to less toxic As (V) in the soil. FeCl 3 was added at three different concentrations (1, 2, and 3%) to stabilize the As (V). Leaching of the treated soil was investigated by making a soil column and passing tap water through it to determine solubility. Experimental results indicated that the bacterial activity had a pronounced positive effect on the transformation of As, and decreased the soluble exchangeable fraction from 50 to 0.7 mg/kg as compared to control and from 50 to 44 mg/kg after 7 days of treatment. FeCl 3 also played an indispensable role in the adsorption/stabilization of As in the soil; 1 and 2% FeCl 3 strongly influenced the adsorption of As (V). The soil leachate contained negligible amount of As and trace metals, which indicates that combining an efficient microbe with a chemical treatment is very effective route for the removal and stabilization of As from contaminated soil in the environment.

  7. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution

    International Nuclear Information System (INIS)

    Drewniak, Lukasz; Styczek, Aleksandra; Majder-Lopatka, Malgorzata; Sklodowska, Aleksandra

    2008-01-01

    The aim of the present study was to find out if bacteria present in ancient gold mine could transform immobilized arsenic into its mobile form and increase its dissemination in the environment. Twenty-two arsenic-hypertolerant cultivable bacterial strains were isolated. No chemolithoautotrophs, which could use arsenite as an electron donor as well as arsenate as an electron acceptor, were identified. Five isolates exhibited hypertolerance to arsenic: up to 500 mM of arsenate. A correlation between the presence of siderophores and high resistance to arsenic was found. The results of this study show that detoxification processes based on arsenate reductase activity might be significant in dissemination of arsenic pollution. It was concluded that the activity of the described heterotrophic bacteria contributes to the mobilization of arsenic in the more toxic As(III) form and a new mechanism of arsenic mobilization from a scorodite was proposed. - The activity of the described heterotrophic bacteria leads to mobilization of arsenic and in this way contributes to the dissemination of arsenic pollution

  8. Radiation-induced malignant tumors of skin and their histogenesis

    International Nuclear Information System (INIS)

    Li Guomin; Chen Yunchi; Yang Yejing

    1987-01-01

    Seven cases of radiation-induced malignant tumors and 60 cases of chronic radiation damage of skin are reported. Severe hyperplasia, false epitheliomatoid hyperpiasia and atypical proliferation of epithelia and atypical proliferation of fibrohistocytes were the main changes found in chronic radiation damage of skin. The development of malignant tumors from chronic radiation damage of skin can be divided into 4 periods: necrotic and degenerative change period, benign proliferative period, atypical proliferative period and malignant change period. The incidence of hyperplastic changes of skin is related to the time elapse after irradiation and the integrated dose of radiation. The longer the duration after irradiation and the larger the integrated dose are, the higher will be the incidence of hyperplastic changes

  9. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    OpenAIRE

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the finding...

  10. Atypical primary meningioma in the nasal septum with malignant transformation and distant metastasis

    International Nuclear Information System (INIS)

    Baek, Byoung Joon; Shin, Jae–Min; Lee, Chi Kyou; Lee, Ji Hye; Lee, Koen Hyeong

    2012-01-01

    Primary extracranial meningiomas (PEMs) originating from the nasal septum are extremely rare, as are extracranial metastases of meningiomas. A 44-year-old male presented with a 2-month history of left-side nasal obstruction and frequent episodes of epistaxis. A friable mass originating from the nasal septum was resected completely via an endoscopic endonasal approach. According to WHO criteria, the tumor was diagnosed as an atypical meningioma radiologically and histopathologically. Two years later, a tumor recurred at the primary site with the same histopathological findings, and the patient was given local external radiotherapy (6840 cGy in 38 fractions). Two months after this local recurrence, a left anterior chest wall mass and a left parietal area scalp mass were observed. The subcutaneous mass was resected and showed histological evidence of malignant transformation. Several months after the last operation, the patient died. We describe the clinical, radiological, and bio-pathological features of this unique case and review the literature on atypical PEMs originating in the nasal septum. To our knowledge, this is the first reported case of an atypical PEM originating from the nasal septum that recurred with malignant transformation and extracranial metastasis

  11. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  12. Combination of siRNA-directed Kras oncogene silencing and arsenic-induced apoptosis using a nanomedicine strategy for the effective treatment of pancreatic cancer.

    Science.gov (United States)

    Zeng, Linjuan; Li, Jingguo; Wang, Yong; Qian, Chenchen; Chen, Yinting; Zhang, Qiubo; Wu, Wei; Lin, Zhong; Liang, Jianzhong; Shuai, Xintao; Huang, Kaihong

    2014-02-01

    The synergetic inhibitory effects on human pancreatic cancer by nanoparticle-mediated siRNA and arsenic therapy were investigated both in vitro and in vivo. Poly(ethylene glycol)-block-poly(L-lysine) were prepared to form siRNA-complexed polyplex and poly(ethylene glycol)-block-poly(DL-lactide) were prepared to form arsenic-encapsulated vesicle, respectively. Down-regulation of the mutant Kras gene by siRNA caused defective abilities of proliferation, clonal formation, migration, and invasion of pancreatic cancer cells, as well as cell cycle arrest at the G0/G1 phase, which substantially enhanced the apoptosis-inducing effect of arsenic administration. Consequently, co-administration of the two nanomedicines encapsulating siRNA or arsenic showed ideal tumor growth inhibition both in vitro and in vivo as a result of synergistic effect of the siRNA-directed Kras oncogene silencing and arsenic-induced cell apoptosis. These results suggest that the combination of mutant Kras gene silencing and arsenic therapy using nanoparticle-mediated delivery strategy is promising for pancreatic cancer treatment. Treatment of pancreatic cancer remains a major challenge. These authors demonstrate a method that combines a siRNA-based Kras silencing with arsenic delivery to pancreatic cancer cells using nanoparticles, resulting in enhanced apoptosis induction in the treated cells. © 2013.

  13. Arsenic trioxide induced rhabdomyolysis, a rare but severe side effect, in an APL patient: a case report.

    Science.gov (United States)

    He, Haiyan; An, Ran; Hou, Jian; Fu, Weijun

    2017-06-01

    Arsenic trioxide (ATO), a component of the traditional Chinese medicine arsenic sublimate, promotes apoptosis and induces leukemic cell differentiation. Combined with all-trans-retinotic acid (ATRA), ATO has become the first-line induction therapy in treating acute promyelocytic leukemia (APL). The most common side effects of ATO include hepatotoxicity, gastrointestinal symptoms, water-sodium retention, and nervous system damage. In this report, we present a rare side effect, rhabdomyolysis, in a 68-year-old female APL patient who was treated with ATO. After taking 10 mg ATO daily for 6 days, she presented shortness of breath, myodynia, elevated creatine kinase, and acute renal insufficiency. This report describes the first case of ATO-induced rhabdomyolysis.

  14. Ionizing radiation induced malignancies in man

    International Nuclear Information System (INIS)

    Dutrillaux, B.

    1997-01-01

    Using data on gene and chromosome alterations in human cancers, it is proposed that most radiation induced cancers are a consequence of recessive mutations of tumor suppressor genes. This explains the long delay between radiation exposure and the cancer onset. As a consequence, radiation induced cancers belong to groups of tumors where no specific translocations (forming or activating oncogenes) but multiple unbalanced chromosome rearrangements (deletions unmasking recessive mutations) exist. This explains why osteosarcomas, malignant fibrous histiocytoma, chondrosarcomas are frequently induced, but not liposarcoma, Ewing sarcomas and rhabdomyosarcomas, among others. A single exception confirms this rule: papillary thyroid cancer, frequently induced in exposed children, in which structural rearrangements frequently form a RET/PTC3 fusion gene. This fusion gene is the results of the inversion of a short segment of chromosome 10, and it is assumed that such rearrangement (small para-centric inversion) can easily occur after exposure to radiations, at contrast with translocations between to genes belonging to different chromosomes. (author)

  15. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

    International Nuclear Information System (INIS)

    Chen Yu; Parvez, Faruque; Gamble, Mary; Islam, Tariqul; Ahmed, Alauddin; Argos, Maria; Graziano, Joseph H.; Ahsan, Habibul

    2009-01-01

    The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (> 300 μg/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 μg/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominately at low-to-moderate levels (0.1 to 864 μg/L, mean 99 μg/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.

  16. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh

    Directory of Open Access Journals (Sweden)

    Edwin T. Gnanaprakasam

    2017-11-01

    Full Text Available Long-term exposure to trace levels of arsenic (As in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of-the-art molecular techniques in order to better constrain the relationship between indigenous microbial communities and the iron and arsenic mineral phases present in sediments at two well-characterized arsenic-impacted aquifers in Bangladesh. At both sites, arsenate [As(V] was the major species of As present in sediments at depths with low aqueous As concentrations, while most sediment As was arsenite [As(III] at depths with elevated aqueous As concentrations. This is consistent with a role for the microbial As(V reduction in mobilizing arsenic. 16S rRNA gene analysis indicates that the arsenic-rich sediments were colonized by diverse bacterial communities implicated in both dissimilatory Fe(III and As(V reduction, while the correlation analyses involved phylogenetic groups not normally associated with As mobilization. Findings suggest that direct As redox transformations are central to arsenic fate and transport and that there is a residual reactive pool of both As(V and Fe(III in deeper sediments that could be released by microbial respiration in response to hydrologic perturbation, such as increased groundwater pumping that introduces reactive organic carbon to depth.

  17. Arsenic compounds in a marine food chain

    Energy Technology Data Exchange (ETDEWEB)

    Goessler, W.; Irgolic, K.J.; Kuehnelt, D.; Schlagenhaufen, C. [Institute for Analytical Chemistry, Karl-Franzens-Universitaet Graz, Universitaetsplatz 1, A-8010 Graz (Austria); Maher, W. [CRC for Freshwater Ecology, University of Canberra, PO Box 1, Belconnen ACT. 2616 (Australia); Kaise, T. [Laboratory of Environmental Chemistry, School of Life Science, University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachijoji, Tokyo 192-03 (Japan)

    1997-10-01

    A three-organism food chain within a rock pool at Rosedale, NSW, Australia, was investigated with respect to arsenic compounds by high performance liquid chromatography - hydraulic high pressure nebulization - inductively coupled plasma mass spectrometry (HPLC-HHPN-ICP-MS). Total arsenic concentration was determined in the seaweed Hormosira banksii (27.2 {mu}g/g dry mass), in the gastropod Austrocochlea constricta (74.4 {mu}g/g dry mass), which consumes the seaweed, and in the gastropod Morula marginalba (233 {mu}g/g dry mass), which eats Austrocochlea constricta. The major arsenic compounds in the seaweed were (2`R)-dimethyl[1-O-(2`,3`-dihydroxypropyl)-5-deoxy-{beta}-d-ribofuranos-5-yl]arsine oxide and an unidentified compound. The herbivorous gastropod Austrocochlea constricta transformed most of the arsenic taken up with the seaweed to arsenobetaine. Traces of arsenite, arsenate, dimethylarsinic acid, arsenocholine, the tetramethylarsonium cation, and several unknown arsenic compounds were detected. Arsenobetaine accounted for 95% of the arsenic in the carnivorous gastropod Morula marginalba. In Morula marginalba the concentration of arsenocholine was higher, and the concentrations of the minor arsenic compounds lower than in the herbivorous gastropod Austrocochlea constricta. (orig.) With 4 figs., 1 tab., 13 refs.

  18. X-radiation-induced transformation in a C3H mouse embryo-derived cell line

    International Nuclear Information System (INIS)

    Terzaghi, M.; Little, J.B.

    1976-01-01

    Reproducible x-ray-induced oncogenic transformation has been demonstrated in an established cell line of mouse embryo fibroblasts. Cells derived from transformed foci formed malignant tumors when injected into syngeneic hosts. An exponential increase in the number of transformants per viable cell occurred with doses of up to 400 rads of x-radiation. The transformation frequency in exponentially growing cultures remained constant at 2.3 x 10 -3 following doses of 400 to 1500 rads. There was little change in survival following x-ray doses up to 300 rads. Doses greater than 300 rads were associated with an exponential decline in survival; the D 0 for the survival curve was 175 rads. Transformation frequency varied with changes in the number of viable cells seeded per dish. There was about a 10-fold decline in the transformation frequency when the number of cells was increased from 400 to 1000 viable cells/100-mm Petri dish. Below this density range there was little change in transformation frequency. The presence of lethally preirradiated cells was not associated with an enhancement of transformation in irradiated cells or with the induction of transformation in unirradiated cell cultures. Amphotericin B (Fungizone) inhibited the appearance of transformants when added to the culture medium within 2 to 3 weeks after initiation of the experiment

  19. Relationship between arsenic and selenium in workers occupationally exposed to inorganic arsenic.

    Science.gov (United States)

    Janasik, Beata; Zawisza, Anna; Malachowska, Beata; Fendler, Wojciech; Stanislawska, Magdalena; Kuras, Renata; Wasowicz, Wojciech

    2017-07-01

    The interaction between arsenic (As) and selenium (Se) has been one of the most extensively studied. The antagonism between As and Se suggests that low Se status plays an important role in aggravating arsenic toxicity in diseases development. The objective of this study was to assess the Se contents in biological samples of inorganic As exposed workers (n=61) and in non-exposed subjects (n=52). Median (Me) total arsenic concentration in urine of exposed workers was 21.83μg/g creat. (interquartile range (IQR) 15.49-39.77) and was significantly higher than in the control group - (Me 3.75μg/g creat. (IQR 2.52-9.26), piAs+MMA+DMA) was significantly associated with the high total selenium urine excretion (B=0.14 (95%CI (confidence interval) 0.05-0.23)). Combination of both arsenic and selenium status to assess the risk of arsenic-induced diseases requires more studies with regard to both the analysis of speciation, genetics and the influence of factors such as nutritional status. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Electron-irradiation-induced phase transformation in alumina

    International Nuclear Information System (INIS)

    Chen, C.L.; Arakawa, K.; Lee, J.-G.; Mori, H.

    2010-01-01

    In this study, electron-irradiation-induced phase transformations between alumina polymorphs were investigated by high-resolution transmission electron microscopy. It was found that the electron-irradiation-induced α → κ' phase transformation occurred in the alumina under 100 keV electron irradiation. It is likely that the knock-on collision between incident electrons and Al 3+ cations is responsible for the occurrence of electron-irradiation-induced phase transformation from α-alumina to κ'-alumina.

  1. Malignant eccrine paramar

    International Nuclear Information System (INIS)

    Al-Ahwal, Mahmoud S.; Zimmo, Sameer K; Sawan, Ali S.

    2005-01-01

    Benign eccrine poroma arises from the intraepidermal portion of the eccrine gland duct. Malignant transformation is rare and should be suspected when these lesions present with pain, bleeding or itching. We report a 44-year-old male patient who presented primarily with a lesion diagnostic of benign eccrine poroma of the right foot sole with no clear evidence of malignancy, which was incompletely excised, followed 5 months later by local recurrence, ulceration, occasional bleeding and right inguinal lymphadenopathy. Incomplete excision of the primary tumor as well as excision of a skin lesion on the right knee joint revealed malignant eccrine poroma with aggressive histology, lymphovascular and perineural invasion. Investigations revealed no evidence of distant metastasis. This tumor might be malignant at the first presentation, which was not confirmed histopathologically considering the short duration of only 5 months for malignant transformation. The patient received 3 cycles of Docetaxel Taxotere, Cisplatin combination chemotherapy with partial response. The management of metastatic malignant eccrine poroma is difficult. It has proven resistant to many chemotherapeutic agents and radiotherapy. (author)

  2. Malignant transformation of lichen planus hypertrophicus into squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Aniket Bhagwat Bhole

    2016-01-01

    Full Text Available Neoplastic transformation of lichen planus (LP is reported, but it's a rare event. Squamous cell carcinoma (SCC complicating cutaneous LP has an incidence of 0.4%. Average age at the time of diagnosis of SCC in patients of LP is 58 years with a range of 29–78 years. We report an extremely rare case of 17-year-old female patient who developed SCC from lichen planus hypertrophicus (LPH, a variant of LP. Patient presented with LPH over the anterior aspect of both legs since the age of 7 years which is again a pediatric rarity. SCC developed over an anteromedial aspect of left ankle after 10 years when she came to us. Both the diagnoses were histopathologically confirmed. The patient was treated with complete excision of tumor and defect was closed with rotation flap. This report emphasizes that the long-standing hypertrophic form of LP seems to have a considerable propensity for malignant transformation, even in the juvenile age group. Hence, careful vigilance of a longstanding LPH is necessary to allow early detection of a developing SCC.

  3. Association between arsenic exposure from drinking water and hematuria: Results from the Health Effects of Arsenic Longitudinal Study

    International Nuclear Information System (INIS)

    McClintock, Tyler R.; Chen, Yu; Parvez, Faruque; Makarov, Danil V.; Ge, Wenzhen; Islam, Tariqul; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Hasan, Rabiul; Sarwar, Golam; Slavkovich, Vesna; Bjurlin, Marc A.; Graziano, Joseph H.

    2014-01-01

    Arsenic (As) exposure has been associated with both urologic malignancy and renal dysfunction; however, its association with hematuria is unknown. We evaluated the association between drinking water As exposure and hematuria in 7843 men enrolled in the Health Effects of Arsenic Longitudinal Study (HEALS). Cross-sectional analysis of baseline data was conducted with As exposure assessed in both well water and urinary As measurements, while hematuria was measured using urine dipstick. Prospective analyses with Cox proportional regression models were based on urinary As and dipstick measurements obtained biannually since baseline up to six years. At baseline, urinary As was significantly related to prevalence of hematuria (P-trend < 0.01), with increasing quintiles of exposure corresponding with respective prevalence odds ratios of 1.00 (reference), 1.29 (95% CI: 1.04–1.59), 1.41 (95% CI: 1.15–1.74), 1.46 (95% CI: 1.19–1.79), and 1.56 (95% CI: 1.27–1.91). Compared to those with relatively little absolute urinary As change during follow-up (− 10.40 to 41.17 μg/l), hazard ratios for hematuria were 0.99 (95% CI: 0.80–1.22) and 0.80 (95% CI: 0.65–0.99) for those whose urinary As decreased by > 47.49 μg/l and 10.87 to 47.49 μg/l since last visit, respectively, and 1.17 (95% CI: 0.94–1.45) and 1.36 (95% CI: 1.10–1.66) for those with between-visit increases of 10.40 to 41.17 μg/l and > 41.17 μg/l, respectively. These data indicate a positive association of As exposure with both prevalence and incidence of dipstick hematuria. This exposure effect appears modifiable by relatively short-term changes in drinking water As. - Highlights: • Hematuria is the most common symptom of urinary tract disease. • Arsenic exposure is associated with renal dysfunction and urologic malignancy. • Water arsenic was positively associated with prevalence and incidence of hematuria. • Reduction in exposure lowered hematuria risk especially in low-to-moderate exposed

  4. Association between arsenic exposure from drinking water and hematuria: Results from the Health Effects of Arsenic Longitudinal Study

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, Tyler R. [Department of Population Health, New York University School of Medicine, New York, NY (United States); Department of Environmental Medicine, New York University School of Medicine, New York, NY (United States); Department of Urology, New York University School of Medicine, New York, NY (United States); Chen, Yu, E-mail: yu.chen@nyumc.org [Department of Population Health, New York University School of Medicine, New York, NY (United States); Department of Environmental Medicine, New York University School of Medicine, New York, NY (United States); Parvez, Faruque [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY (United States); Makarov, Danil V. [Department of Urology, New York University School of Medicine, New York, NY (United States); Robert F. Wagner Graduate School of Public Service, New York University, New York, NY (United States); United States Department of Veterans Affairs Harbor Healthcare System, New York, NY (United States); New York University Cancer Institute, New York, NY (United States); Ge, Wenzhen [Department of Population Health, New York University School of Medicine, New York, NY (United States); Department of Environmental Medicine, New York University School of Medicine, New York, NY (United States); Islam, Tariqul; Ahmed, Alauddin; Rakibuz-Zaman, Muhammad; Hasan, Rabiul; Sarwar, Golam [U-Chicago Research Bangladesh, Ltd., Dhaka (Bangladesh); Slavkovich, Vesna [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY (United States); Bjurlin, Marc A. [Department of Urology, New York University School of Medicine, New York, NY (United States); Graziano, Joseph H. [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY (United States); and others

    2014-04-01

    Arsenic (As) exposure has been associated with both urologic malignancy and renal dysfunction; however, its association with hematuria is unknown. We evaluated the association between drinking water As exposure and hematuria in 7843 men enrolled in the Health Effects of Arsenic Longitudinal Study (HEALS). Cross-sectional analysis of baseline data was conducted with As exposure assessed in both well water and urinary As measurements, while hematuria was measured using urine dipstick. Prospective analyses with Cox proportional regression models were based on urinary As and dipstick measurements obtained biannually since baseline up to six years. At baseline, urinary As was significantly related to prevalence of hematuria (P-trend < 0.01), with increasing quintiles of exposure corresponding with respective prevalence odds ratios of 1.00 (reference), 1.29 (95% CI: 1.04–1.59), 1.41 (95% CI: 1.15–1.74), 1.46 (95% CI: 1.19–1.79), and 1.56 (95% CI: 1.27–1.91). Compared to those with relatively little absolute urinary As change during follow-up (− 10.40 to 41.17 μg/l), hazard ratios for hematuria were 0.99 (95% CI: 0.80–1.22) and 0.80 (95% CI: 0.65–0.99) for those whose urinary As decreased by > 47.49 μg/l and 10.87 to 47.49 μg/l since last visit, respectively, and 1.17 (95% CI: 0.94–1.45) and 1.36 (95% CI: 1.10–1.66) for those with between-visit increases of 10.40 to 41.17 μg/l and > 41.17 μg/l, respectively. These data indicate a positive association of As exposure with both prevalence and incidence of dipstick hematuria. This exposure effect appears modifiable by relatively short-term changes in drinking water As. - Highlights: • Hematuria is the most common symptom of urinary tract disease. • Arsenic exposure is associated with renal dysfunction and urologic malignancy. • Water arsenic was positively associated with prevalence and incidence of hematuria. • Reduction in exposure lowered hematuria risk especially in low-to-moderate exposed

  5. Malignant transformation in chronic osteomyelitis

    Directory of Open Access Journals (Sweden)

    Diogo Lino Moura

    Full Text Available ABSTRACT INTRODUCTION: Carcinomatous degeneration is a rare and late complication developing decades after the diagnosis of chronic osteomyelitis. OBJECTIVES: To present the results from a retrospective study of six cases of squamous cell carcinoma arising from chronic osteomyelitis. METHODS: Six cases of chronic osteomyelitis related to cutaneous squamous cell carcinoma were identified. The cause and characteristics of the osteomyelitis were analyzed, as well as time up to malignancy, the suspicion signs for malignancy, the localization and histological type of the cancer, and the type and result of the treatment. RESULTS: The mean time between osteomyelitis onset and the diagnosis of malignant degeneration was 49.17 years (range: 32-65. The carcinoma resulted from tibia osteomyelitis in five cases and from femur osteomyelitis in one. The pathological examination indicated cutaneous squamous cell carcinoma in all cases. All the patients were staged as N0M0, except for one, whose lomboaortic lymph nodes were affected. The treatment consisted of amputation proximal to the tumor in all patients. No patient presented signs of local recurrence and only one had carcinoma metastasis. CONCLUSION: Early diagnosis and proximal amputation are essential for prognosis and final results in carcinomatous degeneration secondary to chronic osteomyelitis.

  6. Suppression of transformed foci, induced by alpha radiation of C3H 10T1/2 cells, by untransformed cells

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.; Henning, C.B.

    1978-01-01

    The C3H 10T1/2 CL8 cell line obtained from a mouse embryo has been widely used for screening chemical carcinogens. Transformed foci are easily distinguishable in this system as crisscrossed, piled-up cells which stain more deeply than the surrounding untransformed cells. When these foci are ringcloned and subcultured, they have been shown to give rise to malignant tumors in C3H immunodepressed mice. Previous work showed that such malignant transformations, which occurred with a dose dependent frequency, could be induced by alpha particle irradiation. The present study, in turn, demonstrates that the expression of these transformations can be completely suppressed by co-cultivating the transformed cells with a large number of untransformed cells. The precise ratio of the number of untransformed cells to transformed cells to give complete suppression was found to vary in different experiments. Maximum effects were seen when a small number of transformed cells in low passage were used. These experiments may provide at least a partial explanation for the greatly increased frequency of transformations per cell irradiated in vitro, compared with the number of tumors observed after irradiation of the same number of cells in vivo. In addition, if conditions could be optimized whereby transformed foci could reproducibly be eliminated by the use of a known number of untransformed cells, this might have important applications in the prevention and treatment of certain human cancers

  7. Health Effects of Chronic Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Young-Seoub Hong

    2014-09-01

    Full Text Available Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments.

  8. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  9. High-grade malignant transformation of a radiation-naïve nasopharyngeal angiofibroma.

    Science.gov (United States)

    Allensworth, Jordan J; Troob, Scott H; Lanciault, Christian; Andersen, Peter E

    2016-04-01

    Nasopharyngeal angiofibromas are typically considered benign vascular neoplasms, with descriptions of high-grade sarcomatous change found only in lesions with prior radiotherapy. We describe the first reported case of high-grade malignant change in a nasopharyngeal angiofibroma naive to radiation. A 45-year-old man presented with left-sided nasal congestion and fullness and was found to have a left-sided nasopharyngeal mass with intracranial extension on CT scan. A biopsy of the mass revealed nasopharyngeal angiofibroma. The patient opted for MRI surveillance, which revealed interval growth 3 years later. Decompression surgery revealed only angiofibroma, but resection 9 months later demonstrated high-grade sarcoma and concomitant angiofibroma. The patient had residual disease which progressed through chemoradiation, and is now pursuing clinical trial enrollment. Malignant transformation of nasopharyngeal angiofibroma is extremely rare. As highlighted by this report, high-grade undifferentiated lesions may arise in tumors without previous radiation. © 2016 Wiley Periodicals, Inc. Head Neck 38: E2425-E2427, 2016. © 2016 Wiley Periodicals, Inc.

  10. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yingbin [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); School of Life Science, Southwest University, Chongqing 400715 (China); Cai, Shaoxi, E-mail: sxcai@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); College of Pharmacy, Jinan University, Guangzhou 510632 (China); Yu, Shuhui [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Library of Southwest University, Chongqing 400715 (China); Jiang, Jiahuan; Yan, Xiaoqing [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Zhang, Haoxing [School of Life Science, Southwest University, Chongqing 400715 (China); Liu, Lan [Department of Laboratory of Medicine, Children' s Hospital of Chongqin Medical University, Chongqing 400014 (China); Liu, Qun [College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041 (China); Du, Jun [Center of Microbiology, Biochemistry, and Pharmacology, School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510080 (China); Cai, Shaohui [College of Pharmacy, Jinan University, Guangzhou 510632 (China); Sung, K.L. Paul [Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044 (China); Departments of Orthopaedic Surgery and Bioengineering, University of California, SD 0412 (United States)

    2010-12-10

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  11. Targeting eradication of malignant cells derived from human bone marrow mesenchymal stromal cells

    International Nuclear Information System (INIS)

    Yang, Yingbin; Cai, Shaoxi; Yang, Li; Yu, Shuhui; Jiang, Jiahuan; Yan, Xiaoqing; Zhang, Haoxing; Liu, Lan; Liu, Qun; Du, Jun; Cai, Shaohui; Sung, K.L. Paul

    2010-01-01

    Human bone marrow mesenchymal stromal cells (hBMSC) have been shown to participate in malignant transformation. However, hampered by the low frequency of malignant transformation of hBMSC, we do not yet know how to prevent malignant transformation of implanted hBMSC. In this study, in order to establish a model for the eradication of hBMSC-derived malignant cells, a gene fusion consisting of a human telomerase (hTERT) promoter modified with both c-Myc and myeloid zinc finger protein2 (MZF-2) binding elements and followed by the E. coli cytosine deaminase (CD) and luciferase genes was stably transferred into hBMSC via lentiviral transduction; n-phosphonacelyl-L-aspartic acid (PALA) selection was used to generate malignant cell colonies derived from transduced hBMSC after treatment with the carcinogenic reagent BPDE. Cells that were amplified after PALA selection were used for transplantation and 5-FC pro-drug cytotoxicity tests. The results showed that PALA-resistant malignant cells could be generated from hBMSC co-induced with lentiviral transduction and treatment with Benzo(a)pyrene Diol Epoxide (BPDE); the modification of c-Myc and MZF-2 binding elements could remarkably enhance the transcriptional activities of the hTERT promoter in malignant cells, whereas transcriptional activity was depressed in normal hBMSC; malignant cells stably expressing CD under the control of the modified hTERT promoter could be eliminated by 5-FC administration. This study has provided a method for targeted eradication of malignant cells derived from hBMSC.

  12. Resveratrol, a Natural Antioxidant, Has a Protective Effect on Liver Injury Induced by Inorganic Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Zhigang Zhang

    2014-01-01

    Full Text Available Resveratrol (Rev can ameliorate cytotoxic chemotherapy-induced toxicity and oxidative stress. Arsenic trioxide (As2O3 is a known cytotoxic environmental toxicant and a potent chemotherapeutic agent. However, the mechanisms by which resveratrol protects the liver against the cytotoxic effects of As2O3 are not known. Therefore, in the present study we investigated the mechanisms involved in the action of resveratrol using a cat model in which hepatotoxicity was induced by means of As2O3 treatment. We found that pretreatment with resveratrol, administered using a clinically comparable dose regimen, reversed changes in As2O3-induced morphological and liver parameters and resulted in a significant improvement in hepatic function. Resveratrol treatment also improved the activities of antioxidant enzymes and attenuated As2O3-induced increases in reactive oxygen species and malondialdehyde production. In addition, resveratrol attenuated the As2O3-induced reduction in the ratio of reduced glutathione to oxidized glutathione and the retention of arsenic in liver tissue. These findings provide a better understanding of the mechanisms whereby resveratrol modulates As2O3-induced changes in liver function and tissue morphology. They also provide a stronger rationale for the clinical utilization of resveratrol for the reduction of As2O3-induced hepatotoxicity.

  13. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    Science.gov (United States)

    Maalouf, Katia; Baydoun, Elias; Rizk, Sandra

    2011-01-01

    Background: Adult lymphoblastic leukemia (ALL) is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer. Purpose: The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1)-negative malignant T-lymphocytes. Methods: Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α), transforming growth factor- beta1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR). Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA) and flow cytometry. Results: The maximum cytotoxicity recorded after 48-hours treatment with 80 μg/μL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF-β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was further confirmed by Cell Death Detection ELISA. However, kefir did not affect the mRNA expression of metalloproteinases needed for the invasion of leukemic cell lines. Conclusion: In conclusion, kefir is

  14. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    International Nuclear Information System (INIS)

    Maalouf, Katia; Baydoun, Elias; Rizk, Sandra

    2011-01-01

    Adult lymphoblastic leukemia (ALL) is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer. The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1)-negative malignant T-lymphocytes. Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α), transforming growth factor- beta1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR). Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA) and flow cytometry. The maximum cytotoxicity recorded after 48-hours treatment with 80 μg/μL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF-β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG 1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was further confirmed by Cell Death Detection ELISA. However, kefir did not affect the mRNA expression of metalloproteinases needed for the invasion of leukemic cell lines. In conclusion, kefir is effective in inhibiting proliferation and inducing

  15. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  16. Malignant transformation of human fibroblasts by neutrons and by gamma radiation: Relationship of mutations induced. Final report, January 1, 1993--December 31, 1995

    International Nuclear Information System (INIS)

    McCormick, J.J.

    1997-01-01

    The overall purpose of this project was to compare on a quantitative basis, the transforming and mutagenic effect of ionizing radiation ( 60 Co) and neutron radiation on human fibroblasts irradiated at different phases of the cell cycle. These studies were undertaken since mouse fibroblasts (C3H10T1/2) exhibit a window of sensitivity to ionizing radiation-induced transformation in late G2 and perhaps M and to neutron-induced transformation in G1 and in G2. In the 10T1/2 cells, essentially all the induced transformants come from cells that are in the sensitive windows at the time of irradiation. The mechanism responsible for the sensitive windows in the 10T1/2 cells has not yet been elucidated. Because of the aneuploid nature of 10T1/2 cells and the fact that mouse chromosomes are very small and nearly identical in size, some types of experiments that might indicate the mechanism are nearly impossible to carry out in these cells. Regardless of the mechanism, the fact that transformation results from a select subpopulation of cells has important practical implications for persons exposed to radiation. Whether a similar phenomena exists with other DNA damaging agents is not clear. Until this time, there has not been a human cell transformation assay that will allow one to quantitatively compare the transforming ability of radiation with different qualities. The MSU-1.1 cells had the potential to give such an assay. The authors developed this assay demonstrating a dose response and carrying out an extensive characterization of the focus-derived transformed cells including assays for tumorigenicity

  17. Phosphorus improves arsenic phytoremediation by Anadenanthera peregrina by alleviating induced oxidative stress.

    Science.gov (United States)

    Gomes, M P; Carvalho, M; Carvalho, G S; Marques, T C L L S M; Garcia, Q S; Guilherme, L R G; Soares, A M

    2013-01-01

    Due to similarities in their chemical behaviors, studies examining interactions between arsenic (As)--in special arsenate--and phosphorus (P) are important for better understanding arsenate uptake, toxicity, and accumulation in plants. We evaluated the effects of phosphate addition on plant biomass and on arsenate and phosphate uptake by Anadenanthera peregrina, an important Brazilian savanna legume. Plants were grown for 35 days in substrates that received combinations of 0, 10, 50, and 100 mg kg(-1) arsenate and 0, 200, and 400 mg kg(-1) phosphate. The addition of P increased the arsenic-phytoremediation capacity of A. peregrina by increasing As accumulation, while also alleviating As-induced oxidative stress. Arsenate phytotoxicity in A. peregrina is due to lipid peroxidation, but not hydrogen peroxide accumulation. Added P also increased the activity of important reactive oxygen species-scavenging enzymes (catalase and ascorbate peroxidase) that help prevent lipid peroxidation in leaves. Our findings suggest that applying P represents a feasible strategy for more efficient As phytoremediation using A. peregrina.

  18. Arsenic volatilization in model anaerobic biogas digesters

    International Nuclear Information System (INIS)

    Mestrot, Adrien; Xie, Wan-Ying; Xue, Ximei; Zhu, Yong-Guan

    2013-01-01

    Highlights: • Arsenic is volatilized form all model anaerobic digesters, including the non-treated ones. • Volatile As species can be identified and quantified in all digesters. • Non-arsenic treated digesters volatilization rates are higher than Roxarsone treated ones. - Abstract: Arsenic is a class 1 non-threshold carcinogen which is highly ubiquitous. Arsenic undergoes many different transformations (biotic or abiotic) between and within environmental compartments, leading to a number of different chemical species possessing different properties and toxicities. One specific transformation is As biotic volatilization which is coupled with As biomethylation and has been scarcely studied due to inherent sampling issues. Arsenic methylation/volatilization is also linked with methanogenesis and occurs in anaerobic environments. In China, rice straw and animal manure are very often used to produce biogas and both can contain high amounts of As, especially if the rice is grown in areas with heavy mining or smelting industries and if Roxarsone is fed to the animals. Roxarsone is an As-containing drug which is widely used in China to control coccidian intestinal parasites, to improve feed efficiency and to promote rapid growth. Previous work has shown that this compound degrades to inorganic As under anaerobic conditions. In this study the focus is on biotic transformations of As in small microcosms designed as biogas digester models (BDMs) using recently validated As traps, thus, enabling direct quantification and identification of volatile As species. It is shown that although there was a loss of soluble As in the BDMs, their conditions favored biomethylation. All reactors produced volatile As, especially the monomethylarsonic acid spiked ones with 413 ± 148 ng As (mean ± SD, n = 3) which suggest that the first methylation step, from inorganic As, is a limiting factor. The most abundant species was trimethylarsine, but the toxic arsine was present in the

  19. Hydrogen-enriched water restoration of impaired calcium propagation by arsenic in primary keratinocytes

    Science.gov (United States)

    Yu, Wei-Tai; Chiu, Yi-Ching; Lee, Chih-Hung; Yoshioka, Tohru; Yu, Hsin-Su

    2013-11-01

    Endemic contamination of artesian water for drinking by arsenic is known to cause several human cancers, including cancers of the skin, bladder, and lungs. In skin, multiple arsenic-induced Bowen's disease (As-BD) can develop into invasive cancers after decades of arsenic exposure. The characteristic histological features of As-BD include full-layer epidermal dysplasia, apoptosis, and abnormal proliferation. Calcium propagation is an essential cellular event contributing to keratinocyte differentiation, proliferation, and apoptosis, all of which occur in As-BD. This study investigated how arsenic interferes calcium propagation of skin keratinocytes through ROS production and whether hydrogen-enriched water would restore arsenic-impaired calcium propagation. Arsenic was found to induce oxidative stress and inhibit ATP- and thapsigaragin-induced calcium propagation. Pretreatment of arsenic-treated keratinocytes by hydrogen-enriched water or beta-mercaptoethanol with potent anti-oxidative effects partially restored the propagation of calcium by ATP and by thapsigaragin. It was concluded that arsenic may impair calcium propagation, likely through oxidative stress and interactions with thiol groups in membrane proteins.

  20. [Transformation and mobility of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages of rice].

    Science.gov (United States)

    Yang, Wen-Tao; Wang, Ying-Jie; Zhou, Hang; Yi, Kai-Xin; Zeng, Min; Peng, Pei-Qin; Liao, Bo-Han

    2015-02-01

    Speciation and bioavailability of arsenic in the rhizosphere and non-rhizosphere soils at different growth stages (tillering stage, jointing stage, booting stage, filling stage and maturing stage) of rice (Oryza sativa L.) were studied using toxicity characteristic leaching procedure (TCLP) and arsenic speciation analysis. Pot experiments were conducted and the soil samples were taken from a certain paddy soil in Hunan Province contaminated by mining industry. The results showed that: (1) With the extension of rice growth period, pH values and TCLP extractable arsenic levels in the rhizosphere and non-rhizosphere soils increased gradually. Soil pH and TCLP extractable arsenic levels in non-rhizosphere soils were higher than those in the rhizosphere soils at the same growth stage. (2) At the different growth stages of rice, contents of exchangeable arsenic (AE-As) in rhizosphere and non-rhizosphere soils were lower than those before the rice planting, and increased gradually with the extension of the rice growing period. Contents of Al-bound arsenic (Al-As), Fe-bound arsenic (Fe-As) and Ca-bound arsenic (Ca-As) increased gradually after rice planting, but not significantly. Residual arsenic (O-As) and total arsenic (T-As) decreased gradually after rice planting, by 37.30% and 14.69% in the rhizosphere soils and by 31.38% and 8.67% in the non-rhizosphere soils, respectively. (3) At the different growth stages of rice, contents of various forms of arsenic in the soils were in the following order: residual arsenic (O-As) > Fe-bound arsenic ( Fe-As) > Al-bound arsenic (Al-As) > Ca-bound arsenic (Ca-As) > exchangeable arsenic (AE-As). In the pH range of 5.0- 5.8, significant positive linear correlations were found between most forms of arsenic or TCLP extractable arsenic levels and pH values, while the Ca-bound arsenic was poorly correlated with pH values in the rhizosphere soils.

  1. Utilising cardiopulmonary bypass for cancer surgery. Malignancy-induced protein C deficiency and thrombophilia.

    LENUS (Irish Health Repository)

    Marshall, C

    2012-02-03

    Cardiopulmonary bypass has evolved over the last 30 years. It is an important tool for the cardiac surgeon today and also has applications in non-cardiac operations such as surgery to extract tumours. Such patients undergoing surgery for cancer may be at an increased risk of a thromboembolic event post surgery, due to disturbances in the normal clotting pathway leading to hypercoagulability. One such disturbance is malignancy-induced Protein C deficiency. A deficiency of Protein C can cause hypercoagulabitity. Recent studies have examined cardiopulmonary bypass and inherited Protein C deficiency. However, surgery for cancer patients with a malignancy-induced Protein C deficiency involving cardiopulmonary bypass has not been reported. Surgery using CPB in these patients may result in increased morbidity and mortality. The objective of this article is to review the literature in order to discuss the occurrence, the aetiology and possible management of cancer patients with malignancy-induced Protein C deficiencies that require cardiopulmonary bypass for their surgery.

  2. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    Energy Technology Data Exchange (ETDEWEB)

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  3. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    Science.gov (United States)

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  4. Isolation of Arsenic Resistant Escherichia coli from Sewage Water and Its Potential in Arsenic Biotransformation

    Directory of Open Access Journals (Sweden)

    Basanta Bista

    2017-04-01

    Full Text Available Arsenic contamination in drinking water from ground water poses a threat to the health of a large population in developing countries in Asia. This has sparked great interests in the potential of different microbes in arsenic resistance and removal from water. This study involves isolation of arsenic resistant Escherichia coli from sewage water from Kathmandu University and investigation of its attributes. Arsenic resistant E. coli was successfully isolated which could survive in high concentration of arsenic. The maximum tolerance of arsenite was 909.79 mg/L (sodium arsenite and 3120.1 mg/L arsenate (sodium arsenate which is well above most natural concentration of arsenic in ground water. This particular E. coli tolerated multiple heavy metal like silver nitrate, cobalt sulphate, cadmium chloride, nickel chloride, mercury chloride, copper sulphate, and zinc chloride at concentration 20 µM, 1 mM, 0.5mM, 1mM, 0.01 mM, 1 mM, and 1 mM respectively which are concentrations known to be toxic to E. coli. Biotransformation of arsenite to arsenate was also checked for by a qualitative silver nitrate technique. This E. coli was able to transform arsenate to arsenite. It showed some sensitivity to Ciprofloxacin, Gentamicin and Nalidixic Acid. As E. coli and its genome are very widely studied, these particular properties have a lot of potential in microbial remediation or microbial recovery of metals and possible recombination approaches.

  5. Abnormal 67Ga uptake in a fibrosarcoma of the pericardium with malignant transformation

    International Nuclear Information System (INIS)

    Hayashida, Kohei; Nishimura, Tsunehiko; Kumita, Shin-ichirou; Uehara, Toshiisa; Imakita, Masami

    1990-01-01

    A 31-year-old woman presented with general malaise, back pain, and edema of the lower extremities. A chest X-ray film showed an enlarged cardiac shadow and clear lung fields. A pericardial lesion with decreased activity on blood pool imaging and increased uptake on gallium citrate Ga67 imaging displaced the heart upwards and to the left. The pericardial mass showed an inhomogeneous signal intensity on MRI and was large enough to obstruct the venous return by compressing the heart. At operation, the mass was found to originate from the pericardium and was histologically identified as a malignant fibrosarcoma. Twelve years before, the patient had undergone an operation for the removal of a pericardial tumor which was histologically identified as a benign hemangioma. In view of the rarity of pericardial tumors, the present tumor is suspected to have undergone a transformation from benign hemangioma to malignant fibrosarcoma. (orig.)

  6. Arsenic-induced dose-dependent modulation of the NF-κB/IL-6 axis in thymocytes triggers differential immune responses

    International Nuclear Information System (INIS)

    Choudhury, Sreetama; Gupta, Payal; Ghosh, Sayan; Mukherjee, Sudeshna; Chakraborty, Priyanka; Chatterji, Urmi; Chattopadhyay, Sreya

    2016-01-01

    Highlights: • We for the first time explicitly show that arsenic exposure causes morphological damage to the thymus and results in heightened death of thymocytes. • Our data suggests that arsenic-induced apoptosis occurs due to increase in cellular oxidative and nitrosative stress. • We have for the first time established a non-classical role of NF-κB, correlating it with increase in FoxP3 expression. • The % of CD4+ CD25+ T cells were high and expression of FoxP3 has also increased at higher doses of arsenic indicating an nTreg bias. - Abstract: Arsenic contamination of drinking water is a matter of global concern. Arsenic intake impairs immune responses and leads to a variety of pathological conditions including cancer. In order to understand the intricate tuning of immune responses elicited by chronic exposure to arsenic, a mouse model was established by subjecting mice to different environmentally relevant concentrations of arsenic in drinking water for 30 days. Detailed study of the thymus, a primary immune organ, revealed arsenic-mediated tissue damage in both histological specimens and scanning electron micrographs. Analysis of molecular markers of apoptosis by Western blot revealed a dose-dependent activation of the apoptotic cascade. Enzymatic assays supported oxidative stress as an instigator of cell death. Interestingly, assessment of inflammatory responses revealed disparity in the NF-κB/IL-6/STAT3 axis, where it was found that in animals consuming higher amounts of arsenic NF-κB activation did not lead to the classical IL-6 upregulation response. This deviation from the canonical pathway was accompanied with a significant rise in numbers of CD4+ CD25+ FoxP3 expressing cells in the thymus. The cytokine profile of the animals exposed to higher doses of arsenic also indicated an immune-suppressed milieu, thus validating that arsenic shapes the immune environment in context to its dose of exposure and that at higher doses it leads to immune

  7. Arsenic-induced biochemical and genotoxic effects and distribution in tissues of Sprague-Dawley rats

    Science.gov (United States)

    Patlolla, Anita K.; Todorov, Todor I.; Tchounwou, Paul B.; van der Voet, Gijsbert; Centeno, Jose A.

    2012-01-01

    Arsenic (As) is a well documented human carcinogen. However, its mechanisms of toxic action and carcinogenic potential in animals have not been conclusive. In this research, we investigated the biochemical and genotoxic effects of As and studied its distribution in selected tissues of Sprague–Dawley rats. Four groups of six male rats, each weighing approximately 60 ± 2 g, were injected intraperitoneally, once a day for 5 days with doses of 5, 10, 15, 20 mg/kg BW of arsenic trioxide. A control group was also made of 6 animals injected with distilled water. Following anaesthetization, blood was collected and enzyme analysis was performed by spectrophotometry following standard protocols. At the end of experimentation, the animals were sacrificed, and the lung, liver, brain and kidney were collected 24 h after the fifth day treatment. Chromosome and micronuclei preparation was obtained from bone marrow cells. Arsenic exposure significantly increased (p < 0.05) the activities of plasma alanine aminotransferase–glutamate pyruvate transaminase (ALT/GPT), and aspartate aminotransferase–glutamate oxaloacetate transaminase (AST/GOT), as well as the number of structural chromosomal aberrations (SCA) and frequency of micronuclei (MN) in the bone marrow cells. In contrast, the mitotic index in these cells was significantly reduced (p < 0.05). These findings indicate that aminotransferases are candidate biomarkers for arsenic-induced hepatotoxicity. Our results also demonstrate that As has a strong genotoxic potential, as measured by the bone marrow SCA and MN tests in Sprague–Dawley rats. Total arsenic concentrations in tissues were measured by inductively coupled plasma mass spectrometry (ICP-MS). A dynamic reaction cell (DRC) with hydrogen gas was used to eliminate the ArCl interference at mass 75, in the measurement of total As. Total As doses in tissues tended to correlate with specific exposure levels.

  8. Determination of transformation mechanisms for DMMTA and DMDTA in landfill leachate

    Science.gov (United States)

    An, J.; Yoon, H.; Bae, J.; Jung, H.; Kong, M.; Kim, M.

    2011-12-01

    Dimethylmonothiolated arsinic acid (DMMTA) and dimethyldithiolated arsinic acid (DMDTA) have receiving increasing attention because of its high toxicity to human epidermoid carcinoma A431 cells (Naranmandura et al., 2007) and bladder EJ-1 cells (Naranmandura et al., 2009). These findings require accurate assessment of arsenic species including thiolated compounds in environmental media. Recently, Li et al. (2010) found DMMTA and DMDTA was transformed from dimethylarsinic acid (DMA) in landfill leachate with low redox potential and high bacterial biomass and concentrations of BOD and sulfide. Therefore, the transformation mechanisms for DMMTA and DMDTA were investigated to quantify what arsenic species are existed and transformed in landfill leachate for determining their potential risk. For this purpose, simulated leachate mimicking mature landfill condition was prepared under the concentrations of sulfide and volatile fatty acid (VFA) and redox potential controlled. The leachate was spiked with arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MMA) and DMA respectively and the transformed arsenic species were analyzed using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma-mass spectrometry (ICP-MS). Factors influencing arsenic transformations in landfill leachate were evaluated in present study and these results provide to us pathways for being generated thiolated arsenicals. Realistic risk in arsenic disposed landfill is able to calculate by using these results. Acknowledgement : This research was supported by the research grant T31603 from Korea Basic Science Institute.

  9. Low doses of arsenic, via perturbing p53, promotes tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, Suthakar, E-mail: s.ganapathy@neu.edu [Center for Drug Development, Northeastern University, Boston (United States); Li, Ping [The First Affiliated Hospital, Zhengzhou University, Zhengzhou (China); The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Fagman, Johan [The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg (Sweden); Yu, Tianqi; Lafontant, Jean [Center for Drug Development, Northeastern University, Boston (United States); Zhang, Guojun [The First Affiliated Hospital, Zhengzhou University, Zhengzhou (China); Chen, Changyan [Center for Drug Development, Northeastern University, Boston (United States); The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg (Sweden)

    2016-09-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure.

  10. Low doses of arsenic, via perturbing p53, promotes tumorigenesis

    International Nuclear Information System (INIS)

    Ganapathy, Suthakar; Li, Ping; Fagman, Johan; Yu, Tianqi; Lafontant, Jean; Zhang, Guojun; Chen, Changyan

    2016-01-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure.

  11. Microvascular dysfunction with increased vascular leakage response in mice systemically exposed to arsenic.

    Science.gov (United States)

    Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan

    2014-09-01

    The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.

  12. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F. [China Medical University, Shenyang (China). Dept. for Occupational & Environmental Health

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  13. Modulatory role of dietary Chlorella vulgaris powder against arsenic-induced immunotoxicity and oxidative stress in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Zahran, Eman; Risha, Engy

    2014-12-01

    Arsenic intoxicant have long been regarded as an impending carcinogenic, genotoxic, and immunotoxic heavy metal to human and animals as well. In this respect, we evaluated biomarkers of the innate immune response and oxidative stress metabolism in gills and liver of Nile tilapia (Oreochromis niloticus) after arsenic exposure, and the protective role of Chlorella vulgaris (Ch) dietary supplementation were elucidated. Protective role of C. vulgaris (Ch), as supplementary feeds (5% and 10% of the diet) was studied in Nile tilapia (O. niloticus) against arsenic induced toxicity (NaAsO2 at 7 ppm) for 21 days exposure period. A significant down-regulation in innate immune response; including, respiratory burst, lysozyme, and bactericidal activity followed due to deliberately As(+3) exposure. Similarly, oxidative stress response; like nitric oxide (NO), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels were significantly decreased. Combined treatment of Ch and As(+3) significantly enhanced the innate immune response and antioxidant activity. Strikingly, Ch supplementation at 10% has been considered the optimum for Nile tilapia since it exhibited enhancement of innate immune response and antioxidant activity over the level 5%, and even better than that of control level. Thus, our results concluded that dietary Ch supplementation could protect Nile tilapia against arsenic induced immunosuppression and oxidative stresses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ameliorating effect of microdoses of a potentized homeopathic drug, Arsenicum Album, on arsenic-induced toxicity in mice

    Directory of Open Access Journals (Sweden)

    Guha B

    2003-10-01

    Full Text Available Abstract Background Arsenic in groundwater and its accumulation in plants and animals have assumed a menacing proportion in a large part of West Bengal, India and adjoining areas of Bangladesh. Because of the tremendous magnitude of the problem, there seems to be no way to tackle the problem overnight. Efforts to provide arsenic free water to the millions of people living in these dreaded zones are being made, but are awfully inadequate. In our quest for finding out an easy, safe and affordable means to combat this problem, a homeopathic drug, Arsenicum Album-30, appears to yield promising results in mice. The relative efficacies of two micro doses of this drug, namely, Arsenicum Album-30 and Arsenicum Album-200, in combating arsenic toxicity have been determined in the present study on the basis of some accepted biochemical protocols. Methods Mice were divided into different sets of control (both positive and negative and treated series (As-intoxicated, As-intoxicated plus drug-fed. Alanine amino transferase (ALT and aspartate amino transferase (AST activities and reduced glutathione (GSH level in liver and blood were analyzed in the different series of mice at six different fixation intervals. Results Both Arsenicum Album-30 and Arsenicum Album-200 ameliorated arsenic-induced toxicity to a considerable extent as compared to various controls. Conclusions The results lend further support to our earlier views that microdoses of potentized Arsenicum Album are capable of combating arsenic intoxication in mice, and thus are strong candidates for possible use in human subjects in arsenic contaminated areas under medical supervision.

  15. Arsenic speciation in Portuguese in situ lichen samples

    Energy Technology Data Exchange (ETDEWEB)

    Farinha, M.M. [ISQ, Centro de Seguranca na Industria, Av. Prof. Dr. Anibal Cavaco Silva, 33, 2740-120 Porto Salvo (Portugal)], E-mail: mmfarinha@isq.pt; Freitas, M.C. [Instituto Tecnologico e Nuclear, Reactor, E.N. 10, 2686-953 Sacavem (Portugal)], E-mail: cfreitas@itn.pt; Slejkovec, Z. [Jozef Stefan Institute, Jamova 39, 1111 Ljubljana (Slovenia); Wolterbeek, H.Th. [Department of Radiation, Radionuclides and Reactors, Section RIH (Radiation and Isotopes in Health), Faculty of Applied Sciences, Technical University of Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2009-12-15

    In this work, 29 lichen samples collected in situ and representative of high loadings, medium loadings and zero loadings for factors related to natural and anthropogenic emission sources, were analyzed to determine arsenic contents and its species extractability. The studied sites showed As values between 430 and 5590 {mu}g kg{sup -1}. The cationic forms were extracted at most of the sites varying between 0.5% and 6.6%. Extracted anionic forms were not detected in any of the sites. In a few other sites the % of extracted As(III)-more toxic-exceeds the equivalent value of As(V). It is concluded that arsenic in native Parmelia sulcata Taylor under the form of As(V) either was kept unchanged or was partially transformed into As(III) (more frequent) or partially transformed into As(III) and dimethylarsinic acid (DMAA) or partially transformed into DMAA.

  16. Cutaneous malignant and premalignant conditions caused by chronic arsenicosis from contaminated ground water consumption: a profile of patients from eastern India.

    Science.gov (United States)

    Ghosh, Sudip Kumar; Bandyopadhyay, Debabrata; Bandyopadhyay, Samik Kumar; Debbarma, Kuntal

    2013-01-01

    Natural arsenic pollution is a major global health problem. The two worst affected areas e Bangladesh and West Bengal, India. Arsenic is a well-documented human carcinogen that affects many organs including the skin. The authors sought to find out the clinical patterns of different malignant and premalignant conditions associated with chronic arsenicosis from drinking contaminated ground water in a group of patients from eastern India. This was a clinical observational study. Patients with chronic arsenicoses with suspected cutaneous malignancies for whom dermatology service was sought were enrolled in the study. A total of 24 patients (male to female ratio, 11:1; age range, 32-71 years; mean age, 52.2 years) were evaluated. Squamous cell carcinoma (SCC) was the commonest malignancies in our series, seen in 10 (41.7%) patients. This was followed by Bowen's disease (9 [37.5%]) and basal cell carcinoma (8 [33.3%]). Three patients (12.5%) had > 1 type of cutaneous malignancies. Multicentric lesions were seen in 3 cases. The most common site of involvement was the chest (8 [33.3%]). No statistically significant correlation was found between number of lesions and arsenic content in the hairs and nails of the patients.

  17. Enhanced carcinogenicity by coexposure to arsenic and iron and a novel remediation system for the elements in well drinking water.

    Science.gov (United States)

    Kumasaka, Mayuko Y; Yamanoshita, Osamu; Shimizu, Shingo; Ohnuma, Shoko; Furuta, Akio; Yajima, Ichiro; Nizam, Saika; Khalequzzaman, Md; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2013-03-01

    Various carcinomas including skin cancer are explosively increasing in arsenicosis patients who drink arsenic-polluted well water, especially in Bangladesh. Although well drinking water in the cancer-prone areas contains various elements, very little is known about the effects of elements except arsenic on carcinogenicity. In order to clarify the carcinogenic effects of coexposure to arsenic and iron, anchorage-independent growth and invasion in human untransformed HaCaT and transformed A431 keratinocytes were examined. Since the mean ratio of arsenic and iron in well water was 1:10 in cancer-prone areas of Bangladesh, effects of 1 μM arsenic and 10 μM iron were investigated. Iron synergistically promoted arsenic-mediated anchorage-independent growth in untransformed and transformed keratinocytes. Iron additionally increased invasion in both types of keratinocytes. Activities of c-SRC and ERK that regulate anchorage-independent growth and invasion were synergistically enhanced in both types of keratinocytes. Our results suggest that iron promotes arsenic-mediated transformation of untransformed keratinocytes and progression of transformed keratinocytes. We then developed a low-cost and high-performance adsorbent composed of a hydrotalcite-like compound for arsenic and iron. The adsorbent rapidly reduced concentrations of both elements from well drinking water in cancer-prone areas of Bangladesh to levels less than those in WHO health-based guidelines for drinking water. Thus, we not only demonstrated for the first time increased carcinogenicity by coexposure to arsenic and iron but also proposed a novel remediation system for well drinking water.

  18. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    International Nuclear Information System (INIS)

    Hsieh, Yi-Chen; Lien, Li-Ming; Chung, Wen-Ting; Hsieh, Fang-I; Hsieh, Pei-Fan; Wu, Meei-Maan; Tseng, Hung-Pin; Chiou, Hung-Yi; Chen, Chien-Jen

    2011-01-01

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 μg/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 μg/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 μg/l). - Highlights: →Arsenic metabolic genes might be associated with carotid atherosclerosis. → A case

  19. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Lien, Li-Ming [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Neurology, Shin Kong WHS Memorial Hospital, Taipei, Taiwan (China); Chung, Wen-Ting [Department of Neurology, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsieh, Fang-I; Hsieh, Pei-Fan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Wu, Meei-Maan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan (China); Tseng, Hung-Pin [Department of Neurology, Lotung Poh-Ai Hospital, I-Lan, Taiwan (China); Chiou, Hung-Yi, E-mail: hychiou@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Chen, Chien-Jen [Genomics Research Center, Academia Sinica, Taipei, Taiwan (China)

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields

  20. Protective Effects of Combined Selenium and Punica granatum Treatment on Some Inflammatory and Oxidative Stress Markers in Arsenic-Induced Hepatotoxicity in Rats.

    Science.gov (United States)

    Shafik, Noha M; El Batsh, Maha M

    2016-01-01

    Oxidative stress is one of the major mechanisms implicated in inorganic arsenic poisoning. Punica granatum is known by its free radical scavenging properties. The aim of this study was to evaluate the protective role of combined selenium and P. granatum against arsenic-induced liver injury. Seventy-five female albino rats were divided into five groups (of 15 rats each). Toxicity was induced by oral sodium arsenite (5.5 mg/kg body weight (bw) daily) (group ІІ). Treatment of arsenic-intoxicated rats was induced by daily oral administration of sodium selenite (3 mg/kg bw) (group ІІІ), 100 mg of P. granatum ethanol extract per kilogram body weight dissolved in 300 mL distilled water in three divided doses (100 mL of this suspension every 8 h) (group IV), and combined daily oral treatment with both selenite and P. granatum ethanol extract (group V). After 3 weeks, serum and liver tissues were obtained from the decapitated rats for different estimations. Hepatotoxicity was demonstrated by significant elevation in liver weights and activities of liver enzymes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and decrease in serum total proteins and albumin (p granatum and selenium. It was concluded that combined P. granatum and selenium treatment had a synergistic hepatoprotective effect against arsenic toxicity through activation of Nrf2 anti-oxidant pathway.

  1. Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Wang, Xin; Rathinasabapathi, Bala; de Oliveira, Letuzia Maria; Guilherme, Luiz R G; Ma, Lena Q

    2012-10-16

    Microbes play an important role in arsenic transformation and cycling in the environment. Microbial arsenic oxidation and reduction were demonstrated in the growth media of arsenic hyperaccumulator Pteris vittata L. All arsenite (AsIII) at 0.1 mM in the media was oxidized after 48 h incubation. Oxidation was largely inhibited by antibiotics, indicating that bacteria played a dominant role. To identify AsIII oxidizing bacteria, degenerate primers were used to amplify ∼500 bp of the AsIII oxidase gene aioA (aroA) using DNA extracted from the media. One aioA (aroA)-like sequence (MG-1, tentatively identified as Acinetobacter sp.) was amplified, exhibiting 82% and 91% identity in terms of gene and deduced protein sequence to those from Acinetobacter sp. 33. In addition, four bacterial strains with different arsenic tolerance were isolated and identified as Comamonas sp.C-1, Flavobacterium sp. C-2, Staphylococcus sp. C-3, and Pseudomonas sp. C-4 using carbon utilization, fatty acid profiles, and/or sequencing 16s rRNA gene. These isolates exhibited dual capacity for both AsV reduction and AsIII oxidation under ambient conditions. Arsenic-resistant bacteria with strong AsIII oxidizing ability may have potential to improve bioremediation of AsIII-contaminated water using P. vittata and/or other biochemical strategies.

  2. Gene signature associated with benign neurofibroma transformation to malignant peripheral nerve sheath tumors.

    Directory of Open Access Journals (Sweden)

    Marta Martínez

    Full Text Available Benign neurofibromas, the main phenotypic manifestations of the rare neurological disorder neurofibromatosis type 1, degenerate to malignant tumors associated to poor prognosis in about 10% of patients. Despite efforts in the field of (epigenomics, the lack of prognostic biomarkers with which to predict disease evolution frustrates the adoption of appropriate early therapeutic measures. To identify potential biomarkers of malignant neurofibroma transformation, we integrated four human experimental studies and one for mouse, using a gene score-based meta-analysis method, from which we obtained a score-ranked signature of 579 genes. Genes with the highest absolute scores were classified as promising disease biomarkers. By grouping genes with similar neurofibromatosis-related profiles, we derived panels of potential biomarkers. The addition of promoter methylation data to gene profiles indicated a panel of genes probably silenced by hypermethylation. To identify possible therapeutic treatments, we used the gene signature to query drug expression databases. Trichostatin A and other histone deacetylase inhibitors, as well as cantharidin and tamoxifen, were retrieved as putative therapeutic means to reverse the aberrant regulation that drives to malignant cell proliferation and metastasis. This in silico prediction corroborated reported experimental results that suggested the inclusion of these compounds in clinical trials. This experimental validation supported the suitability of the meta-analysis method used to integrate several sources of public genomic information, and the reliability of the gene signature associated to the malignant evolution of neurofibromas to generate working hypotheses for prognostic and drug-responsive biomarkers or therapeutic measures, thus showing the potential of this in silico approach for biomarker discovery.

  3. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    International Nuclear Information System (INIS)

    Kitchin, Kirk T.; Wallace, Kathleen

    2008-01-01

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive 73 As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of 73 As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H 2 O 2 into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo

  4. Enhancement of alpha particles-induced cell transformation by oxygen free radicals and tumor necrosis factor released from phagocytes

    International Nuclear Information System (INIS)

    Gong Yifen; Guo Renfeng; Zhu Maoxiang; Shou Jiang; Ge Guixiu; Yang Zhihua; Hieber, L.; Peters, K.; Schippel, C.

    1997-01-01

    To illustrate the role of several endogenous factors released from phagocytes under chronic inflammation in radiation-induced cancer. C 3 T 10 T 1/2 and SHE cells were used as targets, and 238 Pu alpha source was used in alpha irradiation. The enhancement of TF in alpha particles-induced cell transformation by PMA-stimulated human blood and zymosan-stimulated U-937 cells was studied using formation of transformed foci. Transformation frequency (TF) of C 3 H 10 T 1/2 cells exposed to alpha particles of 0.5 Gy increased 2.1 and 2.8 fold by PMA-and PMA-stimulated neutrophils, respectively. TF of irradiated SHE cells at a dose of 0.5 Gy increased 12 fold by the addition of the supernatant of macrophage-like U-937 cell line. It was shown that TF of irradiated SHE cells at above dose increased 8 fold by the supernatant treated with anti-TNF-α could be subcultured continuously in vitro. The cells at 40 th passage and two lines of monoclone cells have the ability to develop malignant tumors in nude mice. The overdose of free radicals and TNF-α released from neutrophils and macrophages have played an important role in low dose radiation-induced cancer

  5. Modulation of cellular phosphoprotein profiles in transformation and redifferentiation of murine and embryonic fibroblastic cells

    International Nuclear Information System (INIS)

    Chakrabarty, Subhas; Brattain, M.G.

    1985-01-01

    Cellular phosphoprotein profiles from normal mouse embryonic fibroblast AKR-2B cells were compared to those of their permanently, chemically transformed malignant counterparts AKR-MCA cells, and AKR-2B cells reversibly transformed by transforming growth factor (AKR-TGF). Similar 32 P-phosphorylation profiles were observed for both the AKR-TGF and AKR-MCA cells which were distinct from that of the normal AKR-2B cells. Dimethylformamide (DMF)-induced differentiation of the AKR-MCA cells resulted in restoration of the normal AKR-2B phosphorylation profile to the malignant AKR-MCA cells. (author)

  6. Exercise-Induced Rhabdomyolysis and Stress-Induced Malignant Hyperthermia Events, Association with Malignant Hyperthermia Susceptibility, and RYR1 Gene Sequence Variations

    Directory of Open Access Journals (Sweden)

    Antonella Carsana

    2013-01-01

    Full Text Available Exertional rhabdomyolysis (ER and stress-induced malignant hyperthermia (MH events are syndromes that primarily afflict military recruits in basic training and athletes. Events similar to those occurring in ER and in stress-induced MH events are triggered after exposure to anesthetic agents in MH-susceptible (MHS patients. MH is an autosomal dominant hypermetabolic condition that occurs in genetically predisposed subjects during general anesthesia, induced by commonly used volatile anesthetics and/or the neuromuscular blocking agent succinylcholine. Triggering agents cause an altered intracellular calcium regulation. Mutations in RYR1 gene have been found in about 70% of MH families. The RYR1 gene encodes the skeletal muscle calcium release channel of the sarcoplasmic reticulum, commonly known as ryanodine receptor type 1 (RYR1. The present work reviews the documented cases of ER or of stress-induced MH events in which RYR1 sequence variations, associated or possibly associated to MHS status, have been identified.

  7. Population heterogeneity in the surface expression of Ulex europaeus I-lectin (UEA I)-binding sites in cultured malignant and transformed cells

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, I.; Lehtonen, E.; Naervaenen, O.; Leivo, I.; Lehto, V.P.

    1985-11-01

    We studied the binding of fluorochrome-coupled Ulex europaeus I-lectin (UEA-I) to cultured malignant cells: all human malignant and transformed cells and also mouse teratocarcinoma cells examined gave a homogeneous cell membrane-type of surface staining only in some of the cells. Such a population heterogeneity appeared to be independent of the cell cycle. Instead, other lectin conjugates used bound homogeneously to all cell. In permeabilized cells, a juxtanuclear reticular staining of the Golgi apparatus was seen in the UEA-I-positive cells. No staining of the pericellular matrix components, produced by malignant cells grown in serum-free culture medium, could be obtained with TRITC-UEA-I. UEA-I-lectin recognized most polypeptides from A8387 fibrosarcoma cells and HeLa cells, metabolically labelled with (/sup 3/H)fucose. Furthermore, surface labelling of these cells with the neuraminidase-galactose oxidase/sodium borohydride method disclosed that both UEA-I and Ricinus communis agglutinin I revealed the same major surface glycoproteins. Results with metabolically labelled cells showed, in addition, that UEA-I-lectin did not bind to secreted glycoproteins produced by A8387 cells and recognized by other lectins. The results indicate that transformed and malignant cells show a distinct population heterogeneity in their expression of some cell surface-associated fucosyl glycoconjugates. The results also suggest that malignant cells can glycosylate their membrane and secreted glycoproteins in a different manner.

  8. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  9. Limit of probability of causation in the compensation of radiation induced malignant diseases

    International Nuclear Information System (INIS)

    Sun Shiquan

    1989-01-01

    Etiological relationship between previous radiation exposure and malignant diseases concerned could be estimated from NIH Epidemiological Tables expressed as Probability of Causation (PC). But the limit of PC in the compensation of radiation induced malignant diseases has not been decided definitely. In this paper PC calculations were made for populations of occupational exposure with typical distribution of individual doses and levels of exposure. The results show that it is feasible to choice PC ≥ 50% as a limit of compensation for leukemia and radon induced lung cancer. Some lenient limits may be taken for other radiation related solid carcinomas

  10. Correlation of Breastmilk Arsenic With Maternal, Infant Urinary Arsenic and Drinking Water Arsenic in an Arsenic Affected Area of Bangladesh

    Science.gov (United States)

    Alauddin, M.; Islam, M. R.; Milton, A. H.; Alauddin, S. T.; Mouly, T.; Behri, E.; Ayesha, A.; Akter, S.; Islam, M. M.

    2016-12-01

    About 97% of population in Bangladesh depend on groundwater as the principle source of drinking water and this water is highly contaminated with inorganic arsenic. Consumption of arsenic contaminated drinking water by pregnant women raises the prospect of early life exposure to inorganic arsenic for newborn which may be lead to adverse health effect in later life. This work was carried out in parts of Gopalganj district in Bangladesh, a region affected by arsenic contamination in groundwater. The objective of the work was to assess potential early life exposure to arsenic for infants through breastfeeding by mothers who were drinking water with arsenic levels ranging from 100 to 300 µg/l. A cohort of 30 mother-baby pairs were selected for the current study. Breastmilk samples from mothers, urine samples from each pair of subjects at 1, 6 and 9 month age of infant were collected and total arsenic were determined in these samples. In addition speciation of urinary arsenic and metabolites were carried out in 12 mother-baby pairs. Median level for breastmilk arsenic were 0.50 µg/l. Urinary arsenic of infants did not correlate with breastmilk arsenic with progressing age of infants. Maternal and infant urinary total arsenic at 1 month age of infant showed some positive correlation (r = 0.39). In infant urine major metabolite were dimethyl arsenic acid (DMA) (approximately 70%) indicating good methylating capacity for infants at 1 and 6 months of age. In conclusion, infants were not exposed to arsenic through breastfeeding even though mothers were exposed to significant levels of arsenic through drinking water.

  11. Protective Effect of Psidium guajava in Arsenic-induced Oxidative Stress and Cytological Damage in Rats

    Science.gov (United States)

    Tandon, Neeraj; Roy, Manju; Roy, Sushovan; Gupta, Neelu

    2012-01-01

    This study was undertaken to evaluate the protective effect of aqueous extract of Psidium guajava leaves against sodium arsenite-induced toxicity in experimental rats. Animals were divided into four groups. Control group received arsenic free distilled water and three treatment groups (II, III, and IV) exposed to the arsenic (NaAsO2) (20 mg/kg b.wt) through drinking water. Group III and IV were administered a daily oral dose of P. guajava leaf extract 50 and 100 mg/kg b.wt. (AEPG50 and AEPG100) for the period of 6 weeks. Blood samples and organs were collected at the end of the experiment. Arsenic exposure resulted in significant rise in lipid peroxidation (LPO) levels in erythrocyte, liver, kidney, and brain. In addition toxin decreased (Pguajava) @100 mg/kg body weight) significantly restored activities of oxidative stress markers like LPO levels, GSH levels, SOD, and CAT activities but having the limited protective activity of the herbal extract was observed on tissues architecture. It is therefore concluded that prophylactic co-administration of AEPG could provide specific protection from oxidative injury and to some extent on tissue damage. PMID:23293461

  12. Radiation-induced malignant tumours: a specific cytogenetic profile?

    International Nuclear Information System (INIS)

    Chauveinc, L.; Gaboriaux, G.; Dutrillaux, A. M.; Dutrillaux, B.; Chauveinc, L.; Ricoul, M.; Sabatier, L.; Dutrillaux, B.

    1997-01-01

    To date, there is no criterion enabling to determine the spontaneous or radio-induced origin of malignant tumour occurring in a previously irradiated patient. Biological studies are rare. The cytogenetic data which could be found in the literature for eleven radio-induced tumours suggest that aneuploidies and polyclonality are frequent events. We studied, by R-Banding cytogenetic technique, five patients with short-term cultures (3 cases), short and long-term cultures (1 case) and xeno-grafting on nude pattern a high rate of balanced translocations, numerous random break points and a polyclonal evolution (10 clones). All other tumours, including the xeno-grafting sarcoma, had a monoclonal profile with complex karyotypes, hypo-diploid formulas and many deletions. These results show that the mechanism of radiation-induced tumours frequently involves chromosomes losses and deletions. The most likely explanation is that these alterations unmask radiation induced recessive mutations of tumour suppressor genes. (authors)

  13. Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review

    International Nuclear Information System (INIS)

    Yoshida, Takahiko; Yamauchi, Hiroshi; Sun Guifan

    2004-01-01

    Chronic arsenic (As) poisoning has become a worldwide public health issue. Most human As exposure occurs from consumption of drinking water containing high amounts of inorganic As (iAs). In this paper, epidemiological studies conducted on the dose-response relationships between iAs exposure via the drinking water and related adverse health effects are reviewed. Before the review, the methods for evaluation of the individual As exposure are summarized and classified into two types, that is, the methods depending on As concentration of the drinking water and the methods depending on biological monitoring for As exposure; certain methods may be applied as optimum As exposure indexes to study dose-response relationship based on various As exposure situation. Chronic effects of iAs exposure via drinking water include skin lesions, neurological effects, hypertension, peripheral vascular disease, cardiovascular disease, respiratory disease, diabetes mellitus, and malignancies including skin cancer. The skin is quite sensitive to arsenic, and skin lesions are some of the most common and earliest nonmalignant effects related to chronic As exposure. The increase of prevalence in the skin lesions has been observed even at the exposure levels in the range of 0.005-0.01 mg/l As in drinking waters. Skin, lung, bladder, kidney, liver, and uterus are considered as sites As-induced malignancies, and the skin is though to be perhaps the most sensitive site. Prospective studies in large area of endemic As poisoning, like Bangladesh or China, where the rate of malignancies is expected to increase within the next several decades, will help to clarify the dose-response relationship between As exposure levels and adverse health effects with enhanced accuracy

  14. [Study of relationship between arsenic methylation and skin lesion in a population with long-term high arsenic exposure].

    Science.gov (United States)

    Su, Liqin; Cheng, Yibin; Lin, Shaobin; Wu, Chuanye

    2007-05-01

    To investigate the difference of arsenic metabolism in populations with long-term high arsenic exposure and explore the relationship between arsenic metabolism diversity and skin lesion. 327 residents in an arsenic polluted village were voluntarily enrolled in this study. Questionnaire survey and medical examination were carried out to learn basic information and detect skin lesions. Urinary inorganic and methylated arsenic were speciated by high performance liquid chromatography combined with hydride-generation atomic fluorescence spectrometry. Total arsenic concentration in hair was determined with DDC-Ag method. Hair arsenic content of studied polutions was generally high, but no significant difference were found among the studied four groups. MMA and DMA concentration in urine increased with studied polution age, and were positively related with skin lesion grade. The relative proportion of MMA in serious skin lesion group was significantly higher than in other 3 groups, while DMA/MMA ratio was significantly lower than control and mild group. The relative proportion of MMA was positively related with skin lesion grade, DMA/ MMA ratio was negatively related with skin lesion grade. Males could have higher arsenic cumulation and lower methylation capacity than those of females. The population of above 40 years old may have higher methylation capacity than those of adults below 40yeas old. Smokers and drinkers seemed lower methylation capacity than those of non-smokers and non-drinkers respectively. The methylation of arsenic could affect by several factors, including age gender, smoking and drinking. Arsenic methylation copacity mey be associated with skin lesion induced by arsenic exposure.

  15. The role of hypoxia in oral cancer and potentially malignant disorders: a review.

    Science.gov (United States)

    Kujan, Omar; Shearston, Kate; Farah, Camile S

    2017-04-01

    Oral and oropharyngeal cancer are major health problems globally with over 500 000 new cases diagnosed annually. Despite the fact that oral cancer is a preventable disease and has the potential for early detection, the overall survival rate remains at around 50%. Most oral cancer cases are preceded by a group of clinical lesions designated 'potentially malignant disorders'. It is difficult to predict if and when these lesions may transform to malignancy, and in turn it is difficult to agree on appropriate management strategies. Understanding underlying molecular pathways would help in predicting the malignant transformation of oral potentially malignant disorders and ultimately identifying effective methods for early detection and prevention of oral cancer. Reprogramming energy metabolism is an emerging hallmark of cancer that is predominantly controlled by hypoxia-induced genes regulating angiogenesis, tumour vascularization, invasion, drug resistance and metastasis. This review aims to highlight the role of hypoxia in oral carcinogenesis and to suggest future research implications in this arena. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest

    International Nuclear Information System (INIS)

    McNeely, Samuel C.; Belshoff, Alex C.; Taylor, B. Frazier; Fan, Teresa W-M.; McCabe, Michael J.; Pinhas, Allan R.

    2008-01-01

    Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-π was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G 2 -phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application

  17. Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics

    Science.gov (United States)

    Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge

    2014-01-01

    Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727

  18. Malignant transformation of a rat fibroma by the treatment with an anti-fibrosing drug: CY-168F (Plastenan

    Directory of Open Access Journals (Sweden)

    Sonia G. Andrade

    1981-09-01

    Full Text Available Fifteen albino (Sprague Dawley rats with subcutaneous transplanted fibromas was used in the present study. The tumour was formed by typical fibroblasts in a dense collagen matrix and was provenient from a fibroma that appeared spontaneously in an albino rat of the same strain. Ultrastructurally collagen disclosed normal periodicity and the fibroblasts showed irregular notched nuclei with irregular distribution of chromatin, that suggests transitional aspects to fibrosarcoma. The 15 animals, from different passage groups, were divided into: 8 animals submitted to treatment with the drug acexamic acid (CY-168F - N acetyl-amino-6-hexanoic acid (plastenan and 7 untreated control animals. Three of the treated animals showed a malignant transformation to fibrosarcoma. transitional histological features from typical fibroma to highly indifferentiated fibrosarcoma could be detected in come animal subjected to repeated biopsies. Ultrastructural study disclosed nuclear alterations and hyperactive ergastoplasm and collagen containing inclusions into the cytoplasm of fibroblasts. In the group of 7 untreated naimals, no malignant transformation could be detected histologically. Two aspects deserve attention: the malignant potential of a typical fibroma and the apparent effect of an antifibrosing drug in inducing malignization of this tumour.Foram utilizados no presente estudo, quinze ratos albinos (Sprague Dawley portadores de fibronas transplantados no tecido subcutâneo da parede abdominal. O tumor era constituído por fibroblastos típicos, em uma densa matriz colagênica e eram provenientes de um fibroma que apareceu espontaneamente em um rato albino da mesma linhagem. Ultraestruturalmente o colágeno mostrava periodicidade normal e os fibroblastos mostravam núcleo irregularmente denteado, com cromatina irregularmente distribuída, sugerindo aspectos transicionais para um fibrossarcoma. Os quinze animais, de diferentes grupos de passagem do tumor, foram

  19. Hook1 inhibits malignancy and epithelial-mesenchymal transition in hepatocellular carcinoma.

    Science.gov (United States)

    Sun, Xu; Zhang, Qi; Chen, Wei; Hu, Qida; Lou, Yu; Fu, Qi-Han; Zhang, Jing-Ying; Chen, Yi-Wen; Ye, Long-Yun; Wang, Yi; Xie, Shang-Zhi; Hu, Li-Qiang; Liang, Ting-Bo; Bai, Xue-Li

    2017-07-01

    Hook1 is a member of the hook family of coiled-coil proteins, which is recently found to be associated with malignant tumors. However, its biological function in hepatocellular carcinoma is yet unknown. Here, we evaluated the Hook1 levels in human hepatocellular carcinoma samples and matched peritumoral tissues by real-time polymerase chain reaction. Small interfering RNA knockdown and a transforming growth factor-β-induced epithelial-mesenchymal transition model were employed to investigate the biological effects of Hook1 in hepatocellular carcinoma. Our results indicated that Hook1 levels were significantly lower in hepatocellular carcinoma tissues than in the peritumoral tissues. In addition, Hook1 expression was significantly associated with hepatocellular carcinoma malignancy. Hook1 was downregulated after transforming growth factor-β-induced epithelial-mesenchymal transition. Moreover, Hook1 knockdown promoted epithelial-mesenchymal transition and attenuated the sensitivity of hepatocellular carcinoma cells to doxorubicin. In summary, our results indicate that downregulation of Hook1 plays a pivotal role in hepatocellular carcinoma progression via epithelial-mesenchymal transition. Hook1 may be used as a novel marker and therapeutic molecular target in hepatocellular carcinoma.

  20. Oligofructose protects against arsenic-induced liver injury in a model of environment/obesity interaction

    Energy Technology Data Exchange (ETDEWEB)

    Massey, Veronica L. [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Stocke, Kendall S. [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Schmidt, Robin H.; Tan, Min [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Ajami, Nadim [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX (United States); Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX (United States); Neal, Rachel E. [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Petrosino, Joseph F. [Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX (United States); Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX (United States); Barve, Shirish [Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Arteel, Gavin E., E-mail: gavin.arteel@louisville.edu [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States)

    2015-05-01

    Arsenic (As) tops the ATSDR list of hazardous environmental chemicals and is known to cause liver injury. Although the concentrations of As found in the US water supply are generally too low to directly damage the liver, subhepatotoxic doses of As sensitize the liver to experimental NAFLD. It is now suspected that GI microbiome dysbiosis plays an important role in development of NALFD. Importantly, arsenic has also been shown to alter the microbiome. The purpose of the current study was to test the hypothesis that the prebiotic oligofructose (OFC) protects against enhanced liver injury caused by As in experimental NAFLD. Male C57Bl6/J mice were fed low fat diet (LFD), high fat diet (HFD), or HFD containing oligofructose (OFC) during concomitant exposure to either tap water or As-containing water (4.9 ppm as sodium arsenite) for 10 weeks. HFD significantly increased body mass and caused fatty liver injury, as characterized by an increased liver weight-to-body weight ratio, histologic changes and transaminases. As observed previously, As enhanced HFD-induced liver damage, which was characterized by enhanced inflammation. OFC supplementation protected against the enhanced liver damage caused by As in the presence of HFD. Interestingly, arsenic, HFD and OFC all caused unique changes to the gut flora. These data support previous findings that low concentrations of As enhance liver damage caused by high fat diet. Furthermore, these results indicate that these effects of arsenic may be mediated, at least in part, by GI tract dysbiosis and that prebiotic supplementation may confer significant protective effects. - Highlights: • Arsenic (As) enhances liver damage caused by a high-fat (HFD) diet in mice. • Oligofructose protects against As-enhanced liver damage caused by HFD. • As causes dysbiosis in the GI tract and exacerbates the dysbiosis caused by HFD. • OFC prevents the dysbiosis caused by HFD and As, increasing commensal bacteria.

  1. Oligofructose protects against arsenic-induced liver injury in a model of environment/obesity interaction

    International Nuclear Information System (INIS)

    Massey, Veronica L.; Stocke, Kendall S.; Schmidt, Robin H.; Tan, Min; Ajami, Nadim; Neal, Rachel E.; Petrosino, Joseph F.; Barve, Shirish; Arteel, Gavin E.

    2015-01-01

    Arsenic (As) tops the ATSDR list of hazardous environmental chemicals and is known to cause liver injury. Although the concentrations of As found in the US water supply are generally too low to directly damage the liver, subhepatotoxic doses of As sensitize the liver to experimental NAFLD. It is now suspected that GI microbiome dysbiosis plays an important role in development of NALFD. Importantly, arsenic has also been shown to alter the microbiome. The purpose of the current study was to test the hypothesis that the prebiotic oligofructose (OFC) protects against enhanced liver injury caused by As in experimental NAFLD. Male C57Bl6/J mice were fed low fat diet (LFD), high fat diet (HFD), or HFD containing oligofructose (OFC) during concomitant exposure to either tap water or As-containing water (4.9 ppm as sodium arsenite) for 10 weeks. HFD significantly increased body mass and caused fatty liver injury, as characterized by an increased liver weight-to-body weight ratio, histologic changes and transaminases. As observed previously, As enhanced HFD-induced liver damage, which was characterized by enhanced inflammation. OFC supplementation protected against the enhanced liver damage caused by As in the presence of HFD. Interestingly, arsenic, HFD and OFC all caused unique changes to the gut flora. These data support previous findings that low concentrations of As enhance liver damage caused by high fat diet. Furthermore, these results indicate that these effects of arsenic may be mediated, at least in part, by GI tract dysbiosis and that prebiotic supplementation may confer significant protective effects. - Highlights: • Arsenic (As) enhances liver damage caused by a high-fat (HFD) diet in mice. • Oligofructose protects against As-enhanced liver damage caused by HFD. • As causes dysbiosis in the GI tract and exacerbates the dysbiosis caused by HFD. • OFC prevents the dysbiosis caused by HFD and As, increasing commensal bacteria

  2. Catalase plays an important role in a genotoxic pathway of methylated arsenicals

    Science.gov (United States)

    Arsenic is a common contaminant of drinking water in many parts of the world. Consumption of arsenic-contaminated drinking water has been implicated in both cancerous and non-cancerous health conditions. However, the pathways that lead to arsenic-induced health conditions have no...

  3. Mechanisms of radiation-induced neoplastic cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  4. Mechanisms of radiation-induced neoplastic cell transformation

    International Nuclear Information System (INIS)

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table

  5. Malignant transformation of clival chordoma after gamma knife surgery. Case report

    International Nuclear Information System (INIS)

    Tsuboi, Yoshifumi; Hayashi, Nakamasa; Kurimoto, Masanori; Nagai, Shoichi; Sasahara, Masakiyo; Endo, Shunro

    2007-01-01

    A 54-year-old woman presented a midline clival tumor manifesting as right abducens palsy in May 1997. Magnetic resonance (MR) imaging revealed a midline clival tumor. She underwent surgery twice with the transsphenoidal approach and gamma knife surgery for residual tumor. The histological diagnosis was chordoma. MR imaging revealed that the tumor had extended to the right cerebellopontine angle, with spinal seeding in February 2002. She underwent partial removal of the right cerebellopontine angle tumor. The histological diagnosis was chordoma with slight nuclear atypism. She died 5 years and 5 months after the first gamma knife surgery. Autopsy revealed multiple areas of spinal seeding. Histological examination confirmed malignant transformation with unique epithelial characteristics, possibly caused by gamma knife surgery. (author)

  6. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  7. Chronic exposure to low concentration of arsenic is immunotoxic to fish: Role of head kidney macrophages as biomarkers of arsenic toxicity to Clarias batrachus

    International Nuclear Information System (INIS)

    Datta, Soma; Ghosh, Debabrata; Saha, Dhira Rani; Bhattacharaya, Shelley; Mazumder, Shibnath

    2009-01-01

    The present study was aimed at elucidating the effect of chronic low-level arsenic exposure on the head kidney (HK) of Clarias batrachus and at determining the changes in head kidney macrophage (HKM) activity in response to arsenic exposure. Chronic exposure (30 days) to arsenic (As 2 O 3 , 0.50 μM) led to significant increase in arsenic content in the HK accompanied by reduction in both HKM number and head kidney somatic index (HKSI). Arsenic induced HK hypertrophy, reduction in melano-macrophage population and increased hemosiderin accumulation. Transmission electron microscopy of 30 days exposed HKM revealed prominent endoplasmic reticulum, chromatin condensation and loss in structural integrity of nuclear membrane. Head kidney macrophages from exposed fish demonstrated significant levels of superoxide anions but on infection with Aeromonas hydrophila were unable to clear the intracellular bacteria and died. Exposure-challenge experiments with A. hydrophila revealed that chronic exposure to micromolar concentration of arsenic interfered with the phagocytic potential of HKM, helped in intracellular survival of the ingested bacteria inside the HKM inducing significant HKM cytotoxicity. The immunosuppressive effect of arsenic was further evident from the ability of A. hydrophila to colonize and disseminate efficiently in exposed fish. Enzyme linked immunosorbent assay indicated that chronic exposure to arsenic suppressed the production of pro-inflammatory 'IL-1β like' factors from HKM. It is concluded that arsenic even at very low concentration is immunotoxic to fish and the changes observed in HKM may provide a useful early biomarker of low-level xenobiotic exposure

  8. Chronic exposure to low concentration of arsenic is immunotoxic to fish: Role of head kidney macrophages as biomarkers of arsenic toxicity to Clarias batrachus

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Soma; Ghosh, Debabrata [Immunobiology Laboratory, School of Life Sciences, Visva Bharati University, Santiniketan 731 235 (India); Saha, Dhira Rani [Microscopy Laboratory, National Institute of Cholera and Enteric Diseases, P-33, Scheme XM, C.I.T. Road, Beliaghata, Kolkata 700 010 (India); Bhattacharaya, Shelley [Environmental Toxicology Laboratory, School of Life Sciences, Visva Bharati University, Santiniketan 731 235 (India); Mazumder, Shibnath [Immunobiology Laboratory, School of Life Sciences, Visva Bharati University, Santiniketan 731 235 (India)], E-mail: shibnath1@yahoo.co.in

    2009-04-09

    The present study was aimed at elucidating the effect of chronic low-level arsenic exposure on the head kidney (HK) of Clarias batrachus and at determining the changes in head kidney macrophage (HKM) activity in response to arsenic exposure. Chronic exposure (30 days) to arsenic (As{sub 2}O{sub 3}, 0.50 {mu}M) led to significant increase in arsenic content in the HK accompanied by reduction in both HKM number and head kidney somatic index (HKSI). Arsenic induced HK hypertrophy, reduction in melano-macrophage population and increased hemosiderin accumulation. Transmission electron microscopy of 30 days exposed HKM revealed prominent endoplasmic reticulum, chromatin condensation and loss in structural integrity of nuclear membrane. Head kidney macrophages from exposed fish demonstrated significant levels of superoxide anions but on infection with Aeromonas hydrophila were unable to clear the intracellular bacteria and died. Exposure-challenge experiments with A. hydrophila revealed that chronic exposure to micromolar concentration of arsenic interfered with the phagocytic potential of HKM, helped in intracellular survival of the ingested bacteria inside the HKM inducing significant HKM cytotoxicity. The immunosuppressive effect of arsenic was further evident from the ability of A. hydrophila to colonize and disseminate efficiently in exposed fish. Enzyme linked immunosorbent assay indicated that chronic exposure to arsenic suppressed the production of pro-inflammatory 'IL-1{beta} like' factors from HKM. It is concluded that arsenic even at very low concentration is immunotoxic to fish and the changes observed in HKM may provide a useful early biomarker of low-level xenobiotic exposure.

  9. Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based X-ray micro-analyses

    NARCIS (Netherlands)

    Keune, K.; Mass, J.; Meirer, F.; Pottasch, C.; van Loon, A.; Hull, A.; Church, J.; Pouyet, E.; Cotte, M.; Mehta, A.

    2015-01-01

    Realgar and orpiment, arsenic sulfide pigments used in historic paints, degrade under the influence of light, resulting in transparent, whitish, friable and/or crumbling paints. So far, para-realgar and arsenic trioxide have been identified as the main oxidation products of arsenic sulfide pigments.

  10. Tracking the transformation and transport of arsenic sulfide pigments in paints : synchrotron-based X-ray micro-analyses

    NARCIS (Netherlands)

    Keune, Katrien; Mass, Jennifer; Meirer, Florian; Pottasch, Carol; van Loon, Annelies; Hull, Alyssa; Church, Jonathan; Pouyet, Emeline; Cotte, Marine; Mehta, Apurva

    2015-01-01

    Realgar and orpiment, arsenic sulfide pigments used in historic paints, degrade under the influence of light, resulting in transparent, whitish, friable and/or crumbling paints. So far, para-realgar and arsenic trioxide have been identified as the main oxidation products of arsenic sulfide pigments.

  11. Genetic changes in Mammalian cells transformed by helium cells

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Grossi, G. (Naples Univ. (Italy). Dipt. di Scienze Fisiche); Yang, T.C.; Roots, R. (Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    Midterm Syrian Hamster embryo (SHE) cells were employed to study high LET-radiation induced tumorigenesis. Normal SHE cells (secondary passage) were irradiated with accelerated helium ions at an incident energy of 22 MeV/u (9--10 keV/{mu}m). Transformed clones were isolated after growth in soft agar of cells obtained from the foci of the initial monolayer plated postirradiation. To study the progression process of malignant transformation, the transformed clones were followed by monolayer subculturing for prolonged periods of time. Subsequently, neoplasia tests in nude mice were done. In this work, however, we have focused on karyotypic changes in the banding patterns of the chromosomes during the early part of the progressive process of cell transformation for helium ion-induced transformed cells. 26 refs., 5 figs., 2 tabs.

  12. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic

    International Nuclear Information System (INIS)

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Victor H.; Contreras-Ruiz, Jose; Garcia-Vargas, Gonzalo G.; Razo, Luz M. del

    2007-01-01

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-α) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAs III , MAs V , DMAs III , DMAs V ). This study examines the relationship between TGF-α concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-α in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-α concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-α levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-α concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p < 0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-α than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p = 0.003). These results suggest that TGF-α in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas

  13. Physical and arsenic adsorption properties of maghemite and magnetite sub-microparticles

    Science.gov (United States)

    Mejia-Santillan, M. E.; Pariona, N.; Bravo-C., J.; Herrera-Trejo, M.; Montejo-Alvaro, F.; Zarate, A.; Perry, D. L.; Mtz-Enriquez, A. I.

    2018-04-01

    The topotactic transformation from magnetite to maghemite sub-microparticles was demonstrated by a variety of techniques that include X-ray diffraction, Raman spectroscopy, electron microscopy, Mössbauer spectroscopy, magnetic measurements, and vis-NIR diffuse reflectance. The physical, chemical, and morphological properties of the particles were correlated with their adsorptive properties in water with respect to arsenic (V). The adsorptive properties of the iron oxide are increased by changing the crystal phases involved, specifically, the transformation of magnetite to maghemite. Maghemite sub-microparticles are capable of efficiently decreasing the arsenic content in water from 100 ppb to below the World Health Organization (WHO) guideline of 10 ppb.

  14. Diarachidonoylphosphoethanolamine induces apoptosis of malignant pleural mesothelioma cells through a Trx/ASK1/p38 MAPK pathway

    OpenAIRE

    Ayako Tsuchiya; Yoshiko Kaku; Takashi Nakano; Tomoyuki Nishizaki

    2015-01-01

    1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE) induces both necrosis/necroptosis and apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells. The present study was conducted to understand the mechanism for DAPE-induced apoptosis of NCI-H28 cells. DAPE induced caspase-independent apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells, and the effect of DAPE was prevented by antioxidants or an inhibitor of NADPH oxidase (NOX). DAPE generated reactive oxygen species ...

  15. Genome-wide DNA methylation reprogramming in response to inorganic arsenic links inhibition of CTCF binding, DNMT expression and cellular transformation

    Science.gov (United States)

    Rea, Matthew; Eckstein, Meredith; Eleazer, Rebekah; Smith, Caroline; Fondufe-Mittendorf, Yvonne N.

    2017-02-01

    Chronic low dose inorganic arsenic (iAs) exposure leads to changes in gene expression and epithelial-to-mesenchymal transformation. During this transformation, cells adopt a fibroblast-like phenotype accompanied by profound gene expression changes. While many mechanisms have been implicated in this transformation, studies that focus on the role of epigenetic alterations in this process are just emerging. DNA methylation controls gene expression in physiologic and pathologic states. Several studies show alterations in DNA methylation patterns in iAs-mediated pathogenesis, but these studies focused on single genes. We present a comprehensive genome-wide DNA methylation analysis using methyl-sequencing to measure changes between normal and iAs-transformed cells. Additionally, these differential methylation changes correlated positively with changes in gene expression and alternative splicing. Interestingly, most of these differentially methylated genes function in cell adhesion and communication pathways. To gain insight into how genomic DNA methylation patterns are regulated during iAs-mediated carcinogenesis, we show that iAs probably targets CTCF binding at the promoter of DNA methyltransferases, regulating their expression. These findings reveal how CTCF binding regulates DNA methyltransferase to reprogram the methylome in response to an environmental toxin.

  16. Characterization of intracellular inclusions in the urothelium of mice exposed to inorganic arsenic.

    Science.gov (United States)

    Dodmane, Puttappa R; Arnold, Lora L; Muirhead, David E; Suzuki, Shugo; Yokohira, Masanao; Pennington, Karen L; Dave, Bhavana J; Lu, Xiufen; Le, X Chris; Cohen, Samuel M

    2014-01-01

    Inorganic arsenic (iAs) is a known human carcinogen at high exposures, increasing the incidences of urinary bladder, skin, and lung cancers. In most mammalian species, ingested iAs is excreted mainly through urine primarily as dimethylarsinic acid (DMA(V)). In wild-type (WT) mice, iAs, DMA(V), and dimethylarsinous acid (DMA(III)) exposures induce formation of intramitochondrial urothelial inclusions. Arsenite (iAs(III)) also induced intranuclear inclusions in arsenic (+3 oxidation state) methyltransferase knockout (As3mt KO) mice. The arsenic-induced formation of inclusions in the mouse urothelium was dose and time dependent. The inclusions do not occur in iAs-treated rats and do not appear to be related to arsenic-induced urothelial cytotoxicity. Similar inclusions in exfoliated urothelial cells from humans exposed to iAs have been incorrectly identified as micronuclei. We have characterized the urothelial inclusions using transmission electron microscopy (TEM), DNA-specific 4',6-diamidino-2-phenylindole (DAPI), and non-DNA-specific Giemsa staining and determined the arsenical content. The mouse inclusions stained with Giemsa but not with the DAPI stain. Analysis of urothelial mitochondrial- and nuclear-enriched fractions isolated from WT (C57BL/6) and As3mt KO mice exposed to arsenate (iAs(V)) for 4 weeks showed higher levels of iAs(V) in the treated groups. iAs(III) was the major arsenical present in the enriched nuclear fraction from iAs(V)-treated As3mt KO mice. In conclusion, the urothelial cell inclusions induced by arsenicals appear to serve as a detoxifying sequestration mechanism similar to other metals, and they do not represent micronuclei.

  17. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    International Nuclear Information System (INIS)

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina; Ross, Mark A.; Soucy, Nicole V.; Klei, Linda R.; Barchowsky, Aaron

    2007-01-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei, L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic

  18. Expression of selected pathway-marker genes in human urothelial cells exposed chronically to a non-cytotoxic concentration of monomethylarsonous acid

    Directory of Open Access Journals (Sweden)

    Matthew Medeiros

    2014-01-01

    Full Text Available Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonous acid [MMA(III] is a metabolite of inorganic arsenic and has been shown to transform an immortalized urothelial cell line (UROtsa at concentrations 20-fold less than arsenite. MMA(III was used as a model arsenical to examine the mechanisms of arsenical-induced transformation of urothelium. A previous microarray analysis revealed only minor changes in gene expression at 1 and 2 months of chronic exposure to MMA(III, contrasting with substantial changes observed at 3 months of exposure. To address the lack of information between 2 and 3 months of exposure (the critical period of transformation, the expression of select pathway marker genes was measured by PCR array analysis on a weekly basis. Cell proliferation rate, anchorage-independent growth, and tumorigenicity in SCID mice were also assessed to determine the early, persistent phenotypic changes and their association with the changes in expression of these selected marker genes. A very similar pattern of alterations in these genes was observed when compared to the microarray results, and suggested that early perturbations in cell signaling cascades, immunological pathways, cytokine expression, and MAPK pathway are particularly important in driving malignant transformation. These results showed a strong association between the acquired phenotypic changes that occurred as early as 1–2 months of chronic MMA(III exposure, and the observed gene expression pattern that is indicative of the earliest stages in carcinogenesis.

  19. Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure

    International Nuclear Information System (INIS)

    Jo, William Jaime; Ren, Xuefeng; Chu, Feixia; Aleshin, Maria; Wintz, Henri; Burlingame, Alma; Smith, Martyn Thomas; Vulpe, Chris Dillon; Zhang Luoping

    2009-01-01

    Arsenic, a human carcinogen that is associated with an increased risk of bladder cancer, is commonly found in drinking water. An important mechanism by which arsenic is thought to be carcinogenic is through the induction of epigenetic changes that lead to aberrant gene expression. Previously, we reported that the SAS2 gene is required for optimal growth of yeast in the presence of arsenite (As III ). Yeast Sas2p is orthologous to human MYST1, a histone 4 lysine 16 (H4K16) acetyltransferase. Here, we show that H4K16 acetylation is necessary for the resistance of yeast to As III through the modulation of chromatin state. We further explored the role of MYST1 and H4K16 acetylation in arsenic toxicity and carcinogenesis in human bladder epithelial cells. The expression of MYST1 was knocked down in UROtsa cells, a model of bladder epithelium that has been used to study arsenic-induced carcinogenesis. Silencing of MYST1 reduced acetylation of H4K16 and induced sensitivity to As III and to its more toxic metabolite monomethylarsonous acid (MMA III ) at doses relevant to high environmental human exposures. In addition, both As III and MMA III treatments decreased global H4K16 acetylation levels in a dose- and time-dependent manner. This indicates that acetylated H4K16 is required for resistance to arsenic and that a reduction in its levels as a consequence of arsenic exposure may contribute to toxicity in UROtsa cells. Based on these findings, we propose a novel role for the MYST1 gene in human sensitivity to arsenic.

  20. Effect of fly ash characteristics on arsenic mobilization in the environment

    International Nuclear Information System (INIS)

    Bhumbla, D.K.; Singh, R.N.; Keefer, R.F.

    1993-01-01

    Coal combustion by products are a major source of arsenic mobilization in the environment. These by products have been successfully used in the reclamation of mine lands. However, there are concerns about the potential pollution problems from As by such use. A field experiment was established on a recently remined abandoned mine land where fly ashes from three different power plants were used for reclaiming mine soils. The experiment had seven treatments and 4 replications which were arranged in a randomized block design. The treatments consisted of 3 fly ashes at 2 rates each and a check treatment received lime. Arsenic content of the fly ashes varied between 53 and 220 mg/kg. Fly ashes also varied in the amounts of amorphous oxides of iron and neutralization potential. Arsenic concentrations were monitored in the vegetation, soil solutions, and soils. The results of this experiment showed that arsenic concentrations were higher in plants grown on plots receiving fly ash than in plants grown on plots receiving lime treatment. Arsenic concentrations in the plants, water, or soil were not governed by the arsenic content of fly ashes. Arsenic mobilization from the ashes was controlled by the chemical and morphological characteristics of the fly ashes and chemical transformations in the arsenic containing components in soil

  1. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yixin [Department of Epidemiology, Shanghai Jiaotong University School of Public Health (China); Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Chen, Tingting [School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Shen, Steven S. [Biochemistry and Molecular Pharmaceutical, New York University School of Medicine (United States); Niu, Yingmei; DesMarais, Thomas L.; Linn, Reka; Saunders, Eric; Fan, Zhihua [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Lioy, Paul [Robert Wood Johnson Medical School Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Kluz, Thomas; Chen, Lung-Chi [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States); Wu, Zhuangchun, E-mail: wuzhuangchun@mail.njust.edu.cn [College of Science, Donghua University, Shanghai 201620 (China); Costa, Max, E-mail: max.costa@nyumc.org [Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 (United States)

    2015-10-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC{sub 50} values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.

  2. Malignant human cell transformation of Marcellus Shale gas drilling flow back water

    International Nuclear Information System (INIS)

    Yao, Yixin; Chen, Tingting; Shen, Steven S.; Niu, Yingmei; DesMarais, Thomas L.; Linn, Reka; Saunders, Eric; Fan, Zhihua; Lioy, Paul; Kluz, Thomas; Chen, Lung-Chi; Wu, Zhuangchun; Costa, Max

    2015-01-01

    The rapid development of high-volume horizontal hydraulic fracturing for mining natural gas from shale has posed potential impacts on human health and biodiversity. The produced flow back waters after hydraulic stimulation are known to carry high levels of saline and total dissolved solids. To understand the toxicity and potential carcinogenic effects of these wastewaters, flow back waters from five Marcellus hydraulic fracturing oil and gas wells were analyzed. The physicochemical nature of these samples was analyzed by inductively coupled plasma mass spectrometry and scanning electron microscopy/energy dispersive X-ray spectroscopy. A cytotoxicity study using colony formation as the endpoint was carried out to define the LC 50 values of test samples using human bronchial epithelial cells (BEAS-2B). The BEAS-2B cell transformation assay was employed to assess the carcinogenic potential of the samples. Barium and strontium were among the most abundant metals in these samples and the same metals were found to be elevated in BEAS-2B cells after long-term treatment. BEAS-2B cells treated for 6 weeks with flow back waters produced colony formation in soft agar that was concentration dependent. In addition, flow back water-transformed BEAS-2B cells show better migration capability when compared to control cells. This study provides information needed to assess the potential health impact of post-hydraulic fracturing flow back waters from Marcellus Shale natural gas mining. - Highlights: • This is the first report of potential cytotoxicity and transforming activity of Marcellus shale gas mining flow back to mammalian cells. • Barium and Strontium were elevated in flow back water exposed cells. • Flow back water malignantly transformed cells and formed tumor in athymic nude mice. • Flow back transformed cells exhibited altered transcriptome with dysregulated cell migration pathway and adherent junction pathway.

  3. Transplacental arsenic carcinogenesis in mice

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  4. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek [Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior-474 002 (India); Binukumar, B.K.; Gill, Kiran Dip [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh-160 012 (India); Flora, Swaran J.S., E-mail: sjsflora@hotmail.com [Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior-474 002 (India)

    2011-11-15

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potential and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant

  5. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Hiriart, Marcia; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia

    2007-01-01

    Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for type 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance

  6. A review on environmental factors regulating arsenic methylation in humans

    International Nuclear Information System (INIS)

    Tseng, C.-H.

    2009-01-01

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers

  7. LncRNA MEG3 downregulation mediated by DNMT3b contributes to nickel malignant transformation of human bronchial epithelial cells via modulating PHLPP1 transcription and HIF-1α translation.

    Science.gov (United States)

    Zhou, C; Huang, C; Wang, J; Huang, H; Li, J; Xie, Q; Liu, Y; Zhu, J; Li, Y; Zhang, D; Zhu, Q; Huang, C

    2017-07-06

    Long noncoding RNAs (lncRNAs) are emerging as key factors in various fundamental cellular biological processes, and many of them are likely to have functional roles in tumorigenesis. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 that encodes a lncRNA, and the decreased MEG3 expression has been reported in multiple cancer tissues. However, nothing is known about the alteration and role of MEG3 in environmental carcinogen-induced lung tumorigenesis. Our present study, for the first time to the best of our knowledge, discovered that environmental carcinogen nickel exposure led to MEG3 downregulation, consequently initiating c-Jun-mediated PHLPP1 transcriptional inhibition and hypoxia-inducible factor-1α (HIF-1α) protein translation upregulation, in turn resulting in malignant transformation of human bronchial epithelial cells. Mechanistically, MEG3 downregulation was attributed to nickel-induced promoter hypermethylation via elevating DNMT3b expression, whereas PHLPP1 transcriptional inhibition was due to the decreasing interaction of MEG3 with its inhibitory transcription factor c-Jun. Moreover, HIF-1α protein translation was upregulated via activating the Akt/p70S6K/S6 axis resultant from PHLPP1 inhibition in nickel responses. Collectively, we uncover that nickel exposure results in DNMT3b induction and MEG3 promoter hypermethylation and expression inhibition, further reduces its binding to c-Jun and in turn increasing c-Jun inhibition of PHLPP1 transcription, leading to the Akt/p70S6K/S6 axis activation, and HIF-1α protein translation, as well as malignant transformation of human bronchial epithelial cells. Our studies provide a significant insight into understanding the alteration and role of MEG3 in nickel-induced lung tumorigenesis.

  8. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells.

    Science.gov (United States)

    Demiroglu-Zergeroglu, Asuman; Candemir, Gulsife; Turhanlar, Ebru; Sagir, Fatma; Ayvali, Nurettin

    2016-12-01

    The unrestrained EGFR signalling contributes to malignant phenotype in a number of cancers including Malignant Mesotheliomas. Present study was designed to evaluate EGFR-dependent anti-proliferative and apoptotic effects of Gallic acid in transformed Mesothelial (MeT-5A) and Malignant Mesothelioma (SPC212) cells. Gallic acid reduced the viability of Malignant Mesothelioma cells in a concentration and time-dependent manner. However, viability of mesothelial cells reduced only at high concentration and longer time periods. Gallic acid restrained the activation of EGFR, ERK1/2 and AKT proteins and down regulated expression of Cyclin D and Bcl-2 genes, but upregulated the expression of p21 gene in EGF-induced SPC212 cells. GA-induced transitory G1 arrest and triggered mitochondrial and death receptor mediated apoptosis, which requires p38MAPK activation. The data provided here indicate that GA is able to inhibit EGFR dependent proliferation and survival signals and induces p38 pathway dependent apoptosis in Malignant Mesothelioma cells. On the basis of these experimental findings it is worthwhile to investigate further the biological activity of Gallic acid on other Mesothelioma cell lines harbouring aberrant EGFR signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Combined Efficacy of Gallic Acid and MiADMSA with Limited Beneficial Effects Over MiADMSA Against Arsenic-induced Oxidative Stress in Mouse

    OpenAIRE

    Pachauri, Vidhu; Flora, SJS

    2015-01-01

    Gallic acid is an organic acid known for its antioxidant and anticancer properties. The present study is focused on evaluating the role of gallic acid in providing better therapeutic outcomes against arsenic-induced toxicity. Animals pre-exposed to arsenic were treated with monoisoamyl meso -2,3-dimercaptosuccinic acid (MiADMSA), a new chelating drug, alone and in combination with gallic acid, consecutively for 10 days. The study suggests that (1) gallic acid in presence of MiADMSA is only mo...

  10. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  11. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    International Nuclear Information System (INIS)

    Mao, Jiamin; Yang, Jianbing; Zhang, Yan; Li, Ting; Wang, Cheng; Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang; Nie, Xiaoke; Chen, Gang

    2016-01-01

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  12. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiamin [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Yang, Jianbing [Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001 (China); Zhang, Yan [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Li, Ting [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Wang, Cheng [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Nie, Xiaoke [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Chen, Gang, E-mail: chengang@ntu.edu.cn [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China)

    2016-07-15

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  13. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    Science.gov (United States)

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  14. Environmental arsenic exposure, selenium and sputum alpha-1 antitrypsin

    DEFF Research Database (Denmark)

    Burgess, Jefferey L; Kurzius-Spencer, Margaret; Poplin, Gerald S

    2014-01-01

    Exposure to arsenic in drinking water is associated with increased respiratory disease. Alpha-1 antitrypsin (AAT) protects the lung against tissue destruction. The objective of this study was to determine whether arsenic exposure is associated with changes in airway AAT concentration and whether...... this relationship is modified by selenium. A total of 55 subjects were evaluated in Ajo and Tucson, Arizona. Tap water and first morning void urine were analyzed for arsenic species, induced sputum for AAT and toenails for selenium and arsenic. Household tap-water arsenic, toenail arsenic and urinary inorganic...... arsenic and metabolites were significantly higher in Ajo (20.6±3.5 μg/l, 0.54±0.77 μg/g and 27.7±21.2 μg/l, respectively) than in Tucson (3.9±2.5 μg/l, 0.16±0.20 μg/g and 13.0±13.8 μg/l, respectively). In multivariable models, urinary monomethylarsonic acid (MMA) was negatively, and toenail selenium...

  15. Kefir induces cell-cycle arrest and apoptosis in HTLV-1-negative malignant T-lymphocytes

    Directory of Open Access Journals (Sweden)

    Katia Maalouf

    2011-02-01

    Full Text Available Katia Maalouf1, Elias Baydoun2, Sandra Rizk11Department of Natural Sciences, Lebanese American University, Beirut, Lebanon; 2Department of Biology, American University of Beirut, Beirut, LebanonBackground: Adult lymphoblastic leukemia (ALL is a malignancy that occurs in white blood cells. The overall cure rate in children is 85%, whereas it is only 40% in adults. Kefir is an important probiotic that contains many bioactive ingredients, which give it unique health benefits. It has been shown to control several cellular types of cancer.Purpose: The present study investigates the effect of a cell-free fraction of kefir on CEM and Jurkat cells, which are human T-lymphotropic virus type I (HTLV-1-negative malignant T-lymphocytes.Methods: Cells were incubated with different kefir concentrations. The cytotoxicity of the compound was evaluated by determining the percentage viability of cells. The effect of all the noncytotoxic concentrations of kefir on the proliferation of CEM and Jurkat cells was then assessed. The levels of transforming growth factor-alpha (TGF-α, transforming growth factor- beta1 (TGF-β1, matrix metalloproteinase-2 (MMP-2, and MMP-9 mRNA upon kefir treatment were then analyzed using reverse transcriptase polymerase chain reaction (RT-PCR. Finally, the growth inhibitory effects of kefir on cell-cycle progression/apoptosis were assessed by Cell Death Detection (ELISA and flow cytometry.Results: The maximum cytotoxicity recorded after 48-hours treatment with 80 µg/µL kefir was only 42% and 39% in CEM and Jurkat cells, respectively. The percent reduction in proliferation was very significant, and was dose-, and time-dependent. In both cell lines, kefir exhibited its antiproliferative effect by downregulating TGF-α and upregulating TGF- β1 mRNA expression. Upon kefir treatment, a marked increase in cell-cycle distribution was noted in the preG1 phase of CEM and Jurkat cells, indicating the proapoptotic effect of kefir, which was

  16. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    Science.gov (United States)

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase.

  17. Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA

    International Nuclear Information System (INIS)

    Franklin, Jeffrey L.; Rankin, Carl R.; Levy, Shawn; Snoddy, Jay R.; Zhang, Bing; Washington, Mary Kay; Thomson, J. Michael; Whitehead, Robert H.; Coffey, Robert J.

    2013-01-01

    Highlights: •Non-coding RNAs are found in the colonic crypt progenitor compartment. •Colonocytes transformed by ncNRFR are highly invasive and metastatic. •ncNRFR has a region similar to the miRNA, let-7 family. •ncNRFR expression alters let-7 activity as measured by reporter construct. •ncNRFR expression upregulates let-7b targets. -- Abstract: Recent progress has been made in the identification of protein-coding genes and miRNAs that are expressed in and alter the behavior of colonic epithelia. However, the role of long non-coding RNAs (lncRNAs) in colonic homeostasis is just beginning to be explored. By gene expression profiling of post-mitotic, differentiated tops and proliferative, progenitor-compartment bottoms of microdissected adult mouse colonic crypts, we identified several lncRNAs more highly expressed in crypt bottoms. One identified lncRNA, designated non-coding Nras functional RNA (ncNRFR), resides within the Nras locus but appears to be independent of the Nras coding transcript. Stable overexpression of ncNRFR in non-transformed, conditionally immortalized mouse colonocytes results in malignant transformation, as determined by growth in soft agar and formation of highly invasive tumors in nude mice. Moreover, ncNRFR appears to inhibit the function of the tumor suppressor let-7. These results suggest precise regulation of ncNRFR is necessary for proper cell growth in the colonic crypt, and its misregulation results in neoplastic transformation

  18. Curcumin and turmeric attenuate arsenic-induced angiogenesis in ovo.

    Science.gov (United States)

    Pantazis, Panayotis; Varman, Aarthi; Simpson-Durand, Cindy; Thorpe, Jessica; Ramalingam, Satish; Subramaniam, Dharmalingam; Houchen, Courtney; Ihnat, Michael; Anant, Shrikant; Ramanujam, Rama P

    2010-01-01

    Trivalent arsenic [As(III)] is currently approved by the FDA for the treatment of chronic and acute leukemias. However, As(III) has also demonstrated damaging effects on human health, including development of cardiovascular disease, diabetes, and cancer. Further, As(III) is a potent angiogenic agent. In this context, curcumin, an active ingredient in the dietary agent turmeric, has demonstrated potent antiproliferative, antiinflammatory, and antiangiogenic properties. In this report, we have shown that both curcumin and turmeric inhibit expression of vascular endothelial growth factor in HCT-116 human colon cancer cells exposed to As(III). Further, in the chicken chorioallantoic membrane assay model, treatment with low As(III) concentrations results in extensive increase in blood vessel density, which, however, is reduced in the presence of curcumin or turmeric. Collectively, the findings reported here strongly suggest that turmeric and curcumin can dramatically attenuate the process of angiogenesis induced by low As(III) concentrations.

  19. Arsenic biotransformation and volatilization in transgenic rice

    Science.gov (United States)

    Meng, Xiang-Yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P.; Zhu, Yong-Guan

    2011-01-01

    Summary Biotransformation of arsenic includes oxidation, reduction, methylation and conversion to more complex organic arsenicals. Members of the class of arsenite [As(III)] S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di- and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants. Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica rice (Oryza sativa L.) cultivar Nipponbare, and the transgenic rice produced methylated arsenic species, which were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Both monomethylarsenate [MAs(V)] and dimethylarsenate [DMAs(V)] were detected in the root and shoot of transgenic rice. After 12-d exposure to As(III), the transgenic rice gave off 10-fold more volatile arsenicals. The present study demonstrates that expression of an arsM gene in rice induces arsenic methylation and volatilization, providing a potential stratagem for phytoremediation theoretically. PMID:21517874

  20. Microarray analysis of altered gene expression in murine fibroblasts transformed by nickel(II) to nickel(II)-resistant malignant phenotype

    International Nuclear Information System (INIS)

    Kowara, Renata; Karaczyn, Aldona; Cheng, Robert Y.S.; Salnikow, Konstantin; Kasprzak, Kazimierz S.

    2005-01-01

    B200 cells are Ni(II)-transformed mouse BALB/c-3T3 fibroblasts displaying a malignant phenotype and increased resistance to Ni(II) toxicity. In an attempt to find genes whose expression has been altered by the transformation, the Atlas Mouse Stress/Toxicology cDNA Expression Array (Clontech Laboratories, Inc., Palo Alto, CA) was used to analyze the levels of gene expression in both parental and Ni(II)-transformed cells. Comparison of the results revealed a significant up- or downregulation of the expression of 62 of the 588 genes present in the array (approximately 10.5%) in B200 cells. These genes were assigned to different functional groups, including transcription factors and oncogenes (9/14; fractions in parentheses denote the number of up-regulated versus the total number of genes assigned to this group), stress and DNA damage response genes (11/12), growth factors and hormone receptors (6/9), metabolism (7/7), cell adhesion (2/7), cell cycle (3/6), apoptosis (3/4), and cell proliferation (2/3). Among those genes, overexpression of beta-catenin and its downstream targets c-myc and cyclin D1, together with upregulated cyclin G, points at the malignant character of B200 cells. While the increased expression of glutathione (GSH) synthetase, glutathione-S-transferase A4 (GSTA4), and glutathione-S-transferase theta (GSTT), together with high level of several genes responding to oxidative stress, suggests the enforcement of antioxidant defenses in Ni-transformed cells

  1. Arsenic pollution sources.

    Science.gov (United States)

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  2. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis.

    Science.gov (United States)

    Binet, François; Cavalli, Hélène; Moisan, Eliane; Girard, Denis

    2006-02-01

    The anti-cancer drug arsenic trioxide (AT) induces apoptosis in a variety of transformed or proliferating cells. However, little is known regarding its ability to induce apoptosis in terminally differentiated cells, such as neutrophils. Because neutropenia has been reported in some cancer patients after AT treatment, we hypothesised that AT could induce neutrophil apoptosis, an issue that has never been investigated. Herein, we found that AT-induced neutrophil apoptosis and gelsolin degradation via caspases. AT did not increase neutrophil superoxide production and did not induce mitochondrial generation of reactive oxygen species. AT-induced apoptosis in PLB-985 and X-linked chronic granulomatous disease (CGD) cells (PLB-985 cells deficient in gp91(phox) mimicking CGD) at the same potency. Addition of catalase, an inhibitor of H2O2, reversed AT-induced apoptosis and degradation of the cytoskeletal proteins gelsolin, alpha-tubulin and lamin B1. Unexpectedly, AT-induced de novo protein synthesis, which was reversed by catalase. Cycloheximide partially reversed AT-induced apoptosis. We conclude that AT induces neutrophil apoptosis by a caspase-dependent mechanism and via de novo protein synthesis. H2O2 is of major importance in AT-induced neutrophil apoptosis but its production does not originate from nicotinamide adenine dinucleotide phosphate dehydrogenase activation and mitochondria. Cytoskeletal structures other than microtubules can now be considered as novel targets of AT.

  3. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120.

    Science.gov (United States)

    Xue, Xi-Mei; Yan, Yu; Xiong, Chan; Raber, Georg; Francesconi, Kevin; Pan, Ting; Ye, Jun; Zhu, Yong-Guan

    2017-09-01

    Nostoc sp. PCC 7120 (Nostoc), a typical filamentous cyanobacterium ubiquitous in aquatic system, is recognized as a model organism to study prokaryotic cell differentiation and nitrogen fixation. In this study, Nostoc cells incubated with arsenite (As(III)) for two weeks were extracted with dichloromethane/methanol (DCM/MeOH) and the extract was partitioned between water and DCM. Arsenic species in aqueous and DCM layers were determined using high performance liquid chromatography - inductively coupled plasma mass spectrometer/electrospray tandem mass spectrometry (HPLC-ICPMS/ESIMSMS). In addition to inorganic arsenic (iAs), the aqueous layer also contained monomethylarsonate (MAs(V)), dimethylarsinate (DMAs(V)), and the two arsenosugars, namely a glycerol arsenosugar (Oxo-Gly) and a phosphate arsenosugar (Oxo-PO4). Two major arsenosugar phospholipids (AsSugPL982 and AsSugPL984) were detected in DCM fraction. Arsenic in the growth medium was also investigated by HPLC/ICPMS and shown to be present mainly as the inorganic forms As(III) and As(V) accounting for 29%-38% and 29%-57% of the total arsenic respectively. The total arsenic of methylated arsenic, arsenosugars, and arsenosugar phospholipids in Nostoc cells with increasing As(III) exposure were not markedly different, indicating that the transformation to organoarsenic in Nostoc was not dependent on As(III) concentration in the medium. Our results provide new insights into the role of cyanobacteria in the biogeochemical cycling of arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. ARSENIC-INDUCED SKIN CONDITIONS IDENTIFIED IN SOUTHWEST DERMATOLOGY PRACTICE: AN EPIDEMIOLOGIC TOOL?

    Science.gov (United States)

    Populations living in the Southwest United States are more likely to be exposed to elevated drinking water arsenic levels compared to other areas of the country. Skin changes, including hyperpigmentation and generalized hyperkeratosis, are the most common signs of chronic arsenic...

  5. Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: Some novel findings

    International Nuclear Information System (INIS)

    Samadder, Asmita; Das, Jayeeta; Das, Sreemanti; De, Arnab; Saha, Santu Kumar; Bhattacharyya, Soumya Sundar; Khuda-Bukhsh, Anisur Rahman

    2013-01-01

    Diabetes is a menacing problem, particularly to inhabitants of groundwater arsenic contaminated areas needing new medical approaches. This study examines if PLGA loaded nano-insulin (NIn), administered either intraperitoneally (i.p.) or through oral route, has a greater cost-effective anti-hyperglycemic potential than that of insulin in chronically arsenite-fed hyperglycemic mice. The particle size, morphology and zeta potential of nano-insulin were determined using dynamic light scattering method, scanning electronic and atomic force microscopies. The ability of the nano-insulin (NIn) to cross the blood–brain barrier (BBB) was also checked. Circular dichroic spectroscopic (CD) data of insulin and nano-insulin in presence or absence of arsenic were compared. Several diabetic markers in different groups of experimental and control mice were assessed. The mitochondrial functioning through indices like cytochrome c, pyruvate-kinase, glucokinase, ATP/ADP ratio, mitochondrial membrane potential, cell membrane potential and calcium-ion level was also evaluated. Expressions of the relevant marker proteins and mRNAs like insulin, GLUT2, GLUT4, IRS1, IRS2, UCP2, PI3, PPARγ, CYP1A1, Bcl2, caspase3 and p38 for tracking-down the signaling cascade were also analyzed. Results revealed that i.p.-injected nano-encapsulated-insulin showed better results; NIn, due to its smaller size, faster mobility, site-specific release, could cross BBB and showed positive modulation in mitochondrial signaling cascades and other downstream signaling molecules in reducing arsenic-induced-hyperglycemia. CD data indicated that nano-insulin had less distorted secondary structure as compared with that of insulin in presence of arsenic. Thus, overall analyses revealed that PLGA nano-insulin showed better efficacy in combating arsenite-induced-hyperglycemia than that of insulin and therefore, has greater potentials for use in nano-encapsulated form. - Highlights: ► PLGA encapsulated nano

  6. Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: Some novel findings

    Energy Technology Data Exchange (ETDEWEB)

    Samadder, Asmita; Das, Jayeeta; Das, Sreemanti; De, Arnab; Saha, Santu Kumar; Bhattacharyya, Soumya Sundar; Khuda-Bukhsh, Anisur Rahman, E-mail: prof_arkb@yahoo.co.in

    2013-02-15

    Diabetes is a menacing problem, particularly to inhabitants of groundwater arsenic contaminated areas needing new medical approaches. This study examines if PLGA loaded nano-insulin (NIn), administered either intraperitoneally (i.p.) or through oral route, has a greater cost-effective anti-hyperglycemic potential than that of insulin in chronically arsenite-fed hyperglycemic mice. The particle size, morphology and zeta potential of nano-insulin were determined using dynamic light scattering method, scanning electronic and atomic force microscopies. The ability of the nano-insulin (NIn) to cross the blood–brain barrier (BBB) was also checked. Circular dichroic spectroscopic (CD) data of insulin and nano-insulin in presence or absence of arsenic were compared. Several diabetic markers in different groups of experimental and control mice were assessed. The mitochondrial functioning through indices like cytochrome c, pyruvate-kinase, glucokinase, ATP/ADP ratio, mitochondrial membrane potential, cell membrane potential and calcium-ion level was also evaluated. Expressions of the relevant marker proteins and mRNAs like insulin, GLUT2, GLUT4, IRS1, IRS2, UCP2, PI3, PPARγ, CYP1A1, Bcl2, caspase3 and p38 for tracking-down the signaling cascade were also analyzed. Results revealed that i.p.-injected nano-encapsulated-insulin showed better results; NIn, due to its smaller size, faster mobility, site-specific release, could cross BBB and showed positive modulation in mitochondrial signaling cascades and other downstream signaling molecules in reducing arsenic-induced-hyperglycemia. CD data indicated that nano-insulin had less distorted secondary structure as compared with that of insulin in presence of arsenic. Thus, overall analyses revealed that PLGA nano-insulin showed better efficacy in combating arsenite-induced-hyperglycemia than that of insulin and therefore, has greater potentials for use in nano-encapsulated form. - Highlights: ► PLGA encapsulated nano

  7. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Science.gov (United States)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  8. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  9. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  10. Detoxification system for inorganic arsenic: transformation of As2O3 into TMAO by vitamin B12 derivatives and conversion of TMAO into arsenobetaine.

    Science.gov (United States)

    Nakamura, Koichiro; Hisaeda, Yoshio; Pan, Ling; Yamauchi, Hiroshi

    2008-11-07

    A new two-step synthetic pathway developed for the transformation of arsenic trioxide [iAs(III); As(2)O(3)] into arsenobetaine (AB; Me(3)As(+)CH(2)CO(2)(-)) involves treatment of iAs(III) with native B(12) or biomimetic B(12) in the presence of glutathione (GSH) to give TMAO with a high selectivity and a high conversion rate; subsequent treatment of TMAO with iodoacetic acid in the presence of GSH gives arsenobetaine.

  11. Effects of the combinations of caffeine with 137Cs-gamma rays or tritiated water on the proliferation and malignant transformation CHL-1 cells

    International Nuclear Information System (INIS)

    Zou Shuai; Wang Shoufang

    1989-01-01

    The effects of the combinations of caffeine with 137 Cs-gamma rays or tritiated water on the proliferation and malignant transformation in vitro in CHL-1 cells were observed in experiments. At the concentrations of caffeine from 1 mmol/L to 2 mmol/L, the dose ranges of 137 Cs-gamma rays from 0.837 Gy and to 2.51 Gy and of tritium-beta radiation from 0.837 Gy to 0.528 Gy, the cell proliferation of CHL-1 cells was found to be inbigited when cells were exposed to caffeine, gamma and beta radiations, respectively, as well as when they were exposed to various combinations of caffeine with the two latters. The degree of inhibition of cell proliferation was dependent upon the concentration of caffeine and on the doses of radiation. In the transformation experiments, cell malignant transformation rates for all treated groups were higher than that for contol group and the rates for irradiated plus caffeine-treated groups were higher than those for corresponding single-agent-treated ones. After the subcutaneous injection of transformed cells into irradiated mice, tumours in size of about 2 mm 3 were found in some animals and the tumour cells were identical with in-vitro-transformed CHL-1 cells histopathologically

  12. Expression patterns of ERVWE1/Syncytin-1 and other placentally expressed human endogenous retroviruses along the malignant transformation process of hydatidiform moles.

    Science.gov (United States)

    Bolze, Pierre-Adrien; Patrier, Sophie; Cheynet, Valérie; Oriol, Guy; Massardier, Jérôme; Hajri, Touria; Guillotte, Michèle; Bossus, Marc; Sanlaville, Damien; Golfier, François; Mallet, François

    2016-03-01

    Up to 20% of hydatidiform moles are followed by malignant transformation in gestational trophoblastic neoplasia and require chemotherapy. Syncytin-1 is involved in human placental morphogenesis and is also expressed in various cancers. We assessed the predictive value of the expression of Syncytin-1 and its interactants in the malignant transformation process of hydatidiform moles. Syncytin-1 glycoprotein was localized by immunohistochemistry in hydatidiform moles, gestational trophoblastic neoplasia and control placentas. The transcription levels of its locus ERVWE1, its interaction partners (hASCT1, hASCT2, TLR4 and DC-SIGN) and two loci (ERVFRDE1 and ERV3) involved the expression of other placental envelopes were assessed by real-time PCR. Syncytin-1 glycoprotein was expressed in syncytiotrophoblast of hydatidiform moles with an apical enhancement when compared with normal placentas. Moles with further malignant transformation had a higher staining intensity of Syncytin-1 surface unit C-terminus but the transcription level of its locus ERVWE1 was not different from that of moles with further remission and normal placentas. hASCT1 and TLR4, showed lower transcription levels in complete moles when compared to normal placentas. ERVWE1, ERVFRDE1 and ERV3 transcription was down-regulated in hydatidiform moles and gestational trophoblastic neoplasia. Variations of Syncytin-1 protein localization and down-regulation of hASCT1 and TLR4 transcription are likely to reflect altered functions of Syncytin-1 in the premalignant context of complete moles. The reduced transcription in gestational trophoblastic diseases of ERVWE1, ERVFRDE1 and ERV3, which expression during normal pregnancy is differentially regulated by promoter region methylation, suggest a joint dysregulation mechanism in malignant context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Association of malignancy with rapid growth in early lesions induced by irradiation of rat skin

    International Nuclear Information System (INIS)

    McGregor, J.F.

    1979-01-01

    Epithelial lesions induced by irradiation of rat skin were studied to determine (a) the relationship of malignancy to dose, (b) the types of lesions and circumstances leading to overt malignancy, and (c) the growth rates of lesions progressing to malignancy versus those of lesions remaining benign. High doses of radiation were shown to be associated with the production of epidermal cancers, the maximum yield being obtained at 6,400 rads. Conversely, a peak yield of noncancerous lesions was obtained at 1,600 rads. This association between malignancy and high dose was consistent for cancers evolving from warts, cysts, and chronic ulcers. Although the proportion of warts among the induced lesions was much higher than that of the cysts or chronic ulcers (76, 14, and 10%, respectively), the likelihood of warts becoming cancerous was substantially lower (14, 23, and 21%). The combined data for all doses showed that the latency period of the epidermal cancers was significantly (P = 0.015) shorter than that of the benign tumors. Rapid growth rates were observed for warts, cysts, and chronic ulcers progressing to overt cancer, and these did not overlap at any point on the growth scale with rates for benign tumors. This finding suggested that the potential for malignant development had been established early in the carcinogenic process, very likely at induction

  14. Risk of Erectile Dysfunction Induced by Arsenic Exposure through Well Water Consumption in Taiwan

    Science.gov (United States)

    Hsieh, Fang-I; Hwang, Ti-Sheng; Hsieh, Yi-Chen; Lo, Hsiu-Chiung; Su, Chien-Tien; Hsu, Hui-Shing; Chiou, Hung-Yi; Chen, Chien-Jen

    2008-01-01

    Background Erectile dysfunction (ED) has a profound impact on the quality of life of many men. Many risk factors are associated with ED, such as aging, sex hormone levels, hypertension, cardiovascular diseases, and diabetes mellitus. Arsenic exposure could damage peripheral vessels and increase the risk of cardiovascular disease. However, the relationship between arsenic exposure and ED has seldom been evaluated. Objectives In this study we aimed to investigate whether exposure to arsenic enhances the risk of ED. Methods We recruited 177 males ≥ 50 years of age through health examinations conducted in three hospitals in Taiwan. We used a questionnaire (International Index of Erectile Function-5) to measure the level of erectile function. Sex hormones, including total testosterone and sex hormone–binding globulin, were determined by radioimmunoassay. We used another standardized questionnaire to collect background and behavioral information (e.g., cigarette smoking; alcohol, tea, or coffee drinking; and physical activity). Results The prevalence of ED was greater in the arsenic-endemic area (83.3%) than in the non–arsenic-endemic area (66.7%). Subjects with arsenic exposure > 50 ppb had a significantly higher risk of developing ED than those with exposure ≤ 50 ppb, after adjusting for age, cigarette smoking, diabetes mellitus, hypertension, and cardiovascular disease [odds ratio (OR) = 3.4]. Results also showed that the risk of developing severe ED was drastically enhanced by arsenic exposure (OR = 7.5), after adjusting for free testosterone and traditional risk factors of ED. Conclusions Results suggested that chronic arsenic exposure has a negative impact on erectile function. PMID:18414639

  15. Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel

    International Nuclear Information System (INIS)

    Hedstroem, Peter; Lienert, Ulrich; Almer, Jon; Oden, Magnus

    2007-01-01

    In situ high-energy X-ray diffraction during tensile loading has been used to investigate the evolution of lattice strains and the accompanying strain-induced martensitic transformation in cold-rolled sheets of a metastable stainless steel. At high applied strains the transformation to α-martensite occurs in stepwise bursts. These stepwise transformation events are correlated with stepwise increased lattice strains and peak broadening in the austenite phase. The stepwise transformation arises from growth of α-martensite embryos by autocatalytic transformation

  16. Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial–mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract

    International Nuclear Information System (INIS)

    Lu, Lu; Luo, Fei; Liu, Yi; Liu, Xinlu; Shi, Le; Lu, Xiaolin; Liu, Qizhan

    2015-01-01

    Lung cancer is regarded as the leading cause of cancer-related deaths, and cigarette smoking is one of the strongest risk factors for the development of lung cancer. However, the mechanisms for cigarette smoke-induced lung carcinogenesis remain unclear. The present study investigated the effects of an miRNA (miR-217) on levels of an lncRNA (MALAT1) and examined the role of these factors in the epithelial–mesenchymal transition (EMT) induced by cigarette smoke extract (CSE) in human bronchial epithelial (HBE) cells. In these cells, CSE caused decreases of miR-217 levels and increases in lncRNA MALAT1 levels. Over-expression of miR-217 with a mimic attenuated the CSE-induced increase of MALAT1 levels, and reduction of miR-217 levels by an inhibitor enhanced expression of MALAT1. Moreover, the CSE-induced increase of MALAT1 expression was blocked by an miR-217 mimic, indicating that miR-217 negatively regulates MALAT1 expression. Knockdown of MALAT1 reversed CSE-induced increases of EZH2 (enhancer of zeste homolog 2) and H3K27me3 levels. In addition to the alteration from epithelial to spindle-like mesenchymal morphology, chronic exposure of HBE cells to CSE increased the levels of EZH2, H3K27me3, vimentin, and N-cadherin and decreased E-cadherin levels, effects that were reversed by MALAT1 siRNA or EZH2 siRNA. The results indicate that miR-217 regulation of EZH2/H3K27me3 via MALAT1 is involved in CSE-induced EMT and malignant transformation of HBE cells. The posttranscriptional silencing of MALAT1 by miR-217 provides a link, through EZH2, between ncRNAs and the EMT and establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • CSE exposure decreases miR-217 levels and increases MALAT1 levels. • miR-217 negatively regulates MALAT1 expression. • MALAT1, via EZH2, is involved in the EMT of CSE-transformed HBE cells.

  17. Dynamic strain-induced transformation: An atomic scale investigation

    International Nuclear Information System (INIS)

    Zhang, H.; Pradeep, K.G.; Mandal, S.; Ponge, D.; Springer, H.; Raabe, D.

    2015-01-01

    Phase transformations provide the most versatile access to the design of complex nanostructured alloys in terms of grain size, morphology, local chemical constitution etc. Here we study a special case of deformation induced phase transformation. More specifically, we investigate the atomistic mechanisms associated with dynamic strain-induced transformation (DSIT) in a dual-phased multicomponent iron-based alloy at high temperatures. DSIT phenomena and the associated secondary phase nucleation were observed at atomic scale using atom probe tomography. The obtained local chemical composition was used for simulating the nucleation process which revealed that DSIT, occurring during load exertion, proceeds by a diffusion-controlled nucleation process

  18. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin

    OpenAIRE

    Michael, Holly A.; Voss, Clifford I.

    2008-01-01

    Tens of millions of people in the Bengal Basin region of Bangladesh and India drink groundwater containing unsafe concentrations of arsenic. This high-arsenic groundwater is produced from shallow (150 m where groundwater arsenic concentrations are nearly uniformly low, and many more wells are needed, however, the sustainability of deep, arsenic-safe groundwater has not been previously assessed. Deeper pumping could induce downward migration of dissolved arsenic, permanently destroying the dee...

  19. Seasonal Arsenic Accumulation in Stream Sediments at a Groundwater Discharge Zone

    DEFF Research Database (Denmark)

    MacKay, Allison A.; Gan, Ping; Yu, Ran

    2014-01-01

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic...... and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), With higher surface water: levels, was associated with losses...... of arsenic and iron from bead column coatings at. depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg...

  20. The diagnostic accuracy of detecting malignant transformation of low-grade glioma using O-(2-[F]fluoroethyl)-l-tyrosine positron emission tomography

    DEFF Research Database (Denmark)

    Bashir, Asma; Brennum, Jannick; Broholm, Helle

    2018-01-01

    OBJECTIVE The diagnostic accuracy of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET scanning in detecting the malignant transformation of low-grade gliomas (LGGs) is controversial. In this study, the authors retrospectively assessed the diagnostic potential of FET PET in patients with MRI-suspected ...

  1. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Parga, Jose R. [Institute Technology of Saltillo, Department of Metallurgy and Materials Science, V. Carranza 2400, C.P. 25280, Saltillo, Coahuila, Mexico (Mexico)]. E-mail: drjrparga@hotmail.com; Cocke, David L. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Valenzuela, Jesus L. [University of Sonora, Hermosillo, Sonora, Mexico (Mexico); Gomes, Jewel A. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Kesmez, Mehmet [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Irwin, George [Lamar University, Department of Chemistry and Physics, Beaumont, TX 77710 (United States); Moreno, Hector [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Weir, Michael [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States)

    2005-09-30

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern Mexico, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of Mexico (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Moessbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study.

  2. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico

    International Nuclear Information System (INIS)

    Parga, Jose R.; Cocke, David L.; Valenzuela, Jesus L.; Gomes, Jewel A.; Kesmez, Mehmet; Irwin, George; Moreno, Hector; Weir, Michael

    2005-01-01

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern Mexico, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of Mexico (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Moessbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study

  3. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    International Nuclear Information System (INIS)

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul; Kang, Keon Wook

    2011-01-01

    Highlights: → Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. → UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. → UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation (λ = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm 2 ) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.

  4. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB

    OpenAIRE

    Sun, Bao-Fei; Wang, Qing-Qing; Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dos...

  5. Combined Administration of Taurine and Monoisoamyl Dmsa Protects Arsenic Induced Oxidative Injury in Rats

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2008-01-01

    Full Text Available Arsenic is a naturally occurring element that is ubiquitously present in the environment. High concentration of naturally occurring arsenic in drinking water is a major health problem in different parts of the world. Despite arsenic being a health hazard and a well documented carcinogen, no safe, effective and specific preventive or therapeutic measures are available. Among various recent strategies adopted, administration of an antioxidant has been reported to be the most effective. The present study was designed to evaluate the therapeutic efficacy of monoisoamyl dimercaptosuccinic acid (MiADMSA, administered either individually or in combination with taurine post chronic arsenic exposure in rats. Arsenic exposed male rats (25 ppm, sodium arsenite in drinking water for 24 weeks were treated with taurine (100 mg/kg, i.p., once daily, monoisoamyl dimercaptosuccinic acid (MiADMSA (50 mg/kg, oral, once daily either individually or in combination for 5 consecutive days. Biochemical variables indicative of oxidative stress along-with arsenic concentration in blood, liver and kidney were measured. Arsenic exposure significantly reduced blood δ-aminolevulinic acid dehydratase (ALAD activity, a key enzyme involved in the heme biosynthesis and enhanced zinc protoporphyrin (ZPP level. Clinical hematological variables like white blood cells (WBC, mean cell hemoglobin (MCH, and mean cell hemoglobin concentration (MCHC showed significant decrease with a significant elevation in platelet (PLT count. These changes were accompanied by significant decrease in superoxide dismutase (SOD activity and increased catalase activity. Arsenic exposure caused a significant decrease in hepatic and renal glutathione (GSH level and an increase in oxidized glutathione (GSSG. These biochemical changes were correlated with an increased uptake of arsenic in blood, liver and kidney. Administration of taurine significantly reduced hepatic oxidative stress however co

  6. Extracellular vesicle-mediated phenotype switching in malignant and non-malignant colon cells

    International Nuclear Information System (INIS)

    Mulvey, Hillary E.; Chang, Audrey; Adler, Jason; Del Tatto, Michael; Perez, Kimberly; Quesenberry, Peter J.; Chatterjee, Devasis

    2015-01-01

    Extracellular vesicles (EVs) are secreted from many cells, carrying cargoes including proteins and nucleic acids. Research has shown that EVs play a role in a variety of biological processes including immunity, bone formation and recently they have been implicated in promotion of a metastatic phenotype. EVs were isolated from HCT116 colon cancer cells, 1459 non-malignant colon fibroblast cells, and tumor and normal colon tissue from a patient sample. Co-cultures were performed with 1459 cells and malignant vesicles, as well as HCT116 cells and non-malignant vesicles. Malignant phenotype was measured using soft agar colony formation assay. Co-cultures were also analyzed for protein levels using mass spectrometry. The importance of 14-3-3 zeta/delta in transfer of malignant phenotype was explored using siRNA. Additionally, luciferase reporter assay was used to measure the transcriptional activity of NF-κB. This study demonstrates the ability of EVs derived from malignant colon cancer cell line and malignant patient tissue to induce the malignant phenotype in non-malignant colon cells. Similarly, EVs derived from non-malignant colon cell lines and normal patient tissue reversed the malignant phenotype of HCT116 cells. Cells expressing an EV-induced malignant phenotype showed increased transcriptional activity of NF-κB which was inhibited by the NF--κB inhibitor, BAY117082. We also demonstrate that knock down of 14-3-3 zeta/delta reduced anchorage-independent growth of HCT116 cells and 1459 cells co-cultured with HCT derived EVs. Evidence of EV-mediated induction of malignant phenotype, and reversal of malignant phenotype, provides rational basis for further study of the role of EVs in tumorigenesis. Identification of 14-3-3 zeta/delta as up-regulated in malignancy suggests its potential as a putative drug target for the treatment of colorectal cancer

  7. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chung, Chi-Jung [Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Chu, Jan-Show [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Yang, Hsiu-Yuan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China)

    2012-08-01

    8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography with tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.

  8. A comprehensive review of metal-induced cellular transformation studies.

    Science.gov (United States)

    Chen, Qiao Yi; Costa, Max

    2017-09-15

    In vitro transformation assays not only serve practical purposes in screening for potential carcinogenic substances in food, drug, and cosmetic industries, but more importantly, they provide a means of understanding the critical biological processes behind in vivo cancer development. In resemblance to cancer cells in vivo, successfully transformed cells display loss of contact inhibition, gain of anchorage independent growth, resistant to proper cell cycle regulation such as apoptosis, faster proliferation rate, potential for cellular invasion, and ability to form tumors in experimental animals. Cells purposely transformed using metal exposures enable researchers to examine molecular changes, dissect various stages of tumor formation, and ultimately elucidate metal induced cancer mode of action. For practical purposes, this review specifically focuses on studies incorporating As-, Cd-, Cr-, and Ni-induced cell transformation. Through investigating and comparing an extensive list of studies using various methods of metal-induced transformation, this review serves to bridge an information gap and provide a guide for avoiding procedural discrepancies as well as maximizing experimental efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Non-melanoma skin cancer: occupational risk from UV light and arsenic exposure.

    Science.gov (United States)

    Surdu, Simona

    2014-01-01

    Non-melanoma skin cancer (NMSC) has a significant impact on public health and health care costs as a result of high morbidity and disfigurement due to the destruction of surrounding tissues. Although the mortality rates of these tumors are low, the high incidence rates determine a considerable number of deaths. NMSC is the most common type of skin cancer, representing about 1/3 of all malignancies diagnosed worldwide each year. The most common NMSC are basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Studies on humans and experimental animals indicate that ultraviolet (UV) light and arsenic play important roles in the development of these skin malignancies. Several epidemiological studies have investigated the risk of developing NMSC and the potential link between exposure to sunlight and arsenic in the agricultural and industrial occupational settings. To date, the published literature suggests that there is no apparent skin cancer risk as regards workplace exposure to artificial UV light or arsenic. Concerning UV light from sun exposure at the workplace, most published studies indicated an elevated risk for SCC, but are less conclusive for BCC. Many of these studies are limited by the methodology used in the evaluation of occupational exposure and the lack of adjustment for major confounders. Therefore, further epidemiological studies are required to focus on exposure assessment at the individual level as well as potential interactions with other occupational and non-occupational exposures and individual susceptibility. In doing so, we can better quantify the true risk of skin cancer in exposed workers and inform effective public health prevention programs.

  10. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs. Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-, SO4(2-/total sulfur ratio, and Fe(2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  11. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Science.gov (United States)

    Li, Ping; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Zhou; Jiang, Dawei; Wang, Shang; Jiang, Hongchen; Wang, Yanxin; Dong, Hailiang

    2015-01-01

    A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs). Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-), SO4(2-)/total sulfur ratio, and Fe(2+) were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  12. Overexpression of Transforming Acidic Coiled Coil‑Containing Protein 3 Reflects Malignant Characteristics and Poor Prognosis of Glioma

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2017-03-01

    Full Text Available Gliomas are malignant primary brain tumors with poor prognosis. Recently, research was indicative of a tight connection between tumor malignancy and genetic alterations. Here, we propose an oncogenic implication of transforming acidic coiled-coil-containing protein 3 (TACC3 in gliomas. By comprehensively analyzing the Chinese glioma genome atlas (CGGA and publicly available data, we demonstrated that TACC3 were overexpressed along with glioma grade and served as an independent negative prognostic biomarker for glioma patients. Functions’ annotations and gene sets’ enrichment analysis suggested that TACC3 may participate in cell cycle, DNA repair, epithelium-mesenchymal transition and other tumor-related biological processes and molecular pathways. Patients with high TACC3 expression showed CD133+ stem cell properties, glioma plasticity and shorter overall survival time under chemo-/radio-therapy. Additionally, a TACC3 associated the miRNA-mRNA network was constructed based on in silico prediction and expression pattern, which provide a foundation for further detection of TACC3-miRNA-mRNA axis function. Collectively, our observations identify TACC3 as an oncogene of tumor malignancy, as well as a prognostic and motoring biomarker for glioma patients.

  13. Arsenic trioxide sensitizes glioblastoma to a myc inhibitor.

    Directory of Open Access Journals (Sweden)

    Yayoi Yoshimura

    Full Text Available Glioblastoma multiforme (GBM is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.

  14. Arsenic induced toxicity in broiler chicks and its alleviation with ascorbic acid: a toxico-patho-biochemical study

    Science.gov (United States)

    Khan, Ahrar; Sharaf, Rabia; Khan, Muhammad Zargham; Saleemi, Muhammad Kashif; Mahmood, Fazal

    2013-01-01

    To find out toxico-pathological effects of arsenic (As) and ameliorating effect of ascorbic acid (Vit C), broilers birds were administered 50 and 250 mg/kg arsenic and Vit C, respectively alone/in combination. As-treated birds exhibited severe signs of toxicity such as dullness, depression, increased thirst, open mouth breathing and watery diarrhea. All these signs were partially ameliorated with the treatment of Vit C. As-treated birds showed a significant decrease in serum total proteins while serum enzymes, urea and creatinine were significantly increased. Alkaline phosphatase and lactate dehydrogenase completely whereas proteins, aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine were partial ameliorated in birds treated with As+Vit C as compared to As-treated and control birds. Pale and hemorrhagic liver and swollen kidneys were observed in As-treated birds. Histopathologically, liver exhibited congestion and cytoplasmic vacuolation while in kidneys, condensation of tubular epithelium nuclei, epithelial necrosis, increased urinary spaces, sloughing of tubules from basement membrane and cast deposition were observed in As-treated birds. Pathological lesions were partially ameliorated with the treatment of Vit C. It can be concluded that arsenic induces biochemical and histopathological alterations in broiler birds; however, these toxic effects can be partially attenuated by Vit C.

  15. Astroglial c-Myc overexpression predisposes mice to primary malignant gliomas

    DEFF Research Database (Denmark)

    Jensen, Niels Aagaard; Pedersen, Karen-Marie; Lihme, Frederikke

    2003-01-01

    Malignant astrocytomas are common human primary brain tumors that result from neoplastic transformation of astroglia or their progenitors. Here we show that deregulation of the c-Myc pathway in developing astroglia predisposes mice to malignant astrocytomas within 2-3 weeks of age. The genetically...... engineered murine (GEM) gliomas harbor a molecular signature resembling that of human primary glioblastoma multiforme, including up-regulation of epidermal growth factor receptor and Mdm2. The GEM gliomas seem to originate in an abnormal population of glial fibrillary acidic protein-expressing cells...... the neoplastic process, presumably by inducing the sustained growth of early astroglial cells. This is in contrast to most other transgenic studies in which c-Myc overexpression requires co-operating transgenes for rapid tumor induction....

  16. Chemotherapy-Induced Depletion of OCT4-Positive Cancer Stem Cells in a Mouse Model of Malignant Testicular Cancer

    Directory of Open Access Journals (Sweden)

    Timothy M. Pierpont

    2017-11-01

    Full Text Available Summary: Testicular germ cell tumors (TGCTs are among the most responsive solid cancers to conventional chemotherapy. To elucidate the underlying mechanisms, we developed a mouse TGCT model featuring germ cell-specific Kras activation and Pten inactivation. The resulting mice developed malignant, metastatic TGCTs composed of teratoma and embryonal carcinoma, the latter of which exhibited stem cell characteristics, including expression of the pluripotency factor OCT4. Consistent with epidemiological data linking human testicular cancer risk to in utero exposures, embryonic germ cells were susceptible to malignant transformation, whereas adult germ cells underwent apoptosis in response to the same oncogenic events. Treatment of tumor-bearing mice with genotoxic chemotherapy not only prolonged survival and reduced tumor size but also selectively eliminated the OCT4-positive cancer stem cells. We conclude that the chemosensitivity of TGCTs derives from the sensitivity of their cancer stem cells to DNA-damaging chemotherapy. : Using a mouse testicular germ cell tumor model, Pierpont et al. establish that male germ cells are susceptible to malignant transformation during a restricted window of embryonic development. The cancer stem cells of the resulting testicular cancers demonstrate genotoxin hypersensitivity, rendering these malignancies highly responsive to conventional chemotherapy. Keywords: testicular germ cell tumor, TGCT, cancer stem cells, CSCs, chemotherapy, embryonal carcinoma, EC, DNA damage response, DDR

  17. Arsenic content and forms in some tropical soils

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, H W

    1975-01-01

    Some Latin American soils were analyzed for total arsenic and its various forms. For the volcanic ash soils from Colombia and Costa Rica an average of 5.1 and 7.0 ppm As was found. Some oxisols and ultisols from Puerto Rico reached an average of 10.0 ppm As. The distribution of arsenic with soil depth does not show any trend; consequently unlike P, it does not undergo biogenic accumulation on soil surfaces. Two soils of Puerto Rico reached exceptional high As values (over 100 ppm); it is believed that As of sea water precipitates with carbonate in calcareous sediments. In these soils Ca-bound As predominates over Fe - and Al-arsenate. In a Costa Rican soil, where arsenic compounds are used to control coffee diseases, a great accumulation of As in the upper soils depths was registered (for 0 to 5 cm from 10.6 to 49.0 ppm As). In the soil profile represents the most important transformation form applied arsenate.

  18. Modulating factors in the expression of radiation-induced oncogenic transformation

    International Nuclear Information System (INIS)

    Hall, E.J.; Hei, T.K.

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitaive are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing α-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene

  19. Malignant Progression in Two Children with Multiple Osteochondromas

    Directory of Open Access Journals (Sweden)

    Gregory A. Schmale

    2010-01-01

    Full Text Available Multiple Osteochondromas (MO is a disease of benign bony growths with a low incidence of malignant transformation. Secondary chondrosarcoma in children is rare even in children with MO. Making a diagnosis of malignancy in low-grade cartilage tumors is challenging and requires consideration of clinical, radiographic, and histopathological factors. We report two cases of skeletally immature patients with MO who presented with rapidly enlarging and radiographically aggressive lesions consistent with malignant transformation. Both underwent allograft reconstruction of the involved site with no signs of recurrence or metastatic disease at a minimum of four-year follow-up.

  20. Metastatic mediastinal mature teratoma with malignant transformation in a young man with an adenocarcinoma in a Klinefelter's syndrome: Case report and review of the literature.

    Science.gov (United States)

    Le Fèvre, C; Vigneron, C; Schuster, H; Walter, A; Marcellin, L; Massard, G; Lutz, P; Noël, G

    2018-05-01

    Malignant transformation of mediastinal mature teratoma is extremely rare and worsens the prognosis of the disease. Transformation can appear synchronously to or several years after the initial diagnosis. Clinical and radiological signs can orientate the clinician but the definitive diagnosis is obtained thanks to histology. An 11 year-old boy presented with a mediastinal mature teratoma and bone and pulmonary metastases. He received six cycles of chemotherapy combining etoposide, ifosfamide, cisplatin, followed by resection of a 16×14×9cm mediastinal mass. Karyotype analysis revealed the presence of an additional sex chromosome X (47 XXY) pathognomonic of Klinefelter's syndrome. Ten years later, sciatalgia revealed malignant transformation of a pre-existing sacral bone metastasis into gastrointestinal adenocarcinoma. The patient received four cycles of chemotherapy combining oxaliplatin, 5-fluorouracil and cetuximab. This treatment was followed by a complete resection of the sacral metastasis and completed with adjuvant irradiation of 54Gy in 30 daily fractions. Twelve months after the diagnosis of relapse, the patient remained alive without disease. To our knowledge, this is the first case of adenocarcinoma developed in bone metastases of a mediastinal mature teratoma in a boy with a Klinefelter's syndrome. We propose a review of the literature and an analysis of 20 others published cases of mediastinal teratoma with malignant transformation into adenocarcinoma. Copyright © 2018 Société française de radiothérapie oncologique (SFRO). Published by Elsevier Masson SAS. All rights reserved.

  1. Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption

    Science.gov (United States)

    Haider, A. F. M. Y.; Hedayet Ullah, M.; Khan, Z. H.; Kabir, Firoza; Abedin, K. M.

    2014-03-01

    LIBS technique coupled with adsorption has been applied for the efficient detection of arsenic in liquid. Several adsorbents like tea leaves, bamboo slice, charcoal and zinc oxide have been used to enable sensitive detection of arsenic presence in water using LIBS. Among these, zinc oxide and charcoal show the better results. The detection limits for arsenic in water were 1 ppm and 8 ppm, respectively, when ZnO and charcoal were used as adsorbents of arsenic. To date, the determination of 1 ppm of As in water is the lowest concentration of detected arsenic in water by the LIBS technique. The detection limit of As was lowered to even less than 100 ppb by a combination of LIBS technique, adsorption by ZnO and concentration enhancement technique. Using the combination of these three techniques the ultimate concentration of arsenic was found to be 0.083 ppm (83 ppb) for arsenic polluted water collected from a tube-well of Farajikandi union (longitude 90.64°, latitude 23.338° north) of Matlab Upozila of Chandpur district in Bangladesh. This result compares fairly well with the finding of arsenic concentration of 0.078 ppm in the sample by the AAS technique at the Bangladesh Council of Scientific and Industrial Research (BCSIR) lab. Such a low detection limit (1 ppm) of trace elements in liquid matrix has significantly enhanced the scope of LIBS as an analytical tool.

  2. Associations between toenail arsenic concentration and dietary factors in a New Hampshire population

    Directory of Open Access Journals (Sweden)

    Gruber Joann F

    2012-06-01

    Full Text Available Abstract Background Dietary factors such as folate, vitamin B12, protein, and methionine are important for the excretion of arsenic via one-carbon metabolism in undernourished populations exposed to high levels of arsenic via drinking water. However, the effects of dietary factors on toenail arsenic concentrations in well-nourished populations exposed to relatively low levels of water arsenic are unknown. Methods As part of a population-based case–control study of skin and bladder cancer from the USA, we evaluated relationships between consumption of dietary factors and arsenic concentrations in toenail clippings. Consumption of each dietary factor was determined from a validated food frequency questionnaire. We used general linear models to examine the associations between toenail arsenic and each dietary factor, taking into account potentially confounding effects. Results As expected, we found an inverse association between ln-transformed toenail arsenic and consumption of vitamin B12 (excluding supplements and animal protein. Unexpectedly, there were also inverse associations with numerous dietary lipids (e.g., total fat, total animal fat, total vegetable fat, total monounsaturated fat, total polyunsaturated fat, and total saturated fat. Finally, increased toenail arsenic concentrations were associated with increased consumption of long chain n-3 fatty acids. Conclusion In a relatively well-nourished population exposed to relatively low levels of arsenic via water, consumption of certain dietary lipids may decrease toenail arsenic concentration, while long chain n-3 fatty acids may increase toenail arsenic concentration, possibly due to their association with arsenolipids in fish tissue.

  3. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    Science.gov (United States)

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years.

  4. Dysregulation of mitotic machinery genes precedes genome instability during spontaneous pre-malignant transformation of mouse ovarian surface epithelial cells

    Directory of Open Access Journals (Sweden)

    Ulises Urzúa

    2016-10-01

    Full Text Available Abstract Background Based in epidemiological evidence, repetitive ovulation has been proposed to play a role in the origin of ovarian cancer by inducing an aberrant wound rupture-repair process of the ovarian surface epithelium (OSE. Accordingly, long term cultures of isolated OSE cells undergo in vitro spontaneous transformation thus developing tumorigenic capacity upon extensive subcultivation. In this work, C57BL/6 mouse OSE (MOSE cells were cultured up to passage 28 and their RNA and DNA copy number profiles obtained at passages 2, 5, 7, 10, 14, 18, 23, 25 and 28 by means of DNA microarrays. Gene ontology, pathway and network analyses were focused in passages earlier than 20, which is a hallmark of malignancy in this model. Results At passage 14, 101 genes were up-regulated in absence of significant DNA copy number changes. Among these, the top-3 enriched functions (>30 fold, adj p < 0.05 comprised 7 genes coding for centralspindlin, chromosome passenger and minichromosome maintenance protein complexes. The genes Ccnb1 (Cyclin B1, Birc5 (Survivin, Nusap1 and Kif23 were the most recurrent in over a dozen GO terms related to the mitotic process. On the other hand, Pten plus the large non-coding RNAs Malat1 and Neat1 were among the 80 down-regulated genes with mRNA processing, nuclear bodies, ER-stress response and tumor suppression as relevant terms. Interestingly, the earliest discrete segmental aneuploidies arose by passage 18 in chromosomes 7, 10, 11, 13, 15, 17 and 19. By passage 23, when MOSE cells express the malignant phenotype, the dysregulated gene expression repertoire expanded, DNA imbalances enlarged in size and covered additional loci. Conclusion Prior to early aneuploidies, overexpression of genes coding for the mitotic apparatus in passage-14 pre-malignant MOSE cells indicate an increased proliferation rate suggestive of replicative stress. Concomitant down-regulation of nuclear bodies and RNA processing related genes

  5. Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood

    Energy Technology Data Exchange (ETDEWEB)

    Ameer, Syeda Shegufta [Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Engström, Karin [Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm (Sweden); Hossain, Mohammad Bakhtiar [Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Lund (Sweden); Concha, Gabriela [Science Department, Risk Benefit Assessment Unit, National Food Agency, Uppsala (Sweden); Vahter, Marie [Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm (Sweden); Broberg, Karin, E-mail: Karin.broberg@ki.se [Institute of Environmental Medicine, Unit of Metals & Health, Karolinska Institutet, Stockholm (Sweden)

    2017-04-15

    Background: Exposure to inorganic arsenic increases the risk of cancer and non-malignant diseases. Inefficient arsenic metabolism is a marker for susceptibility to arsenic toxicity. Arsenic may alter gene expression, possibly by altering DNA methylation. Objectives: To elucidate the associations between arsenic exposure, gene expression, and DNA methylation in peripheral blood, and the modifying effects of arsenic metabolism. Methods: The study participants, women from the Andes, Argentina, were exposed to arsenic via drinking water. Arsenic exposure was assessed as the sum of arsenic metabolites in urine (U-As), using high performance liquid-chromatography hydride-generation inductively-coupled-plasma-mass-spectrometry, and arsenic metabolism efficiency was assessed by the urinary fractions (%) of the individual metabolites. Genome-wide gene expression (N = 80 women) and DNA methylation (N = 93; 80 overlapping with gene expression) in peripheral blood were measured using Illumina DirectHyb HumanHT-12 v4.0 and Infinium Human-Methylation 450K BeadChip, respectively. Results: U-As concentrations, ranging 10–1251 μg/L, was associated with decreased gene expression: 64% of the top 1000 differentially expressed genes were down-regulated with increasing U-As. U-As was also associated with hypermethylation: 87% of the top 1000 CpGs were hypermethylated with increasing U-As. The expression of six genes and six individual CpG sites were significantly associated with increased U-As concentration. Pathway analyses revealed enrichment of genes related to cell death and cancer. The pathways differed somewhat depending on arsenic metabolism efficiency. We found no overlap between arsenic-related gene expression and DNA methylation for individual genes. Conclusions: Increased arsenic exposure was associated with lower gene expression and hypermethylation in peripheral blood, but with no evident overlap. - Highlights: • Women exposed to inorganic arsenic were studied for

  6. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera México.

    Science.gov (United States)

    Parga, Jose R; Cocke, David L; Valenzuela, Jesus L; Gomes, Jewel A; Kesmez, Mehmet; Irwin, George; Moreno, Hector; Weir, Michael

    2005-09-30

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern México, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of México (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Mössbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study.

  7. Arsenic and diabetes and hypertension in human populations: A review

    International Nuclear Information System (INIS)

    Chen, C.-J.; Wang, S.-L.; Chiou, J.-M.; Tseng, C.-H.; Chiou, H.-Y.; Hsueh, Y.-M.; Chen, S.-Y.; Wu, M.-M.; Lai, M.-S.

    2007-01-01

    Long-term exposure to ingested arsenic from drinking water has been well documented to be associated with an increased risk of diabetes mellitus and hypertension in a dose-response relationship among residents of arseniasis-endemic areas in southwestern Taiwan and Bangladesh. An increased risk of self-reported hypertension but not diabetes was reported in a community-based study of residents who consumed drinking water with a low level of arsenic. Increased glycosylated hemoglobin level and systolic blood pressure were observed in workers occupationally exposed to arsenic. Inconsistent findings of arsenic and diabetes in occupational studies may result from the healthy worker effect and the variation in exposure measurement, age composition, number of patients, accuracy in diagnosis and classification of underlying causes of death, competing causes of death, and method to detect diabetes. The dose-response relationship and toxicological mechanisms of arsenic-induced diabetes and hypertension need further elucidation

  8. Src Induces Podoplanin Expression to Promote Cell Migration*

    Science.gov (United States)

    Shen, Yongquan; Chen, Chen-Shan; Ichikawa, Hitoshi; Goldberg, Gary S.

    2010-01-01

    Nontransformed cells can force tumor cells to assume a normal morphology and phenotype by the process of contact normalization. Transformed cells must escape this process to become invasive and malignant. However, mechanisms underlying contact normalization have not been elucidated. Here, we have identified genes that are affected by contact normalization of Src-transformed cells. Tumor cells must migrate to become invasive and malignant. Src must phosphorylate the adaptor protein Cas (Crk-associated substrate) to promote tumor cell motility. We report here that Src utilizes Cas to induce podoplanin (Pdpn) expression to promote tumor cell migration. Pdpn is a membrane-bound extracellular glycoprotein that associates with endogenous ligands to promote tumor cell migration leading to cancer invasion and metastasis. In fact, Pdpn expression accounted for a major part of the increased migration seen in Src-transformed cells. Moreover, nontransformed cells suppressed Pdpn expression in adjacent Src-transformed cells. Of >39,000 genes, Pdpn was one of only 23 genes found to be induced by transforming Src activity and suppressed by contact normalization of Src-transformed cells. In addition, we found 16 genes suppressed by Src and induced by contact normalization. These genes encode growth factor receptors, adaptor proteins, and products that have not yet been annotated and may play important roles in tumor cell growth and migration. PMID:20123990

  9. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  10. Blood Pressure Associated with Arsenic Methylation and Arsenic Metabolism Caused by Chronic Exposure to Arsenic in Tube Well Water.

    Science.gov (United States)

    Wei, Bing Gan; Ye, Bi Xiong; Yu, Jiang Ping; Yang, Lin Sheng; Li, Hai Rong; Xia, Ya Juan; Wu, Ke Gong

    2017-05-01

    The effects of arsenic exposure from drinking water, arsenic metabolism, and arsenic methylation on blood pressure (BP) were observed in this study. The BP and arsenic species of 560 participants were determined. Logistic regression analysis was applied to estimate the odds ratios of BP associated with arsenic metabolites and arsenic methylation capability. BP was positively associated with cumulative arsenic exposure (CAE). Subjects with abnormal diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) usually had higher urinary iAs (inorganic arsenic), MMA (monomethylated arsenic), DMA (dimethylated arsenic), and TAs (total arsenic) than subjects with normal DBP, SBP, and PP. The iAs%, MMA%, and DMA% differed slightly between subjects with abnormal BP and those with normal BP. The PMI and SMI were slightly higher in subjects with abnormal PP than in those with normal PP. Our findings suggest that higher CAE may elevate BP. Males may have a higher risk of abnormal DBP, whereas females have a higher risk of abnormal SBP and PP. Higher urinary iAs may increase the risk of abnormal BP. Lower PMI may elevate the BP. However, higher SMI may increase the DBP and SBP, and lower SMI may elevate the PP. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  11. Deep-Red Fluorescent Gold Nanoclusters for Nucleoli Staining: Real-Time Monitoring of the Nucleolar Dynamics in Reverse Transformation of Malignant Cells.

    Science.gov (United States)

    Wang, Xiaojuan; Wang, Yanan; He, Hua; Ma, Xiqi; Chen, Qi; Zhang, Shuai; Ge, Baosheng; Wang, Shengjie; Nau, Werner M; Huang, Fang

    2017-05-31

    Nucleoli are important subnuclear structures inside cells. We report novel fluorescent gold nanoclusters (K-AuNCs) that are able to stain the nucleoli selectively and make it possible to explore the nucleolar morphology with fluorescence imaging technique. This novel probe is prepared through an easy synthesis method by employing a tripeptide (Lys-Cys-Lys) as the surface ligand. The properties, including deep-red fluorescence emission (680 nm), large Stocks shift, broad excitation band, low cytotoxicity, and good photostability, endow this probe with potential for bioanalytical applications. Because of their small size and their positively charged surface, K-AuNCs are able to accumulate efficiently at the nucleolar regions and provide precise morphological information. K-AuNCs are also used to monitor the nucleolar dynamics along the reverse-transformation process of malignant cells, induced by the agonist of protein A, 8-chloro-cyclic adenosine monophosphate. This gives a novel approach for investigating the working mechanism of antitumor drugs.

  12. Proteomics-based investigation of multiple stages of OSCC development indicates that the inhibition of Trx-1 delays oral malignant transformation.

    Science.gov (United States)

    Chen, Xijuan; Hu, Qinchao; Wu, Tong; Wang, Chunyang; Xia, Juan; Yang, Linglan; Cheng, Bin; Chen, Xiaobing

    2018-03-01

    The majority of cases of oral squamous cell carcinoma (OSCC) develop from oral potentially malignant disorders, which have been confirmed to be involved in chronic oxidative stimulation. However, no effective treatment approaches have been used to prevent the development of dysplasia into cancerous lesions thus far. In the present study, a well-established OSCC model was used to detect proteomics profiles at different stages during oral malignant transformation. Of the 15 proteins that were found to be upregulated in both the dysplasia and carcinoma stages, the oxidative stress-associated proteins, thioredoxin-1 (Trx-1), glutaredoxin-1 and peroxiredoxin-2 were note as the proteins with significant changes in expression Trx-1 was identified to be the most significantly upregulated protein in the precancerous stage. Validation experiments confirmed that Trx-1 was overexpressed both in dysplasia and cancerous tissue samples, and the inhibition of Trx-1 was able to promote the apoptosis of OSCC cells under hypoxic conditions. Furthermore, the experimental application of a Trx-1-specific inhibitory agent in an animal model led to a lower cancerization rate and a delay in tumor formation. The possible mechanisms were associated with the increased apoptosis via a reactive oxygen species (ROS)-dependent pathway. Taken together, our findings indicate that Trx-1 may be an important target for delaying oral malignant transformation, which provides a novel therapeutic strategy for the prevention and treatment of OSCC.

  13. Arsenic induced clinico-hemato-pathological alterations in broilers and its attenuation by vitamin e and selenium

    International Nuclear Information System (INIS)

    Mashkoor, J.; Khan, A.; Khan, M.Z.; Saleemi, M.K.; Mahmood, F.

    2012-01-01

    Present study was carried out to know the arsenic (As) induced toxico-pathological alterations in broiler chicks and their attenuation with vitamin E (Vit E) and selenium (Se). A total of 90 day-old broiler chicks were equally distributed into 5 groups. Groups 1-4 were administered As at 50 mg/kg BW daily through feed for 30 days. In addition to A , groups 2 to 4 received Vitamin E at 150 mg/kg BW, selenium at 0.25 mg/kg BW and Vitamin E plus selenium, respectively. Group 5 (Control) received normal drinking water for 30 days. Dullness, depression, open mouth breathing, increased thirst; ruffled feathers, pale comb, skin irritation and watery diarrhea were the most striking clinical signs. The body weight and feed intake was significantly decreased in treated birds. The erythrocyte counts, hemoglobin concentration and packed cell volume decreased (P<0.05) in treated broilers with As or As with Se and Vit E. Grossly pale and hemorrhagic liver and swollen kidneys were observed in As treated birds. Arsenic treated groups showed significant decrease in serum. Histopathologically, liver exhibited congestion and cytoplasmic vacuolation. In kidneys, condensation of tubular epithelium nuclei, epithelial cell necrosis, increased urinary spaces, sloughing of tubules from basement membrane and cast deposition were observed. In conclusion As induced toxico-pathological alterations and vitamin E and selenium partially ameliorate the toxic effects in broilers chicks. (author)

  14. Champagne Pool (New Zealand) Thermophiles Yield Insights into the Evolution of Microbial Arsenic Resistance

    Science.gov (United States)

    Hug, K.; Krikowa, F.; Morgan, X.; Maher, W. A.; Stott, M. B.; Moreau, J. W.

    2011-12-01

    Arsenic is a highly toxic metalloid typically enriched in geothermal waters due to aqueous weathering of arsenic-bearing minerals. Investigation of enzymatic pathways by which thermophilic microorganisms cope with toxic arsenic levels may yield insights into the evolution of arsenic resistance mechanisms on the early Earth. At Wai-O-Tapu in the Taupo Volcanic Zone on the North Island of New Zealand, hot springs with temperatures of 30-90°C and elemental sulfur concentrations (expressed as equivalent sulfate) from 340 to 850 mg/l establish a range of environmental conditions. Total arsenic concentrations varied from 0.083 mg/l to 56 mg/l. Arsenic speciation analysis elucidated various biogeochemical arsenic transformations occurring within different springs. For example, in the Alum Cliff spring oxidizing conditions (Eh = 225 mV) were expected to stabilize dissolved arsenate (AsO43-). However, HPLC-ICPMS analyses yielded dissolved arsenate and arsenite (AsO33-) concentrations of 0.25 mg/l versus 43.3 mg/l, respectively, and point towards microbial arsenate reduction as the likely mechanism for arsenic redox transformation. 16S rRNA gene cloning of Alum Cliff DNA showed a predominantly archaeal population with the dominant clone "AC1_A1" most closely related (99% sequence similarity, NCBI BLAST°) to the uncultured Sulfolobus clone "ChP_97P" found in Champagne Pool (Childs et al., 2008). The closest isolated relative to AC1_A1 is Sulfolobus tokodaii str. TW with a sequence similarity of 94%. Arsenic speciation measurements from the Alum Cliff spring suggest that clone AC1_A1 features the arsenate reduction resistance mechanism, and we hypothesize therefore that an arsC (homolog or analog) provides this functionality. The organic arsenic species monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), detected via HPLC-ICPMS at concentrations ranging from 1 μg/l to 12 μg/l in various springs, may also implicate microbial methyl-group transfers as an active

  15. Protection of power transformers against geomagnetically induced currents

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2011-01-01

    Full Text Available The article examines the problem of saturation and failure of power transformers under geomagnetically induced currents and currents of the E3 component of high-altitude nuclear explosions. It also describes a special protective relay reacting on DC component in the transformer neutral current.

  16. HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell.

    Science.gov (United States)

    Olivero, Carlotta; Lanfredini, Simone; Borgogna, Cinzia; Gariglio, Marisa; Patel, Girish K

    2018-01-01

    Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.

  17. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Zheng, B.S.; Aposhian, H.V.; Zhou, Y.S.; Chen, M.L.; Zhang, A.H.; Waalkes, M.P. [NIEHS, Research Triangle Park, NC (USA)

    2002-07-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China was investigated. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such over exposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  18. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q

    2004-10-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  19. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q.

    2004-01-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  20. Influence des transformations minéralogiques sur la mobilité de l'arsenic dans les milieux anoxiques - Application au cas des eaux souterraines du delta du Bengale

    OpenAIRE

    Burnol , André

    2009-01-01

    Natural wide-scale poisoning is today affecting the populations that rely on drinking water from aquifers of the Bengal delta. The aim of this thesis is therefore to obtain a better understanding of arsenic mobility within these aquifers by describing, based on the study site at Chakdaha in West Bengal (India), interactions between the mineralogical transformations and the microbial processes. The interactions between iron-reducing or sulfate-reducing bacteria and As-doped ferrihydrite were s...

  1. Origin of malignant tumors of the upper respiratory and digestive tracts and the ear. Pt. 4. Malignant tumors caused by irradiation. B. Special part

    Energy Technology Data Exchange (ETDEWEB)

    Leicher, H [Mainz Univ. (Germany, F.R.). Hals-, Nasen- und Ohrenklinik

    1979-12-01

    The problem of radiation induced tumors is explained in detail in the following chapters: 1. Malignant tumors in dial painters using luminous paint, 2. Malignant tumors after injection of Thorotrast, 3. Bronchial tumors in Uran-mineworkers, 4. Malignant tumors caused by radium-compresses and radium-moulages, 5. Thyroid cancer caused by irradiation, 6. Leukemia and malignant tumors following the atomic bomb detonation in Hiroshima and Nakasaki, 7. Malignant tumors in Lupus vulgaris, 8. Development of malignant tumors following the irradiation of praecancerous alterations, of benign tumors and other benign changes in head and neck, 9. Radiation induced soft-tissue and bone sarcoma in the skull, 10. Radiation-induced cancers in hypopharynx diverticula, 11. Radiation-induced cancers in the antethoracic skin graft esophagus, 12. Radiation-induced second-tumors, 13. Cancer caused by ultraviolet rays, 14. Increase of hematogenic metastases by irradiation. 15. Malignant tumors caused by irradiation of the fetus in utero.

  2. Effect of LET and microdistribution of radiation on the transformation in vitro and in vivo

    International Nuclear Information System (INIS)

    Little, J.B.

    1983-01-01

    The objective is to learn more about the mechanisms which determine the carcinogenic effects of ionizing radiation, particularly as they relate to high LET radiation exposure. The approach is an in vitro one, involving the study of malignant transformation and the induction of specific gene mutations in mammalian cells. The study was focused on the basic characteristics of alpha radiation transformation in vitro. A particular goal was to evaluate the relative effectiveness of focal vs diffuse irradiation in the induction of transformation. More emphasis was placed on the study of mechanisms of radiation carcinogenesis by studying the events evolved in the process of radiation-induced malignant transformation. This included an investigation of the effects of non-carcinogenic secondary factors and promoting agents on radiation transformation in vitro. We also propose at this time to initiate the studies of the effects of Auger electron-emitting radionuclides as another approach to the examination of the role of the distribution of radiant energy within cells and tissues

  3. Effect of LET and microdistribution of radiation on the transformation in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.B.

    1983-09-01

    The objective is to learn more about the mechanisms which determine the carcinogenic effects of ionizing radiation, particularly as they relate to high LET radiation exposure. The approach is an in vitro one, involving the study of malignant transformation and the induction of specific gene mutations in mammalian cells. The study was focused on the basic characteristics of alpha radiation transformation in vitro. A particular goal was to evaluate the relative effectiveness of focal vs diffuse irradiation in the induction of transformation. More emphasis was placed on the study of mechanisms of radiation carcinogenesis by studying the events evolved in the process of radiation-induced malignant transformation. This included an investigation of the effects of non-carcinogenic secondary factors and promoting agents on radiation transformation in vitro. We also propose at this time to initiate the studies of the effects of Auger electron-emitting radionuclides as another approach to the examination of the role of the distribution of radiant energy within cells and tissues.

  4. Dose-effect relationships for malignancy in cells with different genetic characteristics

    International Nuclear Information System (INIS)

    Chadwick, K.H.; Leenhouts, H.P.

    1978-01-01

    By combining the proposals that malignancy behaves as a recessive genetic character, that a somatic mutation is an important step in the development of cancer, and that radiation-induced DNA double-strand breaks are the critical lesions which may lead to cell death, mutation and chromosomal aberrations, considerations can be made and equations derived for the incidence of malignancy in cells having different genotypes. Equations are derived for diploid carrier cells and tetraploid carrier cells, and are compared with data in literature on cell transformation. It is shown that some differences in experimental results could be due to the different genetic character of the cells used. The theoretical considerations are extended to the population which is considered to be constituted of 'carriers' and 'non-carriers' of the recessive malignant genotype. The possible influence of radiation on 'non-carriers' is discussed as are the implications of the presence of two groups within the population for the estimation of risk to low doses of radiation. (author)

  5. Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Tang, C.-H.; Chiu, Y.-C.; Huang, C.-F.; Chen, Y.-W.; Chen, P.-C.

    2009-01-01

    Osteoporosis is characterized by low bone mass resulting from an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Therefore, decreased bone formation by osteoblasts may lead to the development of osteoporosis, and rate of apoptosis is responsible for the regulation of bone formation. Arsenic (As) exists ubiquitously in our environment and increases the risk of neurotoxicity, liver injury, peripheral vascular disease and cancer. However, the effect of As on apoptosis of osteoblasts is mostly unknown. Here, we found that As induced cell apoptosis in osteoblastic cell lines (including hFOB, MC3T3-E1 and MG-63) and mouse bone marrow stromal cells (M2-10B4). As also induced upregulation of Bax and Bak, downregulation of Bcl-2 and dysfunction of mitochondria in osteoblasts. As also triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosolic-calcium levels. We found that As increased the expression and activities of glucose-regulated protein 78 (GRP78) and calpain. Transfection of cells with GRP78 or calpain siRNA reduced As-mediated cell apoptosis in osteoblasts. Therefore, our results suggest that As increased cell apoptosis in cultured osteoblasts and increased the risk of osteoporosis.

  6. Thorium coprecipitation method for spectrophotometric determination of arsenic (III) and arsenic (V) in groundwaters

    International Nuclear Information System (INIS)

    Tamari, Yuzo; Yamamoto, Nobuki; Tsuji, Haruo; Kusaka, Yuzuru

    1989-01-01

    A new coprecipitation method for the spectrophotometry of arsenic (III) and arsenic (V) in groundwater has been developed. Arsenic (III) and arsenic (V) were coprecipitated with thorium (IV) hydroxide from 1000ml of groundwater at pH9. The precipitate was centrifuged and then dissolved with hydrochloric acid. Arsenic (III) was spectrophotometrically determined by the usual silver diethylditiocarbamate (Ag-DDTC) method after generating the arsenic to arsine with sodium tetrahydroborate under masking the thorium with EDTA-NaF at pH6. From another portion of the same groundwater, both arsenic (III) and arsenic (V) were determined by the Ag-DDTC method after reducing all the arsenic to arsine with sodium tetrahydroborate at pH less than 1 in the presence of the EDTA-NaF. The concentration of arsenic (V) was obtained by subtracting that of arsenic (III) from the total for arsenic. (author)

  7. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    Science.gov (United States)

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  8. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Science.gov (United States)

    Malakar, Pradyut; Jana, Bana Bihari; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas. PMID:28974053

  9. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.

    Science.gov (United States)

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-10-02

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus ® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  10. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Directory of Open Access Journals (Sweden)

    Philipp Otter

    2017-10-01

    Full Text Available Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L, iron (5.5 ± 0.8 mg/L, manganese (1.5 ± 0.4 mg/L, phosphate (2.4 ± 1.3 mg/L and ammonium (1.4 ± 0.5 mg/L concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L, >99% for iron (0.03 ± 0.03 mg/L, 96% for manganese (0.06 ± 0.05 mg/L, 72% for phosphate (0.7 ± 0.3 mg/L and 84% for ammonium (0.18 ± 0.12 mg/L were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  11. THE ROLE OF VALENCE AND METHYLATION STATE ON THE ACTIVITY OF ARSENIC DURING MITOSIS

    Science.gov (United States)

    Trivalent methylated arsenicals are much more potent DNA damaging agents, clastogens, and large deletion mutagens than are their inorganic and pentavalent counterparts. Previously we had noticed that many of the arsenicals induced "c-type" anaphases characteristic of spindle pois...

  12. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

    NARCIS (Netherlands)

    Tjahjanto, D.D.; Turteltaub, S.; Suiker, A.S.J.

    2007-01-01

    The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the

  13. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels

    NARCIS (Netherlands)

    Tjahjanto, D.D.; Turteltaub, S.R.; Suiker, A.S.J.

    2008-01-01

    The microstructure of multiphase steels assisted by transformation-induced plasticity consists of grains of retained austenite embedded in a ferrite-based matrix. Upon mechanical loading, retained austenite may transform into martensite, as a result of which plastic deformations are induced in the

  14. In Vivo and In Vitro Arsenic Exposition Induces Oxidative Stress in Anterior Pituitary Gland.

    Science.gov (United States)

    Ronchetti, Sonia A; Bianchi, María S; Duvilanski, Beatriz H; Cabilla, Jimena P

    2016-07-01

    Inorganic arsenic (iAs) is at the top of toxic metalloids. Inorganic arsenic-contaminated water consumption is one of the greatest environmental health threats worldwide. Human iAs exposure has been associated with cancers of several organs, neurological disorders, and reproductive problems. Nevertheless, there are no reports describing how iAs affects the anterior pituitary gland. The aim of this study was to investigate the mechanisms involved in iAs-mediated anterior pituitary toxicity both in vivo and in vitro. We showed that iAs administration (from 5 to 100 ppm) to male rats through drinking water increased messenger RNA expression of several oxidative stress-responsive genes in the anterior pituitary gland. Serum prolactin levels diminished, whereas luteinizing hormone (LH) levels were only affected at the higher dose tested. In anterior pituitary cells in culture, 25 µmol/L iAs significantly decreased prolactin release in a time-dependent fashion, whereas LH levels remained unaltered. Cell viability was significantly reduced mainly by apoptosis evidenced by morphological and phosphatidylserine externalization studies. This process is characterized by early depolarization of mitochondrial membrane potential and increased levels of reactive oxygen species. Expression of some key oxidative stress-responsive genes, such as heme oxygenase-1 and metallothionein-1, was also stimulated by iAs exposure. The antioxidant N-acetyl cysteine prevented iAs-induced effects on the expression of oxidative stress markers, prolactin release, and apoptosis. In summary, the present work demonstrates for the first time that iAs reduces prolactin release both in vivo and in vitro and induces apoptosis in anterior pituitary cells, possibly resulting from imbalanced cellular redox status. © The Author(s) 2016.

  15. Influence of plastic strain on deformation-induced martensitic transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Groen, M.

    2008-01-01

    The effects of plastic strain on deformation-induced martensitic transformations have been investigated experimentally. Austenitic metastable stainless steel samples were heated to a temperature at which the transformation is suppressed and were plastically strained to different amounts. The

  16. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage

    International Nuclear Information System (INIS)

    Yang, Bei; Fu, Jingqi; Zheng, Hongzhi; Xue, Peng; Yarborough, Kathy; Woods, Courtney G.; Hou, Yongyong; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2012-01-01

    Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs 3+ ) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA and pancreatic islets isolated from Nrf2-knockout (Nrf2−/−) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs 3+ exposure. As a result, Nrf2-KD MIN6 cells and Nrf2−/− islets were more susceptible to iAs 3+ and monomethylarsonous acid (MMA 3+ )-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs 3+ -induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N‐acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs 3+ . The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure. -- Highlights: ► Lack of Nrf2 reduced expression of antioxidant genes induced by iAs 3+ in β-cells. ► Deficiency of Nrf2 in β-cells sensitized to iAs 3+ and MMA 3

  17. Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bei [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang 110001 (China); Fu, Jingqi; Zheng, Hongzhi; Xue, Peng; Yarborough, Kathy; Woods, Courtney G.; Hou, Yongyong; Zhang, Qiang; Andersen, Melvin E. [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709 (United States)

    2012-11-01

    Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs{sup 3+}) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA and pancreatic islets isolated from Nrf2-knockout (Nrf2−/−) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs{sup 3+} exposure. As a result, Nrf2-KD MIN6 cells and Nrf2−/− islets were more susceptible to iAs{sup 3+} and monomethylarsonous acid (MMA{sup 3+})-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs{sup 3+}-induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N‐acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs{sup 3+}. The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure. -- Highlights: ► Lack of Nrf2 reduced expression of antioxidant genes induced by iAs{sup 3+} in β-cells. ► Deficiency of Nrf2 in

  18. Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae.

    Science.gov (United States)

    Magellan, Kit; Barral-Fraga, Laura; Rovira, Marona; Srean, Pao; Urrea, Gemma; García-Berthou, Emili; Guasch, Helena

    2014-11-01

    Arsenic contamination has global impacts and freshwaters are major arsenic repositories. Arsenic toxicity depends on numerous interacting factors which makes effects difficult to estimate. The use of aquatic algae is often advocated for bioremediation of arsenic contaminated waters as they absorb arsenate and transform it into arsenite and methylated chemical species. Fish are another key constituent of aquatic ecosystems. Contamination in natural systems is often too low to cause mortality but sufficient to interfere with normal functioning. Alteration of complex, naturally occurring fish behaviours such as foraging and aggression are ecologically relevant indicators of toxicity and ideal for assessing sublethal impacts. We examined the effects of arsenic exposure in the invasive mosquitofish, Gambusia holbrooki, in a laboratory experiment incorporating some of the complexity of natural systems by including the interacting effects of aquatic algae. Our aims were to quantify the effects of arsenic on some complex behaviours and physical parameters in mosquitofish, and to assess whether the detoxifying mechanisms of algae would ameliorate any effects of arsenic exposure. Aggression increased significantly with arsenic whereas operculum movement decreased non-significantly and neither food capture efficiency nor consumption were notably affected. Bioaccumulation increased with arsenic and unexpectedly so did fish biomass. Possibly increased aggression facilitated food resource defence allowing fish to gain weight. The presence of algae aggravated the effects of arsenic exposure. For increase in fish biomass, algae acted antagonistically with arsenic, resulting in a disadvantageous reduction in weight gained. For bioaccumulation the effects were even more severe, as algae operated additively with arsenic to increase arsenic uptake and/or assimilation. Aggression was also highest in the presence of both algae and arsenic. Bioremediation of arsenic contaminated waters

  19. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  20. Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, H.; Takahashi, K.; Mashiko, M.; Yamamura, Y. (St. Marianna Univ. School of Medicine, Kawasaki (Japan))

    1989-11-01

    In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.

  1. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1.

    Directory of Open Access Journals (Sweden)

    Karine Z Oben

    Full Text Available An understanding of how each individual 5q chromosome critical deleted region (CDR gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs. Early Growth Response 1 (EGR1 is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell quiescence as well as the master regulator of apoptosis-p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies.

  2. Arsenic in Food

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share ... of the Method used to Measure Arsenic in Foods Inductively Coupled Plasma-Mass Spectrometric Determination of Arsenic, ...

  3. Mobile phone base station radiation does not affect neoplastic transformation in BALB/3T3 cells.

    Science.gov (United States)

    Hirose, H; Suhara, T; Kaji, N; Sakuma, N; Sekijima, M; Nojima, T; Miyakoshi, J

    2008-01-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields affect malignant transformation or other cellular stress responses. Our group previously reported that DNA strand breaks were not induced in human cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA) radiation up to 800 mW/kg from mobile radio base stations employing the IMT-2000 cellular system. In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was assessed. In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields in a similar fashion, to assess for effects on tumor promotion. Finally, the effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). At the end of the incubation period, transformation dishes were fixed, stained with Giemsa, and scored for morphologically transformed foci. No significant differences in transformation frequency were observed between the test groups exposed to RF signals and the sham-exposed negative controls in the non-, MCA-, or MCA plus TPA-treated cells. Our studies found no evidence to support the hypothesis that RF fields may affect malignant transformation. Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes tumor formation. (c) 2007 Wiley-Liss, Inc.

  4. Malignant Transformation of an Odontogenic Cyst in a Period of 10 Years

    Directory of Open Access Journals (Sweden)

    Juliane Pirágine Araújo

    2014-01-01

    Full Text Available Primary intraosseous carcinoma of the jaws (PIOSCC might arise from odontogenic epithelium, more commonly from a previous odontogenic cyst. The aim of this case is to illustrate that the clinician should consider that an apparent benign dentigerous cyst can suffer malignant transformation and that all material removed from a patient must be evaluated histologically. A 44-year-old man presented in a routine periapical X-ray an impacted lower left third molar with radiolucency over its crown. Ten years later, the patient complained of pain in the same region and the tooth was extracted. After one month, the patient still complained of pain and suffered a fracture of the mandible. A biopsy was performed and carcinoma was diagnosed. The patient was treated surgically with adjuvant radio- and chemotherapy and after 8 years, he is well without signs of recurrences. This report describes a central mandibular carcinoma probably developed from a previous dentigerous cyst.

  5. MicroRNA profiling in Muc2 knockout mice of colitis-associated cancer model reveals epigenetic alterations during chronic colitis malignant transformation.

    Directory of Open Access Journals (Sweden)

    Yonghua Bao

    Full Text Available Our previous studies have demonstrated that genetic deletion of the Muc2 gene causes colorectal cancers in mice. The current study further showed that at the early stage (3 months the mice exhibited colorectal cancer, including a unique phenotype of rectal prolapsed (rectal severe inflammation and adenocarcinoma. Thus, the age of 3 months might be the key point of the transition from chronic inflammation to cancer. To determine the mechanisms of the malignant transformation, we conducted miRNA array on the colonic epithelial cells from the 3-month Muc2-/- and +/+ mice. MicroRNA profiling showed differential expression of miRNAs (i.e. lower or higher expression enrichments in Muc2-/- mice. 15 of them were validated by quantitative PCR. Based on relevance to cytokine and cancer, 4 miRNAs (miR-138, miR-145, miR-146a, and miR-150 were validate and were found significantly downregulated in human colitis and colorectal cancer tissues. The network of the targets of these miRNAs was characterized, and interestedly, miRNA-associated cytokines were significantly increased in Muc2-/-mice. This is the first to reveal the importance of aberrant expression of miRNAs in dynamically transformation from chronic colitis to colitis-associated cancer. These findings shed light on revealing the mechanisms of chronic colitis malignant transformation.

  6. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xi; Wu, Jianguo; Choiniere, Jonathan [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Yang, Zhihong [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516 (United States); Huang, Yi [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Bennett, Jason [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Wang, Li, E-mail: li.wang@uconn.edu [Department of Physiology and Neurobiology and The Institute for Systems Genomics, University of Connecticut, Storrs, CT 062696 (United States); Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516 (United States); School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520 (United States)

    2016-08-01

    It is well established that increased liver cancer incidence is strongly associated with epigenetic silencing of tumor suppressor genes; the latter is contributed by the environmental exposure to arsenic. Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial protein that regulates the TCA cycle. However, the epigenetic mechanisms mediated by arsenic to control PDK4 expression remain elusive. In the present study, we showed that histone methyltransferase G9a- and Suv39H-mediated histone H3 lysine 9 (H3K9) methylations contributed to PDK4 silencing in hepatic cells. The PDK4 expression was induced by G9a inhibitor BRD4770 (BRD) and Suv39H inhibitor Chaetocin (CHA). In contrast, arsenic exposure decreased PDK4 expression by inducing G9a and increasing H3K9 di- and tri-methylations levels (H3K9me2/3). In addition, arsenic exposure antagonizes the effect of BRD by enhancing the enrichment of H3K9me2/3 in the PKD4 promoter. Moreover, knockdown of G9a using siRNA induced PDK4 expression in HCC cells. Furthermore, arsenic decreased hepatic PDK4 expression as well as diminished the induction of PDK4 by BRD in mouse liver and hepatocytes. Overall, the results suggest that arsenic causes aberrant repressive histone modification to silence PDK4 in both HCC cells and in mouse liver. - Graphical abstract: Schematic showing arsenic-mediated epigenetic pathway that inhibits PDK4 expression. (A) BRD induces PDK4 expression by decreasing G9a protein and histone H3K9me2 and H3K9me3 levels as well as diminishing their recruitment to the PDK4 promoter. (B) Arsenic counteracts the effect of BRD by increasing histone H3K9me2 and H3K9me3 levels as well as enhancing their enrichment to the PDK4 promoter. Display Omitted - Highlights: • Histone methyltrasferase G9a inhibitor BRD induces PDK4 expression. • Arsenic decreases PDK4 expression and increases H3K9me2 and me3 levels. • Arsenic enhances H3K9me2/me3 enrichment in the PDK4 promoter. • Arsenic antagonizes the activation of

  8. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a

    International Nuclear Information System (INIS)

    Zhang, Xi; Wu, Jianguo; Choiniere, Jonathan; Yang, Zhihong; Huang, Yi; Bennett, Jason; Wang, Li

    2016-01-01

    It is well established that increased liver cancer incidence is strongly associated with epigenetic silencing of tumor suppressor genes; the latter is contributed by the environmental exposure to arsenic. Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial protein that regulates the TCA cycle. However, the epigenetic mechanisms mediated by arsenic to control PDK4 expression remain elusive. In the present study, we showed that histone methyltransferase G9a- and Suv39H-mediated histone H3 lysine 9 (H3K9) methylations contributed to PDK4 silencing in hepatic cells. The PDK4 expression was induced by G9a inhibitor BRD4770 (BRD) and Suv39H inhibitor Chaetocin (CHA). In contrast, arsenic exposure decreased PDK4 expression by inducing G9a and increasing H3K9 di- and tri-methylations levels (H3K9me2/3). In addition, arsenic exposure antagonizes the effect of BRD by enhancing the enrichment of H3K9me2/3 in the PKD4 promoter. Moreover, knockdown of G9a using siRNA induced PDK4 expression in HCC cells. Furthermore, arsenic decreased hepatic PDK4 expression as well as diminished the induction of PDK4 by BRD in mouse liver and hepatocytes. Overall, the results suggest that arsenic causes aberrant repressive histone modification to silence PDK4 in both HCC cells and in mouse liver. - Graphical abstract: Schematic showing arsenic-mediated epigenetic pathway that inhibits PDK4 expression. (A) BRD induces PDK4 expression by decreasing G9a protein and histone H3K9me2 and H3K9me3 levels as well as diminishing their recruitment to the PDK4 promoter. (B) Arsenic counteracts the effect of BRD by increasing histone H3K9me2 and H3K9me3 levels as well as enhancing their enrichment to the PDK4 promoter. Display Omitted - Highlights: • Histone methyltrasferase G9a inhibitor BRD induces PDK4 expression. • Arsenic decreases PDK4 expression and increases H3K9me2 and me3 levels. • Arsenic enhances H3K9me2/me3 enrichment in the PDK4 promoter. • Arsenic antagonizes the activation of

  9. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    Science.gov (United States)

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  10. WRN-targeted therapy using inhibitors NSC 19630 and NSC 617145 induce apoptosis in HTLV-1-transformed adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    R. Moles

    2016-11-01

    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 infection is associated with adult T-cell leukemia/lymphoma (ATLL, a lymphoproliferative malignancy with a dismal prognosis and limited therapeutic options. Recent evidence shows that HTLV-1-transformed cells present defects in both DNA replication and DNA repair, suggesting that these cells might be particularly sensitive to treatment with a small helicase inhibitor. Because the “Werner syndrome ATP-dependent helicase” encoded by the WRN gene plays important roles in both cellular proliferation and DNA repair, we hypothesized that inhibition of WRN activity could be used as a new strategy to target ATLL cells. Methods Our analysis demonstrates an apoptotic effect induced by the WRN helicase inhibitor in HTLV-1-transformed cells in vitro and ATL-derived cell lines. Inhibition of cellular proliferation and induction of apoptosis were demonstrated with cell cycle analysis, XTT proliferation assay, clonogenic assay, annexin V staining, and measurement of mitochondrial transmembrane potential. Results Targeted inhibition of the WRN helicase induced cell cycle arrest and apoptosis in HTLV-1-transformed leukemia cells. Treatment with NSC 19630 (WRN inhibitor induces S-phase cell cycle arrest, disruption of the mitochondrial membrane potential, and decreased expression of anti-apoptotic factor Bcl-2. These events were associated with activation of caspase-3-dependent apoptosis in ATL cells. We identified some ATL cells, ATL-55T and LMY1, less sensitive to NSC 19630 but sensitive to another WRN inhibitor, NSC 617145. Conclusions WRN is essential for survival of ATL cells. Our studies suggest that targeting the WRN helicase with small inhibitors is a novel promising strategy to target HTLV-1-transformed ATL cells.

  11. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  12. Risk of radiation-induced malignancy with heterotopic ossification prophylaxis: a case-control analysis.

    Science.gov (United States)

    Sheybani, Arshin; TenNapel, Mindi J; Lack, William D; Clerkin, Patrick; Hyer, Daniel E; Sun, Wenqing; Jacobson, Geraldine M

    2014-07-01

    To determine the risk of radiation-induced malignancy after prophylactic treatment for heterotopic ossification (HO). A matched case-control study was conducted within a population-based cohort of 3489 patients treated either for acetabular fractures with acetabular open reduction internal fixation or who underwent total hip arthroplasty from 1990 to 2009. Record-linkage techniques identified patients who were diagnosed with a malignancy from our state health registry. Patients with a prior history of malignancy were excluded from the cohort. For each documented case of cancer, 2 controls were selected by stratified random sampling from the cohort that did not develop a malignancy. Matching factors were sex, age at time of hip treatment, and duration of follow-up. A total of 243 patients were diagnosed with a malignancy after hip treatment. Five patients were excluded owing to inadequate follow-up time in the corresponding control cohort. A cohort of 238 cases (control, 476 patients) was included. Mean follow-up was 10 years, 12 years in the control group. In the cancer cohort, 4% of patients had radiation therapy (RT), compared with 7% in the control group. Of the 9 patients diagnosed with cancer after RT, none occurred within the field. The mean latency period was 5.9 years in the patients who received RT and 6.6 years in the patients who did not. Median (range) age at time of cancer diagnosis in patients who received RT was 62 (43-75) years, compared with 70 (32-92) years in the non-RT patients. An ad hoc analysis was subsequently performed in all 2749 patients who were not matched and found neither an increased incidence of malignancy nor a difference in distribution of type of malignancy. We were unable to demonstrate an increased risk of malignancy in patients who were treated with RT for HO prophylaxis compared with those who were not. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Risk of Radiation-Induced Malignancy With Heterotopic Ossification Prophylaxis: A Case–Control Analysis

    International Nuclear Information System (INIS)

    Sheybani, Arshin; TenNapel, Mindi J.; Lack, William D.; Clerkin, Patrick; Hyer, Daniel E.; Sun, Wenqing; Jacobson, Geraldine M.

    2014-01-01

    Purpose: To determine the risk of radiation-induced malignancy after prophylactic treatment for heterotopic ossification (HO). Methods and Materials: A matched case–control study was conducted within a population-based cohort of 3489 patients treated either for acetabular fractures with acetabular open reduction internal fixation or who underwent total hip arthroplasty from 1990 to 2009. Record-linkage techniques identified patients who were diagnosed with a malignancy from our state health registry. Patients with a prior history of malignancy were excluded from the cohort. For each documented case of cancer, 2 controls were selected by stratified random sampling from the cohort that did not develop a malignancy. Matching factors were sex, age at time of hip treatment, and duration of follow-up. Results: A total of 243 patients were diagnosed with a malignancy after hip treatment. Five patients were excluded owing to inadequate follow-up time in the corresponding control cohort. A cohort of 238 cases (control, 476 patients) was included. Mean follow-up was 10 years, 12 years in the control group. In the cancer cohort, 4% of patients had radiation therapy (RT), compared with 7% in the control group. Of the 9 patients diagnosed with cancer after RT, none occurred within the field. The mean latency period was 5.9 years in the patients who received RT and 6.6 years in the patients who did not. Median (range) age at time of cancer diagnosis in patients who received RT was 62 (43-75) years, compared with 70 (32-92) years in the non-RT patients. An ad hoc analysis was subsequently performed in all 2749 patients who were not matched and found neither an increased incidence of malignancy nor a difference in distribution of type of malignancy. Conclusion: We were unable to demonstrate an increased risk of malignancy in patients who were treated with RT for HO prophylaxis compared with those who were not

  14. Risk of Radiation-Induced Malignancy With Heterotopic Ossification Prophylaxis: A Case–Control Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheybani, Arshin, E-mail: arshin-sheybani@uiowa.edu [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); TenNapel, Mindi J. [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Lack, William D. [Department of Orthopaedic Surgery and Rehabilitation, Loyola University Medical Center, Chicago, Illinois (United States); Clerkin, Patrick; Hyer, Daniel E.; Sun, Wenqing [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Jacobson, Geraldine M. [Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia (United States)

    2014-07-01

    Purpose: To determine the risk of radiation-induced malignancy after prophylactic treatment for heterotopic ossification (HO). Methods and Materials: A matched case–control study was conducted within a population-based cohort of 3489 patients treated either for acetabular fractures with acetabular open reduction internal fixation or who underwent total hip arthroplasty from 1990 to 2009. Record-linkage techniques identified patients who were diagnosed with a malignancy from our state health registry. Patients with a prior history of malignancy were excluded from the cohort. For each documented case of cancer, 2 controls were selected by stratified random sampling from the cohort that did not develop a malignancy. Matching factors were sex, age at time of hip treatment, and duration of follow-up. Results: A total of 243 patients were diagnosed with a malignancy after hip treatment. Five patients were excluded owing to inadequate follow-up time in the corresponding control cohort. A cohort of 238 cases (control, 476 patients) was included. Mean follow-up was 10 years, 12 years in the control group. In the cancer cohort, 4% of patients had radiation therapy (RT), compared with 7% in the control group. Of the 9 patients diagnosed with cancer after RT, none occurred within the field. The mean latency period was 5.9 years in the patients who received RT and 6.6 years in the patients who did not. Median (range) age at time of cancer diagnosis in patients who received RT was 62 (43-75) years, compared with 70 (32-92) years in the non-RT patients. An ad hoc analysis was subsequently performed in all 2749 patients who were not matched and found neither an increased incidence of malignancy nor a difference in distribution of type of malignancy. Conclusion: We were unable to demonstrate an increased risk of malignancy in patients who were treated with RT for HO prophylaxis compared with those who were not.

  15. Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

    Science.gov (United States)

    Nguyen Van, Thinh; Osanai, Yasuhito; Do Nguyen, Hai; Kurosawa, Kiyoshi

    2017-01-01

    A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditions. The soils treated using biodegradable acids had low remaining concentrations of arsenic that are primarily contained in the crystalline iron oxides and organic matter fractions. The close correlation between extracted arsenic and extracted iron/aluminum suggested that arsenic was removed via the dissolution of Fe/Al oxides in soils. The fractionation of arsenic in four contaminated soils was investigated using a modified sequential extraction method. Regarding fractionation, we found that most of the soil contained high proportions of arsenic (As) in exchangeable fractions with phosphorus, amorphous oxides, and crystalline iron oxides, while a small amount of the arsenic fraction was organic matter-bound. This study indicated that biodegradable organic acids can be considered as a means for arsenic-contaminated soil remediation.

  16. Radiation-induced squamous carcinoma arising within a seborrhoeic keratosis

    Energy Technology Data Exchange (ETDEWEB)

    Suvarna, S.K.; Bagary, M.; Glazer, G. (Saint Mary' s Hospital, London (United Kingdom))

    1993-04-01

    Seborrhoeic keratoses (SK) are common skin tumours. They are benign, and present little difficulty in management. However, rare malignant transformation is recognized. The authors report a case of a squamous cell carcinoma arising from dysplastic changes within a long-standing SK on the chest wall of a 75-year-old retired radiologist, and consider the role of radiation in inducing malignant change within SKs. (author).

  17. Radiation-induced squamous carcinoma arising within a seborrhoeic keratosis

    International Nuclear Information System (INIS)

    Suvarna, S.K.; Bagary, M.; Glazer, G.

    1993-01-01

    Seborrhoeic keratoses (SK) are common skin tumours. They are benign, and present little difficulty in management. However, rare malignant transformation is recognized. The authors report a case of a squamous cell carcinoma arising from dysplastic changes within a long-standing SK on the chest wall of a 75-year-old retired radiologist, and consider the role of radiation in inducing malignant change within SKs. (author)

  18. Effects of anti-CD40 mAb on inducing malignant B cells proliferation arrest and apoptosis and its mechanism

    International Nuclear Information System (INIS)

    Tang Lin; Zhuang Yumei; Zhou Zhaohua; Yu Gehua; Pan Jianzhong; Zhang Xueguang

    2002-01-01

    Objective: To study the expression of CD 40 molecule and the biological effects mediated by CD 40 molecules on malignant B cells. Methods: Agonistic anti-human CD 40 monoclonal antibody (clone 5C11) was added to cell culture system. Cell counting, PI staining, Annexin-V staining and flow cytometric analysis were used to study the behavior of malignant B cell lines after treatment with mAb clone 5C11. Results: 5C11 induced homotypic aggregation and proliferation arrest and mediated apoptosis in multiple myeloma cell line XG2 that expressed CD 40 strongly; 5C11 induced B lymphoma cell line Daudi homotypic aggregation and proliferation arrest and apoptosis, the apoptosis of XG2 and Daudi by CD40 activation was not mediated by TNF. Conclusion: Agonistic anti-CD 40 mAb 5C11 can inhibit the proliferation of malignant B cells by inducing them to die apoplectically

  19. Understanding arsenic metabolism through spectroscopic determination of arsenic in human urine

    OpenAIRE

    Brima, Eid I.; Jenkins, Richard O.; Haris, Parvez I.

    2006-01-01

    In this review we discuss a range of spectroscopic techniques that are currently used for analysis of arsenic in human urine for understanding arsenic metabolism and toxicity, especially in relation to genetics/ethnicity, ingestion studies and exposure to arsenic through drinking water and diet. Spectroscopic techniques used for analysis of arsenic in human urine include inductively coupled plasma mass spectrometry (ICP-MS), hydride generation atomic absorption spectrometry (HG-AAS), hydride ...

  20. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    Directory of Open Access Journals (Sweden)

    Katrin eHug

    2014-11-01

    Full Text Available Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand. Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic, and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  1. Chronic Arsenic Toxicity: Statistical Study of the Relationships Between Urinary Arsenic, Selenium and Antimony

    OpenAIRE

    Analía Boemo, BS; Irene María Lomniczi, PhD; Elsa Mónica Farfán Torres, PhD

    2012-01-01

    Background. The groundwater of Argentina’s Chaco plain presents arsenic levels above those suitable for human consumption. Studies suggest skin disorders among local populations caused by arsenic intake. The relationship between urinary arsenic and arsenic in drinking water is well known, but urinary arsenic alone is not enough for risk assessment due to modulating factors such as the intake of selenium and antimony. Objectives. Determining the relationship between urinary arsenic, seleniu...

  2. Malignant Transformation of a Mature Cystic Ovarian Teratoma into Thyroid Carcinoma, Mucinous Adenocarcinoma, and Strumal Carcinoid: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Hilary D. Hinshaw

    2012-01-01

    Full Text Available Malignant transformation of a mature cystic teratoma (MCT is an infrequent, often asymptomatic event. We report the first example of a struma ovarii with a focus of follicular variant of papillary thyroid carcinoma (a, mucinous adenocarcinoma (b, and strumal carcinoid tumor (c—all three arising in one mature cystic teratoma of the ovary. From our reviews, we found limited data to guide management when these malignant foci occur within an MCT. Consideration should be given to thyroidectomy followed by total-body scanning and serum studies for foci of thyroid carcinoma and adjuvant therapy with thyroidectomy and radioablation if residual disease is identified (a. Additionally, extrapolating from data for mucinous adenocarcinomas, consideration could be given to adjuvant chemotherapy after appropriate staging (b. Strumal carcinoid tumors should be treated as tumors of low malignant potential. Observation is appropriate if after complete staging, no invasive implants are noted (c.

  3. Seasonal arsenic accumulation in stream sediments at a groundwater discharge zone.

    Science.gov (United States)

    MacKay, Allison A; Gan, Ping; Yu, Ran; Smets, Barth F

    2014-01-21

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), with higher surface water levels, was associated with losses of arsenic and iron from bead column coatings at depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg(As)/mg(Fe)) of unreacted iron oxide solids. The flooded spring (March-June) with high surface water flows showed the lowest arsenic and iron accumulation rates in the sediments. Comparisons of accumulation rates across a shoreline transect were consistent with greater rates at regions exposed above surface water levels for longer times and greater losses at locations submerged below surface water. Iron (oxy)hydroxide solids in the shallowest sediments likely serve as a passive barrier to sorb arsenic released to pore water at depth by biological iron reduction.

  4. High risks of lung disease associated with early-life and moderate lifetime arsenic exposure in northern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Steinmaus, Craig, E-mail: craigs@berkeley.edu [Arsenic Health Effects Research Program, UC Berkeley School of Public Health, Berkeley, CA (United States); Ferreccio, Catterina; Acevedo, Johanna [School of Medicine, Pontificia Universidad Católica de Chile, Santiago (Chile); Advanced Center for Chronic Diseases (ACCDiS), FONDAP, Santiago (Chile); Balmes, John R [Arsenic Health Effects Research Program, UC Berkeley School of Public Health, Berkeley, CA (United States); Department of Medicine, University of California, San Francisco, San Francisco, CA (United States); Liaw, Jane [Arsenic Health Effects Research Program, UC Berkeley School of Public Health, Berkeley, CA (United States); Troncoso, Patricia [Laboratorio de Anatomía Patológica Dra. Patricia Troncoso, Iquique (Chile); Hospital Felix Bulnes, Departmento de Anatomía Patológica, Santiago (Chile); Dauphiné, David C [Arsenic Health Effects Research Program, UC Berkeley School of Public Health, Berkeley, CA (United States); Nardone, Anthony [Global Health Sciences Program, University of California, San Francisco, San Francisco, CA (United States); Smith, Allan H [Arsenic Health Effects Research Program, UC Berkeley School of Public Health, Berkeley, CA (United States)

    2016-12-15

    Background: Arsenic in drinking water has been associated with increases in lung disease, but information on the long-term impacts of early-life exposure or moderate exposure levels are limited. Methods: We investigated pulmonary disease and lung function in 795 subjects from three socio-demographically similar areas in northern Chile: Antofagasta, which had a well-described period of high arsenic water concentrations (860 μg/L) from 1958 to 1970; Iquique, which had long-term arsenic water concentrations near 60 μg/L; and Arica, with long-term water concentrations ≤ 10 μg/L. Results: Compared to adults never exposed > 10 μg/L, adults born in Antofagasta during the high exposure period had elevated odds ratios (OR) of respiratory symptoms (e.g., OR for shortness of breath = 5.56, 90% confidence interval (CI): 2.68–11.5), and decreases in pulmonary function (e.g., 224 mL decrease in forced vital capacity in nonsmokers, 90% CI: 97–351 mL). Subjects with long-term exposure to arsenic water concentrations near 60 μg/L also had increases in some pulmonary symptoms and reduced lung function. Conclusions: Overall, these findings provide new evidence that in utero or childhood arsenic exposure is associated with non-malignant pulmonary disease in adults. They also provide preliminary new evidence that long-term exposures to moderate levels of arsenic may be associated with lung toxicity, although the magnitude of these latter findings were greater than expected and should be confirmed. - Highlights: • Based on its unique geology, lifetime arsenic exposure can be assessed in north Chile. • Signs and symptoms of lung disease were associated with early-life arsenic exposure. • Evidence of lung disease was also associated with moderate arsenic exposure.

  5. Elevated levels of plasma uric acid and its relation to hypertension in arsenic-endemic human individuals in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Huda, Nazmul [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205 (Bangladesh); Department of Medicine, Rajshahi Medical College, Rajshahi 6000 (Bangladesh); Hossain, Shakhawoat; Rahman, Mashiur [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205 (Bangladesh); Karim, Md. Rezaul [Department of Applied Nutrition and Food Technology, Islamic University, Kushtia 7003 (Bangladesh); Islam, Khairul [Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902 (Bangladesh); Mamun, Abdullah Al; Hossain, Md. Imam; Mohanto, Nayan Chandra; Alam, Shahnur; Aktar, Sharmin; Arefin, Afroza; Ali, Nurshad; Salam, Kazi Abdus; Aziz, Abdul; Saud, Zahangir Alam [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205 (Bangladesh); Miyataka, Hideki; Himeno, Seiichiro [Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770-8514 (Japan); Hossain, Khaled, E-mail: khossainbio@gmail.com [Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi 6205 (Bangladesh)

    2014-11-15

    Blood uric acid has been recognized as a putative marker for cardiovascular diseases (CVDs). CVDs are the major causes of arsenic-related morbidity and mortality. However, the association of arsenic exposure with plasma uric acid (PUA) levels in relation to CVDs has not yet been explored. This study for the first time demonstrated the associations of arsenic exposure with PUA levels and its relationship with hypertension. A total of 483 subjects, 322 from arsenic-endemic and 161 from non-endemic areas in Bangladesh were recruited as study subjects. Arsenic concentrations in the drinking water, hair and nails of the study subjects were measured by inductively coupled plasma mass spectroscopy. PUA levels were measured using a colorimetric method. We found that PUA levels were significantly (p < 0.001) higher in males and females living in arsenic-endemic areas than those in non-endemic area. Arsenic exposure (water, hair and nail arsenic) levels showed significant positive correlations with PUA levels. In multiple regression analyses, arsenic exposure levels were found to be the most significant contributors on PUA levels among the other variables that included age, body mass index, blood urea nitrogen, and smoking. There were dose–response relationships between arsenic exposure and PUA levels. Furthermore, diastolic and systolic blood pressure showed significant positive correlations with PUA levels. Finally, the average PUA levels were significantly higher in the hypertensive group than those in the normotensive group in both males and females living in arsenic-endemic areas. These results suggest that arsenic exposure-related elevation of PUA levels may be implicated in arsenic-induced CVDs. - Highlights: • PUA levels were higher in arsenic-endemic subjects than in non-endemic subjects. • Drinking water, hair and nail arsenic showed significant associations with PUA levels. • Drinking water, hair and nail arsenic showed dose–response relationships with

  6. Elevated levels of plasma uric acid and its relation to hypertension in arsenic-endemic human individuals in Bangladesh

    International Nuclear Information System (INIS)

    Huda, Nazmul; Hossain, Shakhawoat; Rahman, Mashiur; Karim, Md. Rezaul; Islam, Khairul; Mamun, Abdullah Al; Hossain, Md. Imam; Mohanto, Nayan Chandra; Alam, Shahnur; Aktar, Sharmin; Arefin, Afroza; Ali, Nurshad; Salam, Kazi Abdus; Aziz, Abdul; Saud, Zahangir Alam; Miyataka, Hideki; Himeno, Seiichiro; Hossain, Khaled

    2014-01-01

    Blood uric acid has been recognized as a putative marker for cardiovascular diseases (CVDs). CVDs are the major causes of arsenic-related morbidity and mortality. However, the association of arsenic exposure with plasma uric acid (PUA) levels in relation to CVDs has not yet been explored. This study for the first time demonstrated the associations of arsenic exposure with PUA levels and its relationship with hypertension. A total of 483 subjects, 322 from arsenic-endemic and 161 from non-endemic areas in Bangladesh were recruited as study subjects. Arsenic concentrations in the drinking water, hair and nails of the study subjects were measured by inductively coupled plasma mass spectroscopy. PUA levels were measured using a colorimetric method. We found that PUA levels were significantly (p < 0.001) higher in males and females living in arsenic-endemic areas than those in non-endemic area. Arsenic exposure (water, hair and nail arsenic) levels showed significant positive correlations with PUA levels. In multiple regression analyses, arsenic exposure levels were found to be the most significant contributors on PUA levels among the other variables that included age, body mass index, blood urea nitrogen, and smoking. There were dose–response relationships between arsenic exposure and PUA levels. Furthermore, diastolic and systolic blood pressure showed significant positive correlations with PUA levels. Finally, the average PUA levels were significantly higher in the hypertensive group than those in the normotensive group in both males and females living in arsenic-endemic areas. These results suggest that arsenic exposure-related elevation of PUA levels may be implicated in arsenic-induced CVDs. - Highlights: • PUA levels were higher in arsenic-endemic subjects than in non-endemic subjects. • Drinking water, hair and nail arsenic showed significant associations with PUA levels. • Drinking water, hair and nail arsenic showed dose–response relationships with

  7. Lung function in adults following in utero and childhood exposure to arsenic in drinking water: preliminary findings.

    Science.gov (United States)

    Dauphiné, David C; Ferreccio, Catterina; Guntur, Sandeep; Yuan, Yan; Hammond, S Katharine; Balmes, John; Smith, Allan H; Steinmaus, Craig

    2011-08-01

    Evidence suggests that arsenic in drinking water causes non-malignant lung disease, but nearly all data concern exposed adults. The desert city of Antofagasta (population 257,976) in northern Chile had high concentrations of arsenic in drinking water (>800 μg/l) from 1958 until 1970, when a new treatment plant was installed. This scenario, with its large population, distinct period of high exposure, and accurate data on past exposure, is virtually unprecedented in environmental epidemiology. We conducted a pilot study on early-life arsenic exposure and long-term lung function. We present these preliminary findings because of the magnitude of the effects observed. We recruited a convenience sample consisting primarily of nursing school employees in Antofagasta and Arica, a city with low drinking water arsenic. Lung function and respiratory symptoms in 32 adults exposed to >800 μg/l arsenic before age 10 were compared to 65 adults without high early-life exposure. Early-life arsenic exposure was associated with 11.5% lower forced expiratory volume in 1 s (FEV(1)) (P = 0.04), 12.2% lower forced vital capacity (FVC) (P = 0.04), and increased breathlessness (prevalence odds ratio = 5.94, 95% confidence interval 1.36-26.0). Exposure-response relationships between early-life arsenic concentration and adult FEV(1) and FVC were also identified (P trend = 0.03). Early-life exposure to arsenic in drinking water may have irreversible respiratory effects of a magnitude similar to smoking throughout adulthood. Given the small study size and non-random recruitment methods, further research is needed to confirm these findings.

  8. Autologous cytokine-induced killer cell immunotherapy may improve overall survival in advanced malignant melanoma patients.

    Science.gov (United States)

    Zhang, Yong; Zhu, Yu'nan; Zhao, Erjiang; He, Xiaolei; Zhao, Lingdi; Wang, Zibing; Fu, Xiaomin; Qi, Yalong; Ma, Baozhen; Song, Yongping; Gao, Quanli

    2017-11-01

    Our study was conducted to explore the efficacy of autologous cytokine-induced killer (CIK) cells in patients with advanced malignant melanoma. Materials & Methods: Here we reviewed 113 stage IV malignant melanoma patients among which 68 patients received CIK cell immunotherapy alone, while 45 patients accepted CIK cell therapy combined with chemotherapy. Results: We found that the median survival time in CIK cell group was longer than the combined therapy group (21 vs 15 months, p = 0.07). In addition, serum hemoglobin level as well as monocyte proportion and lymphocyte count were associated with patients' survival time. These indicated that CIK cell immunotherapy might extend survival time in advanced malignant melanoma patients. Furthermore, serum hemoglobin level, monocyte proportion and lymphocyte count could be prognostic indicators for melanoma.

  9. Approaches to increase arsenic awareness in Bangladesh: an evaluation of an arsenic education program.

    Science.gov (United States)

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H

    2013-06-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning knowledge of arsenic. Respondents were between 18 and 102 years of age, with an average age of 37 years; 99.9% were female. The knowledge of arsenic quiz scores for study participants were significantly higher at follow-up compared with baseline. The intervention was effective in increasing awareness of the safe uses of arsenic-contaminated water and dispelling the misconception that boiling water removes arsenic. At follow-up, nearly all respondents were able to correctly identify the meaning of a red (contaminated) and green (arsenic safe) well relative to arsenic (99%). The educational program also significantly increased the proportion of respondents who were able to correctly identify the health implications of arsenic exposure. However, the intervention was not effective in dispelling the misconceptions in the population that arsenicosis is contagious and that illnesses such as cholera, diarrhea, and vomiting could be caused by arsenic. Further research is needed to develop effective communication strategies to dispel these misconceptions. This study demonstrates that a household-level arsenic educational program can be used to significantly increase arsenic awareness in Bangladesh.

  10. Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger.

    Science.gov (United States)

    Chakraborti, Dipankar; Singh, Sushant K; Rahman, Mohammad Mahmudur; Dutta, Rathindra Nath; Mukherjee, Subhas Chandra; Pati, Shyamapada; Kar, Probir Bijoy

    2018-01-23

    This study highlights the severity of arsenic contamination in the Ganga River basin (GRB), which encompasses significant geographic portions of India, Bangladesh, Nepal, and Tibet. The entire GRB experiences elevated levels of arsenic in the groundwater (up to 4730 µg/L), irrigation water (~1000 µg/L), and in food materials (up to 3947 µg/kg), all exceeding the World Health Organization's standards for drinking water, the United Nations Food and Agricultural Organization's standard for irrigation water (100 µg/L), and the Chinese Ministry of Health's standard for food in South Asia (0.15 mg/kg), respectively. Several individuals demonstrated dermal, neurological, reproductive, cognitive, and cancerous effects; many children have been diagnosed with a range of arsenicosis symptoms, and numerous arsenic-induced deaths of youthful victims are reported in the GRB. Victims of arsenic exposure face critical social challenges in the form of social isolation and hatred by their respective communities. Reluctance to establish arsenic standards and unsustainable arsenic mitigation programs have aggravated the arsenic calamity in the GRB and put millions of lives in danger. This alarming situation resembles a ticking time bomb. We feel that after 29 years of arsenic research in the GRB, we have seen the tip of the iceberg with respect to the actual magnitude of the catastrophe; thus, a reduced arsenic standard for drinking water, testing all available drinking water sources, and sustainable and cost-effective arsenic mitigation programs that include the participation of the people are urgently needed.

  11. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental study.

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an aquifer iron coating method has great potential to be a cost effective and simple groundwater remediation technology, especially in rural and remote areas where groundwater is used as the main water source for drinking. The in situ arsenic removal technology was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions. The effectiveness was then evaluated in an actual high-arsenic groundwater environment. The arsenic removal mechanism by the coated iron oxide/hydroxide was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, electron probe microanalysis, and Fourier transformation infrared spectroscopy. Aquifer iron coating method was developed via a 4-step alternating injection of oxidant, iron salt and oxygen-free water. A continuous injection of 5.0 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 h can form a uniform goethite coating on the surface of quartz sand without causing clogging. At a flow rate of 7.2 mL/min of the injection reagents, arsenic (as Na2HAsO4) and tracer fluorescein sodium to pass through the iron-coated quartz sand column were approximately at 126 and 7 column pore volumes, respectively. The retardation factor of arsenic was 23.0, and the adsorption capacity was 0.11 mol As per mol Fe. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As(V) and Fe(II) reagents. Arsenic fixation resulted from a process of adsorption/co-precipitation with fine goethite particles by way of bidentate binuclear complexes. Therefore, the study results indicate that the high arsenic removal efficiency of the in situ aquifer iron coating technology likely resulted from the expanded specific surface area of the small goethite particles, which enhanced arsenic sorption capability and/or from co-precipitation of arsenic on the surface of goethite particles. Copyright © 2015

  12. Role of thyroid in x-ray-induced oncogenic transformation in cell culture

    International Nuclear Information System (INIS)

    Borek, C.

    1982-01-01

    This paper examines the role of thyroid hormones in x-ray-induced neoplastic transformation of C3H/10 T 1/2 cells. In addition, the delineation of the time when transformation is sensitive to T3, the dependence of transformation on T3 concentration, and the involvement of protein synthesis are studied. The results indicate that thyroid hormone plays a key role in the initiation of x-ray-induced neoplastic transformation and that induction of protein synthesis may mediate this response

  13. Developmental and genetic modulation of arsenic biotransformation: A gene by environment interaction?

    International Nuclear Information System (INIS)

    Meza, Mercedes; Gandolfi, A. Jay; Klimecki, Walter T.

    2007-01-01

    The complexity of arsenic toxicology has confounded the identification of specific pathways of disease causation. One focal point of arsenic research is aimed at fully characterizing arsenic biotransformation in humans, a process that appears to be quite variable, producing a mixture of several arsenic species with greatly differing toxic potencies. In an effort to characterize genetic determinants of variability in arsenic biotransformation, a genetic association study of 135 subjects in western Sonora, Mexico was performed by testing 23 polymorphic sites in three arsenic biotransformation candidate genes. One gene, arsenic 3 methyltransferase (AS3MT), was strongly associated with the ratio of urinary dimethylarsinic acid to monomethylarsonic acid (D/M) in children (7-11 years) but not in adults (18-79 years). Subsequent analyses revealed that the high D/M values associated with variant AS3MT alleles were primarily due to lower levels of monomethylarsonic acid as percent of total urinary arsenic (%MMA5). In light of several reports of arsenic-induced disease being associated with relatively high %MMA5 levels, these findings raise the possibility that variant AS3MT individuals may suffer less risk from arsenic exposure than non-variant individuals. These analyses also provide evidence that, in this population, regardless of AS3MT variant status, children tend to have lower %MMA5 values than adults, suggesting that the global developmental regulation of arsenic biotransformation may interact with genetic variants in metabolic genes to result in novel genetic effects such as those in this report

  14. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Adomako, Eureka E.; Deacon, Claire M.; Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  15. Effect of chronic intake of arsenic-contaminated water on liver

    International Nuclear Information System (INIS)

    Guha Mazumder, D.N.

    2005-01-01

    The hepatotoxic effect of arsenic when used in therapeutic dose has long been recognized. We described the nature and degree of liver involvement and its pathogenesis due to prolonged drinking of arsenic-contaminated water in West Bengal, India. From hospital-based studies on 248 cases of arsenicosis, hepatomegaly was found in 190 patients (76.6%). Non cirrhotic portal fibrosis was the predominant lesions in 63 out of 69 cases who underwent liver biopsy. The portal fibrosis was characterized by expansion of portal zones with streaky fibrosis, a few of which contained leash of vessels. However, portal hypertension was found in smaller number of cases. A cross-sectional epidemiological study was carried out on 7683 people residing in arsenic-affected districts of West Bengal. Out of these, 3467 and 4216 people consumed water-containing arsenic below and above 0.05 mg/l, respectively. Prevalence of hepatomegaly was significantly higher in arsenic-exposed people (10.2%) compared to controls (2.99%, P < 0.001). The incidence of hepatomegaly was found to have a linear relationship proportionate to increasing exposure of arsenic in drinking water in both sexes (P < 0.001). In an experimental study, BALB/C mice were given water contaminated with arsenic (3.2 mg/l) ad libitum for 15 months, the animals being sacrificed at 3-month intervals. We observed progressive reduction of hepatic glutathione and enzymes of anti-oxidative defense system associated with lipid peroxidation. Liver histology showed fatty infiltration at 12 months and hepatic fibrosis at 15 months. Our studies show that prolong drinking of arsenic-contaminated water is associated with hepatomegaly. Predominant lesion of hepatic fibrosis appears to be caused by arsenic induced oxystress

  16. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine

    International Nuclear Information System (INIS)

    Drewniak, Lukasz; Maryan, Natalia; Lewandowski, Wiktor; Kaczanowski, Szymon; Sklodowska, Aleksandra

    2012-01-01

    The ancient Zloty Stok (SW Poland) gold mine is such an environment, where different microbial communities, able to utilize inorganic arsenic species As(III) and As(V), are found. The purpose of the present study was to (i) estimate prokaryotic diversity in the microbial mats in bottom sediments of this gold mine, (ii) identify microorganisms that can metabolize arsenic, and (iii) estimate their potential role in the arsenic geochemistry of the mine and in the environment. The oxidation/reduction experiments showed that the microbial mat community may significantly contribute to arsenic contamination in groundwater. The presence of both arsenite oxidizing and dissimilatory arsenate reducing bacteria in the mat was confirmed by the detection of arsenite oxidase and dissimilatory arsenate reductase genes, respectively. This work also demonstrated that microorganisms utilizing other compounds that naturally co-occur with arsenic are present within the microbial mat community and may contribute to the arsenic geochemistry in the environment. - Highlights: ► The microbial mats from this ancient gold mine are highly diverse community. ► As(III) oxidizing and As(V) reducing bacteria are present in the mats. ► As redox transformations are linked to the metabolism of microbial mats bacteria. ► Microbial mats play a crucial role in the As biogeochemical cycle within the mine. - The microbial mats from this ancient gold mine can mediate oxidation/reduction reaction of arsenic and in this way may significantly contribute to arsenic contamination in groundwater.

  17. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells.

    Science.gov (United States)

    Yajima, Ichiro; Uemura, Noriyuki; Nizam, Saika; Khalequzzaman, Md; Thang, Nguyen D; Kumasaka, Mayuko Y; Akhand, Anwarul A; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2012-06-01

    Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.

  18. A Potential Synergy between Incomplete Arsenic Methylation Capacity and Demographic Characteristics on the Risk of Hypertension: Findings from a Cross-Sectional Study in an Arsenic-Endemic Area of Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Yongfang Li

    2015-03-01

    Full Text Available Inefficient arsenic methylation capacity has been associated with various health hazards induced by arsenic. In this study, we aimed to explore the interaction effect of lower arsenic methylation capacity with demographic characteristics on hypertension risk. A total of 512 adult participants (126 hypertension subjects and 386 non-hypertension subjects residing in an arsenic-endemic area in Inner Mongolia, China were included. Urinary levels of inorganic arsenic (iAs, monomethylarsonic acid (MMA, and dimethylarsinic acid (DMA were measured for all subjects. The percentage of urinary arsenic metabolites (iAs%, MMA%, and DMA%, primary methylation index (PMI and secondary methylation index (SMI were calculated to assess arsenic methylation capacity of individuals. Results showed that participants carrying a lower methylation capacity, which is characterized by lower DMA% and SMI, have a higher risk of hypertension compared to their corresponding references after adjusting for multiple confounders. A potential synergy between poor arsenic methylation capacity (higher MMA%, lower DMA% and SMI and older age or higher BMI were detected. The joint effects of higher MMA% and lower SMI with cigarette smoking also suggest some evidence of synergism. The findings of present study indicated that inefficient arsenic methylation capacity was associated with hypertension and the effect might be enhanced by certain demographic factors.

  19. Quantification of arsenic in activated carbon using particle induced X-ray emission

    International Nuclear Information System (INIS)

    Yadav, Nirbhay N.; Maheswaran, Saravanamuthu; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai; Ngo, Huu H.; Vigneswaran, Saravanamuth

    2006-01-01

    To date, the trace elemental analysis of solids with inhomogeneous internal structure has been limited, particularly in the case of adsorbents. High-energy ion beam based particle induced X-ray emission (PIXE) is an ideal analytical tool suitable for simultaneous quantification of trace elements with high accuracy. In this study, PIXE was used to quantify arsenic in the adsorbents, granular activated carbon (GAC) and powder activated carbon (PAC). Pelletized and unmodified GAC and PAC samples were analyzed along with powder samples deposited on thin teflon filters. These sample preparation methods resulted in samples of various thicknesses and densities. PIXE measurements taken from these samples were compared to results from neutron activation analysis (NAA) and atomic absorption spectroscopy (AAS). There is a good agreement between the values from the NAA and pelletized PIXE measurements and some AAS measurements

  20. Understanding arsenic carcinogenicity by the use of animal models

    International Nuclear Information System (INIS)

    Wanibuchi, Hideki; Salim, Elsayed I.; Kinoshita, Anna; Shen Jun; Wei Min; Morimura, Keiichirou; Yoshida, Kaoru; Kuroda, Koichi; Endo, Ginji; Fukushima, Shoji

    2004-01-01

    Although numerous epidemiological studies have indicated that human arsenic exposure is associated with increased incidences of bladder, liver, skin, and lung cancers, limited attempts have been made to understand mechanisms of carcinogenicity using animal models. Dimethylarsinic acid (DMA), an organic arsenic compound, is a major metabolite of ingested inorganic arsenics in mammals. Recent in vitro studies have proven DMA to be a potent clastogenic agent, capable of inducing DNA damage including double strand breaks and cross-link formation. In our attempts to clarify DMA carcinogenicity, we have recently shown carcinogenic effects of DMA and its related metabolites using various experimental protocols in rats and mice: (1) a multi-organ promotion bioassay in rats; (2) a two-stage promotion bioassay by DMA of rat urinary bladder and liver carcinogenesis; (3) a 2-year carcinogenicity test of DMA in rats; (4) studies on the effects of DMA on lung carcinogenesis in rats; (5) promotion of skin carcinogenesis by DMA in keratin (K6)/ornithine decarboxylase (ODC) transgenic mice; (6) carcinogenicity of DMA in p53(+/-) knockout and Mmh/8-OXOG-DNA glycolase (OGG1) mutant mice; (7) promoting effects of DMA and related organic arsenicals in rat liver; (8) promoting effects of DMA and related organic arsenicals in a rat multi-organ carcinogenesis test; and (9) 2-year carcinogenicity tests of monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) in rats. The results revealed that the adverse effects of arsenic occurred either by promoting and initiating carcinogenesis. These data, as covered in the present review, suggest that several mechanisms may be involved in arsenic carcinogenesis

  1. Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Shubhi; Singh, Namrata; Singh, Nandita [CSIR - National Botanical Research Institute, Lucknow, UP (India). Eco-auditing Lab.; Verma, Praveen C.; Singh, Ankit; Mishra, Manisha [CSIR - National Botanical Research Institute, Lucknow, UP (India). Plant Molecular Biology and Genetic Engineering; Sharma, Neeta [Lucknow Univ., UP (India). Plant Pathology Lab.

    2012-09-15

    Arsenic contaminated rhizospheric soils of West Bengal, India were sampled for arsenic resistant bacteria that could transform different arsenic forms. Staphylococcus sp. NBRIEAG-8 was identified by16S rDNA ribotyping, which was capable of growing at 30,000 mg l{sup -1} arsenate [As(V)] and 1,500 mg l{sup -1} arsenite [As(III)]. This bacterial strain was also characterized for arsenical resistance (ars) genes which may be associated with the high-level resistance in the ecosystems of As-contaminated areas. A comparative proteome analysis was conducted with this strain treated with 1,000 mg l{sup -1} As(V) to identify changes in their protein expression profiles. A 2D gel analysis showed a significant difference in the proteome of arsenic treated and untreated bacterial culture. The change in pH of cultivating growth medium, bacterial growth pattern (kinetics), and uptake of arsenic were also evaluated. After 72 h of incubation, the strain was capable of removing arsenic from the culture medium amended with arsenate and arsenite [12% from As(V) and 9% from As(III)]. The rate of biovolatilization of As(V) was 23% while As(III) was 26%, which was determined indirectly by estimating the sum of arsenic content in bacterial biomass and medium. This study demonstrates that the isolated strain, Staphylococcus sp., is capable for uptake and volatilization of arsenic by expressing ars genes and 8 new upregulated proteins which may have played an important role in reducing arsenic toxicity in bacterial cells and can be used in arsenic bioremediation. (orig.)

  2. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (piAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  3. Association of Environmental Arsenic Exposure, Genetic Polymorphisms of Susceptible Genes, and Skin Cancers in Taiwan

    Directory of Open Access Journals (Sweden)

    Ling-I Hsu

    2015-01-01

    Full Text Available Deficiency in the capability of xenobiotic detoxification and arsenic methylation may be correlated with individual susceptibility to arsenic-related skin cancers. We hypothesized that glutathione S-transferase (GST M1, T1, and P1, reactive oxygen species (ROS related metabolic genes (NQO1, EPHX1, and HO-1, and DNA repair genes (XRCC1, XPD, hOGG1, and ATM together may play a role in arsenic-induced skin carcinogenesis. We conducted a case-control study consisting of 70 pathologically confirmed skin cancer patients and 210 age and gender matched participants with genotyping of 12 selected polymorphisms. The skin cancer risks were estimated by odds ratio (OR and 95% confidence interval (CI using logistic regression. EPHX1 Tyr113His, XPD C156A, and GSTT1 null genotypes were associated with skin cancer risk (OR = 2.99, 95% CI = 1.01–8.83; OR = 2.04, 95% CI = 0.99–4.27; OR = 1.74, 95% CI = 1.00–3.02, resp.. However, none of these polymorphisms showed significant association after considering arsenic exposure status. Individuals carrying three risk polymorphisms of EPHX1 Tyr113His, XPD C156A, and GSTs presented a 400% increased skin cancer risk when compared to those with less than or equal to one polymorphism. In conclusion, GSTs, EPHX1, and XPD are potential genetic factors for arsenic-induced skin cancers. The roles of these genes for arsenic-induced skin carcinogenesis need to be further evaluated.

  4. Environmental Source of Arsenic Exposure

    OpenAIRE

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a ...

  5. Diarachidonoylphosphoethanolamine induces necrosis/necroptosis of malignant pleural mesothelioma cells.

    Science.gov (United States)

    Kaku, Yoshiko; Tsuchiya, Ayako; Kanno, Takeshi; Nakano, Takashi; Nishizaki, Tomoyuki

    2015-09-01

    The present study investigated 1,2-diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE)-induced cell death in malignant pleural mesothelioma (MPM) cells. DAPE reduced cell viability in NCI-H28, NCI-H2052, NCI-H2452, and MSTO-211H MPM cell lines in a concentration (1-100μM)-dependent manner. In the flow cytometry using propidium iodide (PI) and annexin V (AV), DAPE significantly increased the population of PI-positive and AV-negative cells, corresponding to primary necrosis, and that of PI-positive and AV-positive cells, corresponding to late apoptosis/secondary necrosis, in NCI-H28 cells. DAPE-induced reduction of NCI-H28 cell viability was partially inhibited by necrostatin-1, an inhibitor of RIP1 kinase to induce necroptosis, or knocking-down RIP1. DAPE generated reactive oxygen species (ROS) followed by disruption of mitochondrial membrane potentials in NCI-H28 cells. DAPE-induced mitochondrial damage was attenuated by cyclosporin A, an inhibitor of cyclophilin D (CypD). DAPE did not affect expression and mitochondrial localization of p53 protein in NCI-H28 cells. DAPE significantly decreased intracellular ATP concentrations in NCI-H28 cells. Overall, the results of the present study indicate that DAPE induces necroptosis and necrosis of MPM cells; the former is mediated by RIP1 kinase and the latter is caused by generating ROS and opening CypD-dependent mitochondrial permeability transition pore, to reduce intracellular ATP concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    International Nuclear Information System (INIS)

    Alamdar, Ambreen; Xi, Guochen; Huang, Qingyu; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2017-01-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.

  7. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    Energy Technology Data Exchange (ETDEWEB)

    Alamdar, Ambreen; Xi, Guochen [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Huang, Qingyu, E-mail: qyhuang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M (Denmark); Tian, Meiping [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Eqani, Syed Ali Musstjab Akber Shah [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Public Health and Environment Division, Department of Biosciences, COMSAT Institute of Information & Technology, Islamabad (Pakistan); Shen, Heqing, E-mail: hqshen@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2017-07-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.

  8. Arsenic Hyperaccumulation Strategies: An Overview

    Directory of Open Access Journals (Sweden)

    Zahra Souri

    2017-07-01

    Full Text Available Arsenic (As pollution, which is on the increase around the world, poses a growing threat to the environment. Phytoremediation, an important green technology, uses different strategies, including As uptake, transport, translocation, and detoxification, to remediate this metalloid. Arsenic hyperaccumulator plants have developed various strategies to accumulate and tolerate high concentrations of As. In these plants, the formation of AsIII complexes with GSH and phytochelatins and their transport into root and shoot vacuoles constitute important mechanisms for coping with As stress. The oxidative stress induced by reactive oxygen species (ROS production is one of the principal toxic effects of As; moreover, the strong antioxidative defenses in hyperaccumulator plants could constitute an important As detoxification strategy. On the other hand, nitric oxide activates antioxidant enzyme and phytochelatins biosynthesis which enhances As stress tolerance in plants. Although several studies have focused on transcription, metabolomics, and proteomic changes in plants induced by As, the mechanisms involved in As transport, translocation, and detoxification in hyperaccumulator plants need to be studied in greater depth. This review updates recent progress made in the study of As uptake, translocation, chelation, and detoxification in As hyperaccumulator plants.

  9. Inorganic Arsenic Induces NRF2-Regulated Antioxidant Defenses in Both Cerebral Cortex and Hippocampus in Vivo.

    Science.gov (United States)

    Zhang, Yang; Duan, Xiaoxu; Li, Jinlong; Zhao, Shuo; Li, Wei; Zhao, Lu; Li, Wei; Nie, Huifang; Sun, Guifang; Li, Bing

    2016-08-01

    Inorganic arsenic is reported to induce the reactive oxygen species-mediated oxidative stress, which is supposed to be one of the main mechanisms of arsenic-related neurological diseases. Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of antioxidant defense systems, up-regulates the expression of target genes to fight against oxidative damages caused by harmful substances, including metals. In the present study, mice were used as a model to investigate the oxidative stress levels and the expressions of NRF2-regulated antioxidant substances in both cerebral cortex and hippocampus with 5, 10 and 20 mg/kg NaAsO2 exposure intra-gastrically. Our results showed that acute NaAsO2 treatment resulted in decreased total anti-oxidative capacity (T-AOC) and increased maleic dialdehyde production in the nervous system. We also detected rapidly elevation of NRF2 protein levels by enhancement of Nrf2 transcription, especially at 20 mg/kg NaAsO2 exposure group. In the meantime, mRNA and protein levels of Nrf2 encoding antioxidant enzymes heme oxygenase-1 (HO-1), NAD(P)H: quinine oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) were consistently elevated time- and dose-dependently both in the cerebral cortex and hippocampus. Taken together, the presence study demonstrated the activation of NRF2 pathway, an early antioxidant defensive response, in both cerebral cortex and hippocampus upon inorganic arsenic (iAs) exposure in vivo. A better knowledge on the roles of NRF2 pathway in maintaining cellular redox homeostasis would be helpful for the strategies on improvement of neurotoxicity related to this metalloid.

  10. Correlation of arsenic exposure through drinking groundwater and urinary arsenic excretion among adults in Pakistan.

    Science.gov (United States)

    Ahmed, Mubashir; Fatmi, Zafar; Ali, Arif

    2014-01-01

    Long-term exposure to arsenic has been associated with manifestation of skin lesions (melanosis/keratosis) and increased risk of internal cancers (lung/bladder). The objective of the study described here was to determine the relationship between exposure of arsenic through drinking groundwater and urinary arsenic excretion among adults > or =15 years of age living in Khairpur district, Pakistan. Total arsenic was determined in drinking groundwater and in spot urine samples of 465 randomly selected individuals through hydride generation-atomic absorption spectrometry. Spearman's rank correlation coefficient was calculated between arsenic in drinking groundwater and arsenic excreted in urine. The median arsenic concentration in drinking water was 2.1 microg/L (range: 0.1-350), and in urine was 28.5 microg/L (range: 0.1-848). Positive correlation was found between total arsenic in drinking water and in urine (r = .52, p arsenic may be used as a biomarker of arsenic exposure through drinking water.

  11. Alpha-particles induce preneoplastic transformation of rat tracheal epithelial cells in culture

    International Nuclear Information System (INIS)

    Thomassen, D.G.; Seiler, F.A.; Shyr, L.-J.; Griffith, W.C.

    1990-01-01

    To characterize the potential role of high-l.e.t. radiation in respiratory carcinogenesis, the cytotoxic and transforming potency of 5.5 MeV α-particles from electroplated sources of 238 Pu were determined using primary cultures of rat tracheal epithelial cells. RBE for cell killing by α-particles versus X-rays varied with dose, and ranged between 4 and 1.5 for α doses in the range 0.2-4 Gy. At equally toxic doses (relative survival 0.18-0.2), all three agents induced similar frequencies of preneoplastic transformation. For preneoplastic transformation induced by doses of α- and X-radiations giving 80 per cent toxicity, an α RBE of 2.4 was derived. The similar RBEs for cell killing and for preneoplastic transformation suggest an association between the type or degree of radiation-induced damage responsible for both cell killing and cell transformation. (author)

  12. Exosomes isolated from cancer patients' sera transfer malignant traits and confer the same phenotype of primary tumors to oncosuppressor-mutated cells.

    Science.gov (United States)

    Abdouh, Mohamed; Hamam, Dana; Gao, Zu-Hua; Arena, Vincenzo; Arena, Manuel; Arena, Goffredo Orazio

    2017-08-30

    , on the plasma membrane of target cells, of receptors, responsible for the increased uptake of cancer-derived exosomes. The selective blocking of these receptors inhibited the horizontal transfer of malignant traits. These findings strengthen the hypothesis that oncogenic factors transferred via circulating cancer exosomes, induce malignant transformation of target cells even at distance. Oncosuppressor genes might protect the integrity of the cell genome by inhibiting the uptake of cancer-derived exosomes.

  13. Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger

    Science.gov (United States)

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Dutta, Rathindra Nath; Mukherjee, Subhas Chandra; Pati, Shyamapada; Kar, Probir Bijoy

    2018-01-01

    This study highlights the severity of arsenic contamination in the Ganga River basin (GRB), which encompasses significant geographic portions of India, Bangladesh, Nepal, and Tibet. The entire GRB experiences elevated levels of arsenic in the groundwater (up to 4730 µg/L), irrigation water (~1000 µg/L), and in food materials (up to 3947 µg/kg), all exceeding the World Health Organization’s standards for drinking water, the United Nations Food and Agricultural Organization’s standard for irrigation water (100 µg/L), and the Chinese Ministry of Health’s standard for food in South Asia (0.15 mg/kg), respectively. Several individuals demonstrated dermal, neurological, reproductive, cognitive, and cancerous effects; many children have been diagnosed with a range of arsenicosis symptoms, and numerous arsenic-induced deaths of youthful victims are reported in the GRB. Victims of arsenic exposure face critical social challenges in the form of social isolation and hatred by their respective communities. Reluctance to establish arsenic standards and unsustainable arsenic mitigation programs have aggravated the arsenic calamity in the GRB and put millions of lives in danger. This alarming situation resembles a ticking time bomb. We feel that after 29 years of arsenic research in the GRB, we have seen the tip of the iceberg with respect to the actual magnitude of the catastrophe; thus, a reduced arsenic standard for drinking water, testing all available drinking water sources, and sustainable and cost-effective arsenic mitigation programs that include the participation of the people are urgently needed. PMID:29360747

  14. Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger

    Directory of Open Access Journals (Sweden)

    Dipankar Chakraborti

    2018-01-01

    Full Text Available This study highlights the severity of arsenic contamination in the Ganga River basin (GRB, which encompasses significant geographic portions of India, Bangladesh, Nepal, and Tibet. The entire GRB experiences elevated levels of arsenic in the groundwater (up to 4730 µg/L, irrigation water (~1000 µg/L, and in food materials (up to 3947 µg/kg, all exceeding the World Health Organization’s standards for drinking water, the United Nations Food and Agricultural Organization’s standard for irrigation water (100 µg/L, and the Chinese Ministry of Health’s standard for food in South Asia (0.15 mg/kg, respectively. Several individuals demonstrated dermal, neurological, reproductive, cognitive, and cancerous effects; many children have been diagnosed with a range of arsenicosis symptoms, and numerous arsenic-induced deaths of youthful victims are reported in the GRB. Victims of arsenic exposure face critical social challenges in the form of social isolation and hatred by their respective communities. Reluctance to establish arsenic standards and unsustainable arsenic mitigation programs have aggravated the arsenic calamity in the GRB and put millions of lives in danger. This alarming situation resembles a ticking time bomb. We feel that after 29 years of arsenic research in the GRB, we have seen the tip of the iceberg with respect to the actual magnitude of the catastrophe; thus, a reduced arsenic standard for drinking water, testing all available drinking water sources, and sustainable and cost-effective arsenic mitigation programs that include the participation of the people are urgently needed.

  15. Arsenic activation analysis of freshwater fish through the precipitation of elemental arsenic

    International Nuclear Information System (INIS)

    Comparetto, G.M.; Jester, W.A.; Skinner, W.F.

    1982-01-01

    The activation analysis of trace elements of arsenic in biological samples is complicated by the interference of a 82 Br photo peak (554KeV) and the compton continuum with the major 76 As photo peak of 559 KeV. In addition, the half-lives of 24 Na, 82 Br, and 76 As are too similar to be resolved by varying irradiation and/or decay times. Thus post irradiation chemical separation of arsenic is often required. A study of existing radiochemistry techniques reported in the literature found that existing methods were complex x and/or lengthy. In this work, a more rapid and less extensive method was required to analyze a large number of fish samples exposed to fly ash sluice water from coalburning power plant. A method has been developed which involves the dissolution of irradiated homogenized fish samples, the addition of an arsenic carrier, and the reduction of arsenic to the +3 state. Arsenic is then precipitated as elemental arsenic. An important factor in this work was the discovery that this procedure produced arsenic yields of 81+-3% for both the fish samples and the NBC Orchard leaves standard employed in this analysis. Thus the determination of absolute arsenic yields is not required. This method has been used to analyze 32 of the fish samples the average arsenic content of which was found to vary between 0.08 and 4.8 ppm. (author)

  16. Arsenic species excretion after dimercaptopropanesulfonic acid (DMPS) treatment of an acute arsenic trioxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich-Ramm, R. [Ordinariat fuer Arbeitsmedizin der Universitaet Hamburg und Zentralinstitut fuer Arbeitsmedizin, Hamburg (Germany); Schaller, K.H.; Angerer, J. [Institut und Poliklinik fuer Arbeits-, Sozial- und Umweltmedizin der Universitaet Erlangen-Nuernberg, Schillerstr. 25, 91054 Erlangen (Germany); Horn, J. [Medizinische Klinik II, Toxikologische-internistische Intensivstation, Klinikum Nuernberg, Nuernberg (Germany)

    2003-02-01

    We studied the urinary excretion of the different arsenic species in urine samples from a young man who tried to commit suicide by ingesting about 0.6 g arsenic trioxide. He received immediate therapy with dimercaptopropanesulfonic acid (DMPS) after his delivery into the hospital. We assessed urinary arsenite (inorganic trivalent arsenic), arsenate (inorganic pentavalent arsenic), pentavalent dimethylarsinic acid (DMA) and pentavalent monomethylarsonic acid (MMA) in urine with ion-exchange chromatography and on-line hydride-technique atomic absorption spectrometry. The predominant amount of the excreted arsenic was unchanged trivalent inorganic arsenic (37.4%), followed by pentavalent inorganic arsenic (2.6%), MMA (2.1%), DMA (0.2%) and one unidentified arsenic species (0.7%, if calculated as DMA). In the first urine voiding in the clinic, the total arsenic concentration was 215 mg/l, which fell 1000-fold after 8 days of DMPS therapy. A most striking finding was the almost complete inhibition of the second methylation step in arsenic metabolism. As mechanisms for the reduced methylation efficiency, the saturation of the enzymatic process of arsenic methylation, the high dosage of antidote DMPS, which might inhibit the activity of the methyl transferases, and analytical reasons are discussed. The high dosage of DMPS is the most likely explanation. The patient left the hospital after a 12-day treatment with antidote. (orig.)

  17. Effect of nitrogen doping on titanium carbonitride-derived adsorbents used for arsenic removal

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jisun [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Soonjae [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Keunsu [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jinhong [Samsung Electronics Co.Ltd.,(Maetan dong) 129, Samsung-ro Yeongtong-gu, Suwonsi, Gyeonggi-do 443-742, Repubilc of Korea (Korea, Republic of); Ha, Daegwon [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Chang-Gu [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); An, Byungryul [Department of Civil Engineering, Sangmyung University, Cheonan, Chungnam 31066 (Korea, Republic of); Lee, Sang-Hyup [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Mizuseki, Hiroshi, E-mail: mizuseki@kist.re.kr [Computational Science Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Jae-Woo, E-mail: plead36@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kang, Shinhoo, E-mail: shinkang@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2016-01-25

    Highlights: • The N-doping can improve the As adsorption performance of carbon-based materials. • The material features high micro- and small meso-pores with exceptional surface area. • Pyrrolic N atoms distributed uniformly on the micropores act as adsorption sites. • The synthesis temperature affected pore properties and surface functional groups. - Abstract: Arsenic in water and wastewater is considered to be a critical contaminant as it poses harmful health risks. In this regard, to meet the stringent regulation of arsenic in aqueous solutions, nitrogen doped carbon-based materials (CN) were prepared as adsorbents and tested for the removal of arsenic ion from aqueous solutions. Nitrogen-doped carbon (CNs) synthesized by chlorination exhibited well-developed micro- and small meso-pores with uniform pore structures. The structure and characteristics of the adsorbents thus developed were confirmed by field-emission scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. Among the CNs developed, CN700 exhibited high adsorption capacity for arsenic (31.08 mg/g). The adsorption efficiency for arsenic ion was confirmed to be affected by pyrrolic nitrogen and micro-pores. These results suggest that CNs are useful adsorbents for the treatment of arsenic, and in particular, CN700 demonstrates potential for application as an adsorbent for the removal of anionic heavy metals from wastewater and sewage.

  18. Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India.

    Science.gov (United States)

    Chatterjee, Debmita; Bandyopadhyay, Apurba; Sarma, Nilendu; Basu, Santanu; Roychowdhury, Tarit; Roy, Sib Sankar; Giri, Ashok K

    2018-02-01

    Arsenic induced senescence (AIS) has been identified in the population of West Bengal, India very recently. Also there is a high incidence of arsenic induced peripheral neuropathy (PN) throughout India. However, the epigenetic regulation of AIS and its contribution in arsenic induced PN remains unexplored. We recruited seventy two arsenic exposed and forty unexposed individuals from West Bengal to evaluate the role of senescence associated miRNAs (SA-miRs) in AIS and their involvement if any, in PN. The downstream molecules of the miRNA associated with the disease outcome, was also checked by immuoblotting. In vitro studies were conducted with HEK 293 cells and sodium arsenite exposure. Our results show that all the SA-miRs were upregulated in comparison to unexposed controls. miR-29a was the most significantly altered, highest expression being in the arsenic exposed group with PN, suggesting its association with the occurrence of PN. We looked for the expression of peripheral myelin protein 22 (PMP22), a specific target of miR-29a associated with myelination and found that both in vitro and in vivo results showed over-expression of the protein. Since this was quite contrary to miRNA regulation, we checked for intermediate players β-catenin and GSK-3β upon arsenic exposure which affects PMP22 expression. We found that β-catenin was upregulated in vitro and was also highest in the arsenic exposed group with PN while GSK-3β followed the reverse pattern. Our findings suggest that arsenic exposure alters the expression of SA-miRs and the mir-29a/beta catenin/PMP22 axis might be responsible for arsenic induced PN. Copyright © 2017. Published by Elsevier Ltd.

  19. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  20. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.

    Science.gov (United States)

    Wei, Chao-Yang; Chen, Tong-Bin

    2006-05-01

    In an area near an arsenic mine in Hunan Province of south China, soils were often found with elevated arsenic levels. A field survey was conducted to determine arsenic accumulation in 8 Cretan brake ferns (Pteris cretica) and 16 Chinese brake ferns (Pteris vittata) growing on these soils. Three factors were evaluated: arsenic concentration in above ground parts (fronds), arsenic bioaccumulation factor (BF; ratio of arsenic in fronds to soil) and arsenic translocation factor (TF; ratio of arsenic in fronds to roots). Arsenic concentrations in the fronds of Chinese brake fern were 3-704 mg kg-1, the BFs were 0.06-7.43 and the TFs were 0.17-3.98, while those in Cretan brake fern were 149-694 mg kg-1, 1.34-6.62 and 1.00-2.61, respectively. Our survey showed that both ferns were capable of arsenic accumulation under field conditions. With most of the arsenic being accumulated in the fronds, these ferns have potential for use in phytoremediation of arsenic contaminated soils.