WorldWideScience

Sample records for arsenic pilot plant

  1. Arsenic pilot plant operation and results:Weatherford, Oklahoma.

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Malynda Jo; Arora, H. (Narasimhan Consulting Services Inc., Phoenix, Arizona); Karori, Saqib (Narasimhan Consulting Services Inc., Phoenix, Arizona); Pathan, Sakib (Narasimhan Consulting Services Inc., Phoenix, Arizona)

    2007-05-01

    Narasimhan Consulting Services, Inc. (NCS), under a contract with the Sandia National Laboratories (SNL), designed and operated pilot scale evaluations of the adsorption and coagulation/filtration treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The pilot evaluation was conducted at Well 30 of the City of Weatherford, OK, which supplies drinking water to a population of more than 10,400. Well water contained arsenic in the range of 16 to 29 ppb during the study. Four commercially available adsorption media were evaluated side by side for a period of three months. Both adsorption and coagulation/filtration effectively reduced arsenic from Well No.30. A preliminary economic analysis indicated that adsorption using an iron oxide media was more cost effective than the coagulation/ filtration technology.

  2. Removal of arsenic, phosphates and ammonia from well water using electrochemical/chemical methods and advanced oxidation: a pilot plant approach.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Halkijevic, Ivan; Kuspilic, Marin; Findri Gustek, Stefica

    2014-01-01

    The purpose of this work was to develop a pilot plant purification system and apply it to groundwater used for human consumption, containing high concentrations of arsenic and increased levels of phosphates, ammonia, mercury and color. The groundwater used was obtained from the production well in the Vinkovci County (Eastern Croatia). Due to a complex composition of the treated water, the purification system involved a combined electrochemical treatment, using iron and aluminum electrode plates with simultaneous ozonation, followed by a post-treatment with UV, ozone and hydrogen peroxide. The removal of the contaminant with the waste sludge collected during the electrochemical treatment was also tested. The combined electrochemical and advanced oxidation treatment resulted in the complete removal of arsenic, phosphates, color, turbidity, suspended solids and ammonia, while the removal of other contaminants of interest was up to 96.7%. Comparable removal efficiencies were obtained by using waste sludge as a coagulant.

  3. Explosive Formulation Pilot Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Pilot Plant for Explosive Formulation supports the development of new explosives that are comprised of several components. This system is particularly beneficial...

  4. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels.

  5. Waste Isolation Pilot Plant Overview

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-27

    The mission of Waste Isolation Pilot Plant (WIPP) is to demonstrate the safe, environmentally sound, cost effective, permanent disposal of Transuranic (TRU) waste left from production of nuclear weapons.

  6. Determination of arsenic species in water, soils and plants

    Energy Technology Data Exchange (ETDEWEB)

    Mattusch, J.; Wennrich, R. [UFZ - Center for Environmental Research Leipzig / Halle, Department of Analytical Chemistry, Leipzig (Germany); Schmidt, A.C.; Reisser, W. [University of Leipzig, Institute of Botany, Leipzig (Germany)

    2000-01-01

    Ion chromatographic separation coupled with ICP-MS was used to determine arsenic species in plant and soil extracts. A scheme for growth, harvesting, sample pre-treatment and analysis was developed for the arsenic species to enable determination. Preliminary results obtained with ten herb plants grown on arsenic-contaminated soil compared to non-contaminated soil show a heterogeneous pattern of accumulation rate, metabolization and detoxification mechanisms in monocots and dicots. Arsenite appears to be the major component in plants with good growth. Organic arsenic species were even detected at very low concentrations (< 150 {mu}g kg{sup -1} (dry mass)). (orig.)

  7. Arsenic uptake and metabolism in plants.

    Science.gov (United States)

    Zhao, F J; Ma, J F; Meharg, A A; McGrath, S P

    2009-03-01

    Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic contamination in the environment occurs in many regions, and, depending on environmental factors, its accumulation in food crops may pose a health risk to humans.Recent progress in understanding the mechanisms of As uptake and metabolism in plants is reviewed here. Arsenate is taken up by phosphate transporters. A number of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite,the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem. In root cells arsenate is rapidly reduced to arsenite, which is effluxed to the external medium, complexed by thiol peptides or translocated to shoots. One type of arsenate reductase has been identified, but its in planta functions remain to be investigated. Some fern species in the Pteridaceae family are able to hyperaccumulate As in above-ground tissues. Hyperaccumulation appears to involve enhanced arsenate uptake, decreased arsenite-thiol complexation and arsenite efflux to the external medium, greatly enhanced xylem translocation of arsenite, and vacuolar sequestration of arsenite in fronds. Current knowledge gaps and future research directions are also identified.

  8. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    OpenAIRE

    Yager, J W; Hicks, J B; Fabianova, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic a...

  9. Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant

    DEFF Research Database (Denmark)

    Christensen, Iben Vernegren; Pedersen, Anne Juul; Ottosen, Lisbeth M.;

    2006-01-01

    Waste wood that has been treated with chromated-copper-arsenate (CCA) poses a potential environmental problem due to the content of copper, chromium and arsenic. A pilot plant for electrodialytic remediation of up to 2 m3 wood has been designed and tested and the results are presented here. Several...... fractions. The best remediation efficiency was obtained in an experiment with an electrode distance of 60 cm, and 100 kg wood chips. In this experiment 87% copper, 81% chromium and > 95% arsenic were removed. One other experiment was also analysed for arsenic. In this experiment the distance between...... the working electrodes was 1.5 m and here 95% As was removed. The results showed that arsenic may be the easiest removable of the copper, chromium and arsenic investigated here. This is very encouraging since arsenic is the CCA components of most environmental concern....

  10. Removal of fluoride and arsenic by pilot vertical-flow constructed wetlands using soil and coal cinder as substrate.

    Science.gov (United States)

    Li, Juan; Liu, Xinchun; Yu, Zhisheng; Yi, Xin; Ju, Yiwen; Huang, Jing; Liu, Ruyin

    2014-01-01

    This study evaluated the performance of soil and coal cinder used as substrate in vertical-flow constructed wetlands for removal of fluoride and arsenic. Two duplicate pilot-scale artificial wetlands were set up, planted respectively with cannas, calamus and no plant as blank, fed with a synthetic sewage solution. Laboratory (batch) incubation experiments were also carried out separately to ascertain the fluoride and arsenic adsorption capacity of the two materials (i.e. soil and coal cinder). The results showed that both soil and coal cinder had quite high fluoride and arsenic adsorption capacity. The wetlands were operated for two months. The concentrations of fluoride and arsenic in the effluent of the blank wetlands were obviously higher than in the other wetlands planted with cannas and calamus. Fluoride and arsenic accumulation in the wetlands body at the end of the operation period was in range of 14.07-37.24% and 32.43-90.04%, respectively, as compared with the unused media.

  11. Arsenomics: Omics of Arsenic Metabolism in Plants

    Directory of Open Access Journals (Sweden)

    Rudra Deo eTripathi

    2012-07-01

    Full Text Available AbstractArsenic (As contamination of drinking water and groundwater used for irrigation can lead to contamination of the food chain and poses serious health risk to people worldwide. To reduce As intake through the consumption of contaminated food, identification of the mechanisms for As accumulation and detoxification in plant is a prerequisite to develop efficient phytoremediation methods and safer crops with reduced As levels. Transcriptome, proteome and metabolome analysis of any organism reflects the total biological activities at any given time which are responsible for the adaptation of the organism to the surrounding environmental conditions. As these approaches are very important in analyzing plant As transport and accumulation, we termed Arsenomics as approach which deals transcriptome, proteome and metabolome alterations during As exposure. Although, various studies have been performed to understand modulation in transcriptome in response to As, many important questions need to be addressed regarding the translated proteins of plants at proteomic and metabolomic level, resulting in various ecophysiological responses. In this review, the comprehensive knowledge generated in this area has been compiled and analyzed. There is a need to strengthen Arsenomics which will lead to develop of tools to develop As-free plants for safe consumption.

  12. Uptake of Arsenic in Rice Plant Varieties Cultivated with Arsenic Rich Groundwater

    Directory of Open Access Journals (Sweden)

    Piyal Bhattacharya

    2010-07-01

    Full Text Available Groundwater of many areas of West Bengal, India is severely contaminated with arsenic. The paddy soil gets con¬taminated from the groundwater and thus there is a probability of bioaccumulation of arsenic in rice plants cultivated with arsenic contaminated groundwater and soil. This study aims at assessing the level of arsenic in irrigation water and soil and to investigate the seasonal bioaccumulation of arsenic in the various parts (straw, husk and grain of the rice plant of differ¬ent varieties in the arsenic affected two blocks (Chakdaha and Ranaghat-I of Nadia district, West Bengal. It was found that the arsenic uptake in rice during the pre-monsoon season is more than that of the post-monsoon season. The accumulation of arsenic found to vary with different rice varieties; the maximum accumulation was in White minikit (0.31±0.005 mg/kg and IR 50 (0.29±0.001 mg/kg rice varieties and minimum was found to be in the Jaya rice variety (0.14±0.002 mg/kg. In rice plant maximum arsenic accumulation occurred in the straw part (0.89±0.019-1.65±0.021 mg/kg compared to the ac¬cumulation in husk (0.31±0.011-0.85±0.016 mg/kg and grain (0.14±0.002-0.31±0.005 mg/kg parts. For any rice sample concentration of arsenic in the grain did not exceed the WHO recommended permissible limit in rice (1.0 mg/kg.

  13. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security.

  14. Genes That Mediate Arsenic and Heavy Metal Detoxification in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, David A.; Gong, Ji-Ming; Schroeder, Julian I.

    2003-03-26

    To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of ars1, a novel mutant with significantly increased tolerance to arsenate. ars1 accumulates similar levels of arsenic as wild type plants, but ars1 tolerance does not appear to be phytochelatin or glutathione dependent. ars1 plants do have a higher rate of phosphate uptake than wild type plants and plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and, consequently, the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 is due to a new mechanism mediated by increased phosphate uptake in ars1. Results exploring increased metal tolerance through engineered phytochelatin expression will also be discussed.

  15. Accumulation and distribution of arsenic and cadmium by tea plants

    Institute of Scientific and Technical Information of China (English)

    Yuan-zhi SHI; Jian-yun RUAN; Lifeng MA; Wen-yan HAN; Fang WANG

    2008-01-01

    It is important to research the rules about accumulation and distribution of arsenic and cadmium by tea plants, which will give us some scientific ideas about how to control the contents of arsenic and cadmium in tea. In this study, by field inves- tigation and pot trial, we found that mobility of arsenic and cadmium in tea plants was low. Most arsenic and cadmium absorbed were fixed in feeding roots and only small amount was transported to the above-ground parts. Distribution of arsenic and cadmium, based on their concentrations of unit dry matter, in tea plants grown on un-contaminated soil was in the order: feeding roots>stems≈main roots>old leaves>young leaves. When tea plants were grown on polluted soils simulated by adding salts of these two metals, feeding roots possibly acted as a buffer and defense, and arsenic and cadmium were transported less to the above- ground parts. The concentration of cadmium in soil significantly and negatively correlated with chlorophyll content, photosyn- thetic rate, transpiration rate and biomass production of tea plants.

  16. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    Directory of Open Access Journals (Sweden)

    Nosheen Mirza

    2014-01-01

    Full Text Available Arsenic (As toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  17. Plants as useful vectors to reduce environmental toxic arsenic content.

    Science.gov (United States)

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  18. Detoxification of arsenic by phytochelatins in plants.

    Science.gov (United States)

    Schmöger, M E; Oven, M; Grill, E

    2000-03-01

    As is a ubiquitous element present in the atmosphere as well as in the aquatic and terrestrial environments. Arsenite and arsenate are the major forms of As intoxication, and these anions are readily taken up by plants. Both anions efficiently induce the biosynthesis of phytochelatins (PCs) ([gamma-glutamate-cysteine](n)-glycine) in vivo and in vitro. The rapid induction of the metal-binding PCs has been observed in cell suspension cultures of Rauvolfia serpentina, in seedlings of Arabidopsis, and in enzyme preparations of Silene vulgaris upon challenge to arsenicals. The rate of PC formation in enzyme preparations was lower compared with Cd-induced biosynthesis, but was accompanied by a prolonged induction phase that resulted finally in higher peptide levels. An approximately 3:1 ratio of the sulfhydryl groups from PCs to As is compatible with reported As-glutathione complexes. The identity of the As-induced PCs and of reconstituted metal-peptide complexes has unequivocally been demonstrated by electrospray ionization mass spectroscopy. Gel filtration experiments and inhibitor studies also indicate a complexation and detoxification of As by the induced PCs.

  19. EFFECTS OF SILICON ON ALLEVIATING ARSENIC TOXICITY IN MAIZE PLANTS

    OpenAIRE

    Airon José da Silva; Clístenes Williams Nascimento; Artur da Silva Gouveia Neto; Elias Arcanjo Silva Junior

    2015-01-01

    Arsenic is a metalloid highly toxic to plants and animals, causing reduced plant growth and various health problems for humans and animals. Silicon, however, has excelled in alleviating stress caused by toxic elements in plants. The aim of this study was to investigate the effects of Si in alleviating As stress in maize plants grown in a nutrient solution and evaluate the potential of the spectral emission parameters and the red fluorescence (Fr) and far-red fluorescence (FFr) ratio obtained ...

  20. Pilot plants for polymers: Safety considerations

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, C.F.; Zvanut, C.W.

    1986-01-01

    Air Products and Chemicals is a major manufacturer of polyvinyl alcohol, vinyl acetate-ethylene emulsions and suspension PVC. Polyvinyl alcohol is a water soluble polymer and its primary end-uses are as a textile sizing agent and in adhesives. The emulsion products are used primarily in adhesives, paper, paints, and non-wovens. In order to support these business areas and to expand into new product lines, Air Products operates several polymer pilot plants. The safe operation of these pilot plants mandates careful attention to both design and operating procedures. Often, more care is needed in operating a polymer pilot plant than in other pilot plants or manufacturing facilities.

  1. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    Science.gov (United States)

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils.

  2. Arsenic distribution in soils and plants of an arsenic impacted former mining area

    Energy Technology Data Exchange (ETDEWEB)

    Otones, V. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Alvarez-Ayuso, E., E-mail: esther.alvarez@irnasa.csic.es [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Garcia-Sanchez, A.; Santa Regina, I. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Murciego, A. [Department of Geology, Plza. de los Caidos s/n., Salamanca University, 37008 Salamanca (Spain)

    2011-10-15

    A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg{sup -1} in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg{sup -1}. - Highlights: > Environmental assessment of an abandoned arsenical tungsten mining exploitation. > Under the present soils conditions As mobility is relatively low, with [As]{sub soluble}/[As]{sub total} {<=} 2%. > The highest risk of As mobilisation would take place under reducing conditions. > The shrubs Salix atrocinerea and Genista scorpius are suitable for revegetation. > The species Scirpus holoschoenus accumulates high As contents at root level. - The plants Salix atrocinerea, Genista scorpius and Scirpus holoschoenus are suitable for revegetation or phytostabilisation approaches of As-polluted soils.

  3. Arsenic

    Science.gov (United States)

    Arsenic is a natural element found in soil and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can get into air, water, and the ground from wind- ...

  4. Arsenic hazards to humans, plants, and animals from gold mining

    Science.gov (United States)

    Eisler, R.

    2004-01-01

    Arsenic sources to the biosphere associated with gold mining include waste soil and rocks, residual water from ore concentrations, roasting of some types of gold-containing ores to remove sulfur and sulfur oxides, and bacterially-enhanced leaching. Arsenic concentrations near gold mining operations were elevated in abiotic materials and biota: maximum total arsenic concentrations measured were 560 ug/L in surface waters, 5.16 mg/L in sediment pore waters, 5.6 mg/kg dry weight (DW) in bird liver, 27 mg/kg DW in terrestrial grasses, 50 mg/kg DW in soils, 79 mg/kg DW in aquatic plants, 103 mg/kg DW in bird diets, 225 mg/kg DW in soft parts of bivalve molluscs, 324 mg/L in mine drainage waters, 625 mg/kg DW in aquatic insects, 7700 mg/kg DW in sediments, and 21,000 mg/kg DW in tailings. Single oral doses of arsenicals that were fatal to 50% of tested species ranged from 17 to 48 mg/kg body weight (BW) in birds and from 2.5 to 33 mg/kg BW in mammals. Susceptible species of mammals were adversely affected at chronic doses of 1 to 10 mg As/kg BW, or 50 mg As/kg diet. Sensitive aquatic species were damaged at water concentrations of 19 to 48 ug As/L, 120 mg As/kg diet, or tissue residues (in the case of freshwater fish) >1.3 mg/kg fresh weight. Adverse effects to crops and vegetation were recorded at 3 to 28 mg of water-soluble As/L (equivalent to about 25 to 85 mg total As/kg soil) and at atmospheric concentrations >3.9 ug As/m3. Gold miners had a number of arsenic-associated health problems including excess mortality from cancer of the lung, stomach, and respiratory tract. Miners and schoolchildren in the vicinity of gold mining activities had elevated urine arsenic of 25.7 ug/L (range 2.2-106.0 ug/L). Of the total population at this location, 20% showed elevated urine arsenic concentrations associated with future adverse health effects; arsenic-contaminated drinking water is the probable causative factor of elevated arsenic in urine. Proposed arsenic criteria to protect

  5. Methylated arsenic species in plants originate from soil microorganisms.

    Science.gov (United States)

    Lomax, Charlotte; Liu, Wen-Ju; Wu, Liyou; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; McGrath, Steve P; Meharg, Andrew A; Miller, Anthony J; Zhao, Fang-Jie

    2012-02-01

    • Inorganic arsenic (iAs) is a ubiquitous human carcinogen, and rice (Oryza sativa) is the main contributor to iAs in the diet. Methylated pentavalent As species are less toxic and are routinely found in plants; however, it is currently unknown whether plants are able to methylate As. • Rice, tomato (Solanum lycopersicum) and red clover (Trifolium pratense) were exposed to iAs, monomethylarsonic acid (MMA(V)), or dimethylarsinic acid (DMA(V)), under axenic conditions. Rice seedlings were also grown in two soils under nonsterile flooded conditions, and rice plants exposed to arsenite or DMA(V) were grown to maturity in nonsterile hydroponic culture. Arsenic speciation in samples was determined by HPLC-ICP-MS. • Methylated arsenicals were not found in the three plant species exposed to iAs under axenic conditions. Axenically grown rice was able to take up MMA(V) or DMA(V), and reduce MMA(V) to MMA(III) but not convert it to DMA(V). Methylated As was detected in the shoots of soil-grown rice, and in rice grain from nonsterile hydroponic culture. GeoChip analysis of microbial genes in a Bangladeshi paddy soil showed the presence of the microbial As methyltransferase gene arsM. • Our results suggest that plants are unable to methylate iAs, and instead take up methylated As produced by microorganisms. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  6. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    Science.gov (United States)

    Yager, J W; Hicks, J B; Fabianova, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. Images Figure 1. A Figure 1. B Figure 2. PMID:9347899

  7. Pilot test specific test plan for the removal of arsenic Socorro, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sue S.; Aragon, Malynda Jo; Everett, Randy L.; Siegel, Malcolm Dean; Aragon, Alicia R.; Dwyer, Brian P.; Marbury, Justin Luke

    2006-03-01

    Sandia National Laboratories (SNL) is conducting pilot scale evaluations of the performance and cost of innovative drinking water treatment technologies designed to meet the new arsenic maximum contaminant level (MCL) of 10 {micro}g/L (effective January 2006). As currently envisioned, pilots tests may include multiple phases. Phase I tests will involve side-by-side comparisons of several commercial technologies primarily using design parameters suggested by the Vendors. Subsequent tests (Phase II) may involve repeating some of the original tests, testing the same commercial technologies under different conditions and testing experimental technologies or additional commercial technologies. This Pilot Test Specific Test Plan (PTSTP) was written for Phase I of the Socorro Springs Pilot. The objectives of Phase I include evaluation of the treatment performance of five adsorptive media under ambient pH conditions (approximately 8.0) and assessment of the effect of contact time on the performance of one of the media. Addenda to the PTSTP may be written to cover Phase II studies and supporting laboratory studies. The Phase I demonstration began in the winter of 2004 and will last approximately 9 months. The information from the test will help the City of Socorro choose the best arsenic treatment technology for the Socorro Springs well. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association (AWWA) Research Foundation, SNL, and WERC (A Consortium for Environmental Education and Technology Development).

  8. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination.

    Science.gov (United States)

    Bandaru, Varaprasad; Daughtry, Craig S; Codling, Eton E; Hansen, David J; White-Hansen, Susan; Green, Carrie E

    2016-06-18

    Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor arsenic in rice plants. Four arsenic levels were induced in hydroponically grown rice plants with application of 0, 5, 10 and 20 µmol·L(-1) sodium arsenate. Reflectance spectra of upper fully expanded leaves were acquired over visible and infrared (NIR) wavelengths. Additionally, canopy reflectance for the four arsenic levels was simulated using SAIL (Scattering by Arbitrarily Inclined Leaves) model for various soil moisture conditions and leaf area indices (LAI). Further, sensitivity of various vegetative indices (VIs) to arsenic levels was assessed. Results suggest that plants accumulate high arsenic amounts causing plant stress and changes in reflectance characteristics. All leaf spectra based VIs related strongly with arsenic with coefficient of determination (r²) greater than 0.6 while at canopy scale, background reflectance and LAI confounded with spectral signals of arsenic affecting the VIs' performance. Among studied VIs, combined index, transformed chlorophyll absorption reflectance index (TCARI)/optimized soil adjusted vegetation index (OSAVI) exhibited higher sensitivity to arsenic levels and better resistance to soil backgrounds and LAI followed by red edge based VIs (modified chlorophyll absorption reflectance index (MCARI) and TCARI) suggesting that these VIs could prove to be valuable aids for monitoring arsenic in rice fields.

  9. Spatial Variation of Arsenic in Soil, Irrigation Water, and Plant Parts: A Microlevel Study

    Science.gov (United States)

    Kabir, M. S.; Salam, M. A.; Paul, D. N. R.; Hossain, M. I.; Rahman, N. M. F.; Aziz, Abdullah

    2016-01-01

    Arsenic pollution became a great problem in the recent past in different countries including Bangladesh. The microlevel studies were conducted to see the spatial variation of arsenic in soils and plant parts contaminated through ground water irrigation. The study was performed in shallow tube well command areas in Sadar Upazila (subdistrict), Faridpur, Bangladesh, where both soil and irrigation water arsenic are high. Semivariogram models were computed to determine the spatial dependency of soil, water, grain, straw, and husk arsenic (As). An arsenic concentration surface was created spatially to describe the distribution of arsenic in soil, water, grain, straw, and husk. Command area map was digitized using Arcview GIS from the “mouza” map. Both arsenic contaminated irrigation water and the soils were responsible for accumulation of arsenic in rice straw, husk, and grain. The accumulation of arsenic was higher in water followed by soil, straw, husk, and grain. Arsenic concentration varied widely within command areas. The extent and propensity of arsenic concentration were higher in areas where high concentration of arsenic existed in groundwater and soils. Spherical model was a relatively better and appropriate model. Kriging method appeared to be more suitable in creating interpolated surface. The average arsenic content in grain was 0.08–0.45 mg/kg while in groundwater arsenic level it ranged from 138.0 to 191.3 ppb.

  10. The fate of arsenic in soil-plant systems.

    Science.gov (United States)

    Moreno-Jiménez, Eduardo; Esteban, Elvira; Peñalosa, Jesús M

    2012-01-01

    Arsenic is a natural trace element found in the environment. In some cases and places, human activities have increased the soil concentration of As to levels that exceed hazard thresholds. Amongst the main contributing sources of As contamination of soil and water are the following: geologic origin, pyriticmining, agriculture, and coal burning. Arsenic speciation in soils occurs and is relatively complex. Soils contain both organic and inorganic arsenic species. Inorganic As species include arsenite and arsenate, which are the most abundant forms found in the environment. The majority of As in aerated soils exists as H₂AsO₄- (acid soils) or HAsO₄²- (neutral species and basic). However, HA₃sO₃ is the predomiant anaerobic soils, where arsenic availability is higher and As(III) is more weakly retained in the soil matrix than is As(V). The availability of As in soils is usually driven by multiple factors. Among these factors is the presence of Fe-oxides and/or phosphorus, (co)precipitation in salts, pH, organic matter, clay content, rainfall amount, etc. The available and most labile As fraction can potentially be taken up by plant roots, although the concentration of this fraction is usually low. Arsenic has no known biological function in plants. Once inside root cells, As(V) is quickly reduced to As(III), and, in many plant species, becomes complexed. Phosphorus nutrition influences As(V) uptake and toxicity in plants, whilst silicon has similar influences on As(III). Plants cope with As contamination in their tissues by possessing detoxification mechanisms. Such mechanisms include complexation and compartmentalization. However, once these mechanisms are saturated, symptoms of phytotoxicity appear. Phytotoxic effects commonly observed from As exposure includes growth inhibition, chlorophyll degradation, nutrient depletion and oxidative stress. Plants vary in their ability to accumulate and tolerate As (from tolerant hyperaccumulators to sensitive

  11. Mechanisms to cope with arsenic or cadmium excess in plants.

    Science.gov (United States)

    Verbruggen, Nathalie; Hermans, Christian; Schat, Henk

    2009-06-01

    The metalloid arsenic and the heavy metal cadmium have no demonstrated biological function in plants. Both elements are highly toxic and of major concern with respect to their accumulation in soils, in the food-chain or in drinking water. Arsenate is taken up by phosphate transporters and rapidly reduced to arsenite, As(III). In reducing environments, As(III) is taken up by aquaporin nodulin 26-like intrinsic proteins. Cd(2+) enters the root via essential metal uptake systems. As(III) and Cd(2+) share some similarity between their toxicology and sequestration machineries. Recent progress in understanding the mechanisms of As and Cd uptake and detoxification is presented, including the elucidation of why rice takes up so much arsenic from soil and of mechanisms of As and Cd hypertolerance.

  12. Naturally occurring arsenic in the groundwater at the Kansas City Plant

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E.

    1990-12-01

    This report describes an investigation concerning the presence of arsenic in concentrations exceeding 0.4 mg/L in the groundwater under the Department of Energy's Kansas City Plant (KCP). The study consisted of four distinct phases: a thorough review of the technical literature, a historical survey of arsenic use at the facility, a laboratory study of existing techniques for determining arsenic speciation, and a field program including water, soil, and sediment sampling. The historical survey and literature review demonstrated that plant activities had not released significant quantities of arsenic to the environment but that similar occurrences of arsenic in alluvial groundwater are widespread in the midwestern United States. Laboratory studies showed that a chromatographic separation technique was necessary to accurately determine arsenic speciation for the KCP groundwater samples. Field studies revealed that naturally occurring reducing conditions prevalent in the subsurface are responsible for dissolving arsenic previously sorbed by iron oxides. Indeed, the data demonstrated that the bulk arsenic concentration of site subsoils and sediments is {approximately}7 mg/kg, whereas the arsenic content of iron oxide subsamples is as high as 84 mg/kg. Literature showed that similar concentrations of arsenic in sediments occur naturally and are capable of producing the levels of arsenic found in groundwater monitoring wells at the KCP. The study concludes, therefore, that the arsenic present in the KCP groundwater is the result of natural phenomena. 44 refs., 8 figs., 14 tabs.

  13. Performance of aquatic plant species for phytoremediation of arsenic-contaminated water

    Science.gov (United States)

    Jasrotia, Shivakshi; Kansal, Arun; Mehra, Aradhana

    2017-05-01

    This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth ( Eichhornia crassipes) and two algae ( Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3-8.4, whereas COD reduced by 50-65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to arsenic by 40-50 %; whereas, water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation.

  14. BIMOMASS GASIFICATION PILOT PLANT STUDY

    Science.gov (United States)

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  15. EFFECTS OF SILICON ON ALLEVIATING ARSENIC TOXICITY IN MAIZE PLANTS

    Directory of Open Access Journals (Sweden)

    Airon José da Silva

    2015-02-01

    Full Text Available Arsenic is a metalloid highly toxic to plants and animals, causing reduced plant growth and various health problems for humans and animals. Silicon, however, has excelled in alleviating stress caused by toxic elements in plants. The aim of this study was to investigate the effects of Si in alleviating As stress in maize plants grown in a nutrient solution and evaluate the potential of the spectral emission parameters and the red fluorescence (Fr and far-red fluorescence (FFr ratio obtained in analysis of chlorophyll fluorescence in determination of this interaction. An experiment was carried out in a nutrient solution containing a toxic rate of As (68 μmol L-1 and six increasing rates of Si (0, 0.25, 0.5, 1.0, 1.5, and 2.0 mmol L-1. Dry matter production and concentrations of As, Si, and photosynthetic pigments were then evaluated. Chlorophyll fluorescence was also measured throughout plant growth. Si has positive effects in alleviating As stress in maize plants, evidenced by the increase in photosynthetic pigments. Silicon application resulted in higher As levels in plant tissue; therefore, using Si for soil phytoremediation may be a promising choice. Chlorophyll fluorescence analysis proved to be a sensitive tool, and it can be successfully used in the study of the ameliorating effects of Si in plant protection, with the Fr/FFr ratio as the variable recommended for identification of temporal changes in plants.

  16. 7 CFR 1412.48 - Planting Transferability Pilot Project.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Planting Transferability Pilot Project. 1412.48... and Peanuts 2008 through 2012 § 1412.48 Planting Transferability Pilot Project. (a) Notwithstanding § 1412.47, for each of the 2009 and subsequent crop years, the Planting Transferability Pilot...

  17. Evaluation of extraction procedures for the ion chromatographic determination of arsenic species in plant materials.

    Science.gov (United States)

    Schmidt, A C; Reisser, W; Mattusch, J; Popp, P; Wennrich, R

    2000-08-11

    The determination of arsenic species in plants grown on contaminated sediments and soils is important in order to understand the uptake, transfer and accumulation processes of arsenic. For the separation and detection of arsenic species, hyphenated techniques can be applied successfully in many cases. A lack of investigations exists in the handling (e.g., sampling, pre-treatment and extraction) of redox- and chemically labile arsenic species prior to analysis. This paper presents an application of pressurized liquid extraction (PLE) using water as the solvent for the effective extraction of arsenic species from freshly harvested plants. The method was optimized with respect to extraction time, number of extraction steps and temperature. The thermal stability of the inorganic and organic arsenic species under PLE conditions (60-180 degrees C) was tested. The adaptation of the proposed extraction method to freeze-dried, fine-grained material was limited because of the insufficient reproducibility in some cases.

  18. Arsenic

    Science.gov (United States)

    ... WHO Language عربي 中文 English Français Русский Español Media centre Menu Media centre News News releases Previous ... this water and eating food irrigated with arsenic-rich water, can lead to chronic arsenic poisoning. Skin ...

  19. Spatial Variation of Arsenic in Soil, Irrigation Water, and Plant Parts: A Microlevel Study

    OpenAIRE

    Kabir, M. S.; Salam, M.A.; Paul, D. N. R.; Hossain, M. I.; Rahman, N.M.F; Abdullah Aziz; Latif, M.A.

    2016-01-01

    Arsenic pollution became a great problem in the recent past in different countries including Bangladesh. The microlevel studies were conducted to see the spatial variation of arsenic in soils and plant parts contaminated through ground water irrigation. The study was performed in shallow tube well command areas in Sadar Upazila (subdistrict), Faridpur, Bangladesh, where both soil and irrigation water arsenic are high. Semivariogram models were computed to determine the spatial dependency of s...

  20. Evaluating leaf and canopy reflectance of stressed rice plants to monitor arsenic contamination

    Science.gov (United States)

    Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor ars...

  1. Consequence of irrigation with arsenic and zinc contaminated water on accumulation of zinc in radishes plant

    Directory of Open Access Journals (Sweden)

    Hossein Banejad

    2014-10-01

    Conclusion: It was found that zinc concentration in radish roots, tubers, and leafs is correlated with the concentration of zinc in water. Moreover, there was a competition between the absorption of zinc and arsenic in plants. With increasing arsenic in irrigation water, transition of Zn was reduced to aerial part.

  2. Advanced Gasifier Pilot Plant Concept Definition

    Energy Technology Data Exchange (ETDEWEB)

    Steve Fusselman; Alan Darby; Fred Widman

    2005-08-31

    This report presents results from definition of a preferred commercial-scale advanced gasifier configuration and concept definition for a gasification pilot plant incorporating those preferred technologies. The preferred commercial gasifier configuration was established based on Cost Of Electricity estimates for an IGCC. Based on the gasifier configuration trade study results, a compact plug flow gasifier, with a dry solids pump, rapid-mix injector, CMC liner insert and partial quench system was selected as the preferred configuration. Preliminary systems analysis results indicate that this configuration could provide cost of product savings for electricity and hydrogen ranging from 15%-20% relative to existing gasifier technologies. This cost of product improvement draws upon the efficiency of the dry feed, rapid mix injector technology, low capital cost compact gasifier, and >99% gasifier availability due to long life injector and gasifier liner, with short replacement time. A pilot plant concept incorporating the technologies associated with the preferred configuration was defined, along with cost and schedule estimates for design, installation, and test operations. It was estimated that a 16,300 kg/day (18 TPD) pilot plant gasifier incorporating the advanced gasification technology and demonstrating 1,000 hours of hot-fire operation could be accomplished over a period of 33 months with a budget of $25.6 M.

  3. Arsenic: A Review of the Element's Toxicity, Plant Interactions, and Potential Methods of Remediation.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; French, Amanda D; Klein, David M

    2015-08-19

    Arsenic is a naturally occurring element with a long history of toxicity. Sites of contamination are found worldwide as a result of both natural processes and anthropogenic activities. The broad scope of arsenic toxicity to humans and its unique interaction with the environment have led to extensive research into its physicochemical properties and toxic behavior in biological systems. The purpose of this review is to compile the results of recent studies concerning the metalloid and consider the chemical and physical properties of arsenic in the broad context of human toxicity and phytoremediation. Areas of focus include arsenic's mechanisms of human toxicity, interaction with plant systems, potential methods of remediation, and protocols for the determination of metals in experimentation. This assessment of the literature indicates that controlling contamination of water sources and plants through effective remediation and management is essential to successfully addressing the problems of arsenic toxicity and contamination.

  4. Maternal/fetal metabolomes appear to mediate the impact of arsenic exposure on birth weight: A pilot study.

    Science.gov (United States)

    Wei, Yongyue; Shi, Qianwen; Wang, Zhaoxi; Zhang, Ruyang; Su, Li; Quamruzzaman, Quazi; Rahman, Mahmuder; Chen, Feng; Christiani, David C

    2016-12-14

    Arsenic exposure has been associated with low birth weight. However, the underlying mechanisms are not well understood. Alterations to metabolites may act as causal mediators of the effect of arsenic exposure on low birth weight. This pilot study aimed to explore the role of metabolites in mediating the association of arsenic exposure on infant birth weight. Study samples were selected from a well-established prospectively enrolled cohort in Bangladesh comprising 35 newborns and a subset of 20 matched mothers. Metabolomics profiling was performed on 35 cord blood samples and 20 maternal peripheral blood samples collected during the second trimester of pregnancy. Inorganic arsenic (iAs) exposure was evaluated via cord blood samples and maternal toenail samples collected during the first trimester. Multiple linear regression and mediation analyses were used to explore the relationship between iAs exposure, metabolite alterations, and low birth weight. Cord blood arsenic level was correlated with elevated levels of 17-methylstearate, laurate (12:0) and 4-vinylphenol sulfate along with lower birth weight. Prenatal maternal toenail iAs level was associated with two peripheral blood metabolites (butyrylqlycine and tartarate), which likely contributed to higher cord blood iAs levels both independently and interactively. Findings of this pilot study indicate that both intrauterine and maternal peripheral blood metabolites appear to influence the toxic effect of inorganic arsenic exposure on low birth weight.Journal of Exposure Science and Environmental Epidemiology advance online publication, 14 December 2016; doi:10.1038/jes.2016.74.

  5. ARSENIC REMOVAL FROM DRINKING WATER BY COAGULATION/FILTRATION AND LIME SOFTENING PLANTS

    Science.gov (United States)

    This report documents a long term performance (one year) study of 3 water treatment plants to remove arsenic from drinking water sources. The 3 plants consisted of 2 conventional coagulation/filtration plants and 1 lime softening plant. The study involved the collecting of weekly...

  6. Arsenic and mercury tolerance and cadmium sensitivity in Arabidopsis plants expressing bacterial gamma-glutamylcysteine synthetase.

    Science.gov (United States)

    Li, Yujing; Dhankher, Om Parkash; Carreira, Laura; Balish, Rebecca S; Meagher, Richard B

    2005-06-01

    Cysteine sulfhydryl-rich peptide thiols are believed to play important roles in the detoxification of many heavy metals and metalloids such as arsenic, mercury, and cadmium in plants. The gamma-glutamylcysteine synthetase (gamma-ECS) catalyzes the synthesis of the dipeptidethiol gamma-glu-cys (gamma-EC), the first step in the biosynthesis of phytochelatins (PCs). Arabidopsis thaliana, engineered to express the bacterial gamma-ECS gene under control of a strong constitutive actin regulatory sequence (A2), expressed gamma-ECS at levels approaching 0.1% of total protein. In response to arsenic, mercury, and cadmium stresses, the levels of gamma-EC and its derivatives, glutathione (GSH) and PCs, were increased in the A2::ECS transgenic plants to three- to 20-fold higher concentrations than the increases that occurred in wild-type (WT). Compared to cadmium and mercury treatments, arsenic treatment most significantly increased levels of gamma-EC and PCs in both the A2::ECS transgenic and WT plants. The A2::ECS transgenic plants were highly resistant to arsenic and weakly resistant to mercury. Although exposure to cadmium produced three- to fivefold increases in levels of gamma-EC-related peptides in the A2::ECS lines, these plants were significantly more sensitive to Cd(II) than WT and trace levels of Cd(II) blocked resistance to arsenic and mercury. A few possible mechanisms for gamma-ECS-enhanced arsenic and mercury resistance and cadmium hypersensitivity are discussed.

  7. Waste Isolation Pilot Plant, Land Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  8. TASK 3: PILOT PLANT GASIFIER TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Fusselman, Steve

    2015-11-01

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. Design, fabrication and initial testing of the pilot plant compact gasifier was completed in 2011 by a development team led by AR. Findings from this initial test program, as well as subsequent gasifier design and pilot plant testing by AR, identified a number of technical aspects to address prior to advancing into a demonstration-scale gasifier design. Key among these were an evaluation of gasifier ability to handle thermal environments with highly reactive coals; ability to handle high ash content, high ash fusion temperature coals with reliable slag discharge; and to develop an understanding of residual properties pertaining to gasification kinetics as carbon conversion approaches 99%. The gasifier did demonstrate the ability to withstand the thermal environments of highly reactive Powder River Basin coal, while achieving high carbon conversion in < 0.15 seconds residence time. Continuous operation with the high ash fusion temperature Xinyuan coal was demonstrated in long duration testing, validating suitability of outlet design as well as downstream slag discharge systems. Surface area and porosity data were obtained for the Xinyuan and Xinjing coals for carbon conversion ranging from 85% to 97%, and showed a pronounced downward trend in surface area per unit mass carbon as conversion increased. Injector faceplate measurements showed no incremental loss of material over the course of these experiments, validating the commercially traceable design approach and supportive of long injector life goals. Hybrid testing of PRB and natural gas was successfully completed over a wide range of natural gas feed content, providing test data to anchor predictions

  9. Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants.

    Science.gov (United States)

    Iriel, Analia; Dundas, Gavin; Fernández Cirelli, Alicia; Lagorio, Maria G

    2015-01-01

    Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas, are highly sought-after. Both chlorophyll - a fluorescence and reflectance of aquatic plants may be potential indicators to sense toxicity in water media. In this work, the effects of arsenic on the optical and photophysical properties of leaves of different aquatic plants (Vallisneria gigantea, Azolla filiculoides and Lemna minor) were evaluated. Reflectance spectra were recorded for the plant leaves from 300 to 2400 nm. The spectral distribution of the fluorescence was also studied and corrected for light re-absorption processes. Photosynthetic parameters (Fv/Fm and ΦPSII) were additionally calculated from the variable chlorophyll fluorescence recorded with a pulse amplitude modulated fluorometer. Fluorescence and reflectance properties for V. gigantea and A. filiculoides were sensitive to arsenic presence in contrast to the behaviour of L. minor. Observed changes in fluorescence spectra could be interpreted in terms of preferential damage in photosystem II. The quantum efficiency of photosystem II for the first two species was also affected, decreasing upon arsenic treatment. As a result of this research, V. gigantea and A. filiculoides were proposed as bioindicators of arsenic occurrence in aquatic media.

  10. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics.

    Science.gov (United States)

    Cavalca, Lucia; Zanchi, Raffaella; Corsini, Anna; Colombo, Milena; Romagnoli, Cristina; Canzi, Enrica; Andreoni, Vincenza

    2010-04-01

    A rhizobacterial community, associated with the roots of wild thistle Cirsium arvense (L.) growing in an arsenic polluted soil, was studied by fluorescence in situ hybridization (FISH) analysis in conjunction with cultivation-based methods. In the bulk, rhizosphere, and rhizoplane fractions of the soil, the qualitative picture obtained by FISH analysis of the main phylogenetic bacterial groups was similar and was predominantly comprised of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The arsenic-resistant isolates belonged to 13 genera, the most abundant being those of Bacillus, Achromobacter, Brevundimonas, Microbacterium, and Ochrobactrum. Most bacteria grew in the presence of high arsenic concentrations (over 100mM arsenate and 10mM arsenite). Most strains possessed the ArsC, ArsB and ACR3 genes homologous to arsenate reductase and to the two classes of arsenite efflux pumps, respectively, peculiar to the ars operon of the arsenic detoxification system. ArsB and ACR3 were present simultaneously in highly resistant strains. An inconsistency between 16S rRNA phylogenetic affiliations and the arsenate reductase sequences of the strains was observed, indicating possible horizontal transfer of arsenic resistance genes in the soil bacterial community. Several isolates were able to reduce arsenate and to oxidise arsenite. In particular, Ancylobacter dichloromethanicum strain As3-1b possessed both characteristics, and arsenite oxidation occurred in the strain also under chemoautotrophic conditions. Some rhizobacteria produced siderophores, indole acetic acid and 1-amino-cyclopropane-1-carboxylic acid deaminase, thus possessing potential plant growth-promoting traits.

  11. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities.

    Science.gov (United States)

    García-Salgado, Sara; Quijano, M Ángeles

    2014-03-01

    Ten native terrestrial plants from soils polluted by former mining activities (Mónica mine, NW Madrid, Spain), with high total arsenic concentration levels (up to 3500 μg g(-1)), have been studied to determine the fraction of arsenic present as toxic forms (inorganic and methylated species), which present a higher mobility and therefore the potential risk associated with their reintegration into the environment is high. Roots and aboveground parts were analyzed separately to assess possible transformations from translocation processes. Extractions were carried out with deionized water by microwave-assisted extraction at a temperature of 90 °C and three extraction steps of 7.5 min each. Total extracted arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry, showing extraction percentages from 9 to 39% (calculated as the ratio between total extracted arsenic (Asext) and total arsenic (AsT) concentrations in plants). Speciation studies, performed by high performance liquid chromatography-photo-oxidation-hydride generation-atomic fluorescence spectrometry, showed the main presence of arsenate (As(v)) (up to 350 μg g(-1)), followed by arsenite (As(iii)), in both plant parts. Monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) were also found only in some plants. On the other hand, the use of 0.5 mol L(-1) acetic acid as an extractant led to higher extraction percentages (33-87%), but lower column recoveries, probably due to the extraction of arsenic compounds different to the toxic free ions studied, which may come from biotransformation mechanisms carried out by plants to reduce arsenic toxicity. However, As(v) concentrations increased up to 800 μg g(-1) in acid medium, indicating the probable release of As(v) from organoarsenic compounds and therefore a higher potential risk for the environment.

  12. Removal of the arsenic from contaminated groundwater with use of the new generation of MicroDrop Aqua system

    DEFF Research Database (Denmark)

    Kowalski, Krzysztof; Søgaard, Erik Gydesen

    2012-01-01

    The results from a new pilot scale plant of the MicroDrop Aqua arsenic removal technology are introduced. The technology is based on the employing of electrochemical iron dissolution and efficient aeration prior to sand filtration. The pilot treatment was used to study effectiveness of iron relea...... addition and easily to remove arsenic from contaminated groundwater....

  13. Development of 1000kW-class MCFC pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Ooue, M.; Yasue, H. [MCFC Research Association, Mie (Japan); Takasu, K.; Tsuchitori, T.

    1996-12-31

    This pilot plant is a part of the New Sunshine Program which has proceeded by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. MCFC Research Association is entrusted with the development of the pilot plant, and constructing it at Kawagoe site. Following items will be verified by this pilot plant operation. (a) Development of 250kW class stack and confirmation of stack performance and decay rate. (b) System verification such as basic process, control system and operation characteristics, toward commercialization. (c) To get design data for demonstration plant.

  14. A PILOT PLANT FOR THE BIOGAS PRODUCTION

    Directory of Open Access Journals (Sweden)

    A. Omrani

    1988-08-01

    Full Text Available Manure and Putreseible garbage are some of the main sources of pathogenic germs in countryside’s. On the other hand, demand for fertilizer and energy increases in rural areas every day. To study Potential of cow manure for these requirements a 16,5m3 pilot plant was designed and constructed as fermentation tank near animal husbandry of karaj Agriculture Faculty. Some 260kg cow manure and water with the ratio of 4 and 7 was fed to fermentation tank every day. Average daily biogas production was 3.4m3, which was burned successfully in a gas range. Gas production was reduced by 86% during coldest winter days. Design for control of gas pressure and reservation of excessive gas was successful. Concentration of nitrate in sludge increased by 1.6 folds compared to row material. Some bacteria and Parasites were reduced drastically.

  15. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  16. The Arbuscular Mycorrhiza Rhizophagus intraradices Reduces the Negative Effects of Arsenic on Soybean Plants

    Directory of Open Access Journals (Sweden)

    Federico Spagnoletti

    2015-05-01

    Full Text Available Arsenic (As in soils causes several detrimental effects, including death. Arsenic toxicity in soybean plants (Glycine max L. has been little studied. Arbuscular mycorrhiza (AM increase the tolerance of host plants to abiotic stress, like As. We investigated the effects of AM fungi on soybean grown in As-contaminated soils. A pot experiment was carried out in a glasshouse, at random with five replications. We applied three levels of As (0, 25, and 50 mg As kg−1, inoculated and non-inoculated with the AM fungus Rhizophagus intraradices (N.C. Schenck & G.S. Sm. C. Walker & A. Schüßler. Plant parameters and mycorrhizal colonization were measured. Arsenic in the substrate, roots, and leaves was quantified. Arsenic negatively affected the AM percentage of spore germination and hyphal length. As also affected soybean plants negatively: an extreme treatment caused a reduction of more than 77.47% in aerial biomass, 68.19% in plant height, 78.35% in number of leaves, and 44.96% reduction in root length, and delayed the phenological evolution. Mycorrhizal inoculation improved all of these parameters, and decreased plant As accumulation (from 7.8 mg As kg−1 to 6.0 mg As kg−1. AM inoculation showed potential to reduce As toxicity in contaminated areas. The AM fungi decreased As concentration in plants following different ways: dilution effect, less As intake by roots, and improving soybean tolerance to As.

  17. Pilot plant study for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.S. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)

    1996-02-01

    Most of domestic alcohol fermentation factory adopt batch process of which productivity is lower than continuous fermentation process. They have made great effort to increase productivity by means of partial unit process automatization and process improvement with their accumulated experience but there is technical limitation in productivity of batch fermentation process. To produce and supply fuel alcohol, economic aspects must be considered first of all. Therefore, development of continuous fermentation process, of which productivity is high, is prerequisite to produce and use fuel alcohol but only a few foreign company possess continuous fermentation technic and use it in practical industrial scale fermentation. We constructed pilot plant (5 Stage CSTR 1 kl 99.5 v/v% ethanol/Day scale) to study some aspects stated below and our ultimate aims are production of industrial scale fuel alcohol and construction of the plant by ourselves. Some study concerned with energy saving separation and contamination control technic were entrusted to KAIST, A-ju university and KIST respectively. (author) 67 refs., 100 figs., 58 tabs.

  18. Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties.

    Science.gov (United States)

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (Psoil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16-293%. Soil chemical and enzymatic properties varied from 20-222% and 34-760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils.

  19. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  20. Evaluation of the arsenic binding capacity of plant proteins under conditions of protein extraction for gel electrophoretic analysis.

    Science.gov (United States)

    Schmidt, Anne-Christine; Steier, Sandra; Otto, Matthias

    2009-03-15

    As prerequisite for the investigation of arsenic-binding proteins in plants, the general influence of different extraction parameters on the binding behaviour of arsenic to the plant protein pool was investigated. The concentration of the extraction buffer affected the extraction yield both for proteins and for arsenic revealing an optimal buffer concentration of 5mM Tris/HCl, pH 8. The addition of 1 or 2% (w/v) SDS to the extraction buffer produced a two- to threefold enhancement of the total protein extraction yield but strongly suppressed the simultaneous extraction of arsenic from 80+/-8% extraction yield obtained without SDS to 48+/-2% in presence of 2% (w/v) SDS. The arsenic binding capacity of the protein fraction obtained after extraction with Tris buffer and protein precipitation by trichloroacetic acid in acetone was estimated to be 1.4+/-0.6% independently on the original spiking concentration of arsenic provided in the form of monomethylarsonate to the extracts. Due to the low total protein concentrations of the plant extracts that varied in the range from 75 to 412 microgmL(-1) depending on the extraction parameters, high arsenic concentrations of 263-1001 mg (kgproteinmass)(-1) resulted for spiking concentrations of 10 mgAsL(-1). The optimized protein isolation procedure was applied to plants grown under arsenic exposure and revealed a similar arsenic binding capacity as for the spiked protein extracts.

  1. Crow Municipal Rural & Industrial Pilot Water Treatment Plant NPDES Permit

    Science.gov (United States)

    Under NPDES permit MT-0031827, the Crow Indian Tribe is authorized to discharge from the Crow Municipal Rural & Industrial (MR&I) Pilot Water Treatment Plant in Bighorn County, Montana to the Bighorn River.

  2. Arsenic and Antimony Content in Soil and Plants from Baia Mare Area, Romania

    Directory of Open Access Journals (Sweden)

    Gabriela Oprea

    2010-01-01

    Full Text Available Problem statement: The objective of this research was to evaluate the degree of soil contamination with arsenic and antimony in Baia Mare, a nonferrous mining and metallurgical center located in the North West region of Romania. The soil in the area is affected by the emissions of powders containing metals from metallurgical factories. Previous studies indicated the soil contamination with copper, zinc, cadmium and lead, but there is few data about the actual level of soil pollution with arsenic and antimony. Approach: The soil samples were collected from 2 districts of Baia Mare: Ferneziu, which is located in the proximity of a lead smelter and Săsar district which is located along the Sasar River in the preferential direction of the wind over a metallurgical factory producing lead. As reference was considered Dura area located in a less polluted hilly area, in the west part of the town. Samples of soil and plants from the residential area of Ferneziu, Săsar and Dura districts were collected. The arsenic determination was carried out by inductively coupled plasma atomic emission spectrometry and the antimony determination by inductively coupled plasma mass spectrometry. Results: In Ferneziu area, the concentration of arsenic in soil ranged between 0.25 and 255 mg kg-1. In Săsar district the arsenic concentration in the soil ranged between 5.5 and 295 mg kg-1. Regarding antimony, in Ferneziu area the concentration ranged between 5.3 and 40.6 mg kg-1; while in Săsar, antimony soils concentrations vary in the range: 0.9-18.4. Arsenic and antimony concentrations in plants were low for almost of the samples, both in Ferneziu and Săsar area indicating a low mobility of these elements in the studied soils. Conclusion: This study indicated the soil pollution with arsenic both in Ferneziu district and in Săsar district. The soil pollution with antimony was found especially in Ferneziu district.

  3. Waste Isolation Pilot Plant Salt Decontamination Testing

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  4. Waste Isolation Pilot Plant Salt Decontamination Testing

    Energy Technology Data Exchange (ETDEWEB)

    Demmer, Ricky Lynn [Idaho National Laboratory; Reese, Stephen Joseph [Idaho National Laboratory

    2015-03-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. Several practical, easily deployable methods of decontaminating WIPP salt, using a surrogate contaminant and americium (241Am), were developed and tested. The effectiveness of the methods is evaluated qualitatively, and to the extent practical, quantitatively. Of the methods tested (dry brushing, vacuum cleaning, water washing, mechanical grinding, strippable coatings, and fixative barriers), the most practical seems to be water washing. Effectiveness is very high, and water washing is easy and rapid to deploy. The amount of wastewater produced (~2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from water washed coupons found no residual removable contamination. Thus, whatever contamination is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  5. Waste Isolation Pilot Plant Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-03-12

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  6. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    Science.gov (United States)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    Heavy metal contamination is an important environmental problem, since the metals are harmful to humans, animals and tend to bioaccumulate in the food chain. The aim of this study was to determine the total concentration of As, As (III) and As(V) in soil samples, leaves and roots of plant material, growing in a mining area in Spain (Murcia). Ditichia viscosa was used as the plant of reference. The concentrations of bioavailable As in plant samples were calculated by different soil chemical extraction methods; deionized water, 0.5N NaHCO3 (Olsen extraction), oxidizable medium, 0.5 HCl, 0.05M (NH4)2SO4, 0.005M DTPA and Mehra-Jackson extraction. For this study, fourteen samples were collected in the surrounding area of Sierra Minera and Portman Bay (Murcia, SE Spain). Samples were air dried and sieved to plants do not absorb arsenic in the same proportion, the results suggest that a good relationship exists between the total content of As in soil and the total content in plant. The results showed that the arsenic content in roots was positively correlated with the oxidizable-organic matter and sulfides fraction (oxidaizable medium extraction procedure). Arsenic concentration in leaves was positively correlated with the arsenic extracted by HCl, with the oxidizable-organic matter and sulfides fraction and with the arsenic extracted by Mehra-Jackson extraction. According to our results, As is accumulated in the leaves of the plants and is linked with iron oxides of these soils affected by mining activities.

  7. First results from the start up at pilot plant Niederaussem

    Energy Technology Data Exchange (ETDEWEB)

    Moser, P.; Schmidt, S. [RWE Power, Essen (Germany); Garcia, H.; Sieder, G. [BASF SE (Germany); Forster, C.; Stoffregen, T. [Linde-KCA Dresden GmbH (Germany)

    2009-07-01

    In 2007, RWE Power, BASF and Linde entered into a cooperation to adapt carbon dioxide (CO{sub 2}) scrubbing technology for use in power plants and to optimize the techno-economical performance of CO{sub 2} post combustion capture. The project involved the construction of a new pilot plant at RWE Power's lignite-fired power plant in Niederaussem, Germany to investigate all aspects of the capture process with regards to a new energy-efficient solvent developed by BASF and the improved plant technology by Linde. Approximately 250 measurements and online-analysis systems were used to validate the operational performance, energy demand for CO{sub 2} capture and solvent stability. The construction of the pilot plant began in October 2008. Commissioning started in May 2009 and the pilot plant was finalized in July 2009. The testing program involves extensive parameter studies as well as a comprehensive material testing program for steels and new construction materials for columns and pipes. This paper presented the first results from the pilot plant operation in which MEA was used as a reference solvent. Technical details of the pilot plant were provided along with the test program for the new advanced solvent.

  8. Potential of some aquatic plants for removal of arsenic from wastewater by green technology

    Directory of Open Access Journals (Sweden)

    Mohammed Barznji Dana A.

    2015-03-01

    Full Text Available Phytoremediation or green technology is counted among the successful and effective biological contaminated water treatment techniques. Basically, the concept of this green, cost-effective, simple, environmentally nondisruptive method consists in using plants and microbiological processes to reduce contaminants in the ecosystem. Different species from aquatic plants (emerged, free-floating, and submerged have been studied to mitigate toxic contaminants such as arsenic, cadmium, chromium, copper, lead, mercury, zinc, etc. Arsenic is one of the most severe toxic elements; it is widely distributed in the environment, usually found in combination with chloride, oxygen, sulphur and metal ions as a result of mineral dissolution from sedimentary or volcanic rocks and the dilution of geothermal water. The effluents from both industrial and agricultural sectors are also regarded as sources to contaminate water. From the accumulation point of view, several aquatic plants have been mentioned as good arsenic accumulators and their performance is evaluated using the green technology method. These include Spirodela polyrhiza, Wolffia globosa, Lemna gibba, L. minor, Eichhornia crassipes, Azolla caroliniana, Azolla filiculoides, Azolla pinnata, Ceratophyllum demersum and Pistia stratiotes. The up-to-date information illustrated in this review paper generates knowledge about the ability of some common aquatic plants around the globe to remediate arsenic from contaminated water.

  9. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils.

    Science.gov (United States)

    Williams, Paul N; Zhang, Hao; Davison, William; Meharg, Andrew A; Hossain, Mahmud; Norton, Gareth J; Brammer, Hugh; Islam, M Rafiqul

    2011-07-15

    Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution.

  10. Waste Isolation Pilot Plant Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not

  11. Waste Isolation Pilot Plant Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not

  12. Enhanced arsenic removals through plant interactions in subsurface-flow constructed wetlands.

    Science.gov (United States)

    Singhakant, Chatchawal; Koottatep, Thammarat; Satayavivad, Jutamaad

    2009-02-01

    Arsenic (As) removal in pilot-scale subsurface-flow constructed wetlands (CWs) was investigated by comparing between CW units with vetiver grasses (CWplanted) and CW units without vetiver grasses (CWunplanted) in order to determine the roles of vetiver grasses affecting As removal. Based on the data obtained from 147 days of experiment, it is apparent that CWplanted units could remove As significantly higher than those of CWunplanted units with approximately 7-14%. Although analysis of As mass balance in CW units revealed that only 0.5-1.0% of total As was found in vetiver grasses, the As retained within bed of the CWplanted units (23.6-29.7 g) was higher than those in the CWunplanted units (21.3-26.8 g) at the end of the experiment, illustrating the effect of vetiver grasses on As accumulation in the CW units. Determination of As in different fractions in the CW bed suggested that the main mechanism of As retention was due mainly to As entrapment into the porous of bed materials (50-57% of total fraction), this mechanism is likely not affected by the presence of vetiver grasses. However, fraction of As-bound in organic matters that could be released from plant roots decomposition indicated the increase adsorption capacity of CW bed. In addition, organic sulfides produced from their root decomposition could help remove As through the precipitation/co-precipitation process. Under reducing condition in those CWplanted units, As could be leached out in the form of iron and manganese-bound complexes.

  13. Wild plants as tools for the remediation of abandoned mining sites with a high arsenic content

    Science.gov (United States)

    Martínez-Lopez, Salvadora; Martínez-Sanchez, MJose; Perez-Sirvent, Carmen; Martínez, Lucia B.; Bech, Jaume

    2014-05-01

    The aim of this study was to assess the environmental risk posed by arsenic when new vegetation types are introduced, analyzing the transfer of arsenic in different plant species that grow spontaneously in mining areas of SE Spain (Sierra Minera of Cartagena), and the contribution of such plants to the environmental risk represented by their ingestion by animals living in the same ecosystems. When dealing with remediation projects in zones affected by mining activities, the risk posed by the ingestion of the plants by fauna is often forgotten. To study the transfer to the trophic chain, two mammals, sheep and vole, were selected. The risk analysis was centered in the contribution of these natural plants to the ingestion calculated. For this study, 21 vegetal species naturally growing in the soils were collected from the Sierra Minera. The vegetal material studied is clearly associated with the Mediterranean Region (S.E. of Spain) and the plant species collected are endemisms and plants characteristic of the zone. Physico-chemical properties were obtained by means of the usual procedures. To determine the arsenic content, the soil samples and plant materials were digested in a microwave system and the arsenic concentration was determined using atomic fluorescence spectrometry with an automated continuous flow hydride generation system. A semiquantitative estimation of the mineralogical composition of the samples was made by X Ray Diffraction analysis. The soils were classified into three groups: Low (group 1) (7-35 mg/kg) medium (group 2) (35-327 mg/kg) and high (group 3) (> 327 mg/kg), according to their As content. The mineralogy and As content of the soils studied depends on the materials related with mining activity. The descriptive statistical analysis of the population of plants studied showed the As range in roots to be 0.31-150 mg/kg while leaf concentrations were lower (0.21-83.4 mg/kg). The potential risk of As entering the food chain through of the plant

  14. Association between arsenic exposure from a coal-burning power plant and urinary arsenic concentrations in Prievidza District, Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Ranft, U.; Miskovic, P.; Pesch, B.; Jakubis, P.; Fabianova, E.; Keegan, T.; Hergemoller, A.; Jakubis, M.; Nieuwenhuijsen, M.J. [University of Dusseldorf, Dusseldorf (Germany)

    2003-06-01

    To assess the arsenic exposure of a population living in the vicinity of a coal-burning power plant with high arsenic emission in the Prievidza District, Slovakia, 548 spot urine samples were speciated for inorganic As (As-inorg), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and their sum (As-sum). The urine samples were collected from the population of a case-control study on nonmelanoma skin cancer (NMSC). A total of 411 samples with complete As speciations and sufficient urine quality and without fish consumption were used for statistical analysis. Although current environmental As exposure and urinary As concentrations were low (median As in soil within 5 km distance to the power plant, 41 {mu}g/g; median urinary As-sum, 5.8 {mu}g/L), there was a significant but weak association between As in soil and urinary As-sum (r = 0.21, p {lt} 0.01). We performed a multivariate regression analysis to calculate adjusted regression coefficients for environmental As exposure and other determinants of urinary As. Persons living in the vicinity of the plant had 27% higher As-sum values (p {lt} 0.01), based on elevated concentrations of the methylated species. A 32% increase of MMA occurred among subjects who consumed homegrown food (p {lt} 0.001). NMSC cases had significantly higher levels of As-sum, DMA, and As-inorg. The methylation index As-inorg/(MMA + DMA) was about 20% lower among cases (p {lt} 0.05) and in men (p {lt} 0.05) compared with controls and females, respectively.

  15. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies.

    Science.gov (United States)

    Zhao, Fang-Jie; McGrath, Steve P; Meharg, Andrew A

    2010-01-01

    Arsenic (As) is an environmental and food chain contaminant. Excessive accumulation of As, particularly inorganic arsenic (As(i)), in rice (Oryza sativa) poses a potential health risk to populations with high rice consumption. Rice is efficient at As accumulation owing to flooded paddy cultivation that leads to arsenite mobilization, and the inadvertent yet efficient uptake of arsenite through the silicon transport pathway. Iron, phosphorus, sulfur, and silicon interact strongly with As during its route from soil to plants. Plants take up arsenate through the phosphate transporters, and arsenite and undissociated methylated As species through the nodulin 26-like intrinsic (NIP) aquaporin channels. Arsenate is readily reduced to arsenite in planta, which is detoxified by complexation with thiol-rich peptides such as phytochelatins and/or vacuolar sequestration. A range of mitigation methods, from agronomic measures and plant breeding to genetic modification, may be employed to reduce As uptake by food crops.

  16. FGD Franchising Pilot Project of Thermal Power Plants

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plants.This paper introduces the development of this pilot project,including the foundation,purpose,objects,demands and procedures.It also discusses some main problems encountered during implementation,involving the understanding,legislation,financing,taxation,pricing and management of franchise.At...

  17. Search for cellular stress biomarkers in lymphocytes from individuals exposed to arsenic: a pilot study

    Directory of Open Access Journals (Sweden)

    Scovassi A. I.

    2013-04-01

    Full Text Available The molecular mechanisms of arsenic toxicity are not fully elucidated. The Italian project SEpiAs aims at developing and validating the assay to detect stress biomarkers in individuals living in areas characterized by either natural or industrial arsenic contamination.

  18. Screening of Cucumis sativus as a new arsenic-accumulating plant and its arsenic accumulation in hydroponic culture.

    Science.gov (United States)

    Hong, Sun Hwa; Choi, Sun Ah; Yoon, Hyeon; Cho, Kyung-Suk

    2011-01-01

    Phytoextraction is a remediation technology with a promising application for removing arsenic (As) from soils and waters. Several plant species were evaluated for their As accumulation capacity in hydroponic culture amended with As. Cucumis sativus (cucumber) displayed the highest tolerance against As among 4 plants tested in this study (corn, wheat, sorghum and cucumber). The germination ratio of Cucumis sativus was more than 50% at the high concentration of 5,000 mg-As/l. In Cucumis sativus grown in a solution contaminated with 25 mg-As/l, the accumulated As concentrations in the shoot and root were 675.5 ± 11.5 and 312.0 ± 163.4 mg/kg, respectively, and the corresponding values of the translocation and bioaccumulation factors for As were 1.9 ± 0.9 and 21.1 ± 8.4, respectively. These results indicate Cucumis sativus is to be a candidate plant for phytoextraction of As from soils and water.

  19. Comparing Two Operating Configurations in a Full-Scale Arsenic Removal Plant. Case Study: Guatemala

    Directory of Open Access Journals (Sweden)

    Sofía E. Garrido Hoyos

    2013-06-01

    Full Text Available The present study was conducted in Naranjo County located in the municipality of Mixco, Guatemala. The water supply source comes from two wells with a maximum flow of 25.24 and 33.44 L·s−1. The main problem with this source is the high arsenic concentration—between 0.1341 and 0.1671 mg·L−1. The aim of this study was to conduct laboratory tests, basic engineering and supervision of the construction and evaluation of an operations plant using two configurations, A (low-rate sedimentation and ceramic filter and B (high-rate sedimentation and clinoptilolite filter, to remove arsenic present in water for human use and consumption. This plant supplies water to Naranjo County in Mixco, Guatemala (5000 inhabitants. First, a laboratory Jar Test was performed to evaluate arsenic removal efficiency. And second, a conventional clarification plant was then built (design flow: 25.24 L·s−1. The best results were achieved with configuration B, with the following reagents and dosage as defined by the laboratory tests: 10 mg L−1 ferric chloride as coagulant; 1.8 mg·L−1 CH-polyfocal as flocculant and 0.4 mg L−1 MIT03 as color removal; 1 mg L−1 sodium hypochlorite as oxidant and adjusting pH to ≈7.0 with sodium hydroxide. Once the plant began operating, the efficiency of the treatment process was evaluated. The maximum elimination efficiencies were obtained 100% for turbidity (0 UTN, 89.54% (3.66 UPt-Co for color and 96.80% (0.005 mg L−1 for arsenic, values that comply with Guatemalan standards. For this case, the relation between Fe(III dosage/mg and As(V removal was 1:46.

  20. 500-kW DCHX pilot-plant evaluation testing

    Energy Technology Data Exchange (ETDEWEB)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  1. Arsenic accumulation in native plants of West Bengal, India: prospects for phytoremediation but concerns with the use of medicinal plants.

    Science.gov (United States)

    Tripathi, Preeti; Dwivedi, Sanjay; Mishra, Aradhana; Kumar, Amit; Dave, Richa; Srivastava, Sudhakar; Shukla, Mridul Kumar; Srivastava, Pankaj Kumar; Chakrabarty, Debasis; Trivedi, Prabodh Kumar; Tripathi, Rudra Deo

    2012-05-01

    Arsenic (As) is a widespread environmental and food chain contaminant and class I, non-threshold carcinogen. Plants accumulate As due to ionic mimicry that is of importance as a measure of phytoremediation but of concern due to the use of plants in alternative medicine. The present study investigated As accumulation in native plants including some medicinal plants, from three districts [Chinsurah (Hoogly), Porbosthali (Bardhman), and Birnagar (Nadia)] of West Bengal, India, having a history of As pollution. A site-specific response was observed for Specific Arsenic Uptake (SAU; mg kg(-1) dw) in total number of 13 (8 aquatic and 5 terrestrial) collected plants. SAU was higher in aquatic plants (5-60 mg kg(-1) dw) than in terrestrial species (4-19 mg kg(-1) dw). The level of As was lower in medicinal plants (MPs) than in non-medicinal plants, however it was still beyond the WHO permissible limit (1 mg kg(-1) dw). The concentration of other elements (Cu, Zn, Se, and Pb) was found to be within prescribed limits in medicinal plants (MP). Among the aquatic plants, Marsilea showed the highest SAU (avg. 45 mg kg(-1) dw), however, transfer factor (TF) of As was the maximum in Centella asiatica (MP, avg. 1). Among the terrestrial plants, the maximum SAU and TF were demonstrated by Alternanthera ficoidea (avg. 15) and Phyllanthus amarus (MP, avg. 1.27), respectively. In conclusion, the direct use of MP or their by products for humans should not be practiced without proper regulation. In other way, one fern species (Marsilea) and some aquatic plants (Eichhornia crassipes and Cyperus difformis) might be suitable candidates for As phytoremediation of paddy fields.

  2. Coconut husk-fueled pilot plant put to test

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A pilot electric-power plant, running on coconut husks, was successfully demonstrated in Laguna, Philippines. This 30-kW biomass-fed plant provides electricity for 50 remote households and a wood-carving shop using a motor. The system involves: burning coconut husks to obtain producer gas; filtering this gas and driving a generator with the power of the combusted gas. The village is saving 65 to 75% of their diesel fuel consumption with this system.

  3. Emission studies from a CO2 capture pilot plant

    NARCIS (Netherlands)

    Silva, E.F. da; Kolderup, H.; Goetheer, E.L.V.; Hjarbo, K.W.; Huizinga, A.; Khakharia, P.M.; Tuinman, I.L.; Mejdell, T.; Zahlsen, K.; Vernstad, K.; Hyldbakk, A.; Holten, T.; Kvamsdal, H.M.; Os, P.J. van; Einbu, A.

    2013-01-01

    We report on a detailed study of emissions from a pilot-plant for CO2 capture at Maasvlakte (in the Netherlands). Three contributions to emissions were identified and analyzed: Gas phase emission, aerosols (also referred to as mist or fog) and droplets of entrained solvents. For the emission campaig

  4. Waste Isolation Pilot Plant Technical Assessment Team Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-17

    This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL).

  5. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  6. Monitoring of arsenic in aquatic plants, water, and sediment of wastewater treatment ponds at the Mae Moh Lignite power plant, Thailand.

    Science.gov (United States)

    Nateewattana, Jomjun; Trichaiyaporn, Siripen; Saouy, Maliwan; Nateewattana, Jintapat; Thavornyutikarn, Prasak; Pengchai, Petch; Choonluchanon, Somporn

    2010-06-01

    Mae Moh is a risky area for arsenic contamination caused by the effluent from biowetland ponds in Mae Moh lignite-fuelled power plant. The objective of this study was to investigate the arsenic concentrations of Mae Moh biowetland ponds and determine the main factors which are important for arsenic phytoremediation in the treatment system. The result revealed that arsenic concentrations in the supernant were in the range of less than 1.0 microg As L(-1) to 2.0 microg As L(-1) while those in the sediment were in the range of 25-200 microg As kg soil(-1). Both values were below the Thailand national standard of 0.25 mg As L(-1) for water and 27 mg As kg soil(-1) for the soil. Arsenic accumulation in the biomass of 5 aquatic plants at the biowetland ponds ranged from 123.83 to 280.53 mg As kgPlant(-1). Regarding the result of regression analysis (R (2) = 0.474 to 0.954), high concentrations of organic matter and other soluble ions as well as high pH value in the sediment could significantly enhance the removal of soluble arsenic in the wetland ponds. From the regression equation of accumulated arsenic concentration in each aquatic plant, Eichhornia crassipes (Mart.) Solms. (R (2) = 0.954), Ipomoea aquatica Forsk. (R (2) = 0.850), and Typha angustifolia (L.) (R (2) = 0.841) were found to be preferable arsenic removers for wastewater treatment pond in the condition of low Eh value and high content of solid phase EC and phosphorus. On the other hand, Canna glauca (L.) (R (2) = 0.749) appeared to be favorable arsenic accumulator for the treatment pond in the condition of high Eh value and high concentration of soluble EC.

  7. Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants

    Science.gov (United States)

    Shi, Tiezhu; Wang, Junjie; Chen, Yiyun; Wu, Guofeng

    2016-10-01

    Visible and near-infrared reflectance spectroscopy provides a beneficial tool for investigating soil heavy metal contamination. This study aimed to investigate mechanisms of soil arsenic prediction using laboratory based soil and leaf spectra, compare the prediction of arsenic content using soil spectra with that using rice plant spectra, and determine whether the combination of both could improve the prediction of soil arsenic content. A total of 100 samples were collected and the reflectance spectra of soils and rice plants were measured using a FieldSpec3 portable spectroradiometer (350-2500 nm). After eliminating spectral outliers, the reflectance spectra were divided into calibration (n = 62) and validation (n = 32) data sets using the Kennard-Stone algorithm. Genetic algorithm (GA) was used to select useful spectral variables for soil arsenic prediction. Thereafter, the GA-selected spectral variables of the soil and leaf spectra were individually and jointly employed to calibrate the partial least squares regression (PLSR) models using the calibration data set. The regression models were validated and compared using independent validation data set. Furthermore, the correlation coefficients of soil arsenic against soil organic matter, leaf arsenic and leaf chlorophyll were calculated, and the important wavelengths for PLSR modeling were extracted. Results showed that arsenic prediction using the leaf spectra (coefficient of determination in validation, Rv2 = 0.54; root mean square error in validation, RMSEv = 12.99 mg kg-1; and residual prediction deviation in validation, RPDv = 1.35) was slightly better than using the soil spectra (Rv2 = 0.42, RMSEv = 13.35 mg kg-1, and RPDv = 1.31). However, results also showed that the combinational use of soil and leaf spectra resulted in higher arsenic prediction (Rv2 = 0.63, RMSEv = 11.94 mg kg-1, RPDv = 1.47) compared with either soil or leaf spectra alone. Soil spectral bands near 480, 600, 670, 810, 1980, 2050 and

  8. 2004 Alaska highway invasive plants pilot survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — We investigated the distribution and abundance of non-native invasive plants along a section of the Alaska Highway adjacent to Tetlin National Wildlife Refuge, 20...

  9. Iron interference in arsenic absorption by different plant species, analysed by neutron activation, k{sub 0}-method

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, George; Matos, Ludmila Vieira da Silva; Silva, Maria Aparecida da; Menezes, Maria Angela de Barros Correia [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: george@cdtn.br, e-mail: menezes@cdtn.br

    2009-07-01

    Natural arsenic contamination is a cause for concern in many countries of the world including Argentina, Bangladesh, Chile, China, India, Mexico, Thailand, United States of America and also in Brazil, specially in the Iron Quadrangle area, where mining activities have been contributing to aggravate natural contamination. Among other elements, iron is capable to interfere with the arsenic absorption by plants; iron ore has been proposed to remediate areas contaminated by the mentioned metalloid. In order to verify if iron can interfere with arsenic absorption by different taxa of plants, specimens of Brassicacea and Equisetaceae were kept in a 1/4 Murashige and Skoog basal salt solution (M and S), with 10 {mu}gL{sup -1} of arsenic acid. And varying concentrations of iron. The specimens were analysed by neutron activation analysis, k{sub 0}-method, a routine technique in CDTN, and also very appropriate for arsenic studies. The preliminary results were quite surprising, showing that iron can interfere with arsenic absorption by plants, but in different ways, according to the species studied. (author)

  10. FGD Franchising Pilot Project of Thermal Power Plants

    Institute of Scientific and Technical Information of China (English)

    Wang Zhixuan; Pan Li; Zhang Jingyi; Wang Ying

    2009-01-01

    @@ According to the national policy on enhancing environmental protection,the five major power generation companies are required to carry out flue gas desulphurization(FGD) franchising pilot project in thermal power plants. This paper introduces the development of this pilot project, including the foundation ,purpose ,objects ,demands and procedures. It also discusses some main problems encountered during implementation, involving the understanding, legislation, financing, taxation, pricing and management of franchise.At the end,it puts forward some suggestions and countermeasures with regard to laws,regulations,taxation policy and electricity pricing policy.

  11. Pilot study for arsenic removal in Hidalgo, Mexico; Estudio piloto para remocion del arsenico, Estado de Hidalgo, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Simeonova, Petkova Veguinia [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico)

    1999-12-01

    Several materials with high content of iron oxides and positive electrostatic surface charge were identified as alternative arsenic sorbents. These properties are characteristic for minerals as hematite, geotite, lepodocrocite, maghemite, etc., widely distributed in the rocks of all these types and ages in the land bark. The natural hematite has been selected for a pilot experimental study conducted in one of the underground sources in Mexico. The obtained arsenic effluent concentration was less than 0.05 mg/l, assuring the current water-drinking standard. The effect of the operational rate and the influence of the silica and other contaminants present in the raw water over the removal efficiency of hematite were also evaluated. The obtained results prove the raw water over the removal efficiency of hematite were also evaluated. The obtained results prove the viability of the hematite for arsenic removal in the real field conditions. [Spanish] Varios minerales de alto contenido de hierro y carga superficial positiva se han identificado como sorbentes alternativos del arsenico. Estas propiedades son caracteristicas de algunos minerales como hematita, goetita, lepodocrocita, maghemita, etc., los cuales se hallan distribuidos ampliamente en las rocas de todos los tipos y edades que hay en la corteza terrestre. El presente estudio fue hecho sobre la hematita por su alta capacidad de adsorcion respecto al arsenico, evaluada a nivel de laboratorio, y por ser un mineral natural disponible en Mexico. La hematita fue aplicada para remover el arsenico presente en el agua de una fuente de abastecimiento en Mexico. Los resultados obtenidos en el campo comprueban la eficacia de la hematita en la remocion del arsenico, habiendose registrado una concentracion menor de 0.05 mg/l en el agua producida, lo cual satisface los requisitos de la normatividad para el consumo humano respecto a este contaminante.

  12. Major intrinsic proteins and arsenic transport in plants: new players and their potential role.

    Science.gov (United States)

    Bienert, Gerd P; Jahn, Thomas P

    2010-01-01

    Arsenic (As) is a toxic and highly abundant metalloid that endangers human health through drinking water and the food chain. The most common forms of As in the environment re arsenate [As(V)] and arsenite [As(III)]. As(V) is a nonfunctional phosphate analog that enters the food chain via plant phosphate transporters. Recently, evidence was provided that uptake of As(III)--the second most abundant As species in soils--is mediated by plant nodulin26-like intrinsic proteins (NIPs), a subfamily of plant major intrinsic proteins (MIPs). Specific NIPs are also essential for the uptake of the metalloids boron and silicon and aquaglyceroporins from microbes and mammals were shown to be the major routes of As uptake. Therefore As(III) transport through MIPs is a conserved and ancient feature. In this chapter we summarize the current view on As transport in plants and address the potential physiological significance of As(III) transport through NIPs.

  13. Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective.

    Science.gov (United States)

    Kumar, Smita; Dubey, Rama Shanker; Tripathi, Rudra Deo; Chakrabarty, Debasis; Trivedi, Prabodh Kumar

    2015-01-01

    Arsenic (As), a naturally occurring metallic element, is a dreadful health hazard to millions of people across the globe. Arsenic is present in low amount in the environment and originates from anthropogenic impact and geogenic sources. The presence of As in groundwater used for irrigation is a worldwide problem as it affects crop productivity, accumulates to different tissues and contaminates food chain. The consumption of As contaminated water or food products leads to several diseases and even death. Recently, studies have been carried out to explore the biochemical and molecular mechanisms which contribute to As toxicity, accumulation, detoxification and tolerance acquisition in plants. This information has led to the development of the biotechnological tools for developing plants with modulated As tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. This review aims to provide current updates about the biochemical and molecular networks involved in As uptake by plants and the recent developments in the area of functional genomics in terms of developing As tolerant and low As accumulating plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The pilot plant for electron beam food processing

    Science.gov (United States)

    Migdal, W.; Walis, L.; Chmielewski, A. G.

    1993-07-01

    In the frames of the national programme on the application of irradiation for food preservation and hygienization an experimental plant for electron beam processing has been established in INCT. The pilot plant has been constructed inside an old fort what decreases significantly the cost of the investment. The pilot plant is equipped with a small research accelerator Pilot (10 MeV, 1 kW) and an industrial unit Elektronika (10 MeV, 10 kW). This allows both laboratory and full technological scale testing of the elaborated process to be conducted. The industrial unit is being equipped with e-/X conversion target, for high density products irradiation. On the basis of the research there were performed at different scientific institutions in Poland, health authorities have issued permissions for permanent treatment of spices, garlic, onions and temporary permissions for mushrooms, and potatoes. Dosimetric methods have been elaborated for the routine use at the plant. In the INCT laboratory methods for the control of e-/X treated food have been established.

  15. Comparison of Options for a Pilot Plant Fusion Nuclear Mission

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Waganer, L; Titus, P

    2012-08-27

    A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes.

  16. Solar Pilot Plant, Phase I: preliminary design report. Volume VII. Pilot plant cost, commercial plant cost and performance. CDRL item 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-01

    Cost estimates are presented for the Solar Pilot Plant by cost breakdown structure element, with a commitment schedule and an expenditure schedule. Cost estimates are given for a Commercial Plant, including several point costs for plants with various solar multiples and storage times. Specific questions (ERDA) pertaining to commercial plant design and performance data are addressed. The cost estimates are supplemented by two books of vendor and subcontractor cost data.

  17. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.).

    Science.gov (United States)

    Beesley, Luke; Marmiroli, Marta; Pagano, Luca; Pigoni, Veronica; Fellet, Guido; Fresno, Teresa; Vamerali, Teofilo; Bandiera, Marianna; Marmiroli, Nelson

    2013-06-01

    Arsenic (As) concentrations in soil, soil pore water and plant tissues were evaluated in a pot experiment following the transplantation of tomato (Solanum lycopersicum L.) plantlets to a heavily As contaminated mine soil (~6000 mg kg(-1) pseudo-total As) receiving an orchard prune residue biochar amendment, with and without NPK fertiliser. An in-vitro test was also performed to establish if tomato seeds were able to germinate in various proportions of biochar added to nutrient solution (MS). Biochar significantly increased arsenic concentrations in pore water (500 μg L(-1)-2000 μg L(-1)) whilst root and shoot concentrations were significantly reduced compared to the control without biochar. Fruit As concentrations were very low (soil, but uptake to plant was reduced, and toxicity-transfer risk was negligible. Therefore leaching rather than food chain transfer appears the most probable immediate consequence of biochar addition to As contaminated soils.

  18. Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication.

    Science.gov (United States)

    Favas, Paulo J C; Pratas, João; Prasad, M N V

    2012-09-01

    This work focuses on the potential of aquatic plants for bioindication and/or phytofiltration of arsenic from contaminated water. More than 71 species of aquatic plants were collected at 200 sampling points in running waters. The results for the 18 most representative plant species are presented here. The species Ranunculus trichophyllus, Ranunculus peltatus subsp. saniculifolius, Lemna minor, Azolla caroliniana and the leaves of Juncus effusus showed a very highly significant (P<0.001) positive correlation with the presence of arsenic in the water. These species may serve as arsenic indicators. The highest concentration of arsenic was found in Callitriche lusitanica (2346 mg/kg DW), Callitriche brutia (523 mg/kg DW), L. minor (430 mg/kg DW), A. caroliniana (397 mg/kg DW), R. trichophyllus (354 mg/kg DW), Callitriche stagnalis (354 mg/kg DW) and Fontinalis antipyretica (346 mg/kg DW). These results indicate the potential application of these species for phytofiltration of arsenic through constructed treatment wetlands or introduction of these plant species into natural water bodies.

  19. MBR pilot plant for textile wastewater treatment and reuse.

    Science.gov (United States)

    Lubello, C; Caffaz, S; Mangini, L; Santianni, D; Caretti, C

    2007-01-01

    An experimental study was carried out in order to evaluate the possibility of upgrading the conventional activated sludge WWTP of Seano (Prato, Italy) which treats municipal and textile wastewaters, by using membrane bioreactor (MBR) technology. The MBR pilot plant, set up within Seano WWTP, was fed with mixed municipal-industrial wastewaters during the first experimental period and with pure industrial wastewaters during the second. Performances and operation of the MBR were evaluated in terms of permeate characteristics and variability (COD, colour, surfactants, total N and P) and other operational parameters (sludge growth and observed yield). According to the experimental results the MBR permeate quality was always superior to the Seano WWTP one and it was suitable for industrial reuse in the textile district of the Prato area. Respirometric tests provided a modified IWA ASM1 model which fits very well the experimental data and can be used for the design and the monitoring of a full-scale MBR pilot plant.

  20. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    Science.gov (United States)

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-01-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water.

  1. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria.

    Science.gov (United States)

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2015-09-01

    Phosphorus is an essential nutrient, which is limited in most soils. The P solubilization and growth enhancement ability of seven arsenic-resistant bacteria (ARB), which were isolated from arsenic hyperaccumulator Pteris vittata, was investigated. Siderophore-producing ARB (PG4, 5, 6, 9, 10, 12 and 16) were effective in solubilizing P from inorganic minerals FePO4 and phosphate rock, and organic phytate. To reduce bacterial P uptake we used filter-sterilized Hoagland medium containing siderophores or phytase produced by PG12 or PG6 to grow tomato plants supplied with FePO4 or phytate. To confirm that siderophores were responsible for P release, we compared the mutants of siderophore-producing bacterium Pseudomonas fluorescens Pf5 (PchA) impaired in siderophore production with the wild type and test strains. After 7d of growth, mutant PchA solubilized 10-times less P than strain PG12, which increased tomato root biomass by 1.7 times. For phytate solubilization by PG6, tomato shoot biomass increased by 44% than control bacterium Pseudomonas chlororaphis. P solubilization by ARB from P. vittata may be useful in enhancing plant growth and nutrition in other crop plants.

  2. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Dong Yan; Zhu Yongguan [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Smith, F. Andrew [Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, Adelaide, SA 5005 (Australia); Wang Youshan [Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry, Beijing 100089 (China); Chen Baodong [Department of Soil Environmental Science, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)], E-mail: bdchen@rcees.ac.cn

    2008-09-15

    In a compartmented cultivation system, white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.), with their roots freely intermingled, or separated by 37 {mu}m nylon mesh or plastic board, were grown together in an arsenic (As) contaminated soil. The influence of AM inoculation on plant growth, As uptake, phosphorus (P) nutrition, and plant competitions were investigated. Results showed that both plant species highly depended on mycorrhizas for surviving the As contamination. Mycorrhizal inoculation substantially improved plant P nutrition, and in contrast markedly decreased root to shoot As translocation and shoot As concentrations. It also showed that mycorrhizas affected the competition between the two co-existing plant species, preferentially benefiting the clover plants in term of nutrient acquisition and biomass production. Based on the present study, the role of AM fungi in plant adaptation to As contamination, and their potential use for ecological restoration of As contaminated soils are discussed. - Both white clover and ryegrass highly depend on the mycorrhizal associations for surviving heavy arsenic contamination.

  3. Phytopathological and nutraceutical evaluation of cauliflower plants treated with high dilutions of arsenic trioxide

    Directory of Open Access Journals (Sweden)

    Lucietta Betti

    2012-09-01

    Full Text Available Introduction: This research aimed at verifying the effects of highly diluted (HD treatments on cauliflower (Brassica oleracea L. plants both healthy and inoculated by the fungus Alternaria brassicicola, causing the dark leaf spot disease. In vitro spore germination assays (A, growth chamber experiments (B and field trials (C were performed. Material and Methods: (A: spore suspensions were prepared in HD treatments and their inhibiting effect on germination was recorded microscopically after incubation at 25°C for 5 h. (B: the same treatments were tested in plants artificially inoculated with the fungus. The infection level on leaves was blindly evaluated by a previously defined infection scale. (C: the field was divided into plots according to a complete randomized block design. In the first trial (i, plants were artificially inoculated and weekly treated; the infection level was evaluated on cauliflower heads. The second trial (ii was performed on the same field with the aim to induce a natural infection, mediated by infected crop residues. Measurement endpoints concerned the evaluation of some physiological parameters along with the glucosinolate content on cauliflower heads. Results: (A: arsenic trioxide (As 35x and 35x diluted 1:5000 and Cuprum 5x induced highly significant inhibition of germination rate (-60% vs. control. (B: As 35x and Cu 3 g/l induced a significant decrease of mean infection level (-50%. (C: in (i, a significant reduction of disease symptoms on heads was recorded for As 35x and Cu 3 g/l (-45%. In (ii natural fungal infection did not occur due to dry weather conditions; physiological and nutraceutical analyses of healthy heads demonstrated that As 35x induced a significant increase of both head size and glucosinolate content. Discussion: Some evidences on the efficacy of arsenic, at different decimal and centesimal HD, in fungal and viral disease control were previously reported [1]. In the present study the

  4. Understanding Arsenic Dynamics in Agronomic Systems to Predict and Prevent Uptake by Crop Plants

    Science.gov (United States)

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciatio...

  5. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation.

    Science.gov (United States)

    Fitz, Walter J; Wenzel, Walter W

    2002-11-13

    This paper reviews major processes that potentially affect the fate of arsenic in the rhizosphere of plants. Rhizosphere interactions are deemed to play a key role in controlling bioavailability to crop plants and for a better understanding and improvement of phytoremediation technologies. Substantial progress has been made towards an understanding of As transformation processes in soils. However, virtually no information is available that directly addresses the fate of As in the rhizosphere. We are proposing a conceptual model of the fate of As in the soil-rhizosphere-plant system by integrating the state-of-the art knowledge available in the contributing disciplines. Using this model and recent studies on hyperaccumulation of As, we discuss research needs and the potential application of rhizosphere processes to the development of phytoremediation technologies for As-polluted soils.

  6. Technical Integration of SMART Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Park, P. H.; Noh, P. C. (and others)

    2006-12-15

    Preliminary experimental tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual heat removal (PRHR) systems. The integrated SMART desalination plant consists of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.

  7. Arsenic and heavy metals in native plants at tailings impoundments in Queretaro, Mexico

    Science.gov (United States)

    Santos-Jallath, José; Castro-Rodríguez, Alejandrina; Huezo-Casillas, José; Torres-Bustillos, Luis

    Ten native plants species that grow in three tailings dams from Ag, Pb, Cu and Zn mine in Queretaro, Mexico were studied. Total concentrations in tailings were 183-14,660 mg/kg As, 45-308 mg/kg Cd, 327-1754 mg/kg Pb, 149-459 mg/kg Cu and 448-505 mg/kg Zn. In the three tailings dams, the solubility of these elements is low. Tailings in dam 1 are acid generating while tailings in dams 2 and 3 are not acid-generating potential. Plants species that accumulate arsenic and heavy metals was identified; Nicotina glauca generally presented the highest concentrations (92 mg/kg As, 106 mg/kg Cd, 189 mg/kg Pb, 95 mg/kg Cu and 1985 mg/kg Zn). Other species that accumulate these elements are Flaveria pubescens, Tecoma stans, Prosopis Sp, Casuarina Sp and Maurandia antirrhiniflora. Two species were found that accumulates a large amount of metals in the root, Cenchrus ciliaris and Opuntia lasiacantha. Concentrations in soils in which plants grow were 488-5990 mg/kg As, 5-129 mg/kg Cd, 169-3638 mg/kg Pb, 159-1254 mg/kg Cu and 1431-13,488 mg/kg Zn. The Accumulation Factor (AF) determined for plants was less than 1, with exception of N. glauca for Cd. The correlation between arsenic and heavy metals found in soils and plants was low. Knowledge of plant characteristics allows it use in planning the reforestation of tailings dams in controlled manner. This will reduce the risk of potentially toxic elements are integrated into the food chain of animal species.

  8. First geothermal pilot power plant in Hungary

    Directory of Open Access Journals (Sweden)

    Tóth Anikó

    2007-01-01

    Full Text Available The Hungarian petroleum industry has always participated in the utilization of favourable geothermal conditions in the country. Most of the Hungarian geothermal wells were drilled by the MOL Ltd. as CH prospect holes. Accordingly, the field of geothermics belonged to the petroleum engineering, although marginally. It was therefore a surprise to hear of the decision of MOL Ltd. to build a geothermal power plant of about 2-5 MW. The tender was published in 2004.The site selected for the geothermal project is near the western border of an Hungarian oilfield, close to the Slovenian border. The location of the planned geothermal power plant was chosen after an analysis of suitable wells owned by the MOL Rt. The decision was made on the bases of different reservoir data. The existence of a reservoir of the necessary size, temperature, permeability, productivity and the water chemistry data was proved. The wells provide an enough information to understand the character of the reservoir and will be the production wells used by the planned power plant.The depth of the wells is about 2930 - 3200 m. The Triassic formation is reached at around 2851 m. The production and the reinjection wells are planned. The primary objective of the evaluation is to further learn the nature of the geothermal system. First a one-day discharge test is carried out. If this short-term test is successful, a six-months long-term discharge test will follow. The first period of the test is a transient phenomenon. Within the well test, the wellhead pressure, the flow rate, the outflowing water temperature, the dynamic fluid level, and the chemical components will be measured. The heat transfer around the bore-hole is influenced by the flow rate and the time. For the right appreciation of the measured data, it is very important to analyse the heat transfer processes around the bore-hole. The obtained data from the experiments must be also fitted into the framework of a mathematical

  9. Arsenic in rice agrosystems (water, soil and rice plants) in Guayas and Los Ríos provinces, Ecuador.

    Science.gov (United States)

    Otero, X L; Tierra, W; Atiaga, O; Guanoluisa, D; Nunes, L M; Ferreira, T O; Ruales, J

    2016-12-15

    Geogenic arsenic (As) can accumulate and reach high concentrations in rice grains, thus representing a potential threat to human health. Ecuador is one of the main consumers of rice in South America. However, there is no information available about the concentrations of As in rice agrosystems, although some water bodies are known to contain high levels of the element. We carried out extensive sampling of water, soil, rice plants and commercial rice (obtained from local markets). Water samples were analysed to determine physico-chemical properties and concentrations of dissolved arsenic. Soil samples were analysed to determine total organic C, texture, total Fe and amorphous Fe oxyhydroxides (FeOx), total arsenic (tAs) and the bioavailable fraction (AsMe). The different plant parts were analysed separately to determine total (tAs), inorganic (iAs) and organic arsenic (oAs). Low concentrations of arsenic were found in samples of water (generally 80%) in all parts of the rice plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Technical Proposal Salton Sea Geothermal Power Pilot Plant Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1975-03-28

    The proposed Salton Sea Geothermal Power Pilot Plant Program comprises two phases. The objective of Phase 1 is to develop the technology for power generation from high-temperature, high-salinity geothermal brines existing in the Salton Sea known geothermal resources area. Phase 1 work will result in the following: (a) Completion of a preliminary design and cost estimate for a pilot geothermal brine utilization facility. (b) Design and construction of an Area Resource Test Facility (ARTF) in which developmental geothermal utilization concepts can be tested and evaluated. Program efforts will be divided into four sub-programs; Power Generation, Mineral Extraction, Reservoir Production, and the Area Resources Test Facility. The Power Generation Subprogram will include testing of scale and corrosion control methods, and critical power cycle components; power cycle selection based on an optimization of technical, environmental and economic analyses of candidate cycles; preliminary design of a pilot geothermal-electric generating station to be constructed in Phase 2 of this program. The Mineral Extraction Subprogram will involve the following: selection of an optimum mineral recovery process; recommendation of a brine clean-up process for well injection enhancement; engineering, construction and operation of mineral recovery and brine clean-up facilities; analysis of facility operating results from environmental, economical and technical point-of-view; preliminary design of mineral recovery and brine clean-up facilities of sufficient size to match the planned pilot power plant. The Reservoir Production Subprogram will include monitoring the operation and maintenance of brine production, handling and injection systems which were built with private funding in phase 0, and monitoring of the brine characteristics and potential subsidence effects during well production and injection. Based on the above, recommendations and specifications will be prepared for production and

  11. Pilot plant straw biomass power plant; Demonstrationsanlage Strohkraftwerk Gronau

    Energy Technology Data Exchange (ETDEWEB)

    Vodegel, Stefan [Claustahler Umwelttechnik-Institut GmbH (CUTEC), Clausthal-Zellerfeld (Germany); Lach, Friedrich-Wilhelm [Ueberlandwerk Leinetal GmbH, Gronau (Leine) (Germany)

    2008-07-01

    Drastically increasing prices for oil and gas promote the change to renewable energies. Biomass has the advantage of the storability. However, it has the disadvantage of a small stocking density. This suggests decentralized power plants. Also the proven technology of water vapour cycles with use of turbine is questioned. In the rural district Hildesheim there are efforts of thermal utilisation straw from wheat cropping. For this, a feasibility study of the Claustahler Umwelttechnik-Technik GmbH (Clausthal Zellerfeld, Federal Republic of Germany) presents technical and economic possibilities exemplary for the industrial area West in Gronau (Federal Republic of Germany). Technical and economic chances and risks are pointed out.

  12. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    Science.gov (United States)

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  13. A study of arsenic speciation in soil, irrigation water and plant tissue: A case study of the broad bean plant, Vicia faba.

    Science.gov (United States)

    Sadee, Bashdar A; Foulkes, Mike E; Hill, Steve J

    2016-11-01

    Samples of soil, the broad bean plant, Vicia faba and irrigation water were collected from the same agricultural site in Dokan, in the Kurdistan region of Iraq. Total arsenic and arsenic speciation were determined in all materials by ICP-MS and HPLC-ICP-MS, respectively. Available arsenic (11%) was also determined within the soil, together with Cd, Cr, Cu, Ni, Zn, Fe and Mn. The concentrations of total arsenic were: soil (5.32μgg(-1)), irrigation water (1.06μgL(-1)), roots (2.065μgg(-1)) and bean (0.133μgg(-1)). Stems, leaves and pods were also measured. Inorganic As(V) dominated soil (90%) and root (78%) samples. However, organo-arsenic (MMA, 48% and DMA, 19%) was the more dominant species in the edible bean. The study provides an insight into the uptake, preferred disposal route, speciation changes and loss mechanism involved for arsenic with this food source. Copyright © 2016. Published by Elsevier Ltd.

  14. Waste Isolation Pilot Plant 1999 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  15. Waste Isolation Pilot Plant 2001 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  16. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no

  17. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services (WRES)

    2004-10-25

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  18. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Boardman; B. H. O& #39; Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing

  19. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  20. The waste isolation pilot plant regulatory compliance program

    Energy Technology Data Exchange (ETDEWEB)

    Mewhinney, J.A. [U.S. Dept. of Energy, Carlsbad, NM (United States); Kehrman, R.F. [Westinghouse Electric Corp., Carlsbad, NM (United States)

    1996-06-01

    The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation`s transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

  1. Plant substrate as a vehicle for trituration: a pilot study

    Directory of Open Access Journals (Sweden)

    Rodrigo Mariani Verginelli

    2012-09-01

    Full Text Available Motivation: Lactose and hydroalcoholic solutions are not the proper substances to study the High Dilution (HD effects using plant models. Plant substrate can not be considered an inert vehicle, but it is not harmful to plants. Aim: In this pilot study we verify the possibility to use plant substrate as a trituration vehicle to prepare substances to be used in plants. Methods: We used a partially dried commercial plant substrate (12% humidity as the vehicle to prepare a set of trituration, having NaCl as the initial active substance. Triturations were performed using a ball mill, with a mass dilution rate of 1:18 (set A and 1:100 (set B, up to the 7th trituration, that is, each set contained 8 groups: A0 to A7 and B0 to B7. For each group, the triturated substrate was mixed with a fresh one in a mass ratio of 1:1. After homogenization, 18 seeds of radish (Raphanus sativus were sown in plastic trays (31 ml cell, for each group and kept in a green house exposed to natural thermal and light variations. After 4 weeks we determine the germination rate and number of mature cotyledon. Then 5 plants from each group were selected at random to determine the following parameters: averaged leaf area, length, fresh and dry mass and pigments amount (chlorophyll a and b, carotenes. Results: Groups A0 and B0 (higher saline concentration showed those typical effects of saline stress: lower germination ratio, immature cotyledons, smaller and shorter leaves, higher water content and less pigments. All the others groups showed similar results, for all parameters, except pigments amount. The chlorophyll to carotene ratio (CCr showed an unexpected but interesting behavior (figure 1.Both sets showed an initial CCr growing (as expected due the saline ratio decrease, but followed by an unexpected decrement. Set B (the higher mass dilution rate, 1:100 showed a slower change, compared to set A. When we sort the results in order of saline amount we observe two peaks (figure

  2. Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants.

    Science.gov (United States)

    Shi, Tiezhu; Liu, Huizeng; Wang, Junjie; Chen, Yiyun; Fei, Teng; Wu, Guofeng

    2014-06-03

    The objective of this study was to explore the feasibility and to investigate the mechanism for rapidly monitoring arsenic (As) contamination in agricultural soils with the reflectance spectra of rice plants. Several data pretreatment methods were applied to improve the prediction accuracy. The prediction of soil As contents was achieved by partial least-squares regression (PLSR) using laboratory and field spectra of rice plants, as well as linear regression employing normalized difference spectral index (NDSI) calculated from fild spectra. For laboratory spectra, the optimal PLSR model for predicting soil As contents was achieved using Savitzky-Golay smoothing (SG), first derivative and mean center (MC) (root-mean-square error of prediction (RMSEP)=14.7 mg kg(-1); r=0.64; residual predictive deviation (RPD)=1.31). For field spectra, the optimal PLSR model was also achieved using SG, first derivative and MC (RMSEP=13.7 mg kg(-1); r=0.71; RPD=1.43). In addition, the NDSI with 812 and 782 nm obtained a prediction accuracy with r=0.68, RMSEP=13.7 mg kg(-1), and RPD=1.36. These results indicated that it was feasible to monitor the As contamination in agricultural soils using the reflectance spectra of rice plants. The prediction mechanism might be the relationship between the As contents in soils and the chlorophyll-a/-b contents and cell structure in leaves or canopies of rice plants.

  3. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  4. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  5. Modeling temperature variations in a pilot plant thermophilic anaerobic digester.

    Science.gov (United States)

    Valle-Guadarrama, Salvador; Espinosa-Solares, Teodoro; López-Cruz, Irineo L; Domaschko, Max

    2011-05-01

    A model that predicts temperature changes in a pilot plant thermophilic anaerobic digester was developed based on fundamental thermodynamic laws. The methodology utilized two simulation strategies. In the first, model equations were solved through a searching routine based on a minimal square optimization criterion, from which the overall heat transfer coefficient values, for both biodigester and heat exchanger, were determined. In the second, the simulation was performed with variable values of these overall coefficients. The prediction with both strategies allowed reproducing experimental data within 5% of the temperature span permitted in the equipment by the system control, which validated the model. The temperature variation was affected by the heterogeneity of the feeding and extraction processes, by the heterogeneity of the digestate recirculation through the heating system and by the lack of a perfect mixing inside the biodigester tank. The use of variable overall heat transfer coefficients improved the temperature change prediction and reduced the effect of a non-ideal performance of the pilot plant modeled.

  6. Fluid bed gasification pilot plant fuel feeding system evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, W.A.; Fonstad, T.; Pugsley, T.; Gerspacher, R. (Univ. of Saskatchewan, Saskatoon (Canada)), Email: wac132@mail.usask.ca; Wang Zhiguo (Saskatchewan Research Council, Saskatoon (Canada)), Email: zhiguo.wang@src.sk.ca

    2009-07-01

    Fluidized bed gasification (FBG) is a method for thermally converting solid biomass to a gaseous product termed syngas, which can be used as fuel for heat or electricity generation. Accurate and consistent feeding of biomass fuel into biomass FBG converters is a continuing, challenge, and was the subject of experimentation at the University of Saskatchewan biomass FBG pilot plant. The 2-conveyor feeding system for this pilot plant was tested using meat and bone meal (MBM) as feedstock, by conveying the feedstock through the system, and measuring the output rate as the fuel was discharged. The relationship between average mass-flowrate (F{sub M}) and conveyor speed (S) for the complete feeding system was characterized to be F{sub M}=0.2188S-0.42 for the tests performed. Testing of the metering conveyor coupled to the injection conveyor showed that operating these conveyors at drive synchronized speeds, air pulsed into the injection hopper, and 50 slpm injection air, produced the most consistent feed output rate. Hot fluidized bed tests followed, which showed that plugging of the injection nozzle occurred as bed temperatures increased past 700C, resulting in loss of fuel flow. The pneumatic injection nozzle was subsequently removed, and the system was found to perform adequately with it absent. (orig.)

  7. Development of a continuous rotating cone reactor pilot plant for the pyrolysis of polyethene and polypropene

    NARCIS (Netherlands)

    Westerhout, R.W.J.; Waanders, J.; Kuipers, J.A.M.; Swaaij, van W.P.M.

    1998-01-01

    A pilot plant for the high-temperature pyrolysis of polymers to recycle plastic waste to valuable products was constructed based on the rotating cone reactor (RCR) technology. The RCR used in this pilot plant, termed the continuous RCR ([C]RCR) was an improved version of the bench-scale RCR ([B]RCR)

  8. Performance and Modelling of the Pre-combustion Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Damen, K.; Faber, R.; Gnutek, R.; Van Dijk, H.A.J.; Trapp, C.; Valenz, L.

    2014-01-01

    This paper summarizes the final results of the pilot plant operation and R&D programme of the CO2 Catch-up project (2008- 2013). The objective of the CO2 Catch-up project is to demonstrate pre-combustion CO2 capture at the pilot plant in Buggenum, the Netherlands, in order to verify the technology p

  9. [Pilot plant and experimental laboratory production. The role in biotechnology industry development].

    Science.gov (United States)

    Volkov, H L

    2000-01-01

    A stage-phase approach can contribute to unnecessarily long product development time. A simultaneous approach that integrates all development resources through an effectively managed pilot plant can significantly shorten the product development cycle. An intensive development of the domestic biotechnology manufacturing is impossible without creation of the real pilot plant market in Ukraine.

  10. The accumulation and subcellular distribution of arsenic and antimony in four fern plants.

    Science.gov (United States)

    Feng, R; Wang, X; Wei, C; Tu, S

    2015-01-01

    In the present study, Pteris cretica 'Albo-Lineata' (PC), Pteris fauriei (PF), Humata tyermanii Moore (HT), and Pteris ensiformis Burm (PE), were selected to explore additional plant materials for the phytoremediation of As and Sb co-contamination. To some extent, the addition of As and Sb enhanced the growth of HT, PE, and PF. Conversely, the addition of As and Sb negatively affected the growth of PC and was accompanied with the accumulation of high levels of As and Sb in the roots. The highest concentration of Sb was recorded as 6405 mg kg(-1) in the roots of PC, and that for As was 337 mg kg(-1) in the rhizome of PF. To some degree, As and Sb stimulated the uptake of each other in these ferns. Arsenic was mainly stored in the cytoplasmic supernatant (CS) fraction, followed by the cell wall (CW) fraction. In contrast, Sb was mainly found in the CW fraction and, to a lesser extent, in the CS fraction, suggesting that the cell wall and cytosol play different roles in As and Sb accumulation by fern plants. This study demonstrated that these fern plants show a good application potential in the phytoremediation of As and Sb co-contaminated environments.

  11. Bioavailability of arsenic in soil: pilot study results and design considerations.

    Science.gov (United States)

    Stanek, Edward J; Calabrese, Edward J; Barnes, Ramond M; Danku, John M C; Zhou, Ying; Kostecki, Paul T; Zillioux, Edward

    2010-11-01

    Bioavailability of arsenic (As) from ingested soil is estimated in a two-period experimental study involving 11 subjects/period. In the first period, a 7-day mass-balance study measured As in food/beverages, urine, and stool to estimate bioavailability of As in food and beverages. Food/beverage As bioavailability (percentage ingested that is not in stool samples) is estimated as 91.0% with a 95% confidence interval given by (84.1%, 97.9%). In the second 7-day study period, subjects were placed on an As suppression diet. In the evening of day 2, each subject ingested a capsule containing 0.63 g of soil, including approximately 111.7 µg of soil-As. The bioavailability estimate of As from food and beverage ingestion during the first 2 days of the second period was 89.7%. Bioavailability of soil-As was estimated over the 5-day period following capsule ingestion, accounting for estimated bioavailability of food/beverage As. Assuming analytic recovery rates of As from combined soil and food/beverage samples are equal, soil-As bioavailability is estimated as 48.7% (95% CI [36.2%, 61.3%]). Relative to bioavailability of As from food/beverage sources, soil-As is estimated to be 54.3% (95% CI [40.3%, 68.4%]) as bioavailable.

  12. Sealing concepts for the Waste Isolation Pilot Plant (WIPP) site

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, C.L.; Gulick, C.W.; Lambert, S.J.

    1982-09-01

    The Waste Isolation Pilot Plant (WIPP) facility is proposed for development in the southeast portion of the State of New Mexico. The proposed horizon is in bedded salt located approximately 2150 ft below the surface. The purpose of the WIPP is to provide an R&D facility to demonstrate the safe disposal of radioactive wastes resulting from defense activities of the United States. As such, it will include a disposal demonstration for transuranic (TRU) wastes and an experimental area to address issues associated with disposal of defense high level wastes (DHLW) in bedded salt. All DHLW used in the experiments are planned for retrieval at the termination of testing; the TRU waste can be permanently disposed of at the site after the pilot phase is complete. This report addresses only the Plugging and Sealing program, which will result in an adequate and acceptable technology for final sealing and decommissioning of the facility at the WIPP site. The actual plugging operations are intended to be conducted on a commercial industrial basis through contracts issued by the DOE. This report is one in a series that is based on a technical program of modeling, laboratory materials testing and field demonstration which will provide a defensible basis for the actual plugging operations to be conducted by the DOE for final closure of the facility.

  13. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  14. The disturbed rock zone at the Waste Isolation Pilot Plant.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D.

    2003-12-01

    The Disturbed Rock Zone constitutes an important geomechanical element of the Waste Isolation Pilot Plant. The science and engineering underpinning the disturbed rock zone provide the basis for evaluating ongoing operational issues and their impact on performance assessment. Contemporary treatment of the disturbed rock zone applied to the evaluation of the panel closure system and to a new mining horizon improves the level of detail and quantitative elements associated with a damaged zone surrounding the repository openings. Technical advancement has been realized by virtue of ongoing experimental investigations and international collaboration. The initial portion of this document discusses the disturbed rock zone relative to operational issues pertaining to re-certification of the repository. The remaining sections summarize and document theoretical and experimental advances that quantify characteristics of the disturbed rock zone as applied to nuclear waste repositories in salt.

  15. Electrodialytic soil remediation in a small pilot plant (Part II)

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Hansen, Lene

    1999-01-01

    difference in the degree of pollution and the way copper is bound within the soil.The speciation of copper in the soil from a small pilot plant did not show any measurable change during the first seven months of operation. It seems that the number of particles with very a high concentration of copper......Observations were made of copper-polluted soil to see, if any changes in the bonding type of copper in the soil were made during electrodialytic soil remediation. Three different fractions of the copper-polluted soil were used for investigation with infrared spectroscopy (IR), X-ray diffraction...... (XRD), transmission electron microscope (TEM) and observations with scanning electron microscope (SEM), the last two combined with an EDX analysis unit. The three soil fractions were extracted with am-monia for observa-tion of the copper removal when copper forms copper-tetra-ammine complexes with am...

  16. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  17. Bentonite as a waste isolation pilot plant shaft sealing material

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  18. Waste Isolation Pilot Plant Annual Site Environmental Report for 2016

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson [Carlsbad Field Office (CBFO), NM (United States); Basabilvazo, George T. [Carlsbad Field Office (CBFO), NM (United States)

    2017-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2016 (ASER) is to provide the information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC) maintain and preserve the environmental resources at the WIPP facility. DOE Order 231.1B; DOE Order 436.1, Departmental Sustainability; and DOE Order 458.1, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1B, which requires DOE facilities to submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer.

  19. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated.

  20. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions

    2000-12-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  1. Biomonitoring for chromium and arsenic in timber treatment plant workers exposed to CCA wood Preservatives.

    Science.gov (United States)

    Cocker, J; Morton, J; Warren, N; Wheeler, J P; Garrod, A N I

    2006-07-01

    This study reports a survey of occupational exposure to copper chrome arsenic (CCA) based wood preservatives during vacuum pressure timber impregnation. The survey involved biological monitoring based on analysis of chromium and arsenic in urine samples collected from UK workers. The aim of the study was to determine the extent of occupational exposure to arsenic and chromium in the UK timber treatment industry. The objectives were to collect and analyse urine samples from as many workers as possible, where CCA wood preservatives might be used, at 6 monthly intervals for 2 years. In addition, to investigate day-to-day variations in urinary excretion of chrome and arsenic by collecting and analysing three samples a week for 3 weeks in subsets of workers and controls (people not occupationally exposed). All urine samples were analysed for chromium and inorganic arsenic. To investigate any residual interference every sample was accompanied by a short questionnaire about recent consumption of seafood and smoking. The analytical methods for arsenic used a hydride generation technique to reduce interference from dietary sources of arsenic and also a technique that would measure total arsenic concentration in urine. The main findings show that workers exposed to CCA wood preservatives have concentrations of inorganic arsenic and chromium in urine that are significantly higher than those from non-occupationally exposed people but below biological monitoring guidance values that would indicate inhalation exposure at UK occupational exposure limits for chromium and arsenic. The effects of consumption of seafood on urinary arsenic were not significant using the hydride generation method for inorganic arsenic but were significant if 'total' arsenic was measured. The 'total' arsenic method could not distinguish CCA workers from controls and is clearly unsuitable for assessment of occupational exposure to arsenic. There was a significant increase in the urinary concentration of

  2. Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake.

    Science.gov (United States)

    Fu, Jing-Wei; Liu, Xue; Han, Yong-He; Mei, Hanyi; Cao, Yue; de Oliveira, Letuzia M; Liu, Yungen; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-01-31

    Phosphorus (P) is one of the most important nutrients for phytoremediation of arsenic (As)-contaminated soils. In this study, we demonstrated that As-hyperaccumulator Pteris vittata was efficient in acquiring P from insoluble phosphate rock (PR). When supplemented with PR as the sole P source in hydroponic systems, P. vittata accumulated 49% and 28% higher P in the roots and fronds than the -P treatment. In contrast, non-hyperaccumulator Pteris ensiformis was unable to solubilize P from PR. To gain insights into PR solubilization by plants, organic acids in plant root exudates were analyzed by HPLC. The results showed that phytic acid was the predominant (>90%) organic acid in P. vittata root exudates whereas only oxalic acid was detected in P. ensiformis. Moreover, P. vittata secreted more phytic acid in -P and PR treatments. Compared to oxalic acid, phytic acid was more effective in solubilizing PR, suggesting that phytic acid was critical for PR utilization. Besides, secretion of phytic acid by P. vittata was not inhibited by arsenate. Our data indicated that phytic acid played an important role in efficient use of insoluble PR by P. vittata, shedding light on using insoluble PR to enhance phytoremediation of As-contaminated soils.

  3. Osmo-power - Theory and performance of an osmo-power pilot plant

    Science.gov (United States)

    Jellinek, H. H. G.; Masuda, H.

    A theoretical and experimental study of the production of useful energy by the natural process of osmosis is presented. Using the results of the study a conceptual design of an osmotic pilot plant is performed. The power produced by a 1.6 MW/sq km plant has a competitive cost with that produced by both fossil power plants and nuclear power plants.

  4. A pilot plant for solar-cell manufacture; Ligne pilote de fabrication de cellules solaires

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.; Ziegler, Y.; Closset, A. [VHF - Technologies SA, Yverdon-les-Bains (Switzerland)

    2005-07-01

    A pilot plant for the manufacture of amorphous silicon solar cells on plastic film substrate was built allowing the annual production of 40 kW peak power. The production steps comprise: a) the continuous coating of n-i-p solar cells by VHF-PECVD with a capacity of 28.5 meters in 8.5 hours; b) transparent-conducting-oxide (TCO) top contact structuring using a continuous process; c) series connection step (scribing and Ag-paste) with a capacity of 28 meters in 6 hours; d) back and top contact sputtering with 3 parallel magnetrons; e) integration of a large-area vacuum laminator enabling the simultaneous lamination of 4 products of 4 Wp. In parallel with this project, a complete cost model was established enabling a more quantitative approach of the future technological and industrial strategy of the company. An increase of the capacity to 100 kWp has been planned for summer 2005.

  5. TF Inner Leg Space Allocation for Pilot Plant Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Peter H. Titus and Ali Zolfaghari

    2012-09-06

    A critical design feature of any tokamak is the space taken up by the inner leg of the toroidal field (TF) coil. The radial build needed for the TF inner leg, along with shield thickness , size of the central solenoid and plasma minor radius set the major radius of the machine. The cost of the tokamak core roughly scales with the cube of the major radius. Small reductions in the TF build can have a big impact on the overall cost of the reactor. The cross section of the TF inner leg must structurally support the centering force and that portion of the vertical separating force that is not supported by the outer structures. In this paper, the TF inner leg equatorial plane cross sections are considered. Out-of- Plane (OOP) forces must also be supported, but these are largest away from the equatorial plane, in the inner upper and lower corners and outboard sections of the TF coil. OOP forces are taken by structures that are not closely coupled with the radial build of the central column at the equatorial plane. The "Vertical Access AT Pilot Plant" currently under consideration at PPPL is used as a starting point for the structural, field and current requirements. Other TF structural concepts are considered. Most are drawn from existing designs such as ITER's circular conduits in radial plates bearing on a heavy nose section, and TPX's square conduits in a case, Each of these concepts can rely on full wedging, or partial wedging. Vaulted TF coils are considered as are those with some component of bucking against a central solenoid or bucking post. With the expectation that the pilot plant will be a steady state machine, a static stress criteria is used for all the concepts. The coils are assumed to be superconducting, with the superconductor not contributing to the structural strength. Limit analysis is employed to assess the degree of conservatism in the static criteria as it is applied to a linear elastic stress analysis. TF concepts, and in particular the PPPL AT

  6. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, Z.H., E-mail: lssyzhh@mail.sysu.edu.c [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wei, Z.J. [School of Information and Technology, Guangdong University of Foreign Studies, Guangzhou 510275 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2011-01-15

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L{sup -1}) and a soil pot trail (control, 60 mg As kg{sup -1}). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O{sub 2} kg{sup -1} root d.w. d{sup -1}), As uptake (e.g., 8.8-151 mg kg{sup -1} in shoots in 0.8 mg As L{sup -1} treatment), translocation factor (2.1-47% in 0.8 mg As L{sup -1}) and tolerance (29-106% in 0.8 mg As L{sup -1}). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: There is significant correlation between the porosity of roots and rates of ROL. The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  7. Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xinde [Soil and Water Science Department, University of Florida, Gainesville, FL (United States)]. E-mail: xcao@stevens.edu; Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL (United States)

    2004-12-01

    Leaching of arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil arsenic levels. Thus, an environmental concern arises regarding accumulation of As in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to evaluate As accumulation by vegetables from the soils adjacent to the CCA-treated utility poles and fences and examine the effects of soil amendments on plant As accumulation. Carrot (Daucus carota L.) and lettuce (Lactuca sativa L.) were grown for ten weeks in the soil with or without compost and phosphate amendments. As expected, elevated As concentrations were observed in the pole soil (43 mg kg{sup -1}) and in the fence soil (27 mg kg{sup -1}), resulting in enhanced As accumulation of 44 mg kg{sup -1} in carrot and 32 mg kg{sup -1} in lettuce. Addition of phosphate to soils increased As accumulation by 4.56-9.3 times for carrot and 2.45-10.1 for lettuce due to increased soil water-soluble As via replacement of arsenate by phosphate in soil. However, biosolid compost application significantly reduced plant As uptake by 79-86%, relative to the untreated soils. This suppression is possibly because of As adsorbed by biosolid organic mater, which reduced As phytoavailability. Fractionation analysis showed that biosolid decreased As in soil water-soluble, exchangeable, and carbonate fraction by 45%, whereas phosphate increased it up to 2.61 times, compared to the untreated soils. Our results indicate that growing vegetables in soils near CCA-treated wood may pose a risk of As exposure for humans. Compost amendment can reduce such a risk by reducing As accumulation by vegetables and can be an important strategy for remediating CCA-contaminated soils. Caution should be taken for phosphate application since it enhances As accumulation. - Capsule: Compost amendment can reduce As exposure risk for humans by reducing As accumulation by vegetables and can be an important strategy for remediating CCA

  8. General Atomic Reprocessing Pilot Plant: engineering-scale dissolution system description

    Energy Technology Data Exchange (ETDEWEB)

    Yip, H.H.

    1979-04-01

    In February 1978, a dissolver-centrifuge system was added to the cold reprocessing pilot plant at General Atomic Company, which completed the installation of an HTGR fuel head-end reprocessing pilot plant. This report describes the engineering-scale equipment in the pilot plant and summarizes the design features derived from development work performed in the last few years. The dissolver operating cycles for both thorium containing BISO and uranium containinng WAR fissile fuels are included. A continuous vertical centrifuge is used to clarify the resultant dissolver product solution. Process instrumentation and controls for the system reflect design philosophy suitable for remote operation.

  9. The influence of hydrous ferric oxide, earthworms, and a hypertolerant plant on arsenic and iron bioavailability, fate, and transport in soils.

    Science.gov (United States)

    Maki, Benjamin C; Hodges, Kathryn R; Ford, Scott C; Sofield, Ruth M

    2016-10-24

    Historic applications of lead arsenate pesticides and smelting activities have resulted in elevated concentrations of arsenic in Washington State soils. For example, old orchard topsoils in Washington have concentrations reaching upwards of 350 mg As/kg soil with an estimated 187,590 acres of arsenic contamination from pesticide application alone. Iron oxides have been indicated as a key factor in modulating the fate and transport of arsenic in the soil environment. We employed a factorial design to investigate the role of a specific iron oxide, hydrous ferric oxide (HFO), and terrestrial organisms on the mobility, bioavailability, and fate of arsenic and iron in locally collected soils. Earthworms in soils amended with both arsenic and HFO had 47.2 % lower arsenic tissue concentrations compared to those in soils only amended with arsenic. Similarly, arsenic leachate concentrations and plant tissue concentrations were lower when HFO was present, although this was with a reduced magnitude and was not consistently significant. A lack of significance of HFO in three of the linear models for leachate and plant bioavailability, however, indicates that the role of HFO in arsenic mobility, bioavailability, and fate is more complicated than can be explained by the simple addition or not of HFO. For example, our analyses showed that earthworms decreased pH and increased bioavailability for both arsenic and iron as demonstrated by increases in leachate and plant tissue concentrations. The mechanisms for this could include a biotransformation of earthworm-ingested arsenic combined with an earthworm-induced change in pH. We also found that arsenic amendments increased the mobility and bioavailability of iron, evidenced by increased iron concentrations in earthworms, plants, and leachate. A mechanistic explanation for this change in bioavailability is not readily apparent but does support a need for more work on bioavailability when mixtures are present. From these results

  10. Pilot study on arsenic removal from groundwater using a small-scale reverse osmosis system-Towards sustainable drinking water production.

    Science.gov (United States)

    Schmidt, Stefan-André; Gukelberger, Ephraim; Hermann, Mario; Fiedler, Florian; Großmann, Benjamin; Hoinkis, Jan; Ghosh, Ashok; Chatterjee, Debashis; Bundschuh, Jochen

    2016-11-15

    Arsenic contamination of groundwater is posing a serious challenge to drinking water supplies on a global scale. In India and Bangladesh, arsenic has caused the most serious public health issue in the world for nearly two decades. The aim of this work was to study an arsenic removal system based on reverse osmosis at pilot scale treating two different water sources from two different locations in the State of Bihar, India. For this purpose two villages, Bind Toli and Ramnagar in the Patna District were selected, both located very close to the river Ganga. The trials were conducted with aerated and non-aerated groundwater. It is the first time that the arsenic removal efficiency for aerated and non-aerated groundwater by reverse osmosis technology in combination with an energy-saving recovery system have been studied. As the principle of reverse osmosis requires a relatively high pressure, its energy demand is naturally high. By using an energy recovery system, this demand can be lowered, leading to an energy demand per liter permeate of 3-4Wh/L only. Due to high iron levels in the groundwater and as a consequence the precipitation of ferric (hydr)oxides, it was necessary to develop a granular media filter for the trials under aeration in order to protect the membrane from clogging. Two different materials, first locally available sand, and second commercially available anthracite were tested in the granular media filter. For the trials with aerated groundwater, total arsenic removal efficiency at both locations was around 99% and the arsenic concentration in permeate was in compliance with the WHO and National Indian Standard of 10μg/L. However, trials under anoxic conditions with non-aerated groundwater could not comply with this standard. Additionally a possible safe discharge of the reverse osmosis concentrate into an abandoned well was studied. It was observed that re-injection of reject water underground may offer a safe disposal option. However, long

  11. Arsenic cardiotoxicity: An overview.

    Science.gov (United States)

    Alamolhodaei, Nafiseh Sadat; Shirani, Kobra; Karimi, Gholamreza

    2015-11-01

    Arsenic, a naturally ubiquitous element, is found in foods and environment. Cardiac dysfunction is one of the major causes of morbidity and mortality in the world. Arsenic exposure is associated with various cardiopathologic effects including ischemia, arrhythmia and heart failure. Possible mechanisms of arsenic cardiotoxicity include oxidative stress, DNA fragmentation, apoptosis and functional changes of ion channels. Several evidences have shown that mitochondrial disruption, caspase activation, MAPK signaling and p53 are the pathways for arsenic induced apoptosis. Arsenic trioxide is an effective and potent antitumor agent used in patients with acute promyelocytic leukemia and produces dramatic remissions. As2O3 administration has major limitations such as T wave changes, QT prolongation and sudden death in humans. In this review, we discuss the underlying pathobiology of arsenic cardiotoxicity and provide information about cardiac health effects associated with some medicinal plants in arsenic toxicity.

  12. Mapping of cavitational activity in a pilot plant dyeing equipment.

    Science.gov (United States)

    Actis Grande, G; Giansetti, M; Pezzin, A; Rovero, G; Sicardi, S

    2015-11-01

    A large number of papers of the literature quote dyeing intensification based on the application of ultrasound (US) in the dyeing liquor. Mass transfer mechanisms are described and quantified, nevertheless these experimental results in general refer to small laboratory apparatuses with a capacity of a few hundred millilitres and extremely high volumetric energy intensity. With the strategy of overcoming the scale-up inaccuracy consequent to the technological application of ultrasounds, a dyeing pilot-plant prototype of suitable liquor capacity (about 40 L) and properly simulating several liquor to textile hydraulic relationships was designed by including US transducers with different geometries. Optimal dyeing may be obtained by optimising the distance between transducer and textile material, the liquid height being a non-negligible operating parameter. Hence, mapping the cavitation energy in the machinery is expected to provide basic data on the intensity and distribution of the ultrasonic field in the aqueous liquor. A flat ultrasonic transducer (absorbed electrical power of 600 W), equipped with eight devices emitting at 25 kHz, was mounted horizontally at the equipment bottom. Considering industrial scale dyeing, liquor and textile substrate are reciprocally displaced to achieve a uniform colouration. In this technology a non uniform US field could affect the dyeing evenness to a large extent; hence, mapping the cavitation energy distribution in the machinery is expected to provide fundamental data and define optimal operating conditions. Local values of the cavitation intensity were recorded by using a carefully calibrated Ultrasonic Energy Meter, which is able to measure the power per unit surface generated by the cavitation implosion of bubbles. More than 200 measurements were recorded to define the map at each horizontal plane positioned at a different distance from the US transducer; tap water was heated at the same temperature used for dyeing tests (60

  13. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  14. Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume IV. Receiver subsystem. [10-MW Pilot Plant and 100-MW Commercial Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-11-01

    The conception, design, and testing of the receiver subsystem proposed by the McDonnell Douglas/Rocketdyne Receiver team for the DOE 10-MW Pilot Plant and the 100-MW Commercial Plant are described. The receiver subsystem consists of the receiver unit, the tower on which the receiver unit is mounted above the collector field, and the supporting control and instrumentation equipment. The plans for implementation of the Pilot Plant are given including the anticipated schedule and production plan (procurement, installation, checkout, and maintenance). Specifications for the performance, design, and test requirements for the Pilot Plant receiver subsystem are included. (WHK)

  15. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  16. WIPP conceptual design report. Addendum C. Cost worksheets for Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    1977-04-01

    The cost worksheets for the Waste Isolation Pilot Plant (WIPP) are presented. A summary cost estimate, cost estimate for surface facilities, and cost estimate for shafts and underground facilities are included. (DC)

  17. Effect of dissimilatory iron and sulfate reduction on arsenic dynamics in the wetland rhizosphere and its bioaccumulation in plants

    Science.gov (United States)

    Jaffe, P. R.; Zhang, Z.; Moon, H. S.; Myneni, S.

    2015-12-01

    The mobility of arsenic in soils is linked to biogeochemical redox processes. The presence of wetland plants in riparian wetlands has a significant impact on the biogeochemical dynamics of the soil/sediment-redoxcline due to the release of root exudates and root turnover and oxygen transfer from the roots into the surrounding sediment. Micro-environmental redox conditions in the rhizosphere affect As, Fe, and S speciation as well as Fe(III) plaque deposition, which affects arsenic transport and uptake by plants. To investigate the dynamics of As coupled to S and Fe cycling in wetlands, mesocosms were operated in a greenhouse under various conditions (high and low Fe, high and low sulfate, with plant and without plants) for four months. Results show that the presence of plants, high Fe, and high SO42- levels enhanced As sequestration in these soils. We hypothesize that this compounding effect is because plants release biodegradable organic carbon, which is used by microorganism to reduce ferrihydrite and SO42- to generate FeS, FeS2, and/or orpiment (As2S3). Over the concentration range studied, As immobilization in soil and uptake by Scirpus actus was mainly controlled by SO42- rather than Fe levels. Under high sulfate levels, As immobilization in soil increased by 50% and As concentrations in plant roots increased by 97%, whereas no significant changes in plant As levels were seen for varying Fe concentrations. More than 80% of As was sequestrated in soils rather than plant uptake. Pore water As speciation analyses indicate that 20% more As(V) was reduced to As(III) under high sulfate as than low sulfate levels and that low Fe was more favorable to the As dissimilatory reduction. More dissimilatory arsenate-respiring bacteria (DARB) under high sulfate were confirmed by quantitative PCR. Arsenic distribution in plant leafs and roots after 30 days of exposure to As was analyzed via Synchrotron X-ray fluorescence analyses. The uptake of As by plants was distributed

  18. Removal of arsenic from contaminated groundwater with application of iron electrodissolution, aeration and sand filtration

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Arturi, Kasia; Søgaard, Erik Gydesen

    2014-01-01

    The results from a new water treatment system for arsenic removal are presented. The technology is based on the employment of an electrolytic iron dissolution and efficient aeration procedure prior to sand filtration. The treatment was introduced and investigated in a pilot scale plant and full...... scale waterworks. The pilot scale results showed a possibility for an efficient arsenic removal from spiked solutions (with As in the range of 50–85 μg/L) depending on the process conditions (flow and applied current). In the waterworks where the system was implemented for a period of 14 months...

  19. The determination of residence times in a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, F. Pablo E-mail: fcopabloramirez@tonatiu.netmeci44@prodigy.net.com; Cortes, M. Eugenia

    2004-01-01

    It is well known that residence time distributions (RTD) are very important in many chemical processes such as separation, reforming, hydrocracking, fluid catalytic cracking, hydrodesulfuration, hydrogenation among others [3 Procedes de transformation, Editions Technip, Institute Francais du Petrole, Paris, France, 1998]. In addition, tracers can be used to measure the velocity, distribution and residence time of any stream through any part of an industrial [Guidebook on Radioisotope Tracers in Industry, IAEA, Vienna, 1990] or experimental system. Perhaps the best quality of radiotracers is that they do not interfere with normal unit operations or production scheduling. In this paper are presented the RTDs obtained in a pilot plant for a hydrogenation process [IMP, Technical Report, Determinacion del tiempo de residencia promedio en el reactor de la planta piloto de hidroagotamiento de crudo, 2002]. The RTDs show a random phenomenon, which is not typical of this type of chemical processes. Several RTDs were determined in order to confirm this random behavior. The data were obtained using as a tracer a radioactive form of sodium iodide containing iodine-131 [The Condensed Chemical Dictionary, 10th Ed., Van Nostrand Reinhold, USA, 1981]. The process works with two phases in a countercurrent flow, inside a packed column. The liquid phase goes down by gravity. The gas phase goes up due to pressure difference [3 Procedes de transformation, Editions Technip, Institute Francais du Petrole, Paris, France, 1998]. The tracer was selected such that it would follow the liquid phase.

  20. The determination of residence times in a pilot plant

    Science.gov (United States)

    Ramírez, F. Pablo; Cortés, M. Eugenia

    2004-01-01

    It is well known that residence time distributions (RTD) are very important in many chemical processes such as separation, reforming, hydrocracking, fluid catalytic cracking, hydrodesulfuration, hydrogenation among others [3 Procédés de transformation, Editions Technip, Institute Francais du Petrole, Paris, France, 1998]. In addition, tracers can be used to measure the velocity, distribution and residence time of any stream through any part of an industrial [Guidebook on Radioisotope Tracers in Industry, IAEA, Vienna, 1990] or experimental system. Perhaps the best quality of radiotracers is that they do not interfere with normal unit operations or production scheduling. In this paper are presented the RTDs obtained in a pilot plant for a hydrogenation process [IMP, Technical Report, Determinación del tiempo de residencia promedio en el reactor de la planta piloto de hidroagotamiento de crudo, 2002]. The RTDs show a random phenomenon, which is not typical of this type of chemical processes. Several RTDs were determined in order to confirm this random behavior. The data were obtained using as a tracer a radioactive form of sodium iodide containing iodine-131 [The Condensed Chemical Dictionary, 10th Ed., Van Nostrand Reinhold, USA, 1981]. The process works with two phases in a countercurrent flow, inside a packed column. The liquid phase goes down by gravity. The gas phase goes up due to pressure difference [3 Procédés de transformation, Editions Technip, Institute Francais du Petrole, Paris, France, 1998]. The tracer was selected such that it would follow the liquid phase.

  1. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2006-10-12

    This Biennial Environmental Compliance Report (BECR) documents compliance with environmental regulations at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste. This BECR covers the reporting period from April 1, 2004, to March 31, 2006. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents United States (U.S.) Department of Energy (DOE) compliance with regulations and permits issued pursuant to the following: (1) Title 40 Code of Federal Regulations (CFR) Part 191, Subpart A, "Environmental Standards for Management and Storage"; (2) Clean Air Act (CAA) (42 United States Code [U.S.C.] §7401, et seq.); (3) Solid Waste Disposal Act (SWDA) (42 U.S.C. §§6901-6992, et seq.); (4) Safe Drinking Water Act (SDWA) (42 U.S.C. §§300f, et seq.); (5) Toxic Substances Control Act (TSCA) (15 U.S.C. §§2601, et seq.); (6) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (42 U.S.C. §§9601, et seq.); and all other federal and state of New Mexico laws pertaining to public health and safety or the environment.

  2. Waste acceptance criteria for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  3. Compliance status report for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-31

    The US Department of Energy (DOE) is responsible for the disposition of transuranic (TRU) waste generated through national defense-related activities. Approximately 53,700 m{sup 2} of these wastes have been generated and are currently stored at government defense installations across the country. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been sited and constructed to meet the criteria established by the scientific and regulatory community for the safe, long-term disposal of TRU and TRU-mixed wastes. This Compliance Status Report (CSR) provides an assessment of the progress of the WIPP Program toward compliance with long-term disposal regulations, set forth in Title 40 CFR 191 (EPA, 1993a), Subparts B and C, and Title 40 CFR {section}268.6 (EPA, 1993b), in order to focus on-going and future experimental and engineering activities. The CSR attempts to identify issues associated with the performance of the WIPP as a long-term repository and to focus on the resolution of these issues. This report will serve as a tool to focus project resources on the areas necessary to ensure complete, accurate, and timely submittal of the compliance application. This document is not intended to constitute a statement of compliance or a demonstration of compliance.

  4. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  5. Summary of scientific investigations for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Weart, W.D.

    1996-02-01

    The scientific issues concerning disposal of radioactive wastes in salt formations have received 40 years of attention since the National Academy of Sciences (NAS) first addressed this issue in the mid-50s. For the last 21 years, Sandia National Laboratories (SNL) have directed site specific studies for the Waste Isolation Pilot Plant (WIPP). This paper will focus primarily on the WIPP scientific studies now in their concluding stages, the major scientific controversies regarding the site, and some of the surprises encountered during the course of these scientific investigations. The WIPP project`s present understanding of the scientific processes involved continues to support the site as a satisfactory, safe location for the disposal of defense-related transuranic waste and one which will be shown to be in compliance with Environmental Protection Agency (EPA) standards. Compliance will be evaluated by incorporating data from these experiments into Performance Assessment (PA) models developed to describe the physical and chemical processes that could occur at the WIPP during the next 10,000 years under a variety of scenarios. The resulting compliance document is scheduled to be presented to the EPA in October 1996 and all relevant information from scientific studies will be included in this application and the supporting analyses. Studies supporting this compliance application conclude the major period of scientific investigation for the WIPP. Further studies will be of a ``confirmatory`` and monitoring nature.

  6. Regulatory basis for the Waste Isolation Pilot Plant performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    HOWARD,BRYAN A.; CRAWFORD,M.B.; GALSON,D.A.; MARIETTA,MELVIN G.

    2000-05-22

    The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA to demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.

  7. Waset Isolation Pilot Plant Annual Site Environmental Report for 2006

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2007-09-26

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2006 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data that: (a) Characterize site environmental management performance; (b) Summarize environmental occurrences and responses reported during the calendar year; (c) Confirm compliance with environmental standards and requirements; and (d) Highlight significant facility programs and efforts. The DOE Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) maintain and preserve the environmental resources at the WIPP site. DOE Order 231.1A; DOE Order 450.1, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This report was prepared in accordance with DOE Order 231.1A. This order requires that DOE facilities submit an ASER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) (No. NM4890139088-TSDF [treatment, storage, and disposal facility]) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  8. Experimental program plan for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included.

  9. Nutrient uptake of ornamental plants exposed to arsenic in hydroponic solution

    Science.gov (United States)

    Arsenic-based agro-chemicals have contaminated considerable acreage on turf-farms, orchards, and around horticultural production structures. A study was undertaken to evaluate iris (Iris virginica), switchgrass (Panicum virgatum), Tithonia rotundiflora, Coreopsis lanceolata, Sunflower (Helianthus an...

  10. Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate. A sustainable natural remediation?

    Energy Technology Data Exchange (ETDEWEB)

    Madejon, Paula; Lepp, Nicholas W. [School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2007-07-01

    Plant As accumulation at three As-polluted sites where spontaneous re-vegetation has taken place is examined. Each site had a different source of soil As (coal fly ash, LeBlanc process waste, canal dredging). Plant analysis indicates that soil-plant As transfer is poor at each site. Any mobile As is retained in root tissues, with little transfer to shoots. Bryophytes, pteridophytes, herbaceous and woody plants sampled at each site predominantly showed As concentrations of < 3 mg kg{sup -} {sup 1} dry wt, whilst total soil As ranged between 50 and 220 mg kg{sup -} {sup 1} dry wt. Risk associated with food chain transfer at these sites is low when compared to other routes such as direct ingestion/inhalation of As-contaminated particulates re-entrained from an unvegetated or unstable substrate. (author)

  11. Arsenic removal from contaminated groundwater by membrane-integrated hybrid plant: optimization and control using Visual Basic platform.

    Science.gov (United States)

    Chakrabortty, S; Sen, M; Pal, P

    2014-03-01

    A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2) = 0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater.

  12. Arsenic accumulation in Brassicaceae seedlings and its effects on growth and plant anatomy.

    Science.gov (United States)

    de Freitas-Silva, Larisse; de Araújo, Talita Oliveira; da Silva, Luzimar Campos; de Oliveira, Juraci Alves; de Araujo, João Marcos

    2016-02-01

    We wished to evaluate the effects of arsenic on the morphology and anatomy of Brassica oleracea, Raphanus sativus, Brassica juncea, Brassica oleracea var. capitata and Brassica oleracea var. italica. Seeds were subjected to concentrations 0µM, 250µM, 350µM and 450µM arsenic in the form of sodium arsenate (Na2HAsO4·7H2O) during 12 days. All species accumulated more arsenic in the roots than in the shoots, except for B. oleracea var. capitata. There was no difference of translocation factor between species and treatments. Growth decrease was observed in roots of B. oleracea and R. sativus, and in shoots of R. sativus and B. oleracea var. italica. All species presented anatomical alterations in the roots, such as: cell hypertrophy, protoplast retraction, cellular plasmolysis, and necrotic regions. B. juncea presented collapse and hypertrophy of cells from the leaf blade tissues. Quantitative anatomical analyses performed on the root and leaves of B. oleracea and B. juncea revealed that arsenic interfered on the root vascular cylinder diameter and on height of epidermal cells of the adaxial leaf surface of both species. We concluded that arsenic was absorbed from the culture medium and induced alterations both on root and shoot growth of the seedlings. Retention of arsenic within the root was responsible for major damage in this organ.

  13. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  14. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  15. EXAFS study on arsenic species and transformation in arsenic hyperaccumulator

    Institute of Scientific and Technical Information of China (English)

    HUANG Zechun; CHEN Tongbin; LEI Mei; HU Tiandou; HUANG Qifei

    2004-01-01

    Synchrotron radiation extended X-ray absorption fine structure (SR EXAFS) was employed to study the transformation of coordination environment and the redox speciation of arsenic in a newly discovered arsenic hyperaccumulator, Cretan brake (Pteris cretica L. var nervosa Thunb). It showed that the arsenic in the plant mainly coordinated with oxygen, except that some arsenic coordinated with S as As-GSH in root. The complexation of arsenic with GSH might not be the predominant detoxification mechanism in Cretan brake. Although some arsenic in root presented as As(V) in Na2HAsO4 treatments, most of arsenic in plant presented as As(III)-O in both treatments, indicating that As(V) tended to be reduced to As(III) after it was taken up into the root, and arsenic was kept as As(III) when it was transported to the above-ground tissues. The reduction of As(V) primarily proceeded in the root.

  16. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice ( Oryza sativa L.).

    Science.gov (United States)

    Seyfferth, Angelia L; Fendorf, Scott

    2012-12-18

    Arsenic-contaminated rice grain may threaten human health globally. Since H₃AsO₃⁰ is the predominant As species found in paddy pore-waters, and H₄SiO₄⁰ and H₃AsO₃⁰ share an uptake pathway, silica amendments have been proposed to decrease As uptake and consequent As concentrations in grains. Here, we evaluated the impact of two silicate mineral additions differing in solubility (+Si(L), diatomaceous earth, 0.29 mM Si; +Si(H), Si-gel, 1.1 mM Si) to soils differing in mineralogy on arsenic concentration in rice. The +Si(L) addition either did not change or decreased As concentration in pore-water but did not change or increased grain-As levels relative to the (+As--Si) control. The +Si(H) addition increased As in pore-water, but it significantly decreased grain-As relative to the (+As--Si) control. Only the +Si(H) addition resulted in significant increases in straw- and husk-Si. Total grain- and straw-As was negatively correlated with pore-water Si, and the relationship differed between two soils exhibiting different mineralogy. These differing results are a consequence of competition between H₄SiO₄⁰ and H₃AsO₃⁰ for adsorption sites on soil solids and subsequent plant-uptake, and illustrate the importance of Si mineralogy on arsenic uptake.

  17. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  18. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Washinton TRU Solutions LLC

    2002-09-30

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

  19. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  20. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution.

    Science.gov (United States)

    Melo, E E C; Costa, E T S; Guilherme, L R G; Faquin, V; Nascimento, C W A

    2009-08-30

    Phytoextraction is a remediation technique that consists in using plants to remove contaminants from soils and water. This study evaluated arsenic (As) accumulation in Castor bean (Ricinus communis cv. Guarany) grown in nutrient solution in order to assess its phytoextraction ability. Castor bean plants were grown under greenhouse conditions in pots containing a nutrient solution amended with increasing doses of As (0, 10, 50, 100, 250, 500 and 5000 microg L(-1)) in a completely randomized design with four replications. Shoot and roots dry matter production as well as arsenic and nutrient tissue concentrations were measured at the end of the experiment. The results showed that increasing As concentration in nutrient solution caused a decrease in shoot and root biomass but did not result in severe toxicity symptoms in castor bean growing under a range of As concentration from 0 to 5000 microg L(-1). The As doses tested did not affect the accumulation of nutrients by castor bean. Although castor bean did not pose characteristics of a plant suitable for commercial phytoextraction, it could be useful for revegetation of As-contaminated areas while providing an additional income by oil production.

  1. Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez-Ayuso, Esther, E-mail: esther.alvarez@irnasa.csic.es [Department of Environmental Geochemistry, IRNASA (CSIC), C/ Cordel de Merinas 40-52, 37008 Salamanca (Spain); Abad-Valle, Patricia [Department of Environmental Geochemistry, IRNASA (CSIC), C/ Cordel de Merinas 40-52, 37008 Salamanca (Spain); Murciego, Ascensión [Department of Geology, Plza. de los Caídos s/n, Salamanca University, 37008 Salamanca (Spain); Villar-Alonso, Pedro [Saloro SLU, Avda. Italia 8, 37006 Salamanca (Spain)

    2016-01-15

    A mining impacted cropland was studied in order to assess its As pollution level and the derived environmental and health risks. Profile soil samples (0–50 cm) and rye plant samples were collected at different distances (0–150 m) from the near mine dump and analyzed for their As content and distribution. These cropland soils were sandy, acidic and poor in organic matter and Fe/Al oxides. The soil total As concentrations (38–177 mg kg{sup −1}) and, especially, the soil soluble As concentrations (0.48–4.1 mg kg{sup −1}) importantly exceeded their safe limits for agricultural use of soils. Moreover, the soil As contents more prone to be mobilized could rise up to 25–69% of total As levels as determined using (NH{sub 4}){sub 2}SO{sub 4}, NH{sub 4}H{sub 2}PO{sub 4} and (NH{sub 4}){sub 2}C{sub 2}O{sub 4}·H{sub 2}O as sequential extractants. Arsenic in rye plants was primarily distributed in roots (3.4–18.8 mg kg{sup −1}), with restricted translocation to shoots (TF = 0.05–0.26) and grains (TF = < 0.02–0.14). The mechanism for this excluder behavior should be likely related to arsenate reduction to arsenite in roots, followed by its complexation with thiols, as suggested by the high arsenite level in rye roots (up to 95% of the total As content) and the negative correlation between thiol concentrations in rye roots and As concentrations in rye shoots (| R | = 0.770; p < 0.01). Accordingly, in spite of the high mobile and mobilizable As contents in soils, As concentrations in rye above-ground tissues comply with the European regulation on undesirable substances in animal feed. Likewise, rye grain As concentrations were below its maximum tolerable concentration in cereals established by international legislation. - Highlights: • Environmental assessment of a rye cultivated area impacted by past mining activities. • Soil As contents exceeded the recommended safe limits for agricultural use of soils. • Soil soluble As concentrations attained high

  2. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    Energy Technology Data Exchange (ETDEWEB)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ``near-reference`` with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed.

  3. Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L.

    Science.gov (United States)

    Xiong, Jinbo; Wu, Liyou; Tu, Shuxin; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Wang, Gejiao

    2010-11-01

    To understand how microbial communities and functional genes respond to arsenic contamination in the rhizosphere of Pteris vittata, five soil samples with different arsenic contamination levels were collected from the rhizosphere of P. vittata and nonrhizosphere areas and investigated by Biolog, geochemical, and functional gene microarray (GeoChip 3.0) analyses. Biolog analysis revealed that the uncontaminated soil harbored the greatest diversity of sole-carbon utilization abilities and that arsenic contamination decreased the metabolic diversity, while rhizosphere soils had higher metabolic diversities than did the nonrhizosphere soils. GeoChip 3.0 analysis showed low proportions of overlapping genes across the five soil samples (16.52% to 45.75%). The uncontaminated soil had a higher heterogeneity and more unique genes (48.09%) than did the arsenic-contaminated soils. Arsenic resistance, sulfur reduction, phosphorus utilization, and denitrification genes were remarkably distinct between P. vittata rhizosphere and nonrhizosphere soils, which provides evidence for a strong linkage among the level of arsenic contamination, the rhizosphere, and the functional gene distribution. Canonical correspondence analysis (CCA) revealed that arsenic is the main driver in reducing the soil functional gene diversity; however, organic matter and phosphorus also have significant effects on the soil microbial community structure. The results implied that rhizobacteria play an important role during soil arsenic uptake and hyperaccumulation processes of P. vittata.

  4. Performance and Model Calibration of R-D-N Processes in Pilot Plant

    DEFF Research Database (Denmark)

    de la Sota, A.; Larrea, L.; Novak, L.

    1994-01-01

    This paper deals with the first part of an experimental programme in a pilot plant configured for advanced biological nutrient removal processes treating domestic wastewater of Bilbao. The IAWPRC Model No.1 was calibrated in order to optimize the design of the full-scale plant. In this first phas...

  5. General Atomic reprocessing pilot plant: description and results of initial testing

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    In June 1976 General Atomic completed the construction of a reprocessing head-end cold pilot plant. In the year since then, each system within the head end has been used for experiments which have qualified the designs. This report describes the equipment in the plant and summarizes the results of the initial phase of reprocessing testing.

  6. Emission counter-measures in post-combustion CO2 capture: demonstration at pilot plant scale

    NARCIS (Netherlands)

    Miguel Mercader, F. de; Khakharia, P.M.; Ham, L.V. van der; Huizinga, A.; Kester, L.G.C.; Os, P.J. van; Goetheer. E.L.V.

    2013-01-01

    One of the objectives of the OCTAVIUS project is the demonstration of emission countermeasures for post-combustion CO2 capture. To accomplish it, an acid wash was designed and commissioned at TNO’s CO2 capture pilot plant, which is connected to a coal-fired power plant.

  7. Emission counter-measures in post-combustion CO2 capture: demonstration at pilot plant scale

    NARCIS (Netherlands)

    Miguel Mercader, F. de; Khakharia, P.M.; Ham, L.V. van der; Huizinga, A.; Kester, L.G.C.; Os, P.J. van; Goetheer. E.L.V.

    2013-01-01

    One of the objectives of the OCTAVIUS project is the demonstration of emission countermeasures for post-combustion CO2 capture. To accomplish it, an acid wash was designed and commissioned at TNO’s CO2 capture pilot plant, which is connected to a coal-fired power plant.

  8. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L. [Rocky Mountain Peace Center, Boulder, CO (United States)

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  9. Performance analysis of the HRCTM HPGR in pilot plant

    OpenAIRE

    Oliveira, Renato; Delboni Júnior,Homero; Bergerman, Maurício Guimarães

    2016-01-01

    Abstract A pilot scale test program was conducted to evaluate the size reduction performance of HPGR (High Pressure Grinding Rolls) operating in different circuit configurations. For this purpose a series of pilot-HPGR locked cycle tests were performed with medium and high pressures to simulate the HPGR operation in closed circuit with a screen, with partial product recycle, and with edge recycle. Logged instrumentation data such as roller speed, working gap, operating pressure, and power dra...

  10. Research and Development on PFBC—CC in China and Jiawnag Pilot plant Project

    Institute of Scientific and Technical Information of China (English)

    NingshengCai; MingyaoZhang

    1994-01-01

    Pressurized Fluidized Bed Combustion(PFBC)is recognized as an advanced coal-fired technology which can improve efficiency in combined cycle sceme and reduce environmental pollution.Progressive status on PFBC-CC in China is preseted in this paper.Test results on a 1 MWt bench scale experimental PFBC facility is reviuewed briefly.Based on retrofitting of an old steam power plant located at Jiawang,a project to construct a PFBC-CC pilot plant is under way ,Designed capacity of the pilot plant is about 15 MWe ,3MWe from gas cycle and 12 MWe from steam cycle.The system configuration,main design parameters,estimated technical performance as well as construction schedule of the pilot plant are described.The bright future for PFBC-CC in China is also indicated.

  11. Isolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils.

    Science.gov (United States)

    Ramos-Garza, Juan; Bustamante-Brito, Rafael; Ángeles de Paz, Gabriela; Medina-Canales, Ma Gabriela; Vásquez-Murrieta, María Soledad; Wang, En Tao; Rodríguez-Tovar, Aída Verónica

    2016-04-01

    Yeasts were quantified and isolated from the rhizospheres of 5 plant species grown at 2 sites of a Mexican region contaminated with arsenic, lead, and other heavy metals. Yeast abundance was about 10(2) CFU/g of soil and 31 isolates were obtained. On the basis of the phylogenetic analysis of 26S rRNA and internal transcribed spacer fragment, 6 species were identified within the following 5 genera: Cryptococcus (80.64%), Rhodotorula (6.45%), Exophiala (6.45%), Trichosporon (3.22%), and Cystobasidium (3.22%). Cryptococcus spp. was the predominant group. Pectinases (51.6%), proteases (51.6%), and xylanases (41.9%) were the enzymes most common, while poor production of siderophores (16.1%) and indole acetic acid (9.67%) was detected. Isolates of Rhodotorula mucilaginosa and Cystobasidium sloffiae could promote plant growth and seed germination in a bioassay using Brassica juncea. Resistance of isolates by arsenic and heavy metals was as follows: As(3+) ≥ 100 mmol/L, As(5+) ≥ 30 mmol/L, Zn(2+) ≥ 2 mmol/L, Pb(2+) ≥ 1.2 mmol/L, and Cu(2+) ≥ 0.5 mmol/L. Strains of Cryptococcus albidus were able to reduce arsenate (As(5+)) into arsenite (As(3+)), but no isolate was capable of oxidizing As(3+). This is the first study on the abundance and identification of rhizosphere yeasts in a heavy-metal- and arsenic-contaminated soil, and of the reduction of arsenate by the species C. albidus.

  12. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease

  13. The Waste Isolation Pilot Plant (WIPP) Groundwater Monitoring Program

    Science.gov (United States)

    Hillesheim, M. B.; Beauheim, R. L.

    2006-12-01

    The development of a groundwater monitoring program is an integral part of any radioactive waste disposal facility. Monitoring improves our understanding of the geologic and hydrologic framework, which improves conceptual models and the quality of groundwater models that provide data input for performance assessment. The purpose of a groundwater monitoring program is to provide objective evidence that the hydrologic system is behaving as expected (i.e., performance confirmation). Monitoring should not be limited to near-field observations but should include the larger natural system in which the repository is situated. The Waste Isolation Pilot Plant (WIPP), a U.S. Department of Energy (DOE) facility designed for the safe disposal of transuranic wastes resulting from U.S. defense programs, can serve as a model for other radioactive waste disposal facilities. WIPP has a long-established groundwater monitoring program that is geared towards meeting compliance certification requirements set forth by the U.S. Environmental Protection Agency (EPA). The primary task of the program is to measure various water parameters (e.g.., water level, pressure head, chemical and physical properties) using a groundwater monitoring network that currently consists of 85 wells in the vicinity of the WIPP site. Wells are completed to a number of water-bearing horizons and are monitored on a monthly basis. In many instances, they are also instrumented with programmable pressure transducers that take high-frequency measurements that supplement the monthly measurements. Results from higher frequency measurements indicate that the hydrologic system in the WIPP vicinity is in a transient state, responding to both natural and anthropogenic stresses. The insights gathered from the monitoring, as well as from hydrologic testing activities, provide valuable information that contributes to groundwater modeling efforts and performance assessment. Sandia is a multi program laboratory operated by

  14. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    Energy Technology Data Exchange (ETDEWEB)

    Andrew W. Wang

    2002-01-01

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is shown below: 2H{sub 2} + CO = CH{sub 3}OH; 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O; H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a

  15. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    Energy Technology Data Exchange (ETDEWEB)

    Andrew W. Wang

    2002-05-15

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is: 2H{sub 2} + CO = CH{sub 3}OH 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a scaleup project

  16. Technical Description Lillgrund Wind Power Plant. Lillgrund Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Jeppsson, Joakim; Larsen, Poul Erik; Larsson, Aake (Vattenfall Vindkraft AB, Stockholm (Sweden))

    2008-09-15

    Lillgrund offshore wind power plant comprises 48 wind turbines, each rated at 2.3 MW, bringing the total wind farm capacity to 110 MW. The Lillgrund offshore wind power plant is located in a shallow area of Oeresund, 7 km off the coast of Sweden and 7 km south from the Oeresund Bridge connecting Sweden and Denmark. An average wind speed of around 8,5 m/s at hub height, combined with a relatively low water depth of 4 to 8 meters makes it economically feasible to build here. Vattenfall Vindkraft AB is the owner and operator of Lillgrund offshore wind power plant. Lillgrund is a Swedish pilot project supported by the Swedish Energy Agency. The bidding process was completed during 2005 and the offshore power plant was constructed in the period 2006 to 2007. The wind farm was constructed on time and has now been successfully operational since December 2007. There is, however, always potential for improvement and the aim of this report has been to determine and highlight these areas. It is worth noting out that only the electrical system and the foundations are tailor made at offshore wind power plants. The wind turbines are more or less standard products with none or very limited possibilities for project specific design changes. Geotechnical investigations are expensive and it can be difficult to balance the risks as well as the benefits of this expense in the early phases of a large infrastructure project. As a whole, the geotechnical surveys at Lillgrund proved to be useful. They identified potential issues, such as the fact that extra excavation was required for two of the foundations. It also revealed the location of a small number of boulders that would have to be removed. Vattenfall requested a complete study of the electrical system for Lillgrund to be delivered with the bids. That request was not met. Instead Siemens Wind Power began a complete electrical system study after being awarded the Contract. The electrical system study was completed during the

  17. Raft River binary-cycle geothermal pilot power plant final report

    Energy Technology Data Exchange (ETDEWEB)

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  18. Operation result of 40kW class MCFC pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, H.; Hatori, S.; Hosaka, M.; Uematsu, H. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    Ishikawajima-Harima Heavy Industries Co., Ltd. developed unique Molten Carbonate Fuel Cell (MCFC) system based on our original concept. To demonstrate the possibility of this system, based on MCFC technology of consigned research from New Energy and Industrial Technology Development Organization (NEDO) in Japan, we designed 40kW class MCFC pilot plant which had all equipments required as a power plant and constructed in our TO-2 Technical Center. This paper presents the test results of the plant.

  19. Effects of phosphate and thiosulphate on arsenic accumulation in Brassica juncea plants grown in soil and in hydroponic culture

    Science.gov (United States)

    Pezzarossa, Beatrice; Petruzzelli, Gianniantonio; Grifoni, Martina; Rosellini, Irene; Malagoli, Mario; Schiavon, Michela

    2013-04-01

    Arsenic is recognised as a toxic metalloid and a strong pollutant in soils of many countries. Thus, the reclamation of contaminated areas is fundamental in order to protect both human health and agricultural production. This study is focused on the assisted phytoextraction, a technology for reclaiming polluted soils that takes advantage of the capability of some plants to extract inorganic elements from soils with the aid of additive agents. The nutrients phosphorus, as phosphate, and sulphur, as thiosulphate, can compete with the form more oxidised of arsenic, both in soil and plant. This study examined the capability of thiosulphate (Th) and phosphate (Ph) to promote the release of As from soil surfaces in order to improve the phytoavailability and thus the absorption of As by Brassica juncea plants. In the first experiment B. juncea plants were grown on a soil that had been sampled from an industrial area strongly contaminated by As (790 mg As kg-1 soil). The second experiment was carried out in hydroponics where As has been added at a concentration (100 microM) similar to the As available concentration measured in soil. In both trials ammonium thiosulphate (at the concentration of 0.27 M in soil, and 400 microM in hydroponics) and potassium hydrogen phosphate (at the concentration of 0.05 M in soil, and 112 microM in hydroponics) were added. The biomass of B. juncea was determined and the accumulation of P, S and As in root and in the above-ground tissues have been analyzed. Our results showed that thiosulphate and phosphate acted either as nutrients and detoxifying agents, due to the stimulation of plant defensive systems, and influenced either the biomass production and the As accumulation in plant tissues. In the plants grown in soil, As accumulated at higher levels in the above-ground part than in the roots and the addition of Th induced a higher biomass production and a higher total As accumulation (concentration x biomass) in the above-ground tissues

  20. 10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-25

    Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

  1. Systematic simulation of a tubular recycle reactor on the basis of pilot plant experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paar, H.; Narodoslawsky, M.; Moser, A. (Technische Univ., Graz (Austria). Inst. fuer Biotechnologie, Mikrobiologie und Abfalltechnologie)

    1990-10-10

    Systematic simulatiom may decisively help in development and optimization of bioprocesses. By applying simulation techniques, optimal use can be made of experimental data, decreasing development costs and increasing the accuracy in predicting the behavior of an industrial scale plant. The procedure of the dialogue between simulation and experimental efforts will be exemplified in a case study. Alcoholic fermentation of glucose by zymomonas mobilis bacteria in a gasified turbular recycle reactor was studied first by systematic simulation, using a computer model based solely on literature data. On the base of the results of this simulation, a 0.013 m{sup 3} pilot plant reactor was constructed. The pilot plant experiments, too, were based on the results of the systematic simulation. Simulated and experimental data were well in agreement. The pilot plant experiments reiterated the trends and limits of the process as shown by the simulation results. Data from the pilot plant runs were then used to improve the simulation model. This improved model was subsequently used to simulate the performances of an industrial scale plant. The results of this simulation are presented. They show that the alcohol fermentation in a tubular recycle reactor is potentially advantageous to other reactor configurations, especially to continuous stirred tanks. (orig.).

  2. Pilot plant operation of the Uranium Chip Oxidation Facility at the Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Y.C.

    1987-01-16

    Due to changing environmental regulations, the current practice of depleted uranium chip (machine turning) disposal via shallow land burial has become environmentally objectionable. The chips are pyrophoric and oxidize rapidly when exposed to air; therefore, long-term storage of the uranium chips presents a major fire hazard. The Oak Ridge Y-12 Plant Development Division was contacted to devise a disposal method that would eliminate chip burial and minimize storage space requirements. The proposed method of accomplishing this task was oxidizing the uranium chips to uranium oxide (U/sub 3/O/sub 8/) under controlled conditions. Pilot plant operation of the Uranium Chip Oxidation Facility (UCOF) was initiated on May 20, 1985, by the Y-12 Development Division. The purpose of this initial development testing was to evaluate the equipment, determine operating parameters, and provide on-the-job training for Waste Treatment Operations (WTO) personnel. Startup of the UCOF began with the check-out of the equipment using only the No. 1 oxidizer. Following the verification stage, the oxidizer was loaded with an initial charge of cold uranium oxide (U/sub 3/O/sub 8/) in preparation for test burning. Results of the test are given.

  3. Association between skin lesions and arsenic methylation product in urine of workers from arsenic smelting plant%砷冶炼厂工人皮肤损害与尿中砷甲基化产物的关系

    Institute of Scientific and Technical Information of China (English)

    李良; 成会荣; 施丽琼; 牟建春; 文卫华

    2012-01-01

    [Objective]To study the relationship between skim lesions and metabolites of arsenic in urine of workers exposed occu-pationally to arsenic. [ Methods]The smelting plants which were in outlying mountain area were selected as study object. A total of 91 arsenic exposed workers were recruited, and 58 other workers as control group. Arsenic compounds concentration in operating posts of working space were detected, physical examination was performed, and morphological analysis of arsenic in urine was done. At the same, percentages of 3 arsenic compounds, primary and second methylation indexes were calculated. [ Results] Arsenic concentrations of all operating posts were over national occupational health standards. There were 36 workers who had obvious skin lesions of chronic arsenic toxicosis. The concentrations of inorganic arsenic, methyl arsenate and dimethyl arsenate( LoglO) were {2.18 ±0. 40}μg/g, (2.26±0.35)ug/g and(2. 77 ±0.31 )μg/g creatinine which were significantly higher than those of the workers without skin lesions and from the control group. Percentage of urine concentration of methyl arsenate in total arsenic and secondary methylation index of workers with akin lesions were significantly higher than those of other workers in smelting plant. [ Conclusion] Methylated products in urine play an important role in skin lesions of smelter workers, secondary methylation index is associated with arsenic induced skin damage.%目的 探讨职业砷接触致皮肤病发生与尿中砷甲基化产物的关系.方法 选择偏远山区冶炼厂为研究现场,暴露组为91名工人,对照组58人.监测作业场所工作岗位中砷化合物浓度,进行健康监护体检和尿砷形态分析,计算3种砷化合物百分率及一、二级甲基化指数.结果 冶炼厂所有检测岗位砷化合物浓度均超过国家职业卫生标准,91名工人中36人存在明显慢性砷中毒样皮肤损害,尿中3种砷化合物(无机砷、甲基砷

  4. Arsenic immobilization of Teniente furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, R. [Japan Oil, Gas, and Metals National Corp., Kawasaki (Japan); Tateiwa, H. [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan); Almendares, C. [Centro de Investigacion Minera y Metalurgica, Santiago (Chile); Sanchez, G. [CODELCO, Santiago (Chile). Division Ventanas

    2007-07-01

    A 5-year joint Japanese-Chilean project to modify the treatment of furnace dust from a converter in Chile producing harmful amounts of arsenic and lead was described. A pilot plant was constructed to evaluate the method's commercialization potential. Flue dust was recovered by a dust collector installed to capture suspended dust generated by the smelting furnace. Arsenic content was approximately 15 per cent. Ninety per cent of the arsenic was then liquidated to lixivia and dissolved by leaching flue dust with sulphuric acid. The leaching rate decreased when flue dust had a high content of residual sulfide ore. A flotation device was then incorporated in the treatment process in order to increase the copper recovery rate. A solvent recovery process was then adopted to recover the copper and zinc contained in the solution after the arsenic recovery. An economic evaluation of the process indicated that efforts should be made to improve the efficiency of the dust treatment method. 5 refs., 6 tabs., 10 figs.

  5. Waste Isolation Pilot Plant transuranic wastes experimental characterization program: executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Molecke, M.A.

    1978-11-01

    A general overview of the Waste Isolation Pilot Plant transuranic wastes experimental characterization program is presented. Objectives and outstanding concerns of this program are discussed. Characteristics of transuranic wastes are also described. Concerns for the terminal isolation of such wastes in a deep bedded salt facility are divided into two phases, those during the short-term operational phase of the facility, and those potentially occurring in the long-term, after decommissioning of the repository. An inclusive summary covering individual studies, their importance to the Waste Isolation Pilot Plant, investigators, general milestones, and comments are presented.

  6. Macroscopic mass and energy balance of a pilot plant anaerobic bioreactor operated under thermophilic conditions.

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Bombardiere, John; Chatfield, Mark; Domaschko, Max; Easter, Michael; Stafford, David A; Castillo-Angeles, Saul; Castellanos-Hernandez, Nehemias

    2006-01-01

    Intensive poultry production generates over 100,000 t of litter annually in West Virginia and 9 x 10(6) t nationwide. Current available technological alternatives based on thermophilic anaerobic digestion for residuals treatment are diverse. A modification of the typical continuous stirred tank reactor is a promising process being relatively stable and owing to its capability to manage considerable amounts of residuals at low operational cost. A 40-m3 pilot plant digester was used for performance evaluation considering energy input and methane production. Results suggest some changes to the pilot plant configuration are necessary to reduce power consumption although maximizing biodigester performance.

  7. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    Science.gov (United States)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  8. Biosorption and growth inhibition of wetland plants in water contaminated with a mixture of arsenic and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soyoung [Department of Ocean Engineering, Pukyong National University, Busan (Korea, Republic of); Kang, Daeseok; Kim, Youngyun; Lee, Suk Mo; Chung, Yonghyun; Sung, Kijune [Department of Ecological Engineering, Pukyong National University, Busan (Korea, Republic of)

    2011-02-15

    The potential of wetland plants as an onsite biosorbent and a biomonitor for combined pollution of arsenic and four heavy metals from non-point sources was investigated in this study. Ceratophyllum demersum, Hydrilla verticillata, Hydrocharis dubia, and Salvinia natans were exposed to a water containing mixture of As, Cr, Cu, Pb, and Zn. Growth inhibition and biosorption potential of the wetland plants in artificially contaminated conditions were studied. These contaminants significantly reduced the growth of the plants. The tested wetland plants accumulated appreciable amounts of the contaminants in the following order: Pb>Cr>Cu>Zn>As. H. verticillata showed distinct visual change and a high biosorption factor (BSF) rank for As and heavy metals among the plants used in the study. As an unspecific collector of contaminants, it might be useful as a biomonitor and biosorbent in the As and heavy metal-contaminated aquatic system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Arsenic localization and speciation in the root-soil interface of the desert plant Prosopis juliflora-velutina.

    Science.gov (United States)

    Castillo-Michel, Hiram; Hernandez-Viezcas, Jose A; Servin, Alia; Peralia-Videa, Jose R; Gardea-Torresdey, Jorge L

    2012-06-01

    The bioavailability and mobility of arsenic (As) in soils depends on several factors such as pH, organic matter content, speciation, and the concentration of oxides and clay minerals, among others. Plants modify As bioavailability in the rhizosphere; thus, the biogeochemical processes of As in vegetated and non-vegetated soils are different. Changes in As speciation induced by the rhizosphere can be monitored using micro-focused synchrotron-based X-ray fluorescence (μXRF) combined with μX-ray absorption near-edge spectroscopy (μXANES). This research investigated As speciation in the rhizosphere of mesquite (Prosopis juliflora-velutina) plants grown in a sandy clay loam treated with As(III) and As(V) at 40 mg kg(-1). Rhizosphere soil and freeze-dried root tissues of one-month-old plants were analyzed by bulk XAS. Bulk XAS results showed that As(V) was the predominant species in the soil (rhizosphere and non-vegetated), whereas As(III) was dominant in the root tissues from both As(V) and As(III) treated plants. μXAS and μXRF studies of thin sections from resin embedded soil cores revealed the As(III)-S interactions in root tissues and a predominant As-Fe interaction in the soil. This research demonstrated that the combination of bulk XAS and μXAS techniques is a powerful analytical technique for the study of As speciation in soil and plant samples.

  10. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and validat

  11. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and

  12. Water-gas shift (WGS) Operation of Pre-combustion CO2 Capture Pilot Plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Van Dijk, H.A.J.; Damen, K.; Makkee, M.; Trapp, C.

    2014-01-01

    In the Nuon/Vattenfall CO2 Catch-up project, a pre-combustion CO2 capture pilot plant was built and operated at the Buggenum IGCC power plant, the Netherlands. The pilot consist of sweet water-gas shift, physical CO2 absorption and CO2 compression. The technology performance was verified and validat

  13. Central receiver solar thermal power system, Phase 1: CDRL Item 2, pilot plant preliminary design report. Volume VII. Pilot plant cost and commercial plant cost and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1980-05-01

    Detailed cost and performance data for the proposed tower focus pilot plant and commercial plant are given. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) an external receiver mounted on a tower, and located in a 360/sup 0/ array of sun-tracking heliostats which comprise the collector subsystem. (B) feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes. (WHK)

  14. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    Science.gov (United States)

    Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, T.; Dix, D.; El-Guebaly, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R. J.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.; Zarnstorff, M.

    2011-10-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  15. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An arsenic hyperaccumulator Pteris vittata L. (Chinese brake) was first discovered in China by means of field survey and greenhouse cultivation. Field survey showed that Chinese brake had large accumulating capacity to arsenic; the orders of arsenic content in different parts of the fern were as follows: leaves>leafstalks>roots, which is totally different from that of ordinary plants; bioaccumulation coefficients of the above ground parts of the fern decreased as a power function of soil arsenic contents. In the control of pot trials with normal unpolluted soil containing 9 mg/kg of arsenic, the bioaccumulation coefficients of the above ground parts and rhizoids of Chinese brake were as high as 71 and 80 respectively. Greenhouse cultivation in the contaminated soil from mining areas has shown that more than 1 times greater arsenic can be accumulated in the leaves of the fern than that of field samples with the largest content of 5070 mg/kg As on a dry matter basis. During greenhouse cultivation, arsenic content in the leaves of the fern increased linearly with time prolonging. Not only has Chinese brake extraordinary tolerance and accumulation to arsenic, but it grew rapidly with great biomass, wide distribution and easy adaptation to different environmental conditions as well. Therefore, it has great potential in future remediation of arsenic contamination. It also demonstrates important value for studies of arsenic physiology and biochemistry such as arsenic absorption, translocation and detoxification mechanisms in plants.

  16. Optimisation of a wet FGD pilot plant using fine limestone and organic acids

    DEFF Research Database (Denmark)

    Frandsen, Jan; Kiil, Søren; Johnsson, Jan Erik

    2001-01-01

    The effects of adding an organic acid or using a limestone with a fine particle size distribution (PSD) have been examined in a wet flue gas desulphurisation (FGD) pilot plant. Optimisation of the plant with respect to the degree of desulphurisation and the residual limestone content of the gypsum......, but the residual limestone content in the gypsum increased to somewhere between 19 and 30 wt%, making this pH range unsuitable for use in a full-scale plant. The investigations have shown that both the addition of organic acids and the use of a limestone with a fine PSD can be used to optimise wet FGD plants. (C...

  17. Effect of dissimilatory iron and sulfate reduction on Arsenic dynamics in the wetland rhizosphere and its bioaccumulation in plants

    Science.gov (United States)

    Zhang, Zheyun; Moon, Hee Sun; Myneni, Satish; Jaffe, Peter

    2015-04-01

    Arsenic (As) pollution in water soil and sediments is of worldwide concern due to its ecological toxicity and chronic effects on human health. Wetlands are at the interface between ground and surface waters and because of their unique biogeochemical dynamics could be promising location for arsenic immobilization. However, the nature of biogeochemical reactions of As in wetlands are complex and not well understood. The dynamics of As in wetland sediments are closely linked to the redox cycling of Fe and S, both of which are affected by water-table fluctuations and wetland plants activity that are typical in such environments. Little is not known about redox cycling of Fe or S and their effects on As speciation, biogeochemical dynamics, and bioaccumulation in the wetland rhizosphere and plants. To gain further insights into these processes, twelve mesocosms were set up and planted with wetland plants (Scirpus actus), six were submerged in a tray (reactor) with ~ 170 mM SO4-2 and six in a tray with ~ 350 uM SO4-2 and two levels of ferrihydrite in the soil for each SO4-2 treatment. Each mesocosm was sealed and the only contact with the solution in the reactor was via the surface of the mesocosm. The mesocosms were run for 1.5 months to establish the plants, after which 50μM Na2HAsO4·7H2O was added to the reactors. Water in the reactors was constantly recirculated to make the solution homogeneous. The reactors were run for 4 months and monitored regularly for dissolved species, and were then dismantled. Results show that the presence of plants, high Fe, and high SO42- levels enhanced As sequestration in the soil. We hypothesize that the reason for this compounding effect is that plants release easily biodegradable organic carbon, which is used by microorganism to reduce ferrihydrite and SO42- to generate FeS or FeS2. More As is then sequestrated via sorption or co-precipitation on FeS or FeS2. Analysis of As in plant tissue showed that As uptake by Scirpus actus was

  18. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.

    Science.gov (United States)

    Yang, J X; Guo, Q J; Yang, J; Zhou, X Y; Ren, H Y; Zhang, H Z; Xu, R X; Wang, X D; Peters, M; Zhu, G X; Wei, R F; Tian, L Y; Han, X K

    2016-01-01

    Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.

  19. Arsenic contamination of the environment-food chain: a survey on wheat as a test plant to investigate phytoavailable arsenic in Italian agricultural soils and as a source of inorganic arsenic in the diet.

    Science.gov (United States)

    Cubadda, Francesco; Ciardullo, Silvia; D'Amato, Marilena; Raggi, Andrea; Aureli, Federica; Carcea, Marina

    2010-09-22

    Seven hundred and twenty-six samples of wheat grains from the majority of Italian agricultural areas were pooled into 141 composite samples, homogeneous with respect to geographical origin and wheat variety. The average arsenic concentration of the pooled samples was 9 ng g(-1), with a range of 2-55 ng g(-1) (dry weight basis). The spread of arsenic concentrations (coefficient of variation of 91%) was related to spatial variability associated with geochemical and environmental factors. Temporal variability was investigated by a 3-year longitudinal study on 7 wheat cultivars grown in 22 areas of central and northern Italy. Average year-to-year variation in arsenic levels was low, and the average of the coefficients of variation was 23%. These results show that mapping of phytoavailable arsenic in agricultural soils can be done by measuring arsenic concentration in representative samples of wheat grains. Arsenic speciation in the grain showed that As(III) and As(V) were the major As compounds, highlighting the importance of wheat as a source of inorganic arsenic in the diet.

  20. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    Science.gov (United States)

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic.

  1. Dynamic modeling of Badaling molten salt tower CSP pilot plant

    Science.gov (United States)

    Yang, Zijiang; Lu, Jiahui; Zhang, Qiangqiang; Li, Zhi; Li, Xin; Wang, Zhifeng

    2017-06-01

    Under the collaboration framework between EDF China R&D Centre and CAS-IEE, a preliminary numerical model of 1MWth molten salt tower solar power demonstration plant in Badaling, Beijing is presented in this paper. All key components in the plant are presented throughout detailed modules in the model according to its design specifications. Control strategies are also implemented to maintain the design system performance at transient scenario. By this model some key design figures of plant has been validated and it will be used to guide experiment set-up and plant commissioning.

  2. Investigation of Parameters Affecting Gypsum Dewatering Properties in a Wet Flue Gas Desulphurization Pilot Plant

    OpenAIRE

    Hansen, Brian Brun; Kiil, Søren

    2012-01-01

    Wet flue gas desulphurization (FGD) plants with forced oxidation, installed at coal and oil fired power plants for removal of SO2(g), must produce gypsum of high quality. However, quality issues such as an excessive moisture content, due to poor gypsum dewatering properties, may occur from time to time. In this work, the particle size distribution, morphology, and filtration rate of wet FGD gypsum formed in a pilot-scale experimental setup, operated in forced oxidation mode, have been studied...

  3. Study of the thermal decomposition of petrochemical sludge in a pilot plant reactor

    OpenAIRE

    Conesa Ferrer, Juan Antonio; Moltó Berenguer, Julia; Ariza, José; Ariza, María; García Barneto, Agustín

    2014-01-01

    The pyrolysis of a sludge produced in the waste water treatment plant of an oil refinery was studied in a pilot plant reactor provided with a system for condensation of semivolatile matter. The study comprises experiments at 350, 400, 470 and 530 °C in nitrogen atmosphere. Analysis of all the products obtained (gases, liquids and chars) are presented, with a thermogravimetric study of the char produced and analysis of main components of the liquid. In the temperature range studied, the compos...

  4. Effects of antimony and arsenic on antioxidant enzyme activities of two steppic plant species in an old antimony mining area.

    Science.gov (United States)

    Benhamdi, Asma; Bentellis, Alima; Rached, Oualida; Du Laing, Gijs; Mechakra, Aicha

    2014-04-01

    The present work was undertaken to determine strategies and antioxidant enzyme activities involved in the adaptation of two wild steppic plants (Hedysarum pallidum Desf. and Lygeum spartum L.) to the toxic environment of the abandoned antimony mining area of Djebel Hamimat (Algeria). For this purpose, soils and plants were collected in different zones coinciding with a Sb and As concentrations gradient in the soil. Antimony (Sb) and arsenic (As) were analyzed by ICP-OES in the soils and the aboveground parts and roots of the plants. Malondialdehyde (MDA) and antioxidant enzyme activities were measured by spectrometry. Results show levels of Sb and As exceptionally high in most soil and plant samples. The two species accumulate differently Sb and As in their above and belowground parts. MDA levels, in the two parts of both species, increase significantly with increasing soil Sb and As concentrations, but they are significantly higher in H. pallidum than in L. spartum. The activities of antioxidant enzymes differ significantly according to the soil metalloid concentrations, the plant species considered and the plant part. Apart from superoxide dismutase (SOD) whose activity is, overall, higher in H. pallidum than in L. spartum, the activities of all the other enzymes studied (glutathione S-transferase (GST), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)) are generally higher in L. spartum than in H. pallidum. For both species, APX and GST are overall more active in the upper parts than in the roots, while it is the reverse for SOD and CAT. POD is more active in the upper parts than in the roots of L. spartum and the reverse applies to H. pallidum. It appears that the two studied plant species use different tolerance strategies to protect themselves against elevated As and Sb concentrations.

  5. Pasteurization of strawberry puree using a pilot plant pulsed electric fields (PEF) system

    Science.gov (United States)

    The processing of strawberry puree by pulsed electric fields (PEF) in a pilot plant system has never been evaluated. In addition, a method does not exist to validate the exact number and shape of the pulses applied during PEF processing. Both buffered peptone water (BPW) and fresh strawberry puree (...

  6. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 2, Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2007-03-25

    This report is a compilation of geotechnical data presented as plots for each active instrument installed in the underground at the Waste Isolation Pilot Plant (WIPP) through June 30, 2006. A summary of the geotechnical analyses that were performed using the enclosed data is provided in Volume 1 of the Geotechnical Analysis Report (GAR).

  7. Chemistry research and development. Progress report, December 1978-May 1979. [Component, pilot plant, instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Miner, F. J.

    1980-06-30

    Progress and activities are reported on component development, pilot plant development, and instrumentation and statistical systems. Specific items studied include processing of pond sludge, transport of radioactive materials and wastes, corrosion, decontamination and cleaning, fluidized-bed incineration, Pu contamination of soils, chemical analysis, radiometric analysis, security. (DLC)

  8. Experimental results from a pilot plant for converting acid whey to potentially useful food products

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, R.W.; Marvin, C.; Julkowski, K.

    1978-01-01

    The pilot plant used a fluidized bed with lactase immobilized on aluminia as well as ultrafiltration and demineralization equipment. Conversion of lactose to its consitiuent monosaccharides was up to 84%, vs. 65% on a bench scale. Advantages of the fluidized bed reactor are its freedom from plugging, its lower pressure loss, and its adaptability to frequent cleaning, compared to a fixed bed.

  9. Use of phosphorus release batch tests for modelling an EBPR pilot plant

    DEFF Research Database (Denmark)

    Tykesson, E.; Aspegren, H.; Henze, Mogens

    2002-01-01

    The aim of this study was to evaluate how routinely performed phosphorus release tests could be used when modelling enhanced biological phosphorus removal (EBPR) using activated sludge models such as ASM2d. A pilot plant with an extensive analysis programme was used as basis for the simulations...

  10. Seismic reflection data report: Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hern, J.L.; Powers, D.W.; Barrows, L.J.

    1978-12-01

    Volume II contains uninterpreted processed lines and shotpoint maps from three seismic reflection surveys conducted from 1976 through 1978 by Sandia Laboratories to support investigations for the Waste Isolation Pilot Plant. Data interpretations will be the subject of subsequent reports. (LK)

  11. Influence of Production Process Parameters on Fish Oil Quality in a Pilot Plant

    NARCIS (Netherlands)

    Aidos, I.M.; Kreb, N.; Boonman, M.; Luten, J.B.; Boom, R.M.; Padt, van der A.

    2003-01-01

    A pilot plant used for upgrading herring byproducts into fish oil was analyzed on its operational efficiency and product quality. The temperature of the heat exchanger and the speeds of the pump and the 3-phase decanter were varied according to a 23 fractional factorial design. The initial amount of

  12. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

    1993-12-01

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

  13. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  14. Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Damen, K.; Gnutek, R.; Kaptein, J.; Nannan, N.R.; Oyarzun, B.; Trapp, C.; Colonna, P.; Van Dijk, E.; Gross, J.; Bardow, A.

    2011-01-01

    N.V. Nuon (part of the Vattenfall Group) operates an IGCC in Buggenum and is developing a multi-fuel IGCC with CO2 capture and storage (Nuon Magnum) in Eemshaven, the Netherlands. In order to prepare for large-scale application of CO2 capture and storage, a CO2 capture pilot plant is constructed at

  15. Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC

    NARCIS (Netherlands)

    Damen, K.; Gnutek, R.; Kaptein, J.; Nannan, N.R.; Oyarzun, B.; Trapp, C.; Colonna, P.; Van Dijk, E.; Gross, J.; Bardow, A.

    2011-01-01

    N.V. Nuon (part of the Vattenfall Group) operates an IGCC in Buggenum and is developing a multi-fuel IGCC with CO2 capture and storage (Nuon Magnum) in Eemshaven, the Netherlands. In order to prepare for large-scale application of CO2 capture and storage, a CO2 capture pilot plant is constructed at

  16. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    Science.gov (United States)

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  17. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.

    Science.gov (United States)

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-01

    Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries.

  18. Recovery of glass from the inert fraction refused by MBT plants in a pilot plant.

    Science.gov (United States)

    Dias, Nilmara; Garrinhas, Inés; Maximo, Angela; Belo, Nuno; Roque, Paulo; Carvalho, M Teresa

    2015-12-01

    Selective collection is a common practice in many countries. However, even in some of those countries there are recyclable materials, like packaging glass, erroneously deposited in the Mixed Municipal Solid Waste (MMSW). In the present paper, a solution is proposed to recover glass from the inert reject of Mechanical and Biological Treatment (MBT) plants treating MMSW aiming at its recycling. The inert reject of MBT (MBTr) plants is characterized by its small particle size and high heterogeneity. The study was made with three real samples of diverse characteristics superimposed mainly by the different upstream MBT. One of the samples (VN) had a high content in organics (approximately 50%) and a particle size smaller than 16 mm. The other two were coarser and exhibited similar particle size distribution but one (RE) was rich in glass (almost 70%) while the other (SD) contained about 40% in glass. A flowsheet was developed integrating drying, to eliminate moisture related with organic matter contamination; magnetic separation, to separate remaining small ferrous particles; vacuum suction, to eliminate light materials; screening, to eliminate the finer fraction that has a insignificant content in glass, and to classify the >6mm fraction in 6-16 mm and >16 mm fractions to be processed separately; separation by particle shape, in the RecGlass equipment specifically designed to eliminate stones; and optical sorting, to eliminate opaque materials. A pilot plant was built and the tests were conducted with the three samples separately. With all samples, it was possible to attain approximately 99% content in glass in the glass products, but the recovery of glass was related with the feed particle size. The finer the feed was, the lower the percentage of glass recovered in the glass product. The results show that each one of the separation processes was needed for product enrichment. The organic matter recovered in the glass product was high, ranging from 0.76% to 1

  19. Virtual pilot plants: What is the goal and what technology development is needed?

    Energy Technology Data Exchange (ETDEWEB)

    Bryden, K.M.; O' Brien, T.J.

    2000-07-01

    Within the coal utilization industry, moving virtual reality from a visualization tool to a design tool has the potential to reduce design time and cost, improve plant design and operation, and reduce the risk associated with new technologies. The goal of developing this technology is to enable an engineering design team based in disparate geographical locations to interact simultaneously with the virtual pilot plant and to see immediately the effect on performance of their design changes. In order to promote this capability, the US Department of Energy has identified virtual demonstrations as one of the key supporting technologies needed for the development of Vision 21 plants. This will require that many computational intensive technologies be enhanced and closely integrated: computer aided design/engineering (CAD/CAE), computational fluid dynamics (CFD), finite element analysis, intelligent process control, systems analysis, information management, and advanced visualization. Virtual pilot plants will create a design environment that will be a low-cost alternative to a physical pilot plant, allowing changes in plant operation and design to be rapidly and inexpensively tested. Following construction, the virtual environment will be used as the front-end of a total information system containing all of the design, construction, operation, research scale, pilot scale, and economic information available on the system. The information will be intuitively accessible by going to the place of interest in the virtual plant and entering the dimension of interest. The goal of the virtual demonstration will be to provide easily accessible information at any level of detail to anyone who needs it from policy maker to operating engineer.

  20. Opportunities for Phytoremediation and Bioindication of Arsenic Contaminated Water Using a Submerged Aquatic Plant:Vallisneria natans (lour.) Hara.

    Science.gov (United States)

    Chen, Guoliang; Liu, Xingmei; Brookes, Philip C; Xu, Jianming

    2015-01-01

    The identification of plants with high arsenic hyperaccumulating efficiency from water is required to ensure the successful application of phytoremediation technology. Five dominant submerged plant species (Vallisneria natans (Lour.) Hara., Potamageton crispus L., Myriophyllum spicatum L., Ceratophyllum demersum L. and Hydrilla verticillata (L.f.) Royle) in China were used to determine their potential to remove As from contaminated water. V. natans had the highest accumulation of As among them. The characteristics of As accumulation, transformation and the effect of phosphate on As accumulation in V. natans were then further studied. The growth of V. natans was not inhibited even when the As concentration reached 2.0 mg L(-1). After 21 d of As treatment, the bioconcentration factor (BCF) reached 1300. The As concentration in the environment and exposure time are major factors controlling the As concentration in V. natans. After being absorbed, As(V) is efficiently reduced to As(III) in plants. The synthesis of non-enzymic antioxidants may play an important role under As stress and increase As detoxication. In addition, As(V) uptake by V. natans was negatively correlated with phosphate (P) uptake when P was sufficiently supplied. As(V) is probably taken up via P transporters in V. natans.

  1. Development of a 1000 kW-class MCFC pilot plant in Japan

    Science.gov (United States)

    Yasue, Hiroo; Kato, Hisashi; Takasu, Kazuhiko

    The development of a molten carbonate fuel cell (MCFC), in Japan, began in 1981, as part of the former Moonlight Program, promoted by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry (AIST/MITI). In 1987, after the basic research, plans to develop a 1000 kW-class MCFC pilot plant began, first, with the development of 100 kW-class stacks and components. Results from the first developments were applied to the next stage of the project, the operating test of a 1000 kW-class pilot plant. The main objective of this pilot plant is to verify the system connected stacks and components. It includes four 250 kW-class stacks, a reformer, two cathode gas recycle blowers, a turbine compressor, a heat recovery steam generator and so on. At present, the building work, component fabrication and installation are complete. Component adjustments have also been carried out. The process and control test, also known as PAC Test, will start next year, 1998. The operation will come to an end in fiscal year 1999. Following the operation test, will be a test on longer lifetime stacks, and the development of a demonstration plant. The possibility of several MW-several 10s MW output, for this future demonstration plant, will be looked into and very seriously investigated.

  2. 无机砷在植物体内的吸收和代谢机制%Absorption and metabolism mechanisms of inorganic arsenic in plants: A review

    Institute of Scientific and Technical Information of China (English)

    刘艳丽; 徐莹; 杜克兵; 涂炳坤

    2012-01-01

    砷污染已成为全球非常突出且急需解决的环境问题,严重威胁人类健康和环境安全.在自然环境和土壤系统中,砷的存在形态相当复杂,但植物砷毒害主要源于As(Ⅴ)和As(Ⅲ)暴露.As(Ⅴ)通过Pi的吸收通道被植物根系吸收,并在还原酶(AR)作用下被快速还原为As(Ⅲ).As(Ⅲ)通过NIP蛋白通道进入植物体内,在砷甲基转移酶(ArsM)的作用下转化为甲基化砷或与谷胱甘肽(GSH)、植物螯合肽(PC)等多肽的巯基螯合封存在根部液泡或转运到地上部分,从而起到砷解毒的作用.同时,植物吸收的一部分砷也可外排到外部介质.本文以农作物尤其是水稻为主线,详述了As(Ⅴ)和As(Ⅲ)吸收、外排及As(Ⅴ)还原、As(Ⅲ)甲基化、螯合作用的最新研究进展,并提出了今后的研究重点.%Arsenic pollution seriously threatens human health and environment safety, being a very prominent environmental issue to be urgently solved in the world. In natural environment and soil systems, arsenic exists in complicated forms, but the plant arsenic poisoning is mainly from As ( Ⅴ) and As( Ⅲ) exposure. As(Ⅴ) can be absorbed by plant roots through Pi channel, and reduced rapidly to As( Ⅲ ) by arsenate reductase. As( Ⅲ ) can be transported into plants through NIP channel , and subsequently either transformed into methylated arsenic by arsenic methyltransferase or chelated with the thiol of GSH and PCs. These arsenic compounds can be sequestrated in root cell vacuoles or transported to plant aerial parts. Meanwhile, a part of absorbed arsenic can be discharged to external media. All of these can help to detoxify the arsenic in plants. This paper reviewed the latest research progress on the arsenic- resistance of crops, especially rice, with the focus on the mechanisms of As( Ⅴ) and As( Ⅲ ) absorption and excretion, As( Ⅴ) reduction, and As( Ⅲ) methylation and chelation. The major topics of future research on arsenic toxicity

  3. Arsenic, Zinc, and Aluminium Removal from Gold Mine Wastewater Effluents and Accumulation by Submerged Aquatic Plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata

    Directory of Open Access Journals (Sweden)

    Ahmad Farid Abu Bakar

    2013-01-01

    Full Text Available The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2% and zinc (93.7% and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8% compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5% and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.

  4. Arsenic, zinc, and aluminium removal from gold mine wastewater effluents and accumulation by submerged aquatic plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata).

    Science.gov (United States)

    Abu Bakar, Ahmad Farid; Yusoff, Ismail; Fatt, Ng Tham; Othman, Faridah; Ashraf, Muhammad Aqeel

    2013-01-01

    The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water.

  5. A pilot study of low-moderate drinking water arsenic contamination and chronic diseases among reproductive age women in Timiş County, Romania.

    Science.gov (United States)

    Butts, Celeste D; Bloom, Michael S; Neamtiu, Iulia A; Surdu, Simona; Pop, Cristian; Anastasiu, Doru; Fitzgerald, Edward F; Gurzau, Eugen S

    2015-11-01

    We conducted a pilot study of associations between drinking water contaminated by inorganic arsenic (iAs), mostly <10 μg/L, and self-reported chronic diseases in 297 pregnant women. Adjusted for confounding variables, we identified a positive association between iAs and heart disease (OR = 1.63, 95%CI 0.81-3.04, p = 0.094), which was stronger for women living at their current residence ≥ 10 years (OR = 2.47, 95%CI 0.87-10.43, p = 0.058). Confounder-adjusted associations were also suggested for iAs with kidney disease (OR = 1.32, 95%CI 0.77-2.21, p = 0.265) and with high blood pressure (OR = 1.36, 95%CI 0.68-2.39, p = 0.300). A post hoc power analysis indicated the need for a larger study with more statistical power. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Arsenic in shrimp from Kuwait

    Energy Technology Data Exchange (ETDEWEB)

    Bou-Olayan, A.H. [Kuwait Univ. (Kuwait); Al-Yakoob, S.; Al-Hossaini, M. [Kuwait Institute for Scientific Research (Kuwait)

    1995-04-01

    Arsenic is ubiquitous in the environment and can accumulate in food via contaminated soil, water or air. It enters the food chain through dry and wet atmospheric deposition. Combustion of oil and coal, use of arsenical fertilizers and pesticides and smelting of ores contributes significantly to the natural background of arsenic in soils and sediments. The metal can be transferred from soil to man through plants. In spite of variation in acute, subacute, and chronic toxic effects to plants and animals, evidence of nutritional essentiality of arsenic for rats, goats, and guinea pigs has been suggested, but has not been confirmed for humans. Adverse toxic effects of arsenic as well as its widespread distribution in the environment raises concern about levels of arsenic in man`s diet. Higher levels of arsenic in the diet can result in a higher accumulation rate. Arsenic levels in marine organisms are influenced by species differences, size of organism, and human activities. Bottom dwellers such as shrimp, crab, and lobster accumulate more arsenic than fish due to their frequent contact with bottom sediments. Shrimp constitute approximately 30% of mean total seafood consumption in Kuwait. This study was designed to determine the accumulation of arsenic in the commercially important jinga shrimp (Metapenaeus affinis) and grooved tiger prawn (Penaeus semisulcatus). 13 refs., 3 figs., 1 tab.

  7. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  8. Fractionation and speciation of arsenic in three tea gardens soil profiles and distribution of As in different parts of tea plant (Camellia sinensis L.).

    Science.gov (United States)

    Karak, Tanmoy; Abollino, Ornella; Bhattacharyya, Pradip; Das, Kishore K; Paul, Ranjit K

    2011-10-01

    The distribution pattern and fractionation of arsenic (As) in three soil profiles from tea (Camellia sinensis L.) gardens located in Karbi-Anglong (KA), Cachar (CA) and Karimganj (KG) districts in the state of Assam, India, were investigated depth-wise (0-10, 10-30, 30-60 and 60-100 cm). DTPA-extractable As was primarily restricted to surface horizons. Arsenic speciation study showed the presence of higher As(V) concentrations in the upper horizon and its gradual decrease with the increase in soil depths, following a decrease of Eh. As fractionation by sequential extraction in all the soil profiles showed that arsenic concentrations in the three most labile fractions (i.e., water-soluble, exchangeable and carbonate-bound fractions) were generally low. Most arsenic in soils was nominally associated with the organic and Fe-Mn oxide fractions, being extractable in oxidizing or reducing conditions. DTPA-extractable As (assumed to represent plant-available As) was found to be strongly correlated to the labile pool of As (i.e. the sum of the first three fractions). The statistical comparison of means (two-sample t-test) showed the presence of significant differences between the concentrations of As(III) and As(V) for different soil locations, depths and fractions. The risk assessment code (RAC) was found to be below the pollution level for all soils. The measurement of arsenic uptake by different parts of tea plants corroborated the hypothesis that roots act as a buffer and hold back contamination from the aerial parts.

  9. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    Science.gov (United States)

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years.

  10. Impact of irrigation with high arsenic burdened groundwater on the soil-plant system: Results from a case study in the Inner Mongolia, China.

    Science.gov (United States)

    Neidhardt, H; Norra, S; Tang, X; Guo, H; Stüben, D

    2012-04-01

    Consequences of irrigation by arsenic (As) enriched groundwater were assigned in the Hetao Plain, part of Chinas' Inner Mongolia Autonomous Region. Examinations followed the As flow path from groundwater to soil and finally plants. A sunflower and a maize field were systematically sampled, each irrigated since three years with saline well water, characterized by elevated As concentrations (154 and 238μgL(-1)). The annual As input per m(2) was estimated as 120 and 186mg, respectively. Compared to the geogenic background, As concentrations increased toward the surface with observed enrichments in topsoil being relatively moderate (up to 21.1mgkg(-1)). Arsenic concentrations in plant parts decreased from roots toward leaves, stems and seeds. It is shown that the bioavailability of As is influenced by a complex interplay of partly counteracting processes. To prevent As enrichment and soil salinization, local farmers were recommended to switch to a less problematic water source.

  11. Distillation of granulated scrap tires in a pilot plant.

    Science.gov (United States)

    López, Félix A; Centeno, Teresa A; Alguacil, Francisco José; Lobato, Belén

    2011-06-15

    This paper reports the pyrolytic treatment of granulated scrap tires (GST) in a pilot distillation unit at moderate temperature (550°C) and atmospheric pressure, to produce oil, char and gas products. Tire-derived oil is a complex mixture of organic C(5)-C(24) compounds, including a very large proportion of aromatic compounds. This oil has a high gross calorific value (∼ 43 MJ kg(-1)) and N and S contents of 0.4% and 0.6%, respectively, falling within the specifications of certain heating fuels. The distillation gas is composed of hydrocarbons; methane and n-butane are the most abundant, investing the distillation gas with a very high gross calorific value (∼ 68 MJ Nm(-3)). This gas is transformed into electric power by a co-generation turbine. The distillation char is mostly made of carbon but with significant inorganic impurities (∼ 12 wt%). The quality of the solid residue of the process is comparable to that of some commercial chars. The quantity of residual solids, and the qualities of the gas, liquid and solid fractions, are similar to those obtained by conventional pyrolytic treatments of waste tires. However, the simplicity of the proposed technology and its low investment costs make it a very attractive alternative. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.

    Science.gov (United States)

    Singh, N K; Raghubanshi, A S; Upadhyay, A K; Rai, U N

    2016-08-01

    The present study was conducted to quantify the arsenic (As) and other heavy metal concentrations in the plants and algae growing naturally in As contaminated blocks of North-24-Pargana and Nandia district, West Bengal, India to assess their bioaccumulation potential. The plant species included five macrophytes and five algae were collected from the nine selected sites for estimation of As and other heavy metals accumulated therein by using Inductively Coupled Plasma Mass Spectrophotometer (ICP-MS). Results revealed that maximum As concentration (117mgkg(-1)) was recorded in the agricultural soil at the Barasat followed by Beliaghat (111mgkg(-1)) sites of North-24-Pargana. Similarly, concentration of selenium (Si, 249mgkg(-1)), lead (Pb, 79.4mgkg(-1)), chromium (Cr, 138mgkg(-1)) was also found maximum in the soil at Barasat and cadmium (Cd, 163mgkg(-1)) nickel (Ni, 36.5mgkg(-1)) at Vijaynagar site. Among the macrophytes, Eichhornia crassipes found more dominating species in As contaminated area and accumulate As (597mgkg(-1)) in the shoot at kanchrapara site. The Lemna minor found to accumulate maximum As (735mgkg(-1)) in the leaves at Sonadanga and Pistia stratiotes accumulated minimum As (24.5mgkg(-1)) in the fronds from Ranaghat site. In case of diatoms, maximum As (760mgkg(-1)) was accumulated at Kanchrapara site followed by Hydrodictiyon reticulatum (403mgkg(-1)) at the Ranaghat site. High concentration of As and other heavy metal in soil indicates long term effects of irrigation with contaminated ground water, however, high concentration of heavy metals in naturally growing plants and algae revealed their mobilization through leaching and possible food chain contamination. Therefore, efficient heavy metal accumulator macrophytes Eichhornia crassipes, Lemna minor, Spirodela polyrhiza may be exploited in removing metals from contaminated water by developing a plant based treatment system. However, As accumulator algal species may be used as a bioresource for

  13. Socioeconomic study for the proposed waste isolation pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This document presents the historical and existing socioeconomic conditions in the vicinity of the proposed plant, projected changes in those conditions with and without the plant, and an outline of the various techniques used to make these projections. The analysis predicts impacts on the general economy in the area near the plant and on employment, personal income, population, social structure, the private economic sector, housing, land use, community services and facilities, and local government finances. Among the most important results are the following predictions: The economy of the area will derive $165 million directly and indirectly during the first 7.5 years of the project. After that, it will derive about $21 million directly and indirectly during each year of full operation. About 2100 jobs will be created directly and indirectly at the peak of the construction and about 950 jobs during the full operation. A net in-migration will occur: about 2250 people at the peak of the construction and about 1000 people during operation. A housing shortage may begin in Carlsbad in 1981 or 1982 and last for about 2 years.

  14. Results of the DIOS pilot plant test and summary of the joint research; DIOS pilot plant no shiken sogyo kekka to kenkyu seika no matome

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T. [Center for Coal Utilization, Japan, Tokyo (Japan); Kawaoka, K. [The Japan Iron and Steel Federation, Tokyo (Japan)

    1996-09-01

    A joint research had been carried out with a subsidy from the Agency of Natural Resources and Energy since fiscal 1988 to fiscal 1995 on the direct iron ore smelting reduction process (DIOS process). The process utilizes coal directly as a process to use the strong points and supplement the weak points of the blast furnace process. During the period, a pilot plant had been operated since 1993. Upon having completed the feasibility study, this paper reports the result thereof. The main facilities consist of a smelting and reducing furnace of iron bath type, a spare reducing furnace of fluidized bed type, and a preheating furnace. The former two furnaces constitute a unit structure with the two furnaces connected vertically. The pilot plant achieved a three-day continuous operation producing 500 tons of iron every day. The production rate reached 21 tons an hour at an upward oxygen blowing velocity of about 13,000 Nm {sup 3} per hour. The coal unit requirement showed a result of <1000 kg/t for high VM coal and <900 kg/t for low VM coal. These results verified a possibility that this process can supplement or replace the blast furnace process even for a production scale of 9000 tons a day. 7 refs., 15 figs., 3 tabs.

  15. Portable pilot plant for evaluating marine biofouling growth and control in heat exchangers-condensers.

    Science.gov (United States)

    Casanueva, J F; Sánchez, J; García-Morales, J L; Casanueva-Robles, T; López, J A; Portela, J R; Nebot, E; Sales, D

    2003-01-01

    Biofouling frequently involves a serious impediment to achieving optimum operating conditions in heat exchangers-condensers. The economic coat and energy losses associated with this phenomenon are significant and the environmental impact of biocides must satisfy stringent regulations. A portable pilot plant has been designed in order to carry out in-situ experimental study as biofilm is formed under thermal and hydrodynamically controlled conditions. The pilot plant has an automatic monitoring, control and data acquisition system, which automatically processes data from indirect measure of fouling in terms of increased fluid frictional and heat transfer resistances. A particular method is used and proposed for direct measuring and biofilm characterization. Once we know the actual film thickness, we can calculate the effective thermal conductivity of the layer by using the appropriate heat transfer equations.

  16. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs.

  17. Fiscal 1997 report of the development of high efficiency waste power generation technology. No.2 volume. Pilot plant verification test; Kokoritsu haikibutsu hatsuden gijutsu kaihatsu (pilot plant jissho shiken). 1997 nendo hokokusho (daini bunsatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As to a high efficiency waste power generation system using general waste as fuel, the details of the following were described: design/construction management and operational study of pilot plant, design/manufacture/construction of pilot plant, and study of an optimal total system. Concerning the construction management and operational study, the paper described the application for governmental/official inspection procedures and taking inspection, process management of pilot plant, site patrol, safety management, management of trial run of pilot plant, drawing-up of a verification test plan and test run, etc. Relating to the design/manufacture/construction of pilot plant, an outline of the pilot plant was described. The paper also stated points to be considered in design of furnace structure and boiler structure, points to be considered of the verification test, etc. As to the study of an optimal total system, the following were described: survey of waste gasification/slagging power generation technology, basic study on RDF production process, survey of trends of waste power generation technology in the U.S., etc. 52 refs., 149 figs., 121 tabs.

  18. Role of ODL on sharing pilot plant resources among European Food Engineering Universities

    OpenAIRE

    Vieira, M. M. C.

    2006-01-01

    The new means of communication in the last decade opened new learning opportunities that include the so called distance learning or opened distance learning. These are being more and more used by educational institutions at all levels. The EU Thematic Network ISEKI_Food (Integrating Safety and Environmental Knowledge Into Food Studies towards European Sustainable Development), through working group 5, in charge of Practical/Laboratorial teaching at Pilot Plant scale, developed some work in or...

  19. Distillation Parameters for Pilot Plant Production of Laurus nobilis Essential oil

    OpenAIRE

    2012-01-01

    Essential oils have increasing importance in flavour and fragrance industries. They are obtained by distillation techniques. In order to produce an oil with market potential its optimum production parameters have to be well known prior to its commercial production. Determination of the steam distillation parameters of commercially available Laurel leaves oil in pilot plant scale is described. The effect of steam rate and processing time play a major role in distillation of essential oils. Dis...

  20. Synthesis in pilot plant scale and physical properties of sulfonated polystyrene

    OpenAIRE

    Martins, Cristiane R.; Ruggeri,Giacommo; Paoli,Marco-A. De

    2003-01-01

    The homogenous sulfonation of polystyrene was developed in a pilot plant scale producing polymers with different sulfonation degrees (18 to 22 mole % of sulfonated styrene units). The reaction yield depends chiefly on the concentration ratio of acetyl sulfate and polystyrene. The morphological and thermal properties of the sulfonated polystyrene obtained by homogeneous sulfonation were studied by means of scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Th...

  1. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors.

    Science.gov (United States)

    Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E

    2016-09-01

    The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.

  2. Core analyses for selected samples from the Culebra Dolomite at the Waste Isolation Pilot Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, V.A.; Saulnier, G.J. Jr. (INTERA, Inc., Austin, TX (USA))

    1990-11-01

    Two groups of core samples from the Culebra Dolomite Member of the Rustler Formation at and near the Waste Isolation Pilot Plant were analyzed to provide estimates of hydrologic parameters for use in flow-and-transport modeling. Whole-core and core-plug samples were analyzed by helium porosimetry, resaturation and porosimetry, mercury-intrusion porosimetry, electrical-resistivity techniques, and gas-permeability methods. 33 refs., 25 figs., 10 tabs.

  3. Core analyses for selected samples from the Culebra Dolomite at the Waste Isolation Pilot Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, V.A.; Saulnier, G.J. Jr. (INTERA, Inc., Austin, TX (USA))

    1990-11-01

    Two groups of core samples from the Culebra Dolomite Member of the Rustler Formation at and near the Waste Isolation Pilot Plant were analyzed to provide estimates of hydrologic parameters for use in flow-and-transport modeling. Whole-core and core-plug samples were analyzed by helium porosimetry, resaturation and porosimetry, mercury-intrusion porosimetry, electrical-resistivity techniques, and gas-permeability methods. 33 refs., 25 figs., 10 tabs.

  4. Stability of arsenic peptides in plant extracts: off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation.

    Science.gov (United States)

    Bluemlein, Katharina; Raab, Andrea; Feldmann, Jörg

    2009-01-01

    The instability of metal and metalloid complexes during analytical processes has always been an issue of an uncertainty regarding their speciation in plant extracts. Two different speciation protocols were compared regarding the analysis of arsenic phytochelatin (As(III)PC) complexes in fresh plant material. As the final step for separation/detection both methods used RP-HPLC simultaneously coupled to ICP-MS and ES-MS. However, one method was the often used off-line approach using two-dimensional separation, i.e. a pre-cleaning step using size-exclusion chromatography with subsequent fraction collection and freeze-drying prior to the analysis using RP-HPLC-ICP-MS and/or ES-MS. This approach revealed that less than 2% of the total arsenic was bound to peptides such as phytochelatins in the root extract of an arsenate exposed Thunbergia alata, whereas the direct on-line method showed that 83% of arsenic was bound to peptides, mainly as As(III)PC(3) and (GS)As(III)PC(2). Key analytical factors were identified which destabilise the As(III)PCs. The low pH of the mobile phase (0.1% formic acid) using RP-HPLC-ICP-MS/ES-MS stabilises the arsenic peptide complexes in the plant extract as well as the free peptide concentration, as shown by the kinetic disintegration study of the model compound As(III)(GS)(3) at pH 2.2 and 3.8. But only short half-lives of only a few hours were determined for the arsenic glutathione complex. Although As(III)PC(3) showed a ten times higher half-life (23 h) in a plant extract, the pre-cleaning step with subsequent fractionation in a mobile phase of pH 5.6 contributes to the destabilisation of the arsenic peptides in the off-line method. Furthermore, it was found that during a freeze-drying process more than 90% of an As(III)PC(3) complex and smaller free peptides such as PC(2) and PC(3) can be lost. Although the two-dimensional off-line method has been used successfully for other metal complexes, it is concluded here that the fractionation and

  5. 1974 conceptual design description of a bedded salt pilot plant in southeast New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-06-01

    The policy of the United States Atomic Energy Commission is to take custody of all commercial high-level radioactive wastes and maintain control of them in perpetuity. This policy (Title 10, Code of Federal Regulations, Part 50, Appendix F) requires that the high-level wastes from nuclear fuels reprocessing plants be solidified within five years after reprocessing and then shipped to a federal repository within ten years after reprocessing. Ultimate disposal sites and/or methods have not yet been selected and are not expected to be ready when waste deliveries begin about 1983. Therefore, the AEC plans to build an interim storage facility, called Retrievable Surface Storage Facility (RSSF), to store and isolate the waste from man and his environment until the suitability of the permanent repository is demonstrated and public acceptance has been established. Meantime, the AEC is proceeding with the study and development of an ultimate disposal method. Bedded salt is being considered for ultimate waste disposal, and work is in progress to develop a Bedded Salt Pilot Plant to demonstrate its acceptability. The pilot plant will permit in situ verification of laboratory work on the interaction of heat and radioactivity of the waste with the salt and surroundings. One concept of such a pilot facility is described.

  6. 10-MWe pilot-plant-receiver-panel test-requirements document: Solar Thermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-10

    Plans are presented for insolation testing of a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally the design planned for the 10 MWe pilot plant. Testing includes operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. A brief description of the pilot plant receiver subsystem is presented, followed by a detailed description of the receiver assembly to be tested at the Solar Thermal Test Facility. Major subassemblies are described, including the receiver panel, flow control, electrical control and instrumentation, and the structural assembly. Requirements of the Solar Thermal Test Facility for the tests are given. System safety measures are described. The tests, operating conditions, and expected results are presented. Quality assurance, task responsibilities, and test documentation are also discussed. (LEW)

  7. [Yield of starch extraction from plantain (Musa paradisiaca). Pilot plant study].

    Science.gov (United States)

    Flores-Gorosquera, Emigdia; García-Suárez, Francisco J; Flores-Huicochea, Emmanuel; Núñez-Santiago, María C; González-Soto, Rosalia A; Bello-Pérez, Luis A

    2004-01-01

    In México, the banana (Musa paradisiaca) is cooked (boiling or deep frying) before being eaten, but the consumption is not very popular and a big quantity of the product is lost after harvesting. The unripe plantain has a high level of starch and due to this the use of banana can be diversified as raw material for starch isolation. The objective of this work was to study the starch yield at pilot plant scale. Experiments at laboratory scale were carried out using the pulp with citric acid to 0,3 % (antioxidant), in order to evaluate the different unitary operations of the process. The starch yield, based on starch presence in the pulp that can be isolated, were between 76 and 86 %, and the values at pilot plant scale were between 63 and 71 %, in different lots of banana fruit. Starch yield values were similar among the diverse lots, showing that the process is reproducible. The lower values of starch recovery at pilot plant scale are due to the loss during sieving operations; however, the amount of starch recovery is good.

  8. Tung FDG Test Facility. Phase 2, Pilot plant demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Tung FGD Process is a regenerative process which extracts SO{sub 2} from a scrubbing liquor into an organic medium using mixer-settlers followed by steam-stripping the SO{sub 2} off from the organic medium. For the process to operate satisfactorily, (1) the organic must be stable, (2) phase separation must be relatively fast, (3) crud (i.e. solids in-between two phases) must not form and (4) SO{sub 2} must be able to be stripped off from the organic medium readily. The demonstration confirmed that the first three conditions can be met satisfactorily. Much lower stripping efficiency was attained in the pilot plant demonstration than what was previously attained in a bench-scale demonstration. Engineering analysis showed that the pilot plant stripping column was scaled up from the bench-scale column incorrectly. A new scale-up criterion for stripping a relatively viscous liquid medium is proposed based upon pilot plant data.

  9. The MELiSSA Pilot Plant Facility: Objectives and Integration Strategy

    Science.gov (United States)

    Gødia, F.; Pérez, J.; Albiol, J.; Lasseur, C.; Lamaze, B.; Ordónez, L.

    MELiSSA Micro-Ecological Life Support System Alternative is a closed artificial ecosystem intended as a tool for the development of a bio-regenerative life support system for long-term manned missions i e planetary base For its study and implementation the MELiSSA loop has been divided in five interconnected compartments organized in three different loops solid liquid and gas This compartments are microbial bioreactors and higher plant chambers The MELiSSA Pilot Plant facility an ESA External Laboratory located at Universitat Aut o noma of Barcelona has been conceived to achieve a preliminary terrestrial demonstration of the MELiSSA concept at pilot scale using animals as a model to substitute the crew The experience gained in the operation of such a facility will be highly relevant for planning future life support systems in Space In order to fulfill this challenging objective a number of steps have to be covered from the individual design of each compartment to the continuous operation of the complete loop with all compartments interconnected operating in sterile conditions in controlled conditions and in a biosafe manner A new site for the MELISSA Pilot Plant facility has been recently completed to host the final integration of the complete loop The contribution will cover the general design aspects of the loop including the current state of the different compartments and their interconnection with solid liquid and gas loops and the future plans of how these different elements will be integrated to achieve the final

  10. Anthocyanin Characterization of Pilot Plant Water Extracts of Delonix regia Flowers

    Directory of Open Access Journals (Sweden)

    Emile M. Gaydou

    2008-06-01

    Full Text Available Following the development of new applications of pilot plant scale extraction and formulation processes for natural active bioproducts obtained from various underutilized tropical plants and herbs, we have manufactured water-extracts from Delonix regia flowers, grown in Ivory Coast. These extracts, which contain polyphenols, are traditionally home made and used as healthy bioproducts. They are reddish-coloured due to the presence of anthocyanins. The three major anthocyanins in these extracts have been characterized. The molecular structures were confirmed by LC-SM analysis. Amongst them, two are described for the first time in Delonix regia.

  11. Solar Pilot Plant, Phase I. Preliminary design report. Volume V. Thermal storage subsystem. CDRL item 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Design, specifications, and diagrams for the thermal storage subsystem for the 10-MW pilot tower focus power plant are presented in detail. The Honeywell thermal storage subsystem design features a sensible heat storage arrangement using proven equipment and materials. The subsystem consists of a main storage containing oil and rock, two buried superheater tanks containing inorganic salts (Hitec), and the necessary piping, instrumentation, controls, and safety devices. The subsystem can provide 7 MW(e) for three hours after twenty hours of hold. It can be charged in approximately four hours. Storage for the commercial-scale plant consists of the same elements appropriately scaled up. Performance analysis and tradeoff studies are included.

  12. Experimental Investigation and Modelling of a Wet Flue Gas Desulphurisation Pilot Plant

    DEFF Research Database (Denmark)

    Kiil, Søren; Michelsen, Michael Locht; Dam-Johansen, Kim

    1998-01-01

    A detailed model for a wet flue gas desulphurisation (FGD) pilot plant, based on the packed tower concept, has been developed. All important rate determining steps, absorption of SO2, oxidation of HSO3-, dissolution of limestone, and crystallisation of gypsum were included. Population balance...... limestone in the gypsum. Simulations were found to match experimental data for the two limestone types investigated. A parameter study of the model was conducted with the purpose of validating assumptions and extracting information on wet FGD systems. The modelling tools developed may be applicable to other...... wet FGD plants....

  13. Examination of arsenic(III) and (V) uptake by the desert plant species mesquite (Prosopis spp.) using X-ray absorption spectroscopy.

    Science.gov (United States)

    Aldrich, M V; Peralta-Videa, J R; Parsons, J G; Gardea-Torresdey, J L

    2007-07-01

    This study describes the effects of Arsenic(III) and (V) on the growth and their uptake by the desert plant mesquite (Prosopis spp.). Seedlings were sown in agar-based medium containing a modified Hoagland's nutrient solution. After 1 week, the seedlings were transplanted to arsenic (As) treated agar media that contained 5 mgL(-1) of As either As(III) (As(2)O(3)) or As(V) (As(2)O(5)). The plants were harvested after 14 days of growth and sectioned into roots, stems, and leaves. After digestion, As concentrations in the roots, stems, and leaves were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Our results showed that the As concentrations from As(V) were significantly higher than the As concentrations from As(III) in all portions of the plant. Plants exposed to As(V) concentrated (mg As kg(-1) d wt) about 770+/-191, 326+/-94, and 119+/-18 in roots, stems, and leaves, respectively. X-ray absorption spectroscopy (XAS) showed that As(V) was reduced to As(III) inside the mesquite plant. In addition, greater than 90% of the As(III) found in the mesquite plants was bound to sulfur ligands in the roots, stems and leaves.

  14. Investigation of Parameters Affecting Gypsum Dewatering Properties in a Wet Flue Gas Desulphurization Pilot Plant

    DEFF Research Database (Denmark)

    Hansen, Brian Brun; Kiil, Søren

    2012-01-01

    Wet flue gas desulphurization (FGD) plants with forced oxidation, installed at coal and oil fired power plants for removal of SO2(g), must produce gypsum of high quality. However, quality issues such as an excessive moisture content, due to poor gypsum dewatering properties, may occur from time...... to time. In this work, the particle size distribution, morphology, and filtration rate of wet FGD gypsum formed in a pilot-scale experimental setup, operated in forced oxidation mode, have been studied. The influence of holding tank residence time (10–408 h), solids content (30–169 g/L), and the presence...... of impurities (0.002 M Al2F6; 50 g quartz/L; 0.02 M Al3+, and 0.040 M Mg2+) were investigated. In addition, slurry from a full-scale wet FGD plant, experiencing formation of flat shaped crystals and poor gypsum dewatering properties, was transferred to the pilot plant to test if the plant would now start...

  15. Arsenic ototoxicity

    Institute of Scientific and Technical Information of China (English)

    Gulin Gokçen Kesici

    2016-01-01

    High levels of arsenic are found in many parts of the world and more than 100 million people may have been exposed to it. There is growing evidence to indicate that arsenic has a deleterious effect on the auditory system. This paper provides the general information of arsenic and its ototoxic effects.

  16. Impact of physics and technology innovations on compact tokamak fusion pilot plants

    Science.gov (United States)

    Menard, Jonathan

    2016-10-01

    For magnetic fusion to be economically attractive and have near-term impact on the world energy scene it is important to focus on key physics and technology innovations that could enable net electricity production at reduced size and cost. The tokamak is presently closest to achieving the fusion conditions necessary for net electricity at acceptable device size, although sustaining high-performance scenarios free of disruptions remains a significant challenge for the tokamak approach. Previous pilot plant studies have shown that electricity gain is proportional to the product of the fusion gain, blanket thermal conversion efficiency, and auxiliary heating wall-plug efficiency. In this work, the impact of several innovations is assessed with respect to maximizing fusion gain. At fixed bootstrap current fraction, fusion gain varies approximately as the square of the confinement multiplier, normalized beta, and major radius, and varies as the toroidal field and elongation both to the third power. For example, REBCO high-temperature superconductors (HTS) offer the potential to operate at much higher toroidal field than present fusion magnets, but HTS cables are also beginning to access winding pack current densities up to an order of magnitude higher than present technology, and smaller HTS TF magnet sizes make low-aspect-ratio HTS tokamaks potentially attractive by leveraging naturally higher normalized beta and elongation. Further, advances in kinetic stabilization and feedback control of resistive wall modes could also enable significant increases in normalized beta and fusion gain. Significant reductions in pilot plant size will also likely require increased plasma energy confinement, and control of turbulence and/or low edge recycling (for example using lithium walls) would have major impact on fusion gain. Reduced device size could also exacerbate divertor heat loads, and the impact of novel divertor solutions on pilot plant configurations is addressed. For

  17. Two years of operational experiences with Vattenfall's oxyfuel pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Altmann, Hubertus [Vattenfall Europe Mining and Generation, Cottbus (Germany); Porsche, Thomas [Vattenfall Europe Generation AG, Cottbus (Germany)

    2010-07-01

    Directly linked to Vattenfall's ambition to be one of the leading European energy companies the strategic target is set, to reduce the specific CO{sub 2} emission caused by the production of electricity and heat by 50 per cent until 2030 and to produce heat and electricity climate neutral by 2050. These reduction targets stand in line with the plans of the European Union and the German government and go even beyond them. First results from the operation of the Oxyfuel pilot plant are available now. These real and comprehensible results are now the foundation for further planning and building activities and they guarantee a successful future development of CCS power plant technology. From today's point of view, technical obstacles which are still in the way of CCS can be overcome. It can be stated by now that Oxyfuel works in pilot scale, all emission limits are kept and necessary CO{sub 2} purities are achieved. The integration of plant parts from chemical engineering (ASU, CO{sub 2}-plant) were done successfully. The transfer of knowledge from pilot to demonstration plant is organised. There is a need of research and development to further increase efficiency and availability. Financial funding is necessary for the demo project and acceptance for CCS und CO{sub 2}-storage needs to be improved in public and politics. Nevertheless, the question whether CCS technology will be successful or not does not only depend on its profitability but is also a question of acceptance. We do not only have to illustrate the importance of coal and lignite for a reliable and affordable power supply to the people in our country and in entire Europe. We also have to provide answers to their simple questions regarding the safety of transport systems and the leak-proof of CO{sub 2} storage areas. These are the aspects we have to focus on and where we have to supply the right arguments. (orig.)

  18. Pilot plant testing of IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Rehmat, A.; Mensinger, M.C. [Institute of Gas Technology, Chicago, IL (United States); Richardson, T.L. [Environmental Protection Agency, Cincinnati, OH (United States)

    1993-12-31

    The Institute of Gas Technology (IGT) is conducting a multi-year experimental program to develop and test, through pilot-scale operation, IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor (AGGCOM). The AGGCOM process is based on combining the fluidized-bed agglomeration and gasification technology with the cyclonic combustion technology, both of which have been developed at IGT over many years. AGGCOM is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration), including gasification of high-energy-content wastes. The ACCCOM combustor can easily and efficiently destroy solid, liquid, and gaseous organic wastes, while isolating solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in ordinary landfills. Fines elutriated from the first stage are captured by a high-efficiency cyclone and returned to the fluidized bed for ultimate incorporation into the agglomerates. Intense mixing in the second-stage cyclonic combustor ensures high destruction and removal efficiencies (DRE) for organic compounds that may be present in the feed material. This paper presents an overview of the experimental development of the AGGCOM process and progress made to date in designing, constructing, and operating the 6-ton/day AGGCOM pilot plant. Results of the bench-scale tests conducted to determine the operating conditions necessary to agglomerate a soil were presented at the 1991 Incineration Conference. On-site construction of the AGGCOM pilot plant was initiated in August 1992 and completed at the end of March 1993, with shakedown testing following immediately thereafter. The initial tests in the AGGCOM pilot plant will focus on the integrated operation of both stages of the combustor and will be conducted with ``clean`` topsoil.

  19. Modeling of the adsorptive removal of arsenic(III) using plant biomass: a bioremedial approach

    Science.gov (United States)

    Roy, Palas; Dey, Uttiya; Chattoraj, Soumya; Mukhopadhyay, Debasis; Mondal, Naba Kumar

    2017-06-01

    In the present work, the possibility of using a non-conventional finely ground (250 μm) Azadirachta indica (neem) bark powder [AiBP] has been tested as a low-cost biosorbent for the removal of arsenic(III) from water. The removal of As(III) was studied by performing a series of biosorption experiments (batch and column). The biosorption behavior of As(III) for batch and column operations were examined in the concentration ranges of 50-500 µg L-1 and 500.0-2000.0 µg L-1, respectively. Under optimized batch conditions, the AiBP could remove up to 89.96 % of As(III) in water system. The artificial neural network (ANN) model was developed from batch experimental data sets which provided reasonable predictive performance ( R 2 = 0.961; 0.954) of As(III) biosorption. In batch operation, the initial As(III) concentration had the most significant impact on the biosorption process. For column operation, central composite design (CCD) was applied to investigate the influence on the breakthrough time for optimization of As(III) biosorption process and evaluation of interacting effects of different operating variables. The optimized result of CCD revealed that the AiBP was an effective and economically feasible biosorbent with maximum breakthrough time of 653.9 min, when the independent variables were retained at 2.0 g AiBP dose, 2000.0 µg L-1 initial As(III) concentrations, and 3.0 mL min-1 flow rate, at maximum desirability value of 0.969.

  20. 植物砷吸收与代谢的研究进展%A BRIEF REVIEW OF ARSENIC UPTAKE AND METABOLISM IN PLANTS

    Institute of Scientific and Technical Information of China (English)

    刘文菊; 赵方杰

    2011-01-01

    Arsenic is widely distributed in the environment; it is a nonessential element to plants. Excessive accumulation of arsenic can cause phytotoxieity and pose a potential health risk to humans through consumption of high-As food crops. Arsenate is taken up by plant roots via phosphate transporters, and arsenite and undissociated methylated As species (MMA and DMA) through the nodulin 26-like intrinsic protein (NIP) aquaporin channels and by a silicon efflux carrier. Arsenate is readily reduced to arsenite in planta, which is complexed with thiol-rich peptides such as phytochelatins (PCs) or effluxed to the external medium as arsenite. Arsenic is detoxified by complexation of araenite with PCs and subsequent storage in the vacuoles.Whether plants can methylate inorganic arsenic remains to be confirmed. Recent progress in the understanding of the mechanisms of arsenic uptake and metabolism in plants is reviewed in this article.%砷(As)作为一种植物非必需的类金属元素广泛存在于自然界中,砷过量摄人不仅会对植物生长产生毒害作用,而且在植物的可食部位累积并通过食物链对人体健康构成威胁.生长介质中的砷酸盐(五价砷)一般是通过磷酸盐转运蛋白被植物吸收的,而亚砷酸(三价砷)和没有解离的甲基化砷则主要是通过质膜上的水通道蛋白被植物吸收的.在植物体内五价砷很容易被还原为三价砷,三价砷和带巯基的植物络合素(PCs)结合形成络合物储存在液泡中,从而使植物达到解毒的目的.植物能否将无机砷甲基化仍待证实.本文综述了近年来植物对砷的吸收及其在植物体内存在行为的相关研究.

  1. Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water.

    Science.gov (United States)

    Caporale, Antonio G; Sommella, Alessia; Lorito, Matteo; Lombardi, Nadia; Azam, Shah M G G; Pigna, Massimo; Ruocco, Michelina

    2014-09-15

    The influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.) irrigated with As-contaminated water, and their effect on the uptake and accumulation of the contaminant in the plant roots and leaves, were studied. Accumulation of this non-essential element occurred mainly into the root system and reduced both biomass development and net photosynthesis rate (while altering the plant P status). Plant growth-promoting fungi (PGPF) of both Trichoderma species alleviated, at least in part, the phytotoxicity of As, essentially by decreasing its accumulation in the tissues and enhancing plant growth, P status and net photosynthesis rate. Our results indicate that inoculation of lettuce with selected Trichoderma strains may be helpful, beside the classical biocontrol application, in alleviating abiotic stresses such as that caused by irrigation with As-contaminated water, and in reducing the concentration of this metalloid in the edible part of the plant.

  2. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng.

    Science.gov (United States)

    Yan, X L; Lin, L Y; Liao, X Y; Zhang, W B; Wen, Y

    2013-10-01

    Panax notoginseng (Burk.) F.H. Chen, a rare traditional Chinese medicinal herb, is a widely used phytomedicine used all over the world. In recent years, the arsenic contamination of the herb and its relative products becomes a serious problem due to elevated soil As concentration. This study aimed to evaluate the effects of different types and dosages of amendments on As stabilization in soil and its uptake by P. notoginseng. Results showed that comparing to control treatment, the As concentrations of P. notoginseng declined by 49-63%, 43-61% and 52-66% in 0.25% zero-valent iron (Fe(0)), 0.5% bauxite residue, and 1% zeolite treatment, respectively; whereas the biomasses were elevated by 62-116%, 45-152% and 114-265%, respectively. The As(III) proportions of P. notoginseng increased by 8%, 9%, and 8%, and the transfer factors of As from root to shoot increased by 37%, 42% and 84% in the optimal treatments of Fe(0), bauxite residue, and zeolite. For soil As, all the three amendments could transform the non-specifically adsorbed As fraction to hydrous oxides Fe/Al fractions (by Fe(0) and red mud) or specifically adsorbed As fraction (by zeolite), therefore reduced the bioavailability of soil As. With a comprehensive consideration of stabilization efficiency, plant growth, environmental influence, and cost, Fe(0) appeared to be the best amendment, and zeolite could also be a good choice. In conclusion, this study was of significance in developing As contamination control in P. notoginseng planting areas, and even other areas for medicinal herb growing.

  3. The Effects of Arbuscular-Mycorrhizal Fungi and Phosphorous on Arsenic Uptake by Sunflower Plant in Soils Spiked with Arsenite and Arsenate

    Directory of Open Access Journals (Sweden)

    Saeed Bagherifam

    2017-01-01

    Full Text Available Introduction: Arsenic is a highly toxic metalloid in group 15 of periodic table. The information on environmental behaviour of arsenic, however, is still scarce. Contamination of soils and water with arsenic and antimony due to their widespread industrial application and mining activities has raised serious environmental concerns. Nearly all Arsenic-contaminated soils results from human activities and it has different environmental and sociological impacts. Various strategies and methods have been proposed for environmental management and remediation of contaminated soils. Among all methods, the phytoremediation is receiving more attention due to its cost effective and environmental friendly characteristics. In the case of arsenic contaminated soils, there are effective factors such as soil fertility, nutrients content and microorganisms function, which can improve the uptake of As by plants. Up to now, several studies have been evaluated the effects of symbiotic fungal association in plants on increasing nutrients and toxic elements uptake. Many of authors reported that the mycorrhizal symbiosis increases the uptake of toxic elements in root and shoot of plants and consequently improve the efficacy of phytostabilization and phytoextraction processes. There are conflicting results about the effect of arbuscular- mycorrhizal fungi (AMF on As uptake by various plants. Chen et al. (4 found that Glomus mosseae symbiosis with plant reduces As concentration and enhance phosphorus content in shoot and root of plant. Whilst Cozzolino et al. (7 reported that the AMF increases as concentration in shoot and root of cabbage. Phosphorus has important role on mycorrhizal symbiosis and also As uptake by plants. Therefore, current study was conducted to evaluated effect of Glomus intraradices and Glomus mosseae symbiosis with sunflower and also soil phosphorus concentration on uptake of arsenic from arsenite and arsenate contaminated soils. Materials and

  4. Surface water and wastewater treatment using a new tannin-based coagulant. Pilot plant trials.

    Science.gov (United States)

    Sánchez-Martín, J; Beltrán-Heredia, J; Solera-Hernández, C

    2010-10-01

    A new tannin-based coagulant-flocculant (Tanfloc) was tested for water treatment at a pilot plant level. Four types of water sample were treated: surface water (collected from a river), and municipal, textile industry (simulated by a 100 mg L(-1) aqueous solution of an acid dye), and laundry (simulated by a 50 mg L(-1) aqueous solution of an anionic surfactant) wastewaters. The pilot plant process consisted of coagulation, sedimentation, and filtration. The experiments were carried out with an average coagulant dosage of 92.2 mg L(-1) (except in the case of the surface water for which the dosage was 2 mg L(-1)). The efficacy of the water purification was notable in every case: total turbidity removal in the surface water and municipal wastewater, about 95% dye removal in the case of the textile industry wastewater, and about 80% surfactant removal in the laundry wastewater. Filtration improved the removal of suspended solids, both flocs and turbidity, and slightly improved the process as a whole. The efficiency of Tanfloc in these pilot studies was similar to or even better than that obtained in batch trials.

  5. PILOT PLANT STUDY ON NATURAL WATER COAGULANTS AS COAGULAN AIDS FOR WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    B BINA

    2001-06-01

    Full Text Available Introduction: Natural plant coagulants have an important role to play in provision of portable water to rural communities in the developing world. The plant material that their coagulation properties have been confirmed in previous lab scale studies and can be found widely in Iran was selected as coagulant aids. Pilot plant study was done to evaluate the efficiency of natural material such as Starch/Gum Tragacanth, Fenugreek and Yeast as coagulant aids in conjunction with comercial alum. Methods: The pilot was placed in Isfahan Water Treatment Plant (IWTP and efficiency of these materials in removal of turbidity from raw water enters the IWTP was evaluated. The results indicated while these materials were used as coagulant aids in concentration of 1-5 mg/l conjunction with alum are able to reduced the turbidity and final residuals turbidity meets the standards limits. Results: The coagulation efficiency of these material were found to be effected by certain physico-chemical factors, namely, concentration of suspended solids, divalent cation metal and time of agitation. The relative importance of these variable was evaluated. The results of COD test proved that the natural coagulant aids in the optimum doses produce no any significant organic residual. Discussion: Economical considerations showed that using of these material as coagulant aids can cause reduction in alum consumption and in some cases are more econmical than synthetic polyelectrolyte.

  6. Environmental arsenic exposure from a coal-burning power plant as a potential risk factor for nonmelanoma skin carcinoma: Results from a case-control study in the district of Prievidza, Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Pesch, B.; Ranft, U.; Jakubis, P.; Nieuwenhuijsen, M.J.; Hergemoller, A.; Unfried, K.; Jakubis, M.; Miskovic, P.; Keegan, T. [University of Dusseldorf, Dusseldorf (Germany)

    2002-05-01

    To investigate the risk of arsenic exposure from a coal-burning power plant in Slovakia on nonmelanoma skin cancer (NMSC) development, a 1996-1999 population-based case-control study was conducted with 264 cases and 286 controls. Exposure assessment was based on residential history and annual emissions (Asres1, Asres2) and on nutritional habits and arsenic content in food (Asnut1, Asnut2). Asres1 was assessed as a function of the distance of places of residence to the plant. Asres2 additionally considered workplace locations. Asnut1 was used to calculate arsenic uptake by weighting food frequencies with arsenic concentrations and annual consumption of food items. Asnut2 additionally considered consumption of local products. Age- and gender-adjusted risk estimates for NMSC in the highest exposure category (90th vs. 30th percentile) were 1.90 (95% confidence interval (CI): 1.39, 2.60) for Asres1, 1.90 (95% CI: 1.38, 2.62) for Asres2, 1.19 (95% CI: 0.64, 2.12) for Asnut1, and 1.83 (95% CI: 0.98, 3.43) for Asnut2. No interaction was found between arsenic exposure and dietary and residential data. Other plant emissions could have confounded the distance-based exposure variables. Consumption of contaminated vegetables and fruits could be confounded by the protective effects of such a diet. Nevertheless, the authors found an excess NMSC risk for environmental arsenic exposure.

  7. Research and development in pilot plant production of granular NPK fertilizer

    Science.gov (United States)

    Failaka, Muhamad Fariz; Firdausi, Nadia Zahrotul; Chairunnisa, Altway, Ali

    2017-05-01

    PT Pupuk Kaltim (Pupuk Kaltim) as one of the biggest fertilizer manufacturer in Indonesia, always striving to improve the product quality and achieve the optimal performance while facing the challenges of global competition NPK (Nitrogen, Phosphorus, Potassium) market. In order to continuously improve operations and processes of two units NPK compound plant, Pupuk Kaltim has successfully initiated a new facility which is referred to as a NPK pilot-scale research facility with design capacity of 30 kg/hr. This mini-plant is used to assist in the scale up of new innovations from laboratory research to better understand the effect of using new raw materials and experiment with process changes to improve quality and efficiency. The pilot installation is composed of the following main parts: mixer, screw feeder, granulator, dryer and cooler. The granulator is the equipment where NPK granules is formed by spraying appropriate steam and water onto raw materials in a rotating drum. The rotary dryer and cooler are intended for the drying process where temperature reduction and the final moisture are obtained. As a part of innovations project since 2014, the pilot plant has conducted many of experiments such as trials using Ammonium Sulfate (ZA) as a new raw material, alternative raw materials of Diammonium Phosphate (DAP), Potassium Chloride (KCl) and clay, and using a novel material of fly ash. In addition, the process engineering staff also conduct the trials of raw materials ratio so that an ideal formulation with lower cost can be obtained especially when it is applied in the existing full-scale plant.

  8. OPTIMASI PROSES DEASIDIFIKASI DALAM PEMURNIAN MINYAK SAWIT MERAH SKALA PILOT PLANT [Optimization of Deacidification Process in Red Palm Oil Purification on Pilot Plant Scale

    Directory of Open Access Journals (Sweden)

    I Wayan Rai Widarta1*

    2012-06-01

    Full Text Available Deacidification is one of the steps in palm oil refining process which aims to separate free fatty acids formed during post-harvest handling. It is carried out using alkali solution such as NaOH (sodium hydroxide. Carotenoids in palm oil are affected by this step. Therefore, deacidification has to be controlled to minimize the destruction of carotenoids during processing. The objective of this research was to improve deacidification process in pilot plant scale so that the process can produce lower level of free fatty acids (FFA and higher recovery of carotene in high yield neutralized red palm oil (NRPO. Characterization of physical and chemical properties of crude palm oil (CPO such as moisture content, FFA and carotene contents, saponification number, iodine value, peroxide value, and color were determined before processing. Degumming was performed before deacidification process. The 17.5% excess of NaOH was obtained from the pilot plant scale deacidification trial. The optimization of deacidification time and temperature was carried out by using central composite design (CCD. Response surface method (RSM was used to observe the influence of treatments on the FFA level reduction, carotene recovery, and NRPO yield. The result showed that the optimum deacidification condition was at 61 ± 2°C in 26 minutes, and at the 16°Be NaOH strength with 17.5% excess of NaOH. In this optimum condition, the process achieved 96.35% of FFA reduction, 87.30% of carotene recovery, and 90.16% of NRPO yield.

  9. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Anglada, Angela; Urtiaga, Ana M. [Departamento de Ingenieria Quimica y Quimica Inorganica, E.T.S.I.I. y T., Universidad de Cantabria, Avenida de los castros s/n, 39005 Santander (Spain); Ortiz, Inmaculada, E-mail: ortizi@unican.es [Departamento de Ingenieria Quimica y Quimica Inorganica, E.T.S.I.I. y T., Universidad de Cantabria, Avenida de los castros s/n, 39005 Santander (Spain)

    2010-09-15

    Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m{sup 2} was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.

  10. Hydrotreating of used oil; Prediction of industrial trickle-bed operation from pilot-plant data

    Energy Technology Data Exchange (ETDEWEB)

    Skala, D.U.; Saban, M.D.; Orlovie, M. (Belgrade Univ. (Yugoslavia). Tehnolosko-Metalurski Fakultet); Meyn, V.W.; Severin, D.K.; Rahimian, I.G.H. (German Inst. for Petroleum Research, 3392 Clausthal-Zellerfeld (DE)); Marjanovic, M.V. (Refinery Beograd, Pancevacki put 83, 11001 Beograd (YU))

    1991-09-01

    This paper reports on oil hydrotreating that was investigated in a pilot trickle-bed reactor (TBR) at 270-350{degrees} C, 5-7 MPa, and 1.1-4.6 liquid hourly space velocity (LHSV) and with different hydrogen/oil ratios using a commercial Co-Mo/Al{sub 2}O{sub 3} catalyst. Hydrodesulfurization (HDS), hydrodeoxygenation (HDO), and metals removal were investigated by using a modified power- law kinetic model with a power term for LHSV. It was found that the HDS and HDO reactions can be described by pseudo- first-order kinetics. The removal of metals was found to be primarily due to the physical process of deposition on the catalyst bed. With the use of the kinetic data from a pilot plant, the simulation of an industrial TBR was performed. Simulated HDS and HDO, removal of metals, and prediction of catalyst deactivation agreed well with the industrial data for three charges of catalyst.

  11. Evaluation of Exposure to Arsenic in Residential Soil

    OpenAIRE

    Tsuji, JS; Van Kerkhove, MD; Kaetzel, RS; Scrafford, CG; Mink, PJ; Barraj, LM; Crecelius, EA; Goodman, M.

    2005-01-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between...

  12. 300-FF-1 Operable Unit physical separation of soils pilot plant study

    Energy Technology Data Exchange (ETDEWEB)

    Freeman-Pollard, J.R.

    1994-01-15

    Alternative Remedial Technologies, Inc. (ART) was selected in a competitive selection process to conduct a pilot study for the physical separation of soils in the North Process Pond of the 300 Area at the Hanford Site. In January 1994, ART mobilized its 15 tons-per-hour pilot plant to the site. The plant was initially staged in a commercial area to allow for pretest inspections and minor modifications. The plant was specifically designed for use as a physical separations unit and consisted of a feed hopper, wet screens, hydrocyclones, as well as settling and dewatering equipment. The plant was supported in the field with prescreening equipment, mobile generators, air compressors, and water storage tanks. The plant was moved into the surface contamination area on March 24, 1994. The testing was conducted during the period March 23, 1994 through April 13, 1994. Two soil types were treated during the testing: a natural soil contaminated with low levels of uranium, cesium, cobalt, and heavy metals, and a natural soil contaminated with a uranium carbonate material that was visually recognizable by the presence of a green sludge material in the soil matrix. The ``green`` material contained significantly higher levels of the same contaminants. Both source materials were treated by the plant in a manner that fed the material, produced clean gravel and sand fractions, and concentrated the contaminants in a sludge cake. Process water was recycled during the operations. The testing was extremely successful in that for both source waste streams, it was demonstrated that volume reductions of greater than 90% could be achieved while also meeting the test performance criteria. The volume reduction for the natural soils averaged a 93.8%, while the ``green`` soils showed a 91.4% volume reduction.

  13. Environmental Arsenic Contamination and Its Effect on Intelligence Quotient of School Children in a Historic Gold Mining Area Hutti, North Karnataka, India: A Pilot Study.

    Science.gov (United States)

    Manju, R; Hegde, Amitha M; Parlees, Paul; Keshan, Anisha

    2017-01-01

    Arsenic is a rare crystal element that naturally occurs in all environmental media. A combination of regional and site-specific biogeochemical and hydrological factors governs its dispersion in the environment. It has far reaching consequences on human health. Exposure to arsenic in drinking water has been associated with a decline in intellectual function in children. The aim of this study is to assess the relationship between exposure to arsenic by drinking water and children's intelligence in Karnataka state, India. Twenty school children of age 10-14 years from Sandur, Bellary, Karnataka, and from Hutti, Raichur, Karnataka, were categorized as control and study group, respectively. Water samples were collected from both the villages for the analysis of arsenic and fluoride levels. Hair and nail samples were collected from the participants, and the arsenic levels were determined. Intelligence quotient (IQ) assessment was done using the Raven's Standard Progressive Matrices. Chi-square test, Mann-Whitney U-test, and Fisher's exact test. P < 0.05 was considered statistically significant. There was a significant increase in the arsenic content in the hair and nail samples of children in the study group. The mean IQ tests score in the control group and study group was 30.55 and 17.95, respectively, and this difference was statistically significant. Chronic arsenic exposure could be a possible cause for the reduced IQ scores seen in children residing in Hutti, Raichur District, North Karnataka.

  14. Experimental fact-finding in CFB biomass gasification for ECN's 500 kWth pilot-plant

    NARCIS (Netherlands)

    Kersten, Sascha R.A.; Prins, W.; van der Drift, A.; van Swaaij, Willibrordus Petrus Maria

    2003-01-01

    CFB biomass gasification has been studied by experimentation with ECN's pilot facility and a cold-flow model of this plant. Data obtained by normal operation of this plant and the results of some special experiments have provided new insight into the behavior of circulating fluidized bed reactors

  15. Central receiver solar thermal power system, Phase 1. CRDL Item 2. Pilot plant preliminary design report. Volume III, Book 2. Collector subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The methods and plans for the manufacture of the 10-MW collector heliostats and associated controls for the pilot plant are detailed. An in-depth description of the production, installation, and verification testing of heliostats for the pilot plant is presented. Specifications for the performance, design, and test requirements for the pilot plant collector subsystem are included. Also, a heliostat location summary report is given. (WHK)

  16. Radioactive waste disposal: Waste Isolation Pilot Plants (WIPP). (Latest citations from the NTIS data base). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The bibliography contains citations concerning the Waste Isolation Pilot Plant (WIPP), a geologic repository located in New Mexico for transuranic wastes generated by the U.S. Government. Articles follow the development of the program from initial site selection and characterization through construction and testing, and examine research programs on environmental impacts, structural design, and radionuclide landfill gases. Existing plants and facilities, pilot plants, migration, rock mechanics, economics, regulations, and transport of wastes to the site are also included. The Salt Repository Project and the Crystalline Repository Project are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  17. Radioactive waste disposal: Waste Isolation Pilot Plants (WIPP). (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The bibliography contains citations concerning the Waste Isolation Pilot Plant (WIPP), a geologic repository located in New Mexico for transuranic wastes generated by the U.S. Government. Articles follow the development of the program from initial site selection and characterization through construction and testing, and examine research programs on environmental impacts, structural design, and radionuclide landfill gases. Existing plants and facilities, pilot plants, migration, rock mechanics, economics, regulations, and transport of wastes to the site are also included. The Salt Repository Project and the Crystalline Repository Project are referenced in separate bibliographies. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Phytostabilization of arsenic in soils with plants of the genus Atriplex established in situ in the Atacama Desert.

    Science.gov (United States)

    Fernández, Yasna Tapia; Diaz, O; Acuña, E; Casanova, M; Salazar, O; Masaguer, A

    2016-04-01

    In the ChiuChiu village (Atacama Desert, Chile), there is a high concentration of arsenic (As) in the soil due to natural causes related to the presence of volcanoes and geothermal activity. To compare the levels of As and the growth parameters among plants of the same genus, three species of plants were established in situ: Atriplex atacamensis (native of Chile), Atriplex halimus, and Atriplex nummularia. These soils have an As concentration of 131.2 ± 10.4 mg kg(-1), a pH of 8.6 ± 0.1, and an electrical conductivity of 7.06 ± 2.37 dS m(-1). Cuttings of Atriplex were transplanted and maintained for 5 months with periodic irrigation and without the addition of fertilizers. The sequential extraction of As indicated that the metalloid in these soils has a high bioavailability (38 %), which is attributed to the alkaline pH, low organic matter and Fe oxide content, and sandy texture. At day 90 of the assay, the As concentrations in the leaves of A. halimus (4.53 ± 1.14 mg kg(-1)) and A. nummularia (3.85 ± 0.64 mg kg(-1)) were significantly higher than that in A. atacamensis (2.46 ± 1.82 mg kg(-1)). However, the three species accumulated higher levels of As in their roots, indicating a phytostabilization capacity. At the end of the assay, A. halimus and A. nummularia generated 30 % more biomass than A. atacamensis without significant differences in the As levels in the leaves. Despite the difficult conditions in these soils, the establishment of plants of the genus Atriplex is a recommended strategy to generate a vegetative cover that prevents the metalloid from spreading in this arid area through the soil or by wind.

  19. Photocatalytic degradation of oil industry hydrocarbons models at laboratory and at pilot-plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Ronald; Nunez, Oswaldo [Laboratorio de Fisicoquimica Organica y Quimica Ambiental, Departamento de Procesos y Sistemas, Universidad Simon Bolivar, Apartado Postal 89000, Caracas (Venezuela)

    2010-02-15

    Photodegradation/mineralization (TiO{sub 2}/UV Light) of the hydrocarbons: p-nitrophenol (PNP), naphthalene (NP) and dibenzothiophene (DBT) at three different reactors: batch bench reactor (BBR), tubular bench reactor (TBR) and tubular pilot-plant (TPP) were kinetically monitored at pH = 3, 6 and 10, and the results compared using normalized UV light exposition times. The results fit the Langmuir-Hinshelwood (LH) model; therefore, LH adsorption equilibrium constants (K) and apparent rate constants (k) are reported as well as the apparent pseudo-first-order rate constants, k{sub obs}{sup '} = kK/(1 + Kc{sub r}). The batch bench reactor is the most selective reactor toward compound and pH changes in which the reactivity order is: NP > DBT > PNP, however, the catalyst adsorption (K) order is: DBT > NP > PNP at the three pH used but NP has the highest k values. The tubular pilot-plant (TPP) is the most efficient of the three reactors tested. Compound and pH photodegradation/mineralization selectivity is partially lost at the pilot plant where DBT and NP reaches ca. 90% mineralization at the pH used, meanwhile, PNP reaches only 40%. The real time, in which these mineralization occur are: 180 min for PNP and 60 min for NP and DBT. The mineralization results at the TPP indicate that for the three compounds, the rate limiting step is the same as the degradation one. So that, there is not any stable intermediate that may accumulate during the photocatalytic treatment. (author)

  20. A pilot plant for removing chromium from residual water of tanneries.

    Science.gov (United States)

    Landgrave, J

    1995-02-01

    The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented.

  1. Direct Air Capture of CO2 - an Overview of Carbon Engineering's Technology and Pilot Plant Development

    Science.gov (United States)

    Holmes, G.; Corless, A.

    2014-12-01

    At Carbon Engineering, we are developing and commercializing technology to scrub CO2 directly from atmospheric air at industrial scale. By providing atmospheric CO2 for use in fuel production, we can enable production of transportation fuels with ultra-low carbon intensities, which command price premiums in the growing set of constrained fuels markets such as California's LCFS. We are a Calgary based startup founded in 2009 with 10 employees, and we are considered a global leader in the direct air capture (DAC) field. We will review CE's DAC technology, based on a wet-scrubbing "air contactor" which absorbs CO2 into aqueous solution, and a chemical looping "regeneration" component, which liberates pure CO2 from this aqueous solution while re-making the original absorption chemical. CE's DAC tecnology exports purified atmospheric CO2, combined with the combustion CO2 from plant energy usage, as the end product. We will also discuss CE's 2014-2015 end-to-end Pilot Demonstration Unit. This is a $7M technology demonstration plant that CE is building with the help of key industrial partners and equipment vendors. Vendor design and engineering requirements have been used to specify the pilot air contactor, pellet reactor, calciner, and slaker modules, as well as auxiliary systems. These modules will be run for several months to obtain the engineering and performance data needed for subsequent commercial plant design, as well as to test the residual integration risks associated with CE's process. By the time of the AGU conference, the pilot is expected to be in late stages of fabrication or early stages of site installation.

  2. Effects of Arsenic Water Irrigation on Soil Environment and Rice Plants%砷水灌溉对土壤环境和水稻植株的影响研究

    Institute of Scientific and Technical Information of China (English)

    王铁良; 张藜; 李玉清; 姜森严

    2015-01-01

    通过小区种植试验,研究不同浓度(0.292,0.146,0.102,0.073,0.05,0.029 m g/L )砷水灌溉对小区土壤、水稻产量、品质的影响以及砷在水稻植株中的运移规律。结果表明,不同浓度砷水灌溉下,土壤中的砷浓度与灌溉浓度正相关,砷水浓度大时土壤对砷的吸收能力减小,呈现出随砷水浓度的增大,砷含量增长速度先快后慢现象。砷水灌溉对水稻产量、外观品质和碾米品质有一定抑制作用,对水稻的营养品质无明显不利影响。稻米中砷的浓度随着砷水浓度的增大而增大。灌溉水砷浓度小于0.292 m g/L时,精米中砷含量小于绿色大米限值。水稻植株中的含量分布规律为根>叶>茎>精米,根系对砷的吸收能力随着砷水浓度的增大而明显增强,根中砷含量大于3倍叶中含量。%Through planting plot experiment ,the effects of arsenic water irrigation at different concentrations (0 .292 ,0 .146 ,0 .102 , 0 .073 ,0 .05 ,0 .029 mg/L) on soil ,rice yield and quality ,and transport law of arsenic in rice plants are studied in this paper .The results show that under the arsenic water irrigation with different concentration ,the arsenic concentrations of soil is positively corre-lated with the arsenic concentration of irrigation water;the arsenic absorption capacity of soil decreases when the arsenic concentra-tion of irrigation water is high ,it increases first and then decrease with the increase of the arsenic concentration of irrigation water;arsenic water irrigation has certain inhibition effect on rice yield and quality ,while has no significant adverse effects on the nutritional quality of rice;the arsenic concentration in rice increases with the increase of the arsenic concentration of irrigation water;when the arsenic concentration irrigation water is less than 0 .292 mg/L ,the arsenic content in polished rice is less than limited value of green rice

  3. Improvement of the ethanol productivity in a high gravity brewing at pilot plant scale.

    Science.gov (United States)

    Dragone, Giuliano; Silva, Daniel P; de Almeida e Silva, João Batista; de Almeida Lima, Urgel

    2003-07-01

    A 23 full factorial design was used to study the influence of different experimental variables, namely wort gravity, fermentation temperature and nutrient supplementation, on ethanol productivity from high gravity wort fermentation by Saccharomyces cerevisiae (lager strain), under pilot plant conditions. The highest ethanol productivity (0.69 g l(-1) h(-1)) was obtained at 20 degrees P [degrees P is the weight of extract (sugar) equivalent to the weight of sucrose in a 100 g solution at 20 degrees C], 15 degrees C, with the addition of 0.8% (w/v) yeast extract, 24 mg l(-1) ergosterol and 0.24% (v/v) Tween 80.

  4. Position paper on gas generation in the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brush, L.H.

    1994-11-15

    Gas generation by transuranic (TRU) waste is a significant issue because gas will, if produced in significant quantities, affect the performance of the Waste Isolation Pilot Plant (WIPP) with respect to Environmental Protection Agency (EPA) regulations for the long-term isolation of radioactive and chemically hazardous waste. If significant gas production occurs, it will also affect, and will be affected by, other processes and parameters in WIPP disposal rooms. The processes that will produce gas in WIPP disposal rooms are corrosion, microbial activity and radiolysis. This position paper describes these processes and the models, assumptions and data used to predict gas generation in WIPP disposal rooms.

  5. Formation of Extracellular Sphingolipids by Microorganisms: IV. Pilot-Plant Production of Tetraacetylphytosphingosine by Hansenula ciferrii.

    Science.gov (United States)

    Maister, H G; Rogovin, S P; Stodola, F H; Wickerham, L J

    1962-09-01

    Tetraacetylphytosphingosine (TAPS) formation by the F-60-10 mating type strain of the yeast Hansenula ciferrii, previously observed on agar plates, has been shown to take place in submerged cultures. The optimal conditions for TAPS formation, and the correlation of TAPS production and sugar utilization under aerobic conditions, were studied in 10-liter fermentors. For each gram of glucose consumed, 5 mg of TAPS were formed; for each gram of yeast solids produced, 15 mg of TAPS were synthesized. A 750-liter pilot-plant run yielded 175 g of crude TAPS, which were obtained by hexane extraction of centrifuged yeast cells.

  6. Synthesis in pilot plant scale and physical properties of sulfonated polystyrene

    Directory of Open Access Journals (Sweden)

    Martins Cristiane R.

    2003-01-01

    Full Text Available The homogenous sulfonation of polystyrene was developed in a pilot plant scale producing polymers with different sulfonation degrees (18 to 22 mole % of sulfonated styrene units. The reaction yield depends chiefly on the concentration ratio of acetyl sulfate and polystyrene. The morphological and thermal properties of the sulfonated polystyrene obtained by homogeneous sulfonation were studied by means of scanning electron microscopy, differential scanning calorimetry and thermogravimetry. The glass transition temperature of sulfonated polystyrene increases in relation to pure polystyrene and DCp was evaluated in order to confirm the strong interactions among the ~SO3H groups.

  7. Recent advances in AFB biomass gasification pilot plant with catalytic reactors in a downstream slip flow

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Gil, J.; Martin, J.A.; Frances, E.; Olivares, A.; Caballero, M.A.; Perez, P. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment; Corella, J. [Madrid Univ. (Spain)

    1996-12-31

    A new 3rd generation pilot plant is being used for hot catalytic raw gas cleaning. It is based on a 15 cm. i.d. fluidized bed with biomass throughputs of 400-650 kg/h.m{sup 2}. Gasification is performed using mixtures of steam and oxygen. The produced gas is passed in a slip flow by two reactors in series containing a calcined dolomite and a commercial reforming catalyst. Tars are periodically sampled and analysed after the three reactors. Tar conversions of 99.99 % and a 300 % increase of the hydrogen content in the gas are obtained. (author) (2 refs.)

  8. Pilot plant studies of the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1977-06-30

    Progress is reported in the following studies on analysis and evaluation of potential raw materials: preliminary pretreatment studies using wheat straw; extraction of wheat straw with alcohol and water at elevated temperatures; extraction of ground wood with alcohol and water at elevated temperatures; and, delignification of newsprint with ethylene glycol. Other research in progress includes studies on: utilization of hemicellulose sugars; process design and economics of hydrolysis processes and ethanol fermentation; and, pilot plant process development and design, including cell-recycle systems for cellulase production, continuous hydrolysis, countercurrent hydrolysis, and ethanol fermentation studies. (JGB)

  9. Perspective of the Science Advisor to the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    WEART,WENDELL D.

    1999-09-03

    In 1975 Sandia National Laboratories (SNL) was asked by the predecessor to the Department of Energy to assume responsibility for the scientific programs necessary to assure the safe and satisfactory development of a geologic repository in the salt beds of southeast New Mexico. Sandia has continued in the role of Science Advisor to the Waste Isolation Pilot Plant (WIPP) to the present time. This paper will share the perspectives developed over the past 25 years as the project was brought to fruition with successful certification by the Environmental Protection Agency (EPA) on May 13, 1998 and commencement of operations on April 26, 1999.

  10. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  11. Monitoring the species of arsenic, chromium and nickel in milled coal, bottom ash and fly ash from a pulverized coal-fired power plant in western Canada.

    Science.gov (United States)

    Goodarzi, F; Huggins, F E

    2001-02-01

    The concentration of As, Cr and Ni and their speciation (As3+;5+, Cr3+;6+ and Ni0;2+) in milled coal, bottom ash and ash collected by electrostatic precipitator (ESP) from a coal fired-power plant in western Canada were determined using HGAAS, ICP-AES and XANES. The chemical fractionation of these elements was also determined by a sequential leaching procedure, using deionized water, NH4OAC and HCI as extracting agents. The leachate was analyzed by ICP-AES. Arsenic in the milled coal is mostly associated with organic matter, and 67% of this arsenic is removed by ammonium acetate. This element is totally removed from milled coal after extraction with HCI. Arsenic occurs in both the As3+ and the As5+ oxidation states in the milled coal, while virtually all (>90%) of the arsenic in bottom ash and fly ash appears to be in the less toxic arsenate (As5+) form. Both Ni and Cr in the milled coal are extracted by HCI, indicating that water can mobilize Ni and Cr in an acidic environment. The chromium is leached by water from fly ash as a result of the high pH of the water, which is induced during the leaching. Ammonium acetate removes Ni from bottom ash through an ion exchange process. Chromium in milled coal is present entirely as Cr3+, which is an essential human trace nutrient. The Cr speciation in bottom ash is a more accentuated version of the milled coal and consists mostly of the Cr3+ species. Chromium in fly ash is mostly Cr3+, with significant contamination by stainless-steel from the installation itself.

  12. Operating boundaries of full-scale advanced water reuse treatment plants: many lessons learned from pilot plant experience.

    Science.gov (United States)

    Bele, C; Kumar, Y; Walker, T; Poussade, Y; Zavlanos, V

    2010-01-01

    Three Advanced Water Treatment Plants (AWTP) have recently been built in South East Queensland as part of the Western Corridor Recycled Water Project (WCRWP) producing Purified Recycled Water from secondary treated waste water for the purpose of indirect potable reuse. At Luggage Point, a demonstration plant was primarily operated by the design team for design verification. The investigation program was then extended so that the operating team could investigate possible process optimisation, and operation flexibility. Extending the demonstration plant investigation program enabled monitoring of the long term performance of the microfiltration and reverse osmosis membranes, which did not appear to foul even after more than a year of operation. The investigation primarily identified several ways to optimise the process. It highlighted areas of risk for treated water quality, such as total nitrogen. Ample and rapid swings of salinity from 850 to 3,000 mg/l-TDS were predicted to affect the RO process day-to-day operation and monitoring. Most of the setpoints used for monitoring under HACCP were determined during the pilot plant trials.

  13. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  14. Computer simulation of the off gas treatment process for the KEPCO pilot vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hey Suk; Maeng, Sung Jun; Lee, Myung Chan [Nuclear Environment Technology Institute, KEPCO, Taejon (Korea, Republic of)

    1999-07-01

    Vitrification technology for treatment of low and intermediate radioactive wastes can remarkably reduce waste volume to about one twentieth of the initial volume as they are collected and converted into a very stable form. Therefore, it can minimize environmental impact when the vitrified waste is disposed of. But an off gas treatment system is necessary to apply this technology because air pollutants and radioisotopes are generated like those of other conventional incinerators during thermal oxidation process at high temperature. KEPCO designed and installed a pilot scale vitrification plant to demonstrate the feasibility of the vitrification process and then to make a conceptual design for a commercial vitrification facility. The purpose of this study was to simulate the off gas treatment system(OGTS) in order optimize the operating conditions. Mass balance and temperature profile in the off gas treatment system were simulated for different combinations of combustible wastes by computer simulation code named OGTS code and removal efficiency of each process was also calculated with change of design parameters. The OGTS code saved efforts,time and capital because scale and configuration of the system could be easily changed. The simulation result of the pilot scale off gas process as well as pilot tests will be of great use in the future for a design of the commercial vitrification facility. (author)

  15. Test results from the 500 kW direct contact pilot plant at East Mesa

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, K.E.; Olander, R.G.; Lobach, J.L.

    1980-09-01

    A 500 kW power plant utilizing direct contact heat exchange (DCHX) between the geothermal brine and the isobutane (IC/sub 4/) working fluid is being operated at the East Mesa test facility. The power plant incorporates a 40-inch-diameter direct-contactor approximately 35 feet tall. The purpose of the pilot plant is to determine the feasibility of large-scale direct-contact heat exchange and power plant operation with the DCHX. The binary cycle offers higher conversion factors (heat energy transformed to electrical energy) than the flashed steam approach for geothermal brines in the 300 to 400/sup 0/F range and preliminary results indicate the DCHX system may have higher performance than the conventional tube-and-shell binary approach. This performance advantage results from the absence of any fouling and the very close pinch temperatures achieved in the DCHX itself. The baseline performance tests for the plant were completed in January 1980. The results of these tests and follow-on testing are covered.

  16. Operational and field test results from the 500 kw direct contact pilot plant at East Mesa

    Energy Technology Data Exchange (ETDEWEB)

    Hlinak, A.J.; Lobach, J.L.; Nichols, K.E.

    1981-10-01

    A 500 kw geothermal powerplant utilizing direct contact heat exchange (DCHX) between geothermal brine and an isobutane (IC/sub 4/) working fluid is currently operating at the East Mesa test facility. The pilot plant program was initiated to determine the feasibility of large-scale direct contact heat exchange and associated plant operations. In addition to verifying the design performance of the DCHX itself, test efforts to date have (1) quantified the effect of dissolved gases (primarily CO/sub 2/) transferred from the brine to the IC/sub 4/ loop on the pressure elevation in the unvented power condenser and demonstrated a viable scheme to control this pressure elevation, (2) evaluated the potential of flash extraction and recovery of dissolved IC/sub 4/ from the spent brine, and (3) demonstrated control of fouling in critical components by pretreating the brine with small amounts of a chemical additive (FLOCON 247, Pfizer, Inc.).

  17. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  18. Scale-up analysis and critical issues of an experimental pilot plant for edible film production using agricultural waste processing

    Directory of Open Access Journals (Sweden)

    Fabrizio Sarghini

    2013-03-01

    Full Text Available This study was developed to test a multifunctional experimental pilot plant with a reduced environmental impact that is able to process agricultural (fennel and food production (liquid whey waste. The pilot plant, using different thermal and filtration process parameters, is able to recover pectin and whey proteins in a single processing unit in order to produce edible films. An innovative feature of the proposed configuration is related to the possibility of coupling different types of waste treatment, obtaining a final product with a higher economical value, combining the two processing lines. Although an edible film production procedure based on pectin extracted from fennel matrix and whey proteins has already been published in literature, the scale-up process highlighted several critical issues, in particular related to the fennel matrix. Nonetheless, the pilot plant configuration allowed an edible film to be produced that is suitable for use as a direct coating to improve the shelf-life of food products.

  19. Arsenic response of AtPCS1- and CePCS-expressing plants - effects of external As(V) concentration on As-accumulation pattern and NPT metabolism.

    Science.gov (United States)

    Wojas, Sylwia; Clemens, Stephan; Skłodowska, Aleksandra; Maria Antosiewicz, Danuta

    2010-02-15

    Phytochelatins (PCs) are small, cysteine-rich peptides, known to play a major role in detoxification of both cadmium and arsenic. The aim of this study was to determine whether overexpression of either of two PC synthase (PCS) genes, AtPCS1 and CePCS in Nicotiana tabacum (previously shown to cause decrease and increase, respectively, of cadmium tolerance of tobacco - Wojas et al., 2008) also contributes to such contrasting phenotypes with respect to arsenic (As) tolerance and accumulation, and how observed responses relate to non-protein thiol (NPT) metabolism. The expression of both genes resulted in an increase of As-tolerance, with CePCS plants most tolerant. We showed for the first time that the response of PCS overexpressing plants to As qualitatively depends on the external As(V) concentration. At the less toxic 50muM As(V), AtPCS1 and CePCS transformants accumulated more As in roots and leaves than WT. An increase in PC production and the level of PC2 species was detected in leaves of AtPCS1 and CePCS plants, which might explain their enhanced As-accumulation and tolerance. In contrast, at the highly toxic 200muM As(V), several disturbances in thiol metabolism of PCS overexpressing plants were found, surprisingly, including decrease of PC levels both in roots and leaves of transgenic plants relative to WT. The increase in As-tolerance and accumulation due to AtPCS1 and CePCS overexpression, observed at the As(V) concentrations similar to those found in As-contaminated soils, makes these genes promising candidates for plant engineering for phytoremediation.

  20. Photocatalysis with solar energy at a pilot-plant scale. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Malato, Sixto; Blanco, Julian; Vidal, Alfonso [CIEMAT-Plataforma Solar de Almeria, Crta. Senes Km. 4, 04200 Tabernas, Almeria (Spain); Richter, Christoph [DLR-Plataforma Solar de Almeria, Crta. Senes Km. 4, 04200 Tabernas, Almeria (Spain)

    2002-04-08

    Advanced oxidation processes (AOPs) are characterized by a common chemical feature: the capability of exploiting the high reactivity of OH radicals in driving oxidation processes which are suitable for achieving the complete abatement and through mineralization of even less reactive pollutants. This paper reviews the use of sunlight to produce (.)OH radicals. The experimental systems necessary for performing pilot-plant scale solar photocatalytic experiments are described. It outlines the basic components of these pilot plants and the fundamental parameters related to solar photocatalysis reactions. This paper summarizes also most of the research carried out at Plataforma Solar de Almeria (PSA) related with solar photocatalytic degradation of water contaminants. A description is given of how solar photocatalysis could become a significant segment of the wastewater treatment technologies related with the degradation of very persistent toxic compounds. It outlines also the decomposition of organic and inorganic contaminants and different examples are also shown for better comprehension of the ability of solar energy for carrying out oxidation and reduction processes. These examples include chlorophenols, chlorinated solvents, pesticides and cyanide. Besides, the possibility of using the photo-Fenton reaction illuminated with solar light opens the boundary where solar photocatalysis could be applied.

  1. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1990-12-31

    This paper concludes that a 70/30 wt % salt/bentonite mixture is preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant. The Waste Isolation Pilot Plant, near Carlsbad, NM, is designed to be the first mined geologic repository for the safe disposal of transuranic (TRU) radioactive waste generated by DOE defense programs since 1970. The repository is located about 655 m below the land surface in an extensive bedded salt formation. This report examines the performance of two backfill materials with regard to various selection criteria, such as the need for low permeability after closure, chemical stability, strength, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a state of permeability {le} 10{sup {minus}18} m{sup 2} that is adequate for satisfying regulations for nuclear repositories. The results of finite-element calculations that were used to arrive at this conclusion will be described. The real advantage of the salt/bentonite. backfill depends, therefore, on bentonite`s potential for sorbing brine and radionuclides. Estimates of the impact of these properties on backfill performance are presented.

  2. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.

    Science.gov (United States)

    Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin

    2014-11-01

    In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards.

  3. Reinvestigation into Closure Predictions of Room D at the Waste Isolation Pilot Plant.

    Energy Technology Data Exchange (ETDEWEB)

    Reedlunn, Benjamin

    2016-10-01

    Room D was an in-situ ,isothermal,undergroundexperimentconductedattheWasteIsola- tion Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under predicted the vertical closure by 4 . 5 - , causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through aseriesofadjustmentstomodelparameters,whichwereopenlyacknowledgedinpublished reports. Interest in Room D has been rekindled recently by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and bench- mark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today's computational standards by rectifying sev- eral numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two di %7C erent ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under predict Room D vertical closure by 3 . 1 - .A list of potential improvements is discussed.

  4. Impact of Corrections to the Spallings Volume Calculation on Waste Isolation Pilot Plant Performance Assessment [Poster

    Energy Technology Data Exchange (ETDEWEB)

    Kicker, Dwayne Curtis; Herrick, Courtney G; Zeitler, Todd

    2016-01-01

    The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant solid waste subject to material failure and transport to the surface (i.e., spallings) as a result of a hypothetical future inadvertent drilling intrusion into the repository. An error in the implementation of the DRSPALL finite difference equations was discovered and documented in a software problem report in accordance with the quality assurance procedure for software requirements. This paper describes the corrections to DRSPALL and documents the impact of the new spallings data from the modified DRSPALL on previous performance assessment calculations. Updated performance assessments result in more simulations with spallings, which generally translates to an increase in spallings releases to the accessible environment. Total normalized radionuclide releases using the modified DRSPALL data were determined by forming the summation of releases across each potential release pathway, namely borehole cuttings and cavings releases, spallings releases, direct brine releases, and transport releases. Because spallings releases are not a major contributor to the total releases, the updated performance assessment calculations of overall mean complementary cumulative distribution functions for total releases are virtually unchanged. Therefore, the corrections to the spallings volume calculation did not impact Waste Isolation Pilot Plant performance assessment calculation results.

  5. Impact of Corrections to the Spallings Volume Calculation on Waste Isolation Pilot Plant Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kicker, Dwayne Curtis [Stoller Newport News Nuclear, Inc., Carlsbad, NM (United States); Herrick, Courtney G [Sandia National Laboratories., Carlsbad, NM (United States); Zeitler, Todd [Sandia National Laboratories., Carlsbad, NM (United States)

    2015-11-01

    The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant solid waste subject to material failure and transport to the surface (i.e., spallings) as a result of a hypothetical future inadvertent drilling intrusion into the repository. An error in the implementation of the DRSPALL finite difference equations was discovered and documented in a software problem report in accordance with the quality assurance procedure for software requirements. This paper describes the corrections to DRSPALL and documents the impact of the new spallings data from the modified DRSPALL on previous performance assessment calculations. Updated performance assessments result in more simulations with spallings, which generally translates to an increase in spallings releases to the accessible environment. Total normalized radionuclide releases using the modified DRSPALL data were determined by forming the summation of releases across each potential release pathway, namely borehole cuttings and cavings releases, spallings releases, direct brine releases, and transport releases. Because spallings releases are not a major contributor to the total releases, the updated performance assessment calculations of overall mean complementary cumulative distribution functions for total releases are virtually unchanged. Therefore, the corrections to the spallings volume calculation did not impact Waste Isolation Pilot Plant performance assessment calculation results.

  6. Reinvestigation into Closure Predictions of Room D at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-27

    Room D was an in-situ, isothermal, underground experiment conducted at the Waste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under-predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recently by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under-predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.

  7. Reinvestigation into Closure Predictions of Room D at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Room D was an in-situ, isothermal, underground experiment conducted at theWaste Isolation Pilot Plant between 1984 and 1991. The room was carefully instrumented to measure the horizontal and vertical closure immediately upon excavation and for several years thereafter. Early finite element simulations of salt creep around Room D under predicted the vertical closure by 4.5×, causing investigators to explore a series of changes to the way Room D was modeled. Discrepancies between simulations and measurements were resolved through a series of adjustments to model parameters, which were openly acknowledged in published reports. Interest in Room D has been rekindled recently by the U.S./German Joint Project III and Project WEIMOS, which seek to improve the predictions of rock salt constitutive models. Joint Project participants calibrate their models solely against laboratory tests, and benchmark the models against underground experiments, such as room D. This report describes updating legacy Room D simulations to today’s computational standards by rectifying several numerical issues. Subsequently, the constitutive model used in previous modeling is recalibrated two different ways against a suite of new laboratory creep experiments on salt extracted from the repository horizon of the Waste Isolation Pilot Plant. Simulations with the new, laboratory-based, calibrations under predict Room D vertical closure by 3.1×. A list of potential improvements is discussed.

  8. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-31

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility for the demonstration of the permanent isolation of transuranic radioactive wastes in a geologic formation. The facility was constructed in southeastern New Mexico in a manner intended to meet criteria established by the scientific and regulatory community for the safe, long-term disposal of transuranic wastes. The US Department of Energy (DOE) is preparing an application to demonstrate compliance with the requirements outlined in Title 40, Part 191 of the Code of Federal Regulations (CFR) for the permanent disposal of transuranic wastes. As mandated by the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act of 1992, the US Environmental Protection Agency (EPA) must evaluate this compliance application and provide a determination regarding compliance with the requirements within one year of receiving a complete application. Because the WIPP is a very complex program, the DOE has planned to submit the application as a draft in two parts. This strategy will allow for the DOE and the EPA to begin technical discussions on critical WIPP issues before the one-year compliance determination period begins. This report is the first of these two draft submittals.

  9. Effect of heating strategy on power consumption and performance of a pilot plant anaerobic digester.

    Science.gov (United States)

    Espinosa-Solares, Teodoro; Valle-Guadarrama, Salvador; Bombardiere, John; Domaschko, Max; Easter, Michael

    2009-05-01

    The effect of heating strategy on power consumption and performance of a pilot plant anaerobic digester treating chicken litter, under thermophilic conditions, has been studied. Heating strategy was evaluated using three different spans (0.2 degrees C, 0.6 degrees C, and 1.0 degree C) for triggering the temperature control system from target temperature (56.7 degrees C). The hydraulic retention time in the pilot plant digester was in the range of 32 to 37 days, varying the total solids concentration fed from 5% to 6%. The results showed that under the experimental conditions, heating was the most energy-demanding process with 95.5% of the energy used. Increments up to 7.5% and 3.8%, respectively, on mechanical and heating power consumption, were observed as the span, for triggering the temperature control system from target temperature, was increased. Under the experimental conditions studied here, an increment of 30.6% on the global biodigester performance index was observed when a span of 1.0 degree C was compared to the one of 0.2 degrees C.

  10. Final design, installation and baseline testing of 500 kW direct contact pilot plant at East Mesa

    Energy Technology Data Exchange (ETDEWEB)

    Hlinak, A.; Lobach, J.; Nichols, K.; Olander, R.; Werner, D.

    1980-05-30

    The pilot plant was configured to accomplish two objectives - first to evaluate the overall performance potential of direct contact powerplants and second to develop design criteria and parameters for full-scale direct contact plants. The pilot plant includes all of the process functions that would be incorporated in a full-scale plant. Incoming brine is treated to remove undissolved gases, pumped through the direct contact heat exchanger (DCHX), and then sent to a recovery system for removal of the dissolved working fluid. The chosen working fluid is isobutane (IC/sub 4/). The working fluid loop includes a radial inflow turbine with generator, condensers, hot-well reservoir, and a feed pump. A downwell pump was installed in the geothermal well to supply the plant with unflashed brine. (MHR)

  11. Environmental arsenic contamination and its effect on intelligence quotient of school children in a historic gold mining area Hutti, North Karnataka, India: A pilot study

    Directory of Open Access Journals (Sweden)

    R Manju

    2017-01-01

    Full Text Available Context: Arsenic is a rare crystal element that naturally occurs in all environmental media. A combination of regional and site-specific biogeochemical and hydrological factors governs its dispersion in the environment. It has far reaching consequences on human health. Exposure to arsenic in drinking water has been associated with a decline in intellectual function in children. Aim: The aim of this study is to assess the relationship between exposure to arsenic by drinking water and children's intelligence in Karnataka state, India. Settings and Design: Twenty school children of age 10–14 years from Sandur, Bellary, Karnataka, and from Hutti, Raichur, Karnataka, were categorized as control and study group, respectively. Subjects and Methods: Water samples were collected from both the villages for the analysis of arsenic and fluoride levels. Hair and nail samples were collected from the participants, and the arsenic levels were determined. Intelligence quotient (IQ assessment was done using the Raven's Standard Progressive Matrices. Statistical Analysis Used: Chi-square test, Mann–Whitney U-test, and Fisher's exact test. P< 0.05 was considered statistically significant. Results: There was a significant increase in the arsenic content in the hair and nail samples of children in the study group. The mean IQ tests score in the control group and study group was 30.55 and 17.95, respectively, and this difference was statistically significant. Conclusion: Chronic arsenic exposure could be a possible cause for the reduced IQ scores seen in children residing in Hutti, Raichur District, North Karnataka.

  12. In-Situ Measurements of Surface Elevations in Tail Water Channel for SSG Pilot Plant at Kvitsøy

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Margheritini, Lucia

    This report presents the measurements from the installation of a pressure transducer in the tail water channel at the second proposed position of the SSG pilot plant at the island of Kvitsøy near Stavanger, Norway. The measured data are compared to tide data from other source, and among the concl......This report presents the measurements from the installation of a pressure transducer in the tail water channel at the second proposed position of the SSG pilot plant at the island of Kvitsøy near Stavanger, Norway. The measured data are compared to tide data from other source, and among...

  13. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants.

    Science.gov (United States)

    Wilson, Susan C; Leech, Calvin D; Butler, Leo; Lisle, Leanne; Ashley, Paul M; Lockwood, Peter V

    2013-10-15

    The effects of nutrient and lime additions on antimony (Sb) and arsenic (As) accumulation by native Australian and naturalised plants growing in two contaminated mine site soils (2,735 mg kg(-1) and 4,517 mg kg(-1) Sb; 826 mg kg(-1) and 1606 As mgkg(-1)) was investigated using a glasshouse pot experiment. The results indicated an increase in soil solution concentrations with nutrient addition in both soils and also with nutrient+lime addition for Sb in one soil. Metalloid concentrations in plant roots were significantly greater than concentrations in above ground plant parts. The metalloid transfer to above ground plant parts from the roots and from the soil was, however, low (ratio of leaf concentration/soil concentration≪1) for all species studied. Eucalyptus michaeliana was the most successful at colonisation with lowest metalloid transfer to above ground plant parts. Addition of nutrients and nutrients+lime to soils, in general, increased plant metalloid accumulation. Relative As accumulation was greater than that of Sb. All the plant species studied were suitable for consideration in the mine soil phytostabilisation strategies but lime additions should be limited and longer term trials also recommended.

  14. Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation.

    Science.gov (United States)

    Jana, Ulrike; Chassany, Vincent; Bertrand, Georges; Castrec-Rouelle, Maryse; Aubry, Emmanuel; Boudsocq, Simon; Laffray, Daniel; Repellin, Anne

    2012-11-15

    One of the objectives of this study was to assess the contamination levels in the tailings of an old antimony mine site located in Ouche (Cantal, France). Throughout the 1.3 ha site, homogenous concentrations of antimony and arsenic, a by-product of the operation, were found along 0-0.5 m-deep profiles. Maximum concentrations for antimony and arsenic were 5780 mg kg(-1) dry tailings and 852 mg kg(-1) dry tailings, respectively. Despite the presence of the contaminants and the low pH and organic matter contents of the tailings, several patches of vegetation were found. Botanical identification determined 12 different genera/species. The largest and most abundant plants were adult pines (Pinus sylvestris), birches (Betula pendula) and the bulrush (Juncus effusus). The distribution of the metalloids within specimens of each genera/species was analysed in order to deduce their concentration and translocation capacities. This was the second goal of this work. All plant specimens were highly contaminated with both metalloids. Most were root accumulators with root to shoot translocation factors <1. Whereas contamination levels were high overall, species with both a low translocation factor and a low root accumulation coefficient were identified as suitable candidates for the complete revegetation of the site. Species combining those characteristics were the perennials P. sylvestris, B. pendula, Cytisus scoparius and the herbaceous Plantago major, and Deschampsia flexuosa.

  15. Effect of different plant species in pilot constructed wetlands for wastewater reuse in agriculture

    Directory of Open Access Journals (Sweden)

    Salvatore Barbagallo

    2013-09-01

    Full Text Available In this paper the first results of an experiment carried out in Southern Italy (Sicily on the evapotranspiration (ET and removal in constructed wetlands with five plant species are presented. The pilot plant used for this study is made of twelve horizontal sub-surface flow constructed wetlands (each with a surface area of 4.5 m2 functioning in parallel, and it is used for tertiary treatment of part of the effluents from a conventional municipal wastewater treatment plant (trickling filter. Two beds are unplanted (control while ten beds are planted with five different macrophyte species: Cyperus papyrus, Vetiveria zizanoides, Miscanthus x giganteus, Arundo donax and Phragmites australis (i.e., every specie is planted in two beds to have a replication. The influent flow rate is measured in continuous by an electronic flow meter. The effluent is evaluated by an automatic system that measure the discharged volume for each bed. Physical, chemical and microbiological analyses were carried out on wastewater samples collected at the inlet of CW plant and at the outlet of the twelve beds. An automatic weather station is installed close to the experimental plant, measuring air temperature, wind speed and direction, rainfall, global radiation, relative humidity. This allows to calculate the reference Evapotranspiration (ET0 with the Penman-Monteith formula, while the ET of different plant species is measured through the water balance of the beds. The first results show no great differences in the mean removal performances of the different plant species for TSS, COD and E.coli, ranged from, respectively, 82% to 88%, 60% to 64% and 2.7 to 3.1 Ulog. The average removal efficiency of nutrient (64% for TN; 61 for NH4-N, 31% for PO4-P in the P.australis beds was higher than that other beds. From April to November 2012 ET measured for plant species were completely different from ET0 and ETcontrol, underlining the strong effect of vegetation. The cumulative

  16. Hijacking membrane transporters for arsenic phytoextraction.

    Science.gov (United States)

    LeBlanc, Melissa S; McKinney, Elizabeth C; Meagher, Richard B; Smith, Aaron P

    2013-01-10

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator.

  17. Phycoremediation potential of brown macroalgae species Saccharina latissimi and Laminaria digitata towards inorganic arsenic in a multitrophic pilot-scale experiment

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Cunha, Sara; Fernandes, José

    The presence of organic pollutants and toxic elements in aquatic ecosystems can cause serious problems to the environment and marine organisms and subsequently lead to adverse effects to human health following consumption of contaminated seafood. Hence, technological solutions for the......reduction and mitigation of contaminants in the aquatic food production chain are called upon. The phycoremediation technology is a cost-effective algae-based approach that utilizes the ability of macroalgae to concentrate elements and compounds from the environment and to metabolizevarious molecules in their tissues.......Arsenic (As) is a ubiquitous metalloid found in soils, groundwater, surface water, air, and consequently also in various food items. Arsenic is bioaccumulated in the marine food chain and total arsenic concentrations in the mg/kg range is usually found in marine organisms. The toxicity ofarsenic depends...

  18. MELiSSA Pilot Plant: A facility for ground demonstration of a closed life support system

    Science.gov (United States)

    Godia, Francesc; Fossen, Arnaud; Peiro, Enrique; Gerbi, Olivier; Dussap, Gilles; Leys, Natalie; Arnau, Carolina; Milian, Ernest

    MELiSSA (Micro Ecological Life Support System Alternative) is an international collaborative effort focused on the development of a Life Support System for long-term Space missions. The goals of the MELiSSA loop are the recovery of food, water and oxygen from wastes, i.e. CO2 and organic wastes, using light as a source of energy. It is conceived as a series of compartments, each one performing a specific function within this cycle, inspired in the terrestrial ecological systems. Each one of the compartments is colonized with specific bacteria or higher plants depending on its dedicated function. Therefore, its design and operational conditions should guarantee that only a given specific biological activity takes place in each compartment. Moreover, this has to be done in a controlled manner, both at the subsystems level (i.e., compartments) and at the overall system level (i.e., complete loop). In order to achieve the complete operation of such a Closed Ecological System, in a first step each compartment has to be developed at individual level, and its operation demonstrated under its associated control law. In a second step, the complete loop needs to be integrated by the connection of the different compartments in the gas, loop and solid phases. An extensive demonstration of MELiSSA loop under terrestrial conditions is a mandatory step in the process of its adaptation to space. This is the main goal of the MPP. The demonstration scenario for the MPP is the respiration equivalent of a human being, and production of 20 percent of the diet of one person. To serve this goal, the different compartments of the MELiSSA loop have been designed and sized at the pilot scale level, and further characterized. Nowadays, the focus of the MELiSSA Pilot Plant is on the integration of its compartments. To this end, the integration challenge is concentrated in three compartments devoted to the following functions: nitrification (Compartment 3, an axenic co-culture of Nitrosomonas

  19. Plants increase arsenic in solution but decrease the non-specifically bound fraction in the rhizosphere of an alkaline, naturally rich soil.

    Science.gov (United States)

    Obeidy, Carole; Bravin, Matthieu N; Bouchardon, Jean-Luc; Conord, Cyrille; Moutte, Jacques; Guy, Bernard; Faure, Olivier

    2016-04-01

    We aimed at determining the major physical-chemical processes that drive arsenic (As) dynamic in the rhizosphere of four species (Holcus lanatus, Dittrichia viscosa, Lotus corniculatus, Plantago lanceolata) tested for phytostabilization. Experiments were performed with an alkaline soil naturally rich in As. Composition of the soil solution of planted and unplanted pots was monitored every 15 days for 90 days, with a focus on the evolution of As concentrations in solution and in the non-specifically bound (i.e. easily exchangeable) fraction. The four species similarly increased As concentration in solution, but decreased As concentration in the non-specifically bound fraction. The major part (60%) of As desorbed from the non-specifically bound fraction in planted pots was likely redistributed on the less available fractions of As on the solid phase. A second part (35%) of desorbed As was taken up by plants. The minor part (5%) of desorbed As supplied As increase in solution. To conclude, plants induced a substantial redistribution of As on the less available fractions in the rhizosphere, as expected in phytostabilization strategies. Plants however concomitantly increased As concentration in the rhizosphere solution which may contribute to As transfer through plant uptake and leaching.

  20. Arsenic-induced stress activates sulfur metabolism in different organs of garlic (Allium sativum L.) plants accompanied by a general decline of the NADPH-generating systems in roots.

    Science.gov (United States)

    Ruíz-Torres, Carmelo; Feriche-Linares, Rafael; Rodríguez-Ruíz, Marta; Palma, José M; Corpas, Francisco J

    2017-04-01

    Arsenic (As) contamination is a major environmental problem which affects most living organisms from plants to animals. This metalloid poses a health risk for humans through its accumulation in crops and water. Using garlic (Allium sativum L.) plants as model crop exposed to 200μM arsenate, a comparative study among their main organs (roots and shoots) was made. The analysis of arsenic, glutathione (GSH), phytochelatins (PCs) and lipid peroxidation contents with the activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate-glutathione cycle), and the main components of the NADPH-generating system, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH) was carried out. Data showed a correlation among arsenic accumulation in the different organs, PCs content and the antioxidative response, with a general decline of the NADPH-generating systems in roots. Overall, our results demonstrate that there are clear connections between arsenic uptake, increase of their As-chelating capacity in roots and a decline of antioxidative enzyme activities (catalase and the ascorbate peroxidase) whose alteration provoked As-induced oxidative stress. Thus, the data suggest that roots act as barrier of arsenic mediated by a prominent sulfur metabolism which is characterized by the biosynthesis of high amount of PCs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Pilot plant development of a new catalytic process for improved electrostatic separation of fly-ash in coal fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olivares del Valle, J.; Salvador Martinez, L.; Muniz Baum, B.; Cortes Galeano, V. [University of Seville, Seville (Spain). Chemical and Environmental Engineering Dept.

    1996-12-31

    A new catalytic process for flue gas conditioning in pulverized coal fired power plants is outlined. Vanadium and platinum catalysts specifically prepared on ceramic honeycomb monoliths to oxidize SO{sub 2} into SO{sub 3} have been tested and evaluated at pilot scale. 10 refs., 3 figs., 2 tabs.

  2. Performances and fouling control of a flat sheet membrane in a MBR pilot-plant.

    Science.gov (United States)

    Grélot, A; Grelier, P; Tazi-Pain, A; Lesjean, B; Brüss, U; Grasmick, A

    2010-01-01

    This paper deals with the performance and the optimisation of the hydraulic operating conditions of the A3 Water Solutions flat sheet membrane technology in a MBR pilot-plant to achieve a satisfying fouling control and also a reduction in the required aeration. Two vertically stacked modules were tested at pilot-scale at Anjou Recherche under typical biological operating conditions (mixed liquor suspended solids concentration (MLSS) =10 g/l; sludge retention time (SRT) =28 days; food to microorganism ratio (F/M)=0.12 kg COD/kg MLSS/d). The use of a double-deck and of specific backwashes for this membrane technology enabled to achieve satisfying membrane performances for a net flux of 25 L h(-1) m(-2), 20 degrees C at a low specific aeration demand per membrane surface (SADm = 0.2 Nm(3) h(-1) m(-2)) which corresponds to a specific aeration demand per permeate volume unit (SADp) of 8 Nm(3) air/m(3) permeate, which is lower than reported for many commercial membrane systems. The mixed liquor characteristics (foaming, MLSS concentration) appeared to influence the fouling behaviour of the membranes but no correlation was found with the fouling rate. However, with the new operating conditions, the system is robust and can cope with fouling resulting from biological stress and daily peak flows for MLSS concentrations in the membrane tank up to 18 g/l.

  3. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, K.R. (ed.)

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites. (DLC)

  4. Energy Efficient Solvents for CO2 Absorption from Flue Gas: Vapor Liquid Equilibrium and Pilot Plant Study

    NARCIS (Netherlands)

    Singh, Prachi; van Swaaij, Willibrordus Petrus Maria; Brilman, Derk Willem Frederik

    2013-01-01

    From solvent screening for new, amine based solvents for CO2 recovery from flue gas, two most promising solvent formulations, a 51 wt% New Solvent (NS) and a 26.7% AMP-11.9% HMDA mixture were selected and tested in an industrial pilot plant, mainly to identify the regeneration energy requirement. In

  5. Production of mineral concentrates from animal manure using reverse osmosis : monitoring of pilot plants in 2012-2014

    NARCIS (Netherlands)

    Hoeksma, P.; Buisonjé, de F.E.

    2015-01-01

    From 2009 to 2011 the agricultural, economic and environmental effects of the production and use of mineral concentrates, produced from animal slurry, were studied. Part of the study was the monitoring of the 8 participating full-scale (pilot) plants to assess the chemical composition of the half pr

  6. 10-MWe solar-thermal central-receiver pilot plant: collector subsystem foundation construction. Revision No. 1

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-18

    Bid documents are provided for the construction of the collector subsystem foundation of the Barstow Solar Pilot Plant, including invitation to bid, bid form, representations and certifications, construction contract, and labor standards provisions of the Davis-Bacon Act. Instructions to bidders, general provisions and general conditions are included. Technical specifications are provided for the construction. (LEW)

  7. Pilot plant for the radioactive decontamination of spent oils; Planta piloto para la descontaminacion radiactiva de aceites gastados

    Energy Technology Data Exchange (ETDEWEB)

    Flores E, R.M.; Ortiz O, H.V.; Cisneros L, L.; Lopez G, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work the operation parameters obtained in the laboratory of oil storage are presented, as well as the operations which shape the pilot plant, the design criteria and the basic design of the core equipment of the developed process. Finally, the comparative results obtained the decontamination process of oil are given as well as laboratory scale. (Author)

  8. Pilot plant for production of photovoltaic modules using Brazilian technology; Planta piloto de producao de modulos fotovoltaicos com tecnologia nacional

    Energy Technology Data Exchange (ETDEWEB)

    Moehlecke, Adriano; Zanesco, Izete [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Faculdade de Fisica. Centro Brasileiro para Desenvolvimento da Energia Solar Fotovoltaica - CB-Solar]. E-mail: moehleck@pucrs.br

    2006-07-01

    This paper describes the implantation of a pilot plant for photovoltaic modules production at the Brazilian Center for Development of Photovoltaic Solar Energy placed in the Technological Park of the Catholic University of South Rio Grande, RS, Brazil. The paper presents and discusses a history of the project, the existent infrastructure, the expected results and the continuity proposal.

  9. Production of mineral concentrates from animal manure using reverse osmosis : monitoring of pilot plants in 2012-2014

    NARCIS (Netherlands)

    Hoeksma, P.; Buisonjé, de F.E.

    2015-01-01

    From 2009 to 2011 the agricultural, economic and environmental effects of the production and use of mineral concentrates, produced from animal slurry, were studied. Part of the study was the monitoring of the 8 participating full-scale (pilot) plants to assess the chemical composition of the half pr

  10. DETERMINATION OF SEX HORMONES AND NONYLPHENOL ETHOXYLATES IN THE AQUEOUS MATRIXES OF TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS

    Science.gov (United States)

    Two analytical methods were developed and refined for the detection and quantitation of two groups of endocrine-disrupting chemicals (EDCs) in the liquid matrixes of two pilot-scale municipal wastewater treatment plants. The targeted compounds are seven sex hormones (estradiol, ...

  11. Approach to first principles model prediction of measured WIPP (Waste Isolation Pilot Plant) in-situ room closure in salt

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E.; Fossum, A.F.; Senseny, P.E. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    The discrepancies between predicted and measured Waste Isolation Pilot Plant (WIPP) in-situ Room D closures are markedly reduced through the use of a Tresca flow potential, an improved small strain constitutive model, an improved set of material parameters, and a modified stratigraphy. (author).

  12. Environmental geophysics of the Pilot Plant on the west branch of Canal Creek, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis, L.D.; Miller, S.F.; Daudt, C.R.; Thompson, M.D.; Borden, H.; Benson, M. [Argonne National Lab., IL (United States). Reclamation Engineering and Geosciences Section; Wrobel, J. [Directorate of Safety, Health, and Environment, Aberdeen Proving Ground, MD (United States)

    1994-05-01

    Plans to demolish and remediate the Pilot Plant complex in the Edgewood Area of Aberdeen Proving Ground have served to initiate a series of nonintrusive, environmental-geophysical studies. The studies are assisting in the location and identification of pipes, tanks, trenches, and liquid waste in the subsurface. Multiple databases have been integrated to provide support for detection of underground utilities and to determine the stratigraphy and lithology of the subsurface. The studies were conducted within the double security fence and exterior to the double fence, down gradient toward the west branch of Canal Creek. To determine if contaminants found in the creek were associated with the Pilot Plant, both the east and west banks were included in the study area. Magnetic, conductivity, inductive emf, and ground-penetrating-radar anomalies outline buried pipes, trenches, and various pieces of hardware associated with building activities. Ground-penetrating-radar imagery also defines a paleovalley cut 30 ft into Potomac Group sediments of Cretaceous age. The paleovalley crosses the site between Building E5654 and the Pilot Plant fence. The valley is environmentally significant because it may control the pathways of contaminants. The Pilot Plant complex was used to manufacture CC2 Impregnite and incapacitating agents; it also served as a production facility for nerve agents.

  13. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

  14. Synthesis gas/H{sub 2} via SCT-CPO. A pilot-plant experience

    Energy Technology Data Exchange (ETDEWEB)

    Basini, L.; Cimino, R.; Guarinoni, A. [Eni S.p.A., Divisione Refining and Marketing, Direzione Ricerca e Sviluppo Tecnologico, San Donato Milanese (Italy); Campanelli, G.; Ficili, C.; Ponzo, R. [Eni S.p.A., Divisione Refining and Marketing, Direzione Ricerca e Sviluppo Tecnologico, San Filippo del Mela (Italy)

    2006-07-01

    Hydrogen and Synthesis Gas have been extensively utilised for more than 70 years in chemical and refinery industries. Their uses are becoming today more complex being influenced by strategic, political, economic and sustainability considerations. Clean fuel production and heavy residues utilisation, Gas To Liquid initiatives and the desired but not yet accomplished Electric Energy production with Fuel Cells, are issues whose development and costs would benefit from innovations in Hydrogen and Synthesis Gas production and utilisation. The existing technological needs will be briefly discussed considering a new H{sub 2}/Synthesis gas production method, the Short Contact Time - Catalytic Partial Oxidation (SCT-CPO). This has been studied since the early '90es by performing an extensive work at lab-scale and in bench scale levels and finally scaling-up the technology. In 2001 Snamprogetti (the engineering company of the ENI group) and Haldor Topsoe A/S successfully operated a first pilot plant in Houston, TX and in 2005 EniTecnologie realised and operated a second multi-purpose plant in Milazzo, Sicily. The multi-purpose plant includes all the main operation units of an industrial realisation and allows a full simulation of real conditions. Moreover it is designed to process a wide class of hydrocarbons (ranging from NG to liquid and heavy fuels). This work reviews its features and capabilities of providing useful information for the development of technological applications. (orig.)

  15. Radiation effects-prevalence of contributory risk factors a pilot study in Visakhapthnam steel plant

    Energy Technology Data Exchange (ETDEWEB)

    Lakshman rao, K. V.

    2004-07-01

    Integrated Steel Plants contribute significant air pollution, water pollution and solid waste generation. Diverse occupational health hazards present is steel industry pose ill effects to the industrial workers. Occupational health services and research center (OHS and RC) of this plant established in the year 1992 to protect the health and well-being of all the employees working in different occupations. the primary role OHS and RC is to conduct periodical medical examinations, monitoring of the working environments, suggest the suitable personal protective equipment to the workers, evaluate risk factors, work practices, risk management and industrial toxicological studies. Dissemination of information related to occupational health and safety to the working population through regular educational sessions at the workplaces as at training and development center (T and DC) is also part of our services. The proneness for effects of exposure to ionizing radiation is enhanced by various factors related to the family history of chronic diseases, nutritional status of the individuals, the lifestyle factors apart from psycho-social factors like illiteracy, ignorance, negligence and inadequate utilization of personal protective equipment (PPE) at workplace. To evaluate the prevalence of such contributory risk factors, a pilot study has been conducted in Visakhapatnam Steel Plant. The data is obtained through routine periodical medical examination of workers at the Occupational Health Services Center through standard format. The study revealed statistically high prevalence of the risk factors and indicated the necessity of intensifying primary prevention methods in addition to environmental control and usage of PPE. (Author)

  16. Evapotranspiration from pilot-scale constructed wetlands planted with Phragmites australis in a Mediterranean environment.

    Science.gov (United States)

    Milani, Mirco; Toscano, Attilio

    2013-01-01

    This article reports the results of evapotranspiration (ET) experiments carried out in Southern Italy (Sicily) in a pilot-scale constructed wetland (CW) made of a combination of vegetated (Phragmites australis) and unvegetated sub-surface flow beds. Domestic wastewater from a conventional wastewater treatment plant was used to fill the beds. Microclimate data was gathered from an automatic weather station close to the experimental plant. From June to November 2009 and from April to November 2010, ET values were measured as the amount of water needed to restore the initial volume in the beds after a certain period. Cumulative reference evapotranspiration (ET(0)) was similar to the cumulative ET measured in the beds without vegetation (ET(con)), while the Phragmites ET (ET (phr) ) was significantly higher underlining the effect of the vegetation. The plant coefficient of P. australis (K(p)) was very high (up to 8.5 in August 2009) compared to the typical K(c) for agricultural crops suggesting that the wetland environment was subjected to strong "clothesline" and "oasis" effects. According to the FAO 56 approach, K(p) shows different patterns and values in relation to growth stages correlating significantly to stem density, plant height and total leaves. The mean Water Use Efficiency (WUE) value of P. australis was quite low, about 2.27 g L(-1), probably due to the unlimited water availability and the lack of the plant's physiological adaptations to water conservation. The results provide useful and valid information for estimating ET rates in small-scale constructed wetlands since ET is a relevant issue in arid and semiarid regions. In these areas CW feasibility for wastewater treatment and reuse should also be carefully evaluated for macrophytes in relation to their WUE values.

  17. Historical Background on the Performance Assessment for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    RECHARD, ROBERT P

    1999-10-21

    In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the U.S. Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a Research and development facility for the safe management storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and after site selection, the U.S. Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance. assessment conducted in 1996, which is summarized in this special issue of Reliability Engineering and System Safety. This performance assessment was the culmination of four preliminary performance assessments conducted between 1989 and 1992. This paper provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project.

  18. A formal expert judgment procedure for performance assessments of the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Trauth, K.M. [Sandia National Labs., Albuquerque, NM (United States); Guzowski, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States). Business Administration & Economics Div.

    1994-09-01

    The Waste Isolation Pilot Plant (WIPP) is an experimental facility located in southeastern New Mexico. It has been designed to determine the feasibility of the geologic disposal of defense-generated transuranic waste in a deep bedded-salt formation. The WIPP was also designed for disposal and will operate in that capacity if approved. The WIPP Performance Assessment Department at Sandia National Laboratories has been conducting analyses to assess the long-term performance of the WIPP. These analyses sometimes require the use of expert judgment. This Department has convened several expert-judgment panels and from that experience has developed an internal quality-assurance procedure to guide the formal elicitation of expert judgment. This protocol is based on the principles found in the decision-analysis literature.

  19. The measurement of radon working levels at a mineral separation pilot plant in Cox's Bazar, Bangladesh.

    Science.gov (United States)

    Hamid Khan, M A; Chowdhury, M S

    2003-10-01

    Beach Sand Exploitation Centre at Cox's Bazar, Bangladesh, produces commercial grade concentrations of magnetite, ilmenite, zircon, etc., from the high-grade accumulations available along the beach and foredune of Cox's Bazar. Solid state nuclear track detectors (CR-39 foils) were used to determine indoor radon concentration of radioactive mineral sands and the technologically enhanced radiation level inside the pilot plant of the Centre. It is found that the concentrations at processed mineral stock areas are high, and the maximum concentration was found to be 2,103 +/- 331 Bq m(-3) (0.23 +/- 0.03 WL). The indoor concentration of radon and its decay products in the raw sand stock area and at other locations was in the range of 116 +/- 27 Bq m(-3) (0.03 +/- 0.003 WL) to 2,042 +/- 233 Bq m(-3) (0.22 +/- 0.03 WL).

  20. Characterization of subjective uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    HELTON,JON CRAIG; MARTELL,MARY-ALENA; TIERNEY,MARTIN S.

    2000-05-18

    The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191,40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of subjective uncertainty is discussed, including assignment of distributions, uncertain variables selected for inclusion in analysis, correlation control, sample size, statistical confidence on mean complementary cumulative distribution functions, generation of Latin hypercube samples, sensitivity analysis techniques, and scenarios involving stochastic and subjective uncertainty.

  1. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.

    2011-07-01

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  2. Waste Isolation Pilot Plant disposal phase supplemental environmental impact statement. Implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Implementation Plan for the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement (SEIS-II) has two primary purposes: (1) To report on the results of the scoping process (2) To provide guidance for preparing SEIS-II SEIS-II will be the National Environmental Policy Act (NEPA) review for WIPP`s disposal phase. Chapter 1 of this plan provides background on WIPP and this NEPA review. Chapter 2 describes the purpose and need for action by the Department of Energy (hereafter DOE or the Department), as well as a description of the Proposed Action and alternatives being considered. Chapter 3 describes the work plan, including the schedule, responsibilities, and planned consultations with other agencies and organizations. Chapter 4 describes the scoping process, presents major issues identified during the scoping process, and briefly indicates how issues will be addressed in SEIS-II.

  3. Evaluation of decommissioning alternatives for the Pilot Plant Complex, Aberdeen Proving Ground

    Energy Technology Data Exchange (ETDEWEB)

    Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report presents an evaluation of four decommissioning alternatives for the Pilot Plant Complex (PPC), an inactive chemical weapons research, development, and production facility consisting of nine buildings located in the Edgewood Area of the Aberdeen Proving Ground in Maryland. Decommissioning the PPC involves six steps: (1) assessing existing conditions; (2) dismantling the aboveground portions of the buildings (including the floor slabs, paved roads, and sidewalks within the PPC); (3) reducing the size of the demolition debris and sealing the debris in containers for later testing and evaluation; (4) testing and evaluating the debris; (5) conducting site operation and maintenance activities; and (6) recycling or disposing of the debris with or without prior treatment, as appropriate.

  4. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-07-01

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico.

  5. Use of phosphorus release batch tests for modelling an EBPR pilot plant

    DEFF Research Database (Denmark)

    Tykesson, E.; Aspegren, H.; Henze, Mogens

    2002-01-01

    The aim of this study was to evaluate how routinely performed phosphorus release tests could be used when modelling enhanced biological phosphorus removal (EBPR) using activated sludge models such as ASM2d. A pilot plant with an extensive analysis programme was used as basis for the simulations....... Without any calibration the prediction of phosphorus removal was poor and the initial release rates from the simulations were not similar to those found from the laboratory tests. A period with low organic loading was chosen as a calibration period. In this period averages of daily influent measurements...... were used as influent parameters. First, calibration was performed in order to fit effluent COD and MLVSS in the sludge. Next, the phosphorus content in the sludge was decreased to the measured level by decreasing the fermentation rate. Finally, the initial phosphorus release rate was calculated from...

  6. Distillation Parameters for Pilot Plant Production of Laurus nobilis Essential oil

    Directory of Open Access Journals (Sweden)

    Temel Özek

    2012-01-01

    Full Text Available Essential oils have increasing importance in flavour and fragrance industries. They are obtained by distillation techniques. In order to produce an oil with market potential its optimum production parameters have to be well known prior to its commercial production. Determination of the steam distillation parameters of commercially available Laurel leaves oil in pilot plant scale is described. The effect of steam rate and processing time play a major role in distillation of essential oils. Distillation speed was high in the beginning of the process, then gradually reduced as the distillation proceeded. The main component of the oil of Laurel leaf oil was 1,8-cineole accumulating significantly in the early fractions.

  7. Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Ladewig, T.D.

    1981-03-01

    The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

  8. Progress in long-lived radioactive waste management and disposal at the waste isolation pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Triay, I.R.; Matthews, M.L. [U.S. Dept. of Energy Carlsbad Field Office, New Mexico (United States); Eriksson, L.G. [GRAM, Inc., Albuquerque, NM (United States)

    2001-07-01

    The Salado Formation is buried more than 350 m beneath the sands and cacti of the Chihuahuan Desert and hosts the Waste Isolation Pilot Plant (WIPP) deep geological repository at a depth of approximately 650 m. Since the WIPP repository is at least 10 years ahead of any other repository development for long-lived radioactive waste, other radioactive waste management organizations and institutions could benefit both scientifically and politically from sharing the lessons learned at WIPP. Benefits would include using existing expertise and facilities to cost-effectively address and solve program-specific issues and to train staff. The characteristics of the WIPP repository and infrastructure are described in this paper. (author)

  9. Environmental management assessment of the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This document contains the results of the Environmental Management Assessment of the Waste Isolation Pilot Plant (WIPP). This Assessment was conducted by EH-24 from July 19 through July 30, 1993 to advise the Secretary of Energy of the adequacy of management systems established at WIPP to ensure the protection of the environment and compliance with Federal, state, and DOE environmental requirements. The mission of WIPP is to demonstrate the safe disposal of transuranic (TRU) waste. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the management and operating contractors. This assessment revealed that WIPP`s environmental safety and health programs are satisfactory, and that all levels of the Waste Isolation Division (WID) management and staff consistently exhibit a high level of commitment to achieve environmental excellence.

  10. Waste Isolation Pilot Plant site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) monitors a comprehensive set of parameters in order to detect any potential environmental impacts and establish baselines for future quantitative environmental impact evaluations. Surface water and groundwater, soil, and biotics are measured for background radiation. Nonradiological environmental monitoring activities include meteorological, air quality, soil properties, and the status of the local biological community. Ecological studies focus on the immediate area surrounding the site with emphasis on the salt storage pile, whereas baseline radiological surveillance covers a broader geographic area including nearby ranches, villages, and cities. Since the WIPP is still in a preoperational state, no waste has been received; therefore, certain elements required by Order DOE 5400.1 are not presented in this report. 15 figs. 19 tabs.

  11. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E.W. [Science Applications International Corp., Oak Ridge, TN (United States); Wu, C.F.; Goff, T.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1993-12-31

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from a sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.

  12. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Holt, R.M.; Powers, D.W. (IT Corporation (USA))

    1990-12-01

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

  13. Synthane Pilot Plant, Bruceton, Pa. Run report No. 1. Operating period: July--December 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Test Directive No. 1 provided the operating conditions and process requirements for the first coal to be gasified in the Synthane Pilot Plant. Rosebud coal, which is a western sub-bituminous coal, was chosen by DOE because of its non-caking properties and reactivity. This report summarizes and presents the data obtained. The pilot plant produced gas for a total of 228 hours and gasified 709 tons of Rosebud coal from July 7 to December 20, 1976. Most of this period was spent in achieving process reliability and learning how to operate and control the gasifier. A significant number of equipment and process changes were required to achieve successful operation of the coal grinding and handling facilities, the Petrocarb feed system, and the char handling facilities. A complete revision of all gasifier instrumentation was necessary to achieve good control. Twenty-one test runs were accomplished, the longest of which was 37 hours. During this run, carbon conversions of 57 to 60% were achieved at bed temperatures of 1450 to 1475/sup 0/F. Earlier attempts to operate the gasifier with bed temperatures of 1550 and 1650/sup 0/F resulted in clinker formation in the gasifier and the inability to remove char. Test Directive No. 1 was discontinued in January 1977, without meeting the directive's goals because the process conditions of free fall of coal feed into the Synthane gasifier resulted in excessive quantities of tar and fines carryover into the gas scrubbing area. Each time the gasifier was opened after a run, the internal cyclone dip leg was found to be plugged solidly with hard tar and fines. The gas scrubbing equipment was always badly fouled with char and tar requiring an extensive and difficult cleanout. Packing in the gas scrubber had to be completely changed twice due to extensive fouling.

  14. PROJECT MANAGEMENT MATURITY: AN ASSESSMENT OF MATURITY FOR DEVELOPING PILOT PLANTS

    Directory of Open Access Journals (Sweden)

    H.K. Mittermaier

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Despite the current economic climate, the South African mining and engineering industry is experiencing a very promising future, with a large number of capital projects in the offing. It is inevitable that pilot plant development will form part of this future as a risk mitigation technique. This study found that, even though the terms ‘pilot plant’ and ‘project management maturity’ are familiar within the industry, no link between these two could be found in the literature. A number of maturity models exist; and one developed by PMSolutions was selected to perform an assessment of the current level of project management maturity within the South African mining and engineering industry pertaining to the development of pilot plants. The Delphi technique was used to determine the views of experts in the South African mining, mineral processing, petrochemical, nuclear, and mechanical sectors regarding this maturity. A significant difference was observed between the current level of maturity and the required level of maturity in all but one of the nine knowledge areas defined by the Project Management Institute. The two knowledge areas of project time and risk management showed significant differences between current and required maturity levels, and were identified as key areas for improvement.

    AFRIKAANSE OPSOMMING: Ten spyte van die huidige ekonomiese klimaat ondervind die Suid-Afrikaanse mynbou- en ingenieursbedryf ’n baie bemoedigende toekoms, met ’n groot aantal kapitaalprojekte in die vooruitsig. Ten einde risiko’s te verlaag, sal die ontwikkeling van loodsaanlegte noodwendig deel van hierdie toekoms uitmaak. Daar is gevind dat, alhoewel die terme ‘loodsaanleg’ en ‘projekbestuur volwassenheid’ in die nywerheid bekend is, geen skakeling van hierdie twee terme in die literatuur opgespoor kon word nie. ’n Aantal volwassenheid modelle bestaan; en een wat deur PMSolutions ontwikkel is, is gekies om

  15. The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents.

    Science.gov (United States)

    Degola, Francesca; Fattorini, Laura; Bona, Elisa; Sprimuto, Christian Triscari; Argese, Emanuele; Berta, Graziella; Sanità di Toppi, Luigi

    2015-07-01

    Over time, anthropogenic activities have led to severe cadmium (Cd) and arsenic (As) pollution in several environments. Plants inhabiting metal(loid)-contaminated areas should be able to sequester and detoxify these toxic elements as soon as they enter roots and leaves. We postulated here that an important role in protecting plants from excessive metal(loid) accumulation and toxicity might be played by arbuscular mycorrhizal (AM) fungi. In fact, human exploitation of plant material derived from Cd- and As-polluted environments may lead to a noxious intake of these toxic elements; in particular, a possible source of Cd and As for humans is given by cigarette and cigar smoke. We investigated the role of AM fungus Funneliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler in protecting Nicotiana tabacum L. (cv. Petit Havana) from the above-mentioned metal(loid) stress. Our findings proved that the AM symbiosis is effective in increasing the plant tissue content of the antioxidant glutathione (GSH), in influencing the amount of metal(loid)-induced chelators as phytochelatins, and in reducing the Cd and As content in leaves and roots of adult tobacco plants. These results might also prove useful in improving the quality of commercial tobacco, thus reducing the risks to human health due to inhalation of toxic elements contained in smoking products.

  16. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2004-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic

  17. Ana insect model for assessing arsenic toxicity: Arsenic elevated glutathione content in the musca domestica and trichoplusia ni

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, K.; Pardini, R.S. [Univ. of Nevada, Reno, NV (United States)

    1995-12-01

    Throughout history, arsenic has acquired an unparalled reputation as a poison. Arsenic was used as a poison as early as 2000 B.C. The toxicity of arsenic (As) extends to mammals, fish, insects, plants and fungi. According to epidemiological evidence, inorganic arsenic compounds have been strongly suggested as human carcinogens. Human exposure to arsenic through various means is correlated with an increased incidence of skin, lung, and possibly liver cancers. Inorganic trivalent arsenic is systematically more poisonous than the pentavalent form and it is possible that pentavalent arsenic is reduced to the trivalent form before exerting any toxic effects. This study focuses on the potential to use two insect species, the housefly, Musca domestica and the cabbage looper moth, Trichoplusia ni, and a model for the study of arsenic toxicity. After 48 hours of exposure to Arsenic, a significant induction of Glutathione level and subsequent decrease in the level of GSSG in both species were observed. 21 refs., 2 figs., 1 tab.

  18. [Pathways of arsenic uptake in prokaryotic and eukaryotic cells].

    Science.gov (United States)

    Lis, Paweł; Litwin, Ireneusz; Maciaszczyk-Dziubińska, Ewa

    2010-01-01

    Mechanisms of arsenic uptake and detoxification are present in all studied organisms. These mechanisms are considerably well described in unicellular organisms such as bacterium Escherichia coli and baker's yeast Saccharomyces cerevisiae, still leaving much to be revealed in multicellular organisms. Full identification of arsenic uptake and detoxification is of great importance. This knowledge can be very helpful in improving effectiveness of arsenic-containing drugs used in chemotherapy of parasitoses as well as in treatment of acute promielyocytic leukemia. Increased proficiency of bioremediation of arsenic-contaminated soils can be obtained by using plants hyperaccumulating arsenic. This kind of plants can be engineered by modulating expression levels of genes encoding arsenic transporters. The same technique may be used to decrease levels of accumulated arsenic in crops. The aim of this paper is to review current knowledge about systems of arsenic uptake in every studied organism--from bacteria to human.

  19. Arsenic uptake by Lemna minor in hydroponic system.

    Science.gov (United States)

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.

  20. Removal of the arsenic from contaminated groundwater with use of the new generation of MicroDrop Aqua system

    DEFF Research Database (Denmark)

    Kowalski, Krzysztof; Søgaard, Erik Gydesen

    2012-01-01

    The results from a new pilot scale plant of the MicroDrop Aqua arsenic removal technology are introduced. The technology is based on the employing of electrochemical iron dissolution and efficient aeration prior to sand filtration. The pilot treatment was used to study effectiveness of iron release...... in an electro-dissolution process that is taking place in an iron generator. It was found that there is a need of some extra time to reach a state of steady iron release and that could not be achieved within a short period of 10-20 minutes. The pilot plant proved to be able to remove arsenic to value below 5μg....../L and it has been shown that the process efficiency depends on the applied current. Moreover, it was found that iron accumulation in the sand filter had a positive effect on the arsenic removal activity and it shall be considered in future tests. The presented method enables efficiently, without chemical...

  1. Application of the micro-PIXE technique for analyzing arsenic in biomat and lower plants of lichen and mosses around an arsenic mine site, at Gunma, Japan

    Science.gov (United States)

    Ohnuki, T.; Sakamoto, F.; Kozai, N.; Samadfam, M.; Sakai, T.; Kamiya, T.; Satoh, T.; Oikawa, M.

    2002-05-01

    Microhabitats of bacteria (biomat) and lower plants, such as lichen and mosses, are known to accumulate hazardous elements. Since the concentration of hazardous elements in the environment is quite low, we have applied the in-air μ-PIXE (particle induced X-ray emission) system developed in the TIARA facility of JAERI, which has low concentration detection limit of ppm, to measure As, one of the hazardous elements, distributions in biomat, lichen and mosses observed around an abandoned As mine site in Gunma, Japan to elucidate the applicability of these biomat and lower plants as bio-indicators of As. Spatial distributions of As, Fe, Si and S in all biomat, lichen and moss collected within 3 m from the mine entrance indicate that As is localized, and is associated with silicate and Fe-containing compounds. In addition, the intensity ratio of peak area for As to Fe in μ-PIXE spectrum of the moss collected from the concrete wall at 3 m downstream of the mine water discharge position is different from those of the lower plants on the rock near the closed entrance, but is the same as that of biomat formed at the mine water discharge position. This indicates that As trapped by the moss on the concrete wall probably has the same origin as the biomat. It is concluded that application of μ-PIXE analysis to the measurement of As in the lower plants and biomat gives not only the distribution of the hazardous element of As, but also the information of the origin.

  2. Arsenic transport by zebrafish aquaglyceroporins

    Directory of Open Access Journals (Sweden)

    Landfear Scott M

    2009-11-01

    Full Text Available Abstract Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII. However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII and antimonite (SbIII was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were named aqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye

  3. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.

    Science.gov (United States)

    Yu, Huan-Yun; Ding, Xiaodong; Li, Fangbai; Wang, Xiangqin; Zhang, Shirong; Yi, Jicai; Liu, Chuanping; Xu, Xianghua; Wang, Qi

    2016-08-01

    Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role.

  4. Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina).

    Science.gov (United States)

    Mokgalaka-Matlala, Ntebogeng S; Flores-Tavizón, Edith; Castillo-Michel, Hiram; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2008-01-01

    The effects of arsenite [As(III)] and arsenate [As(V)] on the growth of roots, stems, and leaves and the uptake of arsenic (As), micro- and macronutrients, and total amylolytic activity were investigated to elucidate the phytotoxicity of As to the mesquite plant (Prosopis juliflora x P. velutina). The plant growth was evaluated by measuring the root and shoot length, and the element uptake was determined using inductively coupled plasma optical emission spectroscopy. The root and leaf elongation decreased significantly with increasing As(III) and As(V) concentrations; whereas, stem elongation remained unchanged. The As uptake increased with increasing As(III) or As(V) concentrations in the medium. Plants treated with 50 mg/L As(III) accumulated up to 920 mg/kg dry weight (d wt) in roots and 522 mg/kg d wt in leaves, while plants exposed to 50 mg/L As(V) accumulated 1980 and 210 mg/kg d wt in roots and leaves, respectively. Increasing the As(V) concentration up to 20 mg/L resulted in a decrease in the total amylolytic activity. On the contrary, total amylolytic activity in As(III)-treated plants increased with increasing As concentration up to 20 mg/L. The macro- and micronutrient concentrations changed in As-treated plants. In shoots, Mo and K were reduced but Ca was increased, while in roots Fe and Ca were increased but K was reduced. These changes reduced the size of the plants, mainly in the As(III)-treated plants; however, there were no visible sign of As toxicity.

  5. Assessing the Impact of a Vinasse Pilot Plant Scale-Up on the Key Processes of the Ethanol Supply Chain

    Directory of Open Access Journals (Sweden)

    Rocio Ramos-Hernández

    2016-01-01

    Full Text Available One of the byproducts generated in the cane sugar production is molasses, which is used for ethanol distillation. However, one of the problems of distilleries is vinasse. Vinasse is highly water pollutant and is dumped untreated in lakes or rivers and damages the environment. The company FALA developed a pilot plant that uses vinasse to produce a type of livestock feed called MD60. In this paper, the impact of the pilot plant’s scale-up in the key processes of the company’s supply chain is analyzed. With the help of a sensitivity analysis, this study finds the values that would allow the company to improve its order fulfillment indicator and to increase profits, assuming an expected demand by the introduction of this new product into the market. The results show that (1 the pilot plant fulfills 32% of the orders, (2 according to the current vinasse storage capacity, it is possible to fulfill up to 77% of the orders by scaling up the pilot plant, (3 to satisfy 100% of the orders, it is necessary to use all the vinasse generated, and (4 the highest profit is reached by processing all the vinasse and by considering the upper sale price.

  6. Arsenic speciation in rice paddy soils

    Science.gov (United States)

    Arsenic can undergo several chemical and microbial transformations in soil, including oxidation/reduction, methylation/demethylation, and volatilization, which could impact arsenic bioavailability for plant uptake. An experiment was conducted in field plots at Stuttgart, AR to determine whether arse...

  7. Synthane Pilot Plant, South Park Township, Pennsylvania. Run report No. 2-DB: operating period September 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This report covers the operation of the Synthane Coal Gasification Pilot Plant, South Park Township, Allegheny County, Pennsylvania from September 1977 through September 1978. The facility is owned by the United States Government and operated by C-E Lummus. Test Directive No. 2-DB directed the plant be operated with Illinois No. 6 coal from the River King Mine of the Peabody Coal Company at a pressure of 600 psig. Concurrent pretreater/gasifier operation was to take place at coal feed rates from 1.5 to 2.5 tons/hour. Gas was produced for 182 hours and 1,100 tons of coal were fed to the pretreater and gasifier. Continuous operation of up to 56 hours and carbon conversions based on char of up to 72% were achieved. This successful operation demonstrates that coal gasification via the Synthane Process is viable. Additional data are required for the design of a commercial facility; however, the data obtained to date are adequate to recommend improvements and modifications to the Synthane Process Pilot Plant to increase on stream time efficiency. The successful operation of the pilot plant with Illinois No. 6 coal demonstrates the feasibility of the Synthane Pilot Plant to process a caking type of coal. The ability to successfully pretreat a caking coal at high pressure in a plant of this size is a first and a direct result of the successful operation of the Synthane Process. Other similar type processes operated to date require pretreatment of a caking coal at atmospheric pressure with little or no recovery of the gases or heat produced during pretreatment.

  8. Year-round phytofiltration lagoon assessment using Pistia stratiotes within a pilot-plant scale biorefinery.

    Science.gov (United States)

    Olguín, Eugenia J; García-López, Daniel A; González-Portela, Ricardo E; Sánchez-Galván, Gloria

    2017-08-15

    Phytofiltration lagoons are phytoremediation technologies suitable for tropical and sub-tropical regions requiring cost-effective and echo-friendly technologies. A biorefinery of fourth generation has been implemented at pilot plant level in Xalapa, Mexico, and the phytofiltration lagoon, being the first module for provision of treated water and plant biomass for biofuel production plays a key role. The aim of this work was to evaluate the performance of such phytofiltration lagoon with a working volume of 13,000 L for the removal of nutrients from an urban river polluted with domestic wastewater and the biomass productivity of the macrophyte Pistia stratiotes, during five different experimental periods, comprising 42 days each one. The maximum absolute growth rates (AGR, gdwday(-1)) registered for P. stratiotes during the Aug-Oct '15 and the March-Apr '16 and Apr-May '16 period were in the range of 13.51±2.66 to 16.54±2.02gdwday(-1). The average biomass productivity was 5.808gdwm(-2)day(-1). Productivities were similar during the periods of Aug-Oct '15, Mar-Apr '16 and Apr-May '16 and significantly higher (pbiorefinery for providing biomass year-round and for treating the polluted water very effectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Demonstration Plant Equipment Design and Scale-Up from Pilot Plant of a Leaching and Solvent Extraction Process

    Directory of Open Access Journals (Sweden)

    Fátima Arroyo

    2015-05-01

    Full Text Available Germanium recovery from coal fly ash by hydrometallurgical procedures was studied at the pilot scale (5 kg of fly ash/h. Results were used to design the equipment of a demonstration-sized plant (200 kg of fly ash/h. The process is based on hydrometallurgical operations: firstly a germanium extraction from fly ash by leaching and a consequent Ge separation from the other elements present in the solution by solvent extraction procedures. Based on the experimental results, mass balances and McCabe-Thiele diagrams were applied to determine the number of steps of the solvent extraction stage. Different arrangements have been studied and a countercurrent process with three steps in extraction and six steps in elution was defined. A residence time of 5 min was fixed in both the extraction and elution stages. Volumetric ratios in extraction and stripping were: aqueous phase/organic phase = 5 and organic phase/stripping phase = 5, so a concentration factor of 25 is achieved. Mixers and decanters were completely defined. The maximum extracted and eluted germanium was estimated and a global efficiency of 94% was achieved. The cost-effectiveness of the equipment was estimated using the Lang factors.

  10. Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.)

    Energy Technology Data Exchange (ETDEWEB)

    Bondada, Bhaskar R.; Tu, Shuxin; Ma, Lena Q

    2004-10-01

    The fact that heavy metals can enter various domains of the plant system through foliar pathways spurred us to explore if the fronds of the Chinese brake fern (Pteris vittata L.), a hyperaccumulator of arsenic, a carcinogenic metalloid, was proficient in absorbing arsenic in the form of sprays. The specific objective of this study was to investigate the impact of frond age, form of arsenic, and time of application on the absorption of foliar-applied arsenic by the brake fern; also examined were the effects of foliar sprays on surface ultrastructure and arsenic speciation in the frond following absorption. Foliar sprays of different arsenic concentrations (0, 50, 100, 200, and 400 ppm) were applied to young and fertile fronds. A positive linear relationship existed between arsenic concentration and absorption; the arsenic concentration of fronds increased from 50 to 200 ppm. Time-course analysis with excised pinnae indicated an initial linear increase followed by a plateau at 48 h. The young fronds with immature sori absorbed more arsenic (3100 ppm) than the fertile mature fronds (890 ppm). In the frond, the arsenic absorption was greatest in the lamina of the pinnae followed by the sori and the rachis. Applying arsenic during night (20:00-22:00 h) or afternoon (12:00-14:00 h) resulted in greater absorption of arsenic than the application in the morning (08:00-10:00 h). The arsenic absorption was greater through abaxial surfaces than through adaxial surfaces. The brake fern absorbed more arsenic when it was applied in the form of arsenite. Regardless of the form of arsenic and the surface it was applied to, arsenic occurred as arsenite, the reduced and the most toxic form of arsenic, after having been absorbed by the fronds. Scanning electron microscopy revealed no surface morphological alterations following all arsenic sprays. The study unequivocally illustrated that the Chinese brake fern absorbed foliar-applied arsenic with great efficiency. Consequently, the

  11. Enhanced Photosynthesis and Carbon Metabolism Favor Arsenic Tolerance in Artemisia annua, a Medicinal Plant as Revealed by Homology-Based Proteomics

    Directory of Open Access Journals (Sweden)

    Rashmi Rai

    2014-01-01

    Full Text Available This paper provides the first proteomic evidence of arsenic (As tolerance and interactive regulatory network between primary and secondary metabolism in the medicinal plant, Artemisia annua. While chlorophyll fluorescence and photosynthetic rate depicted mild inhibition, there was a significant enhancement in PSI activity, whole chain, ATP, and NADPH contents in 100 μM As treatments compared to the control plants. However, a decrease in the above variables was recorded under 150 μM treatments. Proteomic decoding of the survival strategy of A. annua under As stress using 2-DE followed by MALDI-MS/MS revealed a total of 46 differentially expressed protein spots. In contrast to other plants where As inhibits photosynthesis, A. annua showed appreciable photosynthetic CO2 assimilation and allocation of carbon resources at 100 μM As concentration. While an increased accumulation of ATP synthase, ferredoxin-NADP(H oxidoreductase, and FeS-rieske proteins supported the operation of cyclic electron transport, mdr ABC transporter protein and pcs gene might be involved in As detoxification. The most interesting observation was an increased accumulation of LEAFY like novel protein conceivably responsible for an early onset of flowering in A. annua under As stress. This study not only affirmed the role of energy metabolism proteins but also identified potential candidates responsible for As tolerance in plants.

  12. Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand.

    Science.gov (United States)

    Chintakovid, Watchara; Visoottiviseth, Pornsawan; Khokiattiwong, Somkiat; Lauengsuchonkul, Siriporn

    2008-02-01

    Nugget marigold, a triploid hybrid between American (Tagetes erecta L.) and French (Tagetes patula) marigolds, is a marketed flowering plant with a good ability in arsenic phytoremediation. During field trial in an arsenic-polluted area in Thailand, arsenic was found mostly in leaves (46.2%) while flowers contained the lowest arsenic content (5.8%). Arsenic species in aqueous extracts of nugget marigolds were determined by HPLC-UV-HG-QF-AAS. Inorganic arsenics, arsenite and arsenate, were the main arsenic chemical species found in roots, stems, and leaves of marigolds with accumulated arsenic. Nugget marigolds from experimental plots not only accumulated high levels of arsenic but also grew well in arsenic-contaminated areas. Phosphate fertilizer enhanced arsenic uptake when the plants were in the flowering stage. Arsenic remediation using nugget marigolds could also provide economic benefits to the remediators through marketing flowers. Therefore, marigolds should be considered as a potential economic crop for phytoremediation.

  13. Production characteristics of lettuce Lactuca sativa L. in the frame of the first crop tests in the Higher Plant Chamber integrated into the MELiSSA Pilot Plant

    Science.gov (United States)

    Tikhomirova, Natalia; Lawson, Jamie; Stasiak, Michael; Dixon, Mike; Paille, Christel; Peiro, Enrique; Fossen, Arnaud; Godia, Francesc

    Micro-Ecological Life Support System Alternative (MELiSSA) is an artificial closed ecosystem that is considered a tool for the development of a bioregenerative life support system for manned space missions. One of the five compartments of MELiSSA loop -Higher Plant Chamber was recently integrated into the MELiSSA Pilot Plant facility at Universitat Aut`noma deo Barcelona. The main contributions expected by integration of this photosynthetic compartment are oxygen, water, vegetable food production and CO2 consumption. Production characteristics of Lactuca sativa L., as a MELiSSA candidate crop, were investigated in this work in the first crop experiments in the MELiSSA Pilot Plant facility. The plants were grown in batch culture and totaled 100 plants with a growing area 5 m long and 1 m wide in a sealed controlled environment. Several replicates of the experiments were carried out with varying duration. It was shown that after 46 days of lettuce cultivation dry edible biomass averaged 27, 2 g per plant. However accumulation of oxygen in the chamber, which required purging of the chamber, and decrease in the food value of the plants was observed. Reducing the duration of the tests allowed uninterrupted test without opening the system and also allowed estimation of the crop's carbon balance. Results of productivity, tissue composition, nutrient uptake and canopy photosynthesis of lettuce regardless of test duration are discussed in the paper.

  14. Spatial mapping of lead, arsenic, iron, and polycyclic aromatic hydrocarbon soil contamination in Sydney, Nova Scotia: community impact from the coke ovens and steel plant.

    Science.gov (United States)

    Lambert, Timothy W; Boehmer, Jennifer; Feltham, Jason; Guyn, Lindsay; Shahid, Rizwan

    2011-01-01

    This paper presents spatial maps of the arsenic, lead, and polycyclic aromatic hydrocarbon (PAH) soil contamination in Sydney, Nova Scotia, Canada. The spatial maps were designed to create exposure cohorts to help understand the observed increase in health effects. To assess whether contamination can be a proxy for exposures, the following hypothesis was tested: residential soils were impacted by the coke oven and steel plant industrial complex. The spatial map showed contaminants are centered on the industrial facility, significantly correlated, and exceed Canadian health risk-based soil quality guidelines. Core samples taken at 5-cm intervals suggest a consistent deposition over time. The concentrations in Sydney significantly exceed background Sydney soil concentrations, and are significantly elevated compared with North Sydney, an adjacent industrial community. The contaminant spatial maps will also be useful for developing cohorts of exposure and guiding risk management decisions.

  15. KAJIAN HACCP (Hazard Analysis and Critical Control Point) PENGOLAHAN JAMBU BIJI DI PILOT PLANT SARI BUAH UPT. B2PTTG – LIPI SUBANG

    OpenAIRE

    Diki Nanang Surahman; Riyanti Ekafitri

    2014-01-01

    Guava has vitamin C and beta carotene that potent as antioxidant and can increase endurance. Guava can be processed into juice as a fi nal product. UPT . B2PTTG-LIPI Subang has a Pilot Plant. The pilot plant itself is a model of processing fruit into juice. The processing of guava juice from the pilot plant needs an application of HACCP to improve the quality and safety of fruit juice products. The studies of HACCP uses the 7 principles of HACCP system recommended by the Indonesian National St...

  16. Disinfection of model indicator organisms in a drinking water pilot plant by using PEROXONE

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, R.L.; Stewart, M.H.; Liang, S.; McGuire, M.J. (Metropolitan Water District of Southern California, La Verne (USA))

    1989-09-01

    PEROXONE is an advanced oxidation process generated by combining ozone and hydrogen peroxide. This process stimulates the production of hydroxyl radicals, which have been shown to be superior to ozone for the destruction of some organic contaminants. In this study, pilot-scale experiments were conducted to evaluate the microbicidal effectiveness of PEROXONE and ozone against three model indicator groups. Escherichia coli and MS2 coliphage were seeded into the influent to the preozonation contactors of a pilot plant simulating conventional water treatment and were exposed to four ozone dosages, four hydrogen peroxide/ozone weight ratios, and four contact times in two source waters--Colorado River water and state project water--of different quality. The removal of heterotrophic plate count bacteria was also monitored. Results of the study indicated that the microbicidal activity of PEROXONE was greatly affected by the applied ozone dose, H2O2/O3 ratio, contact time, source water quality, and type of microorganism tested. At contact times of 5 min or less, ozone alone was a more potent bactericide than PEROXONE at all H2O2/O3 ratios tested. However, this decrease in the bactericidal potency of PEROXONE was dramatic only as the H2O2/O3 ratio was increased from 0.5 to 0.8. The fact that the bactericidal activity of PEROXONE generally decreased with increasing H2O2/O3 ratios was thought to be related to the lower ozone residuals produced. The viricidal activity of PEROXONE and ozone was comparable at all of the H2O2/O3 ratios. Heterotrophic plate count bacteria were the most resistant group of organisms. Greater inactivation of E. coli and MS2 was observed in Colorado River water than in state project water and appeared to result from differences in the turbidity and alkalinity of the two waters. Regardless of source water, greater than 4.5 log10 of E.

  17. Application of Several Techniques for Prohibiting Fouling in Li-Recovery Pilot Plant

    Science.gov (United States)

    Yoon, H.; Kim, D.; Gong, M.; Kim, B.; Chung, K.

    2010-12-01

    The problem of marine organisms adhering to any surfaces exposed in seawater is as old as time. Marine fouling is a major problem in the materials used in seawater worldwide. Marine coatings contain elements such as copper and triorganotin compounds were often used as an effective compound for control the fouling problem, but application of such coatings containing triorganotin compounds was prohibited and the former are considered undesirable because of its toxicity and accumulative in non-target organisms. Monitoring and field studies regarding fouling problems during operation of Li-recovery pilot plant which is designed by the Korea Institute of Geoscience & Mineral Resources (KIGAM) were major concern of this study. Fouling could be the most troublesome tasks during the development of a large scale pilot production test for achieving a high performance adsorbent for seawater dissolved Li recovery. Chemical and microbiological characteristics of the fouling biofilms developed on various surfaces in contact with the seawater were made. The microbial compositions of the biofilm consortia formed on the reservoir polymer surfaces were also tested for. The quantities of the diverse microorganisms in the biofilm samples developed on the prohibiting polymer reservoir surface were larger when there was no concern about materials for special selection for fouling. The experimental results offered new specific information, concerning the problems in the application of new material as well as surface coating such as anti-fouling coatings. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).

  18. Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant.

    Science.gov (United States)

    Lorenzen, Jan; Igl, Nadine; Tippelt, Marlene; Stege, Andrea; Qoura, Farah; Sohling, Ulrich; Brück, Thomas

    2017-06-01

    Microalgae are capable of producing up to 70% w/w triglycerides with respect to their dry cell weight. Since microalgae utilize the greenhouse gas CO2, they can be cultivated on marginal lands and grow up to ten times faster than terrestrial plants, the generation of algae oils is a promising option for the development of sustainable bioprocesses, that are of interest for the chemical lubricant, cosmetic and food industry. For the first time we have carried out the optimization of supercritical carbon dioxide (SCCO2) mediated lipid extraction from biomass of the microalgae Scenedesmus obliquus and Scenedesmus obtusiusculus under industrrially relevant conditions. All experiments were carried out in an industrial pilot plant setting, according to current ATEX directives, with batch sizes up to 1.3 kg. Different combinations of pressure (7-80 MPa), temperature (20-200 °C) and CO2 to biomass ratio (20-200) have been tested on the dried biomass. The most efficient conditions were found to be 12 MPa pressure, a temperature of 20 °C and a CO2 to biomass ratio of 100, resulting in a high extraction efficiency of up to 92%. Since the optimized CO2 extraction still yields a crude triglyceride product that contains various algae derived contaminants, such as chlorophyll and carotenoids, a very effective and scalable purification procedure, based on cost efficient bentonite based adsorbers, was devised. In addition to the sequential extraction and purification procedure, we present a consolidated online-bleaching procedure for algae derived oils that is realized within the supercritical CO2 extraction plant.

  19. Performance analysis and pilot plant test results for the Komorany fluidized bed retrofit project

    Energy Technology Data Exchange (ETDEWEB)

    Snow, G.C. [POWER International, Inc., Coeur d`Alene, ID (United States)

    1995-12-01

    Detailed heat and mass balance calculations and emission performance projections are presented for an atmospheric fluidized bed boiler bottom retrofit at the 927 MWt (steam output) Komorany power station and district heating plant in the Czech Republic. Each of the ten existing boilers are traveling grate stoker units firing a local, low-rank brown coal. This fuel, considered to be representative of much of the coal deposits in Central Europe, is characterized by an average gross calorific value of 10.5 MJ/kg (4,530 Btu/lb), an average dry basis ash content of 47 %, and a maximum dry basis sulfur content of 1.8 % (3.4 % on a dry, ash free basis). The same fuel supply, together with limestone supplied from the region will be utilized in the retrofit fluidized bed boilers. The primary objectives of this retrofit program are, (1) reduce emissions to a level at or below the new Czech Clean Air Act, and (2) restore plant capacity to the original specification. As a result of the AFBC retrofit and plant upgrade, the particulate matter emissions will be reduced by over 98 percent, SO{sub 2} emissions will be reduced by 88 percent, and NO{sub x} emissions will be reduced by 38 percent compared to the present grate-fired configuration. The decrease in SO{sub 2} emissions resulting from the fluidized bed retrofit was initially predicted based on fuel sulfur content, including the distribution among organic, pyritic, and sulfate forms; the ash alkalinity; and the estimated limestone calcium utilization efficiency. The methodology and the results of this prediction were confirmed and extended by pilot scale combustion trials at a 1.0 MWt (fuel input), variable configuration test facility in France.

  20. A farm-scale pilot plant for biohydrogen and biomethane production by two-stage fermentation

    Directory of Open Access Journals (Sweden)

    R. Oberti

    2013-09-01

    Full Text Available Hydrogen is considered one of the possible main energy carriers for the future, thanks to its unique environmental properties. Indeed, its energy content (120 MJ/kg can be exploited virtually without emitting any exhaust in the atmosphere except for water. Renewable production of hydrogen can be obtained through common biological processes on which relies anaerobic digestion, a well-established technology in use at farm-scale for treating different biomass and residues. Despite two-stage hydrogen and methane producing fermentation is a simple variant of the traditional anaerobic digestion, it is a relatively new approach mainly studied at laboratory scale. It is based on biomass fermentation in two separate, seuqential stages, each maintaining conditions optimized to promote specific bacterial consortia: in the first acidophilic reactorhydrogen is produced production, while volatile fatty acids-rich effluent is sent to the second reactor where traditional methane rich biogas production is accomplished. A two-stage pilot-scale plant was designed, manufactured and installed at the experimental farm of the University of Milano and operated using a biomass mixture of livestock effluents mixed with sugar/starch-rich residues (rotten fruits and potatoes and expired fruit juices, afeedstock mixture based on waste biomasses directly available in the rural area where plant is installed. The hydrogenic and the methanogenic reactors, both CSTR type, had a total volume of 0.7m3 and 3.8 m3 respectively, and were operated in thermophilic conditions (55 2 °C without any external pH control, and were fully automated. After a brief description of the requirements of the system, this contribution gives a detailed description of its components and of engineering solutions to the problems encountered during the plant realization and start-up. The paper also discusses the results obtained in a first experimental run which lead to production in the range of previous

  1. Comparison of carbon balance in Mediterranean pilot constructed wetlands vegetated with different C4 plant species.

    Science.gov (United States)

    Barbera, Antonio C; Borin, Maurizio; Cirelli, Giuseppe L; Toscano, Attilio; Maucieri, Carmelo

    2015-02-01

    This study investigates carbon dioxide (CO2) and methane (CH4) emissions and carbon (C) budgets in a horizontal subsurface flow pilot-plant constructed wetland (CW) with beds vegetated with Cyperus papyrus L., Chrysopogon zizanioides (L.) Roberty, and Mischantus × giganteus Greef et Deu in the Mediterranean basin (Sicily) during the 1st year of plant growing season. At the end of the vegetative season, M. giganteus showed the higher biomass accumulation (7.4 kg m(-2)) followed by C. zizanioides (5.3 kg m(-2)) and C. papyrus (1.8 kg m(-2)). Significantly higher emissions of CO2 were detected in the summer, while CH4 emissions were maximum during spring. Cumulative CO2 emissions by C. papyrus and C. zizanioides during the monitoring period showed similar trends with final values of about 775 and 1,074 g m(-2), respectively, whereas M. giganteus emitted 3,395 g m(-2). Cumulative CH4 bed emission showed different trends for the three C4 plant species in which total gas release during the study period was for C. papyrus 12.0 g m(-2) and ten times higher for M. giganteus, while C. zizanioides bed showed the greatest CH4 cumulative emission with 240.3 g m(-2). The wastewater organic carbon abatement determined different C flux in the atmosphere. Gas fluxes were influenced both by plant species and monitored months with an average C-emitted-to-C-removed ratio for C. zizanioides, C. papyrus, and M. giganteus of 0.3, 0.5, and 0.9, respectively. The growing season C balances were positive for all vegetated beds with the highest C sequestered in the bed with M. giganteus (4.26 kg m(-2)) followed by C. zizanioides (3.78 kg m(-2)) and C. papyrus (1.89 kg m(-2)). To our knowledge, this is the first paper that presents preliminary results on CO2 and CH4 emissions from CWs vegetated with C4 plant species in Mediterranean basin during vegetative growth.

  2. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Yan Xiulan [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Liao Xiaoyong, E-mail: liaoxy@igsnrr.ac.cn [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Wen Yi; Chong Zhongyi; Liang Tao [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China)

    2011-12-15

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level ({>=}10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: > Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. > P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. > Phenanthrene suppresses arsenic translocation from roots to fronds. > Phenanthrene causes As(III) elevation in roots while reduction in fronds. > Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  3. Solar Pilot Plant Phase I, detailed design report: thermal storage subsystem research experiment. CDRL Item No. 8 (Approved)

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-17

    The Thermal Storage Subsystem Research Experiment is designed to give maximum information for evaluating the design, performance, and operating parameters of the Barstow Solar Pilot Plant. The experiment is summarized, and the experiment components detail design and integration are described. The experiment test and operation is described which is designed to collect engineering data to allow the design, performance, and operational characteristics to be specified for the Pilot Plant. Appended are: design documentation; pressure drop calculations; materials studies for thermal energy storage; flow charts for data acquisition and control; condenser detail design; instrumentation error analysis; logic diagrams for the control system; literature survey to evaluate the two-phase forced convection heat transfer; and the vaporizer performance model. (LEW)

  4. Research cooperation project on environmentally friendly technology for highly efficient mineral resources extraction and treatment. Detail design for pilot plant (Electrical fabrication)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper prepared plans of the electrical equipment in the detailed design of a pilot plant in the joint research project on the environmental protection technology for highly efficient mineral resource extraction and treatment. (NEDO)

  5. Testing of downstream catalysts for tar destruction with a guard bed in a fluidised bed biomass gasifier at pilot plant scale

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Frances, E.; Campos, I.J.; Martin, J.A.; Gil, J. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment Engineering; Corella, J. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering

    1996-12-31

    A new pilot plant for advanced gasification of biomass in a fast fluidised bed is now fully operative at University of Saragossa, Spain. It is a `3rd generation` pilot plant. It has been built up after having used two previous pilot plants for biomass gasification. The main characteristic of this pilot plant is that it has two catalytic reactors connected in series, downstream the biomass gasifier. Such reactors, of 4 cm i.d., are placed in a slip stream in a by-pass from the main gasifier exit gas. The gasification is made at atmospheric pressure, with flow rates of 3-50 kg/in, using steam + O{sub 2} mixtures as the gasifying agent. Several commercial Ni steam-reforming catalyst are being tested under a realistic raw gas composition. Tar eliminations or destructions higher than 99 % are easily achieved. (orig.) 2 refs.

  6. Research cooperation project on environmentally friendly technology for highly efficient mineral resources extraction and treatment. Detail design for pilot plant (Purchased equipment)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper prepared plans of the purchased equipment in the detailed design of a pilot plant in the joint research project on the environmental protection technology for highly efficient mineral resource extraction and treatment. (NEDO)

  7. Initial Assessment of Sulfur-Iodine Process Safety Issues and How They May Affect Pilot Plant Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Cherry

    2006-09-01

    The sulfur-iodine process to make hydrogen by the thermochemical splitting of water is under active development as part of a U.S. Department of Energy program. An integrated lab scale system is currently being designed and built. The next planned stage of development is a pilot plant with a thermal input of about 500 kW, equivalent to about 30,000 standard liters per hour of hydrogen production. The sulfur-iodine process contains a variety of hazards, including temperatures up to 850 ºC and hazardous chemical species including SO2, H2SO4, HI, I2, and of course H2. The siting and design of a pilot plant must consider these and other hazards. This report presents an initial analysis of the hazards that might affect pilot plant design and should be considered in the initial planning. The general hazards that have been identified include reactivity, flammability, toxicity, pressure, electrical hazards, and industrial hazards such as lifting and rotating equipment. Personnel exposure to these hazards could occur during normal operations, which includes not only running the process at the design conditions but also initial inventory loading, heatup, startup, shutdown, and system flushing before equipment maintenance. Because of the complexity and severity of the process, these ancillary operations are expected to be performed frequently. In addition, personnel could be exposed to the hazards during various abnormal situations which could include unplanned phase changes of liquids or solids, leaks of process fluids or cooling water into other process streams, unintentional introducion of foreign species into the process, and unexpected side reactions. Design of a pilot plant will also be affected by various codes and regulations such as the International Building Code, the International Fire Code, various National Fire Protection Association Codes, and the Emergency Planning and Community Right-to-Know Act.

  8. Achieving nitrogen removal via nitrite in a pilot-scale continuous pre-denitrification plant.

    Science.gov (United States)

    Ma, Yong; Peng, Yongzhen; Wang, Shuying; Yuan, Zhiguo; Wang, Xiaolian

    2009-02-01

    Nitrogen removal via nitrite (the nitrite pathway) is beneficial for carbon-limited biological wastewater treatment plants. However, partial nitrification to nitrite has proven difficult in continuous processes treating domestic wastewater. The nitrite pathway is achieved in this study in a pilot-scale continuous pre-denitrification plant (V=300 L) treating domestic wastewater by controlling the dissolved oxygen (DO) concentration at 0.4-0.7 mg/L. It is demonstrated that the nitrite pathway could be repeatedly and reliably achieved, with over 95% of the oxidized nitrogen compounds at the end of the aerobic zone being nitrite. The nitrite pathway improved the total nitrogen (TN) removal by about 20% in comparison to the nitrate pathway, and also reduced aeration costs by 24%. FISH analysis showed that the nitrite oxidizing bacteria (NOB) population gradually reduced at low DO levels, and reached negligible levels when stable nitrite pathway was established. It is hypothesized that NOB was washed out due to its relatively lower affinity with oxygen. A lag phase was observed in the establishment of the nitrite pathway. Several sludge ages were required for the onset of the nitrite pathway after the application of low DO levels. However, nitrite accumulation increased rapidly after that. A similar lag phase was observed for the upset of the nitrite pathway when a DO concentration of 2-3 mg/L was applied. The nitrite pathway negatively impacted on the sludge settleability. A strong correlation between the sludge volume index and the degree of nitrite accumulation was observed.

  9. Solar treatment of cork boiling and bleaching wastewaters in a pilot plant.

    Science.gov (United States)

    Vilar, Vítor J P; Maldonado, Manuel I; Oller, I; Malato, Sixto; Boaventura, Rui A R

    2009-09-01

    This paper reports on cork boiling and bleaching wastewaters treatment by solar photocatalytic processes, TiO(2)/UV and Fe(2+)/H(2)O(2)/UV (TiO(2)-only for bleaching wastewater), in a pilot plant with compound parabolic collectors. The photo-Fenton reaction (k=0.12L/kJ(UV), r(0)=59.4 mg/kJ(UV)) is much more efficient that TiO(2) photocatalysis and TiO(2)+S(2)O(8)(2-) (k=0.0024 L/kJ(UV), r(0)=1.36 mg/kJ(UV)), leading to 94% mineralization of the bleaching wastewater after 31.5 kJ(UV)/L, consuming 77.1mM of H(2)O(2) (3.0 mmol/kJ(UV)) and using 20 mg/L of iron. For the cork boiling wastewater, after a slow initial reaction rate, the DOC degradation curve shows a first-order kinetics behaviour (k=0.015 L/kJ(UV), r(0)=20.8 mg/kJ(UV)) until 173 kJ(UV)/L ( approximately 300 mgC/L). According to the average oxidation state (AOS), toxicity profiles, respirometry and kinetic results obtained in two solar CPCs plants, the optimal energy dose estimated for phototreatment to reach a biodegradable effluent is 15 kJ(UV)/L and 114 kJ(UV)/L, consuming 33 mM and 151 mM of H(2)OT:/PGN/ELSEVIER/WR/web/00007490/(2), achieving almost 49% and 48% mineralization of the wastewaters, respectively for the cork bleaching and boiling wastewaters.

  10. Test Results and Comparison of Triaxial Strength Testing of Waste Isolation Pilot Plant Clean Salt

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Stuart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    This memorandum documents laboratory thermomechanical triaxial strength testing of Waste Isolation Pilot Plant (WIPP) clean salt. The limited study completed independent, adjunct laboratory tests in the United States to assist in validating similar testing results being provided by the German facilities. The testing protocol consisted of completing confined triaxial, constant strain rate strength tests of intact WIPP clean salt at temperatures of 25°C and 100°C and at multiple confining pressures. The stratigraphy at WIPP also includes salt that has been labeled “argillaceous.” The much larger test matrix conducted in Germany included both the so-called clean and argillaceous salts. When combined, the total database of laboratory results will be used to develop input parameters for models, assess adequacy of existing models, and predict material behavior. These laboratory studies are also consistent with the goals of the international salt repository research program. The goal of this study was to complete a subset of a test matrix on clean salt from the WIPP undertaken by German research groups. The work was performed at RESPEC in Rapid City, South Dakota. A rigorous Quality Assurance protocol was applied, such that corroboration provides the potential of qualifying all of the test data gathered by German research groups.

  11. Aerobic thermophilic treatment of sewage sludge at pilot plant scale. 2. Technical solutions and process design.

    Science.gov (United States)

    Ponti, C; Sonnleitner, B; Fiechter, A

    1995-01-15

    The performance of the ATS process depends essentially on the oxygen transfer efficiency. Improvement of the mass transfer capacity of a bioreactor allowed to reduce the incubation time necessary to attain sludge stabilization. It is important to use equipment with a high aeration efficiency such as an injector aeration system. The ratio between the total oxygen consumption and the organic matter degradation (delta COD) ranged between 0.4 and 0.8 in the pilot plant, whereas 1.23 was found in completely mixed bioreactors (Bomio, 1990). No significant improvement of the bacterial degradation efficiency was attained with a specific power input exceeding 6-8 kW m-3. A mean residence time of less than 1 d allowed organic matter removals up to 40% with specific power consumption of 10 kWh kg-1 COD oxidized. The sludge hygienization is one of the objectives and benefits of the thermophilic treatment: not only temperature but also the total solids content were important factors affecting inactivation of pathogens. The inactivation rate was promoted by the increase of temperature, while the residual colony forming units decreased with reducing the total solids content of sewage sludge. It is concluded that continuous operation mode would not affect the quality of the hygienization but could display the high degradation potential of the aerobic system.

  12. Incorporating long-term climate change in performance assessment for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Swift, P.N. [Sandia National Labs., Albuquerque, NM (United States); Baker, B.L. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States); Economy, K. [Ecodynamics Research Associates, Albuquerque, NM (United States); Garner, J.W. [Applied Physics, Inc., Albuquerque, NM (United States); Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Rudeen, D.K. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)

    1994-03-01

    The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing had values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance.

  13. Status of Waste Isolation Pilot Plant compliance with 40 CFR 191B, December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Marietta, M.G.; Anderson, D.R.

    1993-10-01

    Before disposing of transuranic radioactive waste at the Waste Isolation Pilot Plant (WIPP), the US Department of Energy (DOE) must evaluate compliance with long-term regulations of the US Environmental Protection Agency (EPA). Sandia National Laboratories (SNL) is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This paper describes the 1992 preliminary comparison with Subpart B of the Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191), which regulates long-term releases of radioactive waste. Results of the 1992 PA are preliminary, and cannot be used to determine compliance or noncompliance with EPA regulations because portions of the modeling system and data base are incomplete. Results are consistent, however, with those of previous iterations of PA, and the SNL WIPP PA Department has high confidence that compliance with 40 CFR 191B can be demonstrated. Comparison of predicted radiation doses from the disposal system also gives high confidence that the disposal system is safe for long-term isolation.

  14. Monitoring roof beam lateral displacement at the waste isolation pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Terrill, L.J.; Lewis, R.E.

    1996-08-01

    Lateral displacement in the immediate roof beam at the Waste Isolation Pilot Plant (WIPP) is a significant factor in assessment of excavation performance for the design of ground control systems. Information on roof beam lateral displacement, expansion, fracture formation, as well as excavation convergence, is gathered using a variety of manually and remotely read instruments. Visual observations are also used when possible. This paper describes the methods used to measure lateral displacement, or offset, at the WIPP. Offset magnitudes are determined by the degree of occlusion in drillholes that intersect the offset plane. The Borehole Lateral Displacement Sensor (BLDS) was developed for installation at WIPP to monitor offset at a high degree of accuracy at a short reading frequency. Offset measurements have historically been obtained by visual estimation of borehole occlusion. Use of the BLDS will enable relationships between time dependent roof beam lateral displacement and expansion to be established in much shorter periods than is possible using visual observations. The instrument will also allow remote monitoring of roof beam displacement in areas where visual estimations are not possible. Continued monitoring of roof beam displacement, convergence, and expansion, is integral to timely and pertinent assessments of WIPP excavation performance.

  15. Correlation of drillhole and shaft logs. Waste Isolation Pilot Plant (WIPP) project, southeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Jarolimek, L.; Timmer, M.J.; Powers, D.W.

    1983-03-01

    This report on stratigraphic correlations from drillhole and shaft data along a generally north-south section across the potential extent of underground excavations of the Waste Isolation Pilot Plant (WIPP) facility was prepared as part of the Site Validation Field Program Plan. The results provide (1) input for the report entitled ''Results of Site Validation Experiments,'' (2) input for other WIPP-related investigations, including the Design Validation Program, and (3) a framework for further underground activities at WIPP. In general, this correlation study confirmed previous findings, including: relatively high consistency of thickness and lateral continuity of all beds within the Salado Formation, especially in the host rock interval; gentle, generally south and southeastward dips/slopes of the host rock interval strata; close correspondence between stratigraphic data obtained from the present underground excavations and data derived from the previous investigative drillholes and shafts; and depositional origin of the undulations on the top of Marker Bed (MB) 139 and relatively small variation in its thickness (1.2 to 4.1 feet).

  16. Computational implementation of a systems prioritization methodology for the Waste Isolation Pilot Plant: A preliminary example

    Energy Technology Data Exchange (ETDEWEB)

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mathematics; Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States). WIPP Performance Assessments Departments; Baker, B.L. [Technadyne Engineering Consultants, Albuquerque, NM (United States)] [and others

    1996-04-01

    A systems prioritization methodology (SPM) is under development to provide guidance to the US DOE on experimental programs and design modifications to be supported in the development of a successful licensing application for the Waste Isolation Pilot Plant (WIPP) for the geologic disposal of transuranic (TRU) waste. The purpose of the SPM is to determine the probabilities that the implementation of different combinations of experimental programs and design modifications, referred to as activity sets, will lead to compliance. Appropriate tradeoffs between compliance probability, implementation cost and implementation time can then be made in the selection of the activity set to be supported in the development of a licensing application. Descriptions are given for the conceptual structure of the SPM and the manner in which this structure determines the computational implementation of an example SPM application. Due to the sophisticated structure of the SPM and the computational demands of many of its components, the overall computational structure must be organized carefully to provide the compliance probabilities for the large number of activity sets under consideration at an acceptable computational cost. Conceptually, the determination of each compliance probability is equivalent to a large numerical integration problem. 96 refs., 31 figs., 36 tabs.

  17. Geochemistry of Salado Formation brines recovered from the Waste Isolation Pilot Plant (WIPP) repository

    Energy Technology Data Exchange (ETDEWEB)

    Abitz, R.; Myers, J.; Drez, P.; Deal, D.

    1990-01-01

    Intergranular brines recovered from the repository horizon of the Waste Isolation Pilot Plant (WIPP) have major- and trace-element compositions that reflect seawater evaporation and diagenetic processes. Brines obtained from repository drill holes are heterogenous with respect to composition, but their compositional fields are distinct from those obtained from fluid inclusions in WIPP halite. The heterogeneity of brine compositions within the drill-hole population indicates a lack of mixing and fluid homogenization within the salt at the repository level. Compositional differences between intergranular (drill hole) and intragranular (fluid inclusions) brines is attributed to isolation of the latter from diagenetic fluids that were produced from dehydration reactions involving gypsum and clay minerals. Modeling of brine-rock equilibria indicates that equilibration with evaporite minerals controls the concentrations of major elements in the brine. Drill-hole brines are in equilibrium with the observed repository minerals halite, anhydrite, magnesite, polyhalite and quartz. The equilibrium model supports the derivation of drill-hole brines from near-field fluid, rather than large-scale vertical migration of fluids from the overlying Rustler or underlying Castile Formations. 13 refs., 6 figs., 6 tabs.

  18. Potential for long-term isolation by the Waste Isolation Pilot Plant disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Bertram-Howery, S.G. (Sandia National Labs., Albuquerque, NM (USA)); Swift, P.N. (Tech. Reps., Inc., Albuquerque, NM (USA))

    1990-06-01

    The US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) must comply with EPA regulation 40 CFR Part 191, Subpart B, which sets environmental standards for radioactive waste disposal. The regulation, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (hereafter referred to as the Standard), was vacated in 1987 by a Federal Court of Appeals and is underground revision. By agreement with the Sate of New Mexico, the WIPP project is evaluating compliance with the Standard as promulgated, in 1985 until a new regulation is available. This report summarizes the early-1990 status of Sandia National Laboratories' (SNL) understanding of the Project's ability to achieve compliance. The report reviews the qualitative and quantitative requirements for compliance, and identifies unknowns complicating performance assessment. It discusses in relatively nontechnical terms the approaches to resolving those unknowns, and concludes that SNL has reasonable confidence that compliance is achievable with the Standard as first promulgated. 46 refs., 7 figs.

  19. Waste Isolation Pilot Plant annual site environmental report for calendar year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) defined a comprehensive set of parameters which are monitored to detect potential environmental impacts and establish baselines for future environmental evaluations. Surface water and groundwater, air, soil, and biotics are monitored for radioactivity levels. Nonradiological environmental monitoring activities include air, water quality, soil properties, meteorological measurements and determination of the status of the local biological community. Ecological studies focus on the immediate area surrounding the WIPP site with emphasis on the salt storage pile. The baseline radiological surveillance covers a broader geographic area including nearby ranches, villages, and cities. Since the WIPP is still in its preoperational phase (i.e., no waste has been received) certain operational requirements of DOE Orders 5400.1, 5400.5, and the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T) are not relevant. Therefore, this report does not discuss items such as radionuclide emissions and effluents and subsequent doses to the public.

  20. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2015-01-01

    Full Text Available Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF; average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  1. Citizens guide to the Waste Isolation Pilot Plant Compliance Certification Application to the EPA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The US Department of Energy (DOE) has submitted an application to the US Environmental Protection Agency (EPA) for a certificate showing that the Waste Isolation Pilot Plant (WIPP) complies with strict environmental regulations designed to safeguard humans and the environment for at least 10,000 years. Congress gave the EPA authority to regulate the WIPP site for disposal of transuranic waste under the 1992 WIPP Land Withdrawal Act. The EPA has one year to review the Compliance Certification Application (CCA) before determining whether the DOE has successfully documented the WIPP`s compliance with federal environmental standards. The application presents the conclusions of more than 20 years of scientific and engineering work specifically dedicated to disposal of transuranic waste at the WIPP. The application thoroughly documents how the natural characteristics of the WIPP site, along with engineered features, comply with the regulations. In the application, the DOE responds fully to the federal standards and to the EPA`s certification criteria. This Citizens` Guide provides an overview of the CCA and its role in moving toward final disposal of transuranic waste.

  2. Electrochemical treatment of Procion Black 5B using cylindrical flow reactor--a pilot plant study.

    Science.gov (United States)

    Raghu, S; Basha, C Ahmed

    2007-01-10

    The paper presents the results of an efficient electrochemical treatment of Procion Black 5B--a pilot plant study. Experiments were conducted at different current densities and selected electrolyte medium using Ti/RuO2 as anode, stainless-steel as cathode in a cylindrical flow reactor. By cyclic voltammetric analysis, the best condition for maximum redox reaction rate was found to be in NaCl medium. During the various stages of electrolysis, parameters such as COD, colour, FTIR, UV-vis spectra studies, energy consumption and mass transfer coefficient were computed and presented. The experimental results showed that the electrochemical oxidation process could effectively remove colour and the chemical oxygen demand (COD) from the synthetic dye effluent. The maximum COD reduction and colour removal efficiencies were 74.05% and 100%, respectively. Probable theory, reaction mechanism and modeling were proposed for the oxidation of dye effluent. The results obtained reveal the feasibilities of application of electrochemical treatment for the degradation of Procion Black 5B.

  3. Actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP): FY94 results

    Energy Technology Data Exchange (ETDEWEB)

    Novak, C.F. [ed.

    1995-08-01

    This document contains six reports on actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP). These reports, completed in FY94, are relevant to the estimation of the potential dissolved actinide concentrations in WIPP brines under repository breach scenarios. Estimates of potential dissolved actinide concentrations are necessary for WIPP performance assessment calculations. The specific topics covered within this document are: the complexation of oxalate with Th(IV) and U(VI); the stability of Pu(VI) in one WIPP-specific brine environment both with and without carbonate present; the solubility of Nd(III) in a WIPP Salado brine surrogate as a function of hydrogen ion concentration; the steady-state dissolved plutonium concentrations in a synthetic WIPP Culebra brine surrogate; the development of a model for Nd(III) solubility and speciation in dilute to concentrated sodium carbonate and sodium bicarbonate solutions; and the development of a model for Np(V) solubility and speciation in dilute to concentrated sodium Perchlorate, sodium carbonate, and sodium chloride media.

  4. Waste Isolation Pilot Plant site environmental report, for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The U.S. Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires DOE facilities, that conduct environmental protection programs, to annually prepare a Site Environmental Report (SER). The purpose of the SER is to provide an abstract of environmental assessments conducted in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit. The content of this SER is not restricted to a synopsis of the required data, in addition, information pertaining to new and continued monitoring and compliance activities during the 1995 calendar year are also included. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP). The EMP provides inclusive guidelines implemented to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater. air, soil, and biotic matrices are monitored for an array of radiological and nonradiological factors. The baseline radiological surveillance program encompasses a broader geographic area that includes nearby ranches, villages, and cities. Most elements of nonradiological assessments are conducted within the geographic vicinity of the WIPP site.

  5. Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release

    Energy Technology Data Exchange (ETDEWEB)

    Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Piggott, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lobaugh, Megan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tai, Lydia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yu, Kristen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-22

    This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report are based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.

  6. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A study on advanced drinking water treatment was conducted in a pilot scale plant taking water from conventional treatment process. Ozonation-biological activated carbon process (O3-BAC) and granular activated carbon process (GAC) were evaluated based on the following parameters: CODMn, UV254, total organic carbon (TOC), assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC). In this test, the average removal rates of CODMn , UV254 and TOC in O3-BAC were18.2%, 9.0% and 10.2% higher on (AOC) than in GAC, respectively. Ozonation increased 19.3-57.6 μg Acetate-C/L in AOC-P17,45.6-130.6 μg Acetate-C/L in AOC-NOX and 0.1-0.5 mg/L in BDOC with ozone doses of 2-8 mg/L. The optimum ozone dose for maximum AOC formation was 3 mgO3/L. BAC filtration was effective process to improve biostability.

  7. Ammonia oxidizing bacteria community dynamics in a pilot-scale wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available BACKGROUND: Chemoautotrophic ammonia oxidizing bacteria (AOB have the metabolic ability to oxidize ammonia to nitrite aerobically. This metabolic feature has been widely used, in combination with denitrification, to remove nitrogen from wastewater in wastewater treatment plants (WWTPs. However, the relative influence of specific deterministic environmental factors to AOB community dynamics in WWTP is uncertain. The ecological principles underlying AOB community dynamics and nitrification stability and how they are related are also poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: The community dynamics of ammonia oxidizing bacteria (AOB in a pilot-scale WWTP were monitored over a one-year period by Terminal Restriction Fragment Length Polymorphism (T-RFLP. During the study period, the effluent ammonia concentrations were almost below 2 mg/L, except for the first 60 days, indicting stable nitrification. T-RFLP results showed that, during the test period with stable nitrification, the AOB community structures were not stable, and the average change rate (every 15 days of AOB community structures was 10% ± 8%. The correlations between T-RFLP profiles and 10 operational and environmental parameters were tested by Canonical Correlation Analysis (CCA and Mantel test. The results indicated that the dynamics of AOB community correlated most strongly with Dissolved Oxygen (DO, effluent ammonia, effluent Biochemical Oxygen Demand (BOD and temperature. CONCLUSIONS/SIGNIFICANCE: This study suggests that nitrification stability is not necessarily accompanied by a stable AOB community, and provides insight into parameters controlling the AOB community dynamics within bioreactors with stable nitrification.

  8. Simulation of a semi-industrial pilot plant thickener using CFD approach

    Institute of Scientific and Technical Information of China (English)

    Majid Ebrahimzadeh Gheshlaghi; Ataallah Soltani Goharrizi; Alireza Aghajani Shahrivar

    2013-01-01

    Thickeners are important units for water recovery in various industries.In this study,a semi-industrial pilot plant thickener similar to the tailing thickener of the Sarcheshmeh Copper Mine was simulated by CFD modeling.The population balance was used to describe the particle aggregation and breakup.In this population balance,15 particle sizes categories were considered.The Eulerian-Eulerian approach with standard k-ε turbulence model was applied to describe two phases of slurry flow in the thickener under steady-state condition.The simulation results have been compared with the experimental measurements to validate the accuracy of the CFD modeling.After checking the numerical results,the effect of important parameters such as,feed flow rate,solid percentage in the feed,and solid particle size on the thickener performance.was studied.The thickener residence time distribution were obtained by the modeling and also compared with the experimental data.Finally,the effects of feedwell feeding on the average diameter of aggregate and turbulent intensity were evaluated.

  9. Basic data report for drillholes at the H-11 complex (Waste Isolation Pilot Plant-WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.W. (Sandia National Labs., Albuquerque, NM (USA)); Snyder, R.P. (Geological Survey, Denver, CO (USA))

    1990-05-01

    Drillholes H-11b1, H-11b2, and H-11b3 were drilled from August to December 1983 for site characterization and hydrologic studies of the Culebra Dolomite Member of the Upper Permian Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. In October 1984, the three wells were subjected to a series of pumping tests designed to develop the wells, provide information on hydraulic communication between the wells, provide hydraulic properties information, and to obtain water samples for quality of water measurements. Based on these tests, it was determined that this location would provide an excellent pad to conduct a convergent-flow non-sorbing tracer test in the Culebra dolomite. In 1988, a fourth hole (H-11b4) was drilled at this complex to provide a tracer-injection hole for the H-11 convergent-flow tracer test and to provide an additional point at which the hydraulic response of the Culebra H-11 multipad pumping test could be monitored. A suite of geophysical logs was run on the drillholes and was used to identify different lithologies and aided in interpretation of the hydraulic tests. 4 refs., 6 figs., 6 tabs.

  10. Annotated bibliography of paleoclimate studies relevant to the Waste Isolation Pilot Plant, southeastern New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, G.O. (Bachman (George O.), Albuquerque, NM (USA))

    1989-09-01

    A selective, partially annotated bibliography on paleoclimate literature (through 1984) presents the various interpretations of the nature of past climate in New Mexico and adjacent areas in the Southwest. Groundwater flow and concomitant dissolution of evaporites in the Delaware Basin of southeastern New Mexico, the geologic setting of the Waste Isolation Pilot Plant (WIPP) site, has occurred since Permian deposition and may be continuing at some places in the basin. An understanding of patterns of past rainfall may contribute to an understanding of the history of groundwater flow and evaporite dissolution at and near the WIPP site and may help to predict the relative magnitudes of groundwater flow and evaporite dissolution to be expected during the required period of repository performance. Although most references in this list are annotated and pertain to paleoclimate in the vicinity of New Mexico, other references have been included that (1) place the Southwest in the context of world climatic change, (2) pertain to principles and methods of collecting climatic data for past geologic time, and (3) complement such a collection of references because of their historic interest. 35 refs.

  11. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  12. Historical Background on Assessment the Performance of the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P.

    1999-06-01

    In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the US Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a research and development facility for the safe management, storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and 25 years after site selection, the US Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance assessment conducted in 1996. This performance assessment was the culmination of four preliminary performance assessments conducted between 1989 and 1992. This report provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project. For example, the federal requirement to provide environmental impact statements and negotiated agreements with the State of New Mexico influenced the type of scientific areas that were investigated and the engineering analysis prior to 1989 for the WIPP.

  13. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  14. Waste Isolation Pilot Plant site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    US Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires each DOE facility that conducts significant environmental protection programs to prepare an Annual Site Environmental Report (ASER). The purpose of the ASER is to summarize environmental data in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts. This ASER not only documents the required data, it also documents new and continued monitoring and compliance activities during the 1994 calendar year. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP) (DOE/WIPP 94-024). The EMP defines a comprehensive set of parameters that must be monitored to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater, air, soil, and biotics are monitored for radiological and nonradiological activity levels. The baseline radiological surveillance program covers the broader geographic area that encompasses nearby ranches, villages, and cities. Nonradiological studies focus on the area immediately surrounding the WIPP site.

  15. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    Science.gov (United States)

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  16. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 2, Technical basis

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume, Volume 2, contains the technical basis for the 1992 PA. Specifically, it describes the conceptual basis for consequence modeling and the PA methodology, including the selection of scenarios for analysis, the determination of scenario probabilities, and the estimation of scenario consequences using a Monte Carlo technique and a linked system of computational models. Additional information about the 1992 PA is provided in other volumes. Volume I contains an overview of WIPP PA and results of a preliminary comparison with the long-term requirements of the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses related to the preliminary comparison with 40 CFR 191B. Volume 5 contains uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance. Finally, guidance derived from the entire 1992 PA is presented in Volume 6.

  17. Draft forecast of the final report for the comparison to 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bertram-Howery, S.G.; Marietta, M.G.; Anderson, D.R.; Gomez, L.S.; Rechard, R.P. (Sandia National Labs., Albuquerque, NM (USA)); Brinster, K.F.; Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

    1989-12-01

    The United States Department of Energy is planning to dispose of transuranic wastes, which have been generated by defense programs, at the Waste Isolation Pilot Plant. The WIPP Project will assess compliance with the requirements of the United States Environmental Protection Agency. This report forecasts the planned 1992 document, Comparison to 40 CFR, Part 191, Subpart B, for the Waste Isolation Pilot Plant (WIPP). 130 refs., 36 figs., 11 tabs.

  18. Design of a Small Scale Pilot Biodiesel Production Plant and Determination of the Fuel Properties of Biodiesel Produced With This Plant

    Directory of Open Access Journals (Sweden)

    Tanzer Eryılmaz

    2014-09-01

    Full Text Available A small scale pilot biodiesel production plant that has a volume of 65 liters/day has been designed, constructed and tested. The plant was performed using oil mixture (50% wild mustard seed oil + 50% refined canola oil and methanol with sodium hydroxide (NaOH catalyst. The fuel properties of biodiesel indicated as density at 15oC (889.64 kg/m3, kinematic viscosity at 40oC (6.975 mm2/s, flash point (170oC, copper strip corrosion (1a, water content (499.87 mg/kg, and calorific value (39.555 MJ/kg, respectively.

  19. Local area networks, laboratory information management systems, languages, and operating systems in the lab and pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Dessy, R.E.

    1983-08-01

    Microprocessors and microcomputers are being incorporated into the instruments and controllers in our laboratory and pilot plant. They enhance both the quality and amount of information that is produced. Yet they simultaneously produce vast amounts of information that must be controlled, or scientists and engineers will become high priced secretaries. The devices need programs that control them in a time frame relevant to the experiment. Simple, expeditious pathways to the generation of software that will run rapidly is essential or first class scientists and engineers become second class system programmersexclamation This paper attempts to develop the vocabulary by which the people involved in this technological revolution can understand and control it. We will examine the elements that synergistically make up the electronic laboratory and pilot plant. More detailed analyses of each area may be found in a series of articles entitled A/C INTERFACE (1-4). Many factors interact in the final system that we bring into our laboratory. Yet many purchasers only perform a cursory evaluation on the superficial aspects of the hardware. The integrated lab and pilot plant require that microprocessors, which control and collect, be connected in a LAN to larger processors that can provide LIMS support. Statistics and scientific word processing capabilities then complete the armamentorium. The end result is a system that does things for the user, rather than doing things to him.

  20. Monitoring and toxicity evaluation of phytoplankton on lithium manganese oxide adsorbents at lithium recovery pilot plant field.

    Science.gov (United States)

    Yoon, H. O.; Kim, J. A.; Kim, J. C.; Chung, K. S.; Ryu, J. H.

    2015-12-01

    For recovery of rare mineral resources such as lithium or boron from seawater, the lithium adsorbent material have been made by Korea Institute of Geoscience and Mineral Resources (KIGAM) and pilot plant was conducted in Okgye Harbor, Gangneung, Korea. The application of lithium adsorbent in pilot plant, it is important to consider the impact on the marine environment. Especially phytoplankton communities are important marine microorganism to represent marine primary product. At the same time, phytoplankton is possible to induce the decrease of lithium recovery rate due to cause of biofouling to surfaces of lithium adsorbents. Therefore long-term and periodic monitoring of phytoplankton is necessary to understand the environmental impact and biofouling problems near the lithium pilot plant. The abundance and biomass of phytoplankton have been evaluated through monthly interval sampling from February 2013 to May 2015. Abundance and species diversity of phytoplankton went up to summer from winter. When lithium adsorbents were immersing to seawater, eco-toxicities of released substances were determined using Microtox with bioluminescence bacteria Vibrio fischeri. The adsorbents were soaked in sterilized seawater and aeration for 1, 3, 5, 7, 10 and 14 days intervals under controlled temperature. Maximum EC50 concentration was 61.4% and this toxicity was showed in more than 10 days exposure.

  1. Arsenic and antimony transporters in eukaryotes.

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  2. Solar Pilot Plant, Phase I. Preliminary design report. Volume II. System description and system analysis. CDRL item 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Honeywell conducted a parametric analysis of the 10-MW(e) solar pilot plant requirements and expected performance and established an optimum system design. The main analytical simulation tools were the optical (ray trace) and the dynamic simulation models. These are described in detail in Books 2 and 3 of this volume under separate cover. In making design decisions, available performance and cost data were used to provide a design reflecting the overall requirements and economics of a commercial-scale plant. This volume contains a description of this analysis/design process and resultant system/subsystem design and performance.

  3. Study of economic viability of biodiesel pilot plant; Estudo de viabilidade economica de planta piloto de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pagliardi, Odail; Maciel, Antonio Jose da Silva; Lopes, Osvaldo Candido; Albiero, Daniel [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola

    2006-07-01

    The present paper shows the economics viability of a half-industrial plant, operating with the transesterification in vegetal oil transformation or animal fats to bio diesel. The pilot plant needed an investment of R$ 400,000.00, and it showed viable with 99.99 percents of efficiency, with feeding of 100 kg per hour of raw material working in only 12 hours daily at 25 days per months. It was considered the more usual economic analysis tools, as payback, internal rate of return and net present value. (author)

  4. Solar Pilot Plant, Phase I. Preliminary design report. Volume VI. Electrical power generation; master control subsystems; balance of plant CDRL item 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    The Honeywell electrical power generation subsystem centers on a General Electric dual admission, triple extraction turbine generator sized to the output requirements of the Pilot Plant. The turbine receives steam from the receiver subsystem and/or the thermal storage subsystem and supplies those subsystems with feedwater. The turbine condensor is wet cooled. The plant control system consists of a coordinated digital master and subsystem digital/analog controls. The remainder of the plant, work spaces, maintenance areas, roads, and reception area are laid out to provide maximum convenience compatible with utility and safety. Most of the activities are housed in a complex around the base of the receiver tower. This volume contains a description of the relationship of the electrical power generation subsystem to the rest of the plant, the design methodology and evolution, the interface integration and control, and the operation and maintenance procedures.

  5. Central receiver solar thermal power system, Phase 1. CDRL item 2. Pilot plant preliminary design report. Volume VI. Electrical power generation and master control subsystems and balance of plant

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The requirements, performance, and subsystem configuration for both the Commercial and Pilot Plant electrical power generation subsystems (EPGS) and balance of plants are presented. The EPGS for both the Commercial Plant and Pilot Plant make use of conventional, proven equipment consistent with good power plant design practices in order to minimize risk and maximize reliability. The basic EPGS cycle selected is a regenerative cycle that uses a single automatic admission, condensing, tandem-compound double-flow turbine. Specifications, performance data, drawings, and schematics are included. (WHK)

  6. Arsenic in Food

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share ... of the Method used to Measure Arsenic in Foods Inductively Coupled Plasma-Mass Spectrometric Determination of Arsenic, ...

  7. Water Quality, Mitigation Measures of Arsenic Contamination and Sustainable Rural Water Supply Options in Bangladesh

    Directory of Open Access Journals (Sweden)

    HOSSAIN M. ANAWAR

    2012-06-01

    Full Text Available Arsenic contamination of groundwater has created a serious public health issue in Bangladesh and West Bengal (India, because groundwater is widely used for drinking, household and agriculture purposes. Given the magnitude of the problem of groundwater contamination facing Bangladesh, effective, acceptable and sustainable solutions are urgently required. Different NGOs (Non-government organizations and research organizations are using their extensive rural networks to raise awareness and conduct pilot projects. The implication of the results from the previous studies is robust, but coastly arsenic reduction technologies such as activated alumina technology, and As and Fe removal filters may find little social acceptance, unless heavily subsidized. This review paper analysed the quality of surface water and ground water, all mitigation measures and the most acceptable options to provide sustainable access to safe- water supply in the rural ares of Bangladesh. Although there are abundant and different sources of surface water, they can not be used for drinking and hosehold purposes due to lack of sanitation, high faecal coliform concentration, turibidity and deterioration of quality of surface water sources. There are a few safe surface water options; and also there are several methods available for removal of arsenic and iron from groundwater in large conventional treatments plants. This review paper presented a short description of the currently available and most sustainable technologies for arsenic and iron removal, and alternative water supply options in the rural areas.

  8. Effects of arsenic on nitrogen metabolism in arsenic hyperaccumulator and non-hyperaccumulator ferns

    Science.gov (United States)

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of two four-month old fern plants, Pteris vittata, an arsenic-hyperaccumulator, and Pteris ensiformis, ...

  9. Disinfection of model indicator organisms in a drinking water pilot plant by using PEROXONE.

    Science.gov (United States)

    Wolfe, R L; Stewart, M H; Liang, S; McGuire, M J

    1989-09-01

    PEROXONE is an advanced oxidation process generated by combining ozone and hydrogen peroxide. This process stimulates the production of hydroxyl radicals, which have been shown to be superior to ozone for the destruction of some organic contaminants. In this study, pilot-scale experiments were conducted to evaluate the microbicidal effectiveness of PEROXONE and ozone against three model indicator groups. Escherichia coli and MS2 coliphage were seeded into the influent to the preozonation contactors of a pilot plant simulating conventional water treatment and were exposed to four ozone dosages (0.5, 1.0, 2.0, and 4.0 mg/liter), four hydrogen peroxide/ozone (H2O2/O3) weight ratios (0, 0.3, 0.5, and 0.8), and four contact times (4, 5, 12, and 16 min) in two source waters--Colorado River water and state project water--of different quality. The removal of heterotrophic plate count bacteria was also monitored. Results of the study indicated that the microbicidal activity of PEROXONE was greatly affected by the applied ozone dose, H2O2/O3 ratio, contact time, source water quality, and type of microorganism tested. At contact times of 5 min or less, ozone alone was a more potent bactericide than PEROXONE at all H2O2/O3 ratios tested. However, this decrease in the bactericidal potency of PEROXONE was dramatic only as the H2O2/O3 ratio was increased from 0.5 to 0.8. The fact that the bactericidal activity of PEROXONE generally decreased with increasing H2O2/O3 ratios was thought to be related to the lower ozone residuals produced. The viricidal activity of PEROXONE and ozone was comparable at all of the H2O2/O3 ratios. Heterotrophic plate count bacteria were the most resistant group of organisms. Greater inactivation of E. coli and MS2 was observed in Colorado River water than in state project water and appeared to result from differences in the turbidity and alkalinity of the two waters. Regardless of source water, greater than 4.5 log10 of E. coli and MS2 was inactivated

  10. Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    F.Nakhaei; M.R.Mosavi; A.Sam

    2013-01-01

    Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications,in particular the cleaning of sulfides.Even after having been used for several years in mineral processing plants,the full potential of the flotation column process is still not fully exploited.There is no prediction of process performance for the complete use of available control capabilities.The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers,in order to maintain good accuracy and high availability.These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery.In this paper,a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN).Despite of the wide range of applications and flexibility of NNs,there is still no general framework or procedure through which the appropriate network for a specific task can be designed.Design and structural optimization of NNs is still strongly dependent upon the designer's experience.To mitigate this problem,a new method for the auto-design of NNs was used,based on Genetic Algorithm (GA).The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant.The chemical reagents dosage,froth height,air,wash water flow rates,gas holdup,Cu grade in the rougher feed,flotation column feed,column tail and final concentrate streams were used to the simulation by GANN.In this work,multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8-13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries,respectively.The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93,0.94 and for their recoveries were 0.93,0.92,respectively.The results discussed in this paper indicate

  11. Evaluation of a pilot-scale wood torrefcaction plant based on pellet properties and Finnish market economics

    Directory of Open Access Journals (Sweden)

    Tapio Ranta, Jarno Föhr, Hanne Soininen

    2016-01-01

    Full Text Available In this study torrefaction was demonstrated at a Torrec Ltd. pilot plant located in Mikkeli, eastern Finland. The pilot plant with a nominal capacity of 10,000 tonnes/year began operation in August 2014. The torrefaction solution was a batch type process based on a vertical reactor, where biomass material flows by gravity without drives or actuators and torrefaction happens by steam inertization and accurate process control. Steam was supplied from the local biomass combined heat and power (CHP plant next to the pilot plant. The product quality of torrefied pellets was analysed by testing alternative local woody biomass sources, such as forest chips made from coniferous trees (spruce, pine and broadleaf (birch, as well as by-products such as veneer chips. Lower heating value as dry basis varied 18.47–20.53 MJ/kg with a moisture content of 4.41-8.60% for torrefied pellets. All raw materials were suitable for torrefied pellet production without binder addition. Noteworthy was good results also with hardwood species. The potential Finnish customers are CHP plants aiming to replace coal with pellets. In 2013 coal use was 31.2 TWh, where condensing was 15.3 TWh, CHP 14.2 TWh, and separate heat 1.6 TWh in Finland. If half of the current coal use in CHP would be replaced by biocoal, then Finnish potential bio-coal markets would be 7 TWh or 1.2 million tonnes of pellets/year. Aided by the results of this demonstration study and modelling of logistics it is possible to evaluate the competitiveness of torrefied pellets based on the local circumstances.

  12. EPR pilot study on the population of Stepnogorsk city living in the vicinity of a uranium processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Zhumadilov, Kassym; Akilbekov, Abdirash; Morzabayev, Aidar [L.N. Gumilyov Eurasian National University, Astana (Kazakhstan); Ivannikov, Alexander; Stepanenko, Valeriy [Medical Radiological Research Center, Obninsk (Russian Federation); Abralina, Sholpan; Sadvokasova, Lyazzat; Rakhypbekov, Tolebay [Semey State Medical University, Semey (Kazakhstan); Hoshi, Masaharu [Hiroshima University, Research Institute for Radiation Biology and Medicine, Hiroshima (Japan)

    2015-03-15

    The aim of this pilot study was to evaluate possible doses in teeth received by workers of a uranium processing plant, in excess to the natural background dose. For this, the electron paramagnetic resonance dosimetry method was applied. Absorbed doses in teeth from the workers were compared with those measured in teeth from the Stepnogorsk city population and a control pool population from Astana city. The measured tooth samples were extracted according to medical indications. In total, 32 tooth enamel samples were analyzed, 5 from Astana city, Kazakhstan (control population), 21 from the residents of Stepnogorsk city (180 km from Astana city), and 6 from the workers of a uranium processing plant. The estimated doses in tooth enamel from the uranium processing plant workers were not significantly different to those measured in enamel from the control population. In teeth from the workers, the maximum dose in excess to background dose was 33 mGy. In two teeth from residents of Stepnogorsk city, however, somewhat larger doses were measured. The results of this pilot study encourage further investigations in an effort to receiving a final conclusion on the exposure situation of the uranium processing plant workers and the residents of Stepnogorsk city. (orig.)

  13. Environmental assessment: Raft River geothermal project pilot plant, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    The action assessed here is the construction and operation of a 5- to 6-MW(e) (gross) geothermal pilot plant in the Raft River Valley of southern Idaho. This project was originally planned as a thermal test loop using a turbine simulator valve. The test loop facility (without the simulator valve) is now under construction. The current environmental assessment addresses the complete system including the addition of a turbine-generator and its associated switching gear in place of the simulator valve. The addition of the turbine-generator will result in a net production of 2.5 to 3.5 MW(e) with a commensurate reduction in waste heat to the cooling tower and will require the upgrading of existing transmission lines for offsite delivery of generated power. Construction of the facility will require disturbance of approximately 20 ha (50 acres) for the facility itself and approximately 22.5 ha (57 acres) for construction of drilling pads and ponds, pipelines, and roads. Existing transmission lines will be upgraded for the utility system interface. Interference with alternate land uses will be minimal. Loss of wildlife habitat will be acceptable, and US Fish and Wildlife Service recommendations for protection of raptor nesting sites, riparian vegetation, and other important habitats will be observed. During construction, noise levels may reach 100 dBA at 15 m (50 ft) from well sites, but wildlife and local residents should not be significantly affected if extended construction is not carried out within 0.5 km (0.3 miles) of residences or sensitive wildlife habitat. Water use during construction will not be large and impacts on competing uses are unlikely.

  14. FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE SHELL TANK (SST) WASTES FROM CONCEPT TO PILOT PLANT

    Energy Technology Data Exchange (ETDEWEB)

    GENIESSE, D.J.; NELSON, E.A.; HAMILTON, D.W.; MAJORS, J.H.; NORDAHL, T.K.

    2006-12-08

    The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site-closure consent order entered into by the US Department of Energy, the Environmental Protection Agency, and the State of Washington. Water will be used to retrieve the wastes and the resulting solution will be pumped to a proposed pretreatment process where a high-curie (primarily {sup 137}Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high-level waste, or low-level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase. The aforementioned parameters, along with evaporation rate, proper agitation, and residence time, determine nucleation and growth kinetics and the resulting habit and size distribution of the product crystals. These crystals properties are important considerations for designing the crystallizer and solid/liquid separation equipment. A structured program was developed to (a) demonstrate that fractional crystallization could be used to pre-treat Hanford tank wastes and (b) provide data to develop a pilot plant design.

  15. Scaling Environment Justice: The Case of the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Brenda L. [Wilfrid Launer Univ., Brantford (Canada); Kuhn, Richard G. [Univ. of Guelph (Canada). Dept. of Geography

    2006-09-15

    The growing body of literature associated with environmental justice documents the extent to which poor, peripheral or minority regions are often burdened with contamination or the siting of new noxious, unwanted facilities. More recently. environmental justice studies have also begun to explore the processes and societal structures that contribute to (in)justice. The environmental justice perspective asserts that instances of local contamination or the siting of noxious facilities in disempowered neighbourhoods are not only problems for those most affected by the facility; such situations are also instances of broader concerns about fairness and equity. At the grass-roots level. in marginalised spaces, residents may adopt the environmental justice frame as a strategy to gain recognition of their 'local' problem by regional. national or global actors. In this paper we problemise this environmental justice perspective, particularly as it relates to the issue of spatial and temporal scale. We utilise the Waste Isolation Pilot Plant (WIPP). the military transuranic nuclear waste disposal facility located in Carlsbad, New Mexico as an example where the environmental justice perspective was not (for the most part) invoked by local residents. Since it was mostly members of civil society groups and state and federal elected officials, most living four hours away who questioned the safety and viability of the facility, while local leaders actively lobbied to bring the facility to Carlsbad, this raises questions regarding 1) what counts as marginalised space and who gets to speak for those spaces, 2) who decides what can be defined as an environmental justice issue, and 3) at what spatial and temporal scale should justice be defined. Following a further elaboration of the conceptual ideas that underpin this discussion, in the subsequent section we present the WlPP case study.

  16. Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

    2000-08-01

    This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

  17. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico.

    Science.gov (United States)

    Sturchio, Neil C; Kuhlman, Kristopher L; Yokochi, Reika; Probst, Peter C; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yang, Guo-Min

    2014-05-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic (81)Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured (81)Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared (81)Kr model ages with reverse particle-tracking results of well-calibrated flow models. The (81)Kr model ages are ~130,000 and ~330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~32,000 yr), the (81)Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards.

  18. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2004 - June 2005, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-04-03

    This Geotechnical Analysis Report (GAR) presents and interprets the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports quarterly to document the geomechanical performance during and immediately after early excavations of the underground facility. Since the completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2004, to June 30, 2005. It is divided into nine chapters. Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the Geomechanical Monitoring Program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5 and 6 present the results of geomechanical monitoring in the two main portions of the WIPP underground (the access drifts and the waste disposal area). Chapter 7 discusses the results of the Geoscience Program, which include fracture mapping and borehole observations. Chapter 8 summarizes the results of the geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 9 lists the references and bibliography.

  19. Probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J. [Univ. of Chicago, IL (United States)]|[Stanford Univ., CA (United States). Hoover Institution

    1998-01-01

    In its most recent report on the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP), the annual failure rate is calculated to be 1.3E({minus}7)(1/yr), rounded off from 1.32E({minus}7). A calculation by the Environmental Evaluation Group (EEG) produces a result that is about 4% higher, namely 1.37E({minus}7)(1/yr). The difference is due to a minor error in the US Department of Energy (DOE) calculations in the Westinghouse 1996 report. WIPP`s hoist safety relies on a braking system consisting of a number of components including two crucial valves. The failure rate of the system needs to be recalculated periodically to accommodate new information on component failure, changes in maintenance and inspection schedules, occasional incidents such as a hoist traveling out-of-control, either up or down, and changes in the design of the brake system. This report examines DOE`s last two reports on the redesigned waste hoist system. In its calculations, the DOE has accepted one EEG recommendation and is using more current information about the component failures rates, the Nonelectronic Parts Reliability Data (NPRD). However, the DOE calculations fail to include the data uncertainties which are described in detail in the NPRD reports. The US Nuclear Regulatory Commission recommended that a system evaluation include mean estimates of component failure rates and take into account the potential uncertainties that exist so that an estimate can be made on the confidence level to be ascribed to the quantitative results. EEG has made this suggestion previously and the DOE has indicated why it does not accept the NRC recommendation. Hence, this EEG report illustrates the importance of including data uncertainty using a simple statistical example.

  20. 1997 annual ground control operating plan for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This plan presents background information and a working guide to assist Mine Operations and Engineering in developing strategies for addressing ground control issues at the Waste Isolation Pilot Plant (WIPP). With the anticipated receipt of waste in late 1997, this document provides additional detail to Panel 1 activities and options. The plan also serves as a foundation document for development and revision of the annual long-term ground control plan. Section 2.0 documents the current status of all underground excavations with respect to location, geology, geometry, age, ground support, operational use, projected life, and physical conditions. Section 3.0 presents the methods used to evaluate ground conditions, including visual observations of the roof, ribs, and floor, inspection of observation holes, and review of instrumentation data. Section 4.0 lists several ground support options and specific applications of each. Section 5.0 discusses remedial ground control measures that have been implemented to date. Section 6.0 presents projections and recommendations for ground control actions based on the information in Sections 2.0 through 5.0 of this plan and on a rating of the critical nature of each specific area. Section 7.0 presents a summary statement, and Section 8.0 includes references. Appendix A provides an overview and critique of ground control systems that have been, or may be, used at the site. Because of the dynamic nature of the underground openings and associated geotechnical activities, this plan will be revised as additional data are incorporated.

  1. Oil refinery hazardous effluents minimization by membrane filtration: An on-site pilot plant study.

    Science.gov (United States)

    Santos, Bruno; Crespo, João G; Santos, Maria António; Velizarov, Svetlozar

    2016-10-01

    Experiments for treating two different types of hazardous oil refinery effluents were performed in order to avoid/minimize their adverse impacts on the environment. First, refinery wastewater was subjected to ultrafiltration using a ceramic membrane, treatment, which did not provide an adequate reduction of the polar oil and grease content below the maximal contaminant level allowed. Therefore the option of reducing the polar oil and grease contamination at its main emission source point in the refinery - the spent caustic originating from the refinery kerosene caustic washing unit - using an alkaline-resistant nanofiltration polymeric membrane treatment was tested. It was found that at a constant operating pressure and temperature, 99.9% of the oil and grease and 97.7% of the COD content were rejected at this emission point. Moreover, no noticeable membrane fouling or permeate flux decrease were registered until a spent caustic volume concentration factor of 3. These results allow for a reuse of the purified permeate in the refinery operations, instead of a fresh caustic solution, which besides the improved safety and environmentally related benefits, can result in significant savings of 1.5 M€ per year at the current prices for the biggest Portuguese oil refinery. The capital investment needed for nanofiltration treatment of the spent caustic is estimated to be less than 10% of that associated with the conventional wet air oxidation treatment of the spent caustic that is greater than 9 M€. The payback period was estimated to be 1.1 years. The operating costs for the two treatment options are similar, but the reuse of the nanofiltration spent caustic concentrate for refinery pH control applications can further reduce the operating expenditures. Overall, the pilot plant results obtained and the process economics evaluation data indicate a safer, environmentally friendly and highly competitive solution offered by the proposed nanofiltration treatment, thus

  2. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, M.D.; Farrell, R.F. [DOE, Carlsbad, NM (United States); Newton, G.J.

    1995-12-01

    The recent 1995 WIPP Safety Analysis Report (SAR) Update provided detailed analyses of potential radiation doses to members of the public at the site boundary during postulated accident scenarios at the U.S. Department of Energy`s Waste Isolation Pilot Plant (WIPP). The SAR Update addressed the complete spectrum of potential accidents associated with handling and emplacing transuranic waste at WIPP, including damage to waste drums from fires, punctures, drops, and other disruptions. The report focused on the adequacy of the multiple layers of safety practice ({open_quotes}defense-in-depth{close_quotes}) at WIPP, which are designed to (1) reduce the likelihood of accidents and (2) limit the consequences of those accidents. The safeguards which contribute to defense-in-depth at WIPP include a substantial array of inherent design features, engineered controls, and administrative procedures. The SAR Update confirmed that the defense-in-depth at WIPP is adequate to assure the protection of the public and environment. As a supplement to the 1995 SAR Update, we have conducted additional analyses to confirm that these controls will also provide adequate protection to workers at the WIPP. The approaches and results of the worker dose assessment are summarized here. In conformance with the guidance of DOE Standard 3009-94, we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposures under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR Update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, members of the public, and the environment.

  3. The advantages of a salt/bentonite backfill for Waste Isolation Pilot Plant disposal rooms

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.; Novak, C.F. (Sandia National Labs., Albuquerque, NM (United States)); Jercinovic, M. (New Mexico Univ., Albuquerque, NM (United States))

    1991-04-01

    A 70/30 wt% salt/bentonite mixture is shown to be preferable to pure crushed salt as backfill for disposal rooms in the Waste Isolation Pilot Plant (WIPP). This report discusses several selection criteria used to arrive at this conclusion: the need for low permeability and porosity after closure, chemical stability with the surroundings, adequate strength to avoid shear erosion from human intrusion, ease of emplacement, and sorption potential for brine and radionuclides. Both salt and salt/bentonite are expected to consolidate to a final state of impermeability (i.e., {le} 10{sup {minus}18}m{sup 2}) adequate for satisfying federal nuclear regulations. Any advantage of the salt/bentonite mixture is dependent upon bentonite's potential for sorbing brine and radionuclides. Estimates suggest that bentonite's sorption potential for water in brine is much less than for pure water. While no credit is presently taken for brine sorption in salt/bentonite backfill, the possibility that some amount of inflowing brine would be chemically bound is considered likely. Bentonite may also sorb much of the plutonium, americium, and neptunium within the disposal room inventory. Sorption would be effective only if a major portion of the backfill is in contact with radioactive brine. Brine flow from the waste out through highly localized channels in the backfill would negate sorption effectiveness. Although the sorption potentials of bentonite for both brine and radionuclides are not ideal, they are distinctly beneficial. Furthermore, no detrimental aspects of adding bentonite to the salt as a backfill have been identified. These two observations are the major reasons for selecting salt/bentonite as a backfill within the WIPP. 39 refs., 16 figs., 6 tabs.

  4. Waste Isolation PIlot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2006-04-03

    This Geotechnical Analysis Report (GAR) presents and interprets geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports quarterly to document the geomechanical performance during and immediately after early excavations of the underground facility. Since completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2005, to June 30, 2006. It is divided into nine chapters. Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the geomechanical monitoring program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5 and 6 present the results of geomechanical monitoring in the two main portions of the WIPP underground (the access drifts and the waste disposal area). Chapter 7 discusses the results of the Geoscience Program, which include fracture mapping and borehole observations. Chapter 8 summarizes the results of geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 9 lists references.

  5. Photocatalytic treatment of IGCC power station effluents in a UV-pilot plant.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I; Sánchez-Romero, R

    2009-08-15

    The aim of this work is to improve the quality of water effluents coming from an Integrated Gasification Combined Cycle (IGCC) power station to meet with future environmental legislation. This study has been made using an homogeneous photocatalytic oxidation process (UV/Fe(II)/H(2)O(2)) in a pilot plant. The efficiency of the process was determined from the analysis of the following parameters: cyanides, formates and TOC content. In the first stage, a factorial experimental design allowed to determine the influence of operation variables (initial concentration of H(2)O(2) and Fe(II), pH and temperature) on the degradation kinetics. pH was always kept in a value >9.5 during cyanides destruction to avoid gaseous HCN formation and lowered later to enhance formates degradation. Experimental kinetic constants were fitted using neural networks (NNs). Under the optimum conditions ([H(2)O(2)]=1700 ppm, [Fe(II)]=2 ppm, pH 2 after cyanides destruction, and T=30 degrees C), it is possible to degrade 100% of cyanides in 15 min and 76% of formates in 120 min. The use of an homogeneous process with UV light can offer an economical and practical alternative to heterogeneous photocatalysis for the destruction of environmental pollutants present in thermoelectric power stations effluents, since it can treat very high flowrates using a lower H(2)O(2) concentration. Furthermore, it does not require additional operations to recover the solid catalyst and regenerate it due to deactivation as occurs in heterogeneous catalysis.

  6. Geohydrology of the proposed Waste Isolation Pilot Plant site, Los Medanos area, southeastern New Mexico

    Science.gov (United States)

    Mercer, Jerry W.

    1983-01-01

    Geohydrologic data have been collected in the Los Medanos area at the U.S. Department of Energy 's proposed Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico since 1975 as part of an intensive study evaluating the feasibility of storing defense-associated nuclear wastes within the bedded salt of the Salado Formation of Permian age. Drilling and hydrologic testing have identified three principal water-producing zones above the salt, including the Rustler-Salado Formational contact and the Culebra and Magenta Dolomite Members of the Permian Rustler Formation. Below the bedded salt there is another water-bearing zone, the channel sandstones of the Bell Canyon formation of the Permian Delaware Mountain Group. Most data collected from 33 hydrologic test holes indicate that the water-bearing zones are characterized by low transmissivities and contain slightly saline to briny water. Data collected from drill-stem tests in the Bell Canyon Formation indicate the channel sandstones have hydraulic conductivities ranging from 0.02 to 0.36 feet per day grade vertically and laterally into siltstones and shales of very low permeability. The Rustler Formation contains the principal water-producing zones identified at the WIPP site. The Rustler-Salado formational contact has the least transmissivity, ranging from 0.00003 to 0.003 feet squared per day. The Culebra Dolomite is the most productive unit at the WIPP site with transmissivities ranging from 0.001 to 73 feet squared per day; the greater values result from fracturing in the dolomite created by dissolution of underlying halite. Minute vertical permeabilities prevent movement of water between hydrologic units. (USGS)

  7. Annual water quality data report for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, M.L. (International Technology Corp., Torrance, CA (USA))

    1989-04-01

    This is the fourth Annual Water Quality Data Report for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP project is operated by the United States Department of Energy (DOE) for the purpose of providing a research and development facility to demonstrate the safe disposal of transuranic radioactive wastes generated by the defense activities of the United States Government. This report presents water quality data collected from January 1988 through December 1988 from 16 designated pre-operational (WIPP facility) monitoring wells, two additional wells, and 10 privately-owned wells in the vicinity of the WIPP. Additionally, water samples were collected from the Air Intake Shaft during shaft construction activities at the WIPP. This report lists pertinent information regarding the monitoring wells sampled, sampling zone, dates pumped, and types of samples collected during 1988. Comparative data from previous samplings of all wells can be found in Uhland and Randall (1986), Uhland et al. (1987), Randall et al. (1988), as well as in this report. The data reported by the Water Quality Sampling Program in this and previous reports indicate that serial sampling is a very useful tool in determining sample representativeness from wells in the WIPP vicinity. Serial sample field chemistry data are demonstrated to be highly accurate and precise as indicated by the excellent overall average percent spike recovery values and low RPD values reported for the sampling events. Serial sample field chemistry data and laboratory water quality parameter analyses gathered by the WQSP since January 1985 are the foundation for a pre-operational water quality baseline at the WIPP. 32 refs., 66 figs., 96 tabs.

  8. An appraisal of the 1992 preliminary performance assessment for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.W.L.; Chaturvedi, L.; Silva, M.K.; Weiner, R.; Neill, R.H. [Environmental Evaluation Group, Albuquerque, NM (United States)]|[Environmental Evaluation Group, Carlsbad, NM (United States)

    1994-09-01

    The purpose of the New Mexico Environmental Evaluation Group is to conduct an independent technical evaluation of the Waste Isolation Pilot Plant (WIPP) Project to ensure the protection of the public health and safety and the environment. The WIPP Project, located in southeastern New Mexico, is being constructed as a repository for the disposal of transuranic (TRU) radioactive wastes generated by the national defense programs. The Environmental Evaluation Group (EEG) has reviewed the WIPP 1992 Performance Assessment (Sandia WIPP Performance Assessment Department, 1992). Although this performance assessment was released after the October 1992 passage of the WIPP Land Withdrawal Act (PL 102-579), the work preceded the Act. For individual and ground-water protection, calculations have been done for 1000 years post closure, whereas the US Environmental Protection Agency`s Standards (40 CFR 191) issued in 1993 require calculations for 10,000 years. The 1992 Performance Assessment continues to assimilate improved understanding of the geology and hydrogeology of the site, and evolving conceptual models of natural barriers. Progress has been made towards assessing WIPP`s compliance with the US Environmental Protection Agency`s Standards (40 CFR 191). The 1992 Performance Assessment has addressed several items of major concern to EEG, outlined in the July 1992 review of the 1991 performance assessment (Neill et al., 1992). In particular, the authors are pleased that some key results in this performance assessment deal with sensitivity of the calculated complementary cumulative distribution functions (CCDF) to alterative conceptual models proposed by EEG -- that flow in the Culebra be treated as single-porosity fracture-flow; with no sorption retardation unless substantiated by experimental data.

  9. [Competitive Microbial Oxidation and Reduction of Arsenic].

    Science.gov (United States)

    Yang, Ting-ting; Bai, Yao-hui; Liang, Jin-song; Huo, Yang; Wang, Ming-xing; Yuan, Lin-ijang

    2016-02-15

    Filters are widely applied in drinking water treatment plants. Our previous study, which explored the asenic redox in a filter of drinking water plant treating underground water, found that As3+ could be oxidized to As5+ by biogenic manganese oxides, while As5+ could be reduced to As3+ by some microbial arsenic reductases in the biofilter system. This microbial competition could influence the system stability and treatment efficiency. To explore its mechanism, this study selected a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) and a arsenic-reducing strain (Brevibacterium sp. LSJ-9) to investigate their competitive relationship in nutrient acquisition and arsenic redox in the presence of Mn2+, As3+ or As5+ The results revealed that the concentration and valence of Mn and As varied with different reaction time; biological manganese oxides dominated the arsenic redox by rapidly oxidizing the As3+ in the existing system and the As3+ generated by arsenic reductase into As. PCR and RT-PCR results indicated that the arsenic reductase (arsC) was inhibited by the manganese oxidase (cumA). The expression of 16S rRNA in QJX-1 was two orders of magnitude higher than that in LSJ-9, which implied QJX-1 was dominant in the bacterial growth. Our data revealed that hydraulic retention time was critical to the valence of arsenic in the effluent of filter in drinking water treatment plant.

  10. In-situ immobilization of arsenic in the underground; In-situ Immobilisierung von Arsen im Untergrund

    Energy Technology Data Exchange (ETDEWEB)

    Boochs, Peter W.; Billib, Max [Leibniz Universitaet Hannover (Germany). Inst. fuer Wasserwirtschaft, Hydrologie und landwirtschaftlichen Wasserbau; Krueger, Timo [Leibniz Universitaet Hannover (Germany). Inst. fuer Wasserwirtschaft, Hydrologie und landwirtschaftlichen Wasserbau; Heidt und Peters GmbH, Celle (Germany)

    2012-07-01

    Arsenic can be immobilized in the underground by means of iron chloride and oxygen. A test plant was established on the site of an arsenic-contaminated armament disposal in order to immobilize arsenic in-situ. The concentration of arsenic in the feed water was reduced explicitly.

  11. NO{sub x} Abatement Pilot Plant 90-day test results report

    Energy Technology Data Exchange (ETDEWEB)

    McCray, J.A.; Boardman, R.D. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1991-08-30

    High-level radioactive liquid wastes produced during nuclear fuel reprocessing at the Idaho Chemical Processing Plant are calcined in the New Waste Calcining Facility (NWCF) to provide both volume reduction and a more stable waste form. Because a large component of the HLW is nitric acid, high levels of oxides of nitrogen (NO{sub x}) are produced in the process and discharged to the environment via the calciner off-gas. The NO{sub x} abatement program is required by the new Fuel Processing Restoration (FPR) project permit to construct to reduce NO{sub x} emissions from the NWCF. Extensive research and development has indicated that the selective catalytic reduction (SCR) process is the most promising technology for treating the NWCF off-gas. Pilot plant tests were performed to determine the compatibility of the SCR process with actual NWCF off-gas. Test results indicate that the SCR process is a viable method for abating the NO{sub x} from the NWCF off-gas. Reduction efficiencies over 95% can be obtained, with minimal amounts of ammonia slip, provided favorable operating conditions exist. Two reactors operated with series flow will provide optimum reduction capabilities. Typical operation should be performed with a first reactor stage gas space velocity of 20,000 hr{sup {minus}1} and an inlet temperature of 320{degrees}C. The first stage exhaust NO{sub x} concentration will then dictate the parameter settings for the second stage. Operation should always strive for a peak reactor temperature of 520{degrees}C in both reactors, with minimal NH{sub 3} slip from the second reactor. Frequent fluctuations in the NWCF off-gas NO{sub x} concentration will require a full-scale reduction facility that is versatile and quick-responding. Sudden changes in NWCF off-gas NO{sub x} concentrations will require quick detection and immediate response to avoid reactor bed over-heating and/or excessive ammonia slip.

  12. Assessment of toxic metals in groundwater and saliva in an arsenic affected area of West Bengal, India: A pilot scale study.

    Science.gov (United States)

    Bhowmick, Subhamoy; Kundu, Amit Kumar; Adhikari, Jishnu; Chatterjee, Debankur; Iglesias, Monica; Nriagu, Jerome; Guha Mazumder, Debendra Nath; Shomar, Basem; Chatterjee, Debashis

    2015-10-01

    Communities in many parts of the world are unintentionally exposed to arsenic (As) and other toxic metals through ingestion of local drinking water and foods. The concentrations of individual toxic metals often exceed their guidelines in drinking water but the health risks associated with such multiple-metal exposures have yet to receive much attention. This study examines the co-occurrence of toxic metals in groundwater samples collected from As-rich areas of Nadia district, West Bengal, India. Arsenic in groundwater (range: 12-1064 µg L(-1); mean ± S.D: 329±294 µg L(-1)) was the most important contaminant with concentrations well above the WHO guideline of 10 µg L(-1). Another important toxic metal in the study area was manganese (Mn) with average concentration of 202±153 µg L(-1), range of 18-604 µg L(-1). The average concentrations (µg L(-1)) of other elements in groundwater were: Cr (5.6±5.9), Mo (3.5±2.1), Ni (8.3±8.7), Pb (2.9±1.3), Ba (119±43), Zn (56±40), Se (0.60±0.33), U (0.50±0.74). Saliva collected from the male participants of the area had mean concentrations of 6.3±7.0 µg As L(-1) (0.70-29 µg L(-1)), 5.4±5.5 µg Mn L(-1) (0.69-22 µg L(-1)), 2.6±3.1 µg Ni L(-1) (0.15-13 µg L(-1)), 0.78±1.0µg Cr L(-1) (metals beside As must be monitored in drinking water before implementation of any policies to provide safe water to the affected communities. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A Pilot Study Investigating the Effects of Advanced Nuclear Power Plant Control Room Technologies: Methods and Qualitative Results

    Energy Technology Data Exchange (ETDEWEB)

    BLanc, Katya Le [Idaho National Lab. (INL), Idaho Falls, ID (United States); Powers, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Brandon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Control room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. Nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Upgrades in the U.S. do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The goal of the control room upgrade benefits research is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report describes a pilot study to test upgrades to the Human Systems Simulation Laboratory at INL.

  14. Radioactive waste disposal: Waste Isolation Pilot Plants (WIPP). March 1978-November 1989 (Citations from the NTIS data base). Report for Mar 78-Nov 89

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This bibliography contains citations concerning the Waste Isolation Pilot Plant (WIPP), a geologic repository located in New Mexico for transuranic wastes generated by the U.S. Government. Articles follow the development of the program from initial site selection and characterization through construction and testing, along with research programs on environmental impacts, structural design, and radionuclide landfill gases. Existing plants and facilities, pilot plants, migration, rock mechanics, economics, regulations, and transport of wastes to the site are also included. The Salt Repository Project and the Crystalline Repository Project are referenced in related published bibliographies. (Contains 184 citations fully indexed and including a title list.)

  15. MBM fuel feeding system design and evaluation for FBG pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, William A., E-mail: bill.campbell@usask.ca [Fluidization Laboratory of Saskatchewan (FLASK) (Canada) and Department of Chemical and Biological Engineering, University of Saskatchewan (Canada); Fonstad, Terry [Department of Chemical and Biological Engineering, University of Saskatchewan (Canada); Pugsley, Todd [Suncor Energy Inc., Calgary, Alberta (Canada); Gerspacher, Regan [Fluidization Laboratory of Saskatchewan (FLASK) (Canada); Department of Chemical and Biological Engineering, University of Saskatchewan (Canada)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer A 1-5 g/s fuel feeding system for pilot scale FBG was designed, built and tested. Black-Right-Pointing-Pointer Multiple conveying stages improve pressure balancing, flow control and stability. Black-Right-Pointing-Pointer Secondary conveyor stage reduced output irregularity from 47% to 15%. Black-Right-Pointing-Pointer Pneumatic air sparging effective in dealing with poor flow ability of MBM powder. Black-Right-Pointing-Pointer Pneumatic injection port plugs with char at gasification temperature of 850 Degree-Sign C. - Abstract: A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designed for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50 mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle

  16. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    an improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence...... of precipitated (ferrihydrite surface) and dissolved iron enhanced arsenic oxidation in comparison to solution with absence of precipitated iron in laboratory scale experiments. However, in the pilot scale studies the adsorption of arsenite on ferrihydrite was found to be the main process occurring during...... implementation of the process in the waterworks that are struggling with arsenic related issues....

  17. Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration-reverse osmosis (MF-RO) pilot plant.

    Science.gov (United States)

    Rodriguez-Mozaz, Sara; Ricart, Marta; Köck-Schulmeyer, Marianne; Guasch, Helena; Bonnineau, Chloe; Proia, Lorenzo; de Alda, Miren Lopez; Sabater, Sergi; Barceló, Damià

    2015-01-23

    Water reuse is becoming a common practice in several areas in the world, particularly in those impacted by water scarcity driven by climate change and/or by rising human demand. Since conventional wastewater treatment plants (WWTPs) are not able to efficiently remove many organic contaminants and pathogens, more advanced water treatment processes should be applied to WWTP effluents for water reclamation purposes. In this work, a pilot plant based on microfiltration (MF) followed by reverse osmosis (RO) filtration was applied to the effluents of an urban WWTP. Both the WWTP and the pilot plant were investigated with regards to the removal of a group of relevant contaminants widely spread in the environment: 28 pharmaceuticals and 20 pesticides. The combined treatment by the MF-RO system was able to quantitatively remove the target micropollutants present in the WWTP effluents to values either in the low ng/L range or below limits of quantification. Monitoring of water quality of reclaimed water and water reclamation sources is equally necessary to design the most adequate treatment procedures aimed to water reuse for different needs.

  18. The use of mathematical modeling and pilot plant testing to develop a new biological phosphorus and nitrogen removal process

    Energy Technology Data Exchange (ETDEWEB)

    Nolasco, D.A.; Daigger, G.T.; Stafford, D.R.; Kaupp, D.M.; Stephenson, J.P.

    1998-09-01

    A mechanistic mathematical model for carbon oxidation, nitrogen removal, and enhanced biological phosphorus removal was used to develop the Step Bio-P process, a new biological phosphorus and nitrogen removal process with a step-feed configuration. A 9,000-L pilot plant with diurnally varying influent process loading rates was operated to verify the model results and to optimize the Step Bio-P process for application at the lethbridge, Alberta, Canada, wastewater treatment plant. The pilot plant was operated for 10 months. An automatic on-line data acquisition system with multiple sampling and metering points for dissolved oxygen, mixed liquor suspended solids, ammonia-nitrogen, nitrate-nitrogen, ortho-phosphate, and flow rates was used. A sampling program to obtain off-line data was carried out to verify the information from the on-line system and monitor additional parameters. The on-line and off-line data were used to recalibrate the model, which was used as an experimental design and process optimization tool.

  19. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  20. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2015-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice. PMID:26778863

  1. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

  2. Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, M.I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Malato, S. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Perez-Estrada, L.A. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Gernjak, W. [PSA -Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Oller, I. [PSA - Plataforma Solar de Almeria, CIEMAT, Crta Senes km 4, Tabernas, Almeria 04200 (Spain); Domenech, Xavier [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Peral, Jose [Departament de Quimica, Edifici Cn, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: jose.peral@uab.es

    2006-11-16

    Aqueous solutions of a mixture of several pesticides (alachlor, atrazine, chlorfenvinphos, diuron and isoproturon), considered PS (priority substances) by the European Commission, and an intermediate product of the pharmaceutical industry ({alpha}-methylphenylglycine, MPG) chosen as a model industrial pollutant, have been degraded at pilot-plant scale using ozonation. This study is part of a large research project [CADOX Project, A Coupled Advanced Oxidation-Biological Process for Recycling of Industrial Wastewater Containing Persistent Organic Contaminants, Contract No.: EVK1-CT-2002-00122, European Commission, http://www.psa.es/webeng/projects/cadox/index.html[1

  3. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)

  4. Coal liquefaction. Quarterly report, January--March 1978. [Brief summary of 15 pilot plant projects supported by US DOE

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is sponsoring the development of several conversion processes currently in the pilot plant stage. Fifteen coal liquefaction projects supported by US DOE are described briefly, with flowsheets, funding, history and progress during the quarter. (LTN)

  5. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Leif G. [GRAM, Inc., Albuquerque, NM (United States)

    1999-12-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk.