WorldWideScience

Sample records for arsenic trioxide reduces

  1. Development of an arsenic trioxide vapor and arsine sampling train

    International Nuclear Information System (INIS)

    Crecelius, E.A.; Sanders, R.W.

    1980-01-01

    A sampling train was evaluated using 76 As tracer for the measurement of particulate arsenic, arsine, and arsenic trioxide vapor in air and industrial process gas streams. In this train, a demister was used to remove droplets of water and oil, and particulates were removed by a filter. Vapor arsenic trioxide was collected in an impinger solution, and arsine gas was collected on silvered quartz beads. Hydrogen sulfide gas did not reduce the arsine trapping efficiency of the silvered beads, and charcoal proved to be an effective trap for both arsine and arsenic trioxide vapor. 1 figure, 2 tables

  2. Arsenic trioxide sensitizes glioblastoma to a myc inhibitor.

    Directory of Open Access Journals (Sweden)

    Yayoi Yoshimura

    Full Text Available Glioblastoma multiforme (GBM is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.

  3. Arsenic Trioxide Injection

    Science.gov (United States)

    ... people who have not been helped by other types of chemotherapy or whose condition has improved but then worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications ...

  4. Expression of cyclin A in A549 cell line after treatment with arsenic trioxide

    Directory of Open Access Journals (Sweden)

    Agnieszka Żuryń

    2015-12-01

    Full Text Available Background: Arsenic trioxide (ATO is an effective drug used in acute promyelocytic leukemia (AML. Many reports suggest that ATO can also be applied as an anticancer agent for solid tumors in the future. The influence of arsenic trioxide on the expression of different cell cycle regulators is poorly recognized. The purpose of the current study is to investigate how arsenic trioxide affects cyclin A expression and localization in the A549 cell line.Materials and methods: Morphological and ultrastructural changes in A549 cells were observed using light and transmission electron microscopes. Cyclin A localization was determined by immunofluorescence. Image-based cytometry was applied to evaluate the effect of arsenic trioxide on apoptosis and the cell cycle. Expression of cyclin A mRNA was quantified by real-time PCR.Results: After treatment with arsenic trioxide, increased numbers of cells with cytoplasmic localization of cyclin A were observed. The doses of 10 and 15 μM ATO slightly reduced expression of cyclin A mRNA. The apoptotic phenotype of cells was poorly represented, and the Tali imagebased cytometry analysis showed low percentages of apoptotic cells. The A549 population displayed an enriched fraction of cells in G0/G1 phase in the presence of 5μM ATO, whereas starting from the higher concentrations of the drug, i.e. 10 and 15 μM ATO, the G2/M fraction was on the increase.Discussion: Low expression of cyclin A in the A549 cell line may constitute a potential factor determining arsenic trioxide resistance. It could be hypothesized that the observed alterations in cyclin A expression/distribution may correlate well with changes in cell cycle regulation in our model, which in turn determines the outcome of the treatment.

  5. Ambient pressure hydrometallurgical conversion of arsenic trioxide to crystalline scorodite

    Energy Technology Data Exchange (ETDEWEB)

    Debekaussen, R. [Corus Consulting and Technical Services, Delft (Netherlands); Droppert, D. [Solumet Inc., Montreal, PQ (Canada); Demopoulos, G. P. [McGill Univ., Dept. of Metallurgical Enginering, Montreal, PQ (Canada)

    2001-06-01

    Development of a novel process for the ambient pressure conversion of arsenic trioxide, a common, but extremely toxic by-product of the non-ferrous smelting industry, is described. The process consists of three main stages; (1) dissolution of arsenic trioxide, (2) oxidation of trivalent arsenic with the addition of hydrogen peroxide at 95 degree C, to pentavalent arsenic, and (3) step-wise precipitation of crystalline scorodite from highly concentrated arsenic containing solutions, by operating below a characteristics induction pH in the presence of seed material. The technical feasibility of the process has been confirmed by bench-scale testing of industrial flue dust material or acid plant effluents. 30 refs., 2 tabs., 5 figs.

  6. Dose- and Time-Dependent Response of Human Leukemia (HL-60 Cells to Arsenic Trioxide Treatment

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-06-01

    Full Text Available The treatment of acute promyelocytic leukemia (APL has been based on the administration of all-trans retinoic acid plus anthracycline chemotherapy, which is very effective as first line therapy; however 25 to 30% of patients will relapse with their disease becoming refractory to conventional therapy. Recently, studies have shown arsenic trioxide to be effective in the treatment of acute promyelocytic leukemia. In this study, we used the human leukemia (HL-60 cell line as a model to evaluate the cytoxicity of arsenic trioxide based on the MTT assay. Data obtained from this assay indicated that arsenic trioxide significantly reduced the viability of HL-60 cells, showing LD50 values of 14.26 + 0.5μg/mL, 12.54 + 0.3μg/mL, and 6.4 + 0.6μg/mL upon 6, 12, and 24 hours of exposure, respectively; indicating a dose- and time-dependent response relationship. Findings from the present study indicate that arsenic trioxide is highly cytotoxic to human leukemia (HL-60 cells, supporting its use as an effective therapeutic agent in the management of acute promyelocytic leukemia.

  7. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment

    OpenAIRE

    Chen, Baowei; Cao, Fenglin; Yuan, Chungang; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X. Chris

    2013-01-01

    Arsenic trioxide has been successfully used as a therapeutic in the treatment of acute promyelocytic leukemia (APL). Detailed monitoring of the therapeutic arsenic and its metabolites in various accessible specimens of APL patients can contribute to improving treatment efficacy and minimizing arsenic-induced side effects. This article focuses on the determination of arsenic species in saliva samples from APL patients undergoing arsenic treatment. Saliva samples were collected from nine APL pa...

  8. Studying arsenic trioxide-induced apoptosis of Colo-16 cells with ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... induced apoptosis at the single cell level. Key words: Two-photon laser scanning microscopy, confocal laser scanning microscopy, human skin squamous carcinoma cells (Colo-16 cells), arsenic trioxide, apoptosis. INTRODUCTION. Although arsenic is poisonous and chronic arsenic exposure from ...

  9. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    International Nuclear Information System (INIS)

    Mao, Jiamin; Yang, Jianbing; Zhang, Yan; Li, Ting; Wang, Cheng; Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang; Nie, Xiaoke; Chen, Gang

    2016-01-01

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  10. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiamin [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Yang, Jianbing [Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001 (China); Zhang, Yan [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Li, Ting [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Wang, Cheng [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Nie, Xiaoke [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Chen, Gang, E-mail: chengang@ntu.edu.cn [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China)

    2016-07-15

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  11. Relapsed acute promyelocytic leukemia in a hemodialysis-dependent patient treated with arsenic trioxide: a case report

    Directory of Open Access Journals (Sweden)

    Emmons Gregory S

    2012-10-01

    Full Text Available Abstract Introduction In the relapsed setting, arsenic trioxide remains the backbone of treatment. Scant literature exists regarding treatment of relapsed acute promyelocytic leukemia in patients with renal failure. To the best of our knowledge we are the first to report a safe and effective means of treatment for relapsed acute promyelocytic leukemia in the setting of advanced renal failure, employing titration of arsenic trioxide based on clinical parameters rather than arsenic trioxide levels. Case presentation A 33-year-old Caucasian man with a history of acute promyelocytic leukemia in remission for 3 years, as well as dialysis-dependent chronic renal failure secondary to a solitary kidney and focal segmental glomerulosclerosis and human immunodeficiency virus infection, receiving highly active antiretroviral therapy presented to our hospital with bone marrow biopsy-confirmed relapsed acute promyelocytic leukemia. Arsenic trioxide was begun at a low dose with dose escalation based only on side effect profile monitoring and not laboratory testing for induction as well as maintenance without undue toxicity. Our patient achieved and remains in complete hematologic and molecular remission as of this writing. Conclusion Arsenic trioxide can be used safely and effectively to treat acute promyelocytic leukemia in patients with advanced renal failure using careful monitoring of side effects rather than blood levels of arsenic to guide therapeutic dosing.

  12. Arsenic species excretion after dimercaptopropanesulfonic acid (DMPS) treatment of an acute arsenic trioxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich-Ramm, R. [Ordinariat fuer Arbeitsmedizin der Universitaet Hamburg und Zentralinstitut fuer Arbeitsmedizin, Hamburg (Germany); Schaller, K.H.; Angerer, J. [Institut und Poliklinik fuer Arbeits-, Sozial- und Umweltmedizin der Universitaet Erlangen-Nuernberg, Schillerstr. 25, 91054 Erlangen (Germany); Horn, J. [Medizinische Klinik II, Toxikologische-internistische Intensivstation, Klinikum Nuernberg, Nuernberg (Germany)

    2003-02-01

    We studied the urinary excretion of the different arsenic species in urine samples from a young man who tried to commit suicide by ingesting about 0.6 g arsenic trioxide. He received immediate therapy with dimercaptopropanesulfonic acid (DMPS) after his delivery into the hospital. We assessed urinary arsenite (inorganic trivalent arsenic), arsenate (inorganic pentavalent arsenic), pentavalent dimethylarsinic acid (DMA) and pentavalent monomethylarsonic acid (MMA) in urine with ion-exchange chromatography and on-line hydride-technique atomic absorption spectrometry. The predominant amount of the excreted arsenic was unchanged trivalent inorganic arsenic (37.4%), followed by pentavalent inorganic arsenic (2.6%), MMA (2.1%), DMA (0.2%) and one unidentified arsenic species (0.7%, if calculated as DMA). In the first urine voiding in the clinic, the total arsenic concentration was 215 mg/l, which fell 1000-fold after 8 days of DMPS therapy. A most striking finding was the almost complete inhibition of the second methylation step in arsenic metabolism. As mechanisms for the reduced methylation efficiency, the saturation of the enzymatic process of arsenic methylation, the high dosage of antidote DMPS, which might inhibit the activity of the methyl transferases, and analytical reasons are discussed. The high dosage of DMPS is the most likely explanation. The patient left the hospital after a 12-day treatment with antidote. (orig.)

  13. Nrf2 activation ameliorates cytotoxic effects of arsenic trioxide in acute promyelocytic leukemia cells through increased glutathione levels and arsenic efflux from cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, Shoichi; Suzuki, Toshihiro; Koike, Shin [Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 (Japan); Yuan, Bo; Takagi, Norio [Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 (Japan); Ogasawara, Yuki, E-mail: yo@my-pharm.ac.jp [Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 (Japan)

    2016-08-15

    Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, has been shown to activate nuclear transcription factor E2-related factor 2 (Nrf2), which plays a central role in cytoprotective responses to oxidative and electrophilic stress. Recently, the Nrf2-Kelch ECH associating protein 1 (Keap1) pathway has been associated with cancer drug resistance attributable to modulation of the expression and activation of antioxidant and detoxification enzymes. However, the exact mechanisms by which Nrf2 activation results in chemoresistance are insufficiently understood to date. This study investigated the mechanisms by which the cytotoxic effects of arsenic trioxide (ATO), an anticancer drug, were decreased in acute promyelocytic leukemia cells treated with CA, a typical activator of Nrf2 used to stimulate the Nrf2/Keap1 system. Our findings suggest that arsenic is non-enzymatically incorporated into NB4 cells and forms complexes that are dependent on intracellular glutathione (GSH) concentrations. In addition, the arsenic complexes are recognized as substrates by multidrug resistance proteins and subsequently excreted from the cells. Therefore, Nrf2-associated activation of the GSH biosynthetic pathway, followed by increased levels of intracellular GSH, are key mechanisms underlying accelerated arsenic efflux and attenuation of the cytotoxic effects of ATO. - Highlights: • Nrf2 activation attenuates the effect of arsenic trioxide to acute promyelocytic leukemia cells. • The sensitivity of arsenic trioxide to NB4 cells was dependent on efflux rate of arsenic. • Activation of the GSH biosynthesis is essential in Nrf2-regulated responses for arsenic efflux.

  14. Comparative investigations of sodium arsenite, arsenic trioxide and cadmium sulphate in combination with gamma-radiation on apoptosis, micronuclei induction and DNA damage in a human lymphoblastoid cell line

    International Nuclear Information System (INIS)

    Hornhardt, Sabine; Gomolka, Maria; Walsh, Linda; Jung, Thomas

    2006-01-01

    In the field of radiation protection the combined exposure to radiation and other toxic agents is recognised as an important research area. To elucidate the basic mechanisms of simultaneous exposure, the interaction of the carcinogens and environmental toxicants cadmium and two arsenic compounds, arsenite and arsenic trioxide, in combination with gamma-radiation in human lymphoblastoid cells (TK6) were investigated. Gamma-radiation induced significant genotoxic effects such as micronuclei formation, DNA damage and apoptosis, whereas arsenic and cadmium had no significant effect on these indicators of cellular damage at non-toxic concentrations. However, in combination with gamma-radiation arsenic trioxide induced a more than additive apoptotic rate compared to the sum of the single effects. Here, the level of apoptotic cells was increased, in a dose-dependent way, up to two-fold compared to the irradiated control cells. Arsenite did not induce a significant additive effect at any of the concentrations or radiation doses tested. On the other hand, arsenic trioxide was less effective than arsenite in the induction of DNA protein cross-links. These data indicate that the two arsenic compounds interact through different pathways in the cell. Cadmium sulphate, like arsenite, had no significant effect on apoptosis in combination with gamma-radiation at low concentrations and, at high concentrations, even reduced the radiation-induced apoptosis. An additive effect on micronuclei induction was observed with 1 μM cadmium sulphate with an increase of up to 80% compared to the irradiated control cells. Toxic concentrations of cadmium and arsenic trioxide seemed to reduce micronuclei induction. The results presented here indicate that relatively low concentrations of arsenic and cadmium, close to those occurring in nature, may interfere with radiation effects. Differences in action of the two arsenic compounds were identified

  15. Arsenic speciation in hair and nails of acute promyelocytic leukemia (APL) patients undergoing arsenic trioxide treatment.

    Science.gov (United States)

    Chen, Baowei; Cao, Fenglin; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X Chris

    2018-07-01

    Arsenic in hair and nails has been used to assess chronic exposure of humans to environmental arsenic. However, it remains to be seen whether it is appropriate to evaluate acute exposure to sub-lethal doses of arsenic typically used in therapeutics. In this study, hair, fingernail and toenail samples were collected from nine acute promyelocytic leukemia (APL) patients who were administered intravenously the daily dose of 10 mg arsenic trioxide (7.5 mg arsenic) for up to 54 days. These hair and nail samples were analyzed for arsenic species using high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection (HPLC-ICPMS). Inorganic arsenite was the predominant form among water-extractable arsenicals. Dimethylarsinic acid (DMA V ), monomethylarsonic acid (MMA V ), monomethylarsonous acid (MMA III ), monomethylmonothioarsonic acid (MMMTA V ), and dimethylmonothioarsinic acid (DMMTA V ) were also detected in both hair and nail samples. This is the first report of the detection of MMA III and MMMTA V as metabolites of arsenic in hair and nails of APL patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  17. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  18. Establishment and characterization of arsenic trioxide resistant KB/ATO cells.

    Science.gov (United States)

    Zhang, Yun-Kai; Dai, Chunling; Yuan, Chun-Gang; Wu, Hsiang-Chun; Xiao, Zhijie; Lei, Zi-Ning; Yang, Dong-Hua; Le, X Chris; Fu, Liwu; Chen, Zhe-Sheng

    2017-09-01

    Arsenic trioxide (ATO) is used as a chemotherapeutic agent for the treatment of acute promyelocytic leukemia. However, increasing drug resistance is reducing its efficacy. Therefore, a better understanding of ATO resistance mechanism is required. In this study, we established an ATO-resistant human epidermoid carcinoma cell line, KB/ATO, from its parental KB-3-1 cells. In addition to ATO, KB/ATO cells also exhibited cross-resistance to other anticancer drugs such as cisplatin, antimony potassium tartrate, and 6-mercaptopurine. The arsenic accumulation in KB/ATO cells was significantly lower than that in KB-3-1 cells. Further analysis indicated that neither application of P-glycoprotein inhibitor, breast cancer resistant protein (BCRP) inhibitor, or multidrug resistance protein 1 (MRP1) inhibitor could eliminate ATO resistance. We found that the expression level of ABCB6 was increased in KB/ATO cells. In conclusion, ABCB6 could be an important factor for ATO resistance in KB/ATO cells. The ABCB6 level may serve as a predictive biomarker for the effectiveness of ATO therapy.

  19. Dose-adjusted arsenic trioxide for acute promyelocytic leukaemia in chronic renal failure.

    Science.gov (United States)

    Firkin, Frank; Roncolato, Fernando; Ho, Wai Khoon

    2015-10-01

    To determine the potential for arsenic trioxide (ATO) to be safely and effectively incorporated into induction therapy of newly diagnosed acute promyelocytic leukaemia (APL) in patients with severe chronic renal failure (CRF) by reduction of the ATO dosage to compensate for reduced renal elimination of arsenic in CRF. Two of the four CRF patients with APL in the study were dialysis-dependent, and two had eGFRs of 18 and 19 mL/min/1.73 m(2) . ATO dosage schedules were adjusted to obtain comparable whole-blood arsenic levels to those in APL patients with normal renal function who achieved molecular remission (MR) while receiving 10 mg ATO daily for 28 d. Average ATO administered per day in CRF patients ranged from 36 to 50% of the ATO administered to APL patients with normal renal function. No clinically significant cardiac, hepatic or other toxicities were detected. RT-PCR-negative MR was achieved after one treatment course in two patients and after two courses in the others. Relapse-free survival is 155, 60, 43 and 5 months. The observations in this pilot study have demonstrated whole-blood arsenic levels can provide a guide to adjustments of ATO dosage schedules that permit safe and effective therapeutic outcomes in APL patients with severely compromised renal function. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Addition of Arsenic Trioxide into Induction Regimens Could Not Accelerate Recovery of Abnormality of Coagulation and Fibrinolysis in Patients with Acute Promyelocytic Leukemia.

    Directory of Open Access Journals (Sweden)

    Ye Zhang

    Full Text Available All-trans retinoic acid combined to anthracycline-based chemotherapy is the standard regimen of acute promyelocytic leukemia. The advent of arsenic trioxide has contributed to improve the anti-leukemic efficacy in acute promyelocytic leukemia. The objectives of the current study were to evaluate if dual induction by all-trans retinoic acid and arsenic trioxide could accelerate the recovery of abnormality of coagulation and fibrinolysis in patients with acute promyelocytic leukemia.Retrospective analysis was performed in 103 newly-diagnosed patients with acute promyelocytic leukemia. Hemostatic variables and the consumption of component blood were comparably analyzed among patients treated by different induction regimen with or without arsenic trioxide.Compared to patients with other subtypes of de novo acute myeloid leukemia, patients with acute promyelocytic leukemia had lower platelet counts and fibrinogen levels, significantly prolonged prothrombin time and elevated D-dimers (P<0.001. Acute promyelocytic leukemia patients with high or intermediate risk prognostic stratification presented lower initial fibrinogen level than that of low-risk group (P<0.05. After induction treatment, abnormal coagulation and fibrinolysis of patients with acute promyelocytic leukemia was significantly improved before day 10. The recovery of abnormal hemostatic variables (platelet, prothrombin time, fibrinogen and D-dimer was not significantly accelerated after adding arsenic trioxide in induction regimens; and the consumption of transfused component blood (platelet and plasma did not dramatically change either. Acute promyelocytic leukemia patients with high or intermediate risk prognostic stratification had higher platelet transfusion demands than that of low-risk group (P<0.05.Unexpectedly, adding arsenic trioxide could not accelerate the recovery of abnormality of coagulation and fibrinolysis in acute promyelocytic leukemia patients who received all

  1. Arsenic trioxide: impact on the growth and differentiation of cancer cells and possible use in cancer therapy

    Directory of Open Access Journals (Sweden)

    Ewelina Hoffman

    2013-08-01

    Full Text Available Arsenic trioxide (As2O3 has recently been identified as an effective drug in different types of cancer therapy. It is a useful pharmacological agent in acute promyelocytic leukemia (APL treatment, especially the form that is resistant to conventional chemotherapy with all-trans retinoic acid (ATRA. What is more, laboratory data suggest that As2O3 is also active when it comes to several solid tumor cell lines. However, the mechanism of action is not fully understood. As2O3 in high doses triggers apoptosis, while in lower concentrations it induces partial differentiation. The As2O3 mechanism of action involves effects on mitochondrial transmembrane potential which lead to apoptosis. It also acts on the activity of JNK kinase, glutathione, caspases, NF-ĸB nuclear factor or pro- and antiapoptotic proteins. This publication presents the current knowledge about the influence of arsenic trioxide in cancer cells.

  2. Use of arsenic trioxide in remission induction and consolidation therapy for acute promyelocytic leukaemia in the Australasian Leukaemia and Lymphoma Group (ALLG) APML4 study: a non-randomised phase 2 trial.

    Science.gov (United States)

    Iland, Harry J; Collins, Marnie; Bradstock, Ken; Supple, Shane G; Catalano, Alberto; Hertzberg, Mark; Browett, Peter; Grigg, Andrew; Firkin, Frank; Campbell, Lynda J; Hugman, Amanda; Reynolds, John; Di Iulio, Juliana; Tiley, Campbell; Taylor, Kerry; Filshie, Robin; Seldon, Michael; Taper, John; Szer, Jeff; Moore, John; Bashford, John; Seymour, John F

    2015-09-01

    Initial treatment of acute promyelocytic leukaemia traditionally involves tretinoin (all-trans retinoic acid) combined with anthracycline-based risk-adapted chemotherapy, with arsenic trioxide being the treatment of choice at relapse. To try to reduce the relapse rate, we combined arsenic trioxide with tretinoin and idarubicin in induction therapy, and used arsenic trioxide with tretinoin as consolidation therapy. Patients with previously untreated genetically confirmed acute promyelocytic leukaemia were eligible for this study. Eligibilty also required Eastern Cooperative Oncology Group performance status 0-3, age older than 1 year, normal left ventricular ejection fraction, Q-Tc interval less than 500 ms, absence of serious comorbidity, and written informed consent. Patients with genetic variants of acute promyelocytic leukaemia (fusion of genes other than PML with RARA) were ineligible. Induction comprised 45 mg/m(2) oral tretinoin in four divided doses daily on days 1-36, 6-12 mg/m(2) intravenous idarubicin on days 2, 4, 6, and 8, adjusted for age, and 0·15 mg/kg intravenous arsenic trioxide once daily on days 9-36. Supportive therapy included blood products for protocol-specified haemostatic targets, and 1 mg/kg prednisone daily as prophylaxis against differentiation syndrome. Two consolidation cycles with tretinoin and arsenic trioxide were followed by maintenance therapy with oral tretinoin, 6-mercaptopurine, and methotrexate for 2 years. The primary endpoints of the study were freedom from relapse and early death (within 36 days of treatment start) and we assessed improvement compared with the 2 year interim results. To assess durability of remission we compared the primary endpoints and disease-free and overall survival at 5 years in APML4 with the 2 year interim APML4 data and the APML3 treatment protocol that excluded arsenic trioxide. This study is registered with the Australian New Zealand Clinical Trials Registry, number ACTRN12605000070639. 124

  3. Experimental study on effect of arsenic trioxide on vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Lu Qin; An Yanli; Niu Huanzhang; Teng Gaojun; Wang Zihao; Zhang Dongsheng; Fang Juanjuan

    2007-01-01

    Objective: To investigate the effect of arsenic trioxide (As 2 O 3 ) nanoparticles on rabbit vascular smooth muscle cells in vitro in comparison with normal form As 2 O 3 . Methods: The rabbit vascular smooth muscle cells were cultured in vitro. Nano and normal forms of As 2 O 3 with drug concentrations of 3 μmol/L were added into the cells. Cell proliferation curve was drawn according to the light absorption values of MTT test. Flow cytometry was applied to observe the apoptosis. DNA was extracted and underwent electrophoresis. Results: Cell proliferation treated with the 3 μmol/L concentration of As 2 O 3 was inhibited. Cell growth was inhibited markedly with increased treatment time, and the inhibition effect of nano drug form seemed stronger than that of normal form. MTT light absorption values of cells treated at 24, 48 and 72 h showed statistically significant difference (H=10.934, 15.039, 15.539, P 2 O 3 , normal drug form of As 2 O 3 and control group of cells without As 2 O 3 were 44.97%, 58.54%, 74.02% respectively. The early apoptosis rates were 16.89%, 11.27%, 11.20%, late apoptosis rates were 26.56%, 23.60%, 12.46%, and necrosis rates were 11.58%, 6.59%, 2.32% respectively. Agarose gel electrophoresis showed 'ladder' strand of DNA, with more strands and obscurity for nano drug form treated cells. Conclusion: Arsenic trioxide may inhibit the growth of rabbit vascular smooth muscle cells. The nano drug form showed stronger inhibition effect than that of the normal drug form. (authors)

  4. Assessing the efficiency of aluminium phosphide and arsenic trioxide in controlling the Indian crested porcupine (hystrix indica) in an irrigated forest plantation or Punjab, Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.

    2010-01-01

    The Indian crested porcupine, Hystrix indica, is widely distributed in the irrigated forests of Punjab, Pakistan and causes serious damage to trees, nursery stocking, field crops and vegetables. Field trials were conducted to determine the efficacy of aluminium phosphide (Phostoxin, 3g tablets) and arsenic trioxide bait (at 2.5g per apple) against the porcupine in a forest plantation. For fumigation with phostoxin, tablets were used at the rate of four, five, six and seven tablets per den. Observations showed that four tablets were ineffective, five and six tablets provided partial control, while seven tablets provided complete control of porcupines. Baiting with arsenic trioxide also resulted in 89 % reduction of the porcupine population occupying the treated dens. (author)

  5. Arsenic trioxide induced rhabdomyolysis, a rare but severe side effect, in an APL patient: a case report.

    Science.gov (United States)

    He, Haiyan; An, Ran; Hou, Jian; Fu, Weijun

    2017-06-01

    Arsenic trioxide (ATO), a component of the traditional Chinese medicine arsenic sublimate, promotes apoptosis and induces leukemic cell differentiation. Combined with all-trans-retinotic acid (ATRA), ATO has become the first-line induction therapy in treating acute promyelocytic leukemia (APL). The most common side effects of ATO include hepatotoxicity, gastrointestinal symptoms, water-sodium retention, and nervous system damage. In this report, we present a rare side effect, rhabdomyolysis, in a 68-year-old female APL patient who was treated with ATO. After taking 10 mg ATO daily for 6 days, she presented shortness of breath, myodynia, elevated creatine kinase, and acute renal insufficiency. This report describes the first case of ATO-induced rhabdomyolysis.

  6. Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes

    International Nuclear Information System (INIS)

    Huang, H.-S.; Liu, Z.-M.; Hong, D.-Y.

    2010-01-01

    Arsenic is well known as a carcinogen predisposing humans to some severe diseases and also as an effective medicine for treating acute promyelocytic leukemia, syphilis, and psoriasis. Multiple active mechanisms, including cell cycle arrest and apoptosis, have been proposed in therapy; however, the opposing effects of arsenic remain controversial. Our previous study found that arsenic trioxide (ATO)-induced activation of p21 WAF1/CIP1 (p21) led to A431 cell death through the antagonistic effects of the signaling of ERK1/2 and JNK1. In the current study, the inhibitory effects of JNK1 on ATO-induced p21 expression were explored. Over-expression of JNK1 in A431 cells could inhibit p21 expression, which was associated with HDAC1 and TGIF. Using the GST pull-down assay and fluorescence resonance energy transfer analysis, N-terminal domain (amino acids 1-108) of TGIF, critical to its binding with c-Jun, was found. Using reporter assays, requirement of the C-terminal domain (amino acids 138-272) of TGIF to suppress ATO-induced p21 expression was observed. Thus, the domains of TGIF that carried out its inhibitory effects on p21 were identified. Finally, treatment with JNK inhibitor SP600125 could enhance ATO-induced apoptosis of HaCaT keratinocytes by using flow cytometry.

  7. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Wang, Yong [Department of Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Weng, Zhiping; Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Harrod, Kevin S. [Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S., E-mail: treena@uab.edu [Department of Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-10-01

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4{sup +/+} wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4{sup +/−} heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca{sup ++} homeostasis. ATO induces Ca{sup ++}-dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca{sup ++} homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4{sup +/−} mice

  8. Activating transcription factor 4 underlies the pathogenesis of arsenic trioxide-mediated impairment of macrophage innate immune functions

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Wang, Yong; Weng, Zhiping; Elmets, Craig A.; Harrod, Kevin S.; Deshane, Jessy S.; Athar, Mohammad

    2016-01-01

    Chronic arsenic exposure to humans is considered immunosuppressive with augmented susceptibility to several infectious diseases. The exact molecular mechanisms, however, remain unknown. Earlier, we showed the involvement of unfolded protein response (UPR) signaling in arsenic-mediated impairment of macrophage functions. Here, we show that activating transcription factor 4 (ATF4), a UPR transcription factor, regulates arsenic trioxide (ATO)-mediated dysregulation of macrophage functions. In ATO-treated ATF4 +/+ wild-type mice, a significant down-regulation of CD11b expression was associated with the reduced phagocytic functions of peritoneal and lung macrophages. This severe immuno-toxicity phenotype was not observed in ATO-treated ATF4 +/− heterozygous mice. To confirm these observations, we demonstrated in Raw 264.7 cells that ATF4 knock-down rescues ATO-mediated impairment of macrophage functions including cytokine production, bacterial engulfment and clearance of engulfed bacteria. Sustained activation of ATF4 by ATO in macrophages induces apoptosis, while diminution of ATF4 expression protects against ATO-induced apoptotic cell death. Raw 264.7 cells treated with ATO also manifest dysregulated Ca ++ homeostasis. ATO induces Ca ++ -dependent calpain-1 and caspase-12 expression which together regulated macrophage apoptosis. Additionally, apoptosis was also induced by mitochondria-regulated pathway. Restoring ATO-impaired Ca ++ homeostasis in ER/mitochondria by treatments with the inhibitors of inositol 1,4,5-trisphosphate receptor (IP3R) and voltage-dependent anion channel (VDAC) attenuate innate immune functions of macrophages. These studies identify a novel role for ATF4 in underlying pathogenesis of macrophage dysregulation and immuno-toxicity of arsenic. - Highlights: • ATF4 regulates arsenic-mediated impairment in macrophage functions. • Arsenic-mediated alterations in pulmonary macrophage are diminished in ATF4 +/− mice. • Changes in macrophage

  9. Negligible expression of arsenic in some commercially available brands of Portland cement and mineral trioxide aggregate.

    Science.gov (United States)

    De-Deus, Gustavo; de Souza, Maria Claudia Brandão; Sergio Fidel, Rivail Antonio; Fidel, Sandra Rivera; de Campos, Reinaldo Calixto; Luna, Aderval S

    2009-06-01

    This study was designed aiming to determine and compare the amount of arsenic in some brands of mineral trioxide aggregate (MTA) and Portland cement. In the present study, arsenic species (As[III], As[V], and dimethylarsinic acid) were separated by high-performance liquid chromatography (HPLC) using a strong anion exchange column and converted into arsines by online HG. The instrumental coupling, HPLC-HG-AFS, was applied to 0.2 g of each cement that was prior digested in a solution of HCl, HNO(3), and HBF(4). Data were expressed as a part per million, and the preliminary analysis of the raw pooled data revealed a bell-shaped distribution. Statistical analysis was performed using one-way analysis of variance for multiple comparisons. In all chromatograms obtained, only type III arsenic could be detected. The minimum amount of arsenic was detected in samples of white MTA ProRoot (3.3 x 10-4) and the maximum in the samples MTA Bio Angelus (Angelus, Londrina, PR, Brazil) (8.6 x 10-4). In the Gray MTA (Angelus), gray ProRoot MTA (Tulsa/Dentsply, Tulsa, OK) and CP Juntalider (Brasilatex Ltda, Diadema, SP, Brazil) did not detect any trace of arsenic. The values of arsenic found in CP Irajazinho (Votorantim Cimentos, Rio Branco, SP, Brazil) and white MTA Angelus were intermediaries to minimum and maximum values. The nonparametric test Kruskal-Wallis showed statistically similar results among all cements tested (p > 0.5). Overall, the present study showed that all cements showed insignificant amounts of type III arsenic as well as no trace of arsenic DMA and type V could be detected.

  10. Retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia: current perspectives

    Directory of Open Access Journals (Sweden)

    McCulloch D

    2017-03-01

    Full Text Available Derek McCulloch, Christina Brown, Harry Iland Institute of Hematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia Abstract: Acute promyelocytic leukemia (APL is a distinct subtype of acute myeloid leukemia (AML with a unique morphological appearance, associated coagulopathy and canonical balanced translocation of genetic material between chromosomes 15 and 17. APL was first described as a distinct subtype of AML in 1957 by Dr Leif Hillestad who recognized the pattern of an acute leukemia associated with fibrinolysis, hypofibrinogenemia and catastrophic hemorrhage. In the intervening years, the characteristic morphology of APL has been described fully with both classical hypergranular and variant microgranular forms. Both are characterized by a balanced translocation between the long arms of chromosomes 15 and 17, [t(15;17(q24;q21], giving rise to a unique fusion gene PML-RARA and an abnormal chimeric transcription factor (PML-RARA, which disrupts normal myeloid differentiation programs. The success of current treatments for APL is in marked contrast to the vast majority of patients with non-promyelocytic AML. The overall prognosis in non-promyelocytic AML is poor, and although there has been an improvement in overall survival in patients aged <60 years, only 30%–40% of younger patients are still alive 5 years after diagnosis. APL therapy has diverged from standard AML therapy through the empirical discovery of two agents that directly target the molecular basis of the disease. The evolution of treatment over the last 4 decades to include all-trans retinoic acid and arsenic trioxide, with chemotherapy limited to patients with high-risk disease, has led to complete remission in 90%–100% of patients in trials and rates of overall survival between 86% and 97%. Keywords: acute promyelocytic leukemia, ATRA, arsenic trioxide

  11. Polaron interaction energies in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Salje, E.; Tilley, R.J.D.

    1981-01-01

    Consideration of the properties of reduced tungsten trioxide suggest that the mobile charge carriers are polarons. As it is uncertain how the presence of polarons will influence the microstructures of the crystallographic shear (CS) planes present in reduced tungsten trioxide we have calculated both the polaron-CS plane and polaron-polaron interaction energy for a variety of circumstances. Three CS plane geometries were considered, (102), (103), and (001) CS plane arrays, and the nominal compositions of the crystals ranged from WO 2 70 to WO 3 0 . The polarons were assumed to have radii from 0.6 to 1.0 nm and the polaron-CS plane electrostatic interaction was assumed to be screened. The results suggest that for the most part the total interaction energy is small and is unlikely to be of major importance in controlling the microstructures found in CS planes. However, at very high polaron densities the interaction energy could be appreciable and may have some influence on the existence range of CS phases

  12. Accumulation and suppressive function of regulatory T cells in malignant ascites: Reducing their suppressive function using arsenic trioxide in vitro.

    Science.gov (United States)

    Hu, Zilong; Hu, Shidong; Wu, Youjun; Li, Songyan; He, Changzheng; Xing, Xiaowei; Wang, Yufeng; Du, Xiaohui

    2018-04-01

    Although adoptive cell therapy (ACT) has demonstrated effective and remarkable clinical responses in several studies, this approach does not lead to objective clinical responses in all cases. The function of ACT is often compromised by various tumor escape mechanisms, including the accumulation of immunoregulatory cells. As a result of peritoneal metastasis in the terminal stage, malignant ascites fluid lacks effectiveness and is a poor prognostic factor for gastric cancer. The present study assessed T-cell subsets in lymphocytes derived from malignant ascites, and investigated the effects of arsenic trioxide (As 2 O 3 ) on regulatory T cells (Tregs) and ascites-derived tumor-infiltrating lymphocytes (TILs) in vitro . In this study, lymphocytes were separated from malignant ascites and T-cell subsets were detected via flow cytometry. Forkhead box P3 (FoxP3) expression was assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. In addition, cytokines, including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and interferon-γ (IFN-γ), were measured by enzyme-linked immunosorbent assay (ELISA). Abundant Tregs were observed in ascites lymphocytes, which and exhibited a significantly increased frequency compared with that in the peripheral blood of patients. Furthermore, As 2 O 3 treatment significantly reduced Treg numbers and Foxp3 mRNA levels in vitro (P<0.05). IFN-γ levels in the supernatant of ascites-derived TILs were increased by As 2 O 3 , whereas IL-10 and TGF-β levels were significantly reduced (P<0.05). As 2 O 3 may induce selective depletion and inhibit immunosuppressive function of Tregs, and may enhance the cytotoxic activity of ascites-derived TILs.

  13. Ammonium and arsenic trioxide are potent facilitators of oligonucleotide function when delivered by gymnosis

    Science.gov (United States)

    Zhang, Xiaowei; Castanotto, Daniela; Liu, Xueli; Shemi, Amotz; Stein, Cy A

    2018-01-01

    Abstract Oligonucleotide (ON) concentrations employed for therapeutic applications vary widely, but in general are high enough to raise significant concerns for off target effects and cellular toxicity. However, lowering ON concentrations reduces the chances of a therapeutic response, since typically relatively small amounts of ON are taken up by targeted cells in tissue culture. It is therefore imperative to identify new strategies to improve the concentration dependence of ON function. In this work, we have identified ammonium ion (NH4+) as a non-toxic potent enhancer of ON activity in the nucleus and cytoplasm following delivery by gymnosis. NH4+ is a metabolite that has been extensively employed as diuretic, expectorant, for the treatment of renal calculi and in a variety of other diseases. Enhancement of function can be found in attached and suspension cells, including in difficult-to-transfect Jurkat T and CEM T cells. We have also demonstrated that NH4+ can synergistically interact with arsenic trioxide (arsenite) to further promote ON function without producing any apparent increased cellular toxicity. These small, inexpensive, widely distributed molecules could be useful not only in laboratory experiments but potentially in therapeutic ON-based combinatorial strategy for clinical applications. PMID:29522198

  14. The antitumor effect of arsenic trioxide on hepatocellular carcinoma is enhanced by andrographolide.

    Science.gov (United States)

    Duan, Xuhua; Li, Tengfei; Han, Xinwei; Ren, Jianzhuang; Chen, Pengfei; Li, Hao; Gong, Shaojun

    2017-10-31

    High concentrations of arsenic trioxide (As 2 O 3 ) are used to treat acute promyelocytic leukemia and solid tumors, with negative side effects to normal cells. Andrographolide is a traditional Chinese medicine that exerts anti-cancer, anti-inflammatory, anti-virus, and anti-diabetic effects. Here, we tested the effects of combined andrographolide with As 2 O 3 against hepatocellular carcinoma (HCC). We found that by increasing apoptosis, andrographolide synergistically enhanced the anti-tumor effects of As2O3 in HepG2 cells in vitro and in vivo . Furthermore, results from our microarray assays and experiments with mouse xenografts showed that EphB4 was downregulated by the combination of As 2 O 3 plus andrographolide. These findings suggest that the combination of andrographolide and As 2 O 3 could yield therapeutic benefits in the treatment of HCC.

  15. Bone marrow necrosis in a patient with acute promyelocytic leukemia during re-induction therapy with arsenic trioxide.

    Science.gov (United States)

    Ishitsuka, Kenji; Shirahashi, Akihiko; Iwao, Yasuhiro; Shishime, Mikiko; Takamatsu, Yasushi; Takatsuka, Yoshifusa; Utsunomiya, Atae; Suzumiya, Junji; Hara, Syuji; Tamura, Kazuo

    2004-04-01

    Arsenic trioxide (As2O3) therapy at a daily dose of 0.15 mg/kg was given to a 60-yr-old Japanese male with refractory acute promyelocytic leukemia. White blood cell (WBC) of 6.6 x 10(3)/microl increased to 134 x 10(3)/microl following the administration of As2O3. Daily hydroxyurea (HU), and 6-mercaptopurine (6-MP) were added on days 7 and 19, respectively. Both HU and 6-MP were discontinued on day 28, when WBC declined to 54.0 x 10(3)/microl. He developed unexplained fever and profound cytopenia requiring multiple blood products transfusions. Bone marrow examination on day 42 revealed massive necrosis. Pharmacokinetics confirmed a mean maximum plasma arsenic concentration (Cpmax) and a half-life time (t1/2) of 6.9 microm and 3.2 h, respectively, in the therapeutic range. This is the first case of bone marrow necrosis after standard-dose As2O3 therapy.

  16. Acute and chronic arsenic toxicity

    OpenAIRE

    Ratnaike, R

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption o...

  17. Refractory acute promyelocytic leukemia successfully treated with combination therapy of arsenic trioxide and tamibarotene: A case report

    Directory of Open Access Journals (Sweden)

    Minoru Kojima

    2016-01-01

    Full Text Available A 40-year-old male developed refractory acute promyelocytic leukemia (APL after various treatments including all-trans retinoic acid, tamibarotene, arsenic trioxide (As2O3, conventional chemotherapy, and autologous peripheral blood stem cell transplantation. We attempted to use both tamibarotene and As2O3 as a combination therapy, and he achieved molecular complete remission. Grade 2 prolongation of the QTc interval on the electrocardiogram was observed during the therapy. The combination therapy of As2O3 and tamibarotene may be effective and tolerable for treating refractory APL cases who have no treatment options, even when they have previously been treated with tamibarotene and As2O3 as a single agent.

  18. Immunotoxicity and biodistribution analysis of arsenic trioxide in C57Bl/6 mice following a 2-week inhalation exposure

    International Nuclear Information System (INIS)

    Burchiel, Scott W.; Mitchell, Leah A.; Lauer, Fredine T.; Sun Xi; McDonald, Jacob D.; Hudson, Laurie G.; Liu Kejian

    2009-01-01

    In these studies the immunotoxicity of arsenic trioxide (ATO, As 2 O 3 ) was evaluated in mice following 14 days of inhalation exposures (nose only, 3 h per day) at concentrations of 50 μg/m 3 and 1 mg/m 3 . A biodistribution analysis performed immediately after inhalation exposures revealed highest levels of arsenic in the kidneys, bladder, liver, and lung. Spleen cell levels were comparable to those found in the blood, with the highest concentration of arsenic detected in the spleen being 150 μg/g tissue following the 1 mg/m 3 exposures. No spleen cell cytotoxicity was observed at either of the two exposure levels. There were no changes in spleen cell surface marker expression for B cells, T cells, macrophages, and natural killer (NK) cells. There were also no changes detected in the B cell (LPS-stimulated) and T cell (Con A-stimulated) proliferative responses of spleen cells, and no changes were found in the NK-mediated lysis of Yac-1 target cells. The primary T-dependent antibody response was, however, found to be highly susceptible to ATO suppression. Both the 50 μg/m 3 and 1 mg/m 3 exposures produced greater than 70% suppression of the humoral immune response to sheep red blood cells. Thus, the primary finding of this study is that the T-dependent humoral immune response is extremely sensitive to suppression by ATO and assessment of humoral immune responses should be considered in evaluating the health effects of arsenic containing agents.

  19. Effect of hexane extract of spinach in the removal of arsenic from rat

    Directory of Open Access Journals (Sweden)

    Badar Uddin Umar

    2007-03-01

    Full Text Available Extensive search is going on for a cheap, easily available and effective remedy of chronic arsenic poisoning. The present study was designed to find the effects of hexane extract of spinach in the removal of arsenic from arsenic treated rat. Rats were fed arsenic trioxide through Ryle’s tube for one month then they were fed on hexane extract (1-4% of spinach for another one month. Hexane extract of spinach decreased accumulated arsenic from rat liver, spleen, kidney, intestine, lungs and skin significantly. Besides, it reduced the oxidative stress caused by arsenic which was evident by decreased levels of malondialdehye (MDA in the above tissues. Hexane extract decreases both arsenic level and MDA level in rat tissues in dose dependent manner, which is more effective at lower doses.

  20. Effect of hexane extract of spinach in the removal of arsenic from rat

    Directory of Open Access Journals (Sweden)

    Badar Uddin Umar

    2007-06-01

    Full Text Available Extensive search is going on for a cheap, easily available and effective remedy of chronic arsenic poisoning. The present study was designed to find the effects of hexane extract of spinach in the removal of arsenic from arsenic treated rat. Rats were fed arsenic trioxide through Ryle’s tube for one month then they were fed on hexane extract (1-4% of spinach for another one month. Hexane extract of spinach decreased accumulated arsenic from rat liver, spleen, kidney, intestine, lungs and skin significantly. Besides, it reduced the oxidative stress caused by arsenic which was evident by decreased levels of malondialdehyde (MDA in the above tissues. Hexane extract decreases both arsenic level and MDA level in rat tissues in dose dependent manner, which is more effective at lower doses.

  1. Bioscorodite: biological crystallization of scorodite for arsenic removal

    NARCIS (Netherlands)

    Gonzalez-Contreras, P.A.

    2012-01-01

    The use of arsenic is banned for most applications, leading to its accumulation as arsenic trioxide and ferric arsenate sludge. The aim of this thesis was to develop a controlled process for biological crystallization of scorodite from metallurgical streams. In this thesis, the proof of

  2. Analytical artefacts in the speciation of arsenic in clinical samples

    International Nuclear Information System (INIS)

    Slejkovec, Zdenka; Falnoga, Ingrid; Goessler, Walter; Elteren, Johannes T. van; Raml, Reingard; Podgornik, Helena; Cernelc, Peter

    2008-01-01

    Urine and blood samples of cancer patients, treated with high doses of arsenic trioxide were analysed for arsenic species using HPLC-HGAFS and, in some cases, HPLC-ICPMS. Total arsenic was determined with either flow injection-HGAFS in urine or radiochemical neutron activation analysis in blood fractions (in serum/plasma, blood cells). The total arsenic concentrations (during prolonged, daily/weekly arsenic trioxide therapy) were in the μg mL -1 range for urine and in the ng g -1 range for blood fractions. The main arsenic species found in urine were As(III), MA and DMA and in blood As(V), MA and DMA. With proper sample preparation and storage of urine (no preservation agents/storage in liquid nitrogen) no analytical artefacts were observed and absence of significant amounts of alleged trivalent metabolites was proven. On the contrary, in blood samples a certain amount of arsenic can get lost in the speciation procedure what was especially noticeable for the blood cells although also plasma/serum gave rise to some disappearance of arsenic. The latter losses may be attributed to precipitation of As(III)-containing proteins/peptides during the methanol/water extraction procedure whereas the former losses were due to loss of specific As(III)-complexing proteins/peptides (e.g. cysteine, metallothionein, reduced GSH, ferritin) on the column (Hamilton PRP-X100) during the separation procedure. Contemporary analytical protocols are not able to completely avoid artefacts due to losses from the sampling to the detection stage so that it is recommended to be careful with the explanation of results, particularly regarding metabolic and pharmacokinetic interpretations, and always aim to compare the sum of species with the total arsenic concentration determined independently

  3. Identification of Arsenic Direct-Binding Proteins in Acute Promyelocytic Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-11-01

    Full Text Available The identification of arsenic direct-binding proteins is essential for determining the mechanism by which arsenic trioxide achieves its chemotherapeutic effects. At least two cysteines close together in the amino acid sequence are crucial to the binding of arsenic and essential to the identification of arsenic-binding proteins. In the present study, arsenic binding proteins were pulled down with streptavidin and identified using a liquid chromatograph-mass spectrometer (LC-MS/MS. More than 40 arsenic-binding proteins were separated, and redox-related proteins, glutathione S-transferase P1 (GSTP1, heat shock 70 kDa protein 9 (HSPA9 and pyruvate kinase M2 (PKM2, were further studied using binding assays in vitro. Notably, PKM2 has a high affinity for arsenic. In contrast to PKM2, GSTP1and HSPA9 did not combine with arsenic directly in vitro. These observations suggest that arsenic-mediated acute promyelocytic leukaemia (APL suppressive effects involve PKM2. In summary, we identified several arsenic binding proteins in APL cells and investigated the therapeutic mechanisms of arsenic trioxide for APL. Further investigation into specific signal pathways by which PKM2 mediates APL developments may lead to a better understanding of arsenic effects on APL.

  4. Alterations in glutathione levels and apoptotic regulators are associated with acquisition of arsenic trioxide resistance in multiple myeloma.

    Directory of Open Access Journals (Sweden)

    Shannon M Matulis

    Full Text Available Arsenic trioxide (ATO has been tested in relapsed/refractory multiple myeloma with limited success. In order to better understand drug mechanism and resistance pathways in myeloma we generated an ATO-resistant cell line, 8226/S-ATOR05, with an IC50 that is 2-3-fold higher than control cell lines and significantly higher than clinically achievable concentrations. Interestingly we found two parallel pathways governing resistance to ATO in 8226/S-ATOR05, and the relevance of these pathways appears to be linked to the concentration of ATO used. We found changes in the expression of Bcl-2 family proteins Bfl-1 and Noxa as well as an increase in cellular glutathione (GSH levels. At low, clinically achievable concentrations, resistance was primarily associated with an increase in expression of the anti-apoptotic protein Bfl-1 and a decrease in expression of the pro-apoptotic protein Noxa. However, as the concentration of ATO increased, elevated levels of intracellular GSH in 8226/S-ATOR05 became the primary mechanism of ATO resistance. Removal of arsenic selection resulted in a loss of the resistance phenotype, with cells becoming sensitive to high concentrations of ATO within 7 days following drug removal, indicating changes associated with high level resistance (elevated GSH are dependent upon the presence of arsenic. Conversely, not until 50 days without arsenic did cells once again become sensitive to clinically relevant doses of ATO, coinciding with a decrease in the expression of Bfl-1. In addition we found cross-resistance to melphalan and doxorubicin in 8226/S-ATOR05, suggesting ATO-resistance pathways may also be involved in resistance to other chemotherapeutic agents used in the treatment of multiple myeloma.

  5. Leukemia-associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in HeLa cells via activation of the Wnt/β-catenin signaling pathway.

    Science.gov (United States)

    Zhang, Pengyu; Zhao, Xuan; Zhang, Wenjuan; He, Aili; Lei, Bo; Zhang, Wanggang; Chen, Yinxia

    2017-01-01

    Our laboratory previously used the SEREX method in U937 cells and identified a novel leukemia-associated gene MLAA-34, a novel splice variant of CAB39L associated with acute monocytic leukemia, that exhibited anti-apoptotic activities in U937 cells. Whether MLAA-34 has an anti-apoptotic role in other tumor cells has not yet been reported. We explored whether MLAA-34 exhibited anti-apoptotic effects in HeLa cervical cancer cells and the possible mechanism of action. We generated a HeLa cell line stably expressing MLAA-34 and found that MLAA-34 overexpression had no effect on the growth, apoptosis and cell cycle of HeLa cells. However, upon treatment with arsenic trioxide (ATO) to induce apoptosis, the cell viability and colony formation ability of ATO-treated MLAA-34 stable HeLa cells were significantly higher than that of ATO-treated controls, and the apoptosis rate and proportion of G2/M cells also decreased. We found that ATO treatment of HeLa cells resulted in significant decreases in the expression of β-catenin mRNA and protein and the downstream target factors c-Myc, cyclin B1, and cyclin D1 in the Wnt signaling pathway. Notably, ATO-treated MLAA-34 stable HeLa cells showed a significant reduction in the ATO-mediated downregulation of these factors. In addition, MLAA-34 overexpression significantly increased the expression of nuclear β-catenin protein in ATO-treated cells compared with HeLa cells treated only with ATO. Thus, here we have found that the Wnt/β-catenin signaling pathway is involved in ATO-induced apoptosis in HeLa cells. MLAA-34 reduces ATO-induced apoptosis and G2/M arrest, and the anti-apoptotic effect may be achieved by activating the Wnt/β-catenin signaling pathway in HeLa cells.

  6. Effects of Arsenic Trioxide on Radiofrequency Ablation of VX2 Liver Tumor: Intraarterial versus Intravenous Administration

    International Nuclear Information System (INIS)

    Seong, Nak Jong; Yoon, Chang Jin; Kang, Sung Gwon; Chung, Jin Wook; Kim, Hyo Cheol; Park, Jae Hyung

    2012-01-01

    Arsenic trioxide (As 2 O 3 ) can be used as a possible pharmaceutical alternative that augments radiofrequency (RF) ablation by reducing tumor blood flow. The aim of this study was to assess the effect of intraarterial and intravenous administration of As 2 O 3 on RF-induced ablation in an experimentally induced liver tumor. VX2 carcinoma was grown in the livers of 30 rabbits. As 2 O 3 (1 mg/kg) was administered through the hepatic artery (n = 10, group A) or ear vein (n = 10, group B), 30 minutes before RF ablation (125 mA ± 35; 90 ± 5 degrees Celsius). As a control group, 10 rabbits were treated with RF ablation alone (group C). RF was intentionally applied to the peripheral margin of the tumor so that ablation can cover the tumor and adjacent hepatic parenchyma. Ablation areas of the tumor and adjacent parenchymal changes among three groups were compared by the Kruskal-Wallis and Mann-Whitney U test. The overall ablation areas were 156 ± 28.9 mm 2 (group A), 119 ± 31.7 (group B), and 92 ± 17.4 (group C, p 2 ) than both group B (50 ± 19.4, p = 0.02) and group C (28 ± 2.2, p 2 O 3 . The intraarterial administration of As 2 O 3 seems to be helpful for the selective ablation of the tumor.

  7. Vorinostat enhances chemosensitivity to arsenic trioxide in K562 cell line

    Directory of Open Access Journals (Sweden)

    Nainong Li

    2015-05-01

    Full Text Available Objective. This study aimed to investigate the chemosensitive augmentation effect and mechanism of HDAC inhibitor Vorinostat (SAHA in combination with arsenic trioxide (ATO on proliferation and apoptosis of K562 cells.Methods. The CCK-8 assay was used to compare proliferation of the cells. Annexin-V and PI staining by flow cytometry and acridine orange/ethidium bromide stains were used to detect and quantify apoptosis. Western blot was used to detect expression of p21, Akt, pAkt, p210, Acetyl-Histone H3, and Acetyl-Histone H4 proteins.Results. SAHA and ATO inhibited proliferation of K562 cells in an additive and time- and dose-dependent manner. SAHA in combination with ATO showed significant apoptosis of K562 cells in comparison to the single drugs alone (p < 0.01. Both SAHA and ATO alone and in combination showed lower levels of p210 expression. SAHA and SAHA and ATO combined treatment showed increased levels of Acetyl-Histone H3 and Acetyl-Histone H4 protein expression. SAHA alone showed increased expression of p21, while ATO alone and in combination with SAHA showed no significant change. SAHA and ATO combined therapy showed lower levels of Akt and pAkt protein expression than SAHA or ATO alone.Conclusion. SAHA and ATO combined treatment inhibited proliferation, induced apoptosis, and showed a chemosensitive augmentation effect on K562 cells. The mechanism might be associated with increasing histone acetylation levels as well as regulating the Akt signaling pathway.

  8. Successful Control of Disseminated Intravascular Coagulation by Recombinant Thrombomodulin during Arsenic Trioxide Treatment in Relapsed Patient with Acute Promyelocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Motohiro Shindo

    2012-01-01

    Full Text Available Disseminated intravascular coagulation (DIC frequently occurs in patients with acute promyelocytic leukemia (APL. With the induction of therapy in APL using all-trans retinoic acid (ATRA, DIC can be controlled in most cases as ATRA usually shows immediate improvement of the APL. However, arsenic trioxide (ATO which has been used for the treatment of relapse in APL patients has shown to take time to suppress APL cells, therefore the control of DIC in APL with ATO treatment is a major problem. Recently, the recombinant soluble thrombomodulin fragment has received a lot of attention as the novel drug for the treatment of DIC with high efficacy. Here, we present a relapsed patient with APL in whom DIC was successfully and safely controlled by rTM during treatment with ATO.

  9. Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based X-ray micro-analyses

    NARCIS (Netherlands)

    Keune, K.; Mass, J.; Meirer, F.; Pottasch, C.; van Loon, A.; Hull, A.; Church, J.; Pouyet, E.; Cotte, M.; Mehta, A.

    2015-01-01

    Realgar and orpiment, arsenic sulfide pigments used in historic paints, degrade under the influence of light, resulting in transparent, whitish, friable and/or crumbling paints. So far, para-realgar and arsenic trioxide have been identified as the main oxidation products of arsenic sulfide pigments.

  10. Tracking the transformation and transport of arsenic sulfide pigments in paints : synchrotron-based X-ray micro-analyses

    NARCIS (Netherlands)

    Keune, Katrien; Mass, Jennifer; Meirer, Florian; Pottasch, Carol; van Loon, Annelies; Hull, Alyssa; Church, Jonathan; Pouyet, Emeline; Cotte, Marine; Mehta, Apurva

    2015-01-01

    Realgar and orpiment, arsenic sulfide pigments used in historic paints, degrade under the influence of light, resulting in transparent, whitish, friable and/or crumbling paints. So far, para-realgar and arsenic trioxide have been identified as the main oxidation products of arsenic sulfide pigments.

  11. Combination of Bifunctional Alkylating Agent and Arsenic Trioxide Synergistically Suppresses the Growth of Drug-Resistant Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chih Lee

    2010-05-01

    Full Text Available Drug resistance is a crucial factor in the failure of cancer chemotherapy. In this study, we explored the effect of combining alkylating agents and arsenic trioxide (ATO on the suppression of tumor cells with inherited or acquired resistance to therapeutic agents. Our results showed that combining ATO and a synthetic derivative of 3a-aza-cyclopenta[a]indenes (BO-1012, a bifunctional alkylating agent causing DNA interstrand cross-links, was more effective in killing human cancer cell lines (H460, H1299, and PC3 than combining ATO and melphalan or thiotepa. We further demonstrated that the combination treatment of H460 cells with BO-1012 and ATO resulted in severe G2/M arrest and apoptosis. In a xenograft mouse model, the combination treatment with BO-1012 and ATO synergistically reduced tumor volumes in nude mice inoculated with H460 cells. Similarly, the combination of BO-1012 and ATO effectively reduced the growth of cisplatin-resistant NTUB1/P human bladder carcinoma cells. Furthermore, the repair of BO-1012-induced DNA interstrand cross-links was significantly inhibited by ATO, and consequently, γH2AX was remarkably increased and formed nuclear foci in H460 cells treated with this drug combination. In addition, Rad51 was activated by translocating and forming foci in nuclei on treatment with BO-1012, whereas its activation was significantly suppressed by ATO. We further revealed that ATO might mediate through the suppression of AKT activity to inactivate Rad51. Taken together, the present study reveals that a combination of bifunctional alkylating agents and ATO may be a rational strategy for treating cancers with inherited or acquired drug resistance.

  12. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.

    Science.gov (United States)

    Abin, Christopher A; Hollibaugh, James T

    2014-01-01

    Antimony (Sb) is a metalloid that has been exploited by humans since the beginning of modern civilization. The importance of Sb to such diverse industries as nanotechnology and health is underscored by the fact that it is currently the ninth-most mined metal worldwide. Although its toxicity mirrors that of its Group 15 neighbor arsenic, its environmental chemistry is very different, and, unlike arsenic, relatively little is known about the fate and transport of Sb, especially with regard to biologically mediated redox reactions. To further our understanding of the interactions between microorganisms and Sb, we have isolated a bacterium that is capable of using antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration, resulting in the precipitation of antimonite [Sb(III)] as microcrystals of antimony trioxide. The bacterium, designated strain MLFW-2, is a sporulating member of a deeply branching lineage within the order Bacillales (phylum Firmicutes). This report provides the first unequivocal evidence that a bacterium is capable of conserving energy for growth and reproduction from the reduction of antimonate. Moreover, microbiological antimonate reduction may serve as a novel route for the production of antimony trioxide microcrystals of commercial significance to the nanotechnology industry.

  13. Serum Acetyl Cholinesterase as a Biomarker of Arsenic Induced Neurotoxicity in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-04-01

    Full Text Available Arsenic is an environmental toxicant, and one of the major mechanisms by which it exerts its toxic effect is through an impairment of cellular respiration by inhibition of various mitochondrial enzymes, and the uncoupling of oxidative phosphorylation. Most toxicity of arsenic results from its ability to interact with sulfhydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Most toxicity of arsenic results from its ability to interact with sulfhydryl groups of proteins and enzymes, and to substitute phosphorus in a variety of biochemical reactions. Recent studies have pointed out that arsenic toxicity is associated with the formation of reactive oxygen species, which may cause severe injury/damage to the nervous system. The main objective of this study was to conduct biochemical analysis to determine the effect of arsenic trioxide on the activity of acetyl cholinesterase; a critical important nervous system enzyme that hydrolyzes the neurotransmitter acetylcholine. Four groups of six male rats each weighing an average 60 + 2 g were used in this study. Arsenic trioxide was intraperitoneally administered to the rats at the doses of 5, 10, 15, 20mg/kg body weight (BW, one dose per 24 hour given for five days. A control group was also made of 6 animals injected with distilled water without chemical. Following anaesthesia, blood specimens were immediately collected using heparinized syringes, and acetyl cholinesterase detection and quantification were performed in serum samples by spectrophotometry. Arsenic trioxide exposure significantly decreased the activity of cholinesterase in the Sprague-Dawley rats. Acetyl cholinesterase activities of 6895 + 822, 5697 + 468, 5069 + 624, 4054 + 980, and 3158 + 648 U/L were recorded for 0, 5, 10, 15, and 20 mg/kg, respectively; indicating a gradual decrease in acetyl cholinesterase activity with increasing doses of arsenic. These findings indicate that acetyl

  14. Nine-month Angiographic and Two-year Clinical Follow-up of Novel Biodegradable-polymer Arsenic Trioxide-eluting Stent Versus Durable-polymer Sirolimus-eluting Stent For Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Li Shen

    2015-01-01

    Full Text Available Background: Despite great reduction of in-stent restenosis, first-generation drug-eluting stents (DESs have increased the risk of late stent thrombosis due to delayed endothelialization. Arsenic trioxide, a natural substance that could inhibit cell proliferation and induce cell apoptosis, seems to be a promising surrogate of sirolimus to improve DES performance. This randomized controlled trial was to evaluate the efficacy and safety of a novel arsenic trioxide-eluting stent (AES, compared with traditional sirolimus-eluting stent (SES. Methods: Patients with symptoms of angina pectoris were enrolled and randomized to AES or SES group. The primary endpoint was target vessel failure (TVF, and the second endpoint includes rates of all-cause death, cardiac death or myocardial infarction, target lesion revascularization (TLR by telephone visit and late luminal loss (LLL at 9-month by angiographic follow-up. Results: From July 2007 to 2009, 212 patients were enrolled and randomized 1:1 to receive either AES or SES. At 2 years of follow-up, TVF rate was similar between AES and SES group (6.67% vs. 5.83%, P = 0.980. Frequency of all-cause death was significantly lower in AES group (0 vs. 4.85%, P = 0.028. There was no significant difference between AES and SES in frequency of TLR and in-stent restenosis, but greater in-stent LLL was observed for AES group (0.29 ± 0.52 mm vs. 0.10 ± 0.25 mm, P = 0.008. Conclusions: After 2 years of follow-up, AES demonstrated comparable efficacy and safety to SES for the treatment of de novo coronary artery lesions.

  15. Combined application of arsenic trioxide and lithium chloride augments viability reduction and apoptosis induction in human rhabdomyosarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Sabine B Schleicher

    Full Text Available Rhabdomyosarcomas (RMS are the most prevalent soft tissue sarcomas affecting children and adolescents. Despite intensive treatment consisting of multimodal chemotherapy and surgery RMS patients diagnosed with metastatic disease expect long term survival rates of only 20%. Often multidrug resistance arises upon initial response emphasizing the need for new therapeutic drugs to improve treatment efficiency. Previously, we demonstrated the efficacy of the FDA approved drug arsenic trioxide (ATO specifically inhibiting viability and clonal growth as well as inducing cell death in human RMS cell lines of different subtypes. In this study, we combined low dose ATO with lithium chloride (LiCl, which is approved as mood stabilizer for the treatment of bipolar disorder, but also inhibits growth and survival of different cancer cell types in pre-clinical research. Indeed, we could show additive effects of LiCl and ATO on viability reduction, decrease of colony formation as well as cell death induction. In the course of this, LiCl induced inhibitory glycogen synthase kinase-3β (GSK-3β serine 9 phosphorylation, whereas glioma associated oncogene family 1 (GLI1 protein expression was particularly reduced by combined ATO and LiCl treatment in RD and RH-30 cell lines, showing high rates of apoptotic cell death. These results imply that combination of ATO with LiCl or another drug targeting GSK-3 is a promising strategy to enforce the treatment efficiency in resistant and recurrent RMS.

  16. Study of arsenic trioxide-induced vascular shutdown and enhancement with radiation in solid tumor

    International Nuclear Information System (INIS)

    Monzen, Hajime; Griffin, R.J.; Williams, B.W.; Amamo, Morikazu; Ando, Satoshi; Hasegawa, Takeo

    2004-01-01

    Arsenic trioxide (ATO) has been reported to be an effective chemotherapeutic agent for acute promyelocytic leukemia (APL), and, recently, anti-tumor effect has been demonstrated in solid tumors. However, little is known about the mechanism of action of the ATO effect on solid tumor. We investigated the anti-vascular effect of ATO and the potential of combining ATO with radiation therapy. We studied the anti-vascular effect of ATO and radiosensitization of squamous cell carcinoma (SCC) VII murine tumors of C3H mice. The anti-vascular effect was examined using magnetic resonance imaging (MRI), and radiosensitivity was studied by clonogenic assay and tumor growth delay. Histopathological changes of the tumors after various treatments were also observed with hematoxylin and eosin (H and E) staining. Necrosis and blood flow changes in the central region of tumors in the hind limbs of the animals were observed on T2-weighted imaging after an intraperitoneal (i.p.) injection of 8 mg/kg of ATO alone. ATO exposure followed by radiation decreased the clonogenic survival of SCC VII cells compared with either treatment alone. Tumor growth delay after 10-20 Gy of radiation alone was increased slightly compared with control tumors, but the combination of ATO injection 2 hours before exposure to 20 Gy of radiation significantly prolonged tumor growth delay by almost 20 days. The results suggest that ATO and radiation can enhance the radiosensitivity of solid tumor. (author)

  17. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jaroslav, S

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3 to 7 km. Settled fly-ash contained 0.0004 to 0.75 percent arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed.

  18. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, J

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3-7 km. Settled fly-ash contained 0.0004-0.75% arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed. 5 references.

  19. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts.

    Science.gov (United States)

    Xu, Wen-Xiao; Liu, Sheng-Zhi; Wu, Di; Qiao, Guo-Fen; Yan, Jinglong

    2015-01-01

    Promyelocytic leukemia (PML) protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα) to contribute to the initiation of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts. © 2015 S. Karger AG, Basel.

  20. Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles.

    Science.gov (United States)

    Yang, Hong; Lin, Shan; Cui, Jingru

    2014-02-10

    Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C.

    Science.gov (United States)

    Pelicano, H; Carew, J S; McQueen, T J; Andreeff, M; Plunkett, W; Keating, M J; Huang, P

    2006-04-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a new anticancer agent currently in clinical trials. The ability of 17-AAG to abrogate the function of heat-shock protein Hsp90 and modulate cellular sensitivity to anticancer agents has prompted recent research to use this compound in drug combination therapy. Here we report that 17-AAG has striking opposite effects on the activity of arsenic trioxide (ATO) and ara-C. Combination of 17-AAG with ATO exhibited a synergistic effect in leukemia cells, whereas coincubation of 17-AAG and ara-C showed antagonistic activity. Mechanistic studies revealed that ATO exerted cytotoxic action by reactive oxygen species generation, and activated Akt survival pathway. 17-AAG abrogated Akt activation and enhanced the activity of ATO. In contrast, treatment of leukemia cells with 17-AAG caused a G1 arrest, a decrease in DNA synthesis and reduced ara-C incorporation into DNA, leading to antagonism. The ability of 17-AAG to enhance the antileukemia activity of ATO was further demonstrated in primary leukemia cells isolated from patients with acute myeloid leukemia and chronic lymphocytic leukemia, including cells from refractory patients. Our data suggest that combination of 17-AAG and ATO may be an effective therapeutic regimen. Caution should be exercised in using 17-AAG together with ara-C, as their combination effects are schedule dependent.

  2. ETME, a novel β-elemene derivative, synergizes with arsenic trioxide in inducing apoptosis and cell cycle arrest in hepatocarcinoma cells via a p53-dependent pathway

    Directory of Open Access Journals (Sweden)

    Zhiying Yu

    2014-12-01

    Full Text Available Arsenic trioxide (ATO has been identified as an effective treatment for acute promyelocytic leukemia (APL but is much less effective against solid tumors such as hepatocellular carcinoma (HCC. In the search for ways to enhance its therapeutic efficacy against solid tumors, we have examined its use in combination with a novel derivative of β-elemene, N-(β-elemene-13-yltryptophan methyl ester (ETME. Here we report the effects of the combination on cell viability, apoptosis, the cell cycle and mitochondria membrane potential (MMP in HCC SMMC-7721 cells. We found that the two compounds acted synergistically to enhance antiproliferative activity and apoptosis. The combination also decreased the MMP, down-regulated Bcl-2 and pro-proteins of the caspase family, and up-regulated Bax and BID, all of which were reversed by the p53 inhibitor, pifithrin-α. In addition, the combination induced cell cycle arrest at the G2/M phase and reduced tumor volume and weight in an xenograft model of nude mice. Overall, the results suggest that ETME in combination with ATO may be useful in the treatment of HCC patients particularly those unresponsive to ATO alone.

  3. Antimony trioxide-induced apoptosis is dependent on SEK1/JNK signaling.

    Science.gov (United States)

    Mann, Koren K; Davison, Kelly; Colombo, Myrian; Colosimo, April L; Diaz, Zuanel; Padovani, Alessandra M S; Guo, Qi; Scrivens, P James; Gao, Wenli; Mader, Sylvie; Miller, Wilson H

    2006-01-05

    Very little is known concerning the toxicity of antimony, despite its commercial use as a flame retardant and medical use as a treatment for parasitic infections. Our previous studies show that antimony trioxide (Sb(2)O(3)) induces growth inhibition in patient-derived acute promyelocytic leukemia (APL) cell lines, a disease in which a related metal, arsenic trioxide (As(2)O(3)), is used clinically. However, signaling pathways initiated by Sb(2)O(3) treatment remain undefined. Here, we show that Sb(2)O(3) treatment of APL cells is associated with increased apoptosis as well as differentiation markers. Sb(2)O(3)-induced reactive oxygen species (ROS) correlated with increased apoptosis. In addition, when we decreased the buffering capacity of the cell by depleting glutathione, ROS production and apoptosis was enhanced. Arsenic-resistant APL cells with increased glutathione levels exhibited increased cross-resistance to Sb(2)O(3). Based on studies implicating c-jun kinase (JNK) in the mediation of the response to As(2)O(3), we investigated the role for JNK in Sb(2)O(3)-induced apoptosis. Sb(2)O(3) activates JNK and its downstream target, AP-1. In fibroblasts with a genetic deletion in SEK1, an upstream regulator of JNK, Sb(2)O(3)-induced growth inhibition as well as JNK activation was decreased. These data suggest roles for ROS and the SEK1/JNK pathway in the cytotoxicity associated with Sb(2)O(3) exposure.

  4. Arsenic trioxide decreases the amount and inhibits the function of regulatory T cells, which may contribute to its efficacy in the treatment of acute promyelocytic leukemia.

    Science.gov (United States)

    Xu, Wen; Li, Xiaoxia; Quan, Lina; Yao, Jiying; Mu, Guannan; Guo, Jingjie; Wang, Yitong

    2018-03-01

    Arsenic trioxide (ATO) exhibits substantial clinical efficacy in the treatment of acute promyelocytic leukemia (APL). Here, we investigated whether ATO exerts its efficacy by affecting regulatory T (Treg) cells. We determined whether ATO treatment influenced the amount and function of purified Treg cells. We also examined the effect of ATO treatment on Treg cells from APL patients. ATO treatment induced apoptosis in purified Treg cells and dampened the inhibition of effector T (Teff) cells proliferation and the secretion of cytokine by Treg cells. Treg cell levels in the peripheral blood and serum IL-10 levels were dramatically decreased in APL patients after single ATO treatment. In summary, our results show that ATO decreases the amount and inhibits the function of Treg cells, thereby enhancing Teff cell function and overall anti-tumor immunity.

  5. Evaluation of DNA damage in patients with arsenic poisoning: urinary 8-hydroxydeoxyguanine

    International Nuclear Information System (INIS)

    Yamauchi, Hiroshi; Aminaka, Yoshito; Yoshida, Katsumi; Sun Guifan; Pi Jingbo; Waalkes, Michael P.

    2004-01-01

    The relationship between arsenic exposure and DNA damage in patients with acute or chronic arsenic poisoning was analyzed. Urinary 8-hydroxydeoxyguanine (8-OHdG) concentrations were measured as an indication of oxidative DNA damage. A remarkable increase in 8-OHdG in the urine was observed in 60% of 52 patients with acute arsenic poisoning from the accidental oral intake of the arsenic trioxide. This was two- to threefold higher than levels in normal healthy subjects (n = 248). There was a clear relationship between arsenic concentrations in urine after acute poisoning and elevated levels of 8-OHdG. Levels of urinary 8-OHdG returned to normal within 180 days after the acute arsenic poisoning event. In patients chronically poisoned by the consumption of well water with elevated levels of arsenate [As(V)], elevated 8-OHdG concentrations in urine were also observed. A significant correlation between the 8-OHdG levels and arsenic levels in the urine was observed in 82 patients with chronic poisoning. Thus, evidence of oxidative DNA damage occurred in acute arsenic poisoning by arsenite [As(III)] and in chronic arsenic poisoning by As(V). In chronic poisoning patients provided low-arsenic drinking water, evidence of DNA damage subsided between 9 months and 1 year after the high levels of arsenic intake were reduced. The initial level of arsenic exposure appeared to dictate the length of this recovery period. These data indicate that some aspects of chronic and acute arsenic poisoning may be reversible with the cessation of exposure. This knowledge may contribute to our understanding of the risk elevation from arsenic carcinogenesis and perhaps be used in a prospective fashion to assess individual risk

  6. Effects of Arsenic Trioxide on Radiofrequency Ablation of VX2 Liver Tumor: Intraarterial versus Intravenous Administration

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Nak Jong; Yoon, Chang Jin; Kang, Sung Gwon [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Chung, Jin Wook; Kim, Hyo Cheol; Park, Jae Hyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2012-03-15

    Arsenic trioxide (As{sub 2}O{sub 3}) can be used as a possible pharmaceutical alternative that augments radiofrequency (RF) ablation by reducing tumor blood flow. The aim of this study was to assess the effect of intraarterial and intravenous administration of As{sub 2}O{sub 3} on RF-induced ablation in an experimentally induced liver tumor. VX2 carcinoma was grown in the livers of 30 rabbits. As{sub 2}O{sub 3} (1 mg/kg) was administered through the hepatic artery (n = 10, group A) or ear vein (n = 10, group B), 30 minutes before RF ablation (125 mA {+-} 35; 90 {+-} 5 degrees Celsius). As a control group, 10 rabbits were treated with RF ablation alone (group C). RF was intentionally applied to the peripheral margin of the tumor so that ablation can cover the tumor and adjacent hepatic parenchyma. Ablation areas of the tumor and adjacent parenchymal changes among three groups were compared by the Kruskal-Wallis and Mann-Whitney U test. The overall ablation areas were 156 {+-} 28.9 mm{sup 2} (group A), 119 {+-} 31.7 (group B), and 92 {+-} 17.4 (group C, p < 0.04). The ablation area of the tumor was significantly larger in group A (73 {+-} 19.7 mm{sup 2}) than both group B (50 {+-} 19.4, p = 0.02) and group C (28 {+-} 2.2, p < 0.01). The ratios of the tumoral ablation area to the overall ablation area were larger in group A (47 {+-} 10.5%) than that of the other groups (42 {+-} 7.3% in group B and 32 {+-} 5.6% in group C) (p < 0.03). Radiofrequency-induced ablation area can be increased with intraarterial or intravenous administration of As{sub 2}O{sub 3}. The intraarterial administration of As{sub 2}O{sub 3} seems to be helpful for the selective ablation of the tumor.

  7. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  8. Resveratrol and arsenic trioxide act synergistically to kill tumor cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhao

    Full Text Available BACKGROUND AND AIMS: Arsenic trioxide (As2O3, which used as an effective agent in the treatment of leukaemia and other solid tumors, is largely limited by its toxicity. QT prolongation, torsades de pointes and sudden heart death have been implicated in the cardiotoxicity of As2O3. The present study was designed to explore whether the combination of As2O3 and resveratrol could generate a more powerful anti-cancer effect both in vitro and in vivo. MATERIALS AND METHODS: MTT assay was performed to assess the proliferation of Hela, MCF-7 and NB4 cells. Isobolographic analysis was used to evaluate combination index values from cell viability data. The apoptosis and the cellular reactive oxygen species (ROS level were assessed by fluorescent microscopy and flow cytometry separately in vitro. The effect of As2O3, alone and in combination with resveratrol on Hela tumor growth in an orthotopic nude mouse model was also investigated. The tumor volume and the immunohistochemical analysis of CD31, CD34 and VEGF were determined. RESULTS: Resveratrol dramatically enhanced the anti-cancer effect induced by As2O3 in vitro. In addition, isobolographic analysis further demonstrated that As2O3 and resveratrol generated a synergistic action. More apoptosis and ROS generation were observed in the combination treatment group. Similar synergistic effects were found in nude mice in vivo. The combination of As2O3 and resveratrol dramatically suppressed both tumor growth and angiogenesis in nude mice. CONCLUSIONS: Combining As2O3 with resveratrol would be a novel strategy to treat cancer in clinical practice.

  9. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Yager, J.W.; Hicks, J.B.; Fabianova, N. [EPRI, Palo Alto, CA (United States). Environment Group

    1997-08-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study was undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites-inorganic arsenic (As), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) prior to the start of each shift. Results from a small number of cascade impacter air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions {ge} 3.5 {mu}m. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 {mu}g/m{sup 3} (range 0.17-375.2) and the mean sum of urinary arsenic (Sigma As) metabolites was 16.9 {mu}g As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 {mu}g/m{sup 3} arsenic from coal fly ash, the predicted mean concentration f the Sigma As urinary metabolites was 13.2 {mu}g As/g creatinine. Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic.

  10. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    International Nuclear Information System (INIS)

    Lin, Tseng-Hsi; Kuo, Hsing-Chun; Chou, Fen-Pi; Lu, Fung-Jou

    2008-01-01

    Arsenic trioxide (As 2 O 3 ) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As 2 O 3 -mediated inhibition of cancer cell migration using rat and human glioma cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As 2 O 3 or berberine, and after co-treatment with As 2 O 3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As 2 O 3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As 2 O 3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. The cell viability studies demonstrated that berberine enhances As 2 O 3 -mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As 2 O 3 . The latter effect was even more pronounced in the presence of 10 μM berberine. The As 2 O 3 -mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As 2 O 3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also

  11. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.

    Science.gov (United States)

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  12. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    Directory of Open Access Journals (Sweden)

    Drewniak Lukasz

    2014-01-01

    Full Text Available The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i produced siderophores that promote dissolution of minerals, (ii were resistant to dissolved arsenic compounds, (iii were able to use the dissolved arsenates as the terminal electron acceptor, and (iii were able to use copper minerals containing arsenic minerals (e.g., enargite as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  13. Inhibition of early T cell cytokine production by arsenic trioxide occurs independently of Nrf2.

    Directory of Open Access Journals (Sweden)

    Kelly R VanDenBerg

    Full Text Available Nuclear factor erythroid 2-related factor 2 (Nrf2 is a stress-activated transcription factor that induces a variety of cytoprotective genes. Nrf2 also mediates immunosuppressive effects in multiple inflammatory models. Upon activation, Nrf2 dissociates from its repressor protein, Keap1, and translocates to the nucleus where it induces Nrf2 target genes. The Nrf2-Keap1 interaction is disrupted by the environmental toxicant and chemotherapeutic agent arsenic trioxide (ATO. The purpose of the present study was to determine the effects of ATO on early events of T cell activation and the role of Nrf2 in those effects. The Nrf2 target genes Hmox-1, Nqo-1, and Gclc were all upregulated by ATO (1-2 μM in splenocytes derived from wild-type, but not Nrf2-null, mice, suggesting that Nrf2 is activated by ATO in splenocytes. ATO also inhibited IFNγ, IL-2, and GM-CSF mRNA and protein production in wild-type splenocytes activated with the T cell activator, anti-CD3/anti-CD28. However, ATO also decreased production of these cytokines in activated splenocytes from Nrf2-null mice, suggesting the inhibition is independent of Nrf2. Interestingly, ATO inhibited TNFα protein secretion, but not mRNA expression, in activated splenocytes suggesting the inhibition is due to post-transcriptional modification. In addition, c-Fos DNA binding was significantly diminished by ATO in wild-type and Nrf2-null splenocytes activated with anti-CD3/anti-CD28, consistent with the observed inhibition of cytokine production by ATO. Collectively, this study suggests that although ATO activates Nrf2 in splenocytes, inhibition of early T cell cytokine production by ATO occurs independently of Nrf2 and may instead be due to impaired AP-1 DNA binding.

  14. Arsenic trioxide promotes mitochondrial DNA mutation and cell apoptosis in primary APL cells and NB4 cell line.

    Science.gov (United States)

    Meng, Ran; Zhou, Jin; Sui, Meng; Li, ZhiYong; Feng, GuoSheng; Yang, BaoFeng

    2010-01-01

    This study aimed to investigate the effects of arsenic trioxide (As(2)O(3)) on the mitochondrial DNA (mtDNA) of acute promyelocytic leukemia (APL) cells. The NB4 cell line was treated with 2.0 micromol/L As(2)O(3) in vitro, and the primary APL cells were treated with 2.0 micromol/L As(2)O(3) in vitro and 0.16 mg kg(-1) d(-1) As(2)O(3) in vivo. The mitochondrial DNA of all the cells above was amplified by PCR, directly sequenced and analyzed by Sequence Navigatore and Factura software. The apoptosis rates were assayed by flow cytometry. Mitochondrial DNA mutation in the D-loop region was found in NB4 and APL cells before As(2)O(3) use, but the mutation spots were remarkably increased after As(2)O(3) treatment, which was positively correlated to the rates of cellular apoptosis, the correlation coefficient: r (NB4-As2O3)=0.973818, and r (APL-As2O3)=0.934703. The mutation types include transition, transversion, codon insertion or deletion, and the mutation spots in all samples were not constant and regular. It is revealed that As(2)O(3) aggravates mtDNA mutation in the D-loop region of acute promyelocytic leukemia cells both in vitro and in vivo. Mitochondrial DNA might be one of the targets of As(2)O(3) in APL treatment.

  15. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity.

    Science.gov (United States)

    Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2014-03-01

    Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 μM) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity.

  16. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    International Nuclear Information System (INIS)

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-01-01

    Highlights: • As 2 O 3 inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As 2 O 3 than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As 2 O 3 than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As 2 O 3 is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As 2 O 3 ) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As 2 O 3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As 2 O 3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As 2 O 3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As 2 O 3 than HPV 16-positive CaSki and SiHa cells. After As 2 O 3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As 2 O 3 is a potential anticancer drug for cervical cancer

  17. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  18. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK)

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Splettstoesser, Frank; Buesselberg, Dietrich

    2007-01-01

    Arsenic trioxide (As 2 O 3 ) has anticancer properties; however, its use also leads to neuro-, hepato- or nephro-toxicity, and therefore, it is important to understand the mechanism of As 2 O 3 toxicity. We studied As 2 O 3 influence on intracellular calcium ([Ca 2+ ] i ) homeostasis of human neuroblastoma SY-5Y and embryonic kidney cells (HEK 293).We also relate the As 2 O 3 induced [Ca 2+ ] i modifications with cytotoxicity. We used Ca 2+ sensitive dyes (fluo-4 and rhod-2) combined with laser scanning microscopy or fluorescence activated cell sorting to measure Ca 2+ changes during the application of As 2 O 3 and we approach evaluation of cytotoxicity. As 2 O 3 (1 μM) increased [Ca 2+ ] i in SY-5Y and HEK 293 cells. Three forms of [Ca 2+ ] i -elevations were found: (1) steady-state increases (2) transient [Ca 2+ ] i -elevations and (3) Ca 2+ -spikes. [Ca 2+ ] i modifications were independent from extracellular Ca 2+ but dependent on internal calcium stores. The effect was not reversible. Inositol triphosphate (IP 3 ) and ryanodine (Ry) receptors are involved in regulation of signals induced by As 2 O 3 . 2-APB and dantrolene significantly reduced the [Ca 2+ ] i -rise (p 2+ ] i -elevation or spiking. This indicates that other Ca 2+ regulating mechanisms are involved. In cytotoxicity tests As 2 O 3 significantly reduced cell viability in both cell types. Staining with Hoechst 33342 showed occurrence of apoptosis and DNA damage. Our data suggest that [Ca 2+ ] i is an important messenger in As 2 O 3 induced cell death

  19. Performance of duckweed and effective microbes in reducing arsenic in paddy and paddy soil

    Science.gov (United States)

    Ng, C. A.; Wong, L. Y.; Lo, P. K.; Bashir, M. J. K.; Chin, S. J.; Tan, S. P.; Chong, C. Y.; Yong, L. K.

    2017-04-01

    In this study phytoremediation plant (duckweed) and effective microbes were used to investigate their effectiveness in reducing arsenic concentration in paddy soil and paddy grain. The results show that using duckweed alone is a better choice as it could decrease the arsenic concentration in paddy by 27.697 % and 8.268 % in paddy grain and paddy husk respectively. The study also found out that the concentration of arsenic in soil would affect the performance of duckweed and also delayed the reproduction rate of duckweed. Using the mixture of effective microbes and duckweed together to decrease arsenic in paddy was noticed having the least potential in reducing the arsenic concentration in paddy.

  20. The elastic strain energy of crystallographic shear planes in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Tilley, R.J.D.

    1977-01-01

    Calculations of the elastic strain energy due to crystallographic shear (c.s.) planes lying upon 102, 103 and 001 planes in reduced tungsten trioxide crystals have been made. The cases analysed in detail are for both isolated c.s. planes and for pairs of c.s. planes. These results are used to determine the elastic strain energy per unit volume for crystals containing ordered arrays of c.s. planes. It was found that the magnitude of the elastic strain energy was in the sequence 001 < 102 < 103 and that at relatively small inter-c.s. spacings the curves of elastic strain energy against c.s. plane separation take the form of a series of peaks and valleys. These results are compared with experimental observations of c.s. plane spacings in substantially reduced crystals containing quasi-ordered arrays of c.s. planes and with observations of c.s. plane nucleation and growth in both slightly and more appreciably reduced crystals. It was found that the elastic strain energy plays a significant part in controlling the microstructure of c.s. plane arrays in such cases. (author)

  1. Causes and prognostic factors for early death in patients with acute promyelocytic leukemia treated with single-agent arsenic trioxide.

    Science.gov (United States)

    Hou, Jinxiao; Wang, Shuye; Zhang, Yingmei; Fan, Dachuan; Li, Haitao; Yang, Yiju; Ge, Fei; Hou, Wenyi; Fu, Jinyue; Wang, Ping; Zhao, Hongli; Sun, Jiayue; Yang, Kunpeng; Zhou, Jin; Li, Xiaoxia

    2017-12-01

    Early death (ED) is one of the most critical issues involved in the current care of patients with acute promyelocytic leukemia (APL). Factors identified as independent predictors of ED varied among published studies. We retrospectively analyzed the incidence, causes, and prognostic factors of ED in a series of 216 patients with newly diagnosed APL who received arsenic trioxide (ATO) as induction therapy. Multivariate logistic regression analysis was used to determine the association of clinical factors with overall ED, hemorrhagic ED, death within 7 days, and death within 8-30 days. In total, 35 EDs (16.2%) occurred that were caused by hemorrhage, differentiation syndrome (DS), infection, and other causes, in order of prevalence. The independent prognostic factors for overall ED and death within 8-30 days were the same and included serum creatinine level, Eastern Cooperative Oncology Group (ECOG) score, sex, and fibrinogen level. The risk factors for hemorrhagic ED and death within 7 days were similar and included serum creatinine level, ECOG score, and white blood cell count, while hemorrhagic ED was also associated with D-dimer. Our findings revealed a high rate of ED, and the causes of ED were similar to those among patients who received ATRA-based therapy. Increased creatinine level was the most powerful predictor, and an ECOG score greater than 2 was another strong prognostic factor for all four types of ED.

  2. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    International Nuclear Information System (INIS)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling; Yeh, Bi-Wen; Wu, Wen-Jeng; Huang, Huei-Sheng

    2015-01-01

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21 WAF1/CIP1 ) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF mediates

  3. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Yeh, Bi-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Wu, Wen-Jeng [Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Huang, Huei-Sheng, E-mail: huanghs@mail.ncku.edu.tw [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-05-15

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21{sup WAF1/CIP1}) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF

  4. Potential role of sodium-proton exchangers in the low concentration arsenic trioxide-increased intracellular pH and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Carmen Aravena

    Full Text Available Arsenic main inorganic compound is arsenic trioxide (ATO presented in solution mainly as arsenite. ATO increases intracellular pH (pHi, cell proliferation and tumor growth. Sodium-proton exchangers (NHEs modulate the pHi, with NHE1 playing significant roles. Whether ATO-increased cell proliferation results from altered NHEs expression and activity is unknown. We hypothesize that ATO increases cell proliferation by altering pHi due to increased NHEs-like transport activity. Madin-Darby canine kidney (MDCK cells grown in 5 mmol/L D-glucose-containing DMEM were exposed to ATO (0.05, 0.5 or 5 µmol/L, 0-48 hours in the absence or presence of 5-N,N-hexamethylene amiloride (HMA, 5-100 µmol/L, NHEs inhibitor, PD-98059 (30 µmol/L, MAPK1/2 inhibitor, Gö6976 (10 µmol/L, PKCα, βI and μ inhibitor, or Schering 28080 (10 µmol/L, H(+/K(+ATPase inhibitor plus concanamycin (0.1 µmol/L, V type ATPases inhibitor. Incorporation of [(3H]thymidine was used to estimate cell proliferation, and counting cells with a hemocytometer to determine the cell number. The pHi was measured by fluorometry in 2,7-bicarboxyethyl-5,6-carboxyfluorescein loaded cells. The Na(+-dependent HMA-sensitive NHEs-like mediated proton transport kinetics, NHE1 protein abundance in the total, cytoplasm and plasma membrane protein fractions, and phosphorylated and total p42/44 mitogen-activated protein kinases (p42/44(mapk were also determined. Lowest ATO (0.05 µmol/L, ~0.01 ppm used in this study increased cell proliferation, pHi, NHEs-like transport and plasma membrane NHE1 protein abundance, effects blocked by HMA, PD-98059 or Gö6976. Cell-buffering capacity did not change by ATO. The results show that a low ATO concentration increases MDCK cells proliferation by NHEs (probably NHE1-like transport dependent-increased pHi requiring p42/44(mapk and PKCα, βI and/or μ activity. This finding could be crucial in diseases where uncontrolled cell growth occurs, such as tumor growth, and

  5. Analyses of heavy metals in mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Schembri, Matthew; Peplow, George; Camilleri, Josette

    2010-07-01

    Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    International Nuclear Information System (INIS)

    Rangwala, Fatima; Williams, Kevin P; Smith, Ginger R; Thomas, Zainab; Allensworth, Jennifer L; Lyerly, H Kim; Diehl, Anna Mae; Morse, Michael A; Devi, Gayathri R

    2012-01-01

    Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO) in combination with sorafenib or fluorouracil (5-FU), in both hepatic tumor cells and stromal cells. Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC 50 : 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC 50 : 11.8 μM in LX2; 9.9 μM in HepG2). In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr) drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC)

  7. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    Directory of Open Access Journals (Sweden)

    Rangwala Fatima

    2012-09-01

    Full Text Available Abstract Background Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO in combination with sorafenib or fluorouracil (5-FU, in both hepatic tumor cells and stromal cells. Methods Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Results Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC50: 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC50: 11.8 μM in LX2; 9.9 μM in HepG2. In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. Conclusions ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC.

  8. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Yi, Jae-Youn [Laboratory of Modulation of Radiobiological Responses, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Hyun-Gyu [Department of Microbiology and Immunology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  9. Arsenic trioxide inhibits Ewing's sarcoma cell invasiveness by targeting p38(MAPK) and c-Jun N-terminal kinase.

    Science.gov (United States)

    Zhang, Shuai; Guo, Wei; Ren, Ting-Ting; Lu, Xin-Chang; Tang, Guo-Qing; Zhao, Fu-Long

    2012-01-01

    Ewing's sarcoma is the second most frequent primary malignant bone tumor, mainly affecting children and young adults. The notorious metastatic capability of this tumor aggravates patient mortality and remains a problem to be overcome. We investigated the effect of arsenic trioxide (As₂O₃) on the metastasis capability of Ewing's sarcoma cells. We performed 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide assays to choose appropriate concentrations of As₂O₃ for the experiments. Migration, invasion, and adhesion assays were performed to assess the effect of As₂O₃ on the metastasis of Ewing's sarcoma. Immunofluorescent staining was used to observe cytoskeleton reorganization in Ewing's sarcoma cells treated with As₂O₃. Changes in matrix metalloproteinase-9 expression and the mitogen-activated protein kinase (MAPK) pathway were investigated using western blot. Inhibitors of p38(MAPK) (sb202190) and c-Jun NH₂-terminal kinase (JNK, sp600125) were used in invasion assays to determine the effect of p38(MAPK) and JNK. We found that As₂O₃ may markedly inhibit the migration and invasion capacity of Ewing's sarcoma cells with structural rearrangements of the actin cytoskeleton. The expressions of matrix metalloproteinase-9, phosphor-p38(MAPK), and phosphor-JNK were suppressed by As₂O₃ treatment in a dose-dependent manner. The inhibitors of p38(MAPK) (sb202190) and JNK (sp600125) enhanced the inhibition induced by As₂O₃, which was counteracted by anisomycin, an activating agent of p38(MAPK) and JNK. Taken together, our results demonstrate that As₂O₃ can inhibit the metastasis capability of RD-ES and A-673 cells and may have new therapeutic value for Ewing's sarcoma.

  10. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  11. Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system

    International Nuclear Information System (INIS)

    Pavez, O.; Palacios, J. M.; Aguilar, C.

    2009-01-01

    In the present work, the influence of Fe/As ratio on the As removal, from aqueous solutions, applying flotation by colloidal adsorption was studied. Ferric chloride was used as coagulant and dodec il sulfate as collector, and arsenic trioxide was utilized to preparing the solutions. The obtained results show that the highest arsenic removal was accomplished in the range of pH between 4 and 5,5, and the increasing of the initial concentration of Fe(III), increases the removal of arsenic from the solution. However, with the decreasing of the initial concentration of arsenic in the solution, it is required a larger Fe/As ratio for its removal. For solutions containing: 13,73, 1,71 and 0,105 mg/L of arsenic, it was shown that to remove around 95% of the dissolved arsenic, a Fe/As ratios of approximately 6/1, 18/1 and 800/1, respectively, are required. (Author) 31 refs

  12. Indomethacin-Enhanced Anticancer Effect of Arsenic Trioxide in A549 Cell Line: Involvement of Apoptosis and Phospho-ERK and p38 MAPK Pathways

    Directory of Open Access Journals (Sweden)

    Ali Mandegary

    2013-01-01

    Full Text Available Background. Focusing on novel drug combinations that target different pathways especially apoptosis and MAPK could be a rationale for combination therapy in successful treatment of lung cancer. Concurrent use of cyclooxygenase (COX inhibitors with arsenic trioxide (ATO might be a possible treatment option. Methods. Cytotoxicity of ATO, dexamethasone (Dex, celecoxib (Cel, and Indomethacin (Indo individually or in combination was determined at 24, 48, and 72 hrs in A549 lung cancer cells. The COX-2 gene and protein expression, MAPK pathway proteins, and caspase-3 activity were studied for the most cytotoxic combinations. Results. The IC50s of ATO and Indo were 68.7 μmol/L and 396.5 μmol/L, respectively. Treatment of cells with combinations of clinically relevant concentrations of ATO and Indo resulted in greater growth inhibition and apoptosis induction than did either agent alone. Caspase-3 activity was considerably high in the presence of ATO and Indo but showed no difference in single or combination use. Phosphorylation of p38 and ERK1/2 was remarkable in the concurrent presence of both drugs. Conclusions. Combination therapy with ATO and Indo exerted a very potent in vitro cytotoxic effect against A549 lung cancer cells. Activation of ERK and p38 pathways might be the mechanism of higher cytotoxic effect of ATO-Indo combination.

  13. Arsenic and 17-β-estradiol bind to each other and neutralize each other’s signaling effects

    International Nuclear Information System (INIS)

    Kumar, Sukhdeep; Mukherjee, Tapan K.; Guptasarma, Purnananda

    2016-01-01

    We report that arsenic trioxide (ATO) and 17-beta-estradiol (E2) abolish each other’s independent cell signaling effects in respect of cell survival and proliferation/migration of breast cancer (MCF-7) cells. The possibility that this is due to binding of ATO to E2 was confirmed through difference absorption spectroscopy, chromatography-coupled voltammometry and 1-D 1 H and 13 C NMR spectroscopy. Binding leads to attenuation of E2’s hydroxyl 1 H peaks at its C17 and C3 carbon positions. The results suggest that ATO and E2 can titrate each other’s levels, potentially explaining why sustained arsenic exposure tends to be associated with delays in age of menarche, advanced age of menopause, poorer sperm quality, higher overall morbidity in men, and lower incidences of breast cancer in women in some arsenic-contaminated areas. - Highlights: • Difference absorption spectroscopy suggests that arsenic binds to estradiol. • Interaction with arsenic alters 1 H and 13 C NMR spectra of estradiol at positions C3 and C17. • Estradiol traps arsenic on C 18 reverse-phase columns. • Estradiol and arsenic neutralize each other’s ability to stimulate scratch wound healing. • Arsenic appears to form pnictogen bonds with hydroxyls on estradiol.

  14. Developmental and reproductive toxicity of inorganic arsenic: animal studies and human concerns.

    Science.gov (United States)

    Golub, M S; Macintosh, M S; Baumrind, N

    1998-01-01

    Information on the reproductive and developmental toxicity of inorganic arsenic is available primarily from studies in animals using arsenite and arsenate salts and arsenic trioxide. Inorganic arsenic has been extensively studied as a teratogen in animals. Data from animal studies demonstrate that arsenic can produce developmental toxicity, including malformation, death, and growth retardation, in four species (hamsters, mice, rats, rabbits). A characteristic pattern of malformations is produced, and the developmental toxicity effects are dependent on dose, route, and the day of gestation when exposure occurs. Studies with gavage and diet administration indicate that death and growth retardation are produced by oral arsenic exposure. Arsenic is readily transferred to the fetus and produces developmental toxicity in embryo culture. Animal studies have not identified an effect of arsenic on fertility in males or females. When females were dosed chronically for periods that included pregnancy, the primary effect of arsenic on reproduction was a dose-dependent increase in conceptus mortality and in postnatal growth retardation. Human data are limited to a few studies of populations exposed to arsenic from drinking water or from working at or living near smelters. Associations with spontaneous abortion and stillbirth have been reported in more than one of these studies, but interpretation of these studies is complicated because study populations were exposed to multiple chemicals. Thus, animal studies suggest that environmental arsenic exposures are primarily a risk to the developing fetus. In order to understand the implications for humans, attention must be given to comparative pharmacokinetics and metabolism, likely exposure scenarios, possible mechanisms of action, and the potential role of arsenic as an essential nutrient.

  15. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice

    International Nuclear Information System (INIS)

    Ye Wenling; Khan, M. Asaduzzaman; McGrath, Steve P.; Zhao Fangjie

    2011-01-01

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. - Highlights: → Pteris vittata removed 3.5-11.4% of the total As from five contaminated paddy soils. → P. vittata decreased phosphate-extractable and soil solution As to a greater extent. → P. vittata reduced As concentration in rice grain by 18-83%. → P. vittata decreased methylated As in rice grain more than inorganic As. - Phytoremediation with P. vittata significantly reduced arsenic uptake by rice from contaminated paddy soils.

  16. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice

    Energy Technology Data Exchange (ETDEWEB)

    Ye Wenling [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Khan, M. Asaduzzaman [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207 (Bangladesh); McGrath, Steve P. [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Zhao Fangjie, E-mail: Fangjie.Zhao@bbsrc.ac.uk [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2011-12-15

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. - Highlights: > Pteris vittata removed 3.5-11.4% of the total As from five contaminated paddy soils. > P. vittata decreased phosphate-extractable and soil solution As to a greater extent. > P. vittata reduced As concentration in rice grain by 18-83%. > P. vittata decreased methylated As in rice grain more than inorganic As. - Phytoremediation with P. vittata significantly reduced arsenic uptake by rice from contaminated paddy soils.

  17. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    Science.gov (United States)

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Matrix metalloproteinase-9 is involved in chronic lymphocytic leukemia cell response to fludarabine and arsenic trioxide.

    Directory of Open Access Journals (Sweden)

    Irene Amigo-Jiménez

    Full Text Available Matrix metalloproteinase-9 (MMP-9 contributes to chronic lymphocytic leukemia (CLL pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO and fludarabine as examples of cytotoxic drugs.We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test.In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2 and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9.Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing to CLL

  19. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  20. Effect of precipitation route on the properties of antimony trioxide

    International Nuclear Information System (INIS)

    Abdullah, Abdul Halim; Noor, Nor Hayati Mohd; Ramli, Irmawati; Hashim, Mansor

    2008-01-01

    Antimony trioxide was prepared, using antimony potassium tartarate as starting material, via forward and reverse precipitation technique. The characteristics of the resulting antimony oxides were determined by BET surface area method, differential thermogravimetry analysis (DTG), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and SEM. The DTG curves for all uncalcined samples showed only a single endothermic peak which indicated that the sample is antimony trioxide. Unlike forward precipitation technique which resulted in a single antimony trioxide phase which is senarmontite, reverse precipitation technique produced antimony trioxide with both senarmontite and valentinite phase. Upon calcinations at 723 K, a small amount of Sb 2 O 4 with cervantite phase was formed at the expense of Sb 2 O 3 senarmontite phase as detected from the XRD pattern and infrared spectrum of RSb. The effect of preparation route on the properties of the antimony trioxide produced was clearly demonstrated

  1. Cortex and hippocampus DNA epigenetic response to a long-term arsenic exposure via drinking water.

    Science.gov (United States)

    Du, Xiaoyan; Tian, Meiping; Wang, Xiaoxue; Zhang, Jie; Huang, Qingyu; Liu, Liangpo; Shen, Heqing

    2018-03-01

    The neurotoxicity of arsenic is a serious health problem, especially for children. DNA epigenetic change may be an important pathogenic mechanism, but the molecular pathway remains obscure. In this study, the weaned male Sprague-Dawly (SD) rats were treated with arsenic trioxide via drinking water for 6 months, simulating real developmental exposure situation of children. Arsenic exposure impaired the cognitive abilities, and altered the expression of neuronal activity-regulated genes. Total arsenic concentrations of cortex and hippocampus tissues were significantly increased in a dose-dependent manner. The reduction in 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5hmC) levels as well as the down-regulation of DNA methyltransferases (DNMTs) and ten-eleven translocations (TETs) expression suggested that DNA methylation/demethylation processes were significantly suppressed in brain tissues. S-adenosylmethionine (SAM) level wasn't changed, but the expression of the important indicators of oxidative/anti-oxidative balance and tricarboxylic acid (TCA) cycle was significantly deregulated. Overall, arsenic can disrupt oxidative/anti-oxidative balance, further inhibit TETs expression through TCA cycle and alpha-ketoglutarate (α-KG) pathway, and consequently cause DNA methylation/demethylation disruption. The present study implies oxidative stress but not SAM depletion may lead to DNA epigenetic alteration and arsenic neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Arsenic and 17-β-estradiol bind to each other and neutralize each other’s signaling effects

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sukhdeep [Center for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306 (India); Mukherjee, Tapan K. [Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207 (India); Guptasarma, Purnananda, E-mail: guptasarma@iisermohali.ac.in [Center for Protein Science, Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector-81, SAS Nagar, Punjab 140306 (India)

    2016-09-02

    We report that arsenic trioxide (ATO) and 17-beta-estradiol (E2) abolish each other’s independent cell signaling effects in respect of cell survival and proliferation/migration of breast cancer (MCF-7) cells. The possibility that this is due to binding of ATO to E2 was confirmed through difference absorption spectroscopy, chromatography-coupled voltammometry and 1-D {sup 1}H and {sup 13}C NMR spectroscopy. Binding leads to attenuation of E2’s hydroxyl {sup 1}H peaks at its C17 and C3 carbon positions. The results suggest that ATO and E2 can titrate each other’s levels, potentially explaining why sustained arsenic exposure tends to be associated with delays in age of menarche, advanced age of menopause, poorer sperm quality, higher overall morbidity in men, and lower incidences of breast cancer in women in some arsenic-contaminated areas. - Highlights: • Difference absorption spectroscopy suggests that arsenic binds to estradiol. • Interaction with arsenic alters {sup 1}H and {sup 13}C NMR spectra of estradiol at positions C3 and C17. • Estradiol traps arsenic on C{sub 18} reverse-phase columns. • Estradiol and arsenic neutralize each other’s ability to stimulate scratch wound healing. • Arsenic appears to form pnictogen bonds with hydroxyls on estradiol.

  3. Arsenic content in Portland cement: a literature review.

    Science.gov (United States)

    Tenório de Franca, Talita Ribeiro; da Silva, Raphaela Juvenal; Sedycias de Queiroz, Michellini; Aguiar, Carlos Menezes

    2010-01-01

    Portland cement (PC) is a hydraulic binding material widely used in the building industry. The main interest in its use in dentistry is focused on a possible alternative to mineral trioxide aggregate (MTA) because PC is less expensive and is widely available. In dentistry, PC has been used in dental procedures such as pulpotomy, pulp capping, repair of root perforation and root-end filling. The purpose of this article is review the dental literature about the PC, its composition with special attention to arsenic content, properties, and application in dentistry. A bibliographic research was performed in Bireme, PubMed, LILACS and Scopus data bases looking for national and international studies about the PC composition, properties and clinical use. It was observed that PC has favorable biological properties very similar to those of MTA. The PC has shown good cell proliferation induction with formation of a monolayer cell, satisfactory inflammatory response, inhibitory effect of prostaglandin and antimicrobial effect. Studies have shown that PC is not cytotoxic, stimulates the apposition of reparative dentin and permits cellular attachment and growth. Regarding arsenic presence, its levels and release are low. PC has physical, chemical and biological properties similar to MTA. Arsenic levels and release are low, therefore, unable to cause toxic effects.

  4. Arsenic content in Portland cement: A literature review

    Directory of Open Access Journals (Sweden)

    Tenorio de Franca Talita

    2010-01-01

    Full Text Available Portland cement (PC is a hydraulic binding material widely used in the building industry. The main interest in its use in dentistry is focused on a possible alternative to mineral trioxide aggregate (MTA because PC is less expensive and is widely available. In dentistry, PC has been used in dental procedures such as pulpotomy, pulp capping, repair of root perforation and root-end filling. The purpose of this article is review the dental literature about the PC, its composition with special attention to arsenic content, properties, and application in dentistry. A bibliographic research was performed in Bireme, PubMed, LILACS and Scopus data bases looking for national and international studies about the PC composition, properties and clinical use. It was observed that PC has favorable biological properties very similar to those of MTA. The PC has shown good cell proliferation induction with formation of a monolayer cell, satisfactory inflammatory response, inhibitory effect of prostaglandin and antimicrobial effect. Studies have shown that PC is not cytotoxic, stimulates the apposition of reparative dentin and permits cellular attachment and growth. Regarding arsenic presence, its levels and release are low. PC has physical, chemical and biological properties similar to MTA. Arsenic levels and release are low, therefore, unable to cause toxic effects.

  5. Cooking rice in excess water reduces both arsenic and enriched vitamins in the cooked grain.

    Science.gov (United States)

    Gray, Patrick J; Conklin, Sean D; Todorov, Todor I; Kasko, Sasha M

    2016-01-01

    This paper reports the effects of rinsing rice and cooking it in variable amounts of water on total arsenic, inorganic arsenic, iron, cadmium, manganese, folate, thiamin and niacin in the cooked grain. We prepared multiple rice varietals both rinsed and unrinsed and with varying amounts of cooking water. Rinsing rice before cooking has a minimal effect on the arsenic (As) content of the cooked grain, but washes enriched iron, folate, thiamin and niacin from polished and parboiled rice. Cooking rice in excess water efficiently reduces the amount of As in the cooked grain. Excess water cooking reduces average inorganic As by 40% from long grain polished, 60% from parboiled and 50% from brown rice. Iron, folate, niacin and thiamin are reduced by 50-70% for enriched polished and parboiled rice, but significantly less so for brown rice, which is not enriched.

  6. Arsenic-induced biochemical and genotoxic effects and distribution in tissues of Sprague-Dawley rats

    Science.gov (United States)

    Patlolla, Anita K.; Todorov, Todor I.; Tchounwou, Paul B.; van der Voet, Gijsbert; Centeno, Jose A.

    2012-01-01

    Arsenic (As) is a well documented human carcinogen. However, its mechanisms of toxic action and carcinogenic potential in animals have not been conclusive. In this research, we investigated the biochemical and genotoxic effects of As and studied its distribution in selected tissues of Sprague–Dawley rats. Four groups of six male rats, each weighing approximately 60 ± 2 g, were injected intraperitoneally, once a day for 5 days with doses of 5, 10, 15, 20 mg/kg BW of arsenic trioxide. A control group was also made of 6 animals injected with distilled water. Following anaesthetization, blood was collected and enzyme analysis was performed by spectrophotometry following standard protocols. At the end of experimentation, the animals were sacrificed, and the lung, liver, brain and kidney were collected 24 h after the fifth day treatment. Chromosome and micronuclei preparation was obtained from bone marrow cells. Arsenic exposure significantly increased (p < 0.05) the activities of plasma alanine aminotransferase–glutamate pyruvate transaminase (ALT/GPT), and aspartate aminotransferase–glutamate oxaloacetate transaminase (AST/GOT), as well as the number of structural chromosomal aberrations (SCA) and frequency of micronuclei (MN) in the bone marrow cells. In contrast, the mitotic index in these cells was significantly reduced (p < 0.05). These findings indicate that aminotransferases are candidate biomarkers for arsenic-induced hepatotoxicity. Our results also demonstrate that As has a strong genotoxic potential, as measured by the bone marrow SCA and MN tests in Sprague–Dawley rats. Total arsenic concentrations in tissues were measured by inductively coupled plasma mass spectrometry (ICP-MS). A dynamic reaction cell (DRC) with hydrogen gas was used to eliminate the ArCl interference at mass 75, in the measurement of total As. Total As doses in tissues tended to correlate with specific exposure levels.

  7. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    International Nuclear Information System (INIS)

    Chien, Chia-Wen; Yao, Ju-Hsien; Chang, Shih-Yu; Lee, Pei-Chih; Lee, Te-Chang

    2011-01-01

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: ► ATO and SAHA are therapeutic agents with different action modes. ► Combination of ATO and SAHA synergistically inhibits tumor cell growth. ► SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. ► ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.

  8. Mineral trioxide aggregate: part 2 - a review of the material aspects.

    Science.gov (United States)

    Malhotra, Neeraj; Agarwal, Antara; Mala, Kundabala

    2013-03-01

    The purpose of this two-part series is to review the composition, properties, and products of mineral trioxide aggregate (MTA) materials. PubMed and MedLine electronic databases were used to identify scientific papers from January 1991 to May 2010. Based on the selected inclusion criteria, citations were referenced from the scientific peer-reviewed dental literature. Mineral trioxide aggregate is a refined form of the parent compound, Portland cement (PC), and demonstrates a strong biocompatibility due to the high pH level and the material's ability to form hydroxyapatite. Mineral trioxide aggregate materials provide better microleakage protection than traditional endodontic materials as observed in findings from dye-leakage, fluid-filtration, protein-leakage, and bacterial penetration-leakage studies and has been recognized as a bioactive material. Various MTA commercial products are available, including gray mineral trioxide aggregate (GMTA), white mineral trioxide aggregate (WMTA), and mineral trioxide aggregate-Angelus (AMTA). Although these materials are indicated for various dental uses and applications, long-term in-vivo clinical studies are needed. Part 1 of this article highlighted and discussed the composition and characteristics of the material. Part 2 provides an overview of commercially available MTA materials.

  9. Redistribution of cell cycle by arsenic trioxide is associated with demethylation and expression changes of cell cycle related genes in acute promyelocytic leukemia cell line (NB4).

    Science.gov (United States)

    Hassani, Saeed; Khaleghian, Ali; Ahmadian, Shahin; Alizadeh, Shaban; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2018-01-01

    PML-RARα perturbs the normal epigenetic setting, which is essential to oncogenic transformation in acute promyelocytic leukemia (APL). Transcription induction and recruitment of DNA methyltransferases (DNMTs) by PML-RARα and subsequent hypermethylation are components of this perturbation. Arsenic trioxide (ATO), an important drug in APL therapy, concurrent with degradation of PML-RARα induces cell cycle change and apoptosis. How ATO causes cell cycle alteration has remained largely unexplained. Here, we investigated DNA methylation patterns of cell cycle regulatory genes promoters, the effects of ATO on the methylated genes and cell cycle distribution in an APL cell line, NB4. Analysis of promoter methylation status of 22 cell cycle related genes in NB4 revealed that CCND1, CCNE1, CCNF, CDKN1A, GADD45α, and RBL1 genes were methylated 60.7, 84.6, 58.6, 8.7, 33.4, and 73.7%, respectively, that after treatment with 2 μM ATO for 48 h, turn into 0.6, 13.8, 0.1, 6.6, 10.7, and 54.5% methylated. ATO significantly reduced the expression of DNMT1, 3A, and 3B. ATO induced the expression of CCND1, CCNE1, and GADD45α genes, suppressed the expression of CCNF and CDKN1A genes, which were consistent with decreased number of cells in G1 and S phases and increased number of cells in G2/M phase. In conclusion, demethylation and alteration in the expression level of the cell cycle related genes may be possible mechanisms in ATO-induced cell cycle arrest in APL cells. It may suggest that ATO by demethylation of CCND1 and CCNE1 and their transcriptional activation accelerates G1 and S transition into the G2/M cell cycle arrest.

  10. HPLC-HG-AFS determination of arsenic species in acute promyelocytic leukemia (APL) plasma and blood cells.

    Science.gov (United States)

    Guo, Meihua; Wang, Wenjing; Hai, Xin; Zhou, Jin

    2017-10-25

    Arsenic trioxide (ATO) has been successfully used in the treatment of acute promyelocytic leukemia (APL). To clarify the arsenic species in APL patients, high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) and HG-AFS methods were developed and validated to quantify the plasma concentrations of inorganic arsenic (As(III) and As(V)) and methylated metabolites (MMA and DMA), and the total amounts of arsenic in blood cells and plasma. Blood cells and plasma were digested with mixtures of HNO 3 H 2 O 2 and analyzed by HG-AFS. For arsenic speciation, plasma samples were prepared with perchloric acid to precipitate protein. The supernatant was separated on an anion-exchange column within 6min with isocratic elution using 13mM CH 3 COONa, 3mM NaH 2 PO 4 , 4mM KNO 3 and 0.2mM EDTA-2Na. The methods provided linearity range of 0.2-20ng/mL for total arsenic and 2.0-50ng/mL for four arsenic species. The developed methods for total arsenic and arsenic species determination were precise and accurate. The spiked recoveries ranged from 81.2%-108.6% and the coefficients of variation for intra- and inter-batch precision were less than 9.3% and 12.5%, respectively. The developed methods were applied successfully for the assay of total arsenic and arsenic species in 5 APL patients. The HPLC-HG-AFS may be a good alternative for arsenic species determination in APL patients with its simplicity and low-cost in comparison with HPLC-ICP-MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. All-Trans Retinoic Acid plus Arsenic Trioxide versus All-Trans Retinoic Acid plus Chemotherapy for Newly Diagnosed Acute Promyelocytic Leukemia: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Yafang Ma

    Full Text Available Recently, the all-trans retinoic acid (ATRA plus arsenic trioxide (ATO protocol has become a promising first-line therapeutic approach in patients with newly diagnosed acute promyelocytic leukemia (APL, but its benefits compared with standard ATRA plus chemotherapy regimen needs to be proven. Herein, we conducted a meta-analysis comparing the efficacy of ATRA plus ATO with ATRA plus chemotherapy for adult patients with newly diagnosed APL.We systematically searched biomedical electronic databases and conference proceedings through February 2016. Two reviewers independently assessed all studies for relevance and validity.Overall, three studies were eligible for inclusion in this meta-analysis, which included a total of 585 patients, with 317 in ATRA plus ATO group and 268 in ATRA plus chemotherapy group. Compared with patients who received ATRA and chemotherapy, patients who received ATRA plus ATO had a significantly better event-free survival (hazard ratio [HR] = 0.38, 95% confidence interval [CI]: 0.22-0.67, p = 0.009, overall survival (HR = 0.44, 95% CI: 0.24-0.82, p = 0.009, complete remission rate (relative risk [RR] = 1.05; 95% CI: 1.01-1.10; p = 0.03. There were no significant differences in early mortality (RR = 0.48; 95% CI: 0.22-1.05; p = 0.07.Thus, this analysis indicated that ATRA plus ATO protocol may be preferred to standard ATRA plus chemotherapy protocol, particularly in low-to-intermediate risk APL patients. Further larger trials were needed to provide more evidence in high-risk APL patients.

  12. Pathogenesis and treatment of leukemia: an Asian perspective.

    Science.gov (United States)

    Kwong, Yok-Lam

    2012-03-01

    Leukemias occur worldwide, but there are important geographic differences in incidences. Three leukemias with special Asian perspectives, acute promyelocytic leukemia (APL), T-cell large granular lymphocyte (T-LGL) leukemia and NK-cell leukemia. In APL, China has made contributions in discovering the efficacy of all-trans retinoic acid (ATRA) and arsenic trioxide. Some APL patients are potentially curable after treatment with ATRA or arsenic trioxide as a single agent. Combined treatment of APL with ATRA and arsenic trioxide induces remission with deeper molecular response. An oral formulation of arsenic trioxide is available, making outpatient treatment feasible. Future regimens for APL should examine how ATRA and arsenic trioxide can be optimally combined with other synergistic drugs. Asian patients with T-LGL leukemia present more frequently with pure red cell aplasia, but less frequently with neutropenia, recurrent infection, splenomegaly and rheumatoid arthritis as compared with Western patients. These differences have potential effects on treatment and disease pathogenesis. NK-cell leukemia is rapidly fatal and occurs almost exclusively in Asian and South American patients. Conventional anthracycline-based chemotherapy designed for B-cell lymphomas do not work in NK-cell leukemias. Novel therapeutic approaches targeting cellular signaling pathways or preferentially upregulated genes are needed to improve outcome.

  13. Comparison of optical and power Doppler ultrasound imaging for non-invasive evaluation of arsenic trioxide as a vascular disrupting agent in tumors.

    Science.gov (United States)

    Alhasan, Mustafa K; Liu, Li; Lewis, Matthew A; Magnusson, Jennifer; Mason, Ralph P

    2012-01-01

    Small animal imaging provides diverse methods for evaluating tumor growth and acute response to therapy. This study compared the utility of non-invasive optical and ultrasound imaging to monitor growth of three diverse human tumor xenografts (brain U87-luc-mCherry, mammary MCF7-luc-mCherry, and prostate PC3-luc) growing in nude mice. Bioluminescence imaging (BLI), fluorescence imaging (FLI), and Power Doppler ultrasound (PD US) were then applied to examine acute vascular disruption following administration of arsenic trioxide (ATO).During initial tumor growth, strong correlations were found between manual caliper measured tumor volume and FLI intensity, BLI intensity following luciferin injection, and traditional B-mode US. Administration of ATO to established U87 tumors caused significant vascular shutdown within 2 hrs at all doses in the range 5 to 10 mg/kg in a dose dependant manner, as revealed by depressed bioluminescent light emission. At lower doses substantial recovery was seen within 4 hrs. At 8 mg/kg there was >85% reduction in tumor vascular perfusion, which remained depressed after 6 hrs, but showed some recovery after 24 hrs. Similar response was observed in MCF7 and PC3 tumors. Dynamic BLI and PD US each showed similar duration and percent reductions in tumor blood flow, but FLI showed no significant changes during the first 24 hrs.The results provide further evidence for comparable utility of optical and ultrasound imaging for monitoring tumor growth, More specifically, they confirm the utility of BLI and ultrasound imaging as facile assays of the vascular disruption in solid tumors based on ATO as a model agent.

  14. Presence of arsenic in different types of MTA and white and gray Portland cement.

    Science.gov (United States)

    Monteiro Bramante, Clóvis; Demarchi, Ana Claudia Cardoso Oliveira; de Moraes, Ivaldo Gomes; Bernadineli, Norberti; Garcia, Roberto Brandão; Spångberg, Lars S W; Duarte, Marco Antonio Hungaro

    2008-12-01

    The presence of arsenic in various types of mineral trioxide aggregate (MTA) and Portland cements were evaluated to verify if they comply with the ISO-recommended limit for water-based cements of 2 mg arsenic/kg material. An amount of 5 mL of hydrochloric acid was added to 2 g each of MTA and Portland cement to be analyzed. After 15 minutes, the material was filtered and the volume of supernatant was diluted with reagent-grade water up to 40 mL. Atomic absorption spectrophotometry readings were performed in triplicate. The following mean values were obtained: CPM (Egeo, Buenos Aires, Argentina) 11.06 mg/kg; CPM sealer (Egeo) 10.30 mg/kg; MTA-Obtura (Angelus, Londrina, PR, Brazil) 0.39 mg/kg; Experimental MTA: 10.30 mg/kg; White MTA-Angelus (Angelus) 1.03 mg/kg; Gray MTA-Angelus (Angelus) 5.91 mg/kg; ProRoot-MTA (Dentsply/Tulsa Dental Specialties, Tulsa, OK) 5.25 mg/kg; Gray Portland cement (Votorantim Cimentos, Cubatão, SP, Brazil): 34.27 mg/kg; and White Portland cement (Cimento Rio Branco, Rio de Janeiro, RJ, Brazil) 0.52 mg/kg. All tested materials presented arsenic in their composition. The form of arsenic was not analyzed nor the toxicity of the arsenic found. Only MTA-Obtura, White MTA-Angelus, and White Portland cement presented arsenic levels below the limit set in the ISO 9917-1 standard.

  15. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis.

    Science.gov (United States)

    Binet, François; Cavalli, Hélène; Moisan, Eliane; Girard, Denis

    2006-02-01

    The anti-cancer drug arsenic trioxide (AT) induces apoptosis in a variety of transformed or proliferating cells. However, little is known regarding its ability to induce apoptosis in terminally differentiated cells, such as neutrophils. Because neutropenia has been reported in some cancer patients after AT treatment, we hypothesised that AT could induce neutrophil apoptosis, an issue that has never been investigated. Herein, we found that AT-induced neutrophil apoptosis and gelsolin degradation via caspases. AT did not increase neutrophil superoxide production and did not induce mitochondrial generation of reactive oxygen species. AT-induced apoptosis in PLB-985 and X-linked chronic granulomatous disease (CGD) cells (PLB-985 cells deficient in gp91(phox) mimicking CGD) at the same potency. Addition of catalase, an inhibitor of H2O2, reversed AT-induced apoptosis and degradation of the cytoskeletal proteins gelsolin, alpha-tubulin and lamin B1. Unexpectedly, AT-induced de novo protein synthesis, which was reversed by catalase. Cycloheximide partially reversed AT-induced apoptosis. We conclude that AT induces neutrophil apoptosis by a caspase-dependent mechanism and via de novo protein synthesis. H2O2 is of major importance in AT-induced neutrophil apoptosis but its production does not originate from nicotinamide adenine dinucleotide phosphate dehydrogenase activation and mitochondria. Cytoskeletal structures other than microtubules can now be considered as novel targets of AT.

  16. Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L.

    Science.gov (United States)

    Cavalca, Lucia; Corsini, Anna; Bachate, Sachin Prabhakar; Andreoni, Vincenza

    2013-10-01

    In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg⁻¹). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.

  17. α-Lipoic Acid Mitigates Arsenic-Induced Hematological Abnormalities in Adult Male Rats

    Directory of Open Access Journals (Sweden)

    Sonali Ghosh

    2017-05-01

    Full Text Available Background: Arsenic toxicity is a major global health problem and exposure via contaminated drinking water has been associated with hematological and other systemic disorders. The present investigation has been conducted in adult male rats to evaluate the protective ability of α-lipoic acid (ALA against such hematological disorders. Methods: Twenty-four adult male Wister rats (b.wt.130±10g were grouped and accordingly group I (control received the normal diet, group II (treated was given arsenic orally for 28 consecutive days as arsenic trioxide (3 mg/kgbw/rat/day whereas group III (supplemented received the same dose of arsenic along with ALA (25 mg/kgbw/rat/day as oral supplement. Hematological profile, plasma oxidant/antioxidant status, and erythrocyte morphology were assessed. Statistical analysis was done by one-way ANOVA using SPSS software (version 16.0. Results: Arsenic exposure caused reduction of erythrocyte (P=0.021, leucocyte (P<0.001, and hemoglobin (P=0.031 associated with echinocytic transformation as evidenced by light and scanning electron microscopic studies. The other significantly altered parameters include increased mean corpuscular volume (P=0.041 and lymphocytopenia (P<0.001 with insignificant neutropenia and eosinophilia. Altered serum oxidative balance as evidenced by decreased TAS (P<0.001 and increased TOS (P<0.001 with OSI (P<0.001 was also noted. The dietary supplementation of ALA has a beneficial effect against the observed (P<0.05 arsenic toxicities. It brings about the protection by restoring the hematological redox and inflammatory status near normal in treated rats. Arsenic-induced morphological alteration of erythrocytes was also partially attenuated by ALA supplementation. Conclusion: It is concluded that arsenicosis is associated with hematological alterations and ALA co-supplementation can partially alleviate these changes in an experimental male rat model.

  18. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  19. INFLUENCE OF MORINGA OLEIFERA (DRUM-STICK FRUIT EXTRACT ON HAEMATOLOGICAL PROFILE FOLLOWING REPEATED EXPOSURE TO LOW LEVELS OF ARSENIC THROUGH FEED ON RATS

    Directory of Open Access Journals (Sweden)

    Vaibhav R. Pachade

    2012-01-01

    Full Text Available Effect of Moringa oleifera fruits hot methanolic extract (MFE, if any, in minimizing the adverse reactions of repeated exposure to arsenic trioxide (AT in feed was investigated in Wistar rats with reference to haematological profile. Three groups of rats each containing 10 (5male+5female were used. The group I served as negative control. Rats of group II were fed arsenic trioxide (AT alone @ 100 ppm in feed while those of group III simultaneously received AT (@100 ppm and MFE (50 mg/kg/day for 28 days. Blood samples were collected from retroorbital plexus for estimation of hematological parameters (haemoglobin, PCV, TEC, MCH, MCHC, MCV of different groups on 0 day, 15th day and 29th day respectively. Exposure to AT through feed in group II resulted in significant (P<0.05 decrease in haemoglobin, TEC and MCHC, accompanied by increased MCV, with no significant alteration of PCV or MCH of the rats. While rats of group III treated with AT (@100 ppm and MFE (50 mg/kg/day also resulted in same consequences as it was in group II but it was slightly less than that of group II suggesting of mild non significant protective effect.

  20. On the effect of interaction of molybdenum trioxide and magnesium oxide in water

    International Nuclear Information System (INIS)

    Bunin, V.M.; Karelin, A.I.; Solov'eva, L.N.

    1992-01-01

    Interaction of molybdenum trioxide and magnesium oxide in water was studied. It is shown that molybdenum trioxide forms consecutively magnesium molybdate, dimolybdate and magnesium polymolybdates with magnesium oxide

  1. Arsenic downregulates tight junction claudin proteins through p38 and NF-κB in intestinal epithelial cell line, HT-29

    International Nuclear Information System (INIS)

    Jeong, Chang Hee; Seok, Jin Sil; Petriello, Michael C.; Han, Sung Gu

    2017-01-01

    Arsenic is a naturally occurring metalloid that often is found in foods and drinking water. Human exposure to arsenic is associated with the development of gastrointestinal problems such as fluid loss, diarrhea and gastritis. Arsenic is also known to induce toxic responses including oxidative stress in cells of the gastrointestinal track. Tight junctions (TJs) regulate paracellular permeability and play a barrier role by inhibiting the movement of water, solutes and microorganisms in the paracellular space. Since oxidative stress and TJ damage are known to be associated, we examined whether arsenic produces TJ damage such as downregulation of claudins in the human colorectal cell line, HT-29. To confirm the importance of oxidative stress in arsenic-induced TJ damage, effects of the antioxidant compound (e.g., N-acetylcysteine (NAC)) were also determined in cells. HT-29 cells were treated with arsenic trioxide (40 μM, 12 h) to observe the modified expression of TJ proteins. Arsenic decreased expression of TJ proteins (i.e., claudin-1 and claudin-5) and transepithelial electrical resistance (TEER) whereas pretreatment of NAC (5–10 mM, 1 h) attenuated the observed claudins downregulation and TEER. Arsenic treatment produced cellular oxidative stress via superoxide generation and lowering glutathione (GSH) levels, while NAC restored cellular GSH levels and decreased oxidative stress. Arsenic increased phosphorylation of p38 and nuclear translocation of nuclear factor-kappa B (NF-κB) p65, while NAC attenuated these intracellular events. Results demonstrated that arsenic can damage intestinal epithelial cells by proinflammatory process (oxidative stress, p38 and NF-κB) which resulted in the downregulation of claudins and NAC can protect intestinal TJs from arsenic toxicity.

  2. Programming voltage reduction in phase change memory cells with tungsten trioxide bottom heating layer/electrode

    International Nuclear Information System (INIS)

    Rao Feng; Song Zhitang; Gong Yuefeng; Wu Liangcai; Feng Songlin; Chen, Bomy

    2008-01-01

    A phase change memory cell with tungsten trioxide bottom heating layer/electrode is investigated. The crystalline tungsten trioxide heating layer promotes the temperature rise in the Ge 2 Sb 2 Te 5 layer which causes the reduction in the reset voltage compared to a conventional phase change memory cell. Theoretical thermal simulation and calculation for the reset process are applied to understand the thermal effect of the tungsten trioxide heating layer/electrode. The improvement in thermal efficiency of the PCM cell mainly originates from the low thermal conductivity of the crystalline tungsten trioxide material.

  3. Thorium coprecipitation method for spectrophotometric determination of arsenic (III) and arsenic (V) in groundwaters

    International Nuclear Information System (INIS)

    Tamari, Yuzo; Yamamoto, Nobuki; Tsuji, Haruo; Kusaka, Yuzuru

    1989-01-01

    A new coprecipitation method for the spectrophotometry of arsenic (III) and arsenic (V) in groundwater has been developed. Arsenic (III) and arsenic (V) were coprecipitated with thorium (IV) hydroxide from 1000ml of groundwater at pH9. The precipitate was centrifuged and then dissolved with hydrochloric acid. Arsenic (III) was spectrophotometrically determined by the usual silver diethylditiocarbamate (Ag-DDTC) method after generating the arsenic to arsine with sodium tetrahydroborate under masking the thorium with EDTA-NaF at pH6. From another portion of the same groundwater, both arsenic (III) and arsenic (V) were determined by the Ag-DDTC method after reducing all the arsenic to arsine with sodium tetrahydroborate at pH less than 1 in the presence of the EDTA-NaF. The concentration of arsenic (V) was obtained by subtracting that of arsenic (III) from the total for arsenic. (author)

  4. The potential DNA toxic changes among workers exposed to antimony trioxide.

    Science.gov (United States)

    El Shanawany, Safaa; Foda, Nermine; Hashad, Doaa I; Salama, Naglaa; Sobh, Zahraa

    2017-05-01

    Occupational exposure to antimony has gained much interest when specific toxic effects were noticed among workers processing antimony. Thus, the aim of the present work was to investigate the potential DNA oxidative damage occurring among Egyptian workers occupationally exposed to antimony trioxide. The study was conducted on 25 subjects exposed to antimony trioxide while working in the polymerization process of polyester in Misrayon and Polyester Fiber Company, KafrEldawwar, Beheira, Egypt. Urinary antimony levels were assessed using inductive coupled plasma-optical emission spectrometry (ICP-OES) and considered as a biological exposure index. DNA damage and total oxidant capacity (TOC) were assessed using ELISA. DNA damage was detected in the form of increased apurinic/apyrimidinic (AP) sites among antimony trioxide-exposed workers compared to control subjects, but it could not be explained by oxidative mechanisms due to lack of significant correlation between DNA damage and measured TOC. Antimony trioxide might have a genotoxic impact on occupationally exposed workers which could not be attributed to oxidative stress in the studied cases.

  5. Sulfate and glutathione enhanced arsenic accumulation by arsenic hyperaccumulator Pteris vittata L

    International Nuclear Information System (INIS)

    Wei Shuhe; Ma, Lena Q.; Saha, Uttam; Mathews, Shiny; Sundaram, Sabarinath; Rathinasabapathi, Bala; Zhou Qixing

    2010-01-01

    This experiment examined the effects of sulfate (S) and reduced glutathione (GSH) on arsenic uptake by arsenic hyperaccumulator Pteris vittata after exposing to arsenate (0, 15 or 30 mg As L -1 ) with sulfate (6.4, 12.8 or 25.6 mg S L -1 ) or GSH (0, 0.4 or 0.8 mM) for 2-wk. Total arsenic, S and GSH concentrations in plant biomass and arsenic speciation in the growth media and plant biomass were determined. While both S (18-85%) and GSH (77-89%) significantly increased arsenic uptake in P. vittata, GSH also increased arsenic translocation by 61-85% at 0.4 mM (p < 0.05). Sulfate and GSH did not impact plant biomass or arsenic speciation in the media and biomass. The S-induced arsenic accumulation by P. vittata was partially attributed to increased plant GSH (21-31%), an important non-enzymatic antioxidant countering oxidative stress. This experiment demonstrated that S and GSH can effectively enhance arsenic uptake and translocation by P. vittata. - Sulfate and glutathione increased arsenic uptake and translocation in Pteris vittata.

  6. Arsenic removal by using colloidal adsorption flotation utilizing Fe(OH)3 floc in a dissolved air flotation system; Eliminacion de arsenico mediante flotacion por adsorcion coloidal utilizando floculos de Fe(OH){sub 3} en un sistema de flotacion por aire disuelto

    Energy Technology Data Exchange (ETDEWEB)

    Pavez, O.; Palacios, J. M.; Aguilar, C.

    2009-07-01

    In the present work, the influence of Fe/As ratio on the As removal, from aqueous solutions, applying flotation by colloidal adsorption was studied. Ferric chloride was used as coagulant and dodec il sulfate as collector, and arsenic trioxide was utilized to preparing the solutions. The obtained results show that the highest arsenic removal was accomplished in the range of pH between 4 and 5,5, and the increasing of the initial concentration of Fe(III), increases the removal of arsenic from the solution. However, with the decreasing of the initial concentration of arsenic in the solution, it is required a larger Fe/As ratio for its removal. For solutions containing: 13,73, 1,71 and 0,105 mg/L of arsenic, it was shown that to remove around 95% of the dissolved arsenic, a Fe/As ratios of approximately 6/1, 18/1 and 800/1, respectively, are required. (Author) 31 refs.

  7. Mineral Trioxide Aggregate and Portland Cement for Direct Pulp Capping in Dog: A Histopathological Evaluation

    Directory of Open Access Journals (Sweden)

    Maryam Bidar

    2014-09-01

    Full Text Available Background and aims. Mineral trioxide aggregate and calcium hydroxide are considered the gold standard pulp-capping materials. Recently, Portland cement has been introduced with properties similar to those of mineral trioxide aggregate. His-topathological effects of direct pulp capping using mineral trioxide aggregate and Portland cements on dog dental pulp tis-sue were evaluated in the present study. Materials and methods. This histopatological study was carried out on 64 dog premolars. First, the pulp was exposedwith a sterile bur. Then, the exposed pulp was capped with white or gray mineral trioxide aggregates and white or gray Port-land cements in each quadrant and sealed with glass-ionomer. The specimens were evaluated under a light microscope after 6 months. Statistical analysis was carried out using Kruskal-Wallis test. Statistical significance was defined at α=5%. Results. There was no acute inflammation in any of the specimens. Chronic inflammation in white and gray mineral triox-ide aggregates and white and gray Portland cements was reported to be 45.5%, 27.3%, 57.1% and 34.1%, respectively. Al-though the differences were not statistically significant, severe inflammation was observed mostly adjacent to white mineral trioxide aggregate. The largest extent of increased vascularization (45% and the least increase in fibrous tissue were ob-served adjacent to white mineral trioxide aggregate, with no significant differences. In addition, the least calcified tissue formed adjacent to white mineral trioxide aggregate, although the difference was not significant. Conclusion. The materials used in this study were equally effective as pulp protection materials following direct pulp cap-ping in dog teeth.

  8. Resveratrol, a Natural Antioxidant, Has a Protective Effect on Liver Injury Induced by Inorganic Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Zhigang Zhang

    2014-01-01

    Full Text Available Resveratrol (Rev can ameliorate cytotoxic chemotherapy-induced toxicity and oxidative stress. Arsenic trioxide (As2O3 is a known cytotoxic environmental toxicant and a potent chemotherapeutic agent. However, the mechanisms by which resveratrol protects the liver against the cytotoxic effects of As2O3 are not known. Therefore, in the present study we investigated the mechanisms involved in the action of resveratrol using a cat model in which hepatotoxicity was induced by means of As2O3 treatment. We found that pretreatment with resveratrol, administered using a clinically comparable dose regimen, reversed changes in As2O3-induced morphological and liver parameters and resulted in a significant improvement in hepatic function. Resveratrol treatment also improved the activities of antioxidant enzymes and attenuated As2O3-induced increases in reactive oxygen species and malondialdehyde production. In addition, resveratrol attenuated the As2O3-induced reduction in the ratio of reduced glutathione to oxidized glutathione and the retention of arsenic in liver tissue. These findings provide a better understanding of the mechanisms whereby resveratrol modulates As2O3-induced changes in liver function and tissue morphology. They also provide a stronger rationale for the clinical utilization of resveratrol for the reduction of As2O3-induced hepatotoxicity.

  9. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  10. Detoxification system for inorganic arsenic: transformation of As2O3 into TMAO by vitamin B12 derivatives and conversion of TMAO into arsenobetaine.

    Science.gov (United States)

    Nakamura, Koichiro; Hisaeda, Yoshio; Pan, Ling; Yamauchi, Hiroshi

    2008-11-07

    A new two-step synthetic pathway developed for the transformation of arsenic trioxide [iAs(III); As(2)O(3)] into arsenobetaine (AB; Me(3)As(+)CH(2)CO(2)(-)) involves treatment of iAs(III) with native B(12) or biomimetic B(12) in the presence of glutathione (GSH) to give TMAO with a high selectivity and a high conversion rate; subsequent treatment of TMAO with iodoacetic acid in the presence of GSH gives arsenobetaine.

  11. Decoupling of arsenic and iron release from ferrihydrite suspension under reducing conditions: a biogeochemical model

    Directory of Open Access Journals (Sweden)

    Morin Guillaume

    2007-11-01

    Full Text Available Abstract High levels of arsenic in groundwater and drinking water are a major health problem. Although the processes controlling the release of As are still not well known, the reductive dissolution of As-rich Fe oxyhydroxides has so far been a favorite hypothesis. Decoupling between arsenic and iron redox transformations has been experimentally demonstrated, but not quantitatively interpreted. Here, we report on incubation batch experiments run with As(V sorbed on, or co-precipitated with, 2-line ferrihydrite. The biotic and abiotic processes of As release were investigated by using wet chemistry, X-ray diffraction, X-ray absorption and genomic techniques. The incubation experiments were carried out with a phosphate-rich growth medium and a community of Fe(III-reducing bacteria under strict anoxic conditions for two months. During the first month, the release of Fe(II in the aqueous phase amounted to only 3% to 10% of the total initial solid Fe concentration, whilst the total aqueous As remained almost constant after an initial exchange with phosphate ions. During the second month, the aqueous Fe(II concentration remained constant, or even decreased, whereas the total quantity of As released to the solution accounted for 14% to 45% of the total initial solid As concentration. At the end of the incubation, the aqueous-phase arsenic was present predominately as As(III whilst X-ray absorption spectroscopy indicated that more than 70% of the solid-phase arsenic was present as As(V. X-ray diffraction revealed vivianite Fe(II3(PO42.8H2O in some of the experiments. A biogeochemical model was then developed to simulate these aqueous- and solid-phase results. The two main conclusions drawn from the model are that (1 As(V is not reduced during the first incubation month with high Eh values, but rather re-adsorbed onto the ferrihydrite surface, and this state remains until arsenic reduction is energetically more favorable than iron reduction, and (2 the

  12. Plants as useful vectors to reduce environmental toxic arsenic content.

    Science.gov (United States)

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  13. Direct separation of arsenic and antimony oxides by high-temperature filtration with porous FeAl intermetallic.

    Science.gov (United States)

    Zhang, Huibin; Liu, Xinli; Jiang, Yao; Gao, Lin; Yu, Linping; Lin, Nan; He, Yuehui; Liu, C T

    2017-09-15

    A temperature-controlled selective filtration technology for synchronous removal of arsenic and recovery of antimony from the fume produced from reduction smelting process of lead anode slimes was proposed. The chromium (Cr) alloyed FeAl intermetallic with an asymmetric pore structure was developed as the high-temperature filter material after evaluating its corrosive resistance, structural stability and mechanical properties. The results showed that porous FeAl alloyed with 20wt.% Cr had a long term stability in a high-temperature sulfide-bearing environment. The separation of arsenic and antimony trioxides was realized principally based on their disparate saturated vapor pressures at specific temperature ranges and the asymmetric membrane of FeAl filter elements with a mean pore size of 1.8μm. Pilot-scale filtration tests showed that the direct separation of arsenic and antimony can be achieved by a one-step or two-step filtration process. A higher removal percentage of arsenic can reach 92.24% at the expense of 6∼7% loss of antimony in the two-step filtration process at 500∼550°C and 300∼400°C. The FeAl filters had still good permeable and mechanical properties with 1041h of uninterrupted service, which indicates the feasibility of this high-temperature filtration technology. Copyright © 2017. Published by Elsevier B.V.

  14. Combination of arsenic and interferon-α inhibits expression of KSHV latent transcripts and synergistically improves survival of mice with primary effusion lymphomas.

    Science.gov (United States)

    El Hajj, Hiba; Ali, Jihane; Ghantous, Akram; Hodroj, Dana; Daher, Ahmad; Zibara, Kazem; Journo, Chloé; Otrock, Zaher; Zaatari, Ghazi; Mahieux, Renaud; El Sabban, Marwan; Bazarbachi, Ali; Abou Merhi, Raghida

    2013-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphomas (PEL). PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN) inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.

  15. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    Directory of Open Access Journals (Sweden)

    Nosheen Mirza

    2014-01-01

    Full Text Available Arsenic (As toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  16. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    Science.gov (United States)

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants. PMID:24526924

  17. Effect of alpha-lipoic acid on the removal of arsenic from arsenic-loaded isolated liver tissues of rat

    Directory of Open Access Journals (Sweden)

    Noor-E-Tabassum

    2006-06-01

    Full Text Available The patient of chronic arsenic toxicity shows oxidative stress. To overcome the oxidative stress, several antioxidants such as beta-carotene, ascorbic acid, α-tocopherol, zinc and selenium had been suggested in the treatment of chronic arsenic toxicity. In the present study universal antioxidant (both water and lipid soluble antioxidant α-lipoic acid was used to examine the effectiveness of reducing the amount of arsenic from arsenic-loaded isolated liver tissues of rat. Isolated liver tissues of Long Evans Norwegian rats were cut into small pieces and incubated first in presence or absence of arsenic and then with different concentrations of α-lipoic acid during the second incubation. α-Lipoic acid decreases the amount of arsenic and malondialdehyde (MDA in liver tissues as well as increases the reduced glutathione (GSH level in dose dependent manner. These results suggest that α-lipoic acid remove arsenic from arsenic-loaded isolated liver tissues of rat.

  18. Sources and circulation of water and arsenic in the Giant Mine, Yellowknife, NWT, Canada.

    Science.gov (United States)

    Clark, Ian D; Raven, Kenneth G

    2004-06-01

    Recovery of gold from arsenopyrite-hosted ore in the Giant Mine camp, Yellowknife, NWT, Canada, has left a legacy of arsenic contamination that poses challenges for mine closure planning. Seepage from underground chambers storing some 237,000 tonnes of arsenic trioxide dust, has As concentrations exceeding 4000 ppm. Other potential sources and sinks of As also exist. Sources and movement of water and arsenic are traced using the isotopes of water and sulphate. Mine waters (16 ppm As; AsV/AsIII approximately 150) are a mixture of two principal water sources--locally recharged, low As groundwaters (0.5 ppm As) and Great Slave Lake (GSL; 0.004 ppm As) water, formerly used in ore processing and discharged to the northwest tailings impoundment (NWTP). Mass balance with delta18O shows that recirculation of NWTP water to the underground through faults and unsealed drillholes contributes about 60% of the mine water. Sulphate serves to trace direct infiltration to the As2O3 chambers. Sulphate in local, low As groundwaters (0.3-0.6 ppm As; delta34SSO4 approximately 4% and delta18OSO4 approximately -10%) originates from low-temperature aqueous oxidation of sulphide-rich waste rock. The high As waters gain a component of 18O-enriched sulphate derived from roaster gases (delta18OSO4) = + 3.5%), consistent with their arsenic source from the As2O3 chambers. High arsenic in NWTP water (approximately 8 ppm As; delta18OSO4 = -2%) derived from mine water, is attenuated to close to 1 ppm during infiltration back to the underground, probably by oxidation and sorption by ferrihydrite. Copyright 2004 Taylor and Francis Ltd.

  19. Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria.

    Science.gov (United States)

    de Matos, Letícia Paiva; Costa, Patrícia Freitas; Moreira, Mariana; Gomes, Paula Cristine Silva; de Queiroz Silva, Silvana; Gurgel, Leandro Vinícius Alves; Teixeira, Mônica Cristina

    2018-04-01

    Data presented here are related to the original paper "Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB) mixed culture and alternative low-cost carbon sources" published by same authors (Matos et al., 2018) [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L - 1 . Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format. Refers to https://doi.org/10.1016/j.cej.2017.11.035.

  20. Large-Batch Reduction of Molybdenum Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kiggans, Jr, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menchhofer, Paul A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Unconverted, isotopically-enriched molybdenum metal must be recovered from the spent radiopharmaceutical solution used in NorthStar’s Technetium-99m generator and reused. The recycle process begins by recovering the metal from the aqueous potassium molybdate (K2MoO4) solutions as molybdenum trioxide (MoO3) employing a process developed at Argonne National Laboratory. The MoO3 powder is subsequently reduced to molybdenum metal powder which can be blended with new powder and further processed into a flowable form to be used to produce target disks for irradiation. The molybdenum oxide reduction process has been examined and scaled to produce kilogram quantities of metal powder suitable for processing into a useable form employing spray drying or similar technique and ultimately used for target fabrication.

  1. Thermodynamic and kinetic studies of As2O3 toxicological effects on human insulin in generation diabetes mellitus

    Science.gov (United States)

    Mohsennia, Mohsen; Motaharinejad, Atieh; Rafiee-Pour, Hossain-Ali; Torabbeigi, Marzieh

    2017-12-01

    The interaction of arsenic trioxide with human insulin was investigated by circular dichroism (CD), cyclic voltammetry and electrophoresis techniques. The interfacial behavior of insulin in presence of As2O3 onto the Ag electrode surface was studied at 310 K in phosphate buffer solution (PBS). According to Far-UV CD spectroscopy results, As2O3 caused to decrease in structural compactness and variety of alpha helix into beta structures. Near-UV CD indicated that As2O3 dissociates disulfide linkage in insulin structure. The kinetic parameters, including charge-transfer coefficient and apparent heterogeneous electron transfer rate constant were also determined. The thermodynamic parameters of insulin denaturation in presence of arsenic trioxide were calculated and reported. The obtained results indicated strong adsorption of insulin in presence of arsenic trioxide onto the Ag surface via chemisorptions.

  2. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice.

    Science.gov (United States)

    Ye, Wen-Ling; Khan, M Asaduzzaman; McGrath, Steve P; Zhao, Fang-Jie

    2011-12-01

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. In situ chemical fixation of arsenic-contaminated soils: Anexperimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Donahoe, Rona J.; Redwine, James C.

    2007-03-27

    This paper reports the results of an experimentalstudytesting a low-cost in situ chemical fixation method designed to reclaimarsenic-contaminated subsurface soils. Subsurface soils from severalindustrial sites in southeastern U.S. were contaminated with arsenicthrough heavy application of herbicide containing arsenic trioxide. Themean concentrations of environmentally available arsenic in soilscollected from the two study sites, FW and BH, are 325 mg/kg and 900mg/kg, respectively. The soils are sandy loams with varying mineralogicaland organic contents. The previous study [Yang L, Donahoe RJ. The form,distribution and mobility of arsenic in soils contaminated by arsenictrioxide, at sites in Southeast USA. Appl Geochem 2007;22:320 341]indicated that a large portion of the arsenic in both soils is associatedwith amorphous aluminum and iron oxyhydroxides and shows very slowrelease against leaching by synthetic precipitation. The soil's amorphousaluminum and iron oxyhydroxides content was found to have the mostsignificant effect on its ability to retain arsenic.Based on thisobservation, contaminated soils were reacted with different treatmentsolutions in an effort to promote the formation of insolublearsenic-bearing phases and thereby decrease the leachability of arsenic.Ferrous sulfate, potassium permanganate and calcium carbonate were usedas the reagents for the chemical fixation solutions evaluated in threesets of batch experiments: (1) FeSO4; (2) FeSO4 and KMnO4; (3) FeSO4,KMnO4 and CaCO3. The optimum treatment solutions for each soil wereidentified based on the mobility of arsenic during sequential leaching oftreated and untreated soils using the fluids described in EPA Method 1311[USEPA. Method 1311: toxicity characteristic leaching procedure. Testmethods for evaluating solid waste, physical/chemical methods. 3rd ed.Washington, DC: U.S. Environmental Protection Agency, Office of SolidWaste. U.S. Government Printing Office; 1992]toxic characteristicsleaching

  4. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    International Nuclear Information System (INIS)

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-01-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress

  5. Toxic Substances Portal- Arsenic

    Science.gov (United States)

    ... is found at low levels in breast milk. top How can families reduce their risk for exposure to arsenic? If you use arsenic-treated wood in home projects, you should wear dust masks, gloves, and protective clothing to decrease exposure to sawdust. ...

  6. Combination of arsenic and interferon-α inhibits expression of KSHV latent transcripts and synergistically improves survival of mice with primary effusion lymphomas.

    Directory of Open Access Journals (Sweden)

    Hiba El Hajj

    Full Text Available BACKGROUND: Kaposi sarcoma-associated herpesvirus (KSHV is the etiologic agent of primary effusion lymphomas (PEL. PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. METHODOLOGY/PRINCIPAL FINDINGS: Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. CONCLUSION/SIGNIFICANCE: These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.

  7. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (piAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  8. Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria

    Directory of Open Access Journals (Sweden)

    Letícia Paiva de Matos

    2018-04-01

    Full Text Available Data presented here are related to the original paper “Simultaneous removal of sulfate and arsenic using immobilized non-traditional sulfate reducing bacteria (SRB mixed culture and alternative low-cost carbon sources” published by same authors (Matos et al., 2018 [1]. The data set here presented aims to facilitate this paper comprehension by giving readers some additional information. Data set includes a brief description of experimental conditions and the results obtained during both batch and semi-continuous reactors experiments. Data confirmed arsenic and sulfate were simultaneously removed under acidic pH by using a biological treatment based on the activity of a non-traditional sulfur reducing bacteria consortium. This microbial consortium was able to utilize glycerol, powdered chicken feathers as carbon donors, and proved to be resistant to arsenite up to 8.0 mg L−1. Data related to sulfate and arsenic removal efficiencies, residual arsenite and sulfate contents, pH and Eh measurements obtained under different experimental conditions were depicted in graphical format.Refers to https://doi.org/10.1016/j.cej.2017.11.035 Keywords: Arsenite, Sulfate reduction, Bioremediation, Immobilized cells, Acid pH

  9. Determining arsenic in elemental antimony containing selenium and tellurium

    International Nuclear Information System (INIS)

    Mogileva, M.G.; Kozlova, E.L.

    1986-01-01

    The authors have developed a method of determining arsenic in metallic antimony containing selenium, tellurium, and mercury, in which they isolated it in elementary form for separation from the antimony and the associated elements (silicon and phosphorus), followed by colorimetric determination of the arsenic from arsenic-molbdenum blue. The reducing agents to reduce the arsenic were sodium hypophosphite and tin(II) chloride, which do not reduce antimony and which do not interfere with the determination. This method of determining arsenic in metallic antimony without preliminary separation of the selenium and tellurium is in no way inferior in accuracy to the method given in All-Union State Standard (GOST) 1367.4-83

  10. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q

    2004-10-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  11. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    International Nuclear Information System (INIS)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q.

    2004-01-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  12. Induction of the mesenchymal to epithelial transition by demethylation-activated microRNA-125b is involved in the anti-migration/invasion effects of arsenic trioxide on human chondrosarcoma.

    Science.gov (United States)

    Bao, Xing; Ren, Tingting; Huang, Yi; Wang, Shidong; Zhang, Fan; Liu, Kuisheng; Zheng, Bingxin; Guo, Wei

    2016-08-30

    In addition to treating acute promyelocytic leukemia, arsenic trioxide (ATO) suppresses other solid tumors, including chondrosarcoma. However, the effects of ATO on metastasis in chondrosarcoma cells, and the underlying molecular mechanisms remain unclear. The effects of ATO on the migratory and invasive capacities of chondrosarcoma cells were investigated by Wound healing, Transwell and EMT assays. The expression of miR-125b in human chondrosarcoma tissues and cell lines was detected by real-time PCR analysis. Bisulfite sequencing analysis (BSP) was used to detect the effects of ATO on the expression of miR-125b. The gain-of-function and loss-of-function experiments were performed on chondrosarcoma cell lines to investigate the effects of miR-125b on chondrosarcoma invasion, and to determine whether signal transducer and activator of transcription 3(Stat3) mediates these effects. Dual-luciferase reporter assay was used to identify whether Stat3 is a direct target of miR-125b. MiR-125b was significantly downregulated in human metastatic chondrosarcoma tissues and cell lines but not in non-metastatic chondrosarcoma tissues. ATO up-regulates the expression of miR-125b by the demethylation of DNA. ATO induces MET and attenuates the invasive capacities of chondrosarcoma cells through miR-125b. Stat3 was verified as a direct target of miR-125b, which is involved in ATO regulating EMT-associated traits. These findings, for the first time, provides evidence that the miR-125b-mediated inhibition of Stat3 is involved in the ATO-induced attenuation of metastasis in chondrosarcoma cells.

  13. 40 CFR 61.186 - Reporting requirements.

    Science.gov (United States)

    2010-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.186 Reporting requirements... at least 30 days prior notice of each reference opacity level determination required in § 61.183(a...

  14. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    OpenAIRE

    Nosheen Mirza; Qaisar Mahmood; Mohammad Maroof Shah; Arshid Pervez; Sikander Sultan

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, applica...

  15. Environmental source of arsenic exposure.

    Science.gov (United States)

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  16. Environmental Source of Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Jin-Yong Chung

    2014-09-01

    Full Text Available Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  17. Beam-induced redox transformation of arsenic during As K-edge XAS measurements: availability of reducing or oxidizing agents and As speciation.

    Science.gov (United States)

    Han, Young Soo; Jeong, Hoon Young; Hyun, Sung Pil; Hayes, Kim F; Chon, Chul Min

    2018-05-01

    During X-ray absorption spectroscopy (XAS) measurements of arsenic (As), beam-induced redox transformation is often observed. In this study, the As species immobilized by poorly crystallized mackinawite (FeS) was assessed for the susceptibility to beam-induced redox reactions as a function of sample properties including the redox state of FeS and the solid-phase As speciation. The beam-induced oxidation of reduced As species was found to be mediated by the atmospheric O 2 and the oxidation products of FeS [e.g. Fe(III) (oxyhydr)oxides and intermediate sulfurs]. Regardless of the redox state of FeS, both arsenic sulfide and surface-complexed As(III) readily underwent the photo-oxidation upon exposure to the atmospheric O 2 during XAS measurements. With strict O 2 exclusion, however, both As(0) and arsenic sulfide were less prone to the photo-oxidation by Fe(III) (oxyhydr)oxides than NaAsO 2 and/or surface-complexed As(III). In case of unaerated As(V)-reacted FeS samples, surface-complexed As(V) was photocatalytically reduced during XAS measurements, but arsenic sulfide did not undergo the photo-reduction.

  18. Rice planted along with accumulators in arsenic amended plots reduced arsenic uptake in grains and shoots.

    Science.gov (United States)

    Praveen, Ashish; Mehrotra, Sonali; Singh, Nandita

    2017-10-01

    An experiment was designed using phytoremadiation technology to obtain grains of rice safe for consumption. Sixteen plots of size 2 × 2 m were prepared (8 plots were treated with 50 mg kg -1 of sodium arsenate and rest 8 without any treatment). The study was done for two plantations (1st and 2nd plantation). Rice was planted with three accumulators (Phragmites australis, Vetiveria zizanioides and Pteris vitatta) in treated and untreated plot. Arsenic in grains of Actr (R + Pt, R + Ph and R + Vt) for 1st plantation was 0.4, 0.2 and 0.2 mg kg -1 where as in the case of wActr (Ras) it was 3 mg kg -1 . In 2nd plantation the concentration of arsenic in grain of Actr (R + Pt, R + Ph and R + Vt) was 0.1, 0.1 and 0.1 mg kg -1 where as in the case of wActr (Ras) it was 2 mg kg -1 . Significant differences in growth and yield parameters of rice between Actr and wActr in 1st plantation, while for 2nd plantation the activity was reduced in combinations except R + Pt and no significant difference was observed between Actr, Acntr and wActr. The study concluded that combinations of accumulators with crops could be useful for the survival and safe grains in As-contaminated soils but with some amendments in long-term remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Arsenic mobilization and immobilization in paddy soils

    Science.gov (United States)

    Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.

    2010-05-01

    Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).

  20. TREATMENT TECHNOLOGIES FOR ARSENIC REMOVAL

    Science.gov (United States)

    The United States Environmental Protection Agency (US EPA) recently reduced the arsenic maximum contaminant level (MCL) from 0.050 mg/L to 0.010 mg/L. In order to increase arsenic outreach efforts, a summary of the new rule, related health risks, treatment technologies, and desig...

  1. The characterization, mobility, and persistence of roaster-derived arsenic in soils at Giant Mine, NWT

    Energy Technology Data Exchange (ETDEWEB)

    Bromstad, Mackenzie J.; Wrye, Lori A.; Jamieson, Heather E.

    2017-07-01

    Approximately 20,000 tonnes of arsenic (As)-bearing emissions from roasting gold (Au)-bearing arsenopyrite ore were aerially released from 1949 to 1999 at Giant Mine, near Yellowknife, Canada. Soil samples collected within 4 km of the former roaster from sites undisturbed by mining or other human activity contain up to 7700 mg/kg total As. Total As concentrations are highest within a few cm of the surface, and particularly enriched in soil pockets on rock outcrops. Scanning electron microscopy and synchrotron microanalysis show that roaster-derived arsenic trioxide (As2O3) has persisted in shallow soils in the area. Roaster-generated maghemite and hematite are also present. These anthropogenic forms of As are much more common in near-surface soils than natural As-bearing minerals. Comparison of the proportions of As, Sb, and Au concentrations in outcrop soil samples and historic As2O3-rich dust captured by emission controls suggest most of the roaster-derived As in soils at Giant was likely deposited before 1964. Topographic restriction by rock outcrops and a dry, cold climate likely contribute to the persistence of As2O3 in outcrop soils.

  2. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh.

    Science.gov (United States)

    Hassan, Zahid; Sultana, Munawar; van Breukelen, Boris M; Khan, Sirajul I; Röling, Wilfred F M

    2015-04-01

    Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Clinical Assessment of Mineral Trioxide Aggregate in the Treatment ...

    African Journals Online (AJOL)

    2017-05-22

    May 22, 2017 ... (OH)2 (n = 49) or MTA (n = 51) and restored with composite resin in 73 patients. Periapical ... Clinical Assessment of Mineral Trioxide Aggregate in the Treatment of .... materials, light-cured glass ionomer cement base (Riva.

  4. Performance of aquatic plant species for phytoremediation of arsenic-contaminated water

    Science.gov (United States)

    Jasrotia, Shivakshi; Kansal, Arun; Mehra, Aradhana

    2017-05-01

    This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth ( Eichhornia crassipes) and two algae ( Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3-8.4, whereas COD reduced by 50-65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to arsenic by 40-50 %; whereas, water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation.

  5. Determination of phosphorus and silicon in tungsten trioxide as reduced molybdotungsten complexes without matrix separation

    International Nuclear Information System (INIS)

    Chkanikova, O.K.; Dorokhova, E.N.

    1979-01-01

    Studied are conditions of formation and reduction of molybdotungsten phosphorus (MTPC) and molybdotungsten silicon (MTSC) complexes at high excess of the ligand. It is established that MTPC are formed in a wide pH range, limited by aggregate stability of the solution (pH 4.5). Using the method of isomolar series it is shown that at pH 1.2 a complex with one Mo atom in coordination sphere is formed, at pH 3.2 - with two Mo atoms. Spectrophotometric method of phosphorus and silicon determination of tungsten trioxide without the base separation is developed. The method is based on silicon determination after MTPC decomposition in the presence of citric acid and determination of silicon and phosphorus sum under conditions of MTPC formation in the presence of oxalic acid. Phosphorus amount is determined according to the difference

  6. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  7. Retreatability of Root Canals Obturated using Mineral Trioxide ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow. Background: ... remaining RCFM was evaluated using digital camera. The images ... trioxide aggregate-based and two resin-based sealers. Niger J Clin ... glass ionomer cement and the specimens were stored at. 37°C in ...

  8. [Comparison of Curative Effect between Fu Fang Huang Dai Pian and Arsenic Trioxide in Treatment of 45 Patients with Acute Promyelocytic Leukaemia].

    Science.gov (United States)

    Wang, Jian; Huang, Jun-Bin; Liu, Zu-Lin; Zhang, Bi-Hong; Xu, Hong-Gui; Xue, Hong-Man; Chen, Chun

    2017-12-01

    To investigate the clinical efficacy of Fu Fan Huang Dai Pian(RIF) and arsenic trioxide (ATO) regimens for treatment of children with acute promyelocytic leukemia (APL) and to explore the risk factors affecting the prognosis of patients. The clinical data of 45 newly diagnosed APL children admitted in our hospital from January 2004 to May 2017 were analyzed retrospectively. Among 45 APL children, 25 children were treated by chemotherapetic regimen including RIF (RIF group), another 20 children were treated by chemotherapeutic regimen including ATO (ATO group). The follow-up was performed in all APL children. The prognosis and incidence of side reactions from drugs in 2 groups were compared, and the high risk factors affecting the prognosis of patients were analyzed. The median follow-up time was 49.8% months. In RIF group, no early death occured in 25 APL children; 5 cases did not achieve complete remission (CR) after induction therapy, CR rate was 88%. Out of 25 cases 2 caes relapsed, 3 cases died, 20 cases maintained contined CR (CCR), 2 cases failed to be followed-up. In ATO group, 2 cases suffered from early death, 5 cases did not achieve CR after induction therapy, CR rate was 90%, 2 caese relapsed and died, 15 cases maintained CCR, the follow-up failed in 1 caes. The 5 year- OS and EFS rate in all the patients were predicted as (82.2±6.2)% and (76.4±6.6)% respectively. The OS and EFS rate in RIF group were (86.1±7.4)% and (78.4±8.6)% respectively, which were significantly different from OS and EFS rate (76.4%±10.6%) and (74.0%±10.1%) respectively in ATO group (all P>0.05). As for the side reaction from drug, except for the cardiac damage (P0.05). In addition, the 5 year-OS and EFS rates in APL children with CNSL were significantly lower than those in APL children without CNSL (all Phigh risk were significantly lower than those in APL children reached M1 after induction therapy and with low and standerd risk (Ptreatment of APL children. The CNSL, poor

  9. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  10. Correlation of Breastmilk Arsenic With Maternal, Infant Urinary Arsenic and Drinking Water Arsenic in an Arsenic Affected Area of Bangladesh

    Science.gov (United States)

    Alauddin, M.; Islam, M. R.; Milton, A. H.; Alauddin, S. T.; Mouly, T.; Behri, E.; Ayesha, A.; Akter, S.; Islam, M. M.

    2016-12-01

    About 97% of population in Bangladesh depend on groundwater as the principle source of drinking water and this water is highly contaminated with inorganic arsenic. Consumption of arsenic contaminated drinking water by pregnant women raises the prospect of early life exposure to inorganic arsenic for newborn which may be lead to adverse health effect in later life. This work was carried out in parts of Gopalganj district in Bangladesh, a region affected by arsenic contamination in groundwater. The objective of the work was to assess potential early life exposure to arsenic for infants through breastfeeding by mothers who were drinking water with arsenic levels ranging from 100 to 300 µg/l. A cohort of 30 mother-baby pairs were selected for the current study. Breastmilk samples from mothers, urine samples from each pair of subjects at 1, 6 and 9 month age of infant were collected and total arsenic were determined in these samples. In addition speciation of urinary arsenic and metabolites were carried out in 12 mother-baby pairs. Median level for breastmilk arsenic were 0.50 µg/l. Urinary arsenic of infants did not correlate with breastmilk arsenic with progressing age of infants. Maternal and infant urinary total arsenic at 1 month age of infant showed some positive correlation (r = 0.39). In infant urine major metabolite were dimethyl arsenic acid (DMA) (approximately 70%) indicating good methylating capacity for infants at 1 and 6 months of age. In conclusion, infants were not exposed to arsenic through breastfeeding even though mothers were exposed to significant levels of arsenic through drinking water.

  11. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water.

    Science.gov (United States)

    Chen, Baowei; Arnold, Lora L; Cohen, Samuel M; Thomas, David J; Le, X Chris

    2011-12-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic (iAs) producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated arsenicals may contribute to toxicity associated with exposure to inorganic arsenic. Here, adult female wild-type (WT) C57BL/6 mice and female As3mt knockout (KO) mice received drinking water that contained 1, 10, or 25 ppm (mg/l) of arsenite for 33 days and blood, liver, kidney, and lung were taken for arsenic speciation. Genotype markedly affected concentrations of arsenicals in tissues. Summed concentrations of arsenicals in plasma were higher in WT than in KO mice; in red blood cells, summed concentrations of arsenicals were higher in KO than in WT mice. In liver, kidney, and lung, summed concentrations of arsenicals were greater in KO than in WT mice. Although capacity for arsenic methylation is much reduced in KO mice, some mono-, di-, and tri-methylated arsenicals were found in tissues of KO mice, likely reflecting the activity of other tissue methyltransferases or preabsorptive metabolism by the microbiota of the gastrointestinal tract. These results show that the genotype for arsenic methylation determines the phenotypes of arsenic retention and distribution and affects the dose- and organ-dependent toxicity associated with exposure to inorganic arsenic.

  12. Ecotoxicology of arsenic in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Neff, J.M. [Battelle Ocean Sciences Lab., Duxbury, MA (United States)

    1997-05-01

    Arsenic has a complex marine biogeochemistry that has important implications for its toxicity to marine organisms and their consumers. The average concentration of total arsenic in the ocean is about 1.7 {micro}g/L, about two orders of magnitude higher than the US Environmental Protection Agency`s human health criterion value of 0.0175 {micro}g/L. The dominant form of arsenic in oxygenated marine and brackish waters in arsenate (As V). The more toxic and potentially carcinogenic arsenite (As III) rarely accounts for more than 20% of total arsenic in seawater. Uncontaminated marine sediments contain from 5 to about 40 {micro}g/g dry weight total arsenic. Arsenate dominates in oxidized sediments and is associated primarily with iron oxyhydroxides. In reducing marine sediments, arsenate is reduced to arsenite and is associated primarily with sulfide minerals. Marine algae accumulate arsenate from seawater, reduce it to arsenite, and then oxidize the arsenite to a large number of organoarsenic compounds. The algae release arsenite, methylarsonic acid, and dimethylarsinic acid to seawater. Dissolved arsenite and arsenate are more toxic to marine phytoplankton than to marine invertebrates and fish. This may be due to the fact that marine animals have a limited ability to bioconcentrate inorganic arsenic from seawater but can bioaccumulate organoarsenic compounds from their food. Tissues of marine invertebrates and fish contain high concentrations of arsenic, usually in the range of about 1 to 100 {micro}g/g dry weight, most of it in the form of organoarsenic compounds, particularly arsenobetaine. Organoarsenic compounds are bioaccumulated by human consumers of seafood products, but the arsenic is excreted rapidly, mostly as organoarsenic compounds. Arsenobetaine, the most abundant organoarsenic compound in seafoods, is not toxic or carcinogenic to mammals. Little of the organoarsenic accumulated by humans from seafood is converted to toxic inorganic arsenite.

  13. Summary of the Preliminary Analysis of Savannah River Depleted Uranium Trioxide

    International Nuclear Information System (INIS)

    2010-01-01

    This report summarizes a preliminary special analysis of the Savannah River Depleted Uranium Trioxide waste stream (SVRSURANIUM03, Revision 2). The analysis is considered preliminary because a final waste profile has not been submitted for review. The special analysis is performed to determine the acceptability of the waste stream for shallow land burial at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The Savannah River Depleted Uranium Trioxide waste stream requires a special analysis because the waste stream's sum of fractions exceeds one. The 99Tc activity concentration is 98 percent of the NNSS Waste Acceptance Criteria and the largest single contributor to the sum of fractions.

  14. Synthesis of vanadium trioxide

    International Nuclear Information System (INIS)

    Yankelevich, R.G.; Vinarov, I.V.; Sheka, I.A.; Pushek, N.G.

    1976-01-01

    There have been studied the conditions for production of vanadium trioxide in a single-stage process of V 2 O 5 reduction by gaseous ammonia. To determine the optimum conditions for V 2 O 5 reduction, there have been studied the temperature range of the reaction and the effect offered by the volumetric rate and time of ammonia injection. The following conditions have proved to be the optimum ones: temperature - 450 deg C, volumetric rate of NH 3 injection at a batch of 10 g - 4 l/h, time of recovery - 3 hours. In accordance with the adopted procedure there have been synthetized the samples containing 98 - 99% V 2 O 3 [ru

  15. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    International Nuclear Information System (INIS)

    Stueckle, Todd A.; Lu, Yongju; Davis, Mary E.; Wang, Liying; Jiang, Bing-Hua; Holaskova, Ida; Schafer, Rosana; Barnett, John B.; Rojanasakul, Yon

    2012-01-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As 2 O 3

  16. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stueckle, Todd A., E-mail: tstueckle@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Lu, Yongju, E-mail: yongju6@hotmail.com [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Davis, Mary E., E-mail: mdavis@wvu.edu [Department of Physiology, West Virginia University, Morgantown, WV 26506 (United States); Wang, Liying, E-mail: lmw6@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Jiang, Bing-Hua, E-mail: bhjiang@jefferson.edu [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Holaskova, Ida, E-mail: iholaskova@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Schafer, Rosana, E-mail: rschafer@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Barnett, John B., E-mail: jbarnett@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon, E-mail: yrojan@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  17. The Legacy of Arsenic Contamination from Giant Mine, Northern Canada: An Assessment of Impacts Based on Lake Water and Lake Sediment Core Analysis

    Science.gov (United States)

    Blais, J. M.; Korosi, J.

    2016-12-01

    The Giant Mine, which operated between 1948 and 2004 and located near the City of Yellowknife (Northwest Territories, Canada), has left a legacy of arsenic, antimony, and mercury contamination extending to the present day. Over 20,000 tonnes of arsenic trioxide dust was released from roaster stack emissions during its first 10 years of operations, leading to a significant contamination of the surrounding landscape. Here we present a summary of impacts by the recent contamination from Giant Mine on the surrounding region. A survey we conducted of 25 lakes of the region in 2010 revealed that most lake water within a 15 km radius of the roaster stack had arsenic concentrations in water > 10 mg/L, the standard for drinking water, with concentrations declining exponentially with increasing distance from the roaster stack. Sediment cores from lakes were collected near the Giant Mine roaster stack and radiometrically dated by 137Cs and excess 210Pb. Arsenic concentrations in these sediments increased by 1700% during the 1950s and 60s, consistent with the history of arsenic releases from roaster emissions. Correspondingly, pelagic diatoms and cladocerans were extirpated from one lake during this period, based on microfossil analysis of lake sediment deposits. Sediment core analysis further showed that this lake ecosystem has not recovered, even ten years after closure of the mine. Likely causes for the lack of recent recovery are explored with the use of sediment toxicity bioassays, using a novel paleo-ecotoxicological approach of using toxicity assessments of radiometrically dated lake sediment horizons.

  18. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  19. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  20. Understanding Arsenic Dynamics in Agronomic Systems to ...

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly

  1. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ren, Xuefeng; Gaile, Daniel P.; Gong, Zhihong; Qiu, Wenting; Ge, Yichen; Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao; Olson, James R.; Kavanagh, Terrance J.; Wu, Hongmei

    2015-01-01

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  2. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Gaile, Daniel P. [Department of Biostatistics, School of Public Health and Health Professions, the State University of New York, Buffalo, NY 14214 (United States); Gong, Zhihong [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Qiu, Wenting [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Ge, Yichen [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Olson, James R. [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Kavanagh, Terrance J. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 (United States); Wu, Hongmei, E-mail: hongmeiwwu@hotmail.com [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China)

    2015-03-15

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  3. A study on the alkali leaching of complex compound for molybdenum trioxide and ferric oxide

    International Nuclear Information System (INIS)

    Kim, C.G.; Whang, Y.K.

    1981-01-01

    This study is to determine the alkali-leaching meachanism by which complex compound by the reaction made between molybdenite (MoS 2 ) and ferric oxide (Fe 2 O 3 ) in the roasted are when molybdenum trioxide (MoO 3 ) is formed by the roasting reaction of molybdenite concentrate. The results obtained from this experiment are summarized as follows: The heating reaction analysis shows that the complex compound of iron molybdates (Fe 2 O 3 .3-4 MoO 3 ) is formed by the reaction of molybdenum trioxide and ferric oxide at temperatures of above 500 0 C. It is shown that at various reaction temperature below 400 0 C molybdenum trioxide is almost completely leached by caustic soda irrespective of the mole ratio of two chemical samples used for the experiment, whereas at temperature above 400 0 C the leaching rate of molybdenum trioxide decreases except that it varies from 70.77% at a temperature of 900 0 C at which the mole ratio is 1 to 1 to 84.08% at a temperature of 1000 0 C. The x-ray diffraction analysis has shown that the complex compound reacted at a temperature of 1000 0 C produces a complex compound with the crystal structure of iron molybdates, and the alkali-leached residues even with 19.0% of molybdenum trioxide, however, contain only α-Fe 2 O 3 , without showing iron molybdates. The crystalline compound of iron molybdates obtained as a result of heating reaction was leached by using caustic soda, while MoO 3 and Fe 2 O 3 in the leaching residue was found to contain other compounds unable to be leached by caustic soda. (author)

  4. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction.

    Science.gov (United States)

    Pierce, Brandon L; Tong, Lin; Argos, Maria; Gao, Jianjun; Farzana, Jasmine; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K; Alam, Shafiul; Islam, Tariqul; Harjes, Judith; Sarwar, Golam; Slavkovich, Vesna; Gamble, Mary V; Chen, Yu; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A; Graziano, Joseph H; Ahsan, Habibul

    2013-12-01

    Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.

  5. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    Science.gov (United States)

    Minamikawa, Kazunori; Takahashi, Masayoshi; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito

    2015-08-01

    A remarkable feature of nanobubbles (pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils.

  6. THE ACCUMULATION AND RELEASE OF ARSENIC FROM DISTRIBUTION SYSTEM SOLIDS

    Science.gov (United States)

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Iron based treatment technologies including iron removal and iron coagulation are effective at reducing arsenic in water because iron surfaces have a stron...

  7. The Effect of Adding Antimony Trioxide (Sb2O3 ‎On A.C Electrical Properties of (PVA-PEG Films

    Directory of Open Access Journals (Sweden)

    Akeel Shakir Alkelaby

    2017-12-01

    Full Text Available In this work, many samples have been prepared by adding Antimony Trioxide (Sb2O3 to the polyvinyl alcohol-poly ethylene glycol (PVA-PEG. The effect of the Sb2O3 added as a filler with different weight percentages on the A.C electrical properties have been investigated. The samples were prepared as films by solution cast technique. The experimental results of the A.C electrical properties show that the dielectric constant increase with the increasing frequency of applied electrical field and concentration of the Antimony Trioxide. Dielectric loss decrease with the increasing the frequency, while it increases with the increase of the concentration of the Antimony Trioxide. The A.C electrical conductivity increase with increasing the Antimony Trioxide contain and frequency for the composition.

  8. Irrigation with oxygen-nanobubble water can reduce methane emission and arsenic dissolution in a flooded rice paddy

    International Nuclear Information System (INIS)

    Minamikawa, Kazunori; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito; Takahashi, Masayoshi

    2015-01-01

    A remarkable feature of nanobubbles (<10 –6 m in diameter) is their long lifetime in water. Supplying oxygen-nanobubbles (NBs) to continuously flooded paddy soil may retard the development of reductive conditions, thereby reducing the emission of methane (CH 4 ), a potent greenhouse gas, and dissolution of arsenic, an environmental load. We tested this hypothesis by performing a pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p < 0.05) reduced cumulative CH 4 emission during the rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH 4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p < 0.001). At the end of the experiment, the NB water significantly lowered the soil pH in the 0–5 cm layer, probably because of the raised redox potential. The population of methanogenic Archaea (mcrA copy number) in the 0–5 cm layer was significantly increased by the NB water, but we found no correlation between the mcrA copy number and the cumulative CH 4 emission (r = –0.08, p = 0.85). In pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH 4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils. (letter)

  9. Arsenic Remediation by Synthetic and Natural Adsorbents

    Directory of Open Access Journals (Sweden)

    Muhammad Saqaf Jagirani

    2017-06-01

    Full Text Available The contagion of toxic metals in water is a serious environmental and health concern and threatening problem worldwide. Particularly arsenic contamination in ground water has became great dilemma in the earlier decades. With advent in research for arsenic remediation, standard of drinking water is improving and now reduced to few parts per million (ppm level of arsenic in drinking water sources. However, due to continuous enhancement in environmental pollution, remediation techniques are still needed to achieve the drinking water quality standard. Development of novel and economically feasible removal techniques or materials for selective separation of this toxic specie has been the main focus of research. Several arsenic removal techniques, including membrane separation, coagulation, precipitation, anion exchange have been developed. The aim of this article is to review briefly arsenic chemistry and previous and current available technologies that have been reported various low-cost adsorbents for arsenic removal.

  10. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Color in 'tungsten trioxide' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Duc, Tran Minh

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO_2_._7H_y (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO_2_._5, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers.

  12. Color in ''tungsten trioxide'' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Tran Minh Duc

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO/sub 2.7/H/sub y/ (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO/sub 2.5/, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers

  13. Determination of antimony trioxide in fire-retardant conveyor belts

    Energy Technology Data Exchange (ETDEWEB)

    Rytych-Witwicka, B.; Szmyd, E.

    1976-12-01

    Two methods for the determination of antimony trioxide in rubber and pvc are described. One is a colorimetric method based on the reaction of antimony with rhodamine B; the other is a polarographic method. The results of the two methods show a satisfactory consistency and the methods themselves appear rapid and effective.

  14. Hijacking membrane transporters for arsenic phytoextraction

    Science.gov (United States)

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  15. [Acetyl-11-keto-beta-boswellic acid and arsenic trioxide regulate the productions and activities of matrix metalloproteinases in human skin fibroblasts and human leukemia cell line THP-1].

    Science.gov (United States)

    Liang, Ya-hui; Li, Ping; Zhao, Jing-xia; Liu, Xin; Huang, Qi-fu

    2010-11-01

    In order to reveal the treatment mechanism of Chinese medicine with the effect of activating blood and resolving putridity, we selected acetyl-11-keto-beta-boswellic acid (AKBA) and arsenic trioxide (ATO), the main monomeric components of frankincense and arsenolite which are two most commonly used Chinese medicine with effect of activating blood and resolving putridity. We combined AKBA and ATO as a compound, and explored its regulatory role in productions and activities of matrix metalloproteinase (MMP)-1, MMP-2 and MMP-9 in human skin fibroblasts (HSFbs) and human acute monocytic leukemia cell line THP-1 in inflammatory state. In order to simulate the inflammatory micro-environment of chronic wounds, we established 3 cell models: HSFb model activated by tumor necrosis factor-alpha (TNF-α), THP-1 cell model activated by phorbol-12-myristate-13-acetate (PMA) and HSFb-THP-1 cell coculture system. AKBA and ATO were cocultured with these cell models. Enzyme-linked immunosorbent assay (ELISA), gelatin zymography assay and reverse transcription-polymerase chain reaction (RT-PCR) were used to test the secretions, activities and mRNA expressions of MMP-1, MMP-2 and MMP-9. In the study of the regulatory mechanism of AKBA and ATO on MMPs, AKBA and ATO were cocultured with the cell models. ELISA was used to test the secretions of TNF-α and interleukin-1beta (IL-β) and Western blot was used to test the phosphorylation levels of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated proteinkinase (p38MAPK). Compound of AKBA and ATO inhibited MMP-1, MMP-2 and MMP-9 mRNA expressions, secretions and activities respectively in HSFbs and THP-1 cells in inflammatory state (PTHP-1 cells and cell coculture system (PTHP-1 cells (P<0.05, P<0.01). The combined use of AKBA and ATO which in line with the rule of activating blood and resolving putridity inhibits fibroblasts and inflammatory cells in producing MMPs in inflammatory state through inhibiting the

  16. Improved Outcomes With Retinoic Acid and Arsenic Trioxide Compared With Retinoic Acid and Chemotherapy in Non-High-Risk Acute Promyelocytic Leukemia: Final Results of the Randomized Italian-German APL0406 Trial.

    Science.gov (United States)

    Platzbecker, Uwe; Avvisati, Giuseppe; Cicconi, Laura; Thiede, Christian; Paoloni, Francesca; Vignetti, Marco; Ferrara, Felicetto; Divona, Mariadomenica; Albano, Francesco; Efficace, Fabio; Fazi, Paola; Sborgia, Marco; Di Bona, Eros; Breccia, Massimo; Borlenghi, Erika; Cairoli, Roberto; Rambaldi, Alessandro; Melillo, Lorella; La Nasa, Giorgio; Fiedler, Walter; Brossart, Peter; Hertenstein, Bernd; Salih, Helmut R; Wattad, Mohammed; Lübbert, Michael; Brandts, Christian H; Hänel, Mathias; Röllig, Christoph; Schmitz, Norbert; Link, Hartmut; Frairia, Chiara; Pogliani, Enrico Maria; Fozza, Claudio; D'Arco, Alfonso Maria; Di Renzo, Nicola; Cortelezzi, Agostino; Fabbiano, Francesco; Döhner, Konstanze; Ganser, Arnold; Döhner, Hartmut; Amadori, Sergio; Mandelli, Franco; Ehninger, Gerhard; Schlenk, Richard F; Lo-Coco, Francesco

    2017-02-20

    Purpose The initial results of the APL0406 trial showed that the combination of all- trans-retinoic acid (ATRA) and arsenic trioxide (ATO) is at least not inferior to standard ATRA and chemotherapy (CHT) in first-line therapy of low- or intermediate-risk acute promyelocytic leukemia (APL). We herein report the final analysis on the complete series of patients enrolled onto this trial. Patients and Methods The APL0406 study was a prospective, randomized, multicenter, open-label, phase III noninferiority trial. Eligible patients were adults between 18 and 71 years of age with newly diagnosed, low- or intermediate-risk APL (WBC at diagnosis ≤ 10 × 10 9 /L). Overall, 276 patients were randomly assigned to receive ATRA-ATO or ATRA-CHT between October 2007 and January 2013. Results Of 263 patients evaluable for response to induction, 127 (100%) of 127 patients and 132 (97%) of 136 patients achieved complete remission (CR) in the ATRA-ATO and ATRA-CHT arms, respectively ( P = .12). After a median follow-up of 40.6 months, the event-free survival, cumulative incidence of relapse, and overall survival at 50 months for patients in the ATRA-ATO versus ATRA-CHT arms were 97.3% v 80%, 1.9% v 13.9%, and 99.2% v 92.6%, respectively ( P < .001, P = .0013, and P = .0073, respectively). Postinduction events included two relapses and one death in CR in the ATRA-ATO arm and two instances of molecular resistance after third consolidation, 15 relapses, and five deaths in CR in the ATRA-CHT arm. Two patients in the ATRA-CHT arm developed a therapy-related myeloid neoplasm. Conclusion These results show that the advantages of ATRA-ATO over ATRA-CHT increase over time and that there is significantly greater and more sustained antileukemic efficacy of ATO-ATRA compared with ATRA-CHT in low- and intermediate-risk APL.

  17. Arsenic exposure to smelter workers. Clinical and neurophysiological studies

    Energy Technology Data Exchange (ETDEWEB)

    Blom, S.; Lagerkvist, B.; Linderholm, H.

    1985-08-01

    Forty-seven copper smelter workers, exposed to airborne arsenic for 8-40 years, were examined clinically with electromyography, and the motor and sensory conduction velocities in their arms and legs were determined. Fifty age-matched industrial workers not exposed to arsenic formed a reference group. The level of arsenic in the air at the smeltery was estimated to be below 500 micrograms/mT before 1975 and approximately 50 micrograms/mT thereafter. Urine analyses of arsenic showed a mean value of 71 micrograms/l (1 mumol/l) in the exposed group; this value is lower than that found in earlier studies reporting clinically detectable neuropathy. A slightly reduced nerve conduction velocity in two or more peripheral nerves was more common among the arsenic workers than the referents, and a statistically significant correlation between cumulative exposure to arsenic and reduced nerve conduction velocity in three peripheral motor nerves was found. This occurrence was interpreted as a sign of slight subclinical neuropathy. In conclusion the risk of clinically significant neuropathy is small when exposure is kept below 50 micrograms/mT in workroom air. The subclinical findings may be of interest in relation to the prevention of early adverse health effects from arsenic exposure.

  18. 40 CFR 61.183 - Emission monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission monitoring. 61.183 Section 61... Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.183 Emission monitoring. (a..., calibrate, maintain, and operate a continuous monitoring system for the measurement of the opacity of each...

  19. Arsenic pollution sources.

    Science.gov (United States)

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  20. Influence of the mode of preparation of the UO3 trioxide on its specific surface

    International Nuclear Information System (INIS)

    Sauteron, J.

    1960-01-01

    As the specific surface of uranium trioxide UO 3 closely depends on the preparation mode and conditions, the authors report and discuss several results obtained on uranium trioxides produced either by precipitation of uranyl nitrate (with oxygenated water, liquid or gaseous ammoniac, and ammonium carbonate), then by calcination at 350 C, or by thermal decomposition of the uranyl nitrate. The authors also studied the influence of calcination temperature of ammonium uranate on the specific surface of the obtained oxide (between 200 and 900 deg.) [fr

  1. Arsenic geochemistry of groundwater in Southeast Asia.

    Science.gov (United States)

    Kim, Kyoung-Woong; Chanpiwat, Penradee; Hanh, Hoang Thi; Phan, Kongkea; Sthiannopkao, Suthipong

    2011-12-01

    The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People's Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L(-1). With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (> 10 μg·L(-1)) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

  2. Physical, Chemical, and Biological Methods for the Removal of Arsenic Compounds

    Directory of Open Access Journals (Sweden)

    K. T. Lim

    2014-01-01

    Full Text Available Arsenic is a toxic metalloid which is widely distributed in nature. It is normally present as arsenate under oxic conditions while arsenite is predominant under reducing condition. The major discharges of arsenic in the environment are mainly due to natural sources such as aquifers and anthropogenic sources. It is known that arsenite salts are more toxic than arsenate as it binds with vicinal thiols in pyruvate dehydrogenase while arsenate inhibits the oxidative phosphorylation process. The common mechanisms for arsenic detoxification are uptaken by phosphate transporters, aquaglyceroporins, and active extrusion system and reduced by arsenate reductases via dissimilatory reduction mechanism. Some species of autotrophic and heterotrophic microorganisms use arsenic oxyanions for their regeneration of energy. Certain species of microorganisms are able to use arsenate as their nutrient in respiratory process. Detoxification operons are a common form of arsenic resistance in microorganisms. Hence, the use of bioremediation could be an effective and economic way to reduce this pollutant from the environment.

  3. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    Science.gov (United States)

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (Pwater were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, Pwater was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  4. Groundwater arsenic in Chimaltenango, Guatemala.

    Science.gov (United States)

    Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap

    2014-09-01

    In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.

  5. Effects of lead arsenate sprays on the fruit growth and sugar and acid contents in Natsudaidai (Citrus natsudaidai Hayata)

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, K; Kuraoka, T; Matsumoto, K

    1965-01-01

    The juice of the fruit of Citrus natsudaidai is characterized by high acidity. The acidity of the juice was most effectively reduced by treatment with lead arsenate spray at an early fruit growth stage when the acids were being most actively formed. The water-soluble organic acid content of leaves was not affected. The sugar content of the juice was increased by the treatment. The activity of phosphoenolpyruvate carboxylase was lowered in the vesicles of fruit sprayed with lead arsenate. It was also much depressed in the extracts from normal fruit when arsenic trioxide was added. Arsenic was detected in the vesicles of treated fruit. 15 references, 9 figures.

  6. ASSESSING THE MOBILITY OF ARSENIC IN CONTAMINATED SEDIMENTS

    Science.gov (United States)

    The mobility of arsenic is controlled, in part, by partitioning to mineral surfaces in soils and sediments. Determination of the risk posed to human or ecosystem health by arsenic and identification of remediation technologies that could be employed to eliminate or reduce risk i...

  7. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  8. Organic transformations catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolin [Iowa State Univ., Ames, IA (United States)

    1995-10-06

    Methylrhenium trioxide (MTO), CH3ReO3, was first prepared in 1979. MTO forms stable or unstable adducts with electron-rich ligands, such as amines (quinuclidine, 1,4-diazabicyclo-octane, pyridine, aniline, 2,2'-bipyridine), alkynes, olefins, 1,2-diols, catechols, hydrogen peroxide, water, thiophenols, 1,2-dithiols, triphenylphosphine, 2-aminophenols, 2-aminothiophenols, 8-hydroxyquinoline and halides (Cl-, Br-, I-). After coordination, different further reactions will occur for different reagents. Reactions described in this report include the dehydration of alcohols, direct amination of alcohols, activation of hydrogen peroxide, oxygen transfer, and decomposition of ethyl diazoacetate.

  9. Reducing arsenic accumulation in rice grain through iron oxide amendment

    Science.gov (United States)

    In this research, we investigated the accumulation of arsenic (As), selenium (Se), molybdenum (Mo), and cadmium (Cd) in rice grain under different soil conditions in standard straighthead-resistant and straighthead-susceptible cultivars, Zhe 733 and Cocodrie, respectively. Results demonstrated that,...

  10. Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water.

    Science.gov (United States)

    Natarajan, Seenivasan; Stamps, Robert H; Ma, Lena Q; Saha, Uttam K; Hernandez, Damaris; Cai, Yong; Zillioux, Edward J

    2011-01-30

    A large-scale hydroponic system to phytoremediate arsenic-contaminated groundwater using Pteris vittata (Chinese brake fern) was successfully tested in a field. In this 30-wk study, three frond-harvesting regimes (all, mature, and senescing fronds) and two water-refilling schemes to compensate for evapotranspiration (high-As water of 140-180 μg/L and low-As water of arsenic-contaminated groundwater and 32 ferns. During Cycle 1 and with initial As of 140 μg/L, As in tanks refilled with low-As water was reduced to phytoremediation. Published by Elsevier B.V.

  11. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    2015-02-01

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% and 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.

  12. Bioleaching of arsenic in contaminated soil using metal-reducing bacteria

    Science.gov (United States)

    Lee, So-Ra; Lee, Jong-Un; Chon, Hyo-Taek

    2014-05-01

    A study on the extraction of arsenic in the contaminated soil collected from an old smelting site in Korea was carried out using metal-reducing bacteria. Two types of batch-type experiments, biostimulation and bioaugmentation, were conducted for 28 days under anaerobic conditions. The biostimulation experiments were performed through activation of indigenous bacteria by supply with glucose or lactate as a carbon source. The contaminated, autoclaved soil was inoculated with metal-reducing bacteria, Shewanella oneidensis MR-1 and S. algae BrY, in the bioaugmentation experiments. The results indicated that the maximum concentration of the extracted As was 11.2 mg/L at 4 days from the onset of the experiment when 20 mM glucose was supplied and the extraction efficiency of As ranged 60~63% in the biostimulation experiments. In the case of bioaugmentation, the highest dissolved As concentration was 24.4 mg/L at 2 days, though it dramatically decreased over time through re-adsorption onto soil particles. After both treatments, mode of As occurrence in the soil appeared to be changed to readily extractable fractions. This novel technique of bioleaching may be practically applied for remediation of As-contaminated soil after determination of optimum operational conditions such as operation time and proper carbon source and its concentration.

  13. Review of Coagulation Technology for Removal of Arsenic: Case of Chile

    OpenAIRE

    Sancha, Ana María

    2006-01-01

    Coagulation technology has been used since 1970 in northern Chile for removing arsenic from drinking-water. This experience suggests that coagulation is an effective technology for the removal of arsenic. It is currently possible to reduce arsenic from 400 μg/L to 10 μg/L at a rate of 500 L/sec, assuming pH, oxidizing and coagulation agents are strictly controlled. The Chilean experience with the removal of arsenic demonstrates that the water matrix dictates the selection of the arsenic-remov...

  14. Success Rate of Formocresol Pulpotomy versus Mineral Trioxide Aggregate in Human Primary Molar Tooth

    Directory of Open Access Journals (Sweden)

    S E Jabbarifar

    2004-12-01

    Full Text Available Background: In spite of long time and broad use of formaldehyde derivates (Fixation agent in primary tooth pulp treatment, There is some concerns about these derivates such as variability, inconsistency success rate, mutagenicity, cytotoxicity, alergenicity, and some other potential health hazards of them. Therefore other alternative pulpotomy procedures like Bioactive glass (BAG, Glutaraldehyde (2%, Hydroxyappetite (HA, Bone dried freezed (BDF, ferric sulfate (15%, laser, Electrosurgery (ES, Bone Morphogenic proteins (BMP, recombinant protein-1 (RP1, and Mineral Trioxide Aggregate (MTA have been compared. The purpose of this clinical trial is to assess radiographic and clinical success rate of Formocresol (FC pulpotomy in compare with MTA in human primary molar teeth. Methods: 64 molars were pulpotomized equally and randomly with mineral trioxide Aggregate and Formocresol. Prior to trial, we defined a case as failure, when one or more of the events such as external root resorption, internal root resorption, periapical and furca lucency, pain, swelling, mobility, dental abscess, or early extraction appeared. Every treated tooth was defined as successful, if any noted evident was not shown. Results: Totally, 60 teeth treatment (92.2 percent were successful and 7.8 percent were failed. Failure and success rates for MTA group were 6.3 and 93.7 percent, respectively. Failure and success rates in FC group were 8.4 and 90.2 percent respectively. The difference between MTA and FC treatment methods was not significant (Fisher Exact test. Conclusion: Findings of this study show that mineral trioxide aggregate can be an alternative procedure for FC pulpotomy of primary tooth. Keywords: Mineral trioxide aggregate, formocresol, pulpotomy, success and failure rate.

  15. Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments

    KAUST Repository

    Couture, Raoul-Marie

    2011-05-01

    Recent evidence suggests that the oxidation of arsenite by zero-valent sulfur (S(0)) may produce stable aqueous arsenate species under highly reducing conditions. The speciation of arsenic (As) in reducing soils, sediments and aquifers may therefore be far more complex than previously thought. We illustrate this by presenting updated Eh-pH diagrams of As speciation in sulfidic waters that include the most recently reported formation constants for sulfide complexes of As(III) and As(V). The results show that the stability fields of As(III) and As(V) (oxy)thioanions cover a large pH range, from pH 5 to 10. In particular, As(V)-S(-II) complexes significantly enhance the predicted solubility of As under reducing conditions. Equilibrium calculations further show that, under conditions representative of sulfidic pore waters and in the presence of solid-phase elemental sulfur, the S0 (aq)/HS- couple yields a redox potential (Eh)~0.1V higher than the SO4 2-/HS- couple. S(0) may thus help stabilize aqueous As(V) not only by providing an electron acceptor for As(III) but also by contributing to a more oxidizing redox state. © 2011 Elsevier B.V.

  16. Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments

    KAUST Repository

    Couture, Raoul-Marie; Van Cappellen, Philippe

    2011-01-01

    Recent evidence suggests that the oxidation of arsenite by zero-valent sulfur (S(0)) may produce stable aqueous arsenate species under highly reducing conditions. The speciation of arsenic (As) in reducing soils, sediments and aquifers may therefore be far more complex than previously thought. We illustrate this by presenting updated Eh-pH diagrams of As speciation in sulfidic waters that include the most recently reported formation constants for sulfide complexes of As(III) and As(V). The results show that the stability fields of As(III) and As(V) (oxy)thioanions cover a large pH range, from pH 5 to 10. In particular, As(V)-S(-II) complexes significantly enhance the predicted solubility of As under reducing conditions. Equilibrium calculations further show that, under conditions representative of sulfidic pore waters and in the presence of solid-phase elemental sulfur, the S0 (aq)/HS- couple yields a redox potential (Eh)~0.1V higher than the SO4 2-/HS- couple. S(0) may thus help stabilize aqueous As(V) not only by providing an electron acceptor for As(III) but also by contributing to a more oxidizing redox state. © 2011 Elsevier B.V.

  17. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Science.gov (United States)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  18. Dietary arsenic consumption and urine arsenic in an endemic population: response to improvement of drinking water quality in a 2-year consecutive study.

    Science.gov (United States)

    Biswas, Anirban; Deb, Debasree; Ghose, Aloke; Du Laing, Gijs; De Neve, Jan; Santra, Subhas Chandra; Guha Mazumder, Debendra Nath

    2014-01-01

    We assessed the association between arsenic intake through water and diet, and arsenic levels in first morning-void urine under variable conditions of water contamination. This was done in a 2-year consecutive study in an endemic population. Exposure of arsenic through water and diet was assessed for participants using arsenic-contaminated water (≥50 μg L(-1)) in a first year (group I) and for participants using water lower in arsenic (water in groups I and II males was 7.44 and 0.85 μg kg body wt.(-1) day(-1) (p water were reduced to below 50 μg L(-1) (Indian permissible limit), total arsenic intake and arsenic intake through the water significantly decreased, but arsenic uptake through the diet was found to be not significantly affected. Moreover, it was found that drinking water mainly contributed to variations in urine arsenic concentrations. However, differences between male and female participants also indicate that not only arsenic uptake, but also many physiological factors affect arsenic behavior in the body and its excretion. As total median arsenic exposure still often exceeded 3.0 μg kg body wt.(-1) day(-1) (the permissible lower limit established by the Joint Expert Committee on Food Additives) after installation of the drinking water filters, it can be concluded that supplying the filtered water only may not be sufficient to minimize arsenic availability for an already endemic population.

  19. Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Carraro, A. [Institute of Geosciences and Earth Resources, National Research Council (CNR) of Italy, Padova, Italy c/o Department of Geosciences, University of Padova, 35131 Padova (Italy); Fabbri, P. [Institute of Geosciences and Earth Resources, National Research Council (CNR) of Italy, Padova, Italy c/o Department of Geosciences, University of Padova, 35131 Padova (Italy); Department of Geosciences, University of Padova, 35131 Padova (Italy); Giaretta, A.; Peruzzo, L.; Tateo, F.; Tellini, F. [Institute of Geosciences and Earth Resources, National Research Council (CNR) of Italy, Padova, Italy c/o Department of Geosciences, University of Padova, 35131 Padova (Italy)

    2015-11-01

    The Venetian Plain is known for the occurrence of areas with high concentrations of arsenic in groundwater (greater than 400 μg/L). The study area represents the typical residential, industrial and agricultural features of most Western countries and is devoid of hydrothermal, volcanic or anthropogenic sources of arsenic. The aim of the study is to model the arsenic mobilization and the water–rock interaction by a complete hydrogeochemical investigation (analyses of filtered and unfiltered groundwater sediment mineralogy and geochemistry). The groundwater arsenic contamination and redox conditions are highly variable. Groundwaters with oxidizing and strongly reducing potentials have much lower arsenic concentrations than do mildly reducing waters. The grain size of the aquifer sediments includes gravels, sands and silty-clays. A continuous range of organic material concentrations is observed (from zero to 40%). The amount of sedimentary organic matter is highly correlated with the arsenic content of the sediments (up to 300 mg/kg), whereas no relationships are detectable between arsenic and other chemical parameters. The occurrence of arsenic minerals was observed as a peculiar feature under the scanning electron microscope. Arsenic and sulfur are the sole constituents of small tufts or thin crystals concentrated in small masses. These arsenic minerals were clearly observed in the peat sediments, in agreement with the geochemical modeling that requires very reducing conditions for their precipitation from the groundwater. The modeling suggests that, under oxidizing conditions, arsenic is adsorbed; moreover, a continuous decrease in the redox potential causes increasing desorption of arsenic. If the reducing conditions become more intense, the formation of As-S minerals would explain the lower concentration of arsenic measured in the strongly reducing groundwater. Even if As-sulfides are rare under low-temperature conditions, the anomalous abundance of reductants

  20. Effects of redox conditions on the control of arsenic mobility in shallow alluvial aquifers on the Venetian Plain (Italy)

    International Nuclear Information System (INIS)

    Carraro, A.; Fabbri, P.; Giaretta, A.; Peruzzo, L.; Tateo, F.; Tellini, F.

    2015-01-01

    The Venetian Plain is known for the occurrence of areas with high concentrations of arsenic in groundwater (greater than 400 μg/L). The study area represents the typical residential, industrial and agricultural features of most Western countries and is devoid of hydrothermal, volcanic or anthropogenic sources of arsenic. The aim of the study is to model the arsenic mobilization and the water–rock interaction by a complete hydrogeochemical investigation (analyses of filtered and unfiltered groundwater sediment mineralogy and geochemistry). The groundwater arsenic contamination and redox conditions are highly variable. Groundwaters with oxidizing and strongly reducing potentials have much lower arsenic concentrations than do mildly reducing waters. The grain size of the aquifer sediments includes gravels, sands and silty-clays. A continuous range of organic material concentrations is observed (from zero to 40%). The amount of sedimentary organic matter is highly correlated with the arsenic content of the sediments (up to 300 mg/kg), whereas no relationships are detectable between arsenic and other chemical parameters. The occurrence of arsenic minerals was observed as a peculiar feature under the scanning electron microscope. Arsenic and sulfur are the sole constituents of small tufts or thin crystals concentrated in small masses. These arsenic minerals were clearly observed in the peat sediments, in agreement with the geochemical modeling that requires very reducing conditions for their precipitation from the groundwater. The modeling suggests that, under oxidizing conditions, arsenic is adsorbed; moreover, a continuous decrease in the redox potential causes increasing desorption of arsenic. If the reducing conditions become more intense, the formation of As-S minerals would explain the lower concentration of arsenic measured in the strongly reducing groundwater. Even if As-sulfides are rare under low-temperature conditions, the anomalous abundance of reductants

  1. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.

    Directory of Open Access Journals (Sweden)

    Changzhou Yan

    Full Text Available Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h and extended (13 d depuration periods under phosphate enriched (+P and phosphate depleted (-P treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA were found to be the two predominant arsenic species detected in solutions under -P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels.

  2. Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area

    International Nuclear Information System (INIS)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Lin, Po-Cheng; Hwang, Yaw-Huei; Liu, Chen-Wuing; Liao, Chung-Min; Chang, Fi-John; Yu, Chan-Wei

    2011-01-01

    Highlights: ► Sedimentary microcosm showed simultaneous microbial reduction of Fe(III) and As(V). ► Addition of acetate caused a further increase in aqueous Fe(II) but not arsenic. ► An As(V)-reducing bacterium (ARS-3) native to aquifer sediments was isolated. ► ARS-3 showed microbial reduction of As(V) to As(III) in pore water in this aquifer. - Abstract: High levels of arsenic in groundwater and drinking water represent a major health problem worldwide. Drinking arsenic-contaminated groundwater is a likely cause of blackfoot disease (BFD) in Taiwan, but mechanisms controlling the mobilization of arsenic present at elevated concentrations within aquifers remain understudied. Microcosm experiments using sediments from arsenic contaminated shallow alluvial aquifers in the blackfoot disease endemic area showed simultaneous microbial reduction of Fe(III) and As(V). Significant soluble Fe(II) (0.23 ± 0.03 mM) in pore waters and mobilization of As(III) (206.7 ± 21.2 nM) occurred during the first week. Aqueous Fe(II) and As(III) respectively reached concentrations of 0.27 ± 0.01 mM and 571.4 ± 63.3 nM after 8 weeks. We also showed that the addition of acetate caused a further increase in aqueous Fe(II) but the dissolved arsenic did not increase. We further isolated an As(V)-reducing bacterium native to aquifer sediments which showed that the direct enzymatic reduction of As(V) to the potentially more-soluble As(III) in pore water is possible in this aquifer. Our results provide evidence that microorganisms can mediate the release of sedimentary arsenic to groundwater in this region and the capacity for arsenic release was not limited by the availability of electron donors in the sediments.

  3. Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Vivian Hsiu-Chuan, E-mail: vivianliao@ntu.edu.tw [Department of Bioenvironmental Systems Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Chu, Yu-Ju; Su, Yu-Chen; Lin, Po-Cheng [Department of Bioenvironmental Systems Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Hwang, Yaw-Huei [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei 100, Taiwan (China); Liu, Chen-Wuing; Liao, Chung-Min; Chang, Fi-John; Yu, Chan-Wei [Department of Bioenvironmental Systems Engineering, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Sedimentary microcosm showed simultaneous microbial reduction of Fe(III) and As(V). Black-Right-Pointing-Pointer Addition of acetate caused a further increase in aqueous Fe(II) but not arsenic. Black-Right-Pointing-Pointer An As(V)-reducing bacterium (ARS-3) native to aquifer sediments was isolated. Black-Right-Pointing-Pointer ARS-3 showed microbial reduction of As(V) to As(III) in pore water in this aquifer. - Abstract: High levels of arsenic in groundwater and drinking water represent a major health problem worldwide. Drinking arsenic-contaminated groundwater is a likely cause of blackfoot disease (BFD) in Taiwan, but mechanisms controlling the mobilization of arsenic present at elevated concentrations within aquifers remain understudied. Microcosm experiments using sediments from arsenic contaminated shallow alluvial aquifers in the blackfoot disease endemic area showed simultaneous microbial reduction of Fe(III) and As(V). Significant soluble Fe(II) (0.23 {+-} 0.03 mM) in pore waters and mobilization of As(III) (206.7 {+-} 21.2 nM) occurred during the first week. Aqueous Fe(II) and As(III) respectively reached concentrations of 0.27 {+-} 0.01 mM and 571.4 {+-} 63.3 nM after 8 weeks. We also showed that the addition of acetate caused a further increase in aqueous Fe(II) but the dissolved arsenic did not increase. We further isolated an As(V)-reducing bacterium native to aquifer sediments which showed that the direct enzymatic reduction of As(V) to the potentially more-soluble As(III) in pore water is possible in this aquifer. Our results provide evidence that microorganisms can mediate the release of sedimentary arsenic to groundwater in this region and the capacity for arsenic release was not limited by the availability of electron donors in the sediments.

  4. A review on environmental factors regulating arsenic methylation in humans

    International Nuclear Information System (INIS)

    Tseng, C.-H.

    2009-01-01

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers

  5. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    methyltransferase has been upregulated by a factor of two in this population. Finally, we also show that a modification of the model gives excellent fits to the data on arsenic metabolism in human cultured hepatocytes. Conclusions The analysis of the Bangladesh data using the model suggests that folate supplementation may be more effective at reducing whole body arsenic than previously expected. There is almost no data on the upregulation of arsenic methyltransferase in populations chronically exposed to arsenic. Our model predicts upregulation by a factor of two in the Bangladesh population studied. This prediction should be verified since it could have important public health consequences both for treatment strategies and for setting appropriate limits on arsenic in drinking water. Our model has compartments for the binding of arsenicals to proteins inside of cells and we show that these comparments are necessary to obtain good fits to data. Protein-binding of arsenicals should be explored in future biochemical studies.

  6. Quantification of the Intracellular Life Time of Water Molecules to Measure Transport Rates of Human Aquaglyceroporins.

    Science.gov (United States)

    Palmgren, Madelene; Hernebring, Malin; Eriksson, Stefanie; Elbing, Karin; Geijer, Cecilia; Lasič, Samo; Dahl, Peter; Hansen, Jesper S; Topgaard, Daniel; Lindkvist-Petersson, Karin

    2017-12-01

    Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.

  7. Roxarsone, inorganic arsenic, and other arsenic species in chicken: a U.S.-based market basket sample.

    Science.gov (United States)

    Nachman, Keeve E; Baron, Patrick A; Raber, Georg; Francesconi, Kevin A; Navas-Acien, Ana; Love, David C

    2013-07-01

    -free and organic chicken meat samples. Cessation of arsenical drug use could reduce exposure and the burden of arsenic-related disease in chicken consumers.

  8. Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice

    International Nuclear Information System (INIS)

    Patterson, Rachel; Vega, Libia; Trouba, Kevin; Bortner, Carl; Germolec, Dori

    2004-01-01

    Previous studies in our laboratory indicate that arsenic alters secretion of growth promoting and inflammatory cytokines in the skin that can regulate the migration and maturation of Langerhans cells (LC) during allergic contact dermatitis. Therefore, we hypothesized that arsenic may modulate hypersensitivity responses to cutaneous sensitizing agents by altering cytokine production, LC migration, and T-cell proliferation. To investigate this hypothesis, we examined the induction and elicitation phases of dermal sensitization. Mice exposed to 50 mg/l arsenic in the drinking water for 4 weeks demonstrated a reduction in lymph node cell (LNC) proliferation and ear swelling following sensitization with 2,4-dinitrofluorobenzene (DNFB), compared to control mice. LC and T-cell populations in the draining lymph nodes of DNFB-sensitized mice were evaluated by fluorescence-activated cell sorting; activated LC were reduced in cervical lymph nodes, suggesting that LC migration may be altered following arsenic exposure. Lymphocytes from arsenic-treated animals sensitized with fluorescein isothiocyanate (FITC) exhibited reduced proliferative responses following T-cell mitogen stimulation in vitro; however, lymphocyte proliferation from nonsensitized, arsenic-treated mice was comparable to controls. Arsenic exposure also reduced the number of thioglycollate-induced peritoneal macrophages and circulating neutrophils. These studies demonstrate that repeated, prolonged exposure to nontoxic concentrations of sodium arsenite alters immune cell populations and results in functional changes in immune responses, specifically attenuation of contact hypersensitivity

  9. Controls on the distribution of arsenic in lake sediments impacted by 65 years of gold ore processing in subarctic Canada: the role of organic matter

    Science.gov (United States)

    Galloway, Jennifer; Palmer, Michael; Swindles, Graeme T.; Sanei, Hamed; Jamieson, Heather E.; Parsons, Michael; Macumber, Andrew L.; Patterson, Tim; Falck, Hendrik

    2017-04-01

    Gold mines in the Yellowknife region of the Northwest Territories, Canada, operated from 1938 to 2003 and released approximately 20,000 tonnes of arsenic trioxide to the environment through stack emissions. This release resulted in highly elevated arsenic concentrations in lake surface waters and sediments relative to Canadian drinking water standards and guidelines for the protection of aquatic life. High northern latitudes are experiencing substantial impacts, including changes in bio-physico-chemical processes, due to climate change. Determining the affect of warming climate on contamination is complicated by the fact that little is known of climate change controls on As mobility and bioavailability. Further, while the role of dissolved organic matter in As cycling is relatively well characterized in soils and wetland sediments, few studies have investigated the role of solid organic matter in lacustrine systems. We use a meta-analytical approach to better understand controls on sedimentary arsenic distribution in lakes within a 50 km2 area of historic mineral processing activities. Arsenic concentrations in near surface sediments of the 100 lakes studied range from 5 mg/kg to over 10,000 mg/kg (median 81 mg/kg). Distance from the historical Giant Mine roaster stack and the amount of labile organic matter (S1 carbon as determined by Rock Eval pyrolysis) in lake sediments are the variables most strongly correlated with sedimentary As concentrations (Spearman's rank correlation As:distance from historic roaster rs=-0.57, pcoating of pre-existing solid-phase As-mineral complexes, direct As-organic matter interactions, and promotion of microbial-mediated reduction and precipitation of As-bearing minerals.

  10. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    Science.gov (United States)

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years.

  11. Antimony Trioxide (ATO) - Summary of External Peer Review and Public Comments and Disposition

    Science.gov (United States)

    This document summarizes the public and external peer review comments that the EPA’s Office of Pollution Prevention and Toxics (OPPT) received for the draft work plan risk assessment for Antimony Trioxide (ATO).

  12. Anionic sorbents for arsenic and technetium species

    International Nuclear Information System (INIS)

    Lucero, Daniel A.; Moore, Robert Charles; Bontchev, Ranko Panayotov; Hasan, Ahmed Ali Mohamed; Zhao, Hongting; Salas, Fred Manuel; Holt, Kathleen Caroline

    2003-01-01

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption

  13. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Al Lawati, Wafa M. [School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester (United Kingdom); Higher College of Technology, Ministry of Manpower, Muscat (Oman); Jean, Jiin-Shuh [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Kulp, Thomas R. [Department of Earth Sciences and Environmental Studies, State University of New York, Binghamton, NY (United States); Lee, Ming-Kuo [Department of Geology and Geography, Auburn University, Auburn, AL (United States); Polya, David A. [School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester (United Kingdom); Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Dongen, Bart E. van, E-mail: Bart.vanDongen@manchester.ac.uk [School of Earth, Atmospheric and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester (United Kingdom)

    2013-11-15

    Highlights: ► First lipid analysis of Taiwanese aquifer sediments from groundwater As-prone region. ► Both plant-derived terrestrial and mature hydrocarbon lipid sources identified. ► Organic matter sources similar to those of other high As groundwater aquifers. ► Groundwater arsenic at depth controlled by biotic As mobilisation processes. ► Biotic As mobilisation not controlled by a specific source of analysed organic matter. -- Abstract: Arsenic (As) in groundwaters extensively used by people across the world constitutes a serious public health threat. The importance of organic matter (OM) as an electron donor in microbially-mediated reduction of As(V) or Fe(III)-bearing As-host minerals leading to mobilisation of solid-phase arsenic is widely recognised. Notwithstanding this, there are few studies characterising OM in such aquifers and, in particular, there is a dearth of data from the classic arsenic bearing aquifers in southwestern Taiwan. Organic geochemical analyses of sediments from a known groundwater arsenic hot-spot in southwestern Taiwan revealed contributions of thermally mature and plant derived origin, consistent with OM sources in all other Asian groundwater aquifer sediments analysed to date, indicating comparable sources and routes of OM transfer. The combined results of amended As(V) reduction assays with the organic geochemical analysis revealed that the microbiological process of dissimilatory As(V) reduction is active in this aquifer, but it is not controlled by a specific source of analysed OM. These indicate that (i) part of the OM that was considered to be less bio-available could still be used as an electron donor or (ii) other electron donors, not analysed in present study, could be controlling the rate of As release.

  14. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan

    International Nuclear Information System (INIS)

    Al Lawati, Wafa M.; Jean, Jiin-Shuh; Kulp, Thomas R.; Lee, Ming-Kuo; Polya, David A.; Liu, Chia-Chuan; Dongen, Bart E. van

    2013-01-01

    Highlights: ► First lipid analysis of Taiwanese aquifer sediments from groundwater As-prone region. ► Both plant-derived terrestrial and mature hydrocarbon lipid sources identified. ► Organic matter sources similar to those of other high As groundwater aquifers. ► Groundwater arsenic at depth controlled by biotic As mobilisation processes. ► Biotic As mobilisation not controlled by a specific source of analysed organic matter. -- Abstract: Arsenic (As) in groundwaters extensively used by people across the world constitutes a serious public health threat. The importance of organic matter (OM) as an electron donor in microbially-mediated reduction of As(V) or Fe(III)-bearing As-host minerals leading to mobilisation of solid-phase arsenic is widely recognised. Notwithstanding this, there are few studies characterising OM in such aquifers and, in particular, there is a dearth of data from the classic arsenic bearing aquifers in southwestern Taiwan. Organic geochemical analyses of sediments from a known groundwater arsenic hot-spot in southwestern Taiwan revealed contributions of thermally mature and plant derived origin, consistent with OM sources in all other Asian groundwater aquifer sediments analysed to date, indicating comparable sources and routes of OM transfer. The combined results of amended As(V) reduction assays with the organic geochemical analysis revealed that the microbiological process of dissimilatory As(V) reduction is active in this aquifer, but it is not controlled by a specific source of analysed OM. These indicate that (i) part of the OM that was considered to be less bio-available could still be used as an electron donor or (ii) other electron donors, not analysed in present study, could be controlling the rate of As release

  15. Electric heating of a unit for uranium trioxide production

    International Nuclear Information System (INIS)

    Faron, R.; Striff, A.

    1985-01-01

    Ammonium diuranate U 2 O 7 (NH 4 ) 2 containing about 50% of water is dried and transformed by calcination in uranium trioxide UO 3 . Drying and calcination was obtained by air heated by two burners using domestic fuel. In 1984 the plant was transformed for utilization of electric heating improving maintenance cost, decreasing heat losses and by energy saving the payback period on investment is of 2.6 years [fr

  16. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters

    Science.gov (United States)

    Song, Won-Yong; Park, Jiyoung; Mendoza-Cózatl, David G.; Suter-Grotemeyer, Marianne; Shim, Donghwan; Hörtensteiner, Stefan; Geisler, Markus; Weder, Barbara; Rea, Philip A.; Rentsch, Doris; Schroeder, Julian I.; Lee, Youngsook; Martinoia, Enrico

    2010-01-01

    Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC–metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]–PC2 transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)–PC2 transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs. PMID:21078981

  17. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    Science.gov (United States)

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  18. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  19. Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires

    Science.gov (United States)

    Hussain, Tajamal; Shah, Asma Tufail; Shehzad, Khurram; Mujahid, Adnan; Farooqi, Zahoor Hussain; Raza, Muhammad Hamid; Ahmed, Mirza Nadeem; Nisa, Zaib Un

    2015-12-01

    Uniform porous anodized aluminum oxide (AAO) membrane has been synthesized by two-step anodization for fabricating tungsten trioxide (WO3) nanowires. Under assayed conditions, uniform porous structure of alumina (Al2O3) membrane with long range ordered hexagonal arrangements of nanopores was achieved. The self-assembled template possesses pores of internal diameter of 50 nm and interpore distance ( d int) of 80 nm with a thickness of about 80 µm, i.e., used for fabrication of nanostructures. WO3 nanowires have been fabricated by simple electroless deposition method inside Al2O3 nanopores. SEM images show tungsten trioxide nanowire with internal diameter of about 50 nm, similar to porous diameter of AAO template. XRD results showed that nanowires exist in cubic crystalline state with minor proportion of monoclinic phase.

  20. Blood Pressure Associated with Arsenic Methylation and Arsenic Metabolism Caused by Chronic Exposure to Arsenic in Tube Well Water.

    Science.gov (United States)

    Wei, Bing Gan; Ye, Bi Xiong; Yu, Jiang Ping; Yang, Lin Sheng; Li, Hai Rong; Xia, Ya Juan; Wu, Ke Gong

    2017-05-01

    The effects of arsenic exposure from drinking water, arsenic metabolism, and arsenic methylation on blood pressure (BP) were observed in this study. The BP and arsenic species of 560 participants were determined. Logistic regression analysis was applied to estimate the odds ratios of BP associated with arsenic metabolites and arsenic methylation capability. BP was positively associated with cumulative arsenic exposure (CAE). Subjects with abnormal diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) usually had higher urinary iAs (inorganic arsenic), MMA (monomethylated arsenic), DMA (dimethylated arsenic), and TAs (total arsenic) than subjects with normal DBP, SBP, and PP. The iAs%, MMA%, and DMA% differed slightly between subjects with abnormal BP and those with normal BP. The PMI and SMI were slightly higher in subjects with abnormal PP than in those with normal PP. Our findings suggest that higher CAE may elevate BP. Males may have a higher risk of abnormal DBP, whereas females have a higher risk of abnormal SBP and PP. Higher urinary iAs may increase the risk of abnormal BP. Lower PMI may elevate the BP. However, higher SMI may increase the DBP and SBP, and lower SMI may elevate the PP. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Removing arsenic from groundwater in Cambodia using high performance iron adsorbent.

    Science.gov (United States)

    Kang, Y; Takeda, R; Nada, A; Thavarith, L; Tang, S; Nuki, K; Sakurai, K

    2014-09-01

    In Cambodia, groundwater has been contaminated with arsenic, and purification of the water is an urgent issue. From 2010 to 2012, an international collaborative project between Japan and Cambodia for developing arsenic-removing technology from well water was conducted and supported by the foundation of New Energy and Industrial Technology Development Organization, Japan. Quality of well water was surveyed in Kandal, Prey Veng, and Kampong Cham Provinces, and a monitoring trial of the arsenic removal equipment using our patented amorphous iron (hydr)oxide adsorbent was performed. Of the 37 wells surveyed, arsenic concentration of 24 exceeded the Cambodian guideline value (50 μg L(-1)), and those of 27 exceeded the WHO guideline for drinking water (10 μg L(-1)). Levels of arsenic were extremely high in some wells (>1,000-6,000 μg L(-1)), suggesting that arsenic pollution of groundwater is serious in these areas. Based on the survey results, 16 arsenic removal equipments were installed in six schools, three temples, two health centers, four private houses, and one commune office. Over 10 months of monitoring, the average arsenic concentrations of the treated water were between 0 and 10 μg L(-1) at four locations, 10-50 μg L(-1) at eight locations, and >50 μg L(-1) at four locations. The arsenic removal rate ranged in 83.1-99.7%, with an average of 93.8%, indicating that the arsenic removal equipment greatly lower the risk of arsenic exposure to the residents. Results of the field trial showed that As concentration of the treated water could be reduced to condition. This is one of the succeeding As removal techniques that could reduce As concentration of water below the WHO guideline value for As in situ.

  2. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Zheng, B.S.; Aposhian, H.V.; Zhou, Y.S.; Chen, M.L.; Zhang, A.H.; Waalkes, M.P. [NIEHS, Research Triangle Park, NC (USA)

    2002-07-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China was investigated. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such over exposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  3. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    International Nuclear Information System (INIS)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy; Suresh, Subramaniyam; Gupta, Priyanka; Vijayakaran, Karunakaran; Sankar, Palanisamy; Kurade, Nitin Pandurang; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91 st day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E max of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic

  4. Atorvastatin restores arsenic-induced vascular dysfunction in rats: Modulation of nitric oxide signaling and inflammatory mediators

    Energy Technology Data Exchange (ETDEWEB)

    Kesavan, Manickam; Sarath, Thengumpallil Sasindran; Kannan, Kandasamy; Suresh, Subramaniyam; Gupta, Priyanka; Vijayakaran, Karunakaran; Sankar, Palanisamy; Kurade, Nitin Pandurang; Mishra, Santosh Kumar; Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com

    2014-10-01

    We evaluated whether atorvastatin, an extensively prescribed statin for reducing the risks of cardiovascular diseases, can reduce the risk of arsenic-induced vascular dysfunction and inflammation in rats and whether the modulation could be linked to improvement in vascular NO signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91{sup st} day, blood was collected for measuring serum C-reactive protein. Thoracic aorta was isolated for assessing reactivity to phenylephrine, sodium nitroprusside and acetylcholine; evaluating eNOS and iNOS mRNA expression and measuring NO production, while abdominal aorta was used for ELISA of cytokines, chemokine and vascular cell adhesion molecules. Histopathology was done in aortic arches. Arsenic did not alter phenylephrine-elicited contraction. Atorvastatin inhibited E{sub max} of phenylephrine, but it augmented the contractile response in aortic rings from arsenic-exposed animals. Sodium nitroprusside-induced relaxation was not altered with any treatment. However, arsenic reduced acetylcholine-induced relaxation and affected aortic eNOS at the levels of mRNA expression, protein concentration, phosphorylation and NO production. Further, it increased aortic iNOS mRNA expression, iNOS-derived NO synthesis, production of pro-inflammatory mediators (IL-1β, IL-6, MCP-1, VCAM, sICAM) and serum C-reactive protein and aortic vasculopathic lesions. Atorvastatin attenuated these arsenic-mediated functional, biochemical and structural alterations. Results show that atorvastatin has the potential to ameliorate arsenic-induced vascular dysfunction and inflammation by restoring endothelial function with improvement in NO signaling and attenuating production of pro-inflammatory mediators and cell adhesion molecules. - Highlights: • We evaluated if atorvastatin reduce arsenic

  5. An insight of environmental contamination of arsenic on animal health

    Directory of Open Access Journals (Sweden)

    Paramita Mandal

    2017-03-01

    Full Text Available The main threats to human health from heavy metals are associated with exposure to lead, cadmium, mercury and arsenic. Exposure to arsenic is mainly via intake of food and drinking water, food being the most important source in most populations. Although adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues and is even increasing in some areas. Long-term exposure to arsenic in drinking-water is mainly related to increased risks of skin cancer, but also some other cancers, as well as other skin lesions such as hyperkeratosis and pigmentation changes. Therefore, measures should be taken to reduce arsenic exposure in the general population in order to minimize the risk of adverse health effects. Animal are being exposed to arsenic through contaminated drinking water, feedstuff, grasses, vegetables and different leaves. Arsenic has been the most common causes of inorganic chemical poisoning in farm animals. Although, sub-chronic and chronic exposure of arsenic do not generally reveal external signs or symptoms in farm animals but arsenic (or metabolites concentrations in blood, hair, hoofs and urine are remained high in animals of arsenic contaminated zones. So it is assumed that concentration of arsenic in blood, urine, hair or milk have been used as biomarkers of arsenic exposure in field animals.

  6. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  7. The Association of Arsenic Exposure and Arsenic Metabolism with the Metabolic Syndrome and its Individual Components: Prospective Evidence from the Strong Heart Family Study.

    Science.gov (United States)

    Spratlen, Miranda J; Grau-Perez, Maria; Best, Lyle G; Yracheta, Joseph; Lazo, Mariana; Vaidya, Dhananjay; Balakrishnan, Poojitha; Gamble, Mary V; Francesconi, Kevin A; Goessler, Walter; Cole, Shelley A; Umans, Jason G; Howard, Barbara V; Navas-Acien, Ana

    2018-03-15

    Inorganic arsenic exposure is ubiquitous and both exposure and inter-individual differences in its metabolism have been associated with cardiometabolic risk. The association between arsenic exposure and arsenic metabolism with metabolic syndrome and its individual components, however, is relatively unknown. We used poisson regression with robust variance to evaluate the association between baseline arsenic exposure (urine arsenic levels) and metabolism (relative percentage of arsenic species over their sum) with incident metabolic syndrome and its individual components (elevated waist circumference, elevated triglycerides, reduced HDL, hypertension, elevated fasting plasma glucose) in 1,047 participants from the Strong Heart Family Study, a prospective family-based cohort in American Indian communities (baseline visits in 1998-1999 and 2001-2003, follow-up visits in 2001-2003 and 2006-2009). 32% of participants developed metabolic syndrome over follow-up. An IQR increase in arsenic exposure was associated with 1.19 (95% CI: 1.01, 1.41) greater risk for elevated fasting plasma glucose but not with other individual components or overall metabolic syndrome. Arsenic metabolism, specifically lower MMA% and higher DMA% was associated with higher risk of overall metabolic syndrome and elevated waist circumference, but not with any other component. These findings support there is a contrasting and independent association between arsenic exposure and arsenic metabolism with metabolic outcomes which may contribute to overall diabetes risk.

  8. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan.

    Science.gov (United States)

    Al Lawati, Wafa M; Jean, Jiin-Shuh; Kulp, Thomas R; Lee, Ming-Kuo; Polya, David A; Liu, Chia-Chuan; van Dongen, Bart E

    2013-11-15

    Arsenic (As) in groundwaters extensively used by people across the world constitutes a serious public health threat. The importance of organic matter (OM) as an electron donor in microbially-mediated reduction of As(V) or Fe(III)-bearing As-host minerals leading to mobilisation of solid-phase arsenic is widely recognised. Notwithstanding this, there are few studies characterising OM in such aquifers and, in particular, there is a dearth of data from the classic arsenic bearing aquifers in southwestern Taiwan. Organic geochemical analyses of sediments from a known groundwater arsenic hot-spot in southwestern Taiwan revealed contributions of thermally mature and plant derived origin, consistent with OM sources in all other Asian groundwater aquifer sediments analysed to date, indicating comparable sources and routes of OM transfer. The combined results of amended As(V) reduction assays with the organic geochemical analysis revealed that the microbiological process of dissimilatory As(V) reduction is active in this aquifer, but it is not controlled by a specific source of analysed OM. These indicate that (i) part of the OM that was considered to be less bio-available could still be used as an electron donor or (ii) other electron donors, not analysed in present study, could be controlling the rate of As release. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Cellular shear stiffness reflects progression of arsenic-induced transformation during G1

    DEFF Research Database (Denmark)

    Muñoz, Alexandra; Eldridge, Will J; Jakobsen, Nina Munkholt

    2017-01-01

    epithelial cells were exposed to sodium arsenite to initiate early stages of transformation. Exposed cells were cultured in soft agar to further transformation and select for clonal populations exhibiting anchorage independent growth. Shear stiffness of various cell populations in G1 was assessed using...... reduced stiffness relative to control clonal lines, which were cultured in soft agar but did not receive arsenic treatment. The relative standard deviation of the stiffness of Arsenic clones was reduced compared to control clones, as well as to the arsenic exposed cell population. Cell stiffness...

  10. CHURCHILL COUNTY, NEVADA ARSENIC STUDY: WATER CONSUMPTION AND EXPOSURE BIOMARKERS

    Science.gov (United States)

    The US Environmental Protection Agency is required to reevaluate the Maximum Contaminant Level (MCL) for arsenic in 2006. To provide data for reducing uncertainties in assessing health risks associated with exposure to low levels (<200 g/l) of arsenic, a large scale biomarker st...

  11. The impact of oscillating redox conditions: Arsenic immobilisation in contaminated calcareous floodplain soils

    International Nuclear Information System (INIS)

    Parsons, Christopher T.; Couture, Raoul-Marie; Omoregie, Enoma O.; Bardelli, Fabrizio; Greneche, Jean-Marc; Roman-Ross, Gabriela; Charlet, Laurent

    2013-01-01

    Arsenic contamination of floodplain soils is extensive and additional fresh arsenic inputs to the pedosphere from human activities are ongoing. We investigate the cumulative effects of repetitive soil redox cycles, which occur naturally during flooding and draining, on a calcareous fluvisol, the native microbial community and arsenic mobility following a simulated contamination event. We show through bioreactor experiments, spectroscopic techniques and modelling that repetitive redox cycling can decrease arsenic mobility during reducing conditions by up to 45%. Phylogenetic and functional analyses of the microbial community indicate that iron cycling is a key driver of observed changes to solution chemistry. We discuss probable mechanisms responsible for the arsenic immobilisation observed in-situ. The proposed mechanisms include, decreased heterotrophic iron reduction due to the depletion of labile particulate organic matter (POM), increases to the proportion of co-precipitated vs. aqueous or sorbed arsenic with α-FeOOH/Fe(OH) 3 and potential precipitation of amorphous ferric arsenate. Highlights: •Oscillating redox conditions and heterotrophic metabolism are implemented in PHREEQC. •Depletion of labile organic matter limits iron reduction and arsenic release. •Amorphous FeAsO 4 ∙2H 2 O precipitation potentially limits arsenic mobility during redox cycling. •Water fluctuating zones may naturally attenuate arsenic liberation during flooding. -- We demonstrate through batch experiments, spectroscopy and modelling that repetitive cycles of oxidation and reduction decrease arsenic mobility in soils during subsequent reducing conditions

  12. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C. [Bose Institute, Department of Chemistry, Kolkata, West Bengal (India)

    2008-03-15

    Arsenic, one of the most harmful metalloids, is ubiquitous in the environment. The present study has been carried out to investigate the protective role of a triterpenoid saponin, arjunolic acid (AA) against arsenic-induced cardiac oxidative damage. In the study, NaAsO{sub 2} was chosen as the source of arsenic. The free radical scavenging activity and the effect of AA on the intracellular antioxidant power were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of NaAsO{sub 2} at a dose of 10 mg/kg body weight for 2 days caused significant accumulation of arsenic in cardiac tissues of the experimental mice in association with the reduction in cardiac antioxidant enzymes activities, namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase. Arsenic intoxication also decreased the cardiac glutathione (GSH) and total thiol contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products and protein carbonyl content. Treatment with AA at a dose of 20 mg/kg body weight for 4 days prior to NaAsO{sub 2} intoxication protected the cardiac tissue from arsenic-induced oxidative impairment. In addition to oxidative stress, arsenic administration increased total cholesterol level as well as the reduced high-density lipoprotein cholesterol level in the sera of the experimental mice. AA pretreatment, however, could prevent this hyperlipidemia. Histological studies on the ultrastructural changes in cardiac tissue supported the protective activity of AA also. Combining all, results suggest that AA could protect cardiac tissues against arsenic-induced oxidative stress probably due to its antioxidant property. (orig.)

  13. The effects of arsenic or the combination of arsenic and radiation exposure is enhanced through the overexpression of the GSTO family member p28

    International Nuclear Information System (INIS)

    Giri, U.; Story, M.D.; Terry, N.H.A.; Giri, D.K.; Calkins, P.R.

    2003-01-01

    Full text: p28 is a member of the GST omega superfamily and has dehydroascorbate reductase, GST, and glutaredoxin activities. Furthermore, p28 is the rate-limiting enzyme in the bio-transformation of arsenic. The monomethyl arsenous reducatase activity of p28 produces dimethylarseniate, the most toxic form of arsenic. We investigated how p28 modulated arsenic cellular sensitivity in two mammalian models: 1) in LY-ar and LY-as cells where p28 is over-expressed and not expressed, respectively; and 2) in stably transfected A549 cells where p28 is over-expressed via a CMV promoter. The LY-ar mouse lymphoma cell line is radio and chemo-resistant and apoptosis refractory, whereas the parental cell line, LY-as, is radiosensitive and apoptotically permissive. In addition, we studied the effect of arsenic as a radiosensitizer in both cell systems. In LY-ar cells arsenic induced a dose- and time- dependent increase in apoptosis, which is comparable to that seen in LY-as cells. Arsenic plus 2.5Gy radiation induced apoptosis in LY-ar cells, which was more than additive. Survival in LY-ar cells was reduced to that of LY-as cells as well as p28 overexpression induced G2/M arrest in A549 cells and the combination of radiation with arsenic decreased the clonogenic survival of both the A549 and A549-p28 cells but the effect is more pronounced in the A549-P28 cell line. A549 and A549-p28 cells did not show a differential response to Taxol, which induces G2/M arrest and cell death via an inhibition of tubulin depolarization. Arsenic modulated the level of reduced GSH in both cell systems in a dose- and time- dependent manner, which correlated with survival outcome. This study illustrated that arsenic acts as a radiosensitizer and p28 augmented the potential of arsenic in inducing apoptosis, G2/M arrest, and radiosensitization. Further studies are underway to examine the bio-chemical pathways involved in arsenic-mediated cell death and the role of p28 therein

  14. Using Systems Biology Approaches to Elucidate the Mechanisms of Arsenic Reduction in Shewanella Sp. ANA-3

    OpenAIRE

    Watson, Ruth Pamela Tilus

    2015-01-01

    Arsenic is a naturally occurring ubiquitous metalloid that is usually associated with Iron, sulfur and other compounds in the earth’s crust. In some places around the world the bio-geochemical conditions can cause the mineral bound form of arsenic (arsenate) to be reduced to a more water-soluble form (arsenite). In its reduced state, arsenic can seep from the soil down into ground water aquifers and contaminate drinking water supplies. The effects of drinking arsenic tainted water are devasta...

  15. Construction of a modular arsenic resistance operon in E. coli and the production of arsenic nanoparticles

    Directory of Open Access Journals (Sweden)

    Matthew Charles Edmundson

    2015-10-01

    Full Text Available Arsenic is a widespread contaminant of both land and water around the world. Current methods of decontamination such as phytoremediation and chemical adsorbents can be resource and time intensive, and may not be suitable for some areas such as remote communities where cost and transportation are major issues. Bacterial decontamination, with strict controls preventing environmental release, may offer a cost-effective alternative or provide a financial incentive when used in combination with other remediation techniques. In this study we have produced E. coli strains containing arsenic resistance genes from a number of sources, overexpressing them and testing their effects on arsenic resistance. While the lab E. coli strain JM109 (the wild-type is resistant up to 20 mM sodium arsenate the strain containing our plasmid pEC20 is resistant up to 80 mM. When combined with our construct pArsRBCC arsenic-containing nanoparticles were observed at the cell surface; the elements of pEC20 and pArsRBCC were therefore combined in a modular construct, pArs, in order to evaluate the roles and synergistic effects of the components of the original plasmids in arsenic resistance and nanoparticle formation. We also investigated the use of introducing the lac operator in order to more tightly control expression from pArs. We demonstrate that our strains are able to reduce toxic forms of arsenic into stable, insoluble metallic As(0, providing one way to remove arsenate contamination, and which may also be of benefit for other heavy metals.

  16. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth

    Directory of Open Access Journals (Sweden)

    Emily F. Winterbottom

    2015-06-01

    Full Text Available Although considerable evidence suggests that in utero arsenic exposure affects children's health, these data are mainly from areas of the world where groundwater arsenic levels far exceed the World Health Organization limit of 10 μg/L. We, and others, have found that more common levels of in utero arsenic exposure may also impact children's health. However, the underlying molecular mechanisms are poorly understood. To address this issue, we analyzed the expression of key developmental genes in fetal placenta in a birth cohort of women using unregulated water supplies in a US region with elevated groundwater arsenic. We identified several genes whose expression associated with maternal arsenic exposure in a fetal sex-specific manner. In particular, expression of the HEDGEHOG pathway component, GLI3, in female placentae was both negatively associated with arsenic exposure and positively associated with infant birth weight. This suggests that modulation of GLI3 in the fetal placenta, and perhaps in other fetal tissues, contributes to arsenic's detrimental effects on fetal growth. We showed previously that arsenic-exposed NIH3T3 cells have reduced GLI3 repressor protein. Together, these studies identify GLI3 as a key signaling node that is affected by arsenic, mediating a subset of its effects on developmental signaling and fetal health.

  17. Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, H.; Takahashi, K.; Mashiko, M.; Yamamura, Y. (St. Marianna Univ. School of Medicine, Kawasaki (Japan))

    1989-11-01

    In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.

  18. Factors Affecting Elevated Arsenic and Methyl Mercury Concentrations in Small Shield Lakes Surrounding Gold Mines near the Yellowknife, NT, (Canada Region.

    Directory of Open Access Journals (Sweden)

    Adam James Houben

    Full Text Available Gold mines in the Yellowknife, NT, region--in particular, the Giant Mine--operated from 1949-99, releasing 237,000 tonnes of waste arsenic trioxide (As2O3 dust, among other compounds, from gold ore extraction and roasting processes. For the first time, we show the geospatial distribution of roaster-derived emissions of several chemical species beyond the mine property on otherwise undisturbed taiga shield lakes within a 25 km radius of the mine, 11 years after its closing. Additionally, we demonstrate that underlying bedrock is not a significant source for the elevated concentrations in overlying surface waters. Aquatic arsenic (As concentrations are well above guidelines for drinking water (10 μg/L and protection for aquatic life (5 μg/L, ranging up to 136 μg/L in lakes within 4 km from the mine, to 2.0 μg/L in lakes 24 km away. High conversion ratios of methyl mercury were shown in lakes near the roaster stack as well, with MeHg concentrations reaching 44% of total mercury. The risk of elevated exposures by these metals is significant, as many lakes used for recreation and fishing near the City of Yellowknife are within this radius of elevated As and methyl Hg concentrations.

  19. Arsenic in Food

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share ... of the Method used to Measure Arsenic in Foods Inductively Coupled Plasma-Mass Spectrometric Determination of Arsenic, ...

  20. Treatability of inorganic arsenic and organoarsenicals in groundwater

    International Nuclear Information System (INIS)

    Kuhlmeier, P.D.; Sherwood, S.P.

    1996-01-01

    A 2-year three-phase study into methods for treatment of mixed inorganic and organic arsenic species to drinking water levels was conducted at a former pesticide facility in Houston, Tex. The species present include monomethylarsinic acid, dimethylarsinic acid, arsenate, and arsenite. Phase One studies reported here included the evaluation of four adsorbents using bottle roll and column flow through techniques, oxidation through the application of Fenton's reagent followed by coprecipitation, coprecipitation without oxidation, and ultraviolet (UV)/ozone tests. The four adsorbents tested were activated carbon, activated alumina, ferrous sulfide, and a strongly basic ion exchange resin. All adsorbents removed some arsenic, but none except ferrous sulfide was sufficiently effective to warrant follow-up studies. Two small ferrous sulfide column tests, run under different conditions, removed arsenic but not to the levels and loading capacities needed to make this method practical. Organic compound destruction was tested using Fenton's reagent (a mixture of hydrogen peroxide and ferrous iron) before coprecipitation. Arsenic was reduced to 170 ppb in the treated liquor. Coprecipitation without oxidative pretreatment produced a liquor containing 260 ppb arsenic. A two-stage Fenton-type coprecipitation procedure produced a supernatant containing 110 ppb total arsenic. Preliminary tests with a second-stage oxidative process, using ozone and UV radiation, showed approximately 80% destruction of an organic-arsenic surrogate (cacodylic acid) in 1 hour

  1. Methylation of inorganic arsenic in different mammalian species and population groups.

    Science.gov (United States)

    Vahter, M

    1999-01-01

    Thousands of people in different parts of the world are exposed to arsenic via drinking water or contaminated soil or food. The high general toxic of arsenic has been known for centuries, and research during the last decades has shown that arsenic is a potent human carcinogen. However, most experimental cancer studies have failed to demonstrate carcinogenicity in experimental animals, indicating marked variation in sensitivity towards arsenic toxicity between species. It has also been suggested that there is a variation in susceptibility among human individuals. One reason for such variability in toxic response may be variation in metabolism. Inorganic arsenic is methylated in humans as well as animals and micro-organisms, but there are considerable differences between species and individuals. In many, but not all, mammalian species, inorganic arsenic is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are more rapidly excreted in urine than is the inorganic arsenic, especially the trivalent form (AsIII, arsenite) which is highly reactive with tissue components. Absorbed arsenate (AsV) is reduced to trivalent arsenic (AsIII) before the methyl groups are attached. It has been estimated that as much as 50-70% of absorbed AsV is rapidly reduced to AsIII, a reaction which seems to be common for most species. In most experimental animal species, DMA is the main metabolite excreted in urine. Compared to human subjects, very little MMA is produced. However, the rate of methylation varies considerably between species, and several species, e.g. the marmoset monkey and the chimpanzee have been shown not to methylate inorganic arsenic at all. In addition, the marmoset monkey accumulates arsenic in the liver. The rat, on the other hand, has an efficient methylation of arsenic but the formed DMA is to a large extent accumulated in the red blood cells. As a result, the rat shows a low rate of excretion of arsenic. In both human subjects and rodents

  2. Seasonal Arsenic Accumulation in Stream Sediments at a Groundwater Discharge Zone

    DEFF Research Database (Denmark)

    MacKay, Allison A.; Gan, Ping; Yu, Ran

    2014-01-01

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic...... and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), With higher surface water: levels, was associated with losses...... of arsenic and iron from bead column coatings at. depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg...

  3. Evaluating the cement stabilization of arsenic-bearing iron wastes from drinking water treatment.

    Science.gov (United States)

    Clancy, Tara M; Snyder, Kathryn V; Reddy, Raghav; Lanzirotti, Antonio; Amrose, Susan E; Raskin, Lutgarde; Hayes, Kim F

    2015-12-30

    Cement stabilization of arsenic-bearing wastes is recommended to limit arsenic release from wastes following disposal. Such stabilization has been demonstrated to reduce the arsenic concentration in the Toxicity Characteristic Leaching Procedure (TCLP), which regulates landfill disposal of arsenic waste. However, few studies have evaluated leaching from actual wastes under conditions similar to ultimate disposal environments. In this study, land disposal in areas where flooding is likely was simulated to test arsenic release from cement stabilized arsenic-bearing iron oxide wastes. After 406 days submersed in chemically simulated rainwater, wastes. Presenting the first characterization of cement stabilized waste using μXRF, these results revealed the majority of arsenic in cement stabilized waste remained associated with iron. This distribution of arsenic differed from previous observations of calcium-arsenic solid phases when arsenic salts were stabilized with cement, illustrating that the initial waste form influences the stabilized form. Overall, cement stabilization is effective for arsenic-bearing wastes when acidic conditions can be avoided. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

    Science.gov (United States)

    Nguyen Van, Thinh; Osanai, Yasuhito; Do Nguyen, Hai; Kurosawa, Kiyoshi

    2017-01-01

    A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditions. The soils treated using biodegradable acids had low remaining concentrations of arsenic that are primarily contained in the crystalline iron oxides and organic matter fractions. The close correlation between extracted arsenic and extracted iron/aluminum suggested that arsenic was removed via the dissolution of Fe/Al oxides in soils. The fractionation of arsenic in four contaminated soils was investigated using a modified sequential extraction method. Regarding fractionation, we found that most of the soil contained high proportions of arsenic (As) in exchangeable fractions with phosphorus, amorphous oxides, and crystalline iron oxides, while a small amount of the arsenic fraction was organic matter-bound. This study indicated that biodegradable organic acids can be considered as a means for arsenic-contaminated soil remediation.

  5. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

    International Nuclear Information System (INIS)

    Lee, Seungho; Cha, Jinmyung; Sim, Kyunjong; Lee, Jinkyu

    2014-01-01

    Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of 10 μg/L (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate (AsO 4 3- ) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications

  6. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungho; Cha, Jinmyung; Sim, Kyunjong; Lee, Jinkyu [Seoul National Univ., Seoul (Korea, Republic of)

    2014-02-15

    Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of 10 μg/L (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate (AsO{sub 4}{sup 3-}) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications.

  7. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Arsenic in groundwater of Licking County, Ohio, 2012—Occurrence and relation to hydrogeology

    Science.gov (United States)

    Thomas, Mary Ann

    2016-02-23

    Arsenic concentrations were measured in samples from 168 domestic wells in Licking County, Ohio, to document arsenic concentrations in a wide variety of wells and to identify hydrogeologic factors associated with arsenic concentrations in groundwater. Elevated concentrations of arsenic (greater than 10.0 micrograms per liter [µg/L]) were detected in 12 percent of the wells (about 1 in 8). The maximum arsenic concentration of about 44 µg/L was detected in two wells in the same township.A subset of 102 wells was also sampled for iron, sulfate, manganese, and nitrate, which were used to estimate redox conditions of the groundwater. Elevated arsenic concentrations were detected only in strongly reducing groundwater. Almost 20 percent of the samples with iron concentrations high enough to produce iron staining (greater than 300 µg/L) also had elevated concentrations of arsenic.In groundwater, arsenic primarily occurs as two inorganic species—arsenite and arsenate. Arsenic speciation was determined for a subset of nine samples, and arsenite was the predominant species. Of the two species, arsenite is more difficult to remove from water, and is generally considered to be more toxic to humans.Aquifer and well-construction characteristics were compiled from 99 well logs. Elevated concentrations of arsenic (and iron) were detected in glacial and bedrock aquifers but were more prevalent in glacial aquifers. The reason may be that the glacial deposits typically contain more organic carbon than the Paleozoic bedrock. Organic carbon plays a role in the redox reactions that cause arsenic (and iron) to be released from the aquifer matrix. Arsenic concentrations were not significantly different for different types of bedrock (sandstone, shale, sandstone/shale, or other). However, arsenic concentrations in bedrock wells were correlated with two well-construction characteristics; higher arsenic concentrations in bedrock wells were associated with (1) shorter open intervals and

  9. Monoblock Obturation Technique for Non-Vital Immature Permanent Maxillary Incisors Using Mineral Trioxide Aggregate: Results from Case Series

    International Nuclear Information System (INIS)

    Iqbal, Z.; Qureshi, A. H.

    2014-01-01

    Ten patients presented with non-vital immature teeth for root canal treatment. In all these cases the pre-operative clinical examination revealed apical periodontitis with a buccal sinus tract of endodontic origin. These cases were treated by a mineral trioxide aggregate (MTA) monoblock obturation technique. Follow-up evaluations were performed at 1 - 2 years after treatment. Eight out of 10 cases were associated with periradicular healing at follow-up evaluation. Mineral trioxide aggregate Monoblock obturation technique appears to be a valid material to obtain periradicular healing in teeth with open apices and necrotic pulps. (author)

  10. Groundwater arsenic contamination in Bangladesh-21 Years of research.

    Science.gov (United States)

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Mukherjee, Amitava; Alauddin, Mohammad; Hassan, Manzurul; Dutta, Rathindra Nath; Pati, Shymapada; Mukherjee, Subhash Chandra; Roy, Shibtosh; Quamruzzman, Quazi; Rahman, Mahmuder; Morshed, Salim; Islam, Tanzima; Sorif, Shaharir; Selim, Md; Islam, Md Razaul; Hossain, Md Monower

    2015-01-01

    -clinically affected. SOES and DCH made a few follow-up studies in some districts to know their overall situations after 9 to 18 years of their first exposure. The overall conclusion from these follow-up studies is (a) villagers are now more aware about the danger of drinking arsenic contaminated water (b) villagers are currently drinking less arsenic contaminated water (c) many villagers in affected village died of cancer (d) arsenic contaminated water is in use for agricultural irrigation and arsenic exposure from food chain could be future danger. Since at present more information is coming about health effects from low arsenic exposure, Bangladesh Government should immediately focus on their huge surface water management and reduce their permissible limit of arsenic in drinking water. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Understanding arsenic metabolism through spectroscopic determination of arsenic in human urine

    OpenAIRE

    Brima, Eid I.; Jenkins, Richard O.; Haris, Parvez I.

    2006-01-01

    In this review we discuss a range of spectroscopic techniques that are currently used for analysis of arsenic in human urine for understanding arsenic metabolism and toxicity, especially in relation to genetics/ethnicity, ingestion studies and exposure to arsenic through drinking water and diet. Spectroscopic techniques used for analysis of arsenic in human urine include inductively coupled plasma mass spectrometry (ICP-MS), hydride generation atomic absorption spectrometry (HG-AAS), hydride ...

  12. Arsenic removal from acidic solutions with biogenic ferric precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Ahoranta, Sarita H., E-mail: sarita.ahoranta@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Kokko, Marika E., E-mail: marika.kokko@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Papirio, Stefano, E-mail: stefano.papirio@unicas.it [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Özkaya, Bestamin, E-mail: bozkaya@yildiz.edu.tr [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Department of Environmental Engineering, Yildiz Technical University, Davutpasa Campus 34220, Esenler, Istanbul (Turkey); Puhakka, Jaakko A., E-mail: jaakko.puhakka@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland)

    2016-04-05

    Highlights: • Continuous and rapid arsenic removal with biogenic jarosite was achieved at pH 3.0. • Arsenic removal was inefficient below pH 2.4 due to reduced Fe–As co-precipitation. • As(V) had better sorption characteristics than As(III). • Biogenic jarosite adsorbed arsenic more effectively than synthetic jarosite. - Abstract: Treatment of acidic solution containing 5 g/L of Fe(II) and 10 mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7 h, 96–98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28 mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH < 2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment.

  13. Naturally occurring arsenic in the groundwater at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.

    1990-12-01

    This report describes an investigation concerning the presence of arsenic in concentrations exceeding 0.4 mg/L in the groundwater under the Department of Energy's Kansas City Plant (KCP). The study consisted of four distinct phases: a thorough review of the technical literature, a historical survey of arsenic use at the facility, a laboratory study of existing techniques for determining arsenic speciation, and a field program including water, soil, and sediment sampling. The historical survey and literature review demonstrated that plant activities had not released significant quantities of arsenic to the environment but that similar occurrences of arsenic in alluvial groundwater are widespread in the midwestern United States. Laboratory studies showed that a chromatographic separation technique was necessary to accurately determine arsenic speciation for the KCP groundwater samples. Field studies revealed that naturally occurring reducing conditions prevalent in the subsurface are responsible for dissolving arsenic previously sorbed by iron oxides. Indeed, the data demonstrated that the bulk arsenic concentration of site subsoils and sediments is {approximately}7 mg/kg, whereas the arsenic content of iron oxide subsamples is as high as 84 mg/kg. Literature showed that similar concentrations of arsenic in sediments occur naturally and are capable of producing the levels of arsenic found in groundwater monitoring wells at the KCP. The study concludes, therefore, that the arsenic present in the KCP groundwater is the result of natural phenomena. 44 refs., 8 figs., 14 tabs.

  14. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review

    Directory of Open Access Journals (Sweden)

    Anindita Mitra

    2017-10-01

    Full Text Available According to recent reports, millions of people across the globe are suffering from arsenic (As toxicity. Arsenic is present in different oxidative states in the environment and enters in the food chain through soil and water. In the agricultural field, irrigation with arsenic contaminated water, that is, having a higher level of arsenic contamination on the top soil, which may affects the quality of crop production. The major crop like rice (Oryza sativa L. requires a considerable amount of water to complete its lifecycle. Rice plants potentially accumulate arsenic, particularly inorganic arsenic (iAs from the field, in different body parts including grains. Different transporters have been reported in assisting the accumulation of arsenic in plant cells; for example, arsenate (AsV is absorbed with the help of phosphate transporters, and arsenite (AsIII through nodulin 26-like intrinsic protein (NIP by the silicon transport pathway and plasma membrane intrinsic protein aquaporins. Researchers and practitioners are trying their level best to mitigate the problem of As contamination in rice. However, the solution strategies vary considerably with various factors, such as cultural practices, soil, water, and environmental/economic conditions, etc. The contemporary work on rice to explain arsenic uptake, transport, and metabolism processes at rhizosphere, may help to formulate better plans. Common agronomical practices like rain water harvesting for crop irrigation, use of natural components that help in arsenic methylation, and biotechnological approaches may explore how to reduce arsenic uptake by food crops. This review will encompass the research advances and practical agronomic strategies on arsenic contamination in rice crop.

  15. In situ treatment of arsenic-contaminated groundwater by air sparging.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-04-01

    Arsenic contamination of groundwater is a major problem in some areas of the world, particularly in West Bengal (India) and Bangladesh where it is caused by reducing conditions in the aquifer. In situ treatment, if it can be proven as operationally feasible, has the potential to capture some advantages over other treatment methods by being fairly simple, not using chemicals, and not necessitating disposal of arsenic-rich wastes. In this study, the potential for in situ treatment by injection of compressed air directly into the aquifer (i.e. air sparging) is assessed. An experimental apparatus was constructed to simulate conditions of arsenic-rich groundwater under anaerobic conditions, and in situ treatment by air sparging was employed. Arsenic (up to 200 μg/L) was removed to a maximum of 79% (at a local point in the apparatus) using a solution with dissolved iron and arsenic only. A static "jar" test revealed arsenic removal by co-precipitation with iron at a molar ratio of approximately 2 (iron/arsenic). This is encouraging since groundwater with relatively high amounts of dissolved iron (as compared to arsenic) therefore has a large theoretical treatment capacity for arsenic. Iron oxidation was significantly retarded at pH values below neutral. In terms of operation, analysis of experimental results shows that periodic air sparging may be feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Chronic Arsenic Toxicity: Statistical Study of the Relationships Between Urinary Arsenic, Selenium and Antimony

    OpenAIRE

    Analía Boemo, BS; Irene María Lomniczi, PhD; Elsa Mónica Farfán Torres, PhD

    2012-01-01

    Background. The groundwater of Argentina’s Chaco plain presents arsenic levels above those suitable for human consumption. Studies suggest skin disorders among local populations caused by arsenic intake. The relationship between urinary arsenic and arsenic in drinking water is well known, but urinary arsenic alone is not enough for risk assessment due to modulating factors such as the intake of selenium and antimony. Objectives. Determining the relationship between urinary arsenic, seleniu...

  17. Transcriptional changes associated with reduced spontaneous liver tumor incidence in mice chronically exposed to high dose arsenic

    International Nuclear Information System (INIS)

    Nelson, Gail M.; Ahlborn, Gene J.; Allen, James W.; Ren, Hongzu; Corton, J. Christopher; Waalkes, Michael P.; Kitchin, Kirk T.; Diwan, Bhalchandra A.; Knapp, Geremy; Delker, Don A.

    2009-01-01

    Exposure of male C3H mice in utero (from gestational days 8-18) to 85 ppm sodium arsenite via the dams' drinking water has previously been shown to increase liver tumor incidence by 2 years of age. However, in our companion study (Ahlborn et al., 2009), continuous exposure to 85 ppm sodium arsenic (from gestational day 8 to postnatal day 365) did not result in increased tumor incidence, but rather in a significant reduction (0% tumor incidence). The purpose of the present study was to examine the gene expression responses that may lead to the apparent protective effect of continuous arsenic exposure. Genes in many functional categories including cellular growth and proliferation, gene expression, cell death, oxidative stress, protein ubiquitination, and mitochondrial dysfunction were altered by continuous arsenic treatment. Many of these genes are known to be involved in liver cancer. One such gene associated with rodent hepatocarcinogenesis, Scd1, encodes stearoyl-CoA desaturase and was down-regulated by continuous arsenic treatment. An overlap between the genes in our study affected by continuous arsenic exposure and those from the literature affected by long-term caloric restriction suggests that reduction in the spontaneous tumor incidence under both conditions may involve similar gene pathways such as fatty acid metabolism, apoptosis, and stress response.

  18. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    Science.gov (United States)

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  19. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China

    International Nuclear Information System (INIS)

    Lu Ying; Dong, Fei; Deacon, Claire; Chen Huojun; Raab, Andrea; Meharg, Andrew A.

    2010-01-01

    The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain < husk < straw < root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain. - Altering rice shoot phosphorus status is a promising route for breeding rice cultivars with reduced grain arsenic.

  20. Removal of arsenic from contaminated water using coagulation enhanced microfiltration

    International Nuclear Information System (INIS)

    Volchek, K.; Velicogna, D.; Dumouchel, A.; Wong, W.P.; Brown, C.E.

    2002-01-01

    Results of an innovative arsenic removal process were presented. The process is based on a combination of coagulation and microfiltration processes. Coagulation-Enhanced Microfiltration (CEMF) may eventually become a full-scale commercial technology. This study focused on the process with respect to groundwater treatment because of the importance of arsenic contamination in drinking water. Most experiments were bench-scale using tap water spiked with arsenic. Ferric chloride, which is commonly used in arsenic removal processes was also added. In addition, some tests were conducted on actual arsenic-contaminated water from the effluent treatment plant of a former mining site in Ontario. Results indicate a high arsenic removal efficiency in both spiked and actual water solutions. The microfiltration significantly reduced the level of arsenic in the treatment. This paper described the characteristics of membrane separation. It also presented information regarding chemically enhanced membrane filtration and coagulation-enhanced microfiltration. Bench-scale tests were conducted with both tubular membranes and with immersed capillary membranes. The effect of iron to arsenic ratios on the effectiveness of the system was also tested. It was recommended that future research should include a field study of the process on a pilot-scale to optimize process parameters and to accurately determine the cost of the process. 16 refs., 8 tabs., 9 figs

  1. Fracture resistance and histological findings of immature teeth treated with mineral trioxide aggregate

    DEFF Research Database (Denmark)

    Hatibovic-Kofman, S.; Raimundo, L.; Zheng, L.

    2008-01-01

    The objective of the present study was to test the hypothesis that the fracture strength of calcium hydroxide and mineral trioxide aggregate (MTA)-filled immature teeth decreased over time. Immature mandibular incisors from sheep were extracted and the pulps were extirpated using an apical approach...

  2. Approaches to increase arsenic awareness in Bangladesh: an evaluation of an arsenic education program.

    Science.gov (United States)

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H

    2013-06-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning knowledge of arsenic. Respondents were between 18 and 102 years of age, with an average age of 37 years; 99.9% were female. The knowledge of arsenic quiz scores for study participants were significantly higher at follow-up compared with baseline. The intervention was effective in increasing awareness of the safe uses of arsenic-contaminated water and dispelling the misconception that boiling water removes arsenic. At follow-up, nearly all respondents were able to correctly identify the meaning of a red (contaminated) and green (arsenic safe) well relative to arsenic (99%). The educational program also significantly increased the proportion of respondents who were able to correctly identify the health implications of arsenic exposure. However, the intervention was not effective in dispelling the misconceptions in the population that arsenicosis is contagious and that illnesses such as cholera, diarrhea, and vomiting could be caused by arsenic. Further research is needed to develop effective communication strategies to dispel these misconceptions. This study demonstrates that a household-level arsenic educational program can be used to significantly increase arsenic awareness in Bangladesh.

  3. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.

    Science.gov (United States)

    Mirecki, June E; Bennett, Michael W; López-Baláez, Marie C

    2013-01-01

    Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water-quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub-oxic to sulfate-reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe(2+) /H2 S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co-precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub-oxic conditions of the recharge phase, but iron sulfide (which co-precipitates arsenic) is stable during the sulfate-reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate-reducing aquifer. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  4. The movement of water, arsenic, and radium at a Chalk River waste management area

    International Nuclear Information System (INIS)

    Killey, R.W.D.; Myrand, D.

    1985-05-01

    Area F is a storage site at CRNL for 119 000 tonnes of soil contaminated with low levels of arsenic and radium-226. The site was closed in 1979, and a clayey silt cover was installed in an attempt to minimize infiltration of available precipitation. Results of studies in 1980 and 1983 are used to show that the low-permeability cover has been largely ineffective in reducing infiltration. Radium has remained immobile, but arsenic is being transported by infiltrating waters into unsaturated sands beneath the contaminated soil. Iron oxyhydroxide coatings on the sand grains are sorbing the transported arsenic, and have reduced dissolved arsenic concentrations in pore waters in the sands to natural background levels

  5. New Sorbents for Removing Arsenic From Water

    Science.gov (United States)

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  6. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Norton, Gareth J.; Adomako, Eureka E.; Deacon, Claire M.; Carey, Anne-Marie; Price, Adam H.; Meharg, Andrew A.

    2013-01-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  7. [Effect of the interaction of microorganisms and iron oxides on arsenic releasing into groundwater in Chinese Loess].

    Science.gov (United States)

    Xie, Yun-Yun; Chen, Tian-Hu; Zhou, Yue-Fei; Xie, Qiao-Qin

    2013-10-01

    A large part of groundwater in the Chinese Loess Plateau area is characterized by high arsenic concentration. Anaerobic bacteria have been considered to play key roles in promoting arsenic releasing from loess to groundwater. However, this hypothesis remains unconfirmed. Based on modeling experiments, this study investigated the speciation of arsenic in loess, and then determined the release rates and quantities of arsenic with the mediation of anaerobic bacteria. The results showed that arsenic contents in loess were between 23 mg.kg-1 and 30 mg.kg-1. No obvious arsenic content difference among loess samples was observed. The ratios for specific adsorbed, iron oxides co-precipitated and silicate co-precipitated arsenic were 37.76% , 36. 15% and 25. 69% , respectively. Indigenous microorganisms, dissimilatory iron reducing bacteria (DIRB) and sulfate reducing bacteria (SRB) could all promote the release of arsenic from loess. Organic matters highly affected the release rates. More than 100 mg.L-1 sodium lactate was required for all bacterial experiments to facilitate obvious arsenic release. Considering the redox condition in loess, the contribution of SRB to arsenic release in loess area was less feasible than that of DIRB and indigenous microorganisms.

  8. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  9. Field investigation of arsenic in ceramic pot filter-treated drinking water.

    Science.gov (United States)

    Archer, A R; Elmore, A C; Bell, E; Rozycki, C

    2011-01-01

    Ceramic pot filters (CPFs) is one of several household water treatment technologies that is used to treat drinking water in developing areas. The filters have the advantage of being able to be manufactured using primarily locally available materials and local labor. However, naturally-occurring arsenic present in the clay used to make the filters has the potential to contaminate the water in excess of the World Health Organization drinking water standard of 0.01 mg/L. A manufacturing facility in Guatemala routinely rinses filters to reduce arsenic concentrations prior to distribution to consumers. A systemic study was performed to evaluate the change in arsenic concentrations with increasing volumes of rinse water. Arsenic field kit results were compared to standard method laboratory results, and dissolved versus suspended arsenic concentrations in CPF-treated water were evaluated. The results of the study suggest that rinsing is an effective means of mitigating arsenic leached from the filters, and that even in the absence of a formal rinsing program, routine consumer use may result in the rapid decline of arsenic concentrations. More importantly, the results indicate that filter manufacturers should give strong consideration to implementing an arsenic testing program.

  10. Design of a rural water provision system to decrease arsenic exposure in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Johanna [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2009-01-09

    Researchers at the Lawrence Berkeley National Laboratory have invented ARUBA (Arsenic Removal Using Bottom Ash) a material that effectively and affordably removes high concentrations of arsenic from contaminated groundwater. The technology is cost-effective because the substrate-bottom ash from coal fired power plants-is a waste material readily available in South Asia. During fieldwork in four sub-districts of Bangladesh, ARUBA reduced groundwater arsenic concentrations as high as 680 ppb to below the Bangladesh standard of 50 ppb. Key results from three trips in Bangladesh and one trip to Cambodia include (1) ARUBA removes more than half of the arsenic from contaminated water within the first five minutes of contact, and continues removing arsenic for 2-3 days; (2) ARUBA's arsenic removal efficiency can be improved through fractionated dosing (adding a given amount of ARUBA in fractions versus all at once); (3) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic concentrations ten times lower than treating water directly out of the well; and (4) the amount of arsenic removed per gram of ARUBA is linearly related to the initial arsenic concentration of the water. Through analysis of existing studies, observations, and informal interviews in Bangladesh, eight design strategies have been developed and used in the design of a low-cost, community-scale water treatment system that uses ARUBA to remove arsenic from drinking water. We have constructed, tested, and analyzed a scale version of the system. Experiments have shown that the system is capable of reducing high levels of arsenic (nearly 600 ppb) to below 50 ppb, while remaining affordable to people living on less than $2 per day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.

  11. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.

    Science.gov (United States)

    Qin, Jie; Lehr, Corinne R; Yuan, Chungang; Le, X Chris; McDermott, Timothy R; Rosen, Barry P

    2009-03-31

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a T(opt) of 60-70 degrees C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases.

  12. Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area.

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Lin, Po-Cheng; Hwang, Yaw-Huei; Liu, Chen-Wuing; Liao, Chung-Min; Chang, Fi-John; Yu, Chan-Wei

    2011-12-15

    High levels of arsenic in groundwater and drinking water represent a major health problem worldwide. Drinking arsenic-contaminated groundwater is a likely cause of blackfoot disease (BFD) in Taiwan, but mechanisms controlling the mobilization of arsenic present at elevated concentrations within aquifers remain understudied. Microcosm experiments using sediments from arsenic contaminated shallow alluvial aquifers in the blackfoot disease endemic area showed simultaneous microbial reduction of Fe(III) and As(V). Significant soluble Fe(II) (0.23±0.03 mM) in pore waters and mobilization of As(III) (206.7±21.2 nM) occurred during the first week. Aqueous Fe(II) and As(III) respectively reached concentrations of 0.27±0.01 mM and 571.4±63.3 nM after 8 weeks. We also showed that the addition of acetate caused a further increase in aqueous Fe(II) but the dissolved arsenic did not increase. We further isolated an As(V)-reducing bacterium native to aquifer sediments which showed that the direct enzymatic reduction of As(V) to the potentially more-soluble As(III) in pore water is possible in this aquifer. Our results provide evidence that microorganisms can mediate the release of sedimentary arsenic to groundwater in this region and the capacity for arsenic release was not limited by the availability of electron donors in the sediments. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Reverse Osmosis Filter Use and High Arsenic Levels in Private Well Water

    Science.gov (United States)

    George, Christine M.; Smith, Allan H.; Kalman, David A.; Steinmaus, Craig M.

    2013-01-01

    Inorganic arsenic causes cancer, and millions of people worldwide are exposed to arsenic-contaminated water. Regulatory standards for arsenic levels in drinking water generally do not apply to private domestic wells. Reverse osmosis (RO) units commonly are used by well owners to reduce arsenic concentrations, but may not always be effective. In a survey of 102 homes in Nevada, 19 used RO devices. Pre- and post-RO filtration arsenic concentrations averaged 443 μg/l and 87 μg/l, respectively. The average absolute and percent reductions in arsenic concentrations after filtration were 356 μg/l and 79%, respectively. Postfiltration concentrations were higher than 10 μg/l in 10 homes and higher than 100 μg/l in 4 homes. These findings provide evidence that RO filters do not guarantee safe drinking water and, despite regulatory standards, some people continue to be exposed to very high arsenic concentrations. PMID:17867571

  14. Automated atomic absorption spectrometric determination of total arsenic in water and streambed materials

    Science.gov (United States)

    Fishman, M.

    1977-01-01

    An automated method to determine both inorganic and organic forms of arsenic In water, water-suspended mixtures, and streambed materials Is described. Organic arsenic-containing compounds are decomposed by either ultraviolet radiation or by suHurlc acid-potassium persulfate digestion. The arsenic liberated, with Inorganic arsenic originally present, is reduced to arsine with sodium borohydrlde. The arable Is stripped from the solution with the aid of nitrogen and Is then decomposed In a tube furnace heated to 800 ??C which Is placed in the optical path of an atomic absorption spectrometer. Thirty samples per hour can be analyzed to levels of 1 ??g arsenic per liter.

  15. Environmental Source of Arsenic Exposure

    OpenAIRE

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a ...

  16. Potential application of SERS for arsenic speciation in biological matrices.

    Science.gov (United States)

    Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong

    2017-08-01

    Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.

  17. Arsenic, Cadmium and Lead Exposure and Immunologic Function in Workers in Taiwan.

    Science.gov (United States)

    Wu, Chin-Ching; Sung, Fung-Chang; Chen, Yi-Chun

    2018-04-05

    There has been growing concern over the impact of environmental exposure to heavy metals and other trace elements on immunologic functions. This study investigated men's arsenic (As), cadmium (Cd) and lead (Pb) contents in hair samples and their associations with immunological indicators, including white blood cell (WBC), lymphocyte and monocyte counts, and the immunoglobulin (Ig) levels including IgA, IgG and IgE. We recruited 133 men from one antimony trioxide manufacturing plant, two glass manufacturing plants and two plastics manufacturing plants. The mean concentration of Cd [0.16 (SD = 0.03) ug/g] was lower than means of As [0.86 (SD = 0.16) ug/g] and Pb [0.91 (SD = 0.22) ug/g] in hair samples, exerting no relationship with immunologic functions for Cd. The Spearman's correlation analysis showed a positive relationship between monocyte counts and hair Pb levels, but negative relations between As and IgG and between As and IgE. In conclusion, findings from these industry workers suggest that As levels in hair may have a stronger relation with immunologic function than Cd and PB have. Further research is needed to confirm the negative relationship.

  18. Arsenic, Cadmium and Lead Exposure and Immunologic Function in Workers in Taiwan

    Directory of Open Access Journals (Sweden)

    Chin-Ching Wu

    2018-04-01

    Full Text Available There has been growing concern over the impact of environmental exposure to heavy metals and other trace elements on immunologic functions. This study investigated men’s arsenic (As, cadmium (Cd and lead (Pb contents in hair samples and their associations with immunological indicators, including white blood cell (WBC, lymphocyte and monocyte counts, and the immunoglobulin (Ig levels including IgA, IgG and IgE. We recruited 133 men from one antimony trioxide manufacturing plant, two glass manufacturing plants and two plastics manufacturing plants. The mean concentration of Cd [0.16 (SD = 0.03 ug/g] was lower than means of As [0.86 (SD = 0.16 ug/g] and Pb [0.91 (SD = 0.22 ug/g] in hair samples, exerting no relationship with immunologic functions for Cd. The Spearman’s correlation analysis showed a positive relationship between monocyte counts and hair Pb levels, but negative relations between As and IgG and between As and IgE. In conclusion, findings from these industry workers suggest that As levels in hair may have a stronger relation with immunologic function than Cd and PB have. Further research is needed to confirm the negative relationship.

  19. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  20. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    International Nuclear Information System (INIS)

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-01-01

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  1. Correlation of arsenic exposure through drinking groundwater and urinary arsenic excretion among adults in Pakistan.

    Science.gov (United States)

    Ahmed, Mubashir; Fatmi, Zafar; Ali, Arif

    2014-01-01

    Long-term exposure to arsenic has been associated with manifestation of skin lesions (melanosis/keratosis) and increased risk of internal cancers (lung/bladder). The objective of the study described here was to determine the relationship between exposure of arsenic through drinking groundwater and urinary arsenic excretion among adults > or =15 years of age living in Khairpur district, Pakistan. Total arsenic was determined in drinking groundwater and in spot urine samples of 465 randomly selected individuals through hydride generation-atomic absorption spectrometry. Spearman's rank correlation coefficient was calculated between arsenic in drinking groundwater and arsenic excreted in urine. The median arsenic concentration in drinking water was 2.1 microg/L (range: 0.1-350), and in urine was 28.5 microg/L (range: 0.1-848). Positive correlation was found between total arsenic in drinking water and in urine (r = .52, p arsenic may be used as a biomarker of arsenic exposure through drinking water.

  2. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  3. Effectiveness of household reverse-osmosis systems in a Western U.S. region with high arsenic in groundwater

    International Nuclear Information System (INIS)

    Walker, Mark; Seiler, Ralph L.; Meinert, Michael

    2008-01-01

    It is well known to the public in Lahontan Valley in rural Nevada, USA, that local aquifers produce water with varied, but sometimes very high concentrations of arsenic (> 4 ppm). As a result, many residents of the area have installed household reverse-osmosis (RO) systems to produce drinking water. We examined performance of RO systems and factors associated with arsenic removal efficiency in 59 households in Lahontan Valley. The sampling results indicated that RO systems removed an average of 80.2% of arsenic from well water. In 18 of the 59 households, arsenic concentrations exceeded 10 ppb in treated water, with a maximum in treated water of 180 ppb. In 3 of the 59 households, RO treatment had little effect on specific conductance, indicating that the RO system was not working properly. Two main factors lead to arsenic levels in treated water exceeding drinking-water standards in the study area. First, arsenic concentrations were high enough in some Lahontan Valley wells that arsenic levels exceeded 10 ppb even though RO treatment removed more than 95% of the arsenic. Second, trivalent As +3 was the dominant arsenic species in approximately 15% of the wells, which significantly reduced treatment efficiency. Measurements of specific conductance indicated that efficiency in reducing arsenic levels did not always correlate with reductions in total dissolved solids. As a consequence, improvements in taste of the water or simple measurements of specific conductance made by technicians to test RO systems can mislead the public into assuming the water meets safety standards. Actual measurements of treated water are necessary to assure that household RO systems are reducing arsenic concentrations to safe levels, particularly in areas where groundwater has high arsenic concentrations or where As +3 is the dominant species

  4. Arsenic activation analysis of freshwater fish through the precipitation of elemental arsenic

    International Nuclear Information System (INIS)

    Comparetto, G.M.; Jester, W.A.; Skinner, W.F.

    1982-01-01

    The activation analysis of trace elements of arsenic in biological samples is complicated by the interference of a 82 Br photo peak (554KeV) and the compton continuum with the major 76 As photo peak of 559 KeV. In addition, the half-lives of 24 Na, 82 Br, and 76 As are too similar to be resolved by varying irradiation and/or decay times. Thus post irradiation chemical separation of arsenic is often required. A study of existing radiochemistry techniques reported in the literature found that existing methods were complex x and/or lengthy. In this work, a more rapid and less extensive method was required to analyze a large number of fish samples exposed to fly ash sluice water from coalburning power plant. A method has been developed which involves the dissolution of irradiated homogenized fish samples, the addition of an arsenic carrier, and the reduction of arsenic to the +3 state. Arsenic is then precipitated as elemental arsenic. An important factor in this work was the discovery that this procedure produced arsenic yields of 81+-3% for both the fish samples and the NBC Orchard leaves standard employed in this analysis. Thus the determination of absolute arsenic yields is not required. This method has been used to analyze 32 of the fish samples the average arsenic content of which was found to vary between 0.08 and 4.8 ppm. (author)

  5. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  6. The Association of Arsenic With Redox Conditions, Depth, and Ground-Water Age in the Glacial Aquifer System of the Northern United States

    Science.gov (United States)

    Thomas, Mary Ann

    2007-01-01

    More than 800 wells in the glacial aquifer system of the Northern United States were sampled for arsenic as part of U.S. Geological Survey National Water-Quality Assessment (NAWQA) studies during 1991-2003. Elevated arsenic concentrations (greater than or equal to 10 micrograms per liter) were detected in 9 percent of samples. Elevated arsenic concentrations were associated with strongly reducing conditions. Of the samples classified as iron reducing or sulfate reducing, arsenic concentrations were elevated in 19 percent. Of the methanogenic samples, arsenic concentrations were elevated in 45 percent. In contrast, concentrations of arsenic were elevated in only 1 percent of oxic samples. Arsenic concentrations were also related to ground-water age. Elevated arsenic concentrations were detected in 34 percent of old waters (recharged before 1953) as compared to 4 percent of young waters (recharged since 1953). For samples classified as both old and methanogenic, elevated arsenic concentrations were detected in 62 percent of samples, as compared to 1 percent for samples classified as young and oxic. Arsenic concentrations were also correlated with well depth and concentrations of several chemical constituents, including (1) constituents linked to redox processes and (2) anions or oxyanions that sorb to iron oxides. Observations from the glacial aquifer system are consistent with the idea that the predominant source of arsenic is iron oxides and the predominant mechanism for releasing arsenic to the ground water is reductive desorption or reductive dissolution. Arsenic is also released from iron oxides under oxic conditions, but on a more limited basis and at lower concentrations. Logistic regression was used to investigate the relative significance of redox, ground-water age, depth, and other water-quality constituents as indicators of elevated arsenic concentrations in the glacial aquifer system. The single variable that explained the greatest amount of variation in

  7. Removal of arsenic from potable water by adsorptive media treatment techniques

    International Nuclear Information System (INIS)

    Yousuf, S.; Khan, S.; Aslam, M.T.; Khan, A.R.

    2012-01-01

    Summary: This study was conducted to investigate the arsenic removal efficiency of different adsorptive media from water. Different naturally occurring materials such as bauxite, plastic clay, plaster of Paris, lime, alum, and alumina etc. were used for the development of media to remove arsenic As/sup +5/ present in the artificially contaminated water. Different ratios of the selected materials were combined and ignited at 9000 C to enhance its arsenic removing efficiency. It was found that the media bauxite, plastic clay, lime (1:1:1) has a maximum removal (99%) of As +5 species from aqueous media and can be used on- site to reduce the arsenic contamination of potable water. Furthermore, the materials used in this experiment were cheaply and abundantly available within the country. The method is very simple and economically viable, for removal of arsenic from potable water. (author)

  8. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.

    Science.gov (United States)

    Wei, Chao-Yang; Chen, Tong-Bin

    2006-05-01

    In an area near an arsenic mine in Hunan Province of south China, soils were often found with elevated arsenic levels. A field survey was conducted to determine arsenic accumulation in 8 Cretan brake ferns (Pteris cretica) and 16 Chinese brake ferns (Pteris vittata) growing on these soils. Three factors were evaluated: arsenic concentration in above ground parts (fronds), arsenic bioaccumulation factor (BF; ratio of arsenic in fronds to soil) and arsenic translocation factor (TF; ratio of arsenic in fronds to roots). Arsenic concentrations in the fronds of Chinese brake fern were 3-704 mg kg-1, the BFs were 0.06-7.43 and the TFs were 0.17-3.98, while those in Cretan brake fern were 149-694 mg kg-1, 1.34-6.62 and 1.00-2.61, respectively. Our survey showed that both ferns were capable of arsenic accumulation under field conditions. With most of the arsenic being accumulated in the fronds, these ferns have potential for use in phytoremediation of arsenic contaminated soils.

  9. An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test

    International Nuclear Information System (INIS)

    Dermatas, Dimitris; Moon, Deok Hyun; Menounou, Nektaria; Meng, Xiaoguang; Hires, Richard

    2004-01-01

    Quicklime and quicklime-fly ash-based stabilization/solidification (S/S) effectiveness was evaluated by performing semi-dynamic leaching tests (American Nuclear Society 16.1). Artificial soil samples, contaminated with arsenic trioxide (As 2 O 3 ) as well as field soil samples contaminated with arsenic (As) were tested. The artificial soils were prepared by mixing amounts of kaolinite or montmorillonite with fine quartz sand. The S/S effectiveness was evaluated by measuring effective diffusion coefficients (D e ) and leachability indices (LX). Treatment was most effective in kaolinite-based artificial soils treated with quicklime and in quicklime-fly ash treated field soils. The experimental results indicate that D e values were lowered as a result of S/S treatment. Upon treatment LX values were higher than 9, suggesting that S/S treated soils are acceptable for 'controlled utilization'. Based on a model developed by de Groot and van der Sloot [G.J. de Groot, H.A. van der Sloot, in: T.M. Gilliam, C.C. Wiles (Eds.), Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, vol. 2, ASTM STP 1123, ASTM, PA, 1992, p. 149], the leaching mechanism for all of the treated soils was found to be controlled by diffusion. The effect of soluble silica (Si) on As leachability was also evaluated. When soluble Si concentration was less than 1 ppm, As leachability was the lowest. The controlling mechanism of As immobilization whether sorption, precipitation, or inclusion was also evaluated. It was determined that precipitation was the dominant mechanism

  10. Phytoremediation of arsenic contaminated soil by Pteris vittata L. I. Influence of phosphatic fertilizers and repeated harvests.

    Science.gov (United States)

    Mandal, Asit; Purakayastha, T J; Patra, A K; Sanyal, S K

    2012-12-01

    A greenhouse experiment was conducted to evaluate the effectiveness of diammonium phosphate (DAP), single superphosphate (SSP) and two growing cycles on arsenic removal by Chinese Brake Fern (Pteris vittata L.) from an arsenic contaminated Typic Haplustept of the Indian state of West Bengal. After harvest of Pteris vittata the total, Olsen's extractable and other five soil arsenic fractions were determined. The total biomass yield of P. vittata ranged from 10.7 to 16.2 g pot(-1) in first growing cycle and from 7.53 to 11.57 g pot(-1) in second growing cycle. The frond arsenic concentrations ranged from 990 to 1374 mg kg(-1) in first growing cycle and from 875 to 1371 mg kg(-1) in second growing cycle. DAP was most efficient in enhancing biomass yield, frond and root arsenic concentrations and total arsenic removal from soil. After first growing cycle, P. vittata reduced soil arsenic by 10 to 20%, while after two growing cycles Pteris reduced it by 18 to 34%. Among the different arsenic fractions, Fe-bound arsenic dominated over other fractions. Two successive harvests with DAP as the phosphate fertilizer emerged as the promising management strategy for amelioration of arsenic contaminated soil of West Bengal through phyotoextraction by P. vittata.

  11. Arsenic is associated with reduced effect of folic acid in myelomeningocele prevention: a case control study in Bangladesh

    Science.gov (United States)

    Background: Arsenic induces neural tube defects in several animal models, but its potential to cause neural tube defects in humans is unknown. Our objective was to investigate the associations between maternal arsenic exposure, periconceptional folic acid supplementation, and risk of posterior neura...

  12. T05 DETERMINATION OF REDUCED ARSENIC-THIO SPECIES IN WATERS BY ION CHROMATOGRAPHY-INDUCTIVELY-COUPLED PLASMA-MASS SSPECTROMETRY (IC-ICP-MS).

    Science.gov (United States)

    Elevated arsenic concentrations in ground water are a significant concern for human health, because they may lead to increased arsenic exposure via drinking water. As the inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) are known carcinogens, it is desirable to r...

  13. Arsenic Methyltransferase

    Science.gov (United States)

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  14. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    Directory of Open Access Journals (Sweden)

    Fabrizio Bianchi

    2013-04-01

    Full Text Available The arsenic (As exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects.

  15. Mitigating arsenic contamination in rice plants with an aquatic fern, Marsilea minuta.

    Science.gov (United States)

    Hassi, Ummehani; Hossain, Md Tawhid; Huq, S M Imamul

    2017-10-10

    Dangers of arsenic contamination are well known in human civilization. The threat increases when arsenic is accumulated in food and livestock through irrigated crops or animal food. Hence, it is important to mitigate the effects of arsenic as much as possible. This paper discusses a process for reducing the level of arsenic in different parts of rice plants with an aquatic fern, Marsilea minuta L. A pot experiment was done to study the possibility of using Marsilea minuta as a phytoremediator of arsenic. Rice and Marsilea minuta were allowed to grow together in soils. As a control, Marsilea minuta was also cultured alone in the presence and absence of arsenic (applied at 1 mg/L as irrigation water). We did not find any significant change in the growth of rice due to the association of Marsilea minuta, though it showed a reduction of approximately 58.64% arsenic accumulation in the roots of rice grown with the association of fern compared to that grown without fern. We measured a bioaccumulation factor (BF) of > 5.34, indicating that Marsilea minuta could be a good phytoremediator of arsenic in rice fields.

  16. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.

    Science.gov (United States)

    Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya

    2016-12-01

    Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols. Copyright

  17. Optimization of arsenic removal water treatment system through characterization of terminal electron accepting processes.

    Science.gov (United States)

    Upadhyaya, Giridhar; Clancy, Tara M; Brown, Jess; Hayes, Kim F; Raskin, Lutgarde

    2012-11-06

    Terminal electron accepting process (TEAP) zones developed when a simulated groundwater containing dissolved oxygen (DO), nitrate, arsenate, and sulfate was treated in a fixed-bed bioreactor system consisting of two reactors (reactors A and B) in series. When the reactors were operated with an empty bed contact time (EBCT) of 20 min each, DO-, nitrate-, sulfate-, and arsenate-reducing TEAP zones were located within reactor A. As a consequence, sulfate reduction and subsequent arsenic removal through arsenic sulfide precipitation and/or arsenic adsorption on or coprecipitation with iron sulfides occurred in reactor A. This resulted in the removal of arsenic-laden solids during backwashing of reactor A. To minimize this by shifting the sulfate-reducing zone to reactor B, the EBCT of reactor A was sequentially lowered from 20 min to 15, 10, and 7 min. While 50 mg/L (0.81 mM) nitrate was completely removed at all EBCTs, more than 90% of 300 μg/L (4 μM) arsenic was removed with the total EBCT as low as 27 min. Sulfate- and arsenate-reducing bacteria were identified throughout the system through clone libraries and quantitative PCR targeting the 16S rRNA, dissimilatory (bi)sulfite reductase (dsrAB), and dissimilatory arsenate reductase (arrA) genes. Results of reverse transcriptase (RT) qPCR of partial dsrAB (i.e., dsrA) and arrA transcripts corresponded with system performance. The RT qPCR results indicated colocation of sulfate- and arsenate-reducing activities, in the presence of iron(II), suggesting their importance in arsenic removal.

  18. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    Science.gov (United States)

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  19. Determination of lead and arsenic in tobacco and cigarettes: an important issue of public health.

    Science.gov (United States)

    Lazarević, Konstansa; Nikolić, Dejan; Stosić, Ljiljana; Milutinović, Suzana; Videnović, Jelena; Bogdanović, Dragan

    2012-03-01

    Contents of lead and arsenic were determined in 617 tobacco samples and 80 samples of cigarettes. The mean content of lead in tobacco was 0.93 microg/g (range 0.02-8.56 microg/g) and arsenic was 0.15 microg/g (range arsenic was 0.11 microg/g (range arsenic content among samples of tobacco and samples of cigarettes. Positive correlation between lead and arsenic contents in tobacco was found (r = 0.22; p arsenic in tobacco and cigarettes in other studies and discuss the influence of smoking to lead and arsenic exposure and health. In conclusion, at the same time with the implementation of tobacco use prevention programmes it is advisable to implement continuous monitoring of lead and arsenic in tobacco and cigarettes in order to reduce the health risk due to exposure of these metals.

  20. Reduction in bioavailability of arsenic in contaminated irrigated soil using zinc and organic manure

    International Nuclear Information System (INIS)

    Batool, S.Q.

    2012-01-01

    The experiments were conducted to reduce the bioavailability of arsenic with application of organic and inorganic materials from contaminated soils irrigated with arsenic contaminated water. The results showed that the amount of extractable arsenic increased with submergence and decreased with application of organic material. However, amount of such decrease altered with inorganic material i.e. zinc and decrease was greater with As5Zn10 (0.17 to 0.0 mg/kg) where zinc was applied at the rate of 10 mg/kg. Among the different organic materials, arsenic content in soil remarkably decreased with application of farmyard manure. The decrease in arsenic content was less than upper toxic limit of arsenic in soil i.e.10mg/kg for paddy soils. Other manures also showed decrease in arsenic concentration but with desorption after half interval of treatment. Best remediating agents used for arsenic retention was zinc sulphate> organic compost >farmyard manure. (author)

  1. Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater.

    Science.gov (United States)

    Li, Yuan; Guo, Huaming; Hao, Chunbo

    2014-12-01

    Indigenous microbes play crucial roles in arsenic mobilization in high arsenic groundwater systems. Databases concerning the presence and the activity of microbial communities are very useful in evaluating the potential of microbe-mediated arsenic mobilization in shallow aquifers hosting high arsenic groundwater. This study characterized microbial communities in groundwaters at different depths with different arsenic concentrations by DGGE and one sediment by 16S rRNA gene clone library, and evaluated arsenic mobilization in microcosm batches with the presence of indigenous bacteria. DGGE fingerprints revealed that the community structure changed substantially with depth at the same location. It indicated that a relatively higher bacterial diversity was present in the groundwater sample with lower arsenic concentration. Sequence analysis of 16S rRNA gene demonstrated that the sediment bacteria mainly belonged to Pseudomonas, Dietzia and Rhodococcus, which have been widely found in aquifer systems. Additionally, NO3(-)-reducing bacteria Pseudomonas sp. was the largest group, followed by Fe(III)-reducing, SO4(2-)-reducing and As(V)-reducing bacteria in the sediment sample. These anaerobic bacteria used the specific oxyanions as electron acceptor and played a significant role in reductive dissolution of Fe oxide minerals, reduction of As(V), and release of arsenic from sediments into groundwater. Microcosm experiments, using intact aquifer sediments, showed that arsenic release and Fe(III) reduction were microbially mediated in the presence of indigenous bacteria. High arsenic concentration was also observed in the batch without amendment of organic carbon, demonstrating that the natural organic matter in sediments was the potential electron donor for microbially mediated arsenic release from these aquifer sediments.

  2. Microbial community of high arsenic groundwater in agricultural irrigation area of Hetao Plain, Inner Mongolia

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-12-01

    Full Text Available Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina Miseq sequencing approach targeting the V4 region of the 16S rRNA gene. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with NH4+ and TOC. Sequencing results revealed that a total of 329-2823 OTUs were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing As-rich aquifers of Hetao Plain and other high As groundwater aquifers including Bangladesh, West Bengal and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal coordinate analysis and co-inertia analysis. Other geochemical

  3. Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure

    International Nuclear Information System (INIS)

    Pu, Y.-S.; Yang, S.-M.; Huang, Y.-K.; Chung, C.-J.; Huang, Steven K.; Chiu, Allen Wen-Hsiang; Yang, M.-H.; Chen, C.-J.; Hsueh, Y.-M.

    2007-01-01

    Arsenic exposure is associated with an increased risk of urothelial carcinoma (UC). To explore the association between individual risk and urinary arsenic profile in subjects without evident exposure, 177 UC cases and 313 age-matched controls were recruited between September 2002 and May 2004 for a case-control study. Urinary arsenic species including the following three categories, inorganic arsenic (As III + As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ), were determined with high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Arsenic methylation profile was assessed by percentages of various arsenic species in the sum of the three categories measured. The primary methylation index (PMI) was defined as the ratio between MMA V and inorganic arsenic. Secondary methylation index (SMI) was determined as the ratio between DMA V and MMA V . Smoking is associated with a significant risk of UC in a dose-dependent manner. After multivariate adjustment, UC cases had a significantly higher sum of all the urinary species measured, higher percent MMA V , lower percent DMA V , higher PMI and lower SMI values compared with controls. Smoking interacts with the urinary arsenic profile in modifying the UC risk. Differential carcinogenic effects of the urinary arsenic profile, however, were seen more prominently in non-smokers than in smokers, suggesting that smoking is not the only major environmental source of arsenic contamination since the UC risk differs in non-smokers. Subjects who have an unfavorable urinary arsenic profile have an increased UC risk even at low exposure levels

  4. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine

    International Nuclear Information System (INIS)

    Drewniak, Lukasz; Maryan, Natalia; Lewandowski, Wiktor; Kaczanowski, Szymon; Sklodowska, Aleksandra

    2012-01-01

    The ancient Zloty Stok (SW Poland) gold mine is such an environment, where different microbial communities, able to utilize inorganic arsenic species As(III) and As(V), are found. The purpose of the present study was to (i) estimate prokaryotic diversity in the microbial mats in bottom sediments of this gold mine, (ii) identify microorganisms that can metabolize arsenic, and (iii) estimate their potential role in the arsenic geochemistry of the mine and in the environment. The oxidation/reduction experiments showed that the microbial mat community may significantly contribute to arsenic contamination in groundwater. The presence of both arsenite oxidizing and dissimilatory arsenate reducing bacteria in the mat was confirmed by the detection of arsenite oxidase and dissimilatory arsenate reductase genes, respectively. This work also demonstrated that microorganisms utilizing other compounds that naturally co-occur with arsenic are present within the microbial mat community and may contribute to the arsenic geochemistry in the environment. - Highlights: ► The microbial mats from this ancient gold mine are highly diverse community. ► As(III) oxidizing and As(V) reducing bacteria are present in the mats. ► As redox transformations are linked to the metabolism of microbial mats bacteria. ► Microbial mats play a crucial role in the As biogeochemical cycle within the mine. - The microbial mats from this ancient gold mine can mediate oxidation/reduction reaction of arsenic and in this way may significantly contribute to arsenic contamination in groundwater.

  5. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic.

    Science.gov (United States)

    Molin, Marianne; Ulven, Stine Marie; Meltzer, Helle Margrete; Alexander, Jan

    2015-01-01

    Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Pathways for arsenic from sediments to groundwater to streams: Biogeochemical processes in the Inner Coastal Plain, New Jersey, USA

    Science.gov (United States)

    Barringer, Julia L.; Mumford, Adam; Young, Lily Y.; Reilly, Pamela A.; Bonin, Jennifer L.; Rosman, Robert

    2010-01-01

    The Cretaceous and Tertiary sediments that underlie the Inner Coastal Plain of New Jersey contain the arsenic-rich mineral glauconite. Streambed sediments in two Inner Coastal Plain streams (Crosswicks and Raccoon Creeks) that traverse these glauconitic deposits are enriched in arsenic (15–25 mg/kg), and groundwater discharging to the streams contains elevated levels of arsenic (>80 μg/L at a site on Crosswicks Creek) with arsenite generally the dominant species. Low dissolved oxygen, low or undetectable levels of nitrate and sulfate, detectable sulfide concentrations, and high concentrations of iron and dissolved organic carbon (DOC) in the groundwater indicate that reducing environments are present beneath the streambeds and that microbial activity, fueled by the DOC, is involved in releasing arsenic and iron from the geologic materials. In groundwater with the highest arsenic concentrations at Crosswicks Creek, arsenic respiratory reductase gene (arrA) indicated the presence of arsenic-reducing microbes. From extracted DNA, 16s rRNA gene sequences indicate the microbial community may include arsenic-reducing bacteria that have not yet been described. Once in the stream, iron is oxidized and precipitates as hydroxide coatings on the sediments. Arsenite also is oxidized and co-precipitates with or is sorbed to the iron hydroxides. Consequently, dissolved arsenic concentrations are lower in streamwater than in the groundwater, but the arsenic contributed by groundwater becomes part of the arsenic load in the stream when sediments are suspended during high flow. A strong positive relation between concentrations of arsenic and DOC in the groundwater samples indicates that any process—natural or anthropogenic—that increases the organic carbon concentration in the groundwater could stimulate microbial activity and thus increase the amount of arsenic that is released from the geologic materials.

  7. Lessons Learned from Arsenic Mitigation among Private Well Households

    Science.gov (United States)

    2018-01-01

    Purpose of Review Many thousands of research papers have been published on the occurrence, health effects, and mitigation of arsenic in drinking water sourced from groundwater around the world. Here, an attempt is made to summarize this large body of knowledge into a small number of lessons. Recent Findings This is an opinion paper reflecting on why we are far from the goal of eliminating this silent and widespread poison to protect the health of many millions. The lessons are drawn from research in countries representing a range of economic development and cultural contexts. The replacement of household wells with centralized water supplies has reduced population level exposure to moderate (50–100 μg/L) and high (>100 μg/L) levels of arsenic in drinking water in some countries as they become wealthier. However, there remains a very large rural population in all countries where the exposure to low levels (10–50 μg/L) of arsenic continues due to its dispersed occurrence in the environment and frequent reliance on private well. A set of natural (geological and biological), socioeconomic, and behavioral barriers to progress are summarized as lessons. They range from challenges in identifying the exposed households due to spatially heterogeneous arsenic distribution in groundwater, difficulties in quantifying the exposure let alone reducing the exposure, failures in maintaining compliance to arsenic drinking water standards, to misplaced risk perceptions and environmental justice issues. Summary Environmental health professionals have an ethical obligationtohelpAsmitigationamongprivatewellwaterhouse-holds, along with physicians, hydrogeologists, water treatment specialists, community organizations, and government. PMID:28741248

  8. Arsenic release during managed aquifer recharge (MAR)

    Science.gov (United States)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  9. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    Science.gov (United States)

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  10. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic

    International Nuclear Information System (INIS)

    Liu Xiaojuan; Zhao Quanli; Sun Guoxin; Williams, Paul; Lu Xiujun; Cai Jingzhu; Liu Wenju

    2013-01-01

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic. - Highlights: ► Arsenic speciation was extracted using 1% HNO 3 in microwave. ► Inorganic arsenic was the predominant species in all of CHMs samples. ► The highest concentration of inorganic arsenic was found in the Chrysanthemum. - Inorganic arsenic was the predominant species in all of CHMs samples.

  11. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  12. Arsenic pilot plant operation and results:Weatherford, Oklahoma.

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Malynda Jo; Arora, H. (Narasimhan Consulting Services Inc., Phoenix, Arizona); Karori, Saqib (Narasimhan Consulting Services Inc., Phoenix, Arizona); Pathan, Sakib (Narasimhan Consulting Services Inc., Phoenix, Arizona)

    2007-05-01

    Narasimhan Consulting Services, Inc. (NCS), under a contract with the Sandia National Laboratories (SNL), designed and operated pilot scale evaluations of the adsorption and coagulation/filtration treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The pilot evaluation was conducted at Well 30 of the City of Weatherford, OK, which supplies drinking water to a population of more than 10,400. Well water contained arsenic in the range of 16 to 29 ppb during the study. Four commercially available adsorption media were evaluated side by side for a period of three months. Both adsorption and coagulation/filtration effectively reduced arsenic from Well No.30. A preliminary economic analysis indicated that adsorption using an iron oxide media was more cost effective than the coagulation/ filtration technology.

  13. Seasonal arsenic accumulation in stream sediments at a groundwater discharge zone.

    Science.gov (United States)

    MacKay, Allison A; Gan, Ping; Yu, Ran; Smets, Barth F

    2014-01-21

    Seasonal changes in arsenic and iron accumulation rates were examined in the sediments of a brook that receives groundwater discharges of arsenic and reduced iron. Clean glass bead columns were deployed in sediments for known periods over the annual hydrologic cycle to monitor changes in arsenic and iron concentrations in bead coatings. The highest accumulation rates occurred during the dry summer period (July-October) when groundwater discharges were likely greatest at the sample locations. The intermediate flow period (October-March), with higher surface water levels, was associated with losses of arsenic and iron from bead column coatings at depths below 2-6 cm. Batch incubations indicated iron releases from solids to be induced by biological reduction of iron (oxy)hydroxide solids. Congruent arsenic releases during incubation were limited by the high arsenic sorption capacity (0.536 mg(As)/mg(Fe)) of unreacted iron oxide solids. The flooded spring (March-June) with high surface water flows showed the lowest arsenic and iron accumulation rates in the sediments. Comparisons of accumulation rates across a shoreline transect were consistent with greater rates at regions exposed above surface water levels for longer times and greater losses at locations submerged below surface water. Iron (oxy)hydroxide solids in the shallowest sediments likely serve as a passive barrier to sorb arsenic released to pore water at depth by biological iron reduction.

  14. [Study on the variation of arsenic concentration in groundwater and chemical characteristics of arsenic in sediment cores at the areas with endemic arsenic poison disease in Jianghan Plain].

    Science.gov (United States)

    Zhou, Suhua; Ye, Hengpeng; Li, Mingjian; Xiong, Peisheng; Du, Dongyun; Wang, Jingwen

    2015-06-01

    To understand the variation of arsenic concentration in underground water at the endemic arsenic poison disease area of Jianghan Plain so as to better understand the spatial distribution of high arsenic groundwater, hydro-chemical evolution and source of arsenic in this region. Thirty underground water samples were collected respectively around 3 km radius of the two houses where arsenic poisoning patients lived, in Xiantao and Honghu. Sediment cores of three drillings were collected as well. Both paired t-test or paired Wilcoxon Signed Ranking Test were used to compare the arsenic concentration of water. The arsenic concentration in 2011-2012 appeared lower than that in 2006-2007 at the Nanhong village of Xiantao (t = 4.645 3, P arsenic concentration and Cl, HCO3(-), Fe, Mn. However, negative correlations were found between As and SO4(2-), NO3(-). The range of arsenic content in the sediment was 1.500 mg/kg to 17.289 mg/kg. The maximum arsenic content existed in the soil layer, while the minimum arsenic content existed in the sand layer. The concentration of arsenic varied widely with time and space at endemic arsenic poison disease area of Jianghan Plain. Characteristics of these water chemicals showed significant differences, when compared to the groundwater from Datong Basin, Shanxi Shanyin and Hetao Plain of Inner Mongolia, which presented a typical environment with high arsenic contents in the groundwater. The arsenic content in the sediment samples seemed related to the lithologic structure.

  15. Environmental biochemistry of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, S.; Frankenberger, W.T. Jr. (Department of Soil and Environmental Sciences, University of California, Riverside (United States))

    1992-01-01

    Microorganisms are involved in the redistribution and global cycling of arsenic. Arsenic can accumulate and can be subject to various biotransformations including reduction, oxidation, and methylation. Bacterial methylation of inorganic arsenic is coupled to the methane biosynthetic pathway in methanogenic bacteria under anaerobic conditions and may be a mechanism for arsenic detoxification. The pathway proceeds by reduction of arsenate to arsenite followed by methylation to dimethylarsine. Fungi are also able to transform inorganic and organic arsenic compounds into volatile methylarsines. The pathway proceeds aerobically by arsenate reduction to arsenite followed by several methylation steps producing trimethylarsine. Volatile arsine gases are very toxic to mammals because they destroy red blood cells (LD50 in rats; 3.0 mg kg-1). Further studies are needed on dimethylarsine and trimethylarsine toxicity tests through inhalation of target animals. Marine algae transform arsenate into non-volatile methylated arsenic compounds (methanearsonic and dimethylarsinic acids) in seawater. This is considered to be a beneficial step not only to the primary producers, but also to the higher trophic levels, since non-volatile methylated arsenic is much less toxic to marine invertebrates. Freshwater algae like marine algae synthesize lipid-soluble arsenic compounds and do not produce volatile methylarsines. Aquatic plants also synthesize similar lipid-soluble arsenic compounds. In terrestrial plants, arsenate is preferentially taken up 3 to 4 times the rate of arsenite. In the presence of phosphate, arsenate uptake is inhibited while in the presence of arsenate, phosphate uptake is only slightly inhibited. There is a competitive interaction between arsenate and phosphate for the same uptake system in terrestrial plants.

  16. Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure

    International Nuclear Information System (INIS)

    Jo, William Jaime; Ren, Xuefeng; Chu, Feixia; Aleshin, Maria; Wintz, Henri; Burlingame, Alma; Smith, Martyn Thomas; Vulpe, Chris Dillon; Zhang Luoping

    2009-01-01

    Arsenic, a human carcinogen that is associated with an increased risk of bladder cancer, is commonly found in drinking water. An important mechanism by which arsenic is thought to be carcinogenic is through the induction of epigenetic changes that lead to aberrant gene expression. Previously, we reported that the SAS2 gene is required for optimal growth of yeast in the presence of arsenite (As III ). Yeast Sas2p is orthologous to human MYST1, a histone 4 lysine 16 (H4K16) acetyltransferase. Here, we show that H4K16 acetylation is necessary for the resistance of yeast to As III through the modulation of chromatin state. We further explored the role of MYST1 and H4K16 acetylation in arsenic toxicity and carcinogenesis in human bladder epithelial cells. The expression of MYST1 was knocked down in UROtsa cells, a model of bladder epithelium that has been used to study arsenic-induced carcinogenesis. Silencing of MYST1 reduced acetylation of H4K16 and induced sensitivity to As III and to its more toxic metabolite monomethylarsonous acid (MMA III ) at doses relevant to high environmental human exposures. In addition, both As III and MMA III treatments decreased global H4K16 acetylation levels in a dose- and time-dependent manner. This indicates that acetylated H4K16 is required for resistance to arsenic and that a reduction in its levels as a consequence of arsenic exposure may contribute to toxicity in UROtsa cells. Based on these findings, we propose a novel role for the MYST1 gene in human sensitivity to arsenic.

  17. Combined Administration of Taurine and Monoisoamyl Dmsa Protects Arsenic Induced Oxidative Injury in Rats

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2008-01-01

    Full Text Available Arsenic is a naturally occurring element that is ubiquitously present in the environment. High concentration of naturally occurring arsenic in drinking water is a major health problem in different parts of the world. Despite arsenic being a health hazard and a well documented carcinogen, no safe, effective and specific preventive or therapeutic measures are available. Among various recent strategies adopted, administration of an antioxidant has been reported to be the most effective. The present study was designed to evaluate the therapeutic efficacy of monoisoamyl dimercaptosuccinic acid (MiADMSA, administered either individually or in combination with taurine post chronic arsenic exposure in rats. Arsenic exposed male rats (25 ppm, sodium arsenite in drinking water for 24 weeks were treated with taurine (100 mg/kg, i.p., once daily, monoisoamyl dimercaptosuccinic acid (MiADMSA (50 mg/kg, oral, once daily either individually or in combination for 5 consecutive days. Biochemical variables indicative of oxidative stress along-with arsenic concentration in blood, liver and kidney were measured. Arsenic exposure significantly reduced blood δ-aminolevulinic acid dehydratase (ALAD activity, a key enzyme involved in the heme biosynthesis and enhanced zinc protoporphyrin (ZPP level. Clinical hematological variables like white blood cells (WBC, mean cell hemoglobin (MCH, and mean cell hemoglobin concentration (MCHC showed significant decrease with a significant elevation in platelet (PLT count. These changes were accompanied by significant decrease in superoxide dismutase (SOD activity and increased catalase activity. Arsenic exposure caused a significant decrease in hepatic and renal glutathione (GSH level and an increase in oxidized glutathione (GSSG. These biochemical changes were correlated with an increased uptake of arsenic in blood, liver and kidney. Administration of taurine significantly reduced hepatic oxidative stress however co

  18. Electrical properties of tungsten trioxide films

    International Nuclear Information System (INIS)

    Xu, Z.; Vetelino, J.F.; Lec, R.; Parker, D.C.

    1990-01-01

    Selectively doped semiconducting metal oxide (SMO) films have been shown to have applications as the sensing element in gas microsensors. Critical to the design and operation of these sensors is the SMO film. In the present work, the electrical properties of both intrinsic and extrinsic (doped with gold) tungsten trioxide (WO 3 ) films, which selectively sorb hydrogen sulfide (H 2 S), are investigated. Hall effect measurements are performed as a function of film thickness, temperature, gold-doping concentration, and H 2 S gas concentration. The conductivity was found to be n type and strongly dependent on temperature, gold doping concentration, and H 2 S gas concentration and less dependent on film thickness. The mobility was relatively high while the intrinsic carrier concentration was low when compared to typical semiconductor materials. The conductivity was shown to exhibit anomalous behavior at certain temperatures and H 2 S gas concentrations

  19. Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger.

    Science.gov (United States)

    Chakraborti, Dipankar; Singh, Sushant K; Rahman, Mohammad Mahmudur; Dutta, Rathindra Nath; Mukherjee, Subhas Chandra; Pati, Shyamapada; Kar, Probir Bijoy

    2018-01-23

    This study highlights the severity of arsenic contamination in the Ganga River basin (GRB), which encompasses significant geographic portions of India, Bangladesh, Nepal, and Tibet. The entire GRB experiences elevated levels of arsenic in the groundwater (up to 4730 µg/L), irrigation water (~1000 µg/L), and in food materials (up to 3947 µg/kg), all exceeding the World Health Organization's standards for drinking water, the United Nations Food and Agricultural Organization's standard for irrigation water (100 µg/L), and the Chinese Ministry of Health's standard for food in South Asia (0.15 mg/kg), respectively. Several individuals demonstrated dermal, neurological, reproductive, cognitive, and cancerous effects; many children have been diagnosed with a range of arsenicosis symptoms, and numerous arsenic-induced deaths of youthful victims are reported in the GRB. Victims of arsenic exposure face critical social challenges in the form of social isolation and hatred by their respective communities. Reluctance to establish arsenic standards and unsustainable arsenic mitigation programs have aggravated the arsenic calamity in the GRB and put millions of lives in danger. This alarming situation resembles a ticking time bomb. We feel that after 29 years of arsenic research in the GRB, we have seen the tip of the iceberg with respect to the actual magnitude of the catastrophe; thus, a reduced arsenic standard for drinking water, testing all available drinking water sources, and sustainable and cost-effective arsenic mitigation programs that include the participation of the people are urgently needed.

  20. Remedial Investigation/Baseline Risk Assessment for the Ravines and Beach Area Study areas of the Surplus Operable Unit, Fort Sheridan, Illinois, Volume 3 - BRA Text and BRA Appendices A-L

    Science.gov (United States)

    1998-04-13

    in quadriplegia (Ledet et al, 1973). For chickens , the lowest oral lethal dose of trivalent arsenic as arsenic trioxide and sodium arsenite reported...Benchmarks for Wildlife: 1996 Revision (ES/ER/TM-86/R3). The Original Value (mg/kg/day) for the Test Organism (rat, mouse, dove, chicken , duck) was... roasted coffee and in charcoal broiled, barbecued or smoked meats. It is also found in creosote, coal tar, petroleum asphalt, and a variety of

  1. Biomarkers of Exposure: A Case Study with Inorganic Arsenic

    OpenAIRE

    Hughes, Michael F.

    2006-01-01

    The environmental contaminant inorganic arsenic (iAs) is a human toxicant and carcinogen. Most mammals metabolize iAs by reducing it to trivalency, followed by oxidative methylation to pentavalency. iAs and its methylated metabolites are primarily excreted in urine within 4–5 days by most species and have a relatively low rate of bioaccumulation. Intra- and interindividual differences in the methylation of iAs may affect the adverse health effects of arsenic. Both inorganic and organic trival...

  2. Case reports: arsenic pollution in Thailand, Bangladesh, and Hungary.

    Science.gov (United States)

    Jones, Huw; Visoottiviseth, Pornsawan; Bux, M Khoda; Födényi, Rita; Kováts, Nora; Borbély, Gábor; Galbács, Zoltán

    2008-01-01

    sufficiently, or because the quantity of water delivered to the population was inadequate. Membrane technology treatment, using reverse osmosis, was successful during the summer months, but membrane filter replacement costs prevented wide implementation. Less expensive options, such as the use of rainwater jars, were feasible in areas with adequate rainfall. Algae and phytoremediation and wetland treatment of surface waters were useful, but the waste disposal necessitated by such treatments reduces acceptance. The development and population growth in Bangladesh from 1980 to 2000 resulted in improved water quality, primarily because of the drilling of about 10 million tube wells. The unintended consequence of this action resulted in exposure of about 40 million people to toxic levels of arsenic, which was a natural contaminant of the aquifers. Numerous remediation strategies have been implemented to deal with this problem, including the use of dug wells, pond sand filters, household filters, rainwater harvesting, deep tube wells, chemical-based options, and construction of village piped water supplies. Varying levels of success, which is largely dependent on local resources and conditions, have been reported for the different mitigation methodologies. Although Hungary has already invested huge sums of money to reduce arsenic levels in the most contaminated counties, further investments are needed to comply with the strict European threshold value. The fact that arsenic contamination is a natural ongoing process creates a barrier to long-term success. At present, the most appropriate option for securing safe water for drinking and cooking is treatment of water at the tap. Both adsorption and membrane filtration are efficient methods to remove arsenic from drinking water. The presence of contaminants other than arsenic may also require dual or multiple removal processes. Decision makers, as is common, must consider not only removal efficiency but also operating and investment

  3. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India.

    Science.gov (United States)

    Sarkar, Angana; Kazy, Sufia K; Sar, Pinaki

    2013-03-01

    Sixty-four arsenic (As) resistant bacteria isolated from an arsenic rich groundwater sample of West Bengal were characterized to investigate their potential role in subsurface arsenic mobilization. Among the isolated strains predominance of genera Agrobacterium/Rhizobium, Ochrobactrum and Achromobacter which could grow chemolitrophically and utilize arsenic as electron donor were detected. Higher tolerance to As(3+) [maximum tolerable concentration (MTC): ≥10 mM], As(5+) (MTC: ≥100 mM) and other heavy metals like Cu(2+), Cr(2+), Ni(2+) etc. (MTC: ≥10 mM), presence of arsenate reductase and siderophore was frequently observed among the isolates. Ability to produce arsenite oxidase and phosphatase enzyme was detected in 50 and 34 % of the isolates, respectively. Although no direct correlation among taxonomic identity of bacterial strains and their metabolic abilities as mentioned above was apparent, several isolates affiliated to genera Ochrobactrum, Achromobacter and unclassified Rhizobiaceae members were found to be highly resistant to As(3+) and As(5+) and positive for all the test properties. Arsenate reductase activity was found to be conferred by arsC gene, which in many strains was coupled with arsenite efflux gene arsB as well. Phylogenetic incongruence between the 16S rRNA and ars genes lineages indicated possible incidence of horizontal gene transfer for ars genes. Based on the results we propose that under the prevailing low nutrient condition inhabitant bacteria capable of using inorganic electron donors play a synergistic role wherein siderophores and phosphatase activities facilitate the release of sediment bound As(5+), which is subsequently reduced by arsenate reductase resulting into the mobilization of As(3+) in groundwater.

  4. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    International Nuclear Information System (INIS)

    Hsieh, Yi-Chen; Lien, Li-Ming; Chung, Wen-Ting; Hsieh, Fang-I; Hsieh, Pei-Fan; Wu, Meei-Maan; Tseng, Hung-Pin; Chiou, Hung-Yi; Chen, Chien-Jen

    2011-01-01

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 μg/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 μg/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 μg/l). - Highlights: →Arsenic metabolic genes might be associated with carotid atherosclerosis. → A case

  5. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Lien, Li-Ming [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Neurology, Shin Kong WHS Memorial Hospital, Taipei, Taiwan (China); Chung, Wen-Ting [Department of Neurology, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsieh, Fang-I; Hsieh, Pei-Fan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Wu, Meei-Maan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan (China); Tseng, Hung-Pin [Department of Neurology, Lotung Poh-Ai Hospital, I-Lan, Taiwan (China); Chiou, Hung-Yi, E-mail: hychiou@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Chen, Chien-Jen [Genomics Research Center, Academia Sinica, Taipei, Taiwan (China)

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields

  6. Early Life Arsenic Exposure and Acute and Long-term Responses to Influenza A Infection in Mice

    OpenAIRE

    Ramsey, Kathryn A.; Foong, Rachel E.; Sly, Peter D.; Larcombe, Alexander N.; Zosky, Graeme R.

    2013-01-01

    Background: Arsenic is a significant global environmental health problem. Exposure to arsenic in early life has been shown to increase the rate of respiratory infections during infancy, reduce childhood lung function, and increase the rates of bronchiectasis in early adulthood. Objective: We aimed to determine if early life exposure to arsenic exacerbates the response to early life influenza infection in mice. Methods: C57BL/6 mice were exposed to arsenic in utero and throughout postnatal lif...

  7. Colour centres in amorphous tungsten trioxide thin films

    International Nuclear Information System (INIS)

    Kleperis, J.J.; Cikmach, P.D.; Lusis, A.R.

    1984-01-01

    Magnetic, optical, and electrical properties of thin tungsten trioxide (a-WO 3 ) films obtained on substrates with different temperatures and annealed in air and vacuum are investigated. On the basis of these results and recent structural investigations a structure model of the a-WO 3 film is given: a spatial network of tightly bounded clusters which are built from hydrated WO 6 octahedra. These octahedra contain terminal oxygens and being axially distorted they are the sites for localization of injected electrons. The colour centres formed are paramagnetic (ESR signal from W 5+ ) and their optical absorption is satisfactorily described by the intervalence charge transfer between the localized states of W 5+ and W 6+ ions. (author)

  8. ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER — RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH

    Energy Technology Data Exchange (ETDEWEB)

    Kowolik, K; Addy, S.E.A.; Gadgil, A.

    2009-01-01

    According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed “sushi”. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is

  9. Removal of arsenic and iron removal from drinking water using coagulation and biological treatment.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2016-02-01

    Effects of biological activated carbon (BAC), biological aerated filter (BAF), alum coagulation and Moringa oleifera coagulation were investigated to remove iron and arsenic contaminants from drinking water. At an initial dose of 5 mg/L, the removal efficiency for arsenic and iron was 63% and 58% respectively using alum, and 47% and 41% respectively using Moringa oleifera. The removal of both contaminants increased with the increase in coagulant dose and decrease in pH. Biological processes were more effective in removing these contaminants than coagulation. Compared to BAF, BAC gave greater removal of both arsenic and iron, removing 85% and 74%, respectively. Longer contact time for both processes could reduce the greater concentration of arsenic and iron contaminants. The addition of coagulation (at 5 mg/L dosage) and a biological process (with 15 or 60 min contact time) could significantly increase removal efficiency, and the maximum removal was observed for the combination of alum and BAC treatment (60 min contact time), with 100% and 98.56% for arsenic and iron respectively. The reduction efficiency of arsenic and iron reduced with the increase in the concentration of dissolved organics in the feedwater due to the adsorption competition between organic molecules and heavy metals.

  10. Contribution to the study of sulfur trioxide formation and determination of the sulfuric acid dew point in boiler plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.

    1983-11-01

    This paper analyzes chemical reaction kinetics of the formation of sulfur trioxide and sulfuric acid in combustion air and flue gas of steam generators. Formulae for sulfuric acid equilibrium reactions according to Wahnschaffe (W. Grimm, 1972) and R. Hasse, H.W. Borgmann (1962) are presented. Theoretical acid dew point, combustion parameters with influence on the dew point temperature and formation of sulfates are further discussed. Sulfur trioxide formation at temperatures above 1,000 C as a non-equilibrium reaction is outlined as another variant of chemical reactions. A graphic evaluation is made of dew point conditions in brown coal dust fired, and heating oil fired steam generators. (11 refs.)

  11. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  12. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    Wang Mingshi; Zheng Baoshan; Wang Binbin; Li Shehong; Wu Daishe; Hu Jun

    2006-01-01

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  13. Specific histone modification responds to arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Li, Jun [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Chen, Wen, E-mail: chenwen@mail.sysu.edu.cn [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Zhang, Aihua, E-mail: aihuagzykd@163.com [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China)

    2016-07-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  14. Specific histone modification responds to arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ma, Lu; Li, Jun; Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei; Chen, Wen; Zhang, Aihua

    2016-01-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO 2 treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  15. Pollution magnet: nano-magnetite for arsenic removal from drinking water.

    Science.gov (United States)

    Yavuz, Cafer T; Mayo, J T; Suchecki, Carmen; Wang, Jennifer; Ellsworth, Adam Z; D'Couto, Helen; Quevedo, Elizabeth; Prakash, Arjun; Gonzalez, Laura; Nguyen, Christina; Kelty, Christopher; Colvin, Vicki L

    2010-08-01

    Arsenic contamination in groundwater is a severe global problem, most notably in Southeast Asia where millions suffer from acute and chronic arsenic poisoning. Removing arsenic from groundwater in impoverished rural or urban areas without electricity and with no manufacturing infrastructure remains a significant challenge. Magnetite nanocrystals have proven to be useful in arsenic remediation and could feasibly be synthesized by a thermal decomposition method that employs refluxing of FeOOH and oleic acid in 1-octadecene in a laboratory setup. To reduce the initial cost of production, $US 2600/kg, and make this nanomaterial widely available, we suggest that inexpensive and accessible "everyday" chemicals be used. Here we show that it is possible to create functional and high-quality nanocrystals using methods appropriate for manufacturing in diverse and minimal infrastructure, even those without electricity. We suggest that the transfer of this knowledge is best achieved using an open source concept.

  16. Regenerating an Arsenic Removal Iron-Based Adsorptive Media System, Part 1: The Regeneration Process

    Science.gov (United States)

    Adsorptive media technology is a frequently used method of removing arsenic by small water systems because of its simplicity and efficiency. Current practice is to replace the media when it no longer reduces arsenic below the USEPA drinking water maximum contaminant level (MCL) ...

  17. African Journal of Biotechnology - Vol 10, No 61 (2011)

    African Journals Online (AJOL)

    Studying arsenic trioxide-induced apoptosis of Colo-16 cells with two-photon and .... Genetic polymorphism of exon 9-11 of the leptin gene receptor in breeder hens of ... Determination of taste receptor type 1 member 1 (TAS1R1) gene ...

  18. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    International Nuclear Information System (INIS)

    Gong, Gordon; Basom, Janet; Mattevada, Sravan; Onger, Frederick

    2015-01-01

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8 µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population

  19. Association of hypothyroidism with low-level arsenic exposure in rural West Texas

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Gordon, E-mail: gordon.gong@ttuhsc.edu [F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Basom, Janet [F. Marie Hall Institute for Rural and Community Health, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX (United States); Mattevada, Sravan [Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX (United States); Onger, Frederick [Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX (United States)

    2015-04-15

    It has been reported recently that a higher airborne arsenic level was correlated with higher urinary arsenic concentration and lower serum thyroxin level among urban policemen and rural highway workmen in Italy. The current study was to determine whether exposure to low-level arsenic groundwater (2–22 µg/L) is associated with hypothyroidism among 723 participants (118 male and 267 female Hispanics; 108 male and 230 female non-Hispanic whites, NHW) living in rural West Texas counties. Arsenic and iodine levels in their groundwater used for drinking and or cooking were estimated by the inverse distance weighted (IDW) interpolation technique. Groundwater arsenic was ≥8 µg/L in 36% of the subjects' wells while iodine concentration was <1 µg/L in 91% of their wells. Logistic regression analysis showed that arsenic in groundwater ≥8 µg/L and cumulative arsenic exposure (groundwater arsenic concentration multiplied by the number of years living in the current address) but not groundwater iodine concentration were significant predictors for hypothyroidism among Hispanics (p<0.05) but not NHW after adjusting for covariates such as age, gender, annual household income and health insurance coverage. The ethnic difference may be due to a marginally higher percentage of Hispanics (p=0.0622) who lived in areas with groundwater arsenic ≥8 µg/L compared with NHW. The prevalence of hypothyroidism was significantly higher in Hispanics or NHW of this rural cohort than the national prevalence. Measures should be taken to reduce arsenic in drinking water in order to prevent hypothyroidism in rural areas. - Highlights: • We determined if arsenic exposure is associated with hypothyroidism in rural Texas. • Groundwater arsenic level is associated with hypothyroidism among Hispanics only. • The rate of hypothyroidism in rural Texas was higher than the US general population.

  20. The occurrence and geochemistry of arsenic in groundwaters of Taiwan

    Science.gov (United States)

    Chen, W.; Lu, H.; Liu, T.

    2008-12-01

    Blackfoot disease caused by digesting water with high concentration (>0.3 mg/L) of arsenic from deep wells affected thousands of people in Chianan of Taiwan during 1930 to 1960. Drinking water with arsenic, even in a lower concentration (0.1-0.01 mg/L) increase risk of cancer that had been demonstrated by a number of studies on Taiwan. By concerning the effects of long-term chronic exposure to arsenic, the EPA of United States had revised the regulatory limit of arsenic for drinking water from 0.05 to 0.01 mg/L in 2006. Many researches have investigated on the occurrence and chemistry of the arsenic-contained groundwater and its health effects in Chianan of Taiwan. However, there are only a few studies on the other groundwater basins of Taiwan that providing about one third of water supplies for a population of 21 million. In this study, we investigate the occurrence and redox geochemistry of arsenic in nine major groundwater basins of Taiwan. The values and concentrations of pH, Eh, dissolved oxygen, nitrate, sulfate, iron, methane, sulfide, bicarbonate and ammonium in groundwaters were determined with a total of 610 monitoring wells in 2006. More than 60% of wells in the GW6 basin with a concentration of arsenic exceed 0.05 mg/L. The groundwaters in GW6 basin also have the highest average arsenic concentration. The exceeding percent (>0.05 mg/L) of wells for GW7, GW5, GW9 and GW8 basins are 30%, 20%, 18% and 8%, respectively. All of arsenic concentrations in groundwaters of GW1 to GW4 basins are lower than 0.05 mg/L, but some samples are higher than 0.01 mg/L. The exceeding percent of samples for arsenic 0.01 mg/L in GW3, GW1, GW2 and GW4 basins are 28%, 24%, 23% and 6%, respectively. Our results suggest that the concentrations of arsenic as well as iron in groundwaters of Taiwan were elevated by the iron-reducing process in aquifers. Samples, especially those with higher concentration of bicarbonate (> 400 mg/L) and oversaturated methane, mostly in the GW6 basin

  1. Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger

    Science.gov (United States)

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Dutta, Rathindra Nath; Mukherjee, Subhas Chandra; Pati, Shyamapada; Kar, Probir Bijoy

    2018-01-01

    This study highlights the severity of arsenic contamination in the Ganga River basin (GRB), which encompasses significant geographic portions of India, Bangladesh, Nepal, and Tibet. The entire GRB experiences elevated levels of arsenic in the groundwater (up to 4730 µg/L), irrigation water (~1000 µg/L), and in food materials (up to 3947 µg/kg), all exceeding the World Health Organization’s standards for drinking water, the United Nations Food and Agricultural Organization’s standard for irrigation water (100 µg/L), and the Chinese Ministry of Health’s standard for food in South Asia (0.15 mg/kg), respectively. Several individuals demonstrated dermal, neurological, reproductive, cognitive, and cancerous effects; many children have been diagnosed with a range of arsenicosis symptoms, and numerous arsenic-induced deaths of youthful victims are reported in the GRB. Victims of arsenic exposure face critical social challenges in the form of social isolation and hatred by their respective communities. Reluctance to establish arsenic standards and unsustainable arsenic mitigation programs have aggravated the arsenic calamity in the GRB and put millions of lives in danger. This alarming situation resembles a ticking time bomb. We feel that after 29 years of arsenic research in the GRB, we have seen the tip of the iceberg with respect to the actual magnitude of the catastrophe; thus, a reduced arsenic standard for drinking water, testing all available drinking water sources, and sustainable and cost-effective arsenic mitigation programs that include the participation of the people are urgently needed. PMID:29360747

  2. Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger

    Directory of Open Access Journals (Sweden)

    Dipankar Chakraborti

    2018-01-01

    Full Text Available This study highlights the severity of arsenic contamination in the Ganga River basin (GRB, which encompasses significant geographic portions of India, Bangladesh, Nepal, and Tibet. The entire GRB experiences elevated levels of arsenic in the groundwater (up to 4730 µg/L, irrigation water (~1000 µg/L, and in food materials (up to 3947 µg/kg, all exceeding the World Health Organization’s standards for drinking water, the United Nations Food and Agricultural Organization’s standard for irrigation water (100 µg/L, and the Chinese Ministry of Health’s standard for food in South Asia (0.15 mg/kg, respectively. Several individuals demonstrated dermal, neurological, reproductive, cognitive, and cancerous effects; many children have been diagnosed with a range of arsenicosis symptoms, and numerous arsenic-induced deaths of youthful victims are reported in the GRB. Victims of arsenic exposure face critical social challenges in the form of social isolation and hatred by their respective communities. Reluctance to establish arsenic standards and unsustainable arsenic mitigation programs have aggravated the arsenic calamity in the GRB and put millions of lives in danger. This alarming situation resembles a ticking time bomb. We feel that after 29 years of arsenic research in the GRB, we have seen the tip of the iceberg with respect to the actual magnitude of the catastrophe; thus, a reduced arsenic standard for drinking water, testing all available drinking water sources, and sustainable and cost-effective arsenic mitigation programs that include the participation of the people are urgently needed.

  3. Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Binoy; Naidu, Ravi; Rahman, Mohammad Mahmudur; Megharaj, Mallavarapu; Xi, Yunfei [South Australia Univ., Mawson Lakes, SA (AU). Centre for Environmental Risk Assessment and Remediation (CERAR); South Australia Univ., Mawson Lakes, SA (AU). Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE)

    2012-05-15

    Purpose: Naturally occurring layer silicate clay minerals can be value added by modifying their surface properties to enhance their efficacy in the remediation of environmental contaminants. Silicate clay minerals modified by the introduction of organic molecules into the mineral structure are known as organoclays and show much promise for environmental remediation applications. The present study assesses the extent of decrease in bioavailable and bioaccessible arsenic (As) via enhanced adsorption by soil treated with organoclays. Materials and methods: Organoclays were prepared from hexadecyl trimethylammonium bromide (HDTMA) and Arquad {sup registered} 2HT-75 (Arquad) at surfactant loadings equivalent to twice the cation exchange capacity (CEC) of an Australian bentonite and characterised by X-ray diffraction (XRD). Batch experiments were conducted to evaluate the adsorption of arsenate onto the organoclays from aqueous solutions. Encouraged by these results, the organoclays were applied to As-spiked soils, at 10% and 20% (w/w) rates, to assess their capacity to stabilise soil As. After 1 month of incubation in the laboratory, bioavailable (1 mM Ca(NO{sub 3}){sub 2} extractable) and bioaccessible (1 M glycine extractable) As from the spiked soils were assessed. Results and discussion: Both the organobentonites effectively removed As from aqueous solutions. The adsorbent prepared with Arquad adsorbed 23% more As from aqueous phase than adsorbent prepared with HDTMA. Adsorption of As was controlled by anion exchange and electrostatic attraction. When applied to As-contaminated soils, the organoclays reduced the bioavailable As by as much as 81%. The extent of reduction of bioaccessible As was only up to 58%. The adsorbents were not as efficient in reducing bioaccessible As in contaminated soils as compared with bioavailable As. It could be attributed to the extreme pH condition (pH = 3) of the extractant used in the physiologically based extraction test method for

  4. Effects of Carbon in Flooded Paddy Soils: Implications for Microbial Activity and Arsenic Mobilization

    Science.gov (United States)

    Avancha, S.; Boye, K.

    2014-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.

  5. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Hamzah, A.; Wong, K.K.; Hasan, F.N.; Mustafa, S.; Khoo, K.S.; Sarmani, S.B.

    2013-01-01

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  6. Mineral sources and transport pathways for arsenic release in a coastal watershed, USA

    Science.gov (United States)

    Foley, Nora K.; Ayuso, Robert A.

    2008-01-01

    Metasedimentary bedrock of coastal Maine contains a diverse suite of As-bearing minerals that act as significant sources of elements found in ground and surface waters in the region. Arsenic sources in the Penobscot Formation include, in order of decreasing As content by weight: löllingite and realgar (c.70%), arsenopyrite, cobaltite, glaucodot, and gersdorffite (in the range of 34–45%), arsenian pyrite (Formation, the relative stability of primary As-bearing minerals follows a pattern where the most commonly observed highly altered minerals are pyrrhotite, realgar, niccolite, löllingite > glaucodot, arsenopyrite-cobaltian > arsenopyrite, cobaltite, gersdorffite, fine-grained pyrite, Ni-pyrite > coarse-grained pyrite. Reactions illustrate that oxidation of Fe-As disulphide group and As-sulphide minerals is the primary release process for As. Liberation of As by carbonation of realgar and orpiment in contact with high-pH groundwaters may contribute locally to elevated contents of As in groundwater, especially where As is decoupled from Fe. Released metals are sequestered in secondary minerals by sorption or by incorporation in crystal structures. Secondary minerals acting as intermediate As reservoirs include claudetite (c.75%), orpiment (61%), scorodite (c. 45%), secondary arsenopyrite (c. 46%), goethite (minerals. Reductive dissolution of Fe-oxide minerals may govern the ultimate release of iron and arsenic – especially As(V) – to groundwater; however, dissolution of claudetite (arsenic trioxide) may directly contribute As(III). Processes thought to explain the release of As from minerals in bedrock include oxidation of arsenian pyrite or arsenopyrite, or carbonation of As-sulphides, and most models based on these generally rely on discrete minerals or on a fairly limited series of minerals. In contrast, in the Penobscot Formation and other metasedimentary rocks of coastal Maine, oxidation of As-bearing Fe-cobalt-nickel-sulphide minerals, dissolution (by

  7. Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: Influence of ethnicity and genetic polymorphisms

    International Nuclear Information System (INIS)

    Fu, Songbo; Wu, Jie; Li, Yuanyuan; Liu, Yan; Gao, Yanhui; Yao, Feifei; Qiu, Chuanying; Song, Li; Wu, Yu; Liao, Yongjian; Sun, Dianjun

    2014-01-01

    To investigate the differences in urinary arsenic metabolism patterns of individuals exposed to a high concentration of inorganic arsenic (iAs) in drinking water, an epidemiological investigation was conducted with 155 individuals living in a village where the arsenic concentration in the drinking water was 969 μg/L. Blood and urine samples were collected from 66 individuals including 51 cases with skin lesions and 15 controls without skin lesions. The results showed that monomethylated arsenic (MMA), the percentage of MMA (%MMA) and the ratio of MMA to iAs (MMA/iAs) were significantly increased in patients with skin lesions as compared to controls, while dimethylated arsenic (DMA), the percentage of DMA (%DMA) and the ratio of DMA to MMA (DMA/MMA) were significantly reduced. The percent DMA of individuals with the Ala/Asp genotype of glutathione S-transferase omega 1 (GSTO1) was significantly lower than those with Ala/Ala. The percent MMA of individuals with the A2B/A2B genotype of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) was significantly lower than those with AB/A2B. The iAs and total arsenic (tAs) content in the urine of a Tibetan population were significantly higher than that of Han and Hui ethnicities, whereas MMA/iAs was significantly lower than that of Han and Hui ethnicities. Our results showed that when exposed to the same arsenic environment, different individuals exhibited different urinary arsenic metabolism patterns. Gender and ethnicity affect these differences and above polymorphisms may be effectors too. - Highlights: • We first survey a village with high iAs content in the drinking water (969 μg/L). • 90 villagers suffered typical skin lesions with a morbidity rate of 58%. • Cases exhibited higher %MMA and MMA/iAs, and lower %DMA and DMA/MMA than controls. • Gender and ethnicity affect the differences of iAs methylation metabolism levels. • GSTO1 and AS3MT gene polymorphisms may be factors too

  8. Urinary arsenic metabolism in a Western Chinese population exposed to high-dose inorganic arsenic in drinking water: Influence of ethnicity and genetic polymorphisms

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Songbo [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China); Wu, Jie [Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081 (China); Li, Yuanyuan [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China); Liu, Yan [Department of Health Statistics, Harbin Medical University, Harbin 150081 (China); Gao, Yanhui; Yao, Feifei [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China); Qiu, Chuanying [Dongcheng District Center for Disease Control and Prevention, Beijing 100009 (China); Song, Li; Wu, Yu [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China); Liao, Yongjian [Gansu Center for Disease Control and Prevention, 730020 (China); Sun, Dianjun, E-mail: hrbmusdj@163.com [Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Hei Long Jiang Province and Ministry of Health (23618104), Harbin 150081 (China)

    2014-01-01

    To investigate the differences in urinary arsenic metabolism patterns of individuals exposed to a high concentration of inorganic arsenic (iAs) in drinking water, an epidemiological investigation was conducted with 155 individuals living in a village where the arsenic concentration in the drinking water was 969 μg/L. Blood and urine samples were collected from 66 individuals including 51 cases with skin lesions and 15 controls without skin lesions. The results showed that monomethylated arsenic (MMA), the percentage of MMA (%MMA) and the ratio of MMA to iAs (MMA/iAs) were significantly increased in patients with skin lesions as compared to controls, while dimethylated arsenic (DMA), the percentage of DMA (%DMA) and the ratio of DMA to MMA (DMA/MMA) were significantly reduced. The percent DMA of individuals with the Ala/Asp genotype of glutathione S-transferase omega 1 (GSTO1) was significantly lower than those with Ala/Ala. The percent MMA of individuals with the A2B/A2B genotype of arsenic (+ 3 oxidation state) methyltransferase (AS3MT) was significantly lower than those with AB/A2B. The iAs and total arsenic (tAs) content in the urine of a Tibetan population were significantly higher than that of Han and Hui ethnicities, whereas MMA/iAs was significantly lower than that of Han and Hui ethnicities. Our results showed that when exposed to the same arsenic environment, different individuals exhibited different urinary arsenic metabolism patterns. Gender and ethnicity affect these differences and above polymorphisms may be effectors too. - Highlights: • We first survey a village with high iAs content in the drinking water (969 μg/L). • 90 villagers suffered typical skin lesions with a morbidity rate of 58%. • Cases exhibited higher %MMA and MMA/iAs, and lower %DMA and DMA/MMA than controls. • Gender and ethnicity affect the differences of iAs methylation metabolism levels. • GSTO1 and AS3MT gene polymorphisms may be factors too.

  9. [Arsenical keratosis treated by dermatome shaving].

    Science.gov (United States)

    Kjerkegaard, Ulrik Knap; Heje, Jens Martin; Vestergaard, Christian; Stausbøl-Grøn, Birgitte; Stolle, Lars Bjørn

    2014-05-05

    Cutaneous malignancy in association with arsenic exposure is a rare but well-documented phenomenon. Signs of chronic arsenic exposure are very rare in Denmark today. However, arsenic was used in the medical treatment of psoriasis vulgaris up till the 1980's and several patients suffer from this arsenic treatment today. This case report shows that arsenical keratosis can be treated by dermatome shaving, a superficial destructive therapy.

  10. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments.

    Science.gov (United States)

    Lin, Lina; Gao, Minling; Qiu, Weiwen; Wang, Di; Huang, Qing; Song, Zhengguo

    2017-12-01

    The effects of biochar (BC) and ferromanganese oxide biochar composites (FMBC 1 and FMBC 2 ) on As (Arsenic) accumulation in rice were determined using a pot experiment. Treatments with BC or FMBC improved the dry weights of rice roots, stems, leaves, and grains in soils containing different As contamination levels. Compared to BC treatment, FMBC treatments significantly reduced As accumulation in different parts of the rice plants (P rice can be attributed to As(III) to As(V) oxidation by ferro - manganese binary oxide, which increased the As adsorbed by FMBC. Furthermore, Fe and Mn plaques on the rice root surface decreased the transport of As in rice. Taken together, our results demonstrated the applicability of FMBC as a potential measure for reducing As accumulation in rice, improving the amino acid content of rice grains, and effectively remediating As-polluted soil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    Science.gov (United States)

    Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-11-01

    The consumption of shallow groundwater with elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, a growing reliance on groundwater sourced below 150-m depth--where arsenic concentrations tend to be lower--has reduced exposure. Groundwater flow simulations have suggested that these deep waters are at risk of contamination due to replenishment with high-arsenic groundwater from above, even when deep water pumping is restricted to domestic use. However, these simulations have neglected the influence of sediment adsorption on arsenic migration. Here, we inject arsenic-bearing groundwater into a deep aquifer zone in Bangladesh, and monitor the reduction in arsenic levels over time following stepwise withdrawal of the water. Arsenic concentrations in the injected water declined by 70% after 24h in the deep aquifer zone, owing to adsorption on sediments; concentrations of a co-injected inert tracer remain unchanged. We incorporate the experimentally determined adsorption properties of sands in the deep aquifer zone into a groundwater flow and transport model covering the Bengal Basin. Simulations using present and future scenarios of water-use suggest that arsenic adsorption significantly retards transport, thereby extending the area over which deep groundwater can be used with low risk of arsenic contamination. Risks are considerably lower when deep water is pumped for domestic use alone. Some areas remain vulnerable to arsenic intrusion, however, and we suggest that these be prioritized for monitoring.

  12. Arsenic in your food: potential health hazards from arsenic found in rice

    Directory of Open Access Journals (Sweden)

    Munera-Picazo S

    2015-01-01

    Full Text Available Sandra Munera-Picazo,1 Marina Cano-Lamadrid,1 María Concepción Castaño-Iglesias,2 Francisco Burló,1 Ángel A Carbonell-Barrachina11Food Quality and Safety Group, Department of Agro-Food Technology, Universidad Miguel Hernández, Orihuela, 2Servicio de Pediatría, Hospital Universitario San Juan de Alicante, Alicante, SpainAbstract: Rice is a staple food for over half of the world population, but there is some concern about the occurrence of arsenic (As in this cereal and the possible overexposure to this metalloid. Recently, the Codex Alimentarius Commission established a maximum limit of 200 µg kg–1 for inorganic arsenic (iAs in rice. Because the maximum content of As in water has been reduced to 10 µg L–1, intoxication through rice and rice-based products can be considered an important source of As poisoning. The chronic effects of this iAs exposure can be lung and bladder cancer, skin lesions, or other noncarcinogenic diseases. There is clear evidence of high levels of iAs in rice and rice-based products. Different solutions for the reduction of As intake are proposed at different levels: 1 during the plant-growing process through agronomic practices, 2 pretreatment of rice before its use in the food industry, 3 optimization of the conditions of unit operations during processing, and 4 by cooking.Keywords: arsenic speciation, food safety, dietary exposure, Oryza sativa

  13. Arsenic Exposure, Arsenic Metabolism, and Incident Diabetes in the Strong Heart Study

    Science.gov (United States)

    Howard, Barbara V.; Umans, Jason G.; Gribble, Matthew O.; Best, Lyle G.; Francesconi, Kevin A.; Goessler, Walter; Lee, Elisa; Guallar, Eliseo; Navas-Acien, Ana

    2015-01-01

    OBJECTIVE Little is known about arsenic metabolism in diabetes development. We investigated the prospective associations of low-moderate arsenic exposure and arsenic metabolism with diabetes incidence in the Strong Heart Study. RESEARCH DESIGN AND METHODS A total of 1,694 diabetes-free participants aged 45–75 years were recruited in 1989–1991 and followed through 1998–1999. We used the proportions of urine inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) over their sum (expressed as iAs%, MMA%, and DMA%) as the biomarkers of arsenic metabolism. Diabetes was defined as fasting glucose ≥126 mg/dL, 2-h glucose ≥200 mg/dL, self-reported diabetes history, or self-reported use of antidiabetic medications. RESULTS Over 11,263.2 person-years of follow-up, 396 participants developed diabetes. Using the leave-one-out approach to model the dynamics of arsenic metabolism, we found that lower MMA% was associated with higher diabetes incidence. The hazard ratios (95% CI) of diabetes incidence for a 5% increase in MMA% were 0.77 (0.63–0.93) and 0.82 (0.73–0.92) when iAs% and DMA%, respectively, were left out of the model. DMA% was associated with higher diabetes incidence only when MMA% decreased (left out of the model) but not when iAs% decreased. iAs% was also associated with higher diabetes incidence when MMA% decreased. The association between MMA% and diabetes incidence was similar by age, sex, study site, obesity, and urine iAs concentrations. CONCLUSIONS Arsenic metabolism, particularly lower MMA%, was prospectively associated with increased incidence of diabetes. Research is needed to evaluate whether arsenic metabolism is related to diabetes incidence per se or through its close connections with one-carbon metabolism. PMID:25583752

  14. Collateral benefits and hidden hazards of soil arsenic during abatement assessment of residential lead hazards

    International Nuclear Information System (INIS)

    Elless, M.P.; Ferguson, B.W.; Bray, C.A.; Patch, S.; Mielke, H.; Blaylock, M.J.

    2008-01-01

    Abatement of soil-lead hazards may also reduce human exposure to other soil toxins, thereby achieving significant collateral benefits that are not accounted for today. This proposition was tested with the specific case of soil-arsenic, where 1726 residential soil samples were collected and analyzed for lead and arsenic. The study found that these two toxins coexisted in most samples, but their concentrations were weakly correlated, reflecting the differing sources for each toxin. Collateral benefits of 9% would be achieved during abatement of the lead-contaminated soils having elevated arsenic concentrations. However, a hidden hazard of 16% was observed by overlooking elevated arsenic concentrations in soils having lead concentrations not requiring abatement. This study recommends that soil samples collected under HUD programs should be collected from areas of lead and arsenic deposition and tested for arsenic as well as lead, and that soil abatement decisions consider soil-arsenic as well as soil-lead guidelines. - Coexistence of arsenic at elevated concentrations with lead in residential soils undergoing lead hazard assessment is often overlooked, providing either collateral benefits or hidden hazards

  15. Investigations of arsenic metabolism. The physiological arsenic content in normal and pathologically alterated pancreas. Uptake and excretion of arsenic (/sup 74/As) in mice in consideration with regard to the excretion time

    Energy Technology Data Exchange (ETDEWEB)

    Graeper, P

    1974-01-01

    In the first part of the dissertation, the physiological arsenic content of 50 normal and 50 pathologically altered pancreases was determined using a method proposed by VASAK and SEDIVEC and modified by ARNOLD and SCHROEDER. A mean arsenic content of 4.86 ..mu..g% (dry weight) was found. There were no significantly increased or reduced values between the two groups of organs. The results agreed with similar investigations of other organs. The method of determination proposed by VASAK, SEDIVEC was not sensitive enough for the second part of the work in which the uptake and elimination rate as well as, if necessary, the place of retention of very small amounts of arsenic applied to mice as measured. The application of small amounts of radioactive /sup 74/As and subsequent measurements in a well-type scintillation counter showed a fast uptake in the major metabolic organs followed by equally fast elimination. Storage of As was not observed in the organs under investigation.

  16. The use of L-ascorbic acid in speciation of arsenic compounds in drinking water

    Directory of Open Access Journals (Sweden)

    Marjanović Nikola J.

    2009-01-01

    Full Text Available Arsenic speciation, besides total arsenic content determination, is very important in analysis of water, foodstuffs, and environmental samples, because of varying degrees of toxicity of different species. For such purpose hydride generation atomic absorption spectrometry can be used based on the generation of certain types of hydride, depending on the pH value and pretreatment in different reaction media. In this study, we have investigated the effect of L-ascorbic acid as the reaction medium as well as the pre-reducing agent in speciation of arsenic by hydride generation-atomic absorption spectrometry in order to determine monomethyl arsonic acid (MMA in the presence of inorganic forms of arsenic.

  17. Health Effects of Chronic Arsenic Exposure

    Directory of Open Access Journals (Sweden)

    Young-Seoub Hong

    2014-09-01

    Full Text Available Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments.

  18. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  19. Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water.

    Science.gov (United States)

    Elless, Mark P; Poynton, Charissa Y; Willms, Cari A; Doyle, Mike P; Lopez, Alisa C; Sokkary, Dale A; Ferguson, Bruce W; Blaylock, Michael J

    2005-10-01

    Arsenic contamination of drinking water poses serious health risks to millions of people worldwide. To reduce such risks, the United States Environmental Protection Agency recently lowered the Maximum Contaminant Level for arsenic in drinking water from 50 to 10 microgL(-1). The majority of water systems requiring compliance are small systems that serve less than 10,000 people. Current technologies used to clean arsenic-contaminated water have significant drawbacks, particularly for small treatment systems. In this pilot-scale demonstration, we investigated the use of arsenic-hyperaccumulating ferns to remove arsenic from drinking water using a continuous flow phytofiltration system. Over the course of a 3-month demonstration period, the system consistently produced water having an arsenic concentration less than the detection limit of 2 microgL(-1), at flow rates as high as 1900 L day(-1) for a total treated water volume of approximately 60,000 L. Our results demonstrate that phytofiltration provides the basis for a solar-powered hydroponic technique to enable small-scale cleanup of arsenic-contaminated drinking water.

  20. Site-specific data confirm arsenic exposure predicted by the U.S. Environmental Protection Agency.

    Science.gov (United States)

    Walker, S; Griffin, S

    1998-03-01

    The EPA uses an exposure assessment model to estimate daily intake to chemicals of potential concern. At the Anaconda Superfund site in Montana, the EPA exposure assessment model was used to predict total and speciated urinary arsenic concentrations. Predicted concentrations were then compared to concentrations measured in children living near the site. When site-specific information on concentrations of arsenic in soil, interior dust, and diet, site-specific ingestion rates, and arsenic absorption rates were used, measured and predicted urinary arsenic concentrations were in reasonable agreement. The central tendency exposure assessment model successfully described the measured urinary arsenic concentration for the majority of children at the site. The reasonable maximum exposure assessment model successfully identified the uppermost exposed population. While the agreement between measured and predicted urinary arsenic is good, it is not exact. The variables that were identified which influenced agreement included soil and dust sample collection methodology, daily urinary volume, soil ingestion rate, and the ability to define the exposure unit. The concentration of arsenic in food affected agreement between measured and predicted total urinary arsenic, but was not considered when comparing measured and predicted speciated urinary arsenic. Speciated urinary arsenic is the recommended biomarker for recent inorganic arsenic exposure. By using site-specific data in the exposure assessment model, predicted risks from exposure to arsenic were less than predicted risks would have been if the EPA's default values had been used in the exposure assessment model. This difference resulted in reduced magnitude and cost of remediation while still protecting human health.

  1. Neutron activation analysis of arsenic in Greece

    International Nuclear Information System (INIS)

    Grimanis, A.P.

    1989-01-01

    Arsenic is considered a toxic trace element for plant, animal, and human organisms. Arsenic and certain arsenic compounds have been listed as carcinogens by the U.S. Environmental Protection Agency. Arsenic is emitted in appreciable quantities into the atmosphere by coal combustion and the production of cement. Arsenic enters the aquatic environment through industrial activities such as smelting of metallic ores, metallurgical glassware, and ceramics as well as insecticide production and use. Neutron activation analysis (NAA) is a very sensitive, precise, and accurate method for determining arsenic. This paper is a review of research studies of arsenic in the Greek environment by NAA performed at our radioanalytical laboratory. The objectives of these studies were (a) to determine levels of arsenic concentrations in environmental materials, (b) to pinpoint arsenic pollution sources and estimate the extent of arsenic pollution, and (c) to find out whether edible marine organisms from the gulfs of Greece receiving domestic, industrial, and agricultural wastes have elevated concentrations of arsenic in their tissues that could render them dangerous for human consumption

  2. Endodontic treatment failure caused by arsen utilization as the devitalization material

    Directory of Open Access Journals (Sweden)

    Endang Sukartini

    2008-07-01

    Full Text Available Root canal treatment diagnoses as pulpitis irreversible can be treated in a non-vital condition with devitalization material. Arsenic is one of devitalization material that used in inflammatory pulp tissue before it is going to endodontic treatment. The long-term use of it or the leak of using this arsenic can cause the toxic effect of the pulp tissue. The case is going to report is about the damage of gingival tissue and alveolar that caused by the uncarefullness using of arsenic. Inappropriate arsenic applications cause the leak that able to spread to gingival tissue and will become necrosis. Now a day, the using of arsenic begin to leave because of the toxicity sad effect. This report is going to report how much the damage using arsenic trioxide (As2O3 and the effort from the leakness.

  3. ElectroChemical Arsenic Removal (ECAR) for Rural Bangladesh--Merging Technology with Sustainable Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan E.A.; Gadgil, Ashok J.; Kowolik, Kristin; Kostecki, Robert

    2009-12-01

    Today, 35-77 million Bangladeshis drink arsenic-contaminated groundwater from shallow tube wells. Arsenic remediation efforts have focused on the development and dissemination of household filters that frequently fall into disuse due to the amount of attention and maintenance that they require. A community scale clean water center has many advantages over household filters and allows for both chemical and electricity-based technologies to be beneficial to rural areas. Full cost recovery would enable the treatment center to be sustainable over time. ElectroChemical Arsenic Remediation (ECAR) is compatible with community scale water treatment for rural Bangladesh. We demonstrate the ability of ECAR to reduce arsenic levels> 500 ppb to less than 10 ppb in synthetic and real Bangladesh groundwater samples and examine the influence of several operating parameters on arsenic removal effectiveness. Operating cost and waste estimates are provided. Policy implication recommendations that encourage sustainable community treatment centers are discussed.

  4. Effects of sulfur in flooded paddy soils: Implications for iron chemistry and arsenic mobilization

    Science.gov (United States)

    Avancha, S.; Boye, K.

    2013-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (amplified by erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Iron and sulfur both interact strongly with arsenic in paddy soils: iron oxides are strong adsorbents for arsenic in oxic conditions, and sulfur (in the form of sulfide) is a strong adsorbent under anoxic conditions. In the process of reductive dissolution of iron oxides, arsenic, which had been adsorbed to the iron oxides, is released. Therefore, higher levels of reduced iron (ferrous iron) will likely correlate with higher levels of mobilized arsenic. However, the mobilized arsenic may then co-precipitate with or adsorb to iron sulfides, which form under sulfate-reducing conditions and with the aid of certain microbes already present in the soil. In a batch experiment, we investigated how these processes correlate and which has the greatest influence on arsenic mobilization and potential plant availability. The experiment was designed to measure the effects of various sources of sulfur (dried rice straw, charred rice straw, and gypsum) on the iron and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. The two types of rice straw were designed to introduce the same amount of organic sulfur (7.7 μg/g of soil), but different levels of available carbon, since carbon stimulates microbial activity in the soil. In comparison, two different levels of gypsum (calcium sulfate) were used, 7.7 and 34.65 μg/g of soil, to test the effect of directly available inorganic sulfate without carbon addition. The soil was flooded with a buffer solution at pH 7.07 in airtight serum vials and kept as a slurry on a shaker at 25 °C. We measured pH, alkalinity, ferrous iron, ferric iron, sulfide, sulfate, total iron, sulfur, and arsenic in the

  5. Arsenic and Antimony Transporters in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Ewa Maciaszczyk-Dziubinska

    2012-03-01

    Full Text Available Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  6. Arsenic and Antimony Transporters in Eukaryotes

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  7. Pilot demonstrations of arsenic removal technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Siegal Malcolm D.

    2004-09-01

    The Arsenic Water Technology Partnership (AWTP) program is a multi-year program funded by a congressional appropriation through the Department of Energy to develop and test innovative technologies that have the potential to reduce the costs of arsenic removal from drinking water. The AWTP members include Sandia National Laboratories, the American Water Works Association (Awwa) Research Foundation and WERC (A Consortium for Environmental Education and Technology Development). The program is designed to move technologies from bench-scale tests to field demonstrations. The Awwa Research Foundation is managing bench-scale research programs; Sandia National Laboratories is conducting the pilot demonstration program and WERC will evaluate the economic feasibility of the technologies investigated and conduct technology transfer activities. The objective of the Sandia Arsenic Treatment Technology Demonstration project (SATTD) is the field demonstration testing of both commercial and innovative technologies. The scope for this work includes: (1) Identification of sites for pilot demonstrations; (2) Accelerated identification of candidate technologies through Vendor Forums, proof-of-principle laboratory and local pilot-scale studies, collaboration with the Awwa Research Foundation bench-scale research program and consultation with relevant advisory panels; and (3) Pilot testing multiple technologies at several sites throughout the country, gathering information on: (a) Performance, as measured by arsenic removal; (b) Costs, including capital and Operation and Maintenance (O&M) costs; (c) O&M requirements, including personnel requirements, and level of operator training; and (d) Waste residuals generation. The New Mexico Environment Department has identified over 90 public water systems that currently exceed the 10 {micro}g/L MCL for arsenic. The Sandia Arsenic Treatment Technology Demonstration project is currently operating pilots at three sites in New Mexico. The cities of

  8. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic

    OpenAIRE

    Stanton, Bruce A.

    2015-01-01

    This report is the outcome of the meeting: “Environmental and Human Health Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at concentrations greater than inte...

  9. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States)

    2015-01-09

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous

  10. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    International Nuclear Information System (INIS)

    Zhang, Zhuo; Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok; Kim, Donghern; Shi, Xianglin

    2015-01-01

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROS levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H 2 O 2 ) and superoxide dismutase 2 (SOD2, antioxidant against O 2 ·− ) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the previous report. The

  11. Relationship between arsenic and selenium in workers occupationally exposed to inorganic arsenic.

    Science.gov (United States)

    Janasik, Beata; Zawisza, Anna; Malachowska, Beata; Fendler, Wojciech; Stanislawska, Magdalena; Kuras, Renata; Wasowicz, Wojciech

    2017-07-01

    The interaction between arsenic (As) and selenium (Se) has been one of the most extensively studied. The antagonism between As and Se suggests that low Se status plays an important role in aggravating arsenic toxicity in diseases development. The objective of this study was to assess the Se contents in biological samples of inorganic As exposed workers (n=61) and in non-exposed subjects (n=52). Median (Me) total arsenic concentration in urine of exposed workers was 21.83μg/g creat. (interquartile range (IQR) 15.49-39.77) and was significantly higher than in the control group - (Me 3.75μg/g creat. (IQR 2.52-9.26), piAs+MMA+DMA) was significantly associated with the high total selenium urine excretion (B=0.14 (95%CI (confidence interval) 0.05-0.23)). Combination of both arsenic and selenium status to assess the risk of arsenic-induced diseases requires more studies with regard to both the analysis of speciation, genetics and the influence of factors such as nutritional status. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem.

    Science.gov (United States)

    Naujokas, Marisa F; Anderson, Beth; Ahsan, Habibul; Aposhian, H Vasken; Graziano, Joseph H; Thompson, Claudia; Suk, William A

    2013-03-01

    Concerns for arsenic exposure are not limited to toxic waste sites and massive poisoning events. Chronic exposure continues to be a major public health problem worldwide, affecting hundreds of millions of persons. We reviewed recent information on worldwide concerns for arsenic exposures and public health to heighten awareness of the current scope of arsenic exposure and health outcomes and the importance of reducing exposure, particularly during pregnancy and early life. We synthesized the large body of current research pertaining to arsenic exposure and health outcomes with an emphasis on recent publications. Locations of high arsenic exposure via drinking water span from Bangladesh, Chile, and Taiwan to the United States. The U.S. Environmental Protection Agency maximum contaminant level (MCL) in drinking water is 10 µg/L; however, concentrations of > 3,000 µg/L have been found in wells in the United States. In addition, exposure through diet is of growing concern. Knowledge of the scope of arsenic-associated health effects has broadened; arsenic leaves essentially no bodily system untouched. Arsenic is a known carcinogen associated with skin, lung, bladder, kidney, and liver cancer. Dermatological, developmental, neurological, respiratory, cardiovascular, immunological, and endocrine effects are also evident. Most remarkably, early-life exposure may be related to increased risks for several types of cancer and other diseases during adulthood. These data call for heightened awareness of arsenic-related pathologies in broader contexts than previously perceived. Testing foods and drinking water for arsenic, including individual private wells, should be a top priority to reduce exposure, particularly for pregnant women and children, given the potential for life-long effects of developmental exposure.

  13. Arsenic K-edge X-ray absorption near-edge spectroscopy to determine oxidation states of arsenic of a coastal aquifer–aquitard system

    International Nuclear Information System (INIS)

    Wang, Ya; Jiao, Jiu Jimmy; Zhu, Sanyuan; Li, Yiliang

    2013-01-01

    Determination of oxidation states of solid-phase arsenic in bulk sediments is a valuable step in the evaluation of its bioavailability and environmental fate in deposits, but is difficult when the sediments have low arsenic contents and heterogeneous distribution of arsenic species. As K-edge X-ray absorption near-edge spectroscopy (XANES) was used to determine quantitatively the oxidation states of arsenic in sediments collected from different depths of boreholes in the Pearl River Delta, China, where the highest aquatic arsenic concentration is 161.4 μg/L, but the highest solid arsenic content only 39.6 mg/kg. The results demonstrated that XANES is efficient in determining arsenic oxidation states of the sediments with low arsenic contents and multiple arsenic species. The study on the high-resolution vertical variations of arsenic oxidation states also indicated that these states are influenced strongly by groundwater activities. With the help of geochemical data, solid arsenic speciation, toxicity and availability were further discussed. -- Highlights: •XANES is efficient in determining arsenic oxidation states of the bulk sediments. •Distribution of arsenic oxidation states is consistent with geochemical conditions. •Arsenic oxidation states are influenced strongly by groundwater activities. -- As K-edge X-ray absorption near-edge spectroscopy is efficient in determining arsenic oxidation states of the bulk sediments with low arsenic contents and heterogeneous distribution of arsenic species

  14. Voltammetric Study of Arsenic (III and Arsenic (V in Ground Water of Hajigonj and Kalkini in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Arifur Rahman

    2008-06-01

    Full Text Available The speciation of arsenic in groundwater samples using Square Wave Anodic Stripping Voltammetry (SWASV, Differential Pulse Anodic Stripping Voltammetry (DPASV and Normal Pulse Anodic Stripping Voltammetry (NPASV are described. Good resolution of the species, arsenic (III and arsenic (V is achieved using SWASV. The reliability of the methods was checked by analyzing the total arsenic content of the samples by Hydride Generation Atomic Absorptioion Spectrophotometer and by analyzing prepared controlled laboratory standard solution. Since this technique is comparatively cheaper than other available techniques it could be a better analytical technique for arsenic speciation from water. In this study, the assessment of inorganic arsenic species in ground water of Kalkini (Madaripur and Hajigonj (Chandpur is reported. It shows that arsenic content in water in different locations is irregular. Most of the locations contain higher level of As(III than As(V. The highest concentration of arsenic is found in Anayetnagor (554.46 ± 0.07 mg/L of Kalkini and Raichar (562 ± 0.50 mg/L of Hajigonj. However, the level of total arsenic and As(III of most of the villages of the study areas are more than the WHO guideline value (50mg/L. Therefore a proper monitoring process should be evolved along with the development of methods to keep the water free from arsenic.

  15. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    2002-01-01

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  16. Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Danni; Yuan, Zidan [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Shaofeng, E-mail: wangshaofeng@iae.ac.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Jia, Yongfeng, E-mail: yongfeng.jia@iae.ac.cn [Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Demopoulos, George P. [Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 2B2 (Canada)

    2015-12-30

    Highlights: • Quantitatively studied the incorporation of arsenic into the structure of gypsum. • Arsenic content in the solid increased with pH and initial arsenic concentration. • Calcium arsenate phase precipitated in addition to gypsum at higher pH values. • The structure of gypsum and its morphology was altered by the incorporated arsenate. • The incorporated arsenate formed sainfeldite-like local structure in gypsum. - Abstract: Gypsum precipitates as a major secondary mineral during the iron-arsenate coprecipitation process for the removal of arsenic from hydrometallurgical effluents. However, its role in the fixation of arsenic is still unknown. This work investigated the incorporation of arsenic into gypsum quantitatively during the crystallization process at various pHs and the initial arsenic concentrations. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray absorption near edge spectroscopy (XANES) and scanning electron microscopy (SEM) were employed to characterize the coprecipitated solids. The results showed that arsenate was measurably removed from solution during gypsum crystallization and the removal increased with increasing pH. At lower pH where the system was undersaturated with respect to calcium arsenate, arsenate ions were incorporated into gypsum structure, whereas at higher pH, calcium arsenate was formed and constituted the major arsenate bearing species in the precipitated solids. The findings may have important implications for arsenic speciation and stability of the hydrometallurgical solid wastes.

  17. Arsenic chemistry in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of

  18. Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jorge A.G.; Gonzaga, Maria I.S. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ufl.edu; Srivastava, M. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States)

    2008-07-15

    The effects of timing in phosphate application on plant growth and arsenic removal by arsenic hyperaccumulator Pteris vittata L. of different ages were evaluated. The hydroponic experiment consisted of three plant ages (A{sub 45d}, A{sub 90d} and A{sub 180d}) and three P feeding regimens (P{sub 200+0}, P{sub 134+66} and P{sub 66+134}) growing for 45 d in 0.2-strength Hoagland-Arnon solution containing 145 {mu}g L{sup -1} As. While all plants received 200 {mu}M P, P was added in two phases: during acclimation and after arsenic exposure. High initial P-supply (P{sub 200+0}) favored frond biomass production and plant P uptake, while split-P application (P{sub 134+66} and P{sub 66+134}) favored plant root production. Single P addition favored arsenic accumulation in the roots while split-P addition increased frond arsenic accumulation. Young ferns (A{sub 45d}) in treatment P{sub 134+66} were the most efficient in arsenic removal, reducing arsenic concentration to below 10 {mu}g L{sup -1} in 35 d. The results indicated that the use of young ferns, coupled with feeding of low initial P or split-P application, increased the efficiency of arsenic removal by P. vittata. - Young ferns coupled with split-P application were effective in arsenic removal by Pteris vittata.

  19. Arsenic distribution in soils and plants of an arsenic impacted former mining area

    International Nuclear Information System (INIS)

    Otones, V.; Alvarez-Ayuso, E.; Garcia-Sanchez, A.; Santa Regina, I.; Murciego, A.

    2011-01-01

    A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg -1 in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg -1 . - Highlights: → Environmental assessment of an abandoned arsenical tungsten mining exploitation. → Under the present soils conditions As mobility is relatively low, with [As] soluble /[As] total ≤ 2%. → The highest risk of As mobilisation would take place under reducing conditions. → The shrubs Salix atrocinerea and Genista scorpius are suitable for revegetation. → The species Scirpus holoschoenus accumulates high As contents at root level. - The plants Salix atrocinerea, Genista scorpius and Scirpus holoschoenus are suitable for revegetation or phytostabilisation approaches of As-polluted soils.

  20. Arsenic distribution in soils and plants of an arsenic impacted former mining area

    Energy Technology Data Exchange (ETDEWEB)

    Otones, V. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Alvarez-Ayuso, E., E-mail: esther.alvarez@irnasa.csic.es [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Garcia-Sanchez, A.; Santa Regina, I. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Murciego, A. [Department of Geology, Plza. de los Caidos s/n., Salamanca University, 37008 Salamanca (Spain)

    2011-10-15

    A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg{sup -1} in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg{sup -1}. - Highlights: > Environmental assessment of an abandoned arsenical tungsten mining exploitation. > Under the present soils conditions As mobility is relatively low, with [As]{sub soluble}/[As]{sub total} {<=} 2%. > The highest risk of As mobilisation would take place under reducing conditions. > The shrubs Salix atrocinerea and Genista scorpius are suitable for revegetation. > The species Scirpus holoschoenus accumulates high As contents at root level. - The plants Salix atrocinerea, Genista scorpius and Scirpus holoschoenus are suitable for revegetation or phytostabilisation approaches of As-polluted soils.

  1. Arsenic: natural and anthropogenic

    National Research Council Canada - National Science Library

    Matschullat, Jörg; Deschamps, Eleonora

    2011-01-01

    .... Based on state-of-the-art investigations into the global arsenic cycle, the related human toxicology and available remediation technologies, it assesses arsenic in all the environmental compartments...

  2. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Hiriart, Marcia; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia

    2007-01-01

    Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for type 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance

  3. Arsenic transport by zebrafish aquaglyceroporins

    Directory of Open Access Journals (Sweden)

    Landfear Scott M

    2009-11-01

    Full Text Available Abstract Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII. However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII and antimonite (SbIII was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were named aqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye

  4. Determination of arsenic compounds in earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W. [Karl-Franzens-Univ., Graz (Austria). Inst. for Analytical Chemistry; Francesconi, K. [Odense Univ. (Denmark). Inst. of Biology

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  5. Variability in human metabolism of arsenic

    International Nuclear Information System (INIS)

    Loffredo, C.A.; Aposhian, H.V.; Cebrian, M.E.; Yamauchi, Hiroshi; Silbergeld, E.K.

    2003-01-01

    Estimating the nature and extent of human cancer risks due to arsenic (As) in drinking water is currently of great concern, since millions of persons worldwide are exposed to arsenic, primarily through natural enrichment of drinking water drawn from deep wells. Humans metabolize and eliminate As through oxidative methylation and subsequent urinary excretion. While there is debate as to the role of methylation in activation/detoxification, variations in arsenic metabolism may affect individual risks of toxicity and carcinogenesis. Using data from three populations, from Mexico, China, and Chile, we have analyzed the distribution in urine of total arsenic and arsenic species (inorganic arsenic (InAs), monomethyl arsenic (MMA), and dimethyl arsenic (DMA). Data were analyzed in terms of the concentration of each species and by evaluating MMA:DMA and (MMA+DMA):InAs ratios. In all persons most urinary As was present as DMA. Male:female differences were discernible in both high- and low-exposure groups from all three populations, but the gender differences varied by populations. The data also indicated bimodal distributions in the ratios of DMA to InAs and to MMA. While the gene or genes responsible for arsenic methylation are still unknown, the results of our studies among the ethnic groups in this study are consistent with the presence of functional genetic polymorphisms in arsenic methylation leading to measurable differences in toxicity. This analysis highlights the need for continuing research on the health effects of As in humans using molecular epidemiologic methods

  6. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  7. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh

    International Nuclear Information System (INIS)

    Raml, Reingard; Rumpler, Alice; Goessler, Walter; Vahter, Marie; Li Li; Ochi, Takafumi; Francesconi, Kevin A.

    2007-01-01

    Over the last 6 years, much work on arsenic species in urine samples has been directed toward the determination of the reduced dimethylated arsenic species, DMA(III), because of its high toxicity and perceived key role in the metabolism of inorganic arsenic. Recent work, however, has suggested that DMA(III) may at times have been misidentified because its chromatographic properties can be similar to those of thio-dimethylarsinate (thio-DMA). We analyzed by HPLC-ICPMS (inductively coupled plasma mass spectrometry) urine samples from 75 arsenic-exposed women from Bangladesh with total arsenic concentrations ranging from 8 to 1034 μg As/L and found that thio-DMA was present in 44% of the samples at concentrations ranging mostly from trace amounts to 24 μg As/L (one sample contained 123 μg As/L). Cytotoxicity testing with HepG2 cells derived from human hepatocarcinoma indicated that thio-DMA was about 10-fold more cytotoxic than dimethylarsinate (DMA). The widespread occurrence of thio-DMA in urine from these arsenic-exposed women suggests that this arsenical may also be present in other urine samples and has so far escaped detection. The work highlights the need for analytical methods providing specific determinations of arsenic compounds in future studies on arsenic metabolism and toxicology

  8. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Raml, Reingard; Rumpler, Alice; Goessler, Walter [Karl-Franzens University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, 8010 Graz (Austria); Vahter, Marie; Li, Li [Institute of Environmental Medicine, Karolinska Institutet, PO Box 210, 17177 Stockholm (Sweden); Ochi, Takafumi [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195 (Japan); Francesconi, Kevin A. [Karl-Franzens University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, 8010 Graz (Austria)], E-mail: kevin.francesconi@uni-graz.at

    2007-08-01

    Over the last 6 years, much work on arsenic species in urine samples has been directed toward the determination of the reduced dimethylated arsenic species, DMA(III), because of its high toxicity and perceived key role in the metabolism of inorganic arsenic. Recent work, however, has suggested that DMA(III) may at times have been misidentified because its chromatographic properties can be similar to those of thio-dimethylarsinate (thio-DMA). We analyzed by HPLC-ICPMS (inductively coupled plasma mass spectrometry) urine samples from 75 arsenic-exposed women from Bangladesh with total arsenic concentrations ranging from 8 to 1034 {mu}g As/L and found that thio-DMA was present in 44% of the samples at concentrations ranging mostly from trace amounts to 24 {mu}g As/L (one sample contained 123 {mu}g As/L). Cytotoxicity testing with HepG2 cells derived from human hepatocarcinoma indicated that thio-DMA was about 10-fold more cytotoxic than dimethylarsinate (DMA). The widespread occurrence of thio-DMA in urine from these arsenic-exposed women suggests that this arsenical may also be present in other urine samples and has so far escaped detection. The work highlights the need for analytical methods providing specific determinations of arsenic compounds in future studies on arsenic metabolism and toxicology.

  9. Curcumin attenuates harmful effects of arsenic on neural stem/progenitor cells

    Directory of Open Access Journals (Sweden)

    Ali Jahanbazi Jahan-Abad

    2017-06-01

    Full Text Available Objective: Arsenic, an environmental pollutant, decreases neuronal migration as well as cellular maturation and inhibits the proliferation of neural progenitor cells. Curcumin has been described as an antioxidant and neuroprotective agent with strong therapeutic potential in some neurological disorders. Human adipose-derived stem cells (hADSCs, a source of multipotent stem cells, can self-renew and differentiate into neural cells. The aim of the present study was to investigate the preventive effect of curcumin against arsenic toxic effects on the viability, telomerase activity, and apoptosis of neural stem/progenitor cells (NSPCs derived from hADSCs. Materials and Methods: The characteristics of human adipose tissue were identified by immunocytochemistry for surface markers namely, CD105, CD73, and CD90. Using neurosphere assay, hADSCs were differentiated into neuronal cells. To characterize neural cells, expression of nestin, SOX2, MAP2, and GFAP were assessed by immunocytochemistry. Cytotoxicity and viability of NSPCs were evaluated by MTT assay. Reactive oxygen species (ROS generated by arsenic exposure, were measured and caspase 3/7 activity and caspase-3 processing as well as the telomerase activity were determined. Results: The isolated hADSCs positively expressed CD105, CD73, and CD90. Nestin, Sox2, GFAP, and MAP2 were expressed in the neurospheres derived from hADSCs. Curcumin/arsenic co-treatment significantly increased telomerase activity of NSPCs compared to arsenic group. Furthermore, curcumin significantly reduced arsenic-induced apoptosis (via inactivation of caspases as well as arsenic-associated ROS generation. Conclusion: Our findings revealed that curcumin has the potential to prevent harmful effects of arsenic on neurogenesis.

  10. Arsenic removal from alkaline leaching solution using Fe (III) precipitation.

    Science.gov (United States)

    Wang, Yongliang; Lv, Cuicui; Xiao, Li; Fu, Guoyan; Liu, Ya; Ye, Shufeng; Chen, Yunfa

    2018-02-02

    The alkaline leaching solution from arsenic-containing gold concentrate contains a large amount of arsenate ions, which should be removed because it is harmful to the production process and to the environment. In this study, conventional Fe (III) precipitation was used to remove arsenic from the leaching solution. The precipitation reaction was carried out at the normal temperature, and the effects of pH value and Fe/As ratio on the arsenic removal were investigated. The results show that the removal rate of arsenic is distinctive at different pH values, and the effect is best within the pH range of 5.25-5.96. The removal rate can be further increased by increasing the ratio of Fe/As. When the pH = 5.25-5.96 and Fe/As > 1.8, the arsenic in the solution can be reduced to below 5 mg/L. However, the crystallinity of ferric arsenate is poor, and the particle size is small, most of which is about 1 μm. The leaching toxicity test shows the leaching toxicity of precipitates gradually decreased by the increase of Fe/As. The precipitates can be stored safely as the ratio of Fe/As exceeded 2.5.

  11. Arsenic in the soils of Zimapan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ongley, Lois K. [Oak Hill High School, P.O. Box 400, Sabattus, ME 04280 (United States)]. E-mail: loisongley@earthlink.net; Sherman, Leslie [Department of Chemistry, Washington College, 300 Washington Avenue, Chestertown, MD 21620 (United States); Armienta, Aurora [Instituto de Geofisica, UNAM, Mexico D.F. 04510 (Mexico); Concilio, Amy [Department of Earth, Ecological, and Environmental Sciences, University of Toledo, Toledo, OH 43606 (United States); Salinas, Carrie Ferguson [Department of Agronomy and Environmental Management, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2007-02-15

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapan Valley range from 4 to 14 700 mg As kg{sup -1}. Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg{sup -1} only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment. -- Much of the arsenic is relatively immobile but presents long-term source of arsenic.

  12. Arsenic in the soils of Zimapan, Mexico

    International Nuclear Information System (INIS)

    Ongley, Lois K.; Sherman, Leslie; Armienta, Aurora; Concilio, Amy; Salinas, Carrie Ferguson

    2007-01-01

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapan Valley range from 4 to 14 700 mg As kg -1 . Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg -1 only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment. -- Much of the arsenic is relatively immobile but presents long-term source of arsenic

  13. Arsenic speciation and sorption in natural environments

    Science.gov (United States)

    Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources.

  14. Arsenic in rice: A cause for concern

    DEFF Research Database (Denmark)

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri

    2015-01-01

    Inorganic arsenic intake is likely to affect long-term health. High concentrations are found in some rice-based foods and drinks widely used in infants and young children. In order to reduce exposure we recommend avoidance of rice drinks for infants and young children. For all rice products, stri...

  15. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F. [China Medical University, Shenyang (China). Dept. for Occupational & Environmental Health

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  16. A new molybdenum trioxide hydrate MoO3.1/3H2O and a new monoclinic form of MoO3

    International Nuclear Information System (INIS)

    Harb, F.; Gerand, B.; Nowogrocki, G.; Figlarz, M.

    1986-01-01

    A new hydrate of molybdenum trioxide MoO 3 .1/3H 2 O has been obtained by hydrothermal treatment at 110 0 C of either aqueous suspensions of MoO 3 .2H 2 O or aqueous molybdic acid solutions. The hydrate crystallizes in the orthorhombic system, lattice parameters are given; a structural model is proposed by comparison with the isostructural WO 3 .1/3H 2 O phase. The dehydration of MoO 3 .1/3H 2 O leads to a new anhydrous molybdenum trioxide, monoclinic, the structure of which is of ReO 3 type [fr

  17. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Espenson, H. [Iowa State Univ., Ames, IA (United States)

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  18. An Artificial Channel Experiment for Purifying Drainage Water Containing Arsenic by Using Eleocharis acicularis

    Science.gov (United States)

    Okazaki, Kenji; Yamazaki, Shusaku; Kurahashi, Toshiyuki; Sakakibara, Masayuki

    2017-06-01

    This paper reports the results of an artificial channel experiment in which water containing arsenic was purified by using Eleocharis acicularis. The experiment was conducted to investigate the feasibility of phytoremediation by Eleocharis acicularis in civil engineering projects. In the experiment, 15 m2 of Eleocharis acicularis mats were laid in an artificial channel. Three sessions of artificial flow were implemented by leading 100.0 L of river water containing 0.234 mg/L of arsenic into the channel each time. The arsenic concentration of the leachate from the channel was analyzed. As the results of experiment, the arsenic concentrations of the leachate for the three sessions were 0.045 mg/L, 0.133 mg/L, and 0.249 mg/L. This shows that the arsenic concentration decreased during the first two sessions, whose flow totaled 200 L. The arsenic concentrations in the Eleocharis acicularis were 0.87 mg/kg, 1.01 mg/kg, and 4.16 mg/kg, which show that the plant absorbs arsenic. Moreover, it was found that the amount of sample water was reduced through evapotranspiration from the plant and the artificial channel.

  19. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.; Van Halem, Doris; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  20. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.

    2012-06-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  1. Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan

    International Nuclear Information System (INIS)

    Aggarwal, Manoj; Naraharisetti, Suresh Babu; Dandapat, S.; Degen, G.H.; Malik, J.K.

    2008-01-01

    The metalloid arsenic and the chlorinated insecticide endosulfan are common environmental contaminants. Humans, animals, and birds are exposed to these chemicals through water and food. Although health effects due to either arsenic or endosulfan exposure are documented, the toxicological impact of co-exposure to these environmental pollutants is unpredictable and unknown. The present study was undertaken to assess whether concurrent exposure to arsenic and endosulfan induces significant alterations in immunological functions. Day-old chicks were exposed to 3.7 ppm of arsenic via drinking water and to 30 ppm of endosulfan-mixed feed either individually or concurrently for up to 60 days. All the chicks were vaccinated with Ranikhet disease virus (F-strain; RD-F) on days 1 and 30. During the course of study and at term, parameters of cellular and humoral immunity were determined. None of the treatments altered the absolute body weight or body weight gain, except arsenic significantly reduced weight gain on day 60. Absolute, but not the relative, weights of spleen, thymus and bursa of Fabricius were significantly reduced in all the treatment groups. The metalloid and insecticide combination significantly depressed the ability of peripheral blood and splenic lymphocytes to proliferate in response to antigen RD-F and mitogen Con A. The delayed type hypersensitivity response to 2,4-dinitro-1-chlorobenzene or to PHA-P was also significantly decreased. Nitric oxide production by RD-F or lipopolysaccharide-stimulated peripheral blood and splenic mononuclear cells was significantly suppressed following concurrent exposure to arsenic and endosulfan. Furthermore, the combined exposure also decreased the antibody response to RD-F. The suppression of cellular and humoral immune responses was also evident following administration of individual compounds, and it was not exacerbated following concurrent exposure. To our knowledge, this is the first report describing the suppression

  2. Method of arsenic removal from water

    Science.gov (United States)

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  3. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    International Nuclear Information System (INIS)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-01-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  4. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Pillai, Ayyappan Harikrishna [Division of Animal Biochemistry, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Harikumar, Sankaran Kutty; Mishra, Santosh Kumar [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India); Sarkar, Souvendra Nath, E-mail: snsarkar1911@rediffmail.com [Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh (India)

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  5. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    Science.gov (United States)

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-05

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pHremoves iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh

    Directory of Open Access Journals (Sweden)

    Edwin T. Gnanaprakasam

    2017-11-01

    Full Text Available Long-term exposure to trace levels of arsenic (As in shallow groundwater used for drinking and irrigation puts millions of people at risk of chronic disease. Although microbial processes are implicated in mobilizing arsenic from aquifer sediments into groundwater, the precise mechanism remains ambiguous. The goal of this work was to target, for the first time, a comprehensive suite of state-of-the-art molecular techniques in order to better constrain the relationship between indigenous microbial communities and the iron and arsenic mineral phases present in sediments at two well-characterized arsenic-impacted aquifers in Bangladesh. At both sites, arsenate [As(V] was the major species of As present in sediments at depths with low aqueous As concentrations, while most sediment As was arsenite [As(III] at depths with elevated aqueous As concentrations. This is consistent with a role for the microbial As(V reduction in mobilizing arsenic. 16S rRNA gene analysis indicates that the arsenic-rich sediments were colonized by diverse bacterial communities implicated in both dissimilatory Fe(III and As(V reduction, while the correlation analyses involved phylogenetic groups not normally associated with As mobilization. Findings suggest that direct As redox transformations are central to arsenic fate and transport and that there is a residual reactive pool of both As(V and Fe(III in deeper sediments that could be released by microbial respiration in response to hydrologic perturbation, such as increased groundwater pumping that introduces reactive organic carbon to depth.

  7. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana.

    Science.gov (United States)

    Nahar, Noor; Rahman, Aminur; Nawani, Neelu N; Ghosh, Sibdas; Mandal, Abul

    2017-11-01

    We have cloned, characterized and transformed the AtACR2 gene (arsenic reductase 2) of Arabidopsis thaliana into the genome of tobacco (Nicotiana tabacum, var Sumsun). Our results revealed that the transgenic tobacco plants are more tolerant to arsenic than the wild type ones. These plants can grow on culture medium containing 200μM arsenate, whereas the wild type can barely survive under this condition. Furthermore, when exposed to 100μM arsenate for 35days the amount of arsenic accumulated in the shoots of transgenic plants was significantly lower (28μg/g d wt.) than that found in the shoots of non-transgenic controls (40μg/g d wt.). However, the arsenic content in the roots of transgenic plants was significantly higher (2400μg/g d. wt.) than that (2100μg/g d. wt.) observed in roots of wild type plants. We have demonstrated that Arabidopsis thaliana AtACR2 gene is a potential candidate for genetic engineering of plants to develop new crop cultivars that can be grown on arsenic contaminated fields to reduce arsenic content of the soil and can become a source of food containing no arsenic or exhibiting substantially reduced amount of this metalloid. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    Science.gov (United States)

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  9. Pulp-Capping with Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Peycheva Kalina

    2015-11-01

    Full Text Available There are two considerations for direct pulp capping - accidental mechanical pulp exposure and exposure caused by caries. Mineral trioxide aggregate (MTA was used as pulp-capping material to preserve the vitality of the pulpal tissues. Follow-up examinations revealed that treatment was successful in preserving pulpal vitality and continued development of the tooth. On the basis of available information, it appears that MTA is the material of choice for some clinical applications. Material and methods: Cases 18 - 8 teeth with grey MTA, 10 teeth with white MTA; diagnose: Pulpitis chronica ulcerosa, Electro pulpal test (EOD - 30-35 μA, pre-clinical X-ray - without changes in the structures, follow ups for 4 years. Successful treatments: without clinical symptoms and changes in the X-rays: 5 teeth with grey MTA, 8 teeth with white MTA for period of 4 years. Unsuccessful treatments: Clinical symptoms and sometimes changes in the X-ray: 3 with grey MTA, 2 with white MTA. MTA is an appropriate material for pulp-capping and follow-up examinations revealed that the treatment was successful in preserving pulpal vitality.

  10. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ya-Tang [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genomics Research Center, Academia Sinica, Taiwan (China); Chen, Chien-Jen [Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genomics Research Center, Academia Sinica, Taiwan (China); Li, Wan-Fen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Hsu, Ling-I [Genomics Research Center, Academia Sinica, Taiwan (China); Tsai, Li-Yu; Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Taiwan (China); Sun, Chien-Wen [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Chen, Wei J., E-mail: wjchen@ntu.edu.tw [Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Genetic Epidemiology Core Laboratory, National Taiwan University Center for Genomic Medicine, Taiwan (China); Wang, Shu-Li, E-mail: slwang@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan (China); Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan (China)

    2012-08-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  11. Elevated lactate dehydrogenase activity and increased cardiovascular mortality in the arsenic-endemic areas of southwestern Taiwan

    International Nuclear Information System (INIS)

    Liao, Ya-Tang; Chen, Chien-Jen; Li, Wan-Fen; Hsu, Ling-I; Tsai, Li-Yu; Huang, Yeou-Lih; Sun, Chien-Wen; Chen, Wei J.; Wang, Shu-Li

    2012-01-01

    Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan were recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.

  12. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    Science.gov (United States)

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  13. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    International Nuclear Information System (INIS)

    Kitchin, Kirk T.; Wallace, Kathleen

    2008-01-01

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive 73 As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of 73 As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H 2 O 2 into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo

  14. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  15. Impacts of biochar and oyster shells waste on the immobilization of arsenic in highly contaminated soils.

    Science.gov (United States)

    Chen, Yongshan; Xu, Jinghua; Lv, Zhengyong; Xie, Ruijia; Huang, Liumei; Jiang, Jinping

    2018-07-01

    Soil contamination is a serious problem with deleterious impacts on global sustainability. Readily available, economic, and highly effective technologies are therefore urgently needed for the rehabilitation of contaminated sites. In this study, two readily available materials prepared from bio-wastes, namely biochar and oyster shell waste, were evaluated as soil amendments to immobilize arsenic in a highly As-contaminated soil (up to 15,000 mgAs/kg). Both biochar and oyster shell waste can effectively reduce arsenic leachability in acid soils. After application of the amendments (2-4% addition, w/w), the exchangeable arsenic fraction decreased from 105.8 to 54.0 mg/kg. The application of 2%biochar +2% oyster shell waste most effectively reduced As levels in the column leaching test by reducing the arsenic concentration in the porewater by 62.3% compared with the treatment without amendments. Biochar and oyster shell waste also reduced soluble As(III) from 374.9 ± 18.8 μg/L to 185.9 ± 16.8 μg/L and As(V) from 119.8 ± 13.0 μg/L to 56.4 ± 2.6 μg/L at a pH value of 4-5. The treatment using 4% (w/w) amendments did not result in sufficient As immobilization in highly contaminated soils; high soluble arsenic concentrations (upto193.0 μg/L)were found in the soil leachate, particularly in the form of As(III), indicating a significant potential to pollute shallow groundwater aquifers. This study provides valuable insights into the use of cost-effective and readily available materials for soil remediation and investigates the mechanisms underlying arsenic immobilization in acidic soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Geomicrobial interactions with arsenic and antimony

    Science.gov (United States)

    Oremland, Ronald S.

    2015-01-01

    Although arsenic and antimony are generally toxic to life, some microorganisms exist that can metabolize certain forms of these elements. Some can use arsenite or stibnite as potential or sole energy sources, whereas others can use aresenate and antimonite (as was discovered only recently) as terminal electron acceptors. Still other microbes can metabolize arsenic and antimony compounds to detoxify them. These reactions are important from a geomicrobial standpoint because they indicate that a number of microbes contribute to arsenic and antimony mobilization or immobilization in the environment and play a role in arsenic and antimony cycles. Recent reviews include five on prokaryotes and arsenic metabolism, a review with an arsenic perspective on biomining, and a series on environmental antimony, including one about antimony and its interaction with microbiota.

  17. Arsenic in groundwater of the Red River Floodplain, Vietnam

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Larsen, Flemming; Jessen, Søren

    2007-01-01

    The mobilization of arsenic (As) to the groundwater was studied in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. Results show an anoxic aquifer featuring organic carbon decomposition with redox zonation dominated by the reduction of Fe-oxides and methanogenesis....... The concentration of As increases over depth to a concentration of up to 550 μg/L. Most As is present as As(III) but some As(V) is always found. Arsenic correlates well with NH4, relating its release to organic matter decomposition and the source of As appears to be the Fe-oxides being reduced....

  18. Pilot demonstrations of arsenic treatment technologies in U.S. Department of Energy Arsenic Water Technology Partnership program.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Aragon, Alicia R.; Siegal Malcolm D.; Dwyer, Brian P.

    2005-01-01

    The Arsenic Water Technology Partnership program is a multi-year program funded by a congressional appropriation through the Department of Energy. The program is designed to move technologies from benchscale tests to field demonstrations. It will enable water utilities, particularly those serving small, rural communities and Indian tribes, to implement the most cost-effective solutions to their arsenic treatment needs. As part of the Arsenic Water Technology Partnership program, Sandia National Laboratories is carrying out field demonstration testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. The scope for this work includes: (1) Selection of sites and identification of technologies for pilot demonstrations; (2) Laboratory studies to develop rapid small-scale test methods; and (3) Pilot-scale studies at community sites involving side-by-side tests of innovative technologies. The goal of site selection is to identify sites that allow examination of treatment processes and systems under conditions that are relevant to different geochemical settings throughout the country. A number of candidate sites have been identified through reviews of groundwater quality databases, conference proceedings and discussions with state and local officials. These include sites in New Mexico, Arizona, Colorado, Oklahoma, Michigan, and California. Candidate technologies for the pilot tests are being reviewed through vendor forums, proof-of-principle benchscale studies managed by the American Water Works Association Research Foundation (AwwaRF) and the WERC design contest. The review considers as many potential technologies as possible and screens out unsuitable ones by considering data from past performance testing, expected costs, complexity of operation and maturity of the technology. The pilot test configurations will depend on the site-specific conditions such as access, power availability

  19. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan

    International Nuclear Information System (INIS)

    Tseng, C.-H.; Huang, Y.-K.; Huang, Y.-L.; Chung, C.-J.; Yang, M.-H.; Chen, C.-J.; Hsueh, Y.-M.

    2005-01-01

    Long-term exposure to ingested inorganic arsenic is associated with peripheral vascular disease (PVD) in the blackfoot disease (BFD)-hyperendemic area in Taiwan. This study further examined the interaction between arsenic exposure and urinary arsenic speciation on the risk of PVD. A total of 479 (220 men and 259 women) adults residing in the BFD-hyperendemic area were studied. Doppler ultrasound was used to diagnose PVD. Arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE). Urinary levels of total arsenic, inorganic arsenite (As III ) and arsenate (As V ), monomethylarsonic acid (MMA V ), and dimethylarsinic acid (DMA V ) were determined. Primary methylation index [PMI = MMA V /(As III + As V )] and secondary methylation index (SMI = DMA V /MMA V ) were calculated. The association between PVD and urinary arsenic parameters was evaluated with consideration of the interaction with CAE and the confounding effects of age, sex, body mass index, total cholesterol, triglycerides, cigarette smoking, and alcohol consumption. Results showed that aging was associated with a diminishing capacity to methylate inorganic arsenic and women possessed a more efficient arsenic methylation capacity than men did. PVD risk increased with a higher CAE and a lower capacity to methylate arsenic to DMA V . The multivariate-adjusted odds ratios for CAE of 0, 0.1-15.4, and >15.4 mg/L x year were 1.00, 3.41 (0.74-15.78), and 4.62 (0.96-22.21), respectively (P 6.93, PMI > 1.77 and SMI > 6.93, PMI > 1.77 and SMI ≤ 6.93, and PMI ≤ 1.77 and SMI ≤ 6.93 were 1.00, 2.93 (0.90-9.52), 2.85 (1.05-7.73), and 3.60 (1.12-11.56), respectively (P V have a higher risk of developing PVD in the BFD-hyperendemic area in Taiwan

  20. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Toru [National Institute for Environmental Studies, Environmental Health Sciences Division, Ibaraki (Japan); Chiba University, Faculty of Pharmaceutical Sciences, Chiba (Japan); Kobayashi, Yayoi; Cui, Xing; Hirano, Seishiro [National Institute for Environmental Studies, Environmental Health Sciences Division, Ibaraki (Japan)

    2005-04-01

    The metabolism of arsenic is generally accepted to proceed by repetitive reduction and oxidative methylation; the latter is mediated by arsenic methyltransferase (Cyt19). In human urine, the major metabolites of inorganic arsenicals such as arsenite (iAs{sup III}) and arsenate (iAs{sup V}) are monomethylarsonic acid (MMA{sup V}) and dimethylarsinic acid (DMA{sup V}). On the other hand, in rat bile, the major metabolites of iAs{sup III} have been reported to be arsenic-glutathione (As-GSH) complexes. In the present study we investigate whether these As-GSH complexes are substrates for arsenic methyltransferase by using human recombinant Cyt19. Analyses by high-performance liquid chromatography-inductively coupled plasma mass spectrometry suggested that arsenic triglutathione (ATG) was generated nonenzymatically from iAs{sup III} when GSH was present at concentrations 2 mM or higher. Human recombinant Cyt19 catalyzed transfer of a methyl group from S-adenosyl-l-methionine to arsenic and produced monomethyl and dimethyl arsenicals. The methylation of arsenic was catalyzed by Cyt19 only when ATG was present in the reaction mixture. Moreover, monomethylarsonic diglutathione (MADG) was a substrate of Cyt19 for further methylation to dimethylarsinic glutathione (DMAG). On the other hand, monomethylarsonous acid (MMA{sup III}), a hydrolysis product of MADG, was not methylated to dimethyl arsenical by Cyt19. These results suggest that As-GSH complexes such as ATG and MADG were converted by Cyt19 to MADG and DMAG, respectively. Both MADG and DMAG were unstable in solution when the GSH concentration was lower than 1 mM, and were hydrolyzed and oxidized to MMA{sup V} and DMA{sup V}, respectively. Metabolism of iAs{sup III} to methylated arsenicals by Cyt19 was via ATG and MADG rather than by oxidative methylation of iAs{sup III} and MMA{sup III}. (orig.)

  1. The need for congressional action to finance arsenic reductions in drinking water.

    Science.gov (United States)

    Levine, Rebecca Leah

    2012-11-01

    Many public water systems in the U.S. are unsafe because the communities cannot afford to comply with the current 10 parts per billion (ppb) federal arsenic standard for drinking water. Communities unable to afford improvements remain vulnerable to adverse health effects associated with higher levels of arsenic exposure. Scientific and bipartisan political consensus exists that the arsenic standard should not be less stringent than 10 ppb, and new data suggest additional adverse health effects related to arsenic exposure through drinking water. Congress has failed to reauthorize the Drinking Water State Revolving Fund program to provide reliable funding to promote compliance and reduce the risk of adverse health effects. Congress's recent ad hoc appropriations do not allow long-term planning and ongoing monitoring and maintenance. Investing in water infrastructure will lower health care costs and create American jobs. Delaying necessary upgrades will only increase the costs of improvements over time.

  2. Microvascular dysfunction with increased vascular leakage response in mice systemically exposed to arsenic.

    Science.gov (United States)

    Chen, Shih-Chieh; Huang, Shin-Yin; Lu, Chi-Yu; Hsu, Ya-Hung; Wang, Dean-Chuan

    2014-09-01

    The mechanisms underlying cardiovascular disease induced by arsenic exposure are not completely understood. The objectives of this study were to investigate whether arsenic-fed mice have an increased vascular leakage response to vasoactive agents and whether enhanced type-2 protein phosphatase (PP2A) activity is involved in mustard oil-induced leakage. ICR mice were fed water or sodium arsenite (20 mg/kg) for 4 or 8 weeks. The leakage response to vasoactive agents was quantified using the Evans blue (EB) technique or vascular labeling with carbon particles. Increased EB leakage and high density of carbon-labeled microvessels were detected in arsenic-fed mice treated with mustard oil. Histamine induced significantly higher vascular leakage in arsenic-fed mice than in water-fed mice. Pretreatment with the PP2A inhibitor okadaic acid or the neurokinin 1 receptor (NK1R) blocker RP67580 significantly reduced mustard oil-induced vascular leakage in arsenic-fed mice. The protein levels of PP2Ac and NK1R were similar in both groups. PP2A activity was significantly higher in the arsenic-fed mice compared with the control group. These findings indicate that microvessels generally respond to vasoactive agents, and that the increased PP2A activity is involved in mustard oil-induced vascular leakage in arsenic-fed mice. Arsenic may initiate endothelial dysfunction, resulting in vascular leakage in response to vasoactive agents.

  3. Arsenic in Drinking Water—A Global Environmental Problem

    Science.gov (United States)

    Shaofen Wang, Joanna; Wai, Chien M.

    2004-02-01

    Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.

  4. [Study of relationship between arsenic methylation and skin lesion in a population with long-term high arsenic exposure].

    Science.gov (United States)

    Su, Liqin; Cheng, Yibin; Lin, Shaobin; Wu, Chuanye

    2007-05-01

    To investigate the difference of arsenic metabolism in populations with long-term high arsenic exposure and explore the relationship between arsenic metabolism diversity and skin lesion. 327 residents in an arsenic polluted village were voluntarily enrolled in this study. Questionnaire survey and medical examination were carried out to learn basic information and detect skin lesions. Urinary inorganic and methylated arsenic were speciated by high performance liquid chromatography combined with hydride-generation atomic fluorescence spectrometry. Total arsenic concentration in hair was determined with DDC-Ag method. Hair arsenic content of studied polutions was generally high, but no significant difference were found among the studied four groups. MMA and DMA concentration in urine increased with studied polution age, and were positively related with skin lesion grade. The relative proportion of MMA in serious skin lesion group was significantly higher than in other 3 groups, while DMA/MMA ratio was significantly lower than control and mild group. The relative proportion of MMA was positively related with skin lesion grade, DMA/ MMA ratio was negatively related with skin lesion grade. Males could have higher arsenic cumulation and lower methylation capacity than those of females. The population of above 40 years old may have higher methylation capacity than those of adults below 40yeas old. Smokers and drinkers seemed lower methylation capacity than those of non-smokers and non-drinkers respectively. The methylation of arsenic could affect by several factors, including age gender, smoking and drinking. Arsenic methylation copacity mey be associated with skin lesion induced by arsenic exposure.

  5. Arsenic speciation analysis of urine samples from individuals living in an arsenic-contaminated area in Bangladesh.

    Science.gov (United States)

    Hata, Akihisa; Yamanaka, Kenzo; Habib, Mohamed Ahsan; Endo, Yoko; Fujitani, Noboru; Endo, Ginji

    2012-05-01

    Chronic inorganic arsenic (iAs) exposure currently affects tens of millions of people worldwide. To accurately determine the proportion of urinary arsenic metabolites in residents continuously exposed to iAs, we performed arsenic speciation analysis of the urine of these individuals and determined whether a correlation exists between the concentration of iAs in drinking water and the urinary arsenic species content. The subjects were 165 married couples who had lived in the Pabna District in Bangladesh for more than 5 years. Arsenic species were measured using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. The median iAs concentration in drinking water was 55 μgAs/L (range 47.9-153.4 μgAs/L), respectively. No arsenobetaine or arsenocholine was detected. The concentrations of the 4 urinary arsenic species were significantly and linearly related to each other. The urinary concentrations of total arsenic and each species were significantly correlated with the iAs concentration of drinking water. All urinary arsenic species are well correlated with each other and with iAs in drinking water. The most significant linear relationship existed between the iAs concentration in drinking water and urinary iAs + MMA concentration. From these results, combined with the effects of seafood ingestion, the best biomarker of iAs exposure is urinary iAs + MMA concentration.

  6. Exiguobacterium mediated arsenic removal and its protective effect against arsenic induced toxicity and oxidative damage in freshwater fish, Channa striata

    Directory of Open Access Journals (Sweden)

    Neha Pandey

    2015-01-01

    Full Text Available Arsenic is a toxic metalloid existing widely in the environment, and its removal from contaminated water has become a global challenge. The use of bacteria in this regard finds a promising solution. In the present study, Exiguobacterium sp. As-9, which is an arsenic resistant bacterium, was selected with respect to its arsenic removal efficiency. Quantification of arsenic in the water treated with bacterium showed that Exiguobacterium efficiently removed up to 99% of arsenic in less than 20 h. In order to reveal the possible effect of this bacterium in removal of arsenic from water and protecting fishes from the detrimental effects of arsenic, we initiated a range of studies on fresh water fish, Channa striata. It was observed that the fishes introduced into bacteria treated water displayed no symptoms of arsenic toxicity which was marked by a decreased oxidative damage, whereas the fishes exposed to arsenic revealed a significant (p < 0.05 increase in the oxidative stress together with the elevated levels of malondialdehyde. Determination of the bioaccumulation of arsenic in the liver tissues of C. striata using hydride generation atomic absorption spectrophotometry (HG-AAS revealed an increased As(III accumulation in the fishes exposed to arsenic whereas the arsenic level in the control and bacteria treated fishes were found below the detectable limit. In conclusion, this study presents the strategies of bacterial arsenic removal with possible directions for future research.

  7. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water

    NARCIS (Netherlands)

    Cavalca, L.; Corsini, A.; Zaccheo, P.; Andreoni, V.; Muyzer, G.

    2013-01-01

    Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This

  8. Enhanced phytoremediation of arsenic contaminated land.

    Science.gov (United States)

    Jankong, P; Visoottiviseth, P; Khokiattiwong, S

    2007-08-01

    In an attempt to clean up arsenic (As) contaminated soil, the effects of phosphorus (P) fertilizer and rhizosphere microbes on arsenic accumulation by the silverback fern, Pityrogramma calomelanos, were investigated in both greenhouse and field experiments. Field experiments were conducted in Ron Phibun District, an As-contaminated area in Thailand. Soil (136-269 microg As g(-1)) was collected there and used in the greenhouse experiment. Rhizosphere microbes (bacteria and fungi) were isolated from roots of P. calomelanos growing in Ron Phibun District. The results showed that P-fertilizer significantly increased plant biomass and As accumulation of the experimental P. calomelanos. Rhizobacteria increased significantly the biomass and As content of the test plants. Thus, P-fertilizer and rhizosphere bacteria enhanced As-phytoextraction. In contrast, rhizofungi reduced significantly As concentration in plants but increased plant biomass. Therefore, rhizosphere fungi exerted their effects on phytostabilization.

  9. Protective effects of B vitamins and antioxidants on the risk of arsenic-related skin lesions in Bangladesh.

    Science.gov (United States)

    Zablotska, Lydia B; Chen, Yu; Graziano, Joseph H; Parvez, Faruque; van Geen, Alexander; Howe, Geoffrey R; Ahsan, Habibul

    2008-08-01

    An estimated 25-40 million of the 127 million people of Bangladesh have been exposed to high levels of naturally occurring arsenic from drinking groundwater. The mitigating effects of diet on arsenic-related premalignant skin lesions are largely unknown. The purpose of this study was to clarify the effects of the vitamin B group (thiamin, riboflavin, niacin, pyridoxine, and cobalamin) and antioxidants (vitamins A, C, and E) on arsenic-related skin lesions. We performed a cross-sectional study using baseline data from the Health Effects of Arsenic Longitudinal Study (HEALS), 2000-2002, with individual-level, time-weighted measures of arsenic exposure from drinking water. A total of 14,828 individuals meeting a set of eligibility criteria were identified among 65,876 users of all 5,996 tube wells in the 25-km(2) area of Araihazar, Bangladesh; 11,746 were recruited into the study. This analysis is based on 10,628 subjects (90.5%) with nonmissing dietary data. Skin lesions were identified according to a structured clinical protocol during screening and confirmed with further clinical review. Riboflavin, pyridoxine, folic acid, and vitamins A, C, and E significantly modified risk of arsenic-related skin lesions. The deleterious effect of ingested arsenic, at a given exposure level, was significantly reduced (ranging from 46% reduction for pyridoxine to 68% for vitamin C) for persons in the highest quintiles of vitamin intake. Intakes of B-vitamins and antioxidants, at doses greater than the current recommended daily amounts for the country, may reduce the risk of arsenic-related skin lesions in Bangladesh.

  10. Arsenic contaminated groundwater and its treatment options in Bangladesh.

    Science.gov (United States)

    Jiang, Jia-Qian; Ashekuzzaman, S M; Jiang, Anlun; Sharifuzzaman, S M; Chowdhury, Sayedur Rahman

    2012-12-20

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues.

  11. Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh

    Science.gov (United States)

    Jiang, Jia-Qian; Ashekuzzaman, S. M.; Jiang, Anlun; Sharifuzzaman, S. M.; Chowdhury, Sayedur Rahman

    2012-01-01

    Arsenic (As) causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues. PMID:23343979

  12. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    MATHIEU, JOHANNA L.; GADGIL, ASHOK J.; ADDY, SUSAN E.A.; KOWOLIK, KRISTIN

    2010-06-01

    We describe laboratory and field results of a novel arsenic removal adsorbent called 'Arsenic Removal Using Bottom Ash' (ARUBA). ARUBA is prepared by coating particles of coal bottom ash, a waste material from coal fired power plants, with iron (hydr)oxide. The coating process is simple and conducted at room temperature and atmospheric pressure. Material costs for ARUBA are estimated to be low (~;;$0.08 per kg) and arsenic remediation with ARUBA has the potential to be affordable to resource-constrained communities. ARUBA is used for removing arsenic via a dispersal-and-removal process, and we envision that ARUBA would be used in community-scale water treatment centers. We show that ARUBA is able to reduce arsenic concentrations in contaminated Bangladesh groundwater to below the Bangladesh standard of 50 ppb. Using the Langmuir isotherm (R2 = 0.77) ARUBA's adsorption capacity in treating real groundwater is 2.6x10-6 mol/g (0.20 mg/g). Time-to-90percent (defined as the time interval for ARUBA to remove 90percent of the total amount of arsenic that is removed at equilibrium) is less than one hour. Reaction rates (pseudo-second-order kinetic model, R2>_ 0.99) increase from 2.4x105 to 7.2x105 g mol-1 min-1 as the groundwater arsenic concentration decreases from 560 to 170 ppb. We show that ARUBA's arsenic adsorption density (AAD), defined as the milligrams of arsenic removed at equilibrium per gram of ARUBA added, is linearly dependent on the initial arsenic concentration of the groundwater sample, for initial arsenic concentrations of up to 1600 ppb and an ARUBA dose of 4.0 g/L. This makes it easy to determine the amount of ARUBA required to treat a groundwater source when its arsenic concentration is known and less than 1600 ppb. Storing contaminated groundwater for two to three days before treatment is seen to significantly increase ARUBA's AAD. ARUBA can be separated from treated water by coagulation and clarification, which is expected to

  13. Arsenic and drinking water. Part 1. A review of the source, distribution and behaviour of arsenic in the environment; Arsen und Trinkwasser. Teil 1. Ein Ueberblick ueber Vorkommen, Verteilung und Verhalten von Arsen in der Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Oberacker, F.; Maier, D. [Heinrich-Sontheimer-Lab., DVGW-Technologiezentrum Wasser, Karlsruhe (Germany); Maier, M. [Stadtwerke Karlsruhe GmbH, Karlsruhe (Germany)

    2002-11-01

    Arsenic is ubiquituously distributed in our environment and is subject to continuous bio-geochemical cycling. Besides the acute toxicity of arsenic its chronic effects are of special importance. The permanent uptake with drinking water for example might cause cancer. Today, arsenic compounds hardly serve as pesticides anymore, although chromated copper arsenate is still used to preserve wood. Furthermore, arsenic is used in the alloy, glass and semiconductor industry. The main part of the earths' arsenic resources are bound to sulfur in the lithosphere. By means of rock weathering and volcanism it is transferred into pedo-, hydro- and atmosphere, where it is mainly bound to oxygen. Microorganisms are able to methylate the arsenic, whereby gaseous arsenic compounds are carried into the atmosphere. Also, it is released from the lithosphere through anthropogenic mining activities, although only for a small part of the released amount useful applications exist. The arsenic behaviour in natural waters is closely related to sulfur on the one hand and to iron oxides on the other. Under strongly reducing conditions the arsenic is precipitated as sulfide, while under oxidising conditions it is adsorbed to the surfaces of iron oxides. Therefore, under aerobic conditions the arsenic concentrations of aqueous solutions are controlled by these adsorption processes rather than by the solubility of solid arsenic phases. Manganese oxides also play an important role as they are able to rapidly oxidise As(III) to As(V). These processes of release and fixation of arsenic in the nature must be studied carefully, because they are applied for arsenic elimination during drinking water production as well. (orig.)

  14. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  15. Proteomic profiling reveals candidate markers for arsenic-induced skin keratosis.

    Science.gov (United States)

    Guo, Zhiling; Hu, Qin; Tian, Jijing; Yan, Li; Jing, Chuanyong; Xie, Heidi Qunhui; Bao, Wenjun; Rice, Robert H; Zhao, Bin; Jiang, Guibin

    2016-11-01

    Proteomics technology is an attractive biomarker candidate discovery tool that can be applied to study large sets of biological molecules. To identify novel biomarkers and molecular targets in arsenic-induced skin lesions, we have determined the protein profile of arsenic-affected human epidermal stratum corneum by shotgun proteomics. Samples of palm and foot sole from healthy subjects were analyzed, demonstrating similar protein patterns in palm and sole. Samples were collected from the palms of subjects with arsenic keratosis (lesional and adjacent non-lesional samples) and arsenic-exposed subjects without lesions (normal). Samples from non-exposed healthy individuals served as controls. We found that three proteins in arsenic-exposed lesional epidermis were consistently distinguishably expressed from the unaffected epidermis. One of these proteins, the cadherin-like transmembrane glycoprotein, desmoglein 1 (DSG1) was suppressed. Down-regulation of DSG1 may lead to reduced cell-cell adhesion, resulting in abnormal epidermal differentiation. The expression of keratin 6c (KRT6C) and fatty acid binding protein 5 (FABP5) were significantly increased. FABP5 is an intracellular lipid chaperone that plays an essential role in fatty acid metabolism in human skin. This raises a possibility that overexpression of FABP5 may affect the proliferation or differentiation of keratinocytes by altering lipid metabolism. KRT6C is a constituent of the cytoskeleton that maintains epidermal integrity and cohesion. Abnormal expression of KRT6C may affect its structural role in the epidermis. Our findings suggest an important approach for future studies of arsenic-mediated toxicity and skin cancer, where certain proteins may represent useful biomarkers of early diagnoses in high-risk populations and hopefully new treatment targets. Further studies are required to understand the biological role of these markers in skin pathogenesis from arsenic exposure. Copyright © 2016 Elsevier Ltd

  16. Linking Arsenic Metabolism and Toxic Effects

    Science.gov (United States)

    Although arsenic has been long recognized as a toxicant and a carcinogen, the molecular basis for few of its adverse effects are well understood. Like other metalloids, arsenic undergoes extensive metabolism involving oxidation state changes and formation of methyl-arsenic bonds ...

  17. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  18. Production of selenium-72 and arsenic-72

    Science.gov (United States)

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  19. Chronic natural arsenic exposure affecting histoarchitecture of gonads in Black Bengal goats (Capra aegagrushircus

    Directory of Open Access Journals (Sweden)

    Md. Abdul Wares

    2015-06-01

    Full Text Available Arsenic is a major water pollutant that may cause serious health hazard (e.g., infertility in human and animal. We evaluated the changes in histoarchitecture of testes and ovaries of adult Black Bengal goats (n=10 reared in arsenic affected areas in Bangladesh. Grossly, we found insignificant variations among the testes and ovaries, but histological evaluation revealed an extensive alteration in morphology of both testes and ovaries in the arsenic affected goats. In testes, the thickening of tunica albugenia and trabeculae, widening of intertubular space between seminiferous tubules, and narrowing in diameter of seminiferous tubules were observed. In ovaries of arsenic affected goats, significant decrease in number of primary follicles and antral follicles were observed. The diameters of secondary and antral follicles were significantly reduced. The granulosa layer of antral follicles showed marked thickening. The findings indicate that chronic arsenic exposure alters the histoarchitecture of both male and female gonads in Black Bengal goat, and thereby may affect their reproductive performance.

  20. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    International Nuclear Information System (INIS)

    Sun Yang; Kojima, Chikara; Chignell, Colin; Mason, Ronald; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm 2 ) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: → Arsenic transformation adapted to UV-induced apoptosis. → Arsenic transformation diminished oxidant response. → Arsenic transformation enhanced UV-induced DNA damage.

  1. Changes in Serum Adiponectin in Mice Chronically Exposed to Inorganic Arsenic in Drinking Water.

    Science.gov (United States)

    Song, Xuanbo; Li, Ying; Liu, Junqiu; Ji, Xiaohong; Zhao, Lijun; Wei, Yudan

    2017-09-01

    Cardiovascular disease and diabetes mellitus are prominent features of glucose and lipid metabolism disorders. Adiponectin is a key adipokine that is largely involved in glucose and lipid metabolism processes. A growing body of evidence suggests that chronic exposure to inorganic arsenic is associated with cardiovascular disease and diabetes mellitus. We hypothesized that arsenic exposure may increase the risk of cardiovascular disease and diabetes mellitus by affecting the level of adiponectin. In this study, we examined serum adiponectin levels, as well as serum levels of metabolic measures (including fasting blood glucose, insulin, total cholesterol, triglyceride, and high-density lipoprotein (HDL)-cholesterol) in C57BL/6 mice exposed to inorganic arsenic in drinking water (5 and 50 ppm NaAsO 2 ) for 18 weeks. Body mass and adiposity were monitored throughout the study. We found no significant changes in serum insulin and glucose levels in mice treated with arsenic for 18 weeks. However, arsenic exposure decreased serum levels of adiponectin, triglyceride, and HDL-cholesterol. Further, an inverse relationship was observed between urinary concentrations of total arsenic and serum levels of adiponectin. This study suggests that arsenic exposure could disturb the metabolism of lipids and increase the risk of cardiovascular disease by reducing the level of adiponectin.

  2. ARSENIC RESEARCH AT GWERD

    Science.gov (United States)

    Abstract - The presentation will summarize the arsenic research program at the Ground Water & Ecosystems Restoration Division of the National Risk Management Research Laboratory of USEPA. Topics include use of permeable reactive barriers for in situ arsenic remediation in ground...

  3. Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio development.

    Directory of Open Access Journals (Sweden)

    Laura M Beaver

    Full Text Available Zinc deficiency and chronic low level exposures to inorganic arsenic in drinking water are both significant public health concerns that affect millions of people including pregnant women. These two conditions can co-exist in the human population but little is known about their interaction, and in particular, whether zinc deficiency sensitizes individuals to arsenic exposure and toxicity, especially during critical windows of development. To address this, we utilized the Danio rerio (zebrafish model to test the hypothesis that parental zinc deficiency sensitizes the developing embryo to low-concentration arsenic toxicity, leading to altered developmental outcomes. Adult zebrafish were fed defined zinc deficient and zinc adequate diets and were spawned resulting in zinc adequate and zinc deficient embryos. The embryos were treated with environmentally relevant concentrations of 0, 50, and 500 ppb arsenic. Arsenic exposure significantly reduced the amount of zinc in the developing embryo by ~7%. The combination of zinc deficiency and low-level arsenic exposures did not sensitize the developing embryo to increased developmental malformations or mortality. The combination did cause a 40% decline in physical activity of the embryos, and this decline was significantly greater than what was observed with zinc deficiency or arsenic exposure alone. Significant changes in RNA expression of genes that regulate zinc homeostasis, response to oxidative stress and insulin production (including zip1, znt7, nrf2, ogg1, pax4, and insa were found in zinc deficient, or zinc deficiency and arsenic exposed embryos. Overall, the data suggests that the combination of zinc deficiency and arsenic exposure has harmful effects on the developing embryo and may increase the risk for developing chronic diseases like diabetes.

  4. Arsenic removal in a sulfidogenic fixed-bed column bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Altun, Muslum, E-mail: muslumaltun@hotmail.com [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Sahinkaya, Erkan [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Durukan, Ilknur; Bektas, Sema [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey); Komnitsas, Kostas [Technical University of Crete, Department of Mineral Resources Engineering, Chania (Greece)

    2014-03-01

    Highlights: • Sulfidogenic treatment of As-containing AMD was investigated. • High rate simultaneous removal of As and Fe was achieved. • As was removed without adding alkalinity or adjusting pH. • As and Fe removal mechanisms were elucidated. - Abstract: In the present study, the bioremoval of arsenic from synthetic acidic wastewater containing arsenate (As{sup 5+}) (0.5–20 mg/L), ferrous iron (Fe{sup 2+}) (100–200 mg/L) and sulfate (2000 mg/L) was investigated in an ethanol fed (780–1560 mg/L chemical oxygen demand (COD)) anaerobic up-flow fixed bed column bioreactor at constant hydraulic retention time (HRT) of 9.6 h. Arsenic removal efficiency was low and averaged 8% in case iron was not supplemented to the synthetic wastewater. Neutral to slightly alkaline pH and high sulfide concentration in the bioreactor retarded the precipitation of arsenic. Addition of 100 mg/L Fe{sup 2+} increased arsenic removal efficiency to 63%. Further increase of influent Fe{sup 2+} concentration to 200 mg/L improved arsenic removal to 85%. Decrease of influent COD concentration to its half, 780 mg/L, resulted in further increase of As removal to 96% when Fe{sup 2+} and As{sup 5+} concentrations remained at 200 mg/L and 20 mg/L, respectively. As a result of the sulfidogenic activity in the bioreactor the effluent pH and alkalinity concentration averaged 7.4 ± 0.2 and 1736 ± 239 mg CaCO{sub 3}/L respectively. Electron flow from ethanol to sulfate averaged 72 ± 10%. X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses were carried out to identify the nature of the precipitate generated by sulfate reducing bacteria (SRB) activity. Precipitation of arsenic in the form of As{sub 2}S{sub 3} (orpiment) and co-precipitation with ferrous sulfide (FeS), pyrite (FeS{sub 2}) or arsenopyrite (FeAsS) were the main arsenic removal mechanisms.

  5. Transplacental arsenic carcinogenesis in mice

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  6. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    International Nuclear Information System (INIS)

    Macoch, Mélinda; Morzadec, Claudie; Fardel, Olivier; Vernhet, Laurent

    2013-01-01

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  7. Inorganic arsenic impairs differentiation and functions of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Macoch, Mélinda; Morzadec, Claudie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes (France); Vernhet, Laurent, E-mail: laurent.vernhet@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 avenue du Professeur Léon Bernard, 35043 Rennes (France)

    2013-01-15

    Experimental studies have demonstrated that the antileukemic trivalent inorganic arsenic prevents the development of severe pro-inflammatory diseases mediated by excessive Th1 and Th17 cell responses. Differentiation of Th1 and Th17 subsets is mainly regulated by interleukins (ILs) secreted from dendritic cells (DCs) and the ability of inorganic arsenic to impair interferon-γ and IL-17 secretion by interfering with the physiology of DCs is unknown. In the present study, we demonstrate that high concentrations of sodium arsenite (As(III), 1–2 μM) clinically achievable in plasma of arsenic-treated patients, block differentiation of human peripheral blood monocytes into immature DCs (iDCs) by inducing their necrosis. Differentiation of monocytes in the presence of non-cytotoxic concentrations of As(III) (0.1 to 0.5 μM) only slightly impacts endocytotic activity of iDCs or expression of co-stimulatory molecules in cells activated with lipopolysaccharide. However, this differentiation in the presence of As(III) strongly represses secretion of IL-12p70 and IL-23, two major regulators of Th1 and Th17 activities, from iDCs stimulated with different toll-like receptor (TLR) agonists in metalloid-free medium. Such As(III)-exposed DCs also exhibit reduced mRNA levels of IL12A and/or IL12B genes when activated with TLR agonists. Finally, differentiation of monocytes with non-cytotoxic concentrations of As(III) subsequently reduces the ability of activated DCs to stimulate the release of interferon-γ and IL-17 from Th cells. In conclusion, our results demonstrate that clinically relevant concentrations of inorganic arsenic markedly impair in vitro differentiation and functions of DCs, which may contribute to the putative beneficial effects of the metalloid towards inflammatory autoimmune diseases. Highlights: ► Inorganic arsenic impairs differentiation and functions of human dendritic cells (DCs) ► Arsenite (> 1 μM) blocks differentiation of dendritic cells by

  8. Reduced cellular DNA repair capacity after environmentally relevant arsenic exposure. Influence of Ogg1 deficiency

    International Nuclear Information System (INIS)

    Bach, Jordi; Peremartí, Jana; Annangi, Balasubramnayam; Marcos, Ricard; Hernández, Alba

    2015-01-01

    Highlights: • Repair ability under long-term exposure to arsenic was tested using the comet assay. • Effects were measured under Ogg1 wild-type and deficient backgrounds. • Exposed cells repair less efficiency the DNA damage induced by SA, KBrO 3 , MMA III or UVC radiation. • Oxidative damage and Ogg1 deficient background exacerbate repair deficiencies. • Overexpression of the arsenic metabolizing enzyme As3mt acts as adaptive mechanism. - Abstract: Inorganic arsenic (i-As) is a genotoxic and carcinogenic environmental contaminant known to affect millions of people worldwide. Our previous work demonstrated that chronic sub-toxic i-As concentrations were able to induce biologically significant levels of genotoxic and oxidative DNA damage that were strongly influenced by the Ogg1 genotype. In order to study the nature of the observed levels of damage and the observed differences between MEF Ogg1 +/+ and Ogg1 −/− genetic backgrounds, the genotoxic and oxidative DNA repair kinetics of 18-weeks exposed MEF cells were evaluated by the comet assay. Results indicate that MEF Ogg1 +/+ and Ogg1 −/− cells chronically exposed to i-As repair the DNA damage induced by arsenite, potassium bromide and UVC radiation less efficiently than control cells, being that observation clearly more pronounced in MEF Ogg1 −/− cells. Consequently, exposed cells accumulate a higher percentage of unrepaired DNA damage at the end of the repair period. As an attempt to eliminate i-As associated toxicity, chronically exposed MEF Ogg1 −/− cells overexpress the arsenic metabolizing enzyme As3mt. This adaptive response confers cells a significant resistance to i-As-induced cell death, but at expenses of accumulating high levels of DNA damage due to their repair impairment. Overall, the work presented here evidences that i-As chronic exposure disrupts the normal cellular repair function, and that oxidative DNA damage—and Ogg1 deficiency—exacerbates this phenomenon. The

  9. Reduced cellular DNA repair capacity after environmentally relevant arsenic exposure. Influence of Ogg1 deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Jordi; Peremartí, Jana; Annangi, Balasubramnayam [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); Marcos, Ricard, E-mail: ricard.marcos@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain); Hernández, Alba, E-mail: alba.hernandez@uab.es [Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona (Spain); CIBER Epidemiología y Salud Pública, ISCIII, Madrid (Spain)

    2015-09-15

    Highlights: • Repair ability under long-term exposure to arsenic was tested using the comet assay. • Effects were measured under Ogg1 wild-type and deficient backgrounds. • Exposed cells repair less efficiency the DNA damage induced by SA, KBrO{sub 3}, MMA{sup III} or UVC radiation. • Oxidative damage and Ogg1 deficient background exacerbate repair deficiencies. • Overexpression of the arsenic metabolizing enzyme As3mt acts as adaptive mechanism. - Abstract: Inorganic arsenic (i-As) is a genotoxic and carcinogenic environmental contaminant known to affect millions of people worldwide. Our previous work demonstrated that chronic sub-toxic i-As concentrations were able to induce biologically significant levels of genotoxic and oxidative DNA damage that were strongly influenced by the Ogg1 genotype. In order to study the nature of the observed levels of damage and the observed differences between MEF Ogg1{sup +/+} and Ogg1{sup −/−} genetic backgrounds, the genotoxic and oxidative DNA repair kinetics of 18-weeks exposed MEF cells were evaluated by the comet assay. Results indicate that MEF Ogg1{sup +/+} and Ogg1{sup −/−} cells chronically exposed to i-As repair the DNA damage induced by arsenite, potassium bromide and UVC radiation less efficiently than control cells, being that observation clearly more pronounced in MEF Ogg1{sup −/−} cells. Consequently, exposed cells accumulate a higher percentage of unrepaired DNA damage at the end of the repair period. As an attempt to eliminate i-As associated toxicity, chronically exposed MEF Ogg1{sup −/−} cells overexpress the arsenic metabolizing enzyme As3mt. This adaptive response confers cells a significant resistance to i-As-induced cell death, but at expenses of accumulating high levels of DNA damage due to their repair impairment. Overall, the work presented here evidences that i-As chronic exposure disrupts the normal cellular repair function, and that oxidative DNA damage—and Ogg1 deficiency

  10. Impaired arsenic metabolism in children during weaning

    International Nuclear Information System (INIS)

    Faengstroem, Britta; Hamadani, Jena; Nermell, Barbro; Grander, Margaretha; Palm, Brita; Vahter, Marie

    2009-01-01

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, a rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 μg/L, range 2.4-940 μg/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.

  11. Assessment of global industrial-age anthropogenic arsenic contamination.

    Science.gov (United States)

    Han, Fengxiang X; Su, Yi; Monts, David L; Plodinec, M John; Banin, Amos; Triplett, Glover E

    2003-09-01

    Arsenic, a carcinogenic trace element, threatens not only the health of millions of humans and other living organisms, but also global sustainability. We present here, for the first time, the global industrial-age cumulative anthropogenic arsenic production and its potential accumulation and risks in the environment. In 2000, the world cumulative industrial-age anthropogenic arsenic production was 4.53 million tonnes. The world-wide coal and petroleum industries accounted for 46% of global annual gross arsenic production, and their overall contribution to industrial-age gross arsenic production was 27% in 2000. Global industrial-age anthropogenic As sources (as As cumulative production) follow the order: As mining production>As generated from coal>As generated from petroleum. The potential industrial-age anthropogenic arsenic input in world arable surface in 2000 was 2.18 mg arsenic kg(-1), which is 1.2 times that in the lithosphere. The development of substitute materials for arsenic applications in the agricultural and forestry industries and controls of arsenic emissions from the coal industry may be possible strategies to significantly decrease arsenic pollution sources and dissipation rates into the environment.

  12. In situ precipitation and sorption of arsenic from groundwater: Laboratory and ex situ field tests

    International Nuclear Information System (INIS)

    Whang, J.M.; Adu-Wusu, K.; Frampton, W.H.; Staib, J.G.

    1997-01-01

    Permeable, reactive walls may provide long term, low-maintenance prevention of off-site migration of contaminated groundwater. Laboratory and ex situ field tests conducted on several arsenic-contaminated groundwaters indicate that both precipitation and sorption can remove arsenic to levels of less than 10 ppb. Precipitation has been induced by adjusting pH, adding selected cations, and/or reducing the oxidation-reduction potential. Adjusting pH or adding cations was most effective when there were high levels of other ionic species with which arsenic could coprecipitate. Reducing the oxidation-reduction potential was effective on a variety of groundwaters. Humate was an effective sorbent at low pH; aluminum and iron materials were effective over a large range of conditions. Long term performance of precipitation systems can be limited by formation of precipitate on reactive surfaces. Long term sorption can be reduced by competing ions, such as phosphate. Laboratory and ex situ field tests indicate that reactive walls may have lifetimes of decades or more

  13. ARSENIC REMOVAL BY PHYTOFILTRATION AND SILICON TREATMENT : A POTENTIAL SOLUTION FOR LOWERING ARSENIC CONCENTRATIONS IN FOOD CROPS

    OpenAIRE

    Sandhi, Arifin

    2017-01-01

    Use of arsenic-rich groundwater for crop irrigation can increase the arsenic (As) content in food crops and act as a carcinogen, compromising human health. Using aquatic plant based phytofiltration is a potential eco-technique for removing arsenic from water. The aquatic moss species Warnstorfia fluitans grows naturally in mining areas in northern Sweden, where high concentrations of arsenic occur in lakes and rivers. This species was selected as a model for field, climate chamber and greenho...

  14. Arsenic and human health effects: A review.

    Science.gov (United States)

    Abdul, Khaja Shameem Mohammed; Jayasinghe, Sudheera Sammanthi; Chandana, Ediriweera P S; Jayasumana, Channa; De Silva, P Mangala C S

    2015-11-01

    Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Role of complex organic arsenicals in food in aggregate exposure to arsenic

    Science.gov (United States)

    For much of the world’s population, food is the major source of exposure to arsenic. Exposure to this non-essential metalloid at relatively low levels has been linked to a wide range of adverse health effects. Thus, evaluating foods as sources of exposure to arsenic is important ...

  16. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    Science.gov (United States)

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  17. Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats.

    Science.gov (United States)

    Xi, Shuhua; Jin, Yaping; Lv, Xiuqiang; Sun, Guifan

    2010-04-01

    The amount of arsenic compounds was determined in the liver and brain of pups and in breast milk in the pup's stomach in relation to the route of exposure: transplacental, breast milk, or drinking water. Forty-eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO(2) from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic-containing water as the dams. Contents of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and trimethylarsenic acid (TMA) in livers and brains of the pups on PND 0, 15, 28, and 42 and breast milk taken from the pup's stomach on PND 0 and 15 were detected using the hydride generation atomic absorption spectroscopy method. Concentrations of iAs, MMA, and DMA in the breast milk, the brain, and the liver of the pups increased with the concentration of arsenic in drinking water on PND 0, 15, 28, and 42. Compared to the liver or brain, breast milk had the lowest arsenic concentrations. There was a significant decrease in the levels of arsenic species on PND 15 compared to PND 0, 28, or 42. It was confirmed that arsenic species can pass through the placental barrier from dams to offspring and across the blood-brain barrier in the pups, and breast milk from dams exposed to arsenic in drinking water contains less arsenic than the liver and brain of pups.

  18. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    Science.gov (United States)

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Removal of arsenic from contaminated groundwater by solar-driven membrane distillation

    International Nuclear Information System (INIS)

    Manna, Ajay K.; Sen, Mou; Martin, Andrew R.; Pal, Parimal

    2010-01-01

    Experimental investigations were carried out on removal of arsenic from contaminated groundwater by employing a new flat-sheet cross flow membrane module fitted with a hydrophobic polyvinylidenefluoride (PVDF) microfiltration membrane. The new design of the solar-driven membrane module in direct contact membrane distillation (DCMD) configuration successfully produced almost 100 per cent arsenic-free water from contaminated groundwater in a largely fouling-free operation while permitting high fluxes under reduced temperature polarization. For a feed flow rate of 0.120 m 3 /h, the 0.13 μm PVDF membrane yielded a high flux of 74 kg/(m 2 h) at a feed water temperature of 40 deg. C and, 95 kg/m 2 h at a feed water temperature of 60 deg. C. The encouraging results show that the design could be effectively exploited in the vast arsenic-affected rural areas of South-East Asian countries blessed with abundant sunlight particularly during the critical dry season. - Solar-driven membrane distillation has the potential of removing arsenic from contaminated groundwater.

  20. Arsenical poisoning of racehorses

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.N.; Fawell, E.V.; Brown, J.K.

    1964-03-07

    A case of arsenic poisoning in a training stable of Thoroughbred racehorses is described. This was due to the accidental spilling of an arsenical rat poison into the corn bin. Nine horses were affected. The mortality rate was 100 per cent. 1 table.

  1. pH modulates arsenic toxicity in Bacillus licheniformis DAS-2.

    Science.gov (United States)

    Tripti, K; Shardendu

    2016-08-01

    The toxic characteristics of arsenic species, As(V) and As(III) result in ecological risks. Arsenic tolerant bacterium was isolated and identified as the Bacillus licheniformis DAS-2 through 16SrDNA sequencing. B. licheniformis DAS-2 was efficient to tolerate and remove both the As(V)[MIC 8mM] and As(III)[MIC 6mM] from the growth medium. The potential for the removal/uptake of arsenic from the 3, 5 and 7mM As(V) enriched growth media was 100%, 60% and 35% respectively and from the 1, 3 and 5mM As(III) enrichment it was 100%, 99% and 58% respectively at neutral pH. 80% of uptake As(V) was reduced to As(III) in 3mM As(V) enrichment which was gradually decreased to only 17% at 7mM As(V) enrichment at neutral pH. The arsenic toxicity in B. licheniformis DAS-2 was found modulated by pH and was examined through alteration in growth, uptake/removal, reduction and measurement of chemical toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Arsenic removal for ceramic water filters

    Directory of Open Access Journals (Sweden)

    Mishant Kumar

    2013-02-01

    Full Text Available Arsenic in drinking water is a hazard to human health and is a known carcinogen (Mass 1992. Resource Development International – Cambodia (RDIC has researched, developed, and manufactured simple ceramic water fi lters (CWF which have proved to be extremely effective in removing pathogens from water. These fi lters however, do not remove arsenic from water, which exists in the source water at levels above the World Health Organisation (WHO guideline of 10μg/L. The aims of this literature based study were to investigate conventional and non-conventional arsenic removal processes, and to discuss the options for applying an arsenic removal technology to the CWFs produced by RDIC. It was found that conventional arsenic removal technologies are diffi cult to implement in the context of household water treatment in a developing country. This study suggested that non-conventional arsenic removal technologies shall be more effective and that field studies must be undertaken to verify the success of such methods.

  3. THE EFFECT OF PH, PHOSPHATE AND OXIDANT ON THE REMOVAL OF ARSENIC FROM DRINKING WATER DURING IRON REMOVAL

    Science.gov (United States)

    Arsenic is a naturally occurring drinking water contaminant that has known adverse human health effects. The recent compilation of new health effects data prompted the U.S. Environmental Protection Agency (USEPA) to recently reduce the previous arsenic maximum contaminant level ...

  4. Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan.

    Science.gov (United States)

    Liu, Chia-Chuan; Maity, Jyoti Prakash; Jean, Jiin-Shuh; Sracek, Ondra; Kar, Sandeep; Li, Zhaohui; Bundschuh, Jochen; Chen, Chien-Yen; Lu, Hsueh-Yu

    2011-01-01

    Fluid and mud samples collected from Hsiaokunshui (HKS), Wushanting (WST), Yenshuikeng (YSK), Kunshuiping (KSP), Liyushan (LYS), and Sinyangnyuhu (SYNH) mud volcanoes of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. The relationship between the release of arsenic (As) and activities of sulfate-reducing bacteria has been assessed to understand relevant geochemical processes in the mud volcanoes. Arsenic (0.02-0.06 mg/L) and humic substances (4.13 × 10(-4) to 1.64 × 10(-3) mM) in the fluids of mud volcanoes showed a positive correlation (r = 0.99, p volcano. Arsenic and iron in mud sediments formed two separate groups i) high As, but low Fe in HKS, WST, and SYNH; and ii) low As, but high Fe in the YSK, KSP, and LYS mud volcanoes. The Eh(S.H.E.) values of the mud volcano liquids were characterized by mild to strongly reducing conditions. The HKS, SYNH, and WST mud volcanoes (near the Chishan Fault) belongs to strong reducing environment (-33 to -116 mV), whereas the LYS, YSK, and KSP mud volcanoes located near the coastal plain are under mild reducing environment (-11 to 172 mV). At low Eh values mud volcanoes, saturation index (SI) values of poorly crystalline phases such as amorphous ferric hydroxide indicate understaturation, whereas saturation is reached in relatively high Eh(S.H.E.) values mud volcanoes. Arsenic contents in sediments are low, presumably due to its release to fluids (As/Fe ratio in YSK, KSP, and LYS sediment: 4.86 × 10(-4)-6.20 × 10(-4)). At low Eh(S.H.E.) values (mild to strong reducing environment), arsenic may co-precipitate with sulfides as a consequence of sulfate reduction (As/Fe ratios in WST, HKS, and SYNH sediments: 0.42-0.69).

  5. Arsenic

    Science.gov (United States)

    ... for drinking-water quality Chemical hazards in drinking-water: arsenic Evaluations of the Joint FAO/WHO Expert Committee ... Africa Americas South-East Asia Europe Eastern Mediterranean Western ...

  6. Effect of Fluoride on Arsenic Uptake from Arsenic-Contaminated Groundwater using Pteris vittata L.

    Science.gov (United States)

    Zhao, Junying; Guo, Huaming; Ma, Jie; Shen, Zhaoli

    2015-01-01

    High-arsenic groundwater in inland basins usually contains high concentrations of fluoride. In the present study, the effects of fluoride on arsenic uptake by Pteris vittata and on arsenic transformation in growth media were investigated under greenhouse conditions. After P. vittata was hydroponically exposed to 66.8 μM As (V) in the presence of 1.05 mM F- in the form of NaF, KF, or NaF+KF for 10 d, no visible toxicity symptoms were observed, and there were not significant differences in the dry biomass among the four treatments. The results showed that P. vittata tolerated F- concentrations as high as 1.05 mM but did not accumulate fluoride in their own tissues. Arsenic uptake was inhibited in the presence of 1.05 mM F-. However, in hydroponic batches with 60 μM As (III) or 65 μM As (V), it was found that 210.6 and 316.0 μM F(-) promoted arsenic uptake. As(III) was oxidized to As(V) in the growth media in the presence and absence of plants, and F- had no effect on the rate of As(III) transformation. These experiments demonstrated that P. vittata was a good candidate to remediate arsenic-contaminated groundwater in the presence of fluoride. Our results can be used to develop strategies to remediate As-F-contaminated water using P. vittata.

  7. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation.

    Science.gov (United States)

    Flanagan, Sara V; Johnston, Richard B; Zheng, Yan

    2012-11-01

    A national drinking water quality survey conducted in 2009 furnished data that were used to make an updated estimate of chronic arsenic exposure in Bangladesh. About 20 million and 45 million people were found to be exposed to concentrations above the national standard of 50 µg/L and the World Health Organization's guideline value of 10 µg/L, respectively. From the updated exposure data and all-cause mortality hazard ratios based on local epidemiological studies, it was estimated that arsenic exposures to concentrations > 50 µg/L and 10-50 µg/L account for an annual 24,000 and perhaps as many as 19,000 adult deaths in the country, respectively. Exposure varies widely in the 64 districts; among adults, arsenic-related deaths account for 0-15% of all deaths. An arsenic-related mortality rate of 1 in every 16 adult deaths could represent an economic burden of 13 billion United States dollars (US$) in lost productivity alone over the next 20 years. Arsenic mitigation should follow a two-tiered approach: (i) prioritizing provision of safe water to an estimated 5 million people exposed to > 200 µg/L arsenic, and (ii) building local arsenic testing capacity. The effectiveness of such an approach was demonstrated during the United Nations Children's Fund 2006-2011 country programme, which provided safe water to arsenic-contaminated areas at a cost of US$ 11 per capita. National scale-up of such an approach would cost a few hundred million US dollars but would improve the health and productivity of the population, especially in future generations.

  8. Arsenic removal by manganese greensand filters

    Energy Technology Data Exchange (ETDEWEB)

    Phommavong, T. [Saskatchewan Environment, Regina (Canada); Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1994-12-31

    Some of the small communities in Saskatchewan are expected to have difficulty complying with the new maximum acceptable concentration (MAC) of 25 {micro}g/L for arsenic. A test column was set up in the laboratory to study the removal of arsenic from the potable water using oxidation with KMnO{sub 4}, followed by manganese greensand filtration. Tests were run using water from the tap having a background arsenic concentration of <0.5 {micro}g/L and iron concentration in the range of 0.02 to 0.77 mg/L. The test water was spiked with arsenic and iron. Results showed that 61 % to 98% of arsenic can be removed from the potable water by oxidation with KMnO{sub 4} followed by manganese greensand filtration.

  9. Mobilization of iron and arsenic from soil by construction and demolition debris landfill leachate.

    Science.gov (United States)

    Wang, Yu; Sikora, Saraya; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy

    2012-05-01

    Column experiments were performed to examine (a) the potential for leachate from construction and demolition (C&D) debris landfills to mobilize naturally-occurring iron and arsenic from soils underlying such facilities and (b) the ability of crushed limestone to remove these aqueous phase pollutants. In duplicate columns, water was added to a 30-cm layer of synthetic C&D debris, with the resulting leachate serially passed through a 30-cm soil layer containing iron and arsenic and a 30-cm crushed limestone layer. This experiment was conducted for two different soil types (one high in iron (10,400mg/kg) and the second high in iron (5400mg/kg) and arsenic (70mg/kg)); also monitored were control columns for both soil types with water infiltration alone. Despite low iron concentrations in the simulated C&D debris leachate, elevated iron concentrations were observed when leachate passed through the soils; reductive dissolution was concluded to be the cause of iron mobilization. In the soil containing elevated arsenic, increased iron mobilization from the soil was accompanied by a similar but delayed arsenic mobilization. Since arsenic sorbs to oxidized iron soil minerals, reductive dissolution of these minerals results in arsenic mobilization. Crushed limestone significantly reduced iron (to values below the detection limit of 0.01mg/L in most cases); however, arsenic was not removed to any significant extent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Maternal Arsenic Exposure, Arsenic Methylation Efficiency, and Birth Outcomes in the Biomarkers of Exposure to ARsenic (BEAR) Pregnancy Cohort in Mexico

    Science.gov (United States)

    Laine, Jessica E.; Bailey, Kathryn A.; Rubio-Andrade, Marisela; Olshan, Andrew F.; Smeester, Lisa; Drobná, Zuzana; Herring, Amy H.; Stýblo, Miroslav; García-Vargas, Gonzalo G.

    2014-01-01

    Background: Exposure to inorganic arsenic (iAs) from drinking water is a global public health problem, yet much remains unknown about the extent of exposure in susceptible populations. Objectives: We aimed to establish the Biomarkers of Exposure to ARsenic (BEAR) prospective pregnancy cohort in Gómez Palacio, Mexico, to better understand the effects of iAs exposure on pregnant women and their children. Methods: Two hundred pregnant women were recruited for this study. Concentrations of iAs in drinking water (DW-iAs) and maternal urinary concentrations of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) were determined. Birth outcomes were analyzed for their relationship to DW-iAs and to the concentrations and proportions of maternal urinary arsenicals. Results: DW-iAs for the study subjects ranged from iAs that exceeded the World Health Organization’s recommended guideline of 10 μg As/L. DW-iAs was significantly associated with the sum of the urinary arsenicals (U-tAs). Maternal urinary concentrations of MMAs were negatively associated with newborn birth weight and gestational age. Maternal urinary concentrations of iAs were associated with lower mean gestational age and newborn length. Conclusions: Biomonitoring results demonstrate that pregnant women in Gómez Palacio are exposed to potentially harmful levels of DW-iAs. The data support a relationship between iAs metabolism in pregnant women and adverse birth outcomes. The results underscore the risks associated with iAs exposure in vulnerable populations. Citation: Laine JE, Bailey KA, Rubio-Andrade M, Olshan AF, Smeester L, Drobná Z, Herring AH, Stýblo M, García-Vargas GG, Fry RC. 2015. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect 123:186–192; http://dx.doi.org/10.1289/ehp.1307476 PMID:25325819

  11. A cost-effective system for in-situ geological arsenic adsorption from groundwater.

    Science.gov (United States)

    Shan, Huimei; Ma, Teng; Wang, Yanxin; Zhao, Jie; Han, Hongyin; Deng, Yamin; He, Xin; Dong, Yihui

    2013-11-01

    An effective and low-cost in-situ geological filtration system was developed to treat arsenic-contaminated groundwater in remote rural areas. Hangjinhouqi in western Hetao Plain of Inner Mongolia, China, where groundwater contains a high arsenic concentration, was selected as the study area. Fe-mineral and limestone widely distributed in the study area were used as filter materials. Batch and column experiments as well as field tests were performed to determine optimal filtration parameters and to evaluate the effectiveness of the technology for arsenic removal under different hydrogeochemical conditions. A mixture containing natural Fe-mineral (hematite and goethite) and limestone at a mass ratio of 2:1 was found to be the most effective for arsenic removal. The results indicated that Fe-mineral in the mixture played a major role for arsenic removal. Meanwhile, limestone buffered groundwater pH to be conducive for the optimal arsenic removal. As(III) adsorption and oxidation by iron mineral, and the formation of Ca-As(V) precipitation with Ca contributed from limestone dissolution were likely mechanisms leading to the As removal. Field demonstrations revealed that a geological filter bed filled with the proposed mineral mixture reduced groundwater arsenic concentration from 400 μg/L to below 10 μg/L. The filtration system was continuously operated for a total volume of 365,000L, which is sufficient for drinking water supplying a rural household of 5 persons for 5 years at a rate of 40 L per person per day. © 2013.

  12. Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Shubhi; Singh, Namrata; Singh, Nandita [CSIR - National Botanical Research Institute, Lucknow, UP (India). Eco-auditing Lab.; Verma, Praveen C.; Singh, Ankit; Mishra, Manisha [CSIR - National Botanical Research Institute, Lucknow, UP (India). Plant Molecular Biology and Genetic Engineering; Sharma, Neeta [Lucknow Univ., UP (India). Plant Pathology Lab.

    2012-09-15

    Arsenic contaminated rhizospheric soils of West Bengal, India were sampled for arsenic resistant bacteria that could transform different arsenic forms. Staphylococcus sp. NBRIEAG-8 was identified by16S rDNA ribotyping, which was capable of growing at 30,000 mg l{sup -1} arsenate [As(V)] and 1,500 mg l{sup -1} arsenite [As(III)]. This bacterial strain was also characterized for arsenical resistance (ars) genes which may be associated with the high-level resistance in the ecosystems of As-contaminated areas. A comparative proteome analysis was conducted with this strain treated with 1,000 mg l{sup -1} As(V) to identify changes in their protein expression profiles. A 2D gel analysis showed a significant difference in the proteome of arsenic treated and untreated bacterial culture. The change in pH of cultivating growth medium, bacterial growth pattern (kinetics), and uptake of arsenic were also evaluated. After 72 h of incubation, the strain was capable of removing arsenic from the culture medium amended with arsenate and arsenite [12% from As(V) and 9% from As(III)]. The rate of biovolatilization of As(V) was 23% while As(III) was 26%, which was determined indirectly by estimating the sum of arsenic content in bacterial biomass and medium. This study demonstrates that the isolated strain, Staphylococcus sp., is capable for uptake and volatilization of arsenic by expressing ars genes and 8 new upregulated proteins which may have played an important role in reducing arsenic toxicity in bacterial cells and can be used in arsenic bioremediation. (orig.)

  13. Ameliorative effects of selenium on arsenic-induced cytotoxicity in PC12 cells via modulating autophagy/apoptosis.

    Science.gov (United States)

    Rahman, Md Mostafizur; Uson-Lopez, Rachael A; Sikder, Md Tajuddin; Tan, Gongxun; Hosokawa, Toshiyuki; Saito, Takeshi; Kurasaki, Masaaki

    2018-04-01

    Arsenic is well known toxicant responsible for human diseases including cancers. On the other hand, selenium is an essential trace element with significant chemopreventive effects, anticancer potentials and antioxidant properties. Although previous studies have reported antagonism/synergism between arsenic and selenium in biological systems, the biomolecular mechanism/s is still inconclusive. Therefore, to elucidate the molecular phenomena in cellular level, we hypothesized that co-exposure of selenium with arsenic may have suppressive effects on arsenic-induced cytotoxicity. We found that selenium in co-exposure with arsenic increases cell viability, and suppresses oxidative stress induced by arsenic in PC12 cells. Consequently, DNA fragmentation due to arsenic exposure was also reduced by arsenic and selenium co-exposure. Furthermore, western blot analyses revealed that simultaneous exposure of both metals significantly inhibited autophagy which further suppressed apoptosis through positively regulation of key proteins; p-mTOR, p-Akt, p-Foxo1A, p62, and expression of ubiquitin, Bax, Bcl2, NFкB, and caspases 3 and 9, although those are negatively regulated by arsenic. In addition, reverse transcriptase PCR analysis confirmed the involvement of caspase cascade in cell death process induced by arsenic and subsequent inhibition by co-exposure of selenium with arsenic. The cellular accumulation study of arsenic in presence/absence of selenium via inductively coupled plasma mass spectrometry confirmed that selenium effectively retarded the uptake of arsenic in PC12 cells. Finally, these findings imply that selenium is capable to modulate arsenic-induced intrinsic apoptosis pathway via enhancement of mTOR/Akt autophagy signaling pathway through employing antioxidant potentials and through inhibiting the cellular accumulation of arsenic in PC12 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes

    International Nuclear Information System (INIS)

    Walton, Felecia S.; Harmon, Anne W.; Paul, David S.; Drobna, Zuzana; Patel, Yashomati M.; Styblo, Miroslav

    2004-01-01

    Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or with critical steps in glucose metabolism. We have examined effects of iAs and methylated arsenicals that contain trivalent or pentavalent arsenic on glucose uptake by 3T3-L1 adipocytes. Treatment with inorganic and methylated pentavalent arsenicals (up to 1 mM) had little or no effect on either basal or insulin-stimulated glucose uptake. In contrast, trivalent arsenicals, arsenite (iAs III ), methylarsine oxide (MAs III O), and iododimethylarsine (DMAs III O) inhibited insulin-stimulated glucose uptake in a concentration-dependent manner. Subtoxic concentrations of iAs III (20 μM), MAs III O (1 μM), or DMAs III I (2 μM) decreased insulin-stimulated glucose uptake by 35-45%. Basal glucose uptake was significantly inhibited only by cytotoxic concentrations of iAs III or MAs III O. Examination of the components of the insulin-stimulated signal transduction pathway showed that all trivalent arsenicals suppressed expression and possibly phosphorylation of protein kinase B (PKB/Akt). The concentration of an insulin-responsive glucose transporter (GLUT4) was significantly lower in the membrane region of 3T3-L1 adipocytes treated with trivalent arsenicals as compared with untreated cells. These results suggest that trivalent arsenicals inhibit insulin-stimulated glucose uptake by interfering with the PKB/Akt-dependent mobilization of GLUT4 transporters in adipocytes. This mechanism may be, in part, responsible for the development of type-2 diabetes in individuals chronically exposed to iAs

  15. Arsenic Contaminated Groundwater and Its Treatment Options in Bangladesh

    Directory of Open Access Journals (Sweden)

    Sayedur Rahman Chowdhury

    2012-12-01

    Full Text Available Arsenic (As causes health concerns due to its significant toxicity and worldwide presence in drinking water and groundwater. The major sources of As pollution may be natural process such as dissolution of As-containing minerals and anthropogenic activities such as percolation of water from mines, etc. The maximum contaminant level for total As in potable water has been established as 10 µg/L. Among the countries facing As contamination problems, Bangladesh is the most affected. Up to 77 million people in Bangladesh have been exposed to toxic levels of arsenic from drinking water. Therefore, it has become an urgent need to provide As-free drinking water in rural households throughout Bangladesh. This paper provides a comprehensive overview on the recent data on arsenic contamination status, its sources and reasons of mobilization and the exposure pathways in Bangladesh. Very little literature has focused on the removal of As from groundwaters in developing countries and thus this paper aims to review the As removal technologies and be a useful resource for researchers or policy makers to help identify and investigate useful treatment options. While a number of technological developments in arsenic removal have taken place, we must consider variations in sources and quality characteristics of As polluted water and differences in the socio-economic and literacy conditions of people, and then aim at improving effectiveness in arsenic removal, reducing the cost of the system, making the technology user friendly, overcoming maintenance problems and resolving sludge management issues.

  16. Arsenic, microbes and contaminated aquifers

    Science.gov (United States)

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  17. Review of arsenic contamination and human exposure through water food in rural areas in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Celia

    2016-05-01

    . Products like noodles and rice wine were examined as well as local pork and poultry. Vegetables from the gardens and rice plants from the surrounding paddy fields were sampled and analyzed. All plants were found to have accumulated arsenic, leafy vegetables showing the highest arsenic concentrations. The results are discussed and compared, and conclusions are drawn in the last part. The reducing conditions in the paddy fields are likely to have a strong influence on arsenic uptake in rice plants and on transport to the aquifer. The installation of a wastewater treatment plant under the research proJect IN HAND, which was funded by the BMBF German Ministry of Education and Research, led to lower arsenic concentrations in the groundwater. Soaring industrialization, the growing population, and the consumers' changing behavior will widely affect land and water use and hence the potential mobilization of arsenic. In order to mitigate further human exposure to arsenic, wastewater needs to be treated and the reducing conditions in the rice fields need to be decreased by means of enhanced cultivation methods.

  18. Review of arsenic contamination and human exposure through water food in rural areas in Vietnam

    International Nuclear Information System (INIS)

    Hahn, Celia

    2016-01-01

    . Products like noodles and rice wine were examined as well as local pork and poultry. Vegetables from the gardens and rice plants from the surrounding paddy fields were sampled and analyzed. All plants were found to have accumulated arsenic, leafy vegetables showing the highest arsenic concentrations. The results are discussed and compared, and conclusions are drawn in the last part. The reducing conditions in the paddy fields are likely to have a strong influence on arsenic uptake in rice plants and on transport to the aquifer. The installation of a wastewater treatment plant under the research proJect IN HAND, which was funded by the BMBF German Ministry of Education and Research, led to lower arsenic concentrations in the groundwater. Soaring industrialization, the growing population, and the consumers' changing behavior will widely affect land and water use and hence the potential mobilization of arsenic. In order to mitigate further human exposure to arsenic, wastewater needs to be treated and the reducing conditions in the rice fields need to be decreased by means of enhanced cultivation methods.

  19. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  20. Distribution of Arsenic and Risk Assessment of Activities on Soccer Pitches Irrigated with Arsenic-Contaminated Water

    Directory of Open Access Journals (Sweden)

    Nadia Martínez-Villegas

    2018-05-01

    Full Text Available The aim of this research was to estimate the risk of human exposure to arsenic due to sporting activities in a private soccer club in Mexico, where arsenic-contaminated water was regularly used for irrigation. For this purpose, the total concentration in the topsoil was considered for risk assessment. This was accomplished through three main objectives: (1 measuring arsenic concentrations in irrigation water and irrigated soils, (2 determining arsenic spatial distribution in shallow soils with Geographical Information Systems (GIS using geostatistical analysis, and (3 collecting field and survey data to develop a risk assessment calculation for soccer activities in the soccer club. The results showed that the average arsenic concentrations in shallow soils (138.1 mg/kg were 6.2 times higher than the Mexican threshold for domestic soils (22 mg/kg. Furthermore, dermal contact between exposed users and contaminated soils accounted for a maximum carcinogenic risk value of 1.8 × 10−5, which is one order of magnitude higher than the recommended risk value, while arsenic concentrations in the irrigation water were higher (6 mg/L than the WHO’s permissible threshold in drinking water, explaining the contamination of soils after irrigation. To the best of our knowledge, this is the first risk study regarding dermal contact with arsenic following regular grass irrigation with contaminated water in soccer pitches.