WorldWideScience

Sample records for arsenic compounds

  1. Determination of arsenic compounds in earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W. [Karl-Franzens-Univ., Graz (Austria). Inst. for Analytical Chemistry; Francesconi, K. [Odense Univ. (Denmark). Inst. of Biology

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  2. Occurrence of arsenic in plaice (Pleuronectes platessa), nature of organo-arsenic compound present and its excretion by man.

    OpenAIRE

    Luten, J B; Riekwel-Booy, G; Rauchbaar, A

    1982-01-01

    The arsenic content in 255 samples of plaice (Pleuronectes platessa) varied between 3 and 166 mg/kg. About 65% of the samples had an arsenic content above 10 mg/kg. High (low) arsenic concentration in the fillet corresponds with a high (low) concentration in milt or roe. An excretion experiment with eight human volunteers showed that after the consumption of plaice, 69-85% of the ingested arsenic was excreted in the urine within five days. The organo-arsenic compound present in plaice was iso...

  3. Precipitation of organic arsenic compounds and their degradation products during struvite formation.

    Science.gov (United States)

    Lin, Jin-Biao; Yuan, Shoujun; Wang, Wei; Hu, Zhen-Hu; Yu, Han-Qing

    2016-11-01

    Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH4(+)-N) and phosphate (PO4(3-)-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO4(3-)-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation. PMID:27262276

  4. Stability of arsenic compounds in seafood samples during processing and storage by freezing

    DEFF Research Database (Denmark)

    Dahl, Lisbeth; Molin, Marianne; Amlund, Heidi;

    2010-01-01

    In this study, the stability of arsenic compounds in fresh and frozen samples of raw, boiled and fried Atlantic cod (Gadhus morhua), Atlantic salmon (Salmo salar) and blue mussel (Mytilus edulis) were examined. Results show that the total arsenic concentrations of the fresh Atlantic cod and...

  5. Arsenic

    Science.gov (United States)

    ... of countries, including Argentina, Bangladesh, Chile, China, India, Mexico, and the United States of America. Drinking-water, ... ingestion of inorganic arsenic include developmental effects, neurotoxicity, diabetes, pulmonary disease and cardiovascular disease. Arsenic-induced myocardial ...

  6. Differential cytotoxic effects of arsenic compounds in human acute promyelocytic leukemia cells

    International Nuclear Information System (INIS)

    Arsenic trioxide, As2O3, has successfully been used to treat acute promyelocytic leukemia (APL). Induction of apoptosis in cancerous cells has been proposed to be the underlying mechanism for the therapeutic efficacy of arsenic. To further understand the cytotoxicity of arsenic compounds in APL cells, HL-60 cells were exposed to graded concentrations of the following arsenicals for up to 48 h: arsenic trioxide (AsIII), sodium arsenate (AsV), phenylarsine oxide (PAOIII), monomethylarsonous acid (MMAIII), monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV), and the viability and modes of cell death assessed. The arsenic-exposed cells were stained with annexin V-PE and 7-aminoactinomycin D (7-AAD) and analyzed by flow cytometry in order to detect apoptotic and viable cells while cell morphology was visualized using scanning and transmission electron microscopy. Acridine orange staining and microtubule-associated protein 1 light chain 3 (MAP-LC3) detection were used to recognize autophagic cell death. The results showed that the compounds reduced viable HL-60 cells by inducing apoptosis in a concentration-dependent manner. None of the compounds tested caused a significant change in binding of acridine orange or redistribution of MAP-LC3. Potencies of the six different arsenic compounds tested were ranked as PAOIII > MMAIII ≥ AsIII > AsV > MMAV > DMAV. An increase in caspase-3 activity by PAOIII, MMAIII and DMAV implied that these compounds induced apoptosis in HL-60 cells through a caspase-dependent mechanism, but the other arsenic compounds failed to activate caspase-3, suggesting that they induce apoptosis by an alternative pathway.

  7. Comparison of mild extraction procedures for determination of plant-available arsenic compounds in soil

    Energy Technology Data Exchange (ETDEWEB)

    Szakova, Jirina; Tlustos, Pavel; Pavlikova, Daniela; Balik, Jiri [Czech University of Agriculture, Department of Agrochemistry and Plant Nutrition, Prague (Czech Republic); Goessler, Walter; Schlagenhaufen, Claudia [Karl-Franzens-University Graz, Institute of Chemistry, Analytical Chemistry, Graz (Austria)

    2005-05-01

    In this work three mild extraction agents for determination of plant-available fractions of elements in soil were evaluated for arsenic speciation in soil samples. Pepper (Capsicum annum, L.) var. California Wonder was cultivated in pots, and aqueous solutions of arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid, at a concentration of 15 mg As kg{sup -1} soil, were added at the beginning of the experiment. Control pots (untreated) were also included. Deionized water, 0.01 mol L{sup -1} CaCl{sub 2}, and 0.05 mol L{sup -1} (NH{sub 4}){sub 2}SO{sub 4} were used to extract the plant-available fraction of the arsenic compounds in soil samples collected during the vegetation period of the plants. Whereas in control samples the extractable arsenic fraction did not exceed 1% of total arsenic content, soil amendment by arsenic compounds resulted in extraction of larger amounts, which varied between 1.4 and 8.1% of total arsenic content, depending on soil treatment and on the extracting agent applied. Among arsenic compounds determined by HPLC-ICPMS arsenate was predominant, followed by small amounts of arsenite, methylarsonic acid, and dimethylarsinic acid, depending on the individual soil treatment. In all the experiments in which methylarsonic acid was added to the soil methylarsonous acid was detected in the extracts, suggesting that the soil bacteria are capable of reducing methylarsonic acid before a further methylation occurs. No significant differences were observed between analytical data obtained by using different extraction procedures. (orig.)

  8. Voltammetric Detection of Damage to DNA by Arsenic Compounds at a DNA Biosensor

    Directory of Open Access Journals (Sweden)

    R. Wennrich

    2005-11-01

    Full Text Available DNA biosensor can serve as a powerfull tool for simple in vitro tests of chemicaltoxicity. In this paper, damage to DNA attached to the surface of screen-printed carbonelectrode by arsenic compounds in solution is described. Using the Co(III complex with1,10-phenanthroline, [Co(phen3]3+ , as an electrochemical DNA marker and the Ru(IIcomplex with bipyridyne, [Ru(bipy3]2+ , as a DNA oxidation catalyst, the portion of originaldsDNA which survives an incubation of the biosensor in the cleavage medium was evaluated.The model cleavage mixture was composed of an arsenic compound at 10-3 mol/Lconcentration corresponding to real contaminated water, 2x10-4 mol/L Fe(II or Cu(II ions asthe redox catalyst, and 1.5x10-2 mol/L hydrogen peroxide. DNA damage by arsenite,dimethylarsinic acid as the metabolic product of inorganic arsenic and widely used herbicide,as well as phenylarsonic acid and p-arsanilic acid as the representatives of feed additives wasfound in difference to arsenate.

  9. Ultra-Sensitive Elemental Analysis Using Plasmas 5.Speciation of Arsenic Compounds in Biological Samples by High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry System

    Science.gov (United States)

    Kaise, Toshikazu

    Arsenic originating from the lithosphere is widely distributed in the environment. Many arsenicals in the environment are in organic and methylated species. These arsenic compounds in drinking water or food products of marine origin are absorbed in human digestive tracts, metabolized in the human body, and excreted viatheurine. Because arsenic shows varying biological a spects depending on its chemical species, the biological characteristics of arsenic must be determined. It is thought that some metabolic pathways for arsenic and some arsenic circulation exist in aqueous ecosystems. In this paper, the current status of the speciation analysis of arsenic by HPLC/ICP-MS (High Performance Liquid Chromatography-Inductively Coupled Plasma Mass spectrometry) in environmental and biological samples is summarized using recent data.

  10. Embryotoxicity hazard assessment of cadmium and arsenic compounds using embryonic stem cells

    International Nuclear Information System (INIS)

    The Embryonic Stem Cell Test (EST) has been successfully validated as an in vitro method for detecting embryotoxicity, showing a good overall test accuracy of 78% [Genschow, E., Spielmann, H., Scholz, G., Seiler, A., Brown, N., Piersma, A., Brady, M., Clemann, N., Huuskonen, H., Paillard, F., Bremer, S., Becker, K., 2002. The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. European Centre for the Validation of Alternative Methods. Altern. Lab. Anim. 30, 151-176]. Methylmercury was the only strong in vivo embryotoxicant falsely predicted as non-embryotoxic making the metal the most significant outlayer [Genschow, E., Spielmann, H., Scholz, G., Pohl, I., Seiler, A., Clemann, N., Bremer, S., Becker, K., 2004. Validation of the Embryonic Stem Cell Test in the international ECVAM validation study on three in vitro embryotoxicity tests. Altern. Lab. Anim. 32, 209-244]. The misclassification of methylmercury and the potential environmental exposure to developmental toxic heavy metals promoted our investigation of whether the EST applicability domain covers cadmium and arsenic compounds. The EST misclassified cadmium, arsenite and arsenate compounds as non-embryotoxic, even when including arsenic metabolites (methylarsonate, methylarsonous and dimethylarsinic). The reasons were the lack of higher cytotoxicity towards embryonic stem cells as compared to more mature cells (3T3 fibroblasts) or the absence of inhibition of cardiac differentiation by specific mechanisms rather than general cytotoxicity. Including EST data on heavy metals from the literature (lithium, methylmercury, trivalent chromium and hexavalent chromium) revealed that the test correctly predicted the embryotoxic potential of three out of the seven heavy metals, indicating an insufficient predictivity for such metals. Refinement of the EST prediction model and inclusion of additional toxicological endpoints could

  11. Toxic Compounds in Our Food: Arsenic Uptake By Rice and Potential Mitigation By Silicon

    Science.gov (United States)

    Seyfferth, A.; Gill, R.; Penido, E.

    2014-12-01

    Arsenic is a ubiquitous element in soils worldwide and has the potential to negatively impact human and ecosystem health under certain biogeochemical conditions. While arsenic is relatively immobile in most oxidized soils due to a high affinity for soil solids, arsenic becomes mobilized under reduced soil conditions due to the reductive dissolution of iron(III) oxides thereby releasing soil-bound arsenic. Since arsenic is a well-known carcinogen, this plant-soil process has the potential to negatively impact the lives of billions of rice consumers worldwide upon plant uptake and grain storage of released arsenic. Moreover, arsenic uptake by rice is excacerbated by the use of As-laden groundwater for rice irrigation. One proposed strategy to decrease arsenic uptake by rice plants is via an increase in dissolved silicon in paddy soil solution (pore-water), since silicic acid and arsenous acid share an uptake pathway. However, several soil processes that influence arsenic cycling may be affected by silicon including desorption from bulk soil, formation and mineralogy of iron(III) oxide plaque, and adsorption/desorption onto/from iron plaque; the effect of silicon on these soil processes will ultimately dictate the effectiveness of altered dissolved silicon in decreasing arsenic uptake at the root, which in turn dictates the concentration of arsenic found in grains. Furthermore, the source of silicon may impact carbon cycling and, in particular, methane emissions. Here, impacts of altered dissolved silicon on processes that affect rhizospheric biogeochemical cycling of arsenic and subsequent plant-uptake, and how it influences other biogeochemical cycles such as carbon and iron are investigated. We show that silicon can decrease arsenic uptake and grain storage under certain conditions, and that altered silicon affects the type of iron (III) oxide that comprises iron plaque.

  12. Measurement of arsenic compounds in water by HPLC-ICP-MS

    OpenAIRE

    Watts, M. J.; O'Reilly, J.; Smiles, C.A.

    2007-01-01

    This report provides a brief introduction to the application of high-pressure liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS) to determine the concentration of various arsenic species in water samples. It describes the validation of this arsenic speciation method developed under the Laboratory Maintenance and Development Capability Programme to provide data on arsenic speciation in a range of challenging sample matrices to support BGS...

  13. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan

    International Nuclear Information System (INIS)

    Concentrations of total arsenic (As) and individual compounds were determined in green and hawksbill turtles from Ishigaki Island, Japan. In both species, total As concentrations were highest in muscle among the tissues. Arsenobetaine was a major compound in most tissues of both turtles. High concentrations of trimethylarsine oxide were detected in hawksbill turtles. A significant negative correlation between standard carapace length (SCL), an indicator of age, and total As levels in green turtles was found. In contrast, the levels increased with SCL of hawksbill turtles. Shifts in feeding habitats with growth may account for such a growth-dependent accumulation of As. Although concentrations of As in marine sponges, the major food of hawksbill turtles are not high compared to those in algae eaten by green turtles, As concentrations in hawksbill turtles were higher than those in green turtles, indicating that hawksbill turtles may have a specific accumulation mechanism for As. - Green turtles and hawksbill turtles have specific accumulation features of arsenic

  14. Microwave assisted digestion of organoarsenic compounds for the determination of total arsenic in aqueous, biological, and sediment samples using FI-HG-ETAAS (P8)

    International Nuclear Information System (INIS)

    Full text: A microwave assisted wet digestion method for organo-arsenic compounds and subsequent determination of total arsenic in aqueous, biological and sediment samples by means of flow injection hydride generation electrothermal atomic absorption spectrometry is described. Sodium persulfate, sodium fluoride and nitric acid serve as digestion reagents, which allow a quantitative transformation of organo-arsenic compounds to hydride forming species in a commercial microwave sample preparation system. Arsenic recovery from aqueous testing solutions of dimethylarsinic acid, phenylarsonic acid and tetraphenylarsonium chloride at initial concentrations of 100 μg l-1 and 10 μg l-1 is complete, even in the presence of an excess of organic carbon or fatty acids. Arsenic recovery from aqueous arsenobetaine solutions with the same initial concentrations is also complete if high pressure vessels and a higher concentration of fluoride ions are used, whereas the addition of organic carbon leads to a decrease in arsenic recovery of about 2 % to 5 %. In all cases, residual carbon contents are close to the limit of detection for the applied analytical method (15 mg l-1). Results of arsenic analysis in reference standard materials revealed a significant dependence on the material's nature. Sediment samples and plant materials show recoveries for arsenic around 100 % after a single-step digestion in medium pressure (30 bar) tetrafluorometoxil liners. Seafood usually require either the use of high pressure vessels (75 bar) or a second digestion step if medium pressure vessels are used. (author)

  15. Physical, Chemical, and Biological Methods for the Removal of Arsenic Compounds

    Directory of Open Access Journals (Sweden)

    K. T. Lim

    2014-01-01

    Full Text Available Arsenic is a toxic metalloid which is widely distributed in nature. It is normally present as arsenate under oxic conditions while arsenite is predominant under reducing condition. The major discharges of arsenic in the environment are mainly due to natural sources such as aquifers and anthropogenic sources. It is known that arsenite salts are more toxic than arsenate as it binds with vicinal thiols in pyruvate dehydrogenase while arsenate inhibits the oxidative phosphorylation process. The common mechanisms for arsenic detoxification are uptaken by phosphate transporters, aquaglyceroporins, and active extrusion system and reduced by arsenate reductases via dissimilatory reduction mechanism. Some species of autotrophic and heterotrophic microorganisms use arsenic oxyanions for their regeneration of energy. Certain species of microorganisms are able to use arsenate as their nutrient in respiratory process. Detoxification operons are a common form of arsenic resistance in microorganisms. Hence, the use of bioremediation could be an effective and economic way to reduce this pollutant from the environment.

  16. Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds

    International Nuclear Information System (INIS)

    Highlights: ► Cytochrome c biosensor for detection of KCN, As2O3 and Fe2K (CN) was constructed. ► Detection limits in the range of 4.3–9.1 μM for the analytes were obtained using CV, SWV and EIS. ► The detection limits for the biosensor were significantly lower than current EPA and WHO guidelines. - Abstract: An electrochemical method based on a cytochrome c biosensor was developed, for the detection of selected arsenic and cyanide compounds. Boron doped diamond (BDD) electrode was used as a transducer, onto which cytochrome c was immobilised and used for direct determination of Prussian blue, potassium cyanide and arsenic trioxide. The sensitivity as calculated from cyclic voltammetry (CV) and square wave voltammetry (SWV), for each analyte in phosphate buffer (pH = 7) was found to be in the range of (1.1–4.5) × 10−8 A μM−1 and the detection limits ranged from 4.3 to 9.1 μM. The biosensor is therefore able to measure significantly lower than current Environmental Protection Agency (EPA) and World Health Organisation (WHO) guidelines, for these types of analytes. The protein binding was monitored as a decrease in biosensor peak currents by SWV and as an increase in biosensor charge transfer resistance by electrochemical impedance spectroscopy (EIS). EIS provided evidence that the electrocatalytic advantage of BDD electrode was not lost upon immobilisation of cytochrome c. The interfacial kinetics of the biosensor was modelled as equivalent electrical circuit based on electrochemical impedance spectroscopy data. UV–vis spectroscopy was used to confirm the binding of the protein in solution by monitoring the intensity of the soret bands and the Q bands. FTIR was used to characterise the protein in the immobilised state and to confirm that the protein was not denatured upon binding to the pre-treated bare BDD electrode. SNFTIR of cyt c immobilised at platinum electrode, was used to study the effect of oxidation state on the surface bond vibrations

  17. Characterization of ferric arsenate-sulfate compounds: Implications for arsenic control in refractory gold processing residues

    Czech Academy of Sciences Publication Activity Database

    Paktunc, D.; Majzlan, J.; Palatinus, Lukáš; Dutrizac, J.; Klementová, Mariana; Poirier, G.

    2013-01-01

    Roč. 98, č. 4 (2013), s. 554-565. ISSN 0003-004X Institutional support: RVO:68378271 Keywords : arsenic * ferric arsenate sulfate * autoclave residue * hydrometallurgy Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.059, year: 2013

  18. The use of L-ascorbic acid in speciation of arsenic compounds in drinking water

    Directory of Open Access Journals (Sweden)

    Marjanović Nikola J.

    2009-01-01

    Full Text Available Arsenic speciation, besides total arsenic content determination, is very important in analysis of water, foodstuffs, and environmental samples, because of varying degrees of toxicity of different species. For such purpose hydride generation atomic absorption spectrometry can be used based on the generation of certain types of hydride, depending on the pH value and pretreatment in different reaction media. In this study, we have investigated the effect of L-ascorbic acid as the reaction medium as well as the pre-reducing agent in speciation of arsenic by hydride generation-atomic absorption spectrometry in order to determine monomethyl arsonic acid (MMA in the presence of inorganic forms of arsenic.

  19. Selective arsenical purification of substances during an alkaline treatment process of an uranium and/or molybdenum bearing ore by means of a magnesium compound

    International Nuclear Information System (INIS)

    The ores is digested by means of an aqueous liquor of sodium or potassium carbonate and/or bicarbonate, the digestion being carried out under conditions of concentrations, temperatures and pressures bringing about the solubilization of the uranium and/or molybdenum and the arsenic present in the core. A solid phase suspension is lifted from a liquid phase and the phases are separated. The arsenic solubilized during the digestion is extracted as magnesium arsenate by treatment of the medium containing the arsenic by means of a magnesium compound

  20. Speciation analysis of arsenic compounds in the serum and urine of a patient with acute arsine poisoning

    Directory of Open Access Journals (Sweden)

    Yamanaka K.

    2013-04-01

    Full Text Available Arsine is one of the most potent hemolytic agents. It is important to clarify arsine metabolism as well as its chemical interactions with biological components. The aim of the present study was to clarify arsine metabolism by arsenic speciation analysis in serum and urine from an acute poisoning patient with hematuria, anemia, and renal and liver dysfunction. Speciation analysis of arsenics in serum and urine was performed using HPLC-ICP-MS. The total arsenic (T-As concentration in serum was 244.8 μg/l at admission and 97.1 μg/l at discharge. In the speciation analysis, four kinds of As compounds derived from arsine metabolism were detected in serum and urine. The concentration of arsenite (AsIII, arsenate (AsV, monomethylarsonic acid (MMA, and dimethylarsinic acid (DMA in serum at admission were 45.8, 5.2, 17.9 and 9.3 μg/l, respectively. The concentrations of AsIII, AsV, and MMA decreased with biological half time (BHT of 30.1, 43.0, and 96.3 h, respectively. Only DMA was increased at discharge. The urinary AsIII, AsV, MMA and DMA concentrations were 223.0, 12.1, 317.5 and 1053.5 μg/l at discharge, and decreased with BHT of 15.1, 20.8, 14.7, and 16.0 d, respectively. The results indicate that arsine was quickly metabolized to AsIII and subsequently up to DMA, with the result that the toxic effects of inorganic arsenic were added to those of arsine toxicity.

  1. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements.

    Science.gov (United States)

    WOOLFOLK, C A; WHITELEY, H R

    1962-10-01

    Woolfolk, C. A. (University of Washington, Seattle) and H. R. Whiteley. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84:647-658. 1962.-Extracts of Micrococcus lactilyticus (Veillonella alcalescens) oxidize molecular hydrogen at the expense of certain compounds of arsenic, bismuth, selenium, tellurium, lead, thallium, vanadium, manganese, iron, copper, molybdenum, tungsten, osmium, ruthenium, gold, silver, and uranium, as well as molecular oxygen. Chemical and manometric data indicate that the following reductions are essentially quantitative: arsenate to arsenite, pentavalent and trivalent bismuth to the free element, selenite via elemental selenium to selenide, tellurate and tellurite to tellurium, lead dioxide and manganese dioxide to the divalent state, ferric to ferrous iron, osmium tetroxide to osmate ion, osmium dioxide and trivalent osmium to the metal, uranyl uranium to the tetravalent state, vanadate to the level of vanadyl, and polymolybdate ions to molybdenum blues with an average valence for molybdenum of +5. The results of a study of certain other hydrogenase-containing bacteria with respect to their ability to carry out some of the same reactions are also presented. PMID:14001842

  2. Mechanisms underlying the inhibitory effects of arsenic compounds on protein tyrosine phosphatase (PTP)

    International Nuclear Information System (INIS)

    Arsenic binding to biomolecules is considered one of the major toxic mechanisms, which may also be related to the carcinogenic risks of arsenic in humans. At the same time, arsenic is also known to activate the phosphorylation-dependent signaling pathways including the epidermal growth factor receptor, the mitogen-activated protein kinase and insulin/insulin-like growth factor-1 pathways. These signaling pathways originate at the level of receptor tyrosine kinases whose phosphorylation status is regulated by opposing protein tyrosine phosphatase (PTP) activity. Reversible tyrosine phosphorylation, which is governed by the balanced action of protein tyrosine kinases and phosphatases, regulates important signaling pathways that are involved in the control of cell proliferation, adhesion and migration. In the present study, we have focused on the interaction of cellular PTPs with toxic trivalent arsenite (iAsIII) and its intermediate metabolites such as monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII) in vitro, and then determined the arsenic binding site in PTP by the use of recombinant PTPs (e.g., PTP1B and CD45). Interestingly, the activities of PTP1B (cytoplasm-form) or CD45 (receptor-linked form) were observed to be strongly inhibited by both methylated metabolites (i.e., MMAIII and DMAIII) but not by iAsIII. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has clearly confirmed that the organic intermediate, DMAIII directly bound to the active site cysteine residue of PTP1B (e.g., Cys215), resulting in inhibition of enzyme activity. These results suggest that arsenic exposure may disturb the cellular signaling pathways through PTP inactivation. Highlights: ► This study focused on the interaction of PTPs with trivalent arsenicals in vitro. ► We for the first time confirmed that DMAIII strongly inhibited activity of PTP1B. ► DMAIII directly bound to PTP1B, resulting in inhibition of enzyme

  3. Major and minor arsenic compounds accounting for the total urinary excretion of arsenic following intake of blue mussels (Mytilus edulis): A controlled human study

    DEFF Research Database (Denmark)

    Molin, M.; Ydersbond, T.A.; Ulven, S.M.;

    2012-01-01

    Blue mussels (Mytilus edulis) accumulate and biotransform arsenic (As) to a larger variety of arsenicals than most seafood. Eight volunteers ingested a test meal consisting of 150g blue mussel (680μg As), followed by 72h with an identical, low As controlled diet and full urine sampling. We provid...

  4. Speciation of arsenic compounds by ion-exchange HPLC-ICP-MS with different nebulizers

    OpenAIRE

    Falk, K.; Emons, H

    2000-01-01

    For the purpose of environmental biomonitoring analytical procedures for the sensitive and efficient speciation of the arsenic species As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), trimethylarsine oxide (TMAO), tetramethylarsonium ion (Tetra), arsenobetaine and arsenocholine have been optimized. The influence of different nebulizers, in particular cross flow and hydraulic high pressure, on the analytical performance and quality parameters such as limit of detection...

  5. Speciation analysis of arsenic compounds in the serum and urine of a patient with acute arsine poisoning

    OpenAIRE

    Yamanaka K.; Yamano Y.; Yoshimura Y.; Shimoda Y.; Endo Y; Endo G.

    2013-01-01

    Arsine is one of the most potent hemolytic agents. It is important to clarify arsine metabolism as well as its chemical interactions with biological components. The aim of the present study was to clarify arsine metabolism by arsenic speciation analysis in serum and urine from an acute poisoning patient with hematuria, anemia, and renal and liver dysfunction. Speciation analysis of arsenics in serum and urine was performed using HPLC-ICP-MS. The total arsenic (T-As) concentration in serum was...

  6. Arsenic in Food

    Science.gov (United States)

    ... Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share Tweet Linkedin Pin it More ... and previous or current use of arsenic-containing pesticides. Are there ... compounds in water, food, air, and soil: organic and inorganic (these together ...

  7. Solvent extraction of indium, tin, arsenic, and antimony by non-phosphorous compounds

    International Nuclear Information System (INIS)

    The extraction methods of In, Ti, Sn, As and Sb using non-phosphorous compounds are reviewed. This report is the continuation of the BIB-212 (pt.1) report concerned by Zn, Cd, Pb and Ag. So, the main elements of Zn ores are studied in these two reports

  8. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Escamilla, E.A.

    1996-10-17

    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  9. Speciation of eight arsenic compounds in human urine by high performance liquid chromatography with inductively coupled plasma mass spectrometric detection using antimonate for internal chromatographic standardization

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Pritzl, G.; Hansen, S. H.

    1993-01-01

    Four anionic and four cationic arsenic compounds in urine were separated by anion- and cation-exchange high-performance liquid chromatography and detected by inductively coupled plasma mass spectrometry (ICP-MS) at m/z 75. The species were the anions arsenite, arsenate, monomethylarsonate and...... arsenate in urine but was stable after at least 4-fold dilution of the urine with water. Arsenite was unstable in both urine samples and standard mixtures when diluted with the basic (pH 10.3) mobile phase used for anion chromatography. This could not be prevented by adding ascorbic acid as antioxidant...

  10. Extraction of arsenic from arsenic-containing cobalt and nickel slag and preparation of arsenic-bearing compounds%含砷钴镍渣中砷提取与砷盐制备的资源化利用

    Institute of Scientific and Technical Information of China (English)

    余国林; 张盈; 郑诗礼; 邹兴; 王晓辉; 张懿

    2014-01-01

    对某厂硫酸锌溶液砷盐净化工艺产生的含砷钴镍渣进行砷提取与资源化利用研究。基于含砷钴镍渣中砷的存在形态并利用砷的两性特性,考察碱介质氧压浸出砷的方法,确定并优化氧气气氛下碱介质浸出砷的最佳条件。结果表明,在溶出温度140°C、碱介质NaOH浓度150 g/L、氧压0.5 MPa、液固比5:1的条件下,砷的浸出率达到99.14%。根据As2O5、ZnO和PbO在NaOH溶液中的溶解特性,提出采用富砷浸出液直接冷却结晶分离获得砷酸钠晶体的砷分离-碱介质循环的方法,且富砷浸出液直接在25°C下的结晶率达88.9%;根据氧化还原电位,将砷酸钠晶体溶解获得的溶液直接采用SO2气体进行还原来制备三价砷盐,在一定条件下砷的还原率达92%,从还原液可制得正八面体结构的As2O3晶体循环或将还原液直接循环回用于硫酸锌溶液砷盐的净化系统。利用含砷钴镍渣中砷的氧压碱介质浸出-浸出液冷却结晶-砷酸钠溶液 SO2气体还原-As2O3晶体制备的技术路线可实现含砷钴镍渣中砷的提取与资源化利用。%The arsenic extraction from the arsenic-containing cobalt and nickel slag, which came from the purification process of zinc sulfate solution in a zinc smelting factory, was investigated. The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic. The leaching experiments were conducted in the alkaline aqueous medium, with bubbling of oxygen into the solution, and the optimal conditions for leaching arsenic were determined. The results showed that the extraction rate of arsenic was maximized at 99.10% under the optimal conditions of temperature 140 °C, NaOH concentration 150 g/L, oxygen partial pressure 0.5 MPa, and a liquid-to-solid ratio 5:1. Based on the solubilities of As2O5, ZnO and PbO in NaOH solution at 25 °C, a method for the separation of As in

  11. Arsenic speciation in edible mushrooms.

    Science.gov (United States)

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered. PMID:25417842

  12. Manufacture of high purity low arsenic anhydrous hydrogen fluoride

    International Nuclear Information System (INIS)

    A process for manufacturing anhydrous hydrogen fluoride with reduced levels of arsenic impurity from arsenic contaminated anhydrous hydrogen fluoride is described which comprises: (a) contacting the anhydrous hydrogen fluoride with an effective amount of hydrogen peroxide to oxidize the arsenic impurity in the presence of a catalyst which comprises a catalytic amount of (i) molybdenum or an inorganic molybdenum compound and (ii) a phosphate compound, at a temperature and for a period of time sufficient to oxidize volatile trivalent arsenic impurities in the anhydrous hydrogen fluoride to non-volatile pentavalent arsenic compounds, and (b) distilling the resulting mixture and recovering anhydrous hydrogen fluoride with reduced levels of arsenic impurity

  13. Illicit utilization of arsenic compounds in pyrotechnics? An analysis of the suspended particle emission during Vienna’s New Year fireworks

    International Nuclear Information System (INIS)

    In the course of an investigation of an electrostatic precipitation technique as a sampling method for airborne dust particles, elevated concentrations of As were found in the data collected during New Years Eve celebrations in Vienna. The original study confirmed the applicability of the new sampling device as a useful sampling method, showing elevated values for the elements Na, Mg, Al, Si, S, K, Cu, As, Br, Rb, Sr, Sb, Te and Ba, all associated with the use of pyrotechnics. The measured values for As could not be explained as a impurity in some other substances used. Thus, several unburned pyrotechnic products were investigated to find the source of As in the dust collected. The results showed only one product with higher than expected As contents (1.4 μg g-1), leading to the assumption of intentional - but illicit - use of arsenic compounds in pyrotechnics as a colouring agent for the production of blue light. (author)

  14. Separation of seven arsenic compounds by high-performance liquid chromatography with on-line detection by hydrogen–argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, S. H.; Larsen, E. H.; Pritzl, G.;

    1992-01-01

    of mixtures of arsenic standards into the HPLC system were: arsenite, As(III) 1.1; arsenate, As(V) 1.4; MMA 1.4; DMA 0.7; AsB 0.3; AsC 0.5; and the TMAs 0.4. The HPLC-AAS system was used for the analysis of arsenic species in aqueous extracts of soil samples from a polluted land site. Only arsenate was found......Seven molecular forms of arsenic were separated by anion- and cation-exchange high-performance liquid chromatography (HPLC) with on-line detection by flame atomic absorption spectrometry (FAAS). The interfacing was established by a vented poly(tetrafluoroethylene) capillary tubing connecting...... the HPLC column to the nebulizer of the atomic absorption spectrometer. Arsenite, arsenate, monomethylarsonate (MMA) and dimethylarsinate (DMA) were separated from each other and from the co-injected cationic arsenic compounds, arsenobetaine (AsB), arsenocholine (AsC) and the tetramethylarsonium ion (TMAs...

  15. Separation of seven arsenic compounds by high performance liquid chromatography with on-line detection by hydrogen-argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, S. H.; Larsen, Erik Huusfeldt; Pritzl, G.;

    1992-01-01

    of mixtures of arsenic standards into the HPLC system were: arsenite, As(III) 1.1; arsenate, As(V) 1.4; MMA 1.4; DMA 0.7; AsB 0.3; AsC 0.5; and the TMAs 0.4. The HPLC-AAS system was used for the analysis of arsenic species in aqueous extracts of soil samples from a polluted land site. Only arsenate was found......Seven molecular forms of arsenic were separated by anion- and cation-exchange high-performance liquid chromatography (HPLC) with on-line detection by flame atomic absorption spectrometry (FAAS). The interfacing was established by a vented poly(tetrafluoroethylene) capillary tubing connecting...... the HPLC column to the nebulizer of the atomic absorption spectrometer. Arsenite, arsenate, monomethylarsonate (MMA) and dimethylarsinate (DMA) were separated from each other and from the co-injected cationic arsenic compounds, arsenobetaine (AsB), arsenocholine (AsC) and the tetramethylarsonium ion (TMAs...

  16. Neutron activation analysis of arsenic in Greece

    International Nuclear Information System (INIS)

    Arsenic is considered a toxic trace element for plant, animal, and human organisms. Arsenic and certain arsenic compounds have been listed as carcinogens by the U.S. Environmental Protection Agency. Arsenic is emitted in appreciable quantities into the atmosphere by coal combustion and the production of cement. Arsenic enters the aquatic environment through industrial activities such as smelting of metallic ores, metallurgical glassware, and ceramics as well as insecticide production and use. Neutron activation analysis (NAA) is a very sensitive, precise, and accurate method for determining arsenic. This paper is a review of research studies of arsenic in the Greek environment by NAA performed at our radioanalytical laboratory. The objectives of these studies were (a) to determine levels of arsenic concentrations in environmental materials, (b) to pinpoint arsenic pollution sources and estimate the extent of arsenic pollution, and (c) to find out whether edible marine organisms from the gulfs of Greece receiving domestic, industrial, and agricultural wastes have elevated concentrations of arsenic in their tissues that could render them dangerous for human consumption

  17. Simultaneous trace analysis of organic arsenic and antimony compounds in an aquatic environment using HPLC/ICP-MS; Simultane Spurenanalytik arsen- und antimonorganischer Verbindungen in der aquatischen Umwelt mittels HPLC/ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, C.

    2000-07-01

    A method for simultaneous element species analysis of organometallic and inorganic compounds by direct coupling of HPLC and ICP-MS was used for the first time for analyses or arsenic and antimony compounds in an aquatic environment. [German] In der vorliegenden Arbeit wurde erstmalig eine Methode zur simultanen Elementspeziesanalytik metallorganischer und anorganischer Verbindungen mittels direkter Kopplung von HPLC und ICP-MS entwickelt und zur Untersuchung von Arsen und Antimonverbindungen in der aquatischen Umwelt eingesetzt. Ziel der Arbeiten war es, das Potential fluessigkeitschromatographischer Trennmethoden als Basis von Kopplungsmethoden zur simultanen Multielement-Speziesanalytik zu beschreiben und deren Leistungsfaehigkeit im Vergleich mit etablierten Methoden zu bewerten. (orig.)

  18. Global Atmospheric Transport and Source-Receptor Relationships for Arsenic.

    Science.gov (United States)

    Wai, Ka-Ming; Wu, Shiliang; Li, Xueling; Jaffe, Daniel A; Perry, Kevin D

    2016-04-01

    Arsenic and many of its compounds are toxic pollutants in the global environment. They can be transported long distances in the atmosphere before depositing to the surface, but the global source-receptor relationships between various regions have not yet been assessed. We develop the first global model for atmospheric arsenic to better understand and quantify its intercontinental transport. Our model reproduces the observed arsenic concentrations in surface air over various sites around the world. Arsenic emissions from Asia and South America are found to be the dominant sources for atmospheric arsenic in the Northern and Southern Hemispheres, respectively. Asian emissions are found to contribute 39% and 38% of the total arsenic deposition over the Arctic and Northern America, respectively. Another 14% of the arsenic deposition to the Arctic region is attributed to European emissions. Our results indicate that the reduction of anthropogenic arsenic emissions in Asia and South America can significantly reduce arsenic pollution not only locally but also globally. PMID:26906891

  19. Natural and industrial Arsenic pollution,early predictors of cardiovascular disease

    OpenAIRE

    Bianchi, Fabrizio

    2012-01-01

    Inorganic arsenic and arsenic compounds have been classidied in Group 1 " carcinogenic to humans" by IARC (2004). Both short-and long-term exposure to arsenic can cause several health problems. The interest in cardiovascular effects of human esposures to arsenic is growing.

  20. The Chemistry and Metabolism of Arsenic

    Science.gov (United States)

    I. IntrodctionA century of study of the process by which many organisms convert inorganic arsenic into an array of methylated metabolites has answered many questions and has posed some new ones. The capacity of microorganisms to. form volatile arsenic compounds was first recogniz...

  1. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    OpenAIRE

    Yongfang Li; Feng Ye; Anwei Wang; Da Wang; Boyi Yang; Quanmei Zheng; Guifan Sun; Xinghua Gao

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking ...

  2. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  3. Chemical characteristics of arsenic in a marine food chain

    International Nuclear Information System (INIS)

    The various chemical forms of 74As accumulated from either water or food by the marine food chain [Fucus spiralis (L.) → Littorina littoralis (L.) → Nucella lapillus] have been separated and characterized. Arsenic components were separated by differential extraction followed by high-voltage paper electrophoresis/paper chromatography of the water-soluble farction and thin-layer chromatography of the lipid-soluble fraction. The algae assimilates arsenic mainly (60%) as one lipid-soluble compound with Rsub(f) = 0.18, and 12 water-soluble organo-arsenic compounds as minor components. On the other hand, the snails produce predominantly one major water-soluble organo-arsenic compound with Rsub(f) = 0.66. This water-soluble arsenic compound was produced by the snails and not by intestinal microbes. Time-course studies on the relative proportions of labelled arsenic compounds in algal tissue indicate a transition from arsenate through water-soluble organo-arsenic components to a lipid-soluble arsenic compound. The water-soluble organo-arsenic compounds in the food chain studied were different from those previously found or proposed in marine organisms. (orig.)

  4. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Directory of Open Access Journals (Sweden)

    Yongfang Li

    2016-01-01

    Full Text Available In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members. Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  5. A comparative study of the sub-chronic toxic effects of three organic arsenical compounds on the urothelium in F344 rats; gender-based differences in response

    International Nuclear Information System (INIS)

    Epidemiological studies indicated that human arsenic exposure can induce urinary bladder cancer. Methylation of inorganic arsenic can generate more reactive and toxic organic arsenical species. In this regard, it was recently reported that the methylated arsenical metabolite, dimethylarsinic acid [DMA(V)], induced urinary bladder tumors in rats. However, other methylated metabolites, like monomethylarsonic acid [MMA(V)] and trimethylarsine oxide (TMAO) were not carcinogenic to the urinary bladder. In order to compare the early effects of DMA(V), MMA(V), and TMAO on the urinary bladder transitional cell epithelium at the scanning electron microscope (SEM) level, we investigated the sub-chronic (13 weeks) toxicological effects of MMA(V) (187 ppm), DMA(V) (184 ppm), TMAO (182 ppm) given in the drinking water to male and female F344 rats with a focus on the urinary bladder in this study. Obvious pathological changes, including ropy microridges, pitting, increased separation of epithelial cells, exfoliation, and necrosis, were found in the urinary bladders of both sexes, but particularly in females receiving carcinogenic doses of DMA(V). Urine arsenical metabolic differences were found between males and females, with levels of MMA(III), a potential genotoxic form, higher in females treated with DMA(V) than in males. Thus, this study provides clear evidence that DMA(V) is more toxic to the female urinary bladder, in accord with sensitivity to carcinogenesis. Important gender-related metabolic differences including enhanced presentation of MMA(III) to the urothelial cells might possibly account for heightened sensitivity in females. However, the potential carcinogenic effects of MMA(III) need to be further elucidated

  6. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  7. Arsenic – Poison or medicine?

    Directory of Open Access Journals (Sweden)

    Karolina Kulik-Kupka

    2016-04-01

    Full Text Available Arsenic (As is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine. Med Pr 2016;67(1:89–96

  8. Ground water pollution by arsenic and its effects on health. Involvement of metabolic methylation in arsenic-induced genetic damage and tumorigenesis; Muki hiso no mechiru ka taisha to idenshi shogaisei narabini shuyo yuhatsusei

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, K. [Nihon Univ., Tokyo (Japan)] Okada, S. [Shizuoka Prefecture (Japan)

    1997-07-10

    Drinking water contamination has become a worldwide problem. It is pointed out that re-evaluation of genetic damage with carcinogen is considered as an important problem particularly arsenic`s effects on health. To explain the genetic damage development mechanism of arsenic compound, results of the research conducted on the action of arsenic compound which develops during metabolic methylation process and inorganic arsenic are explained in this paper. The results of the study are summarized as follows. Arsenic genetic damage mutation is caused by dimethyl arsenic in main metabolism than inorganic arsenic. Lung DNA damage is induced by the interaction of O2 and arsenic peroxide radical. Dimethyl arsenic shows very important effect on lung cancer formation process which is induced based on 4-nitroquinoline-1-oxide (4NQO). It not only promotes lung cancer but it also plays an important role in malignant tumor`s mutation. 25 refs., 2 figs.

  9. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic.

    Science.gov (United States)

    Kala, S V; Neely, M W; Kala, G; Prater, C I; Atwood, D W; Rice, J S; Lieberman, M W

    2000-10-27

    Worldwide, millions of people are exposed to arsenic in drinking water that exceeds the World Health Organization standard of 10 microg/liter by as much as 50-300-fold, yet little is known about the molecular basis for arsenic excretion. Here we show that transport of arsenic into bile depends on the MRP2/cMOAT transporter and that glutathione is obligatory for such transport. Using reversed phase liquid chromatography/mass spectrometry, we demonstrate that two arsenic-glutathione complexes not previously identified in vivo, arsenic triglutathione and methylarsenic diglutathione, account for most of the arsenic in the bile. The structure of the compounds was also confirmed by nuclear magnetic resonance spectroscopy. Our findings may help explain the increased susceptibility of malnourished human populations to arsenic. PMID:10938093

  10. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    丁振华; 郑宝山; 张杰; H.; E.; Belkin; R.; B.; Finkelman; 赵峰华; 周代兴; 周运书; 陈朝刚

    1999-01-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer ( EMPA) , scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX) , X-ray diffraction analysis (XRD) , low temperature ashing (LTA) , transmission electron microscopy (TEM) , X-ray absorption fine structure (XAFS) , instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+ , combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  11. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  12. Earth Abides Arsenic Biotransformations

    OpenAIRE

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology ...

  13. Cryptic exposure to arsenic

    OpenAIRE

    Rossy Kathleen; Janusz Christopher; Schwartz Robert

    2005-01-01

    Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic) and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving ne...

  14. Arsenic in the environment: enrichments in the Slovenian soils

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2005-12-01

    Full Text Available Arsenic, a toxic element with metalloid properties, is found in detectable concentrations in environmental samples. In nature it is enriched in metal (sulphide ore deposits, mainly as arsenides of Cu, Ni and Fe. Arsenic compounds are used mainly in agricultureand forestry as pesticides and herbicides. The ecosystem can be contaminated with arsenic via both natural and anthropogenic sources. Uses of arsenic contaminated water present so far the greatest health hazard. Occurrences of mining related arsenic problems havealso been recorded in many parts of the world.The impact of mining and metallurgic industry with regard to arsenic contents in soils in some potentially contaminated areas in Slovenia is discussed. Enriched contents of arsenic were found in Mežica. Arsenic correlates very well with lead, zinc and other heavymetals which are enriched as a result of long lasting lead production in the area. Also in Celje and Jesenice arsenic has the same distribution pattern as other anthropogenically introduced pollutants. In Idrija there are some slightly arsenic enriched areas, but there is no correlation with mercury, so the origin of arsenic in not clear yet.

  15. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    Science.gov (United States)

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis. PMID:14670068

  16. Complementary arsenic speciation methods: A review

    Science.gov (United States)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC-ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC-ICP-MS can be used to identify compounds not extracted for HPLC-ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenicsbnd sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC-ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI-MS) with HPLC-ICP-MS provides confirmation of arsenic compounds identified during the HPLC-ICP-MS analysis, identification of unknown compounds observed during the HPLC-ICP-MS analysis and further resolves HPLC-ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC-ICP-MS and ESI-MS, HPLC-ICP-MS helps to focus the ESI-MS selection of ions. Numerous studies have shown that the information obtained from HPLC-ICP-MS analysis can be greatly enhanced by complementary approaches.

  17. Complementary arsenic speciation methods: A review

    Energy Technology Data Exchange (ETDEWEB)

    Nearing, Michelle M., E-mail: michelle.nearing@rmc.ca; Koch, Iris, E-mail: koch-i@rmc.ca; Reimer, Kenneth J., E-mail: reimer-k@rmc.ca

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  18. Complementary arsenic speciation methods: A review

    International Nuclear Information System (INIS)

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  19. Inorganic arsenic - SPE HG-AAS method for RICE tested in-house and collaboratively

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Qian, Yiting; Sloth, Jens Jørgen

    Arsenic (As) is a trace element present in the environment and consequently in various food items, e.g. rice, which may contain relatively high concentration of arsenic compared to other foodstuffs of plant origin. Rice contains most often three forms of arsenic; inorganic arsenic (iAs) and the m......Arsenic (As) is a trace element present in the environment and consequently in various food items, e.g. rice, which may contain relatively high concentration of arsenic compared to other foodstuffs of plant origin. Rice contains most often three forms of arsenic; inorganic arsenic (i...... and is one of the major contributors to the iAs exposure in many countries. The work presented here describes the development, validation and application of a simple and inexpensive method for inorganic arsenic (iAs) determination in rice samples. The separation of iAs from organoarsenic compounds (MA...

  20. Massive acute arsenic poisonings.

    Science.gov (United States)

    Lech, Teresa; Trela, Franciszek

    2005-07-16

    Arsenic poisonings are still important in the field of toxicology, though they are not as frequent as about 20-30 years ago. In this paper, the arsenic concentrations in ante- and post-mortem materials, and also forensic and anatomo-pathological aspects in three cases of massive acute poisoning with arsenic(III) oxide (two of them with unexplained criminalistic background, in which arsenic was taken for amphetamine and one suicide), are presented. Ante-mortem blood and urine arsenic concentrations ranged from 2.3 to 6.7 microg/ml, respectively. Post-mortem tissue total arsenic concentrations were also detected in large concentrations. In case 3, the contents of the duodenum contained as much as 30.1% arsenic(III) oxide. The high concentrations of arsenic detected in blood and tissues in all presented cases are particularly noteworthy in that they are very rarely detected at these concentrations in fatal arsenic poisonings. PMID:15939162

  1. Determination of arsenic in crude petroleum and liquid hydrocarbons.

    Science.gov (United States)

    Puri, B K; Irgolic, K J

    1989-12-01

    Total arsenic was determined in crude petroleum and liquid hydrocarbons derived from crude petroleum by extraction with boiling water or boiling aqueous nitric acid (concentration 0.25 to 2.5 M), mineralization of the extracts with concentrated nitric/sulphuric acid, and reduction of the arsenate to arsine in a hydride generator. The arsine was flushed into a helium-DC plasma. The arsenic emission was monitored at 228.8 nm. The total arsenic concentration in 53 crude oil samples ranged from 0.04 to 514 mg L(-1) (median 0.84 mg L(-1)). Arsenic was also determined in several refined liquid hydrocarbons and in a commercially available arsenic standard in an organic matrix (triphenylarsine in xylene). The method was checked with NIST 1634b "Trace Elements in Residual Fuel Oil". The arsenic concentration found in this standard agreed with the certified value (0.12±0.2 μg g(-1)) within experimental error. Viscous hydrocarbons such as the fuel oil must be dissolved in xylene for the extraction to be successful. Hydride generation applied to an aqueous not-mineralized extract from an oil containing 1.67 μg As mL(-1) revealed, that trimethylated arsenic (520 ng mL(-1)) is the predominant arsenic species among the reducible and detectable arsenic compounds. Monomethylated arsenic (104 ng ml(-1)), inorganic arsenic (23 ng mL(-1)), and dimethylated arsenic (low ng mL(-1)) were also detected. The sum of the concentrations of these arsenic species accounts for only 39% of the total arsenic in the sample. PMID:24202418

  2. Arsenic in Drinking Water--The Silent Killer

    Science.gov (United States)

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  3. Infrared spectrum of arsenic pentafluoride

    International Nuclear Information System (INIS)

    After a literature review about arsenic fluorides, we give several methods of obtaining very pure AsF5 in order to ascertain the right spectrum of this compound. Our spectra fit well with Akers's observations, and we note that AsF5 structure can be explained in terms of C3v molecular symmetry, with the As-F bond stretching lying at 786 cm-1 and 811 cm-1. (author)

  4. Arsenic Speciation in Blue Mussels (Mytilus edulis) Along a Highly Contaminated Arsenic Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Whaley-Martin, K.J.; Koch, I.; Moriarty, M.; Reimer, K.J. (Royal)

    2012-11-01

    Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strong arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R{sup 2} = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R{sup 2} = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.

  5. Chemical speciation of arsenic in the livers of higher trophic marine animals.

    Science.gov (United States)

    Kubota, Reiji; Kunito, Takashi; Tanabe, Shinsuke

    2002-01-01

    Concentrations of total arsenic and individual arsenic compounds were determined in livers of cetaceans (Dall's porpoise and short-finned pilot whale), pinnipeds (harp and ringed seals), sirenian (dugong), and sea turtles (green and loggerhead turtles) to characterize arsenic accumulation profiles in higher trophic marine animals. Hepatic arsenic concentrations in sea turtles were highest among the species examined. Chemical speciation of arsenic revealed that arsenobetaine was the major arsenic compound in almost all the species. In contrast, arsenobetaine was a minor constituent in dugong. Dimethylarsinic acid, methylarsonic acid, arsenocholine, tetramethylarsonium ion, arsenite, and an unidentified arsenic compound were also detected as minor constituents. However, the composition of arsenic compounds was different among these species. These results might reflect the differences in the metabolism of arsenic and/or the compositions of arsenic compounds in their preys. To our knowledge, this is the first report on the large variation in the composition of arsenic species in liver of marine mammals and sea turtles. PMID:12398388

  6. Arsenic Trioxide Injection

    Science.gov (United States)

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  7. Arsenic Speciation in Plankton Organisms from Contaminated Lakes: Transformations at the Base of the Freshwater Food Chain

    Energy Technology Data Exchange (ETDEWEB)

    Caumette, Guilhem; Koch, Iris; Estrada, Esteban; Reimer, Ken J. (Royal)

    2012-02-06

    The two complementary techniques high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and X-ray absorption near edge structure (XANES) analysis were used to assess arsenic speciation in freshwater phytoplankton and zooplankton collected from arsenic-contaminated lakes in Yellowknife (Northwest Territories, Canada). Arsenic concentrations in lake water ranged from 7 {micro}g L{sup -1} in a noncontaminated lake to 250 {micro}g L{sup -1} in mine-contaminated lakes, which resulted in arsenic concentrations ranging from 7 to 340 mg kg{sup -1} d.w. in zooplankton organisms (Cyclops sp.) and from 154 to 894 mg kg{sup -1} d.w. in phytoplankton. The main arsenic compounds identified by HPLC-ICP-MS in all plankton were inorganic arsenic (from 38% to 98% of total arsenic). No other arsenic compounds were found in phytoplankton, but zooplankton organisms showed the presence of organoarsenic compounds, the most common being the sulfate arsenosugar, up to 47% of total arsenic, with traces of phosphate sugar, glycerol sugar, methylarsonate (MMA), and dimethylarsinate (DMA). In the uncontaminated Grace Lake, zooplankton also contained arsenobetaine (AB). XANES characterization of arsenic in the whole plankton samples showed AsV-O as the only arsenic compound in phytoplankton, and AsIII-S and AsV-O compounds as the two major inorganic arsenic species in zooplankton. The proportion of organoarsenicals and inorganic arsenic in zooplankton depends upon the arsenic concentration in lakes and shows the impact of arsenic contamination: zooplankton from uncontaminated lake has higher proportions of organoarsenic compounds and contains arsenobetaine, while zooplankton from contaminated area contains mostly inorganic arsenic.

  8. Arsenic-Based Antineoplastic Drugs and Their Mechanisms of Action

    OpenAIRE

    Ralph, Stephen John

    2008-01-01

    Arsenic-based compounds have become accepted agents for cancer therapy providing high rates of remission of some cancers such as acute promyelocytic leukemia (APL). The mechanisms by which arsenic-containing compounds kill cells and reasons for selective killing of only certain types of cancer cells such as APLs have recently been delineated. This knowledge was gained in parallel with increasing understanding and awareness of the importance of intracellular redox systems and regulation of the...

  9. Determination of leachable arsenic from glass ampoules

    International Nuclear Information System (INIS)

    Appreciable amounts of different arsenic compounds are used in the manufacture of glass and glass ampoules (injection vials and bottles) used to store drugs. Exposure/intake of arsenic to human beings may result in skin ulceration, injury to mucous membranes, perforation of nasal septum, skin cancer and keratoses, especially of the palms and soles and may cause detrimental effects. Considering the toxicity of arsenic, even if traces of arsenic from such glass containers/ampoules are leached out, it can impart damage to human beings. To check the possibility of leaching of arsenic from glass ampoules, a simple methodology has been developed. Different makes and varieties of glass ampoules filled with de-ionized water were subjected to high pressure and temperature leaching for varying amount of time using autoclave to create extreme conditions for the maximum leaching out of the analyte. Subsequently, the determination of the arsenic contents in leached water using neutron activation analysis is reported in detail with observations. (author)

  10. Arsenic removal from water

    Science.gov (United States)

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  11. Bioaccumulation of arsenic and other heavy metals in the oyster Crassostrea virginica: A radiotracer study

    International Nuclear Information System (INIS)

    Arsenic is ubiquitous in the environment where it is present in soil, water and living organisms. The content of As in soil and water depends on natural geochemical factors as well as anthropogenic inputs such as combustion of hydrocarbons, production of fertilizers, and the use of arsenical pesticides. These anthropogenic inputs contribute to a significant portion of the total arsenic background levels in the marine environment. The harmful health effects of arsenic and its compounds on biological systems coupled with its widespread distribution have encouraged many investigators to closely monitor arsenic levels in the environment, especially in marine resources

  12. Arsenic speciation in seafood samples with emphasis on minor constituents. An investigation by high performance liquid chromatography with inductively coupled plasma mass spectrometric detection

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Pritzl, G.; Hansen, S. H.

    1993-01-01

    Extracts of 11 samples of shrimp, crab, fish, fish liver, shellfish and lobster digestive gland (hepatopancreas), including five certified reference materials, were investigated for their contents of arsenic compounds (arsenic speciation). The cation-exchange high performance liquid chromatography...

  13. Environmental Source of Arsenic Exposure

    OpenAIRE

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a ...

  14. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  15. Arsenic Precipitation in the Bioleaching of Realgar Using Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2013-01-01

    Full Text Available The current study investigates the characteristics of arsenic precipitation during the bioleaching of realgar. The bioleaching performance of Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans was investigated through scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and Fourier transform infrared (FT-IR spectrophotometry. SEM and XRD analyses revealed that the arsenic-adapted strain of A. ferrooxidans was more hydrophobic and showed higher attachment efficiency to realgar compared with the wild strain. The arsenic precipitation using A. ferrooxidans resulted in the precipitation of an arsenic-rich compound on the surface of the bacterial cell, as shown in the TEM images. The FT-IR spectra suggested that the −OH and −NH groups were closely involved in the biosorption process. The observations above strongly suggest that the cell surface of A. ferrooxidans plays a role in the induction of arsenic tolerance during the bioleaching of realgar.

  16. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    OpenAIRE

    Harris, Robin B; Burgess, Jefferey L.; Maria Mercedes Meza-Montenegro; Luis Enrique Gutiérrez-Millán; Mary Kay O’Rourke; Jason Roberge

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and...

  17. The global menace of arsenic and its conventional remediation - A critical review.

    Science.gov (United States)

    Sarkar, Arpan; Paul, Biswajit

    2016-09-01

    Arsenic is a ubiquitous element found in the earth crust with a varying concentration in the earth soil and water. Arsenic has always been under the scanner due to its toxicity in human beings. Contamination of arsenic in drinking water, which generally finds its source from arsenic-containing aquifers; has severely threatened billions of people all over the world. Arsenic poisoning is worse in Bangladesh where As(III) is abundant in waters of tube wells. Natural occurrence of arsenic in groundwater could result from both, oxidative and reductive dissolution. Geothermally heated water has the potential to liberate arsenic from surrounding rocks. Inorganic arsenic has been found to have more toxicity than the organic forms of arsenic. MMA and DMA are now been considered as the organic arsenic compounds having the potential to impair DNA and that is why MMA and DMA are considered as carcinogens. Endless efforts of researchers have elucidated the source, behavior of arsenic in various parts of the environment, mechanism of toxicity and various remediation processes; although, there are lots of areas still to be addressed. In this article, attempts have been made to lay bare an overview of geochemistry, toxicity and current removal techniques of arsenic together. PMID:27239969

  18. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    Directory of Open Access Journals (Sweden)

    Drewniak Lukasz

    2014-01-01

    Full Text Available The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i produced siderophores that promote dissolution of minerals, (ii were resistant to dissolved arsenic compounds, (iii were able to use the dissolved arsenates as the terminal electron acceptor, and (iii were able to use copper minerals containing arsenic minerals (e.g., enargite as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  19. Biotransformation and biomethylation of arsenic by Shewanella oneidensis MR-1.

    Science.gov (United States)

    Wang, Juan; Wu, Mingyin; Lu, Gan; Si, Youbin

    2016-02-01

    The resistance of Shewanella oneidensis MR-1 to toxic arsenic was investigated by measuring the growth of the bacteria in the presence of As(III) and As(V) in different growth media. The bacteria were shown to biotransform arsenic through the partial methylation of inorganic arsenic into methylated metabolites. This biotransformation of inorganic arsenic by S. oneidensis MR-1 was affected by the methyl donor, the composition of the medium, and the presence of Fe(III). The relative content of methylated arsenic in the medium containing S-adenosyl methionine as the methyl donor was greater than that in the medium containing methylcobalamin. The biotransformation process driven by Fe-reducing bacteria, and occurred in combination with microbially mediated As-Fe reduction in the presence of Fe(III). The results demonstrate that S. oneidensis MR-1 methylates inorganic arsenic into less toxic organoarsenic compounds. This process has potential applications in the bioremediation of environmental arsenic, and the results provide new insights into the control of in situ arsenic pollution. PMID:26692509

  20. Drinking Water Fact Sheet: Arsenic

    OpenAIRE

    Mesner, Nancy; Daniels, Barbara

    2010-01-01

    This fact sheet provides information about arsenic in drinking water. It includes sections about what arsenic is, where it comes from, health concerns from exposure, drinking water standards, how to know if there is arsenic in a water supply and how to reduce arsenic in drinking water.

  1. The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine: a toxicochemical review

    International Nuclear Information System (INIS)

    The aim of this review is to compare the metabolism, chemistry, and biological effects to determine if either of the industrial arsenicals (arsine and gallium arsenide) act like the environmental arsenic oxides (arsenite and arsenate). The metabolism of the arsenic oxides has been extensively investigated in the past 4 years and the differences between the arsenic metabolites in the oxidation states +III versus +V and with one or two methyl groups added have shown increased importance. The arsenic oxide metabolism has been compared with arsine (oxidation state -III) and arsenide (oxidation state between 0 to -III). The different metabolites appear to have different strengths of reaction for binding aresenic (III) to thiol groups, their oxidation-reduction reactions and their forming an arsenic-carbon bond. It is unclear if the differences in parameters such as the presence or absence of methyl metabolities, the rates of AsV reduction compared to the rates of AsIII oxidation, or the competition of phosphate and arsenate for cellular uptake are large enough to change biological effects. The arsine rate of decomposition, products of metabolism, target organ of toxic action, and protein binding appeared to support an oxidized arsenic metabolite. This arsine metabolite was very different from anything made by the arsenic oxides. The gallium arsenide had a lower solubility than any other arsenic compound and it had a disproportionate intensity of lung damage to suggest that the GaAs had a site of contact interaction and that oxidation reactions were important in its toxicity. The urinary metabolites after GaAs exposure were the same as excreted by arsenic oxides but the chemical compounds responsible for the toxic effects of GaAs are different from the aresnic oxides. The review concludes that there is insufficient evidence to equate the different arsenic compounds. There are several differences in the toxicity of the arsenic compounds that will require substantial

  2. Identification of a Novel Membrane Transporter Mediating Resistance to Organic Arsenic in Campylobacter jejuni

    OpenAIRE

    Shen, Zhangqi; Luangtongkum, Taradon; Qiang, Zhiyi; Jeon, Byeonghwa; Wang, Liping; Zhang, Qijing

    2014-01-01

    Although bacterial mechanisms involved in the resistance to inorganic arsenic are well understood, the molecular basis for organic arsenic resistance has not been described. Campylobacter jejuni, a major food-borne pathogen causing gastroenteritis in humans, is highly prevalent in poultry and is reportedly resistant to the arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), which has been used as a feed additive in the poultry industry for growth promotion. In this study, we re...

  3. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  4. Determination of arsenic in environmental water by NAA

    International Nuclear Information System (INIS)

    A simple and sensitive method for separation of MMA, DMA, As(III) and As(V) is presented. Inorganic arsenic MMA, DMA, As(III) and As(V) are separated by the use of coprecipitation with Fe(OH)3, cation exchange chromatography and extraction combined with neutron activation analysis. The recovery for MMA, DMA, As(III) and As(V) is 96.4%, 103%, 96.3% and 104%, respectively. The applicability of the method to the arsenic species in a fresh water is demonstrated. The detection limit of the method is 0.02 μg/L of arsenic. The results show that the arsenic concentrations in drinking water of Akebameng range from 204 μg/L to 1125 μg/L, which are much higher than the permitted limit (< 50 μg/L). The dominant species of As in drinking water are inorganic arsenic compounds of which occupy 94%-99% of the total arsenic. The concentrations of MMA and DMA in drinking water vary from 4.61 μg/L to 20.7 μg/L and 5.69-18.2 μg/L, of which the ratio of MMA and DMA to total arsenic ranges from 1% to 6%

  5. Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii.

    Science.gov (United States)

    Cutler, William G; Brewer, Roger C; El-Kadi, Aly; Hue, Nguyen V; Niemeyer, Patrick G; Peard, John; Ray, Chittaranjan

    2013-01-01

    Arsenical herbicides were used extensively for emergent weed control in Hawaiian sugar cane cultivation from 1913 to about 1950. As a result, surface soil arsenic concentrations average 280 mg kg(-1) across more than 60 km(2) of former sugar plantation land in the eastern portion of the Island of Hawaii. This study was conducted to elucidate the relationship between soil properties and arsenic bioaccessibility in the iron-rich volcanic soils. Soils are predominantly Andisols, formed by weathering of basaltic lava and tephra, with pedogenic solid phases consisting of short-range order iron oxyhydroxides, allophane-like aluminosilicates, and metal-humus compounds. These reactive solid phases strongly adsorb oxyanions, such as phosphate and arsenite/arsenate. High arsenic sorption capacity limits desorption and vertical migration within the soil column and prevents contamination of the underlying groundwater aquifer, despite high arsenic loading and precipitation rates. In vitro arsenic bioaccessibility, as measured by the SBRC gastric-phase test, ranges from 2% to 35% and averages 9% of total arsenic. Bioaccessible arsenic is higher in less weathered soils (Udifolists, Typic and Lithic Hydrudands) and lower in more weathered ash-dominant soils (Acrudoxic Hydrudands). Soil weathering indicators, such as reactive iron content, are strong predictors of arsenic bioaccessibility. Based on evidence from soil mineralogy, geochemistry and arsenic speciation, as well as limited soil arsenic bioavailability/bioaccessibility comparisons, risks to human health from direct contact (soil ingestion) are significantly reduced by low arsenic bioaccessibility. Nonetheless, some soils within former sugar cane cultivation areas contain bioaccessible arsenic concentrations exceeding Hawaii Department of Health risk-based action levels, and will require mitigating actions. Even higher levels of soil arsenic contamination have been identified at former pesticide storage and mixing areas

  6. USEPA Arsenic Demonstration Program

    Science.gov (United States)

    The presentation provides background information on the USEPA arsenic removal program. The summary includes information on the history of the program, sites and technology selected, and a summary of the data collected from two completed projects.

  7. Arsenic-Containing Phosphatidylcholines: A New Group of Arsenolipids Discovered in Herring Caviar.

    Science.gov (United States)

    Viczek, Sandra A; Jensen, Kenneth B; Francesconi, Kevin A

    2016-04-18

    A new group of arsenolipids based on cell-membrane phosphatidylcholines has been discovered in herring caviar (fish roe). A combination of HPLC with elemental and molecular mass spectrometry was used to identify five arsenic-containing phosphatidylcholines; the same technique applied to salmon caviar identified an arsenic-containing phosphatidylethanolamine. The arsenic group in these membrane lipids might impart particular properties to the molecules not displayed by their non-arsenic analogues. Additionally, the new compounds have human health implications according to recent results showing high cytotoxicity for some arsenolipids. PMID:26996517

  8. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence of...... aeration. Moreover, it was found that the adsorption rate was limited by an excess of dissolved iron, due to competition between arsenic and iron compounds for adsorption sites on iron oxyhydroxide surface. The results were obtained both in lab and pilot scale experiments, which enabled to illustrate...

  9. SPECIATION OF ARSENIC ACROSS WATER-SEDIMENT INTERFACE OF FALGU RIVER

    OpenAIRE

    Rajeeva Ranjan; Rekha Rani; Ashay Bavishi; Shivadhar Sharma; Madhusudan Choudhary

    2012-01-01

    Two predominant species of arsenic compounds, As(III) and As(V), are found in soils and natural water and they have been classified as carcinogens. The focus of the present study was to examine the speciation of Arsenic (As) across the water-sediment interface at the confluence of drainage for Gaya city and the Falgu River. Gas Chromatography (GC) coupled to Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to analyze the organic arsenic species while the inorganic arsenic specie...

  10. EXAFS study on arsenic species and transformation in arsenic hyperaccumulator

    Institute of Scientific and Technical Information of China (English)

    HUANG Zechun; CHEN Tongbin; LEI Mei; HU Tiandou; HUANG Qifei

    2004-01-01

    Synchrotron radiation extended X-ray absorption fine structure (SR EXAFS) was employed to study the transformation of coordination environment and the redox speciation of arsenic in a newly discovered arsenic hyperaccumulator, Cretan brake (Pteris cretica L. var nervosa Thunb). It showed that the arsenic in the plant mainly coordinated with oxygen, except that some arsenic coordinated with S as As-GSH in root. The complexation of arsenic with GSH might not be the predominant detoxification mechanism in Cretan brake. Although some arsenic in root presented as As(V) in Na2HAsO4 treatments, most of arsenic in plant presented as As(III)-O in both treatments, indicating that As(V) tended to be reduced to As(III) after it was taken up into the root, and arsenic was kept as As(III) when it was transported to the above-ground tissues. The reduction of As(V) primarily proceeded in the root.

  11. A novel speciation alternative for the determination of inorganic arsenic in marine samples

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Hedegaard, Rikke Susanne Vingborg; Herbst, M. Birgitte Koch;

    Arsenic (As) is bioaccumulated from seawater to concentrations in the mg/kg range in marine animals. More than 50 naturally-occurring arsenic containing species, both inorganic and organic forms, have been identified in marine animals. The organic forms are mainly considered to be non-toxic, wher......Arsenic (As) is bioaccumulated from seawater to concentrations in the mg/kg range in marine animals. More than 50 naturally-occurring arsenic containing species, both inorganic and organic forms, have been identified in marine animals. The organic forms are mainly considered to be non......-toxic, whereas inorganic arsenic is highly toxic and exposure may lead to severe adverse effects including cancer. Since seafood is the major dietary source for arsenic exposure in the European population, arsenic speciation analysis of marine samples is highly relevant for food safety. However, most data...... of inorganic arsenic in marine based food is based on microwave extraction, species separation by strong anion solid phase extraction (SPE) and hydride generation atomic absorption spectrometry (HG-AAS) detection. Separation organic arsenic compounds (e.g. MA, DMA and AB) and inorganic arsenic in the form...

  12. Arsenic speciation in terrestrial birds from Yellowknife, Northwest Territories, Canada: the unexpected finding of arsenobetaine.

    Science.gov (United States)

    Koch, Iris; Mace, Jessica V; Reimer, Kenneth J

    2005-06-01

    The surrounding area of Yellowknife, Northwest Territories, Canada, is known for naturally and anthropogenically elevated concentrations of arsenic. Five bird species (gray jay [Perisoreus canadensis], American tree sparrow [Spizella arborea], dark-eyed junco [Junco hyemalis], yellow-rumped warbler [Dendroica coronata], and spruce grouse [Dendragapus canadensis]) were collected from this area. Their tissues were analyzed for total arsenic and for arsenic species, allowing us to report, to our knowledge for the first time, the arsenic characterization in terrestrial birds. Total arsenic concentrations were determined in the terrestrial birds by inductively coupled plasma-optical emission spectrometry, whereas arsenic speciation analysis was performed using high-performance liquid chromatography-inductively coupled plasma-mass spectrometry. Total arsenic concentrations were substantially higher in the terrestrial bird species studied from Yellowknife compared with those reported previously in the literature. The primary arsenic species detected in two of the bird species studied was arsenobetaine. Normally, arsenobetaine is not formed or retained by terrestrial animals. Thus, the birds in the present study were thought to be highly adapted compared with other terrestrial animals, because they were able to form and/or retain this relatively nontoxic arsenic compound. This adaptation is thought to be a consequence of the elevated concentrations of arsenic in the Yellowknife area. PMID:16117124

  13. Arsenic exposure disrupts the normal function of the FA/BRCA repair pathway.

    Science.gov (United States)

    Peremartí, Jana; Ramos, Facundo; Marcos, Ricard; Hernández, Alba

    2014-11-01

    Chronic arsenic exposure is known to enhance the genotoxicity/carcinogenicity of other DNA-damaging agents by inhibiting DNA repair activities. Interference with nucleotide excision repair and base excision repair are well documented, but interactions with other DNA repair pathways are poorly explored so far. The Fanconi anemia FA/BRCA pathway is a DNA repair mechanism required for maintaining genomic stability and preventing cancer. Here, interactions between arsenic compounds and the FA/BRCA pathway were explored by using isogenic FANCD2(-/-) (FA/BRCA-deficient) and FANCD2(+/+) (FA/BRCA-corrected) human fibroblasts. To study whether arsenic disrupts the normal FA/BRCA function, FANCD2(+/+) cells were preexposed to subtoxic concentrations of the trivalent arsenic compounds methylarsonous acid (MMA(III)) and arsenic trioxide (ATO) for 2 weeks. The cellular response to mitomicin-C, hydroxyurea, or diepoxybutane, typical inducers of the studied pathway, was then evaluated and compared to that of FANCD2(-/-) cells. Our results show that preexposure to the trivalent arsenicals MMA(III) and ATO induces in corrected cells, a cellular FA/BRCA-deficient phenotype characterized by hypersensitivity, enhanced accumulation in the G2/M compartment and increased genomic instability--measured as micronuclei. Overall, our data demonstrate that environmentally relevant arsenic exposures disrupt the normal function of the FA/BRCA activity, supporting a novel source of arsenic co- and carcinogenic effects. This is the first study linking arsenic exposure with the FA/BRCA DNA repair pathway. PMID:25092648

  14. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine.

    Science.gov (United States)

    Drewniak, Lukasz; Maryan, Natalia; Lewandowski, Wiktor; Kaczanowski, Szymon; Sklodowska, Aleksandra

    2012-03-01

    The ancient Zloty Stok (SW Poland) gold mine is such an environment, where different microbial communities, able to utilize inorganic arsenic species As(III) and As(V), are found. The purpose of the present study was to (i) estimate prokaryotic diversity in the microbial mats in bottom sediments of this gold mine, (ii) identify microorganisms that can metabolize arsenic, and (iii) estimate their potential role in the arsenic geochemistry of the mine and in the environment. The oxidation/reduction experiments showed that the microbial mat community may significantly contribute to arsenic contamination in groundwater. The presence of both arsenite oxidizing and dissimilatory arsenate reducing bacteria in the mat was confirmed by the detection of arsenite oxidase and dissimilatory arsenate reductase genes, respectively. This work also demonstrated that microorganisms utilizing other compounds that naturally co-occur with arsenic are present within the microbial mat community and may contribute to the arsenic geochemistry in the environment. PMID:22243864

  15. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  16. Acute and chronic arsenic toxicity

    OpenAIRE

    Ratnaike, R.

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption o...

  17. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    Science.gov (United States)

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  18. Speciation of arsenic by IC-ICP-MS: future standard method and its application on baby food samples

    DEFF Research Database (Denmark)

    Kollander, Barbro; Sloth, Jens Jørgen

    of the intended murder. For example the organic compound arsenobetaine, the main arsenic species in marine organisms, is regarded as basically harmless to humans while the inorganic forms of arsenic, arsenite and arsenate found in rice, are toxic. To enable the evaluation of the true toxicity from arsenic in food......, some kind of speciation analysis has to be performed. In this work, the concentration of inorganic arsenic in some baby food samples is evaluated. The applied methodology has recently been tested in a collaborative trial as a candidate standardized method for the determination of inorganic arsenic......Arsenic is known to most people as extremely poisonous and several criminal authors have used this fact to assassinate their characters in novels for decades. However, the authors seldom or never mention which of the species of arsenic they use, although that is elementary for the outcome...

  19. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    Science.gov (United States)

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  20. Arsenic: The Silent Killer

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Andrea (USGS)

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years, can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.

  1. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An arsenic hyperaccumulator Pteris vittata L. (Chinese brake) was first discovered in China by means of field survey and greenhouse cultivation. Field survey showed that Chinese brake had large accumulating capacity to arsenic; the orders of arsenic content in different parts of the fern were as follows: leaves>leafstalks>roots, which is totally different from that of ordinary plants; bioaccumulation coefficients of the above ground parts of the fern decreased as a power function of soil arsenic contents. In the control of pot trials with normal unpolluted soil containing 9 mg/kg of arsenic, the bioaccumulation coefficients of the above ground parts and rhizoids of Chinese brake were as high as 71 and 80 respectively. Greenhouse cultivation in the contaminated soil from mining areas has shown that more than 1 times greater arsenic can be accumulated in the leaves of the fern than that of field samples with the largest content of 5070 mg/kg As on a dry matter basis. During greenhouse cultivation, arsenic content in the leaves of the fern increased linearly with time prolonging. Not only has Chinese brake extraordinary tolerance and accumulation to arsenic, but it grew rapidly with great biomass, wide distribution and easy adaptation to different environmental conditions as well. Therefore, it has great potential in future remediation of arsenic contamination. It also demonstrates important value for studies of arsenic physiology and biochemistry such as arsenic absorption, translocation and detoxification mechanisms in plants.

  2. Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation.

    Science.gov (United States)

    Mohan, Thotegowdanapalya C; Castrillo, Gabriel; Navarro, Cristina; Zarco-Fernández, Sonia; Ramireddy, Eswarayya; Mateo, Cristian; Zamarreño, Angel M; Paz-Ares, Javier; Muñoz, Riansares; García-Mina, Jose M; Hernández, Luis E; Schmülling, Thomas; Leyva, Antonio

    2016-06-01

    The presence of arsenic in soil and water is a constant threat to plant growth in many regions of the world. Phytohormones act in the integration of growth control and stress response, but their role in plant responses to arsenic remains to be elucidated. Here, we show that arsenate [As(V)], the most prevalent arsenic chemical species in nature, causes severe depletion of endogenous cytokinins (CKs) in the model plant Arabidopsis (Arabidopsis thaliana). We found that CK signaling mutants and transgenic plants with reduced endogenous CK levels showed an As(V)-tolerant phenotype. Our data indicate that in CK-depleted plants exposed to As(V), transcript levels of As(V)/phosphate-transporters were similar or even higher than in wild-type plants. In contrast, CK depletion provoked the coordinated activation of As(V) tolerance mechanisms, leading to the accumulation of thiol compounds such as phytochelatins and glutathione, which are essential for arsenic sequestration. Transgenic CK-deficient Arabidopsis and tobacco lines show a marked increase in arsenic accumulation. Our findings indicate that CK is an important regulatory factor in plant adaptation to arsenic stress. PMID:27208271

  3. Fractionation of inorganic arsenic by adjusting hydrogen ion concentration.

    Science.gov (United States)

    Oliveira, Andrea; Gonzalez, Mario Henrique; Queiroz, Helena Müller; Cadore, Solange

    2016-12-15

    The inorganic fraction of arsenic species, iAs=∑[As(III)+As(V)] present in fish samples can be quantified in the presence of other arsenic species also found in fishes, such as: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB). The toxic arsenic fraction was selected taking into account the dissociation constants of these arsenic species in different hydrogen ions concentration leading to the arsine formation from iAs compounds detected as As(III) by HG AAS. For thus, a microwave assisted extraction was carried out using HCl 1molL(-1) in order to maintain the integrity of the arsenic species in this mild extraction media. Recovery experiments were done for iAs fraction, in the presence of other arsenic species. The recovery values obtained for iAs fraction added were quantitative about 87-107% (for N=3, RSD⩽3%). The limit of detection (LOD), and the limit of quantification (LOQ), were 5μgkg(-1) and 16μgkg(-1) respectively. PMID:27451157

  4. Separation of seven arsenic compounds by high performance liquid chromatography with on-line detection by hydrogen-argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, S. H.; Larsen, Erik Huusfeldt; Pritzl, G.; Cornett, C.

    1992-01-01

    signal-to-noise ratio of the on-line AAS detector was optimized. This involved the use of the hydrogen-argon-entrained air flame, a slotted tube atom trap in the flame for signal enhancement, electronic noise damping and a high-intensity light source. The detection limits in mu-g cm-3, using 100 mm3...... injections of mixtures of arsenic standards into the HPLC system were: arsenite, As(III) 1.1; arsenate, As(V) 1.4; MMA 1.4; DMA 0.7; AsB 0.3; AsC 0.5; and the TMAs 0.4. The HPLC-AAS system was used for the analysis of arsenic species in aqueous extracts of soil samples from a polluted land site. Only...

  5. Arsenic Speciation of Terrestrial Invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ((Simon)); ((Royal))

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  6. Blood biochemistry, thyroid hormones, and oxidant/antioxidant status of guinea pigs challenged with sodium arsenite or arsenic trioxide.

    Science.gov (United States)

    Mohanta, Ranjan Kumar; Garg, Anil Kumar; Dass, Ram Sharan; Behera, Suvendu Kumar

    2014-08-01

    The present experiment aimed to compare the two most commonly used compounds of arsenic (sodium arsenite and arsenic trioxide) for their effect on blood metabolites, thyroid hormones, and oxidant/antioxidant status in guinea pigs. Twenty-one adult guinea pigs were randomly divided into three equal groups. Animals in group T1 (control) were fed a basal diet, whereas 50 ppm arsenic was added in the basal diet either as sodium arsenite (T2) or arsenic trioxide (T3) and fed for 11 weeks. Serum aspartate aminotransferase and alanine aminotransferase activities were significantly increased along with a decrease in blood hemoglobin level in both the arsenic-administered groups. The level of erythrocytic antioxidants (catalase, superoxide dismutase, reduced glutathione, glutathione-S-transferase, and glutathione reductase) was decreased and lipid peroxidation was elevated upon arsenic exposure. Serum thyroid hormone levels were reduced and arsenic levels in tissues increased in both the arsenic-exposed groups, irrespective of the arsenic compound. Thus, sodium arsenite and arsenic trioxide exerted similar adverse effects on blood metabolic profile, antioxidant status, and thyroid hormones in guinea pigs. PMID:24948398

  7. Separation of seven arsenic species by ion-pair and ion-exchange high performance liquid chromatography

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, Sven Hedegaard

    1992-01-01

    Arsenite, arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine and the tetramethylarsonium ion were subjected to ion-exchange and ion-pair reversed phase HPLC. The ion exchange method was superior in selectivity and time of analysis for the arsenic anions. The ammonium ion...... used for the ion-pair method only resulted in separation of some of the anionic arsenic compounds. Flame atomic absorption spectrometry was used for on-line arsenic-specific detection....

  8. Field Deployable Method for Arsenic Speciation in Water.

    Science.gov (United States)

    Voice, Thomas C; Flores Del Pino, Lisveth V; Havezov, Ivan; Long, David T

    2011-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance.The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78-112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  9. Nomenclature on an organic compound (II)

    International Nuclear Information System (INIS)

    This book deals with nomenclature on an organic compound except carbon, hydrogen, oxygen, nitrogen, halogen, sulfur, selenium and tellurium. It mentions introduction, nomenclature system, coordination compound, an organo-metallic compound, homogeneous chains and rings with regular form of heteroatoms, organic compound including arsenic, phosphorus and bismuth, stereochemistry, nomenclature of compound related a natural substance, modified compound in to an isotope. The last chapter has recommendation on general principle and instruction for nomenclature.

  10. Arsenic Exposure and Immunotoxicity: a Review Including the Possible Influence of Age and Sex.

    Science.gov (United States)

    Ferrario, Daniele; Gribaldo, Laura; Hartung, Thomas

    2016-03-01

    Increasing evidence suggests that inorganic arsenic, a major environmental pollutant, exerts immunosuppressive effects in epidemiological, in vitro, and animal models. The mechanisms, however, remain unclear, and little is known about variation in susceptibilities due to age and sex. We performed a review of the experimental and epidemiologic evidence on the association of arsenic exposure and immune diseases. The majority of the studies described arsenic as a potent immunosuppressive compound, though others have reported an increase in allergy and autoimmune diseases, suggesting that arsenic may also act as an immune system stimulator, depending on the dose or timing of exposure. Limited information, due to either the high concentrations of arsenic used in in vitro studies or the use of non-human data for predicting human risks, is available from experimental studies. Moreover, although there is emerging evidence that health effects of arsenic manifest differently between men and women, we found limited information on sex differences on the immunotoxic effects of arsenic. In conclusion, preliminary data show that chronic early-life exposure to arsenic might impair immune responses, potentially leading to increased risk of infections and inflammatory-like diseases during childhood and in adulthood. Further investigation to evaluate effects of arsenic exposure on the developing immune system of both sexes, particularly in human cells and using concentrations relevant to human exposure, should be a research priority. PMID:26875182

  11. ARSENIC REMOVAL TREATMENT OPTIONS FOR SINGLE FAMILY HOMES

    Science.gov (United States)

    The presentation provides information on POU and POE arsenic removal drinking water treatment systems. The presentation provides information on the arsenic rule, arsenic chemistry and arsenic treatment. The arsenic treatment options proposed for POU and POE treatment consist prim...

  12. Understanding arsenic contamination of groundwater in Bangladesh

    International Nuclear Information System (INIS)

    underneath Bangladesh. Logically, arsenic is likely to be present as compounds within sediments comprising the aquifer systems and may be associated with iron oxides, organic matter, sulfides etc. High arsenic contamination of groundwater in Bangladesh is a serious issue requiring appropriate understanding of the phenomenon relating to the occurrence and release of arsenic in groundwater. The water supply challenge is as much one of quantity as of quality. In many regions of the world, it means bringing water closer to the house. Further, if the water supply is of good quality, it improves public health. Three developments of the past decades have spurred new approaches to water supply and public health. First, the capacity to analyze smaller amounts of constituents in water has advanced substantially. Second, the health status and life expectancy have risen substantially across most countries. Finally, health and epidemiological research have advanced as well, and we are now much better informed of longer-term health effects of prolonged ingestion of contaminants. There are, at present, few (if any) low-cost technology and affordable solutions for the treatment of arsenic in non-piped water systems. Proposed interventions in rural areas must include alternative water sources such as rainwater harvesting, more efficient use of non-contaminated wells in the area, treated surface water, selective well drilling to deeper aquifers, and simple arsenic removal techniques as they are found effective. Arsenic contamination apparently can occur in a wide variety of hydrogeological and socioeconomic conditions. Therefore, any mitigation strategy will have to be tailored to suit the local geological, institutional and financial situation. However, the experience with water supply across the world demonstrates that the offered technical options will be sustainable only when the local community, or the customers, are truly committed to it and are willing to contribute financially to (at

  13. Arsenic and drinking water. Part 1. A review of the source, distribution and behaviour of arsenic in the environment; Arsen und Trinkwasser. Teil 1. Ein Ueberblick ueber Vorkommen, Verteilung und Verhalten von Arsen in der Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Oberacker, F.; Maier, D. [Heinrich-Sontheimer-Lab., DVGW-Technologiezentrum Wasser, Karlsruhe (Germany); Maier, M. [Stadtwerke Karlsruhe GmbH, Karlsruhe (Germany)

    2002-11-01

    Arsenic is ubiquituously distributed in our environment and is subject to continuous bio-geochemical cycling. Besides the acute toxicity of arsenic its chronic effects are of special importance. The permanent uptake with drinking water for example might cause cancer. Today, arsenic compounds hardly serve as pesticides anymore, although chromated copper arsenate is still used to preserve wood. Furthermore, arsenic is used in the alloy, glass and semiconductor industry. The main part of the earths' arsenic resources are bound to sulfur in the lithosphere. By means of rock weathering and volcanism it is transferred into pedo-, hydro- and atmosphere, where it is mainly bound to oxygen. Microorganisms are able to methylate the arsenic, whereby gaseous arsenic compounds are carried into the atmosphere. Also, it is released from the lithosphere through anthropogenic mining activities, although only for a small part of the released amount useful applications exist. The arsenic behaviour in natural waters is closely related to sulfur on the one hand and to iron oxides on the other. Under strongly reducing conditions the arsenic is precipitated as sulfide, while under oxidising conditions it is adsorbed to the surfaces of iron oxides. Therefore, under aerobic conditions the arsenic concentrations of aqueous solutions are controlled by these adsorption processes rather than by the solubility of solid arsenic phases. Manganese oxides also play an important role as they are able to rapidly oxidise As(III) to As(V). These processes of release and fixation of arsenic in the nature must be studied carefully, because they are applied for arsenic elimination during drinking water production as well. (orig.)

  14. Rural methods to mitigate arsenic contaminated water

    OpenAIRE

    Parajuli, Krishna

    2013-01-01

    Consumption of arsenic contaminated water is one of the burning issues in the rural world. Poor public awareness program about health effects of drinking arsenic contaminated water and the rural methods to mitigate this problem poses a great threat of arsenic poisoning many people of the rural world. In this thesis, arsenic removal efficiency and the working mechanism of four rural and economical arsenic mitigation technologies i.e. solar oxidation and reduction of arsenic (SORAS), Bucket tr...

  15. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China.

    OpenAIRE

    Liu, Jie; Zheng, Baoshan; Aposhian, H. Vasken; Zhou, Yunshu; Chen, Ming-liang; Zhang, Aihua; Waalkes, Michael P.

    2002-01-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooki...

  16. Arsenic speciation of sediments from the Thames Estuary, London, UK

    OpenAIRE

    Michael J. Watts; Barlow, Tom S.; Taylor, Helen; Gardner, Amanda; Vane, Christopher H.

    2011-01-01

    Arsenic is generally present in the environment as arsenate (AsV) and to a lesser degree as arsenite (AsIII), or the methylated compounds monomethylarsonate (MA) and dimethylarsinate (DMA)1,2, whilst Ellwood et al (2003)3 reported the presence of arsenosugars (As-sugars) in lake sediments. Measurement of individual arsenic (As) species provides valuable information on the varied toxicity of inorganic and organic forms of As. AsIII is considered the most toxic and mobile of As spec...

  17. Transplacental Arsenic Carcinogenesis in Mice

    OpenAIRE

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from day 8 to 18 of gestation,...

  18. Arsenic toxicity: the effects on plant metabolism

    Directory of Open Access Journals (Sweden)

    PatrickFinnegan

    2012-06-01

    Full Text Available The two forms inorganic arsenic, arsenate (AsV and arsenite (AsIII, are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analogue of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or other sulfhydryl-containing groups. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. These effects are reflected in a dramatic restructuring of amino acid pools in Arabidopsis thaliana upon AsV exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified.

  19. Understanding arsenic carcinogenicity by the use of animal models

    International Nuclear Information System (INIS)

    Although numerous epidemiological studies have indicated that human arsenic exposure is associated with increased incidences of bladder, liver, skin, and lung cancers, limited attempts have been made to understand mechanisms of carcinogenicity using animal models. Dimethylarsinic acid (DMA), an organic arsenic compound, is a major metabolite of ingested inorganic arsenics in mammals. Recent in vitro studies have proven DMA to be a potent clastogenic agent, capable of inducing DNA damage including double strand breaks and cross-link formation. In our attempts to clarify DMA carcinogenicity, we have recently shown carcinogenic effects of DMA and its related metabolites using various experimental protocols in rats and mice: (1) a multi-organ promotion bioassay in rats; (2) a two-stage promotion bioassay by DMA of rat urinary bladder and liver carcinogenesis; (3) a 2-year carcinogenicity test of DMA in rats; (4) studies on the effects of DMA on lung carcinogenesis in rats; (5) promotion of skin carcinogenesis by DMA in keratin (K6)/ornithine decarboxylase (ODC) transgenic mice; (6) carcinogenicity of DMA in p53(+/-) knockout and Mmh/8-OXOG-DNA glycolase (OGG1) mutant mice; (7) promoting effects of DMA and related organic arsenicals in rat liver; (8) promoting effects of DMA and related organic arsenicals in a rat multi-organ carcinogenesis test; and (9) 2-year carcinogenicity tests of monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) in rats. The results revealed that the adverse effects of arsenic occurred either by promoting and initiating carcinogenesis. These data, as covered in the present review, suggest that several mechanisms may be involved in arsenic carcinogenesis

  20. Influence of groundwater composition on subsurface iron and arsenic removal.

    Science.gov (United States)

    Moed, D H; van Halem, D; Verberk, J Q J C; Amy, G L; van Dijk, J C

    2012-01-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L(-1) phosphate, 0.2 mmol L(-1) silicate, and 1 mmol L(-1) nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L(-1) calcium and 0.06 mmol L(-1) manganese. PMID:22678215

  1. Influence of groundwater composition on subsurface iron and arsenic removal

    KAUST Repository

    Moed, David H.

    2012-06-01

    Subsurface arsenic and iron removal (SAR/SIR) is a novel technology to remove arsenic, iron and other groundwater components by using the subsoil. This research project investigated the influence of the groundwater composition on subsurface treatment. In anoxic sand column experiments, with synthetic groundwater and virgin sand, it was found that several dissolved substances in groundwater compete for adsorption sites with arsenic and iron. The presence of 0.01 mmol L -1phosphate, 0.2 mmol L -1 silicate, and 1 mmol L -1 nitrate greatly reduced the efficiency of SAR, illustrating the vulnerability of this technology in diverse geochemical settings. SIR was not as sensitive to other inorganic groundwater compounds, though iron retardation was limited by 1.2 mmol L -1 calcium and 0.06 mmol L -1 manganese. © IWA Publishing 2012.

  2. Cytotoxic effects of S-(dimethylarsino)-glutathione: A putative intermediate metabolite of inorganic arsenicals

    International Nuclear Information System (INIS)

    Glutathione (GSH) plays an important role in the metabolism of arsenite and arsenate by generating arsenic-glutathione complexes. Although dimethylarsinic acid (DMAV) is the major metabolite of inorganic arsenicals (iAs) in urine, it is not clear how DMAV is produced from iAs. In the present study we report that S-(dimethylarsino)-glutathione (DMAIII(SG)), a putative precursor of dimethylarsinic acid DMAV, was unstable in the culture medium without excess GSH and generated volatile substances which were highly cytotoxic for both rat heart microvascular endothelial cells and HL60, a human leukemia cell line. Cytotoxicity of DMAIII(SG) was higher than that of iAs and its LC5 value was calculated to be 7.8 μM in the endothelial cells. To our surprise DMAIII(SG) effectively killed cells in the neighbor wells of the same multi-well dish, indicating that volatile toxic compounds generated from DMAIII(SG) in the culture medium. High performance lipid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) analyses suggested that the freshly generated volatile compounds dissolved into aqueous solution and formed an unstable arsenic compound and the unstable compound was further converted to DMAV. These results suggested that DMAIII(SG) exerts its cytotoxicity by generating volatile arsenicals and is implicated in the metabolic conversion of inorganic arsenicals into DMAV, a major final metabolite of inorganic arsenicals in most mammals

  3. Arsenic toxicity at low doses: epidemiological and mode of action considerations

    International Nuclear Information System (INIS)

    Current approaches to risk assessment typically assume a linear dose-response for mutagenic compounds that directly interact with DNA or when the carcinogenic mechanism is unknown. Because the mode of action of arsenic-induced carcinogenesis is not well established, recent dose-response assessments for arsenic have assumed linearity at low doses despite evidence that arsenic is not a direct-acting mutagen. Several modes of action, including generation of oxidative stress, perturbation of DNA methylation patterns, inhibition of DNA repair, and modulation of signal transduction pathways, have been proposed to characterize arsenic's toxicity. It is probable that these mechanisms do not act in isolation, but overlap, and contribute to the complex nature of arsenic-induced carcinogenesis. All of the proposed mechanisms are likely to be nonlinear at low does. Furthermore, studies of populations outside the US exposed to arsenic in drinking water show increases in cancer only at relatively high concentrations, that is, concentrations in drinking water of several hundred micrograms per liter (μg/l). Studies in the US of populations exposed to average concentrations in drinking water up to about 190 μg/l do not provide evidence of increased cancer. Consideration of arsenic's plausible mechanisms and evidence from epidemiological studies support the use of nonlinear methods, either via biologically based modeling or use of a margin-of-exposure analysis, to characterize arsenic risks

  4. Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea.

    Science.gov (United States)

    Rascovan, Nicolás; Maldonado, Javier; Vazquez, Martín P; Eugenia Farías, María

    2016-02-01

    Arsenic metabolism is proposed to be an ancient mechanism in microbial life. Different bacteria and archaea use detoxification processes to grow under high arsenic concentration. Some of them are also able to use arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. However, among the archaea, bioenergetic arsenic metabolism has only been found in the Crenarchaeota phylum. Here we report the discovery of haloarchaea (Euryarchaeota phylum) biofilms forming under the extreme environmental conditions such as high salinity, pH and arsenic concentration at 4589 m above sea level inside a volcano crater in Diamante Lake, Argentina. Metagenomic analyses revealed a surprisingly high abundance of genes used for arsenite oxidation (aioBA) and respiratory arsenate reduction (arrCBA) suggesting that these haloarchaea use arsenic compounds as bioenergetics substrates. We showed that several haloarchaea species, not only from this study, have all genes required for these bioenergetic processes. The phylogenetic analysis of aioA showed that haloarchaea sequences cluster in a novel and monophyletic group, suggesting that the origin of arsenic metabolism in haloarchaea is ancient. Our results also suggest that arsenite chemolithotrophy likely emerged within the archaeal lineage. Our results give a broad new perspective on the haloarchaea metabolism and shed light on the evolutionary history of arsenic bioenergetics. PMID:26140530

  5. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine

    International Nuclear Information System (INIS)

    The ancient Zloty Stok (SW Poland) gold mine is such an environment, where different microbial communities, able to utilize inorganic arsenic species As(III) and As(V), are found. The purpose of the present study was to (i) estimate prokaryotic diversity in the microbial mats in bottom sediments of this gold mine, (ii) identify microorganisms that can metabolize arsenic, and (iii) estimate their potential role in the arsenic geochemistry of the mine and in the environment. The oxidation/reduction experiments showed that the microbial mat community may significantly contribute to arsenic contamination in groundwater. The presence of both arsenite oxidizing and dissimilatory arsenate reducing bacteria in the mat was confirmed by the detection of arsenite oxidase and dissimilatory arsenate reductase genes, respectively. This work also demonstrated that microorganisms utilizing other compounds that naturally co-occur with arsenic are present within the microbial mat community and may contribute to the arsenic geochemistry in the environment. - Highlights: ► The microbial mats from this ancient gold mine are highly diverse community. ► As(III) oxidizing and As(V) reducing bacteria are present in the mats. ► As redox transformations are linked to the metabolism of microbial mats bacteria. ► Microbial mats play a crucial role in the As biogeochemical cycle within the mine. - The microbial mats from this ancient gold mine can mediate oxidation/reduction reaction of arsenic and in this way may significantly contribute to arsenic contamination in groundwater.

  6. Arsenic speciation in Mono Lake, California: Response to seasonal stratification and anoxia

    Science.gov (United States)

    Hollibaugh, James T.; Carini, Steve; Gürleyük, Hakan; Jellison, Robert; Joye, Samantha B.; LeCleir, Gary; Meile, Christof; Vasquez, Lydia; Wallschläger, Dirk

    2005-04-01

    Mono Lake is a closed-basin, alkaline, hypersaline lake located at the western edge of the Great Basin in eastern California. We studied the distribution of arsenic (As) species in the water column of Mono Lake between February and November, 2002. This period captured the seasonal progression from winter mixing, through summer thermal stratification, to autumn overturn. Arsenic speciation was determined by ion chromatography-inductively coupled-plasma-mass spectrometry of samples preserved in the field by flash-freezing in liquid nitrogen. We found that arsenic speciation was dominated (>90%) by arsenate when oxygen was detectable. Once levels fell below 6 μmol/L O 2, arsenic speciation shifted to dominance by reduced species. Arsenate and arsenite co-occurred in a transition zone immediately below the base of the oxycline and low but significant concentrations of arsenate were occasionally detected in sulfidic hypolimnion samples. Thio-arsenic species were the dominant form of As found in sulfidic waters. Maxima of thio-arsenic species with stoichiometries consistent with mono-, di- and trithio-arsenic occurred in succession as sulfide concentration increased. A compound with a stoichiometry consistent with trithio-arsenic was the dominant As species (˜50% of total As) in high sulfide (2 mmol/L) bottom water. Lower concentrations of total As in bottom water relative to surface water suggest precipitation of As/S mineral phases in response to sulfide accumulation during prolonged anoxia.

  7. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  8. Isolation and characterization of a new arsenic methylating bacterium from soil

    Energy Technology Data Exchange (ETDEWEB)

    Honschopp, S. [Bremen Univ. (Germany). Abt. Mikrobiologie; Brunken, N. [Bremen Univ. (Germany). Inst. fuer Anorganische und Physikalische Chemie; Nehrkorn, A. [Bremen Univ. (Germany). Abt. Mikrobiologie; Breunig, H.J. [Bremen Univ. (Germany). Inst. fuer Anorganische und Physikalische Chemie

    1996-12-31

    An arsenic resistant and arsenic methylating bacterium belonging to the Flavobacterium-Cytophaga group was isolated from soil with an arsenic content of 1.5 ppm. The growth of the bacterium is enhanced in the presence of As compounds in concentrations up to 200 ppm in the cultural media with a stronger effect of As(V) than of As(III) compounds. As a volatile product of the methylation of both NaH{sub 2}AsO{sub 3} and NaH{sub 2}AsO{sub 4} exclusively, Me{sub 3}As was formed and detected by mass spectrometry. Quantitative aspects of the methylation were studied with GC/MS. The intracellular accumulation of arsenic in the methylating strain was compared with two non methylating strains from the same soil. (orig.)

  9. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R

    1961-01-01

    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  10. Cytotoxic Effect of Arsenic Trioxide in Adenocarcinoma Colorectal Cancer (HT-29) Cells

    OpenAIRE

    Stevens, Jacqueline J.; Graham-Evans, Barbara; Walker, Alice M.; Armstead, Brinda; Tchounwou, Paul B.

    2008-01-01

    Arsenic is a heavy metal that exhibits a high degree of toxicity to various organ systems. In humans, this compound is associated with an increase risk of skin cancer, and may cause cancers of the lung, liver, bladder, kidney, and colon. The mechanism of arsenic-related carcinogenicity remains to be elucidated. Hence, the aim of the present study was to investigate the cytotoxic effects of arsenic trioxide (As2O3) on adenocarcinoma colorectal cancer (HT-29) cells using the MTT [3-(4,5 dimethy...

  11. Arsenic Is A Genotoxic Carcinogen

    Science.gov (United States)

    Arsenic is a recognized human carcinogen; however, there is controversy over whether or not it should be considered a genotoxic carcinogen. Many possible modes of action have been proposed on how arsenic induces cancer, including inhibiting DNA repair, altering methylation patter...

  12. Toxicity of Volatile Methylated Species of Bismuth, Arsenic, Tin, and Mercury in Mammalian Cells In Vitro

    OpenAIRE

    Rettenmeier, A W; Zimmermann, U.; Richard, J.; R. A. Diaz-Bone; Hippler, J; U. von Recklinghausen; Dopp, E.; Hirner, A. V.

    2011-01-01

    The biochemical transformation of mercury, tin, arsenic and bismuth through formation of volatile alkylated species performs a fundamental role in determining the environmental processing of these elements. While the toxicity of inorganic forms of most of these compounds are well documented (e.g., arsenic, mercury) and some of them are of relatively low toxicity (e.g., tin, bismuth), the more lipid-soluble organometals can be highly toxic. In the present study we investigated the cyto- and ge...

  13. A case-control study of GST polymorphisms and arsenic related skin lesions

    OpenAIRE

    Mahiuddin Golam; Rahman Mahmuder; Quamruzzaman Quazi; Miller David P; Williams Paige L; Houseman E Andres; Ryan Louise; McCarty Kathleen M; Smith Thomas; Gonzalez Ernesto; Su Li; Christiani David C

    2007-01-01

    Abstract Background Polymorphisms in GSTT1, GSTM1 and GSTP1 impact detoxification of carcinogens by GSTs and have been reported to increase susceptibility to environmentally related health outcomes. Individual factors in arsenic biotransformation may influence disease susceptibility. GST activity is involved in the metabolism of endogenous and exogenous compounds, including catalyzing the formation of arsenic-GSH conjugates. Methods We investigated whether polymorphisms in GSTT1, GSTP1 and GS...

  14. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  15. Arsenic volatilization in model anaerobic biogas digesters

    International Nuclear Information System (INIS)

    Highlights: • Arsenic is volatilized form all model anaerobic digesters, including the non-treated ones. • Volatile As species can be identified and quantified in all digesters. • Non-arsenic treated digesters volatilization rates are higher than Roxarsone treated ones. - Abstract: Arsenic is a class 1 non-threshold carcinogen which is highly ubiquitous. Arsenic undergoes many different transformations (biotic or abiotic) between and within environmental compartments, leading to a number of different chemical species possessing different properties and toxicities. One specific transformation is As biotic volatilization which is coupled with As biomethylation and has been scarcely studied due to inherent sampling issues. Arsenic methylation/volatilization is also linked with methanogenesis and occurs in anaerobic environments. In China, rice straw and animal manure are very often used to produce biogas and both can contain high amounts of As, especially if the rice is grown in areas with heavy mining or smelting industries and if Roxarsone is fed to the animals. Roxarsone is an As-containing drug which is widely used in China to control coccidian intestinal parasites, to improve feed efficiency and to promote rapid growth. Previous work has shown that this compound degrades to inorganic As under anaerobic conditions. In this study the focus is on biotic transformations of As in small microcosms designed as biogas digester models (BDMs) using recently validated As traps, thus, enabling direct quantification and identification of volatile As species. It is shown that although there was a loss of soluble As in the BDMs, their conditions favored biomethylation. All reactors produced volatile As, especially the monomethylarsonic acid spiked ones with 413 ± 148 ng As (mean ± SD, n = 3) which suggest that the first methylation step, from inorganic As, is a limiting factor. The most abundant species was trimethylarsine, but the toxic arsine was present in the

  16. Agricultural Compounds in Water and Birth Defects.

    Science.gov (United States)

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects. PMID:27007730

  17. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    OpenAIRE

    Linsheng Yang; Jianwei Gao; Jiangping Yu

    2011-01-01

    In contrast to arsenic (As) poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP) induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions), who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the ...

  18. Adverse health effects due to arsenic exposure: Modification by dietary supplementation of jaggery in mice

    International Nuclear Information System (INIS)

    Populations of villages of eastern India and Bangladesh and many other parts of the world are exposed to arsenic mainly through drinking water. Due to non-availability of safe drinking water they are compelled to depend on arsenic-contaminated water. Generally, poverty level is high in those areas and situation is compounded by the lack of proper nutrition. The hypothesis that the deleterious health effects of arsenic can be prevented by modification of dietary factors with the availability of an affordable and indigenous functional food jaggery (sugarcane juice) has been tested in the present study. Jaggery contains polyphenols, vitamin C, carotene and other biologically active components. Arsenic as sodium-m-arsenite at low (0.05 ppm) and high (5 ppm) doses was orally administered to Swiss male albino mice, alone and in combination with jaggery feeding (250 mg/mice), consecutively for 180 days. The serum levels of total antioxidant, glutathione peroxidase and glutathione reductase were substantially reduced in arsenic-exposed groups, while supplementation of jaggery enhanced their levels in combined treatment groups. The serum levels of interleukin-1β, interleukin-6 and TNF-α were significantly increased in arsenic-exposed groups, while in the arsenic-exposed and jaggery supplemented groups their levels were normal. The comet assay in bone marrow cells showed the genotoxic effects of arsenic, whereas combination with jaggery feeding lessened the DNA damage. Histopathologically, the lung of arsenic-exposed mice showed the necrosis and degenerative changes in bronchiolar epithelium with emphysema and thickening of alveolar septa which was effectively antagonized by jaggery feeding. These results demonstrate that jaggery, a natural functional food, effectively antagonizes many of the adverse effects of arsenic.

  19. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  20. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    International Nuclear Information System (INIS)

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress

  1. Arsenate impact on the metabolite profile, production and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.

    Directory of Open Access Journals (Sweden)

    KalleUroic

    2012-04-01

    Full Text Available Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analysed including a metabolite profiling under arsenate stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure has a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up regulated, one compound down regulated by arsenate exposure. The compound down regulated was identified to be isoleucine. Furthermore, arsenate has a significant influence on sap production, leading to a reduction of up to 96 % sap production when plants are exposed to 1000 μg kg-1 arsenate. No difference to control plants was observed when plants were exposed to 1000 μg kg-1 DMA. Absolute arsenic amount in xylem sap was the lowest at high arsenate exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention.

  2. Discovery of the Arsenic Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Twenty-nine arsenic isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  3. SPECIATION OF ARSENIC ACROSS WATER-SEDIMENT INTERFACE OF FALGU RIVER

    Directory of Open Access Journals (Sweden)

    Rajeeva Ranjan

    2012-01-01

    Full Text Available Two predominant species of arsenic compounds, As(III and As(V, are found in soils and natural water and they have been classified as carcinogens. The focus of the present study was to examine the speciation of Arsenic (As across the water-sediment interface at the confluence of drainage for Gaya city and the Falgu River. Gas Chromatography (GC coupled to Inductively Coupled Plasma Mass Spectrometry (ICP-MS was used to analyze the organic arsenic species while the inorganic arsenic species, As(III and As(V, were analyzed by Anion Exchange Chromatography (AEC coupled with Inductively Coupled Plasma Mass Spectrometry (ICP-MS. The determination of total arsenic load was carried out by colorimetric method using silver diethyldithiocarbamate and was measured at 535 nm. Results revealed that the waters contained Monomethylarsine (MMA, Dimethylarsine (DMA, Trimethylarsine (TMA, As(III as Arsenite (AsO3-3 and As(V as Arsenate (AsO4-3. However, the methylated species were found in much higher concentrations in pore water from the sediment as compared to in the free water. The high levels of arsenic compounds found at the drainage sites pose a threat to human health and as such should be monitored and remediated promptly by the local and state governments.

  4. Concentrations and speciation of arsenic in groundwater polluted by warfare agents

    International Nuclear Information System (INIS)

    Groundwater polluted with phenylarsenicals from former warfare agent deposits and their metabolites was investigated with respect to the behavior of relevant arsenic species. Depth profiles at the estimated source and at about 1 km downgradient from the source zone were sampled. The source zone is characterized by high total arsenic concentrations up to 16 mg L-1 and is dominated by organic arsenic compounds. The concentrations in the downgradient region are much lower (up to 400 μg L-1) and show a high proportion of inorganic arsenic species. Iron precipitation seems to be an effective mechanism to prevent dispersion of inorganic arsenic as well as phenylarsonic acid. Reductive conditions were observed in the deeper zone with predominant occurrence of trivalent arsenic species. The inorganic species are in redox equilibrium, whereas the phenylarsenic compounds have variable proportions. Methylphenylarsinic acid was identified in groundwater in traces which indicates microbial degradation activity. - The environmental fate and behavior of phenylarsenicals in groundwater are influenced by the geochemical environment.

  5. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  6. Features of arsenic coordination in AsXn complexes (X=F, Cl, Br, I)

    International Nuclear Information System (INIS)

    Investigation into stoichiometry of F-, Cl-, Br-, and I-containing arsenic complexes was conducted using Voronoi-Dirichlet polyhedrons (VDP). Decrease of third-dimensional effect of unshared electron pairs of As(3) atoms is established as decrease of electronegativity of surrounding atom in the AsFn-AsCln-AsBrn-AsIn system. Method of interlaced spheres may be used for determination of coordination number of arsenic atoms in the crystal structure. Whatever oxidation degree of arsenic atoms and their coordination numbers common linear dependences between solid angles of VDP Ω grains and internuclear distances r(As-X) corresponding those grains are observed. For I-containing arsenic compounds the equilibrium Ω(As-I) = 40(1) - 8.1(3) r(As-I) { = -0.940.91 contact As-I} is employed

  7. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.

    Science.gov (United States)

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2011-10-01

    The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO₄ and AlAsO₄ minerals (from organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata. PMID:21840210

  8. Arsenic Toxicity in Male Reproduction and Development.

    Science.gov (United States)

    Kim, Yoon-Jae; Kim, Jong-Min

    2015-12-01

    Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic and cognitive problems. Recent emerging evidences suggest that arsenic exposure affects the reproductive and developmental toxicity. Prenatal exposure to inorganic arsenic causes adverse pregnancy outcomes and children's health problems. Some epidemiological studies have reported that arsenic exposure induces premature delivery, spontaneous abortion, and stillbirth. In animal studies, inorganic arsenic also causes fetal malformation, growth retardation, and fetal death. These toxic effects depend on dose, route and gestation periods of arsenic exposure. In males, inorganic arsenic causes reproductive dysfunctions including reductions of the testis weights, accessory sex organs weights, and epididymal sperm counts. In addition, inorganic arsenic exposure also induces alterations of spermatogenesis, reductions of testosterone and gonadotrophins, and disruptions of steroidogenesis. However, the reproductive and developmental problems following arsenic exposure are poorly understood, and the molecular mechanism of arsenic-induced reproductive toxicity remains unclear. Thus, we further investigated several possible mechanisms underlying arsenic-induced reproductive toxicity. PMID:26973968

  9. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    Science.gov (United States)

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from…

  10. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation

    International Nuclear Information System (INIS)

    In this study, a combination of sequential extraction and mineralogical investigation by X-ray diffraction and X-ray photoelectron spectroscopy was employed in order to evaluate arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from mining and smelting. Combination of these techniques indicated that iron oxides and the weathering products of sulfide minerals played an important role in regulating the arsenic retention in the soils. Higher bioaccessibility of arsenic was observed in the following order; i) arsenic bound to amorphous iron oxides (smelter-2), ii) arsenic associated with crystalline iron oxides and arsenic sulfide phase (smelter-1), and iii) arsenic associated with the weathering products of arsenic sulfide minerals, such as scorodite, orpiment, jarosite, and pyrite (mine). Even though the bioaccessibility of arsenic was very low in the mine soil, its environmental impact could be significant due to its high arsenic concentration and mobility. Highlights: • Combination of sequential extraction and mineralogical investigation was employed. • Arsenic was primarily associated with iron oxides and sulfide minerals in soils. • Bioaccessibility of arsenic was affected by arsenic solid-phase speciation. -- We investigated arsenic solid-state speciation in soils, which is crucial for risk assessment and developing suitable remediation strategies in arsenic contaminated sites

  11. The character of organic carbon in recharge water and arsenic mobilization in Bangladesh aquifers

    Science.gov (United States)

    Pracht, L. E.; Fussell, A. H.; Polizzotto, M.; Badruzzaman, A. M.; Ali, M. A.; Neumann, R. B.

    2012-12-01

    In Bangladesh, arsenic-contaminated groundwater, used for both drinking and irrigation supplies, negatively affects the health of millions of people. Past work at our site in Munshiganj suggests that current patterns of arsenic concentration in the aquifer are related to groundwater flow and recharge chemistry. Constructed ponds and groundwater-irrigated rice fields serve as the primary aquifer recharge sources, with pond recharge evolving into high-arsenic groundwater and rice field recharge evolving into low-arsenic groundwater. The composition of these water types vary in concentrations and character of dissolved organic carbon, a presumed key component in the mechanism of arsenic release from sediments. Here we present results from an experiment-based laboratory study that directly tests the role of organic carbon character and bioavailability on arsenic mobilization. Incubation experiments using sediment samples collected from Bangladesh and waters with different carbon sources (e.g., pond and rice field recharge water and artificial water with model carbon compounds) were conducted to show the phase transformations carbon undergoes during arsenic mobilization processes, to isolate the carbon components and characteristics most responsible for mobilization reactions, and to investigate the importance of secondary chemical constituents for completion of these physiochemical reactions. Water, gas, and sediment samples collected from the incubations were analyzed for nutrient, metal, anion, and carbon concentrations, as well as carbon character. The results clarify the chemical components most critical in arsenic mobilization and provide insight into the in situ chemical reactions occurring in the aquifer. Moreover, this better chemical understanding helps elucidate the potential impact of altered recharge patterns and recharge chemistry on arsenic concentrations of Bangladeshi groundwater supplies.

  12. Filtration through nylon membranes negatively affects analysis of arsenic and phosphate by the molybdenum blue method

    DEFF Research Database (Denmark)

    Heimann, Axel Colin; Jakobsen, Rasmus

    2007-01-01

    Filtering synthetic arsenic- or phosphate-containing solutions (1.5-47.6 mu mol/L) with nylon syringe filters significantly reduced absorbances (by 6-74%) when analyzed with the colorimetric molybdenum blue method. Filtering the same solutions with cellulose acetate syringe filters yielded...... no significant differences as compared to unfiltered controls. The detrimental effect of nylon membranes was also observed when pure Milli-Q water was filtered and Subsequently spiked with arsenic(III) or phosphate suggesting that some compound(s) eluting from the filter membranes interfere with the color...

  13. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment

    OpenAIRE

    Chen, Baowei; Cao, Fenglin; Yuan, Chungang; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X Chris

    2013-01-01

    Arsenic trioxide has been successfully used as a therapeutic in the treatment of acute promyelocytic leukemia (APL). Detailed monitoring of the therapeutic arsenic and its metabolites in various accessible specimens of APL patients can contribute to improving treatment efficacy and minimizing arsenic-induced side effects. This article focuses on the determination of arsenic species in saliva samples from APL patients undergoing arsenic treatment. Saliva samples were collected from nine APL pa...

  14. Arsenic Exposure and Toxicology: A Historical Perspective

    OpenAIRE

    Hughes, Michael F.; Beck, Barbara D.; Chen, Yu; Lewis, Ari S.; Thomas, David J

    2011-01-01

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states o...

  15. Arsenic in contaminated soil and river sediment

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, G. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany)); Pierra, A. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany)); Klemm, W. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany))

    1994-09-01

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As[sup 3+], As[sup 5+]) and the bonding types have been analyzed. (orig.)

  16. Arsenic in contaminated soil and river sediment

    International Nuclear Information System (INIS)

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As3+, As5+) and the bonding types have been analyzed. (orig.)

  17. 21 CFR 556.60 - Arsenic.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  18. Arsenic removal from industrial effluent through electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, N. [Central Electrochemical Research Inst., Karaikudi (India). Dept. of Pollution Control; Madhavan, K. [Coimbatore Inst. of Technology, Coimbatore (India). Dept. of Chemistry

    2001-05-01

    In the present investigation, it is attempted to remove arsenic from smelter industrial wastewater through electro-coagulation. Experiments covering a wide range of operating conditions for removal of the arsenic present in the smelter wastewater are carried out in a batch electrochemical reactor. It has been observed from the present work that arsenic can be removed effectively through electrocoagulation. (orig.)

  19. Chloride sublimation of gold-arsenic concentrates

    International Nuclear Information System (INIS)

    Present article is devoted to chloride sublimation of gold-arsenic concentrates. The results of studies of chloride sublimation of gold-arsenic comprising concentrates of Chore deposit of Tajikistan are considered. It is found that by application sodium chloride for gold-arsenic comprising concentrates it is possible to extract gold and silver from flotation concentrates.

  20. Amphoteric arsenic in GaN

    CERN Document Server

    Wahl, U; Araújo, J P; Rita, E; Soares, JC

    2007-01-01

    We have determined the lattice location of implanted arsenic in GaN by means of conversion electron emission channeling from radioactive $^{73}$As. We give direct evidence that As is an amphoteric impurity, thus settling the long-standing question as to whether it prefers cation or anion sites in GaN. The amphoteric character of As and the fact that As$\\scriptstyle_{Ga}\\,$ " anti-sites ” are not minority defects provide additional aspects to be taken into account for an explanantion of the so-called “ miscibility gap ” in ternary GaAs$\\scriptstyle_{1-x}$N$\\scriptstyle_{x}$ compounds, which cannot be grown with a single phase for values of $x$ in the range 0.1<${x}$< 0.99.

  1. Amphoteric arsenic in GaN

    International Nuclear Information System (INIS)

    The authors have determined the lattice location of implanted arsenic in GaN by means of conversion electron emission channeling from radioactive 73As. They give direct evidence that As is an amphoteric impurity, thus settling the long-standing question as to whether it prefers cation or anion sites in GaN. The amphoteric character of As and the fact that AsGa 'antisites' are not minority defects provide additional aspects to be taken into account for an explanantion of the so-called miscibility gap in ternary GaAs1-xNx compounds, which cannot be grown with a single phase for values of x in the range of 0.1< x<0.99

  2. Geochemistry and migration of anthropogenic arsenic emissions in Yara Siilinjärvi industrial site, Finland

    Science.gov (United States)

    Turunen, Kaisa; Backnäs, Soile; Pasanen, Antti

    2013-04-01

    arsenic concentrations further away from the tailings are fairly low and close to natural background values. Remarkable part (up to 45 %) of total arsenic in soils and sediments was ammonium oxalate extractable i.e. chemically adsorbed on soil particles. About 10 % of arsenic fraction was ammonium acetate extractable and thus easily mobilized and bioavailable. According to the geochemical modelling, arsenic occurred in groundwater as trivalent arsenic acid (H3AsO3) at pH 6. In surface waters arsenic occurred mainly as arsenate-compounds regardless of the pH. Since the arsenic is mainly in form of less toxic arsenate and the concentrations in ditch waters and Lake Kuuslahti are low, it appears that arsenic concentration levels do not pose a risk to aquatic organisms. However, it is essential to control the environmental effects by minimizing the dust emissions from the tailings area and pumping the seepage water from the bedrock fracture zone.

  3. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water

    OpenAIRE

    Spayd, Steven E.; Robson, Mark G.; Buckley, Brian T.

    2014-01-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations...

  4. Preparation of Fe oxide nanoparticles for environmental applications: arsenic removal.

    Science.gov (United States)

    Beker, Ulker; Cumbal, Luis; Duranoglu, Dilek; Kucuk, Ilknur; Sengupta, Arup K

    2010-08-01

    The objective of this study is to examine the adsorption-desorption behavior of a magnetically active hybrid sorbent (MAHS) material, prepared by dispersing colloid-like hydrated iron oxide particles in the outer periphery of a macroporous ion-exchange resin (Amberlite XAD-2). The experimental results show that the new sorbent material can simultaneously remove arsenic (V) and a chlorinated organic compound (2,6-dichlorophenol [2,6-DCP]) from aqueous solutions at around neutral pH. The recovery of arsenic and 2,6-DCP from MAHS was conducted using a regenerant containing 50% (v/v) CH3OH + 3% (w/v) NaOH. In less than 10 bed volumes of regenerant, more than 90% of As(V) and 2,6-DCP were recovered. PMID:20387093

  5. Arsenic mobility in contaminated lake sediments

    International Nuclear Information System (INIS)

    An arsenic contaminated lake sediment near a landfill in Maine was used to characterize the geochemistry of arsenic and assess the influence of environmental conditions on its mobility. A kinetic model was developed to simulate the leaching ability of arsenic in lake sediments under different environmental conditions. The HM1D chemical transport model was used to model the column experiments and determine the rates of arsenic mobility from the sediment. Laboratory studies provided the information to construct a conceptual model to demonstrate the mobility of arsenic in the lake sediment. The leaching ability of arsenic in lake sediments greatly depends on the flow conditions of ground water and the geochemistry of the sediments. Large amounts of arsenic were tightly bound to the sediments. The amount of arsenic leaching out of the sediment to the water column was substantially decreased due to iron/arsenic co-precipitation at the water-sediment interface. Overall, it was found that arsenic greatly accumulated at the ground water/lake interface and it formed insoluble precipitates. - Arsenic accumulates at the ground water/lake interface, where it forms insoluble precipitates

  6. Removal processes for arsenic in constructed wetlands.

    Science.gov (United States)

    Lizama A, Katherine; Fletcher, Tim D; Sun, Guangzhi

    2011-08-01

    Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species--iron, sulphur, phosphate--,a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems. PMID:21549410

  7. Capture of gas-phase arsenic oxide by lime: kinetic and mechanistic studies.

    Science.gov (United States)

    Jadhav, R A; Fan, L S

    2001-02-15

    Trace metal emission from coal combustion is a major concern for coal-burning utilities. Toxic compounds such as arsenic species are difficult to control because of their high volatility. Mineral sorbents such as lime and hydrated lime have been shown to be effective in capturing arsenic from the gas phase over a wide temperature range. In this study, the mechanism of interaction between arsenic oxide (As2O3) and lime (CaO) is studied over the range of 300-1000 degrees C. The interaction between these two components is found to depend on the temperature; tricalcium orthoarsenate (Ca3As2O8) is found to be the product of the reaction below 600 degrees C, whereas dicalcium pyroarsenate (Ca2As2O7) is found to be the reaction product in the range of 700-900 degrees C. Maximum capture of arsenic oxide is found to occur in the range of 500-600 degrees C. At 500 degrees C, a high reactivity calcium carbonate is found to capture arsenic oxide by a combination of physical and chemical adsorption. Intrinsic kinetics of the reaction between calcium oxide and arsenic oxide in the medium-temperature range of 300-500 degrees C is studied in a differential bed flow-through reactor. Using the shrinking core model, the order of reaction with respect to arsenic oxide concentration is found to be about 1, and the activation energy is calculated to be 5.1 kcal/mol. The effect of initial surface area of CaO sorbent is studied over a range of 2.7-45 m2/g using the grain model. The effect of other major acidic flue gas species (SO2 and HCl) on arsenic capture is found to be minimal under the conditions of the experiment. PMID:11349294

  8. Transcriptomic Responses During Early Development Following Arsenic Exposure in Western Clawed Frogs, Silurana tropicalis.

    Science.gov (United States)

    Zhang, Jing; Koch, Iris; Gibson, Laura A; Loughery, Jennifer R; Martyniuk, Christopher J; Button, Mark; Caumette, Guilhem; Reimer, Kenneth J; Cullen, William R; Langlois, Valerie S

    2015-12-01

    Arsenic compounds are widespread environmental contaminants and exposure elicits serious health issues, including early developmental anomalies. Depending on the oxidation state, the intermediates of arsenic metabolism interfere with a range of subcellular events, but the fundamental molecular events that lead to speciation-dependent arsenic toxicity are not fully elucidated. This study therefore assesses the impact of arsenic exposure on early development by measuring speciation and gene expression profiles in the developing Western clawed frog (Silurana tropicalis) larvae following the environmental relevant 0.5 and 1 ppm arsenate exposure. Using HPLC-ICP-MS, arsenate, dimethylarsenic acid, arsenobetaine, arsenocholine, and tetramethylarsonium ion were detected. Microarray and pathway analyses were utilized to characterize the comprehensive transcriptomic responses to arsenic exposure. Clustering analysis of expression data showed distinct gene expression patterns in arsenate treated groups when compared with the control. Pathway enrichment revealed common biological themes enriched in both treatments, including cell signal transduction, cell survival, and developmental pathways. Moreover, the 0.5 ppm exposure led to the enrichment of pathways and biological processes involved in arsenic intake or efflux, as well as histone remodeling. These compensatory responses are hypothesized to be responsible for maintaining an in-body arsenic level comparable to control animals. With no appreciable changes observed in malformation and mortality between control and exposed larvae, this is the first study to suggest that the underlying transcriptomic regulations related to signal transduction, cell survival, developmental pathways, and histone remodeling may contribute to maintaining ongoing development while coping with the potential arsenic toxicity in S. tropicalis during early development. PMID:26427749

  9. Arsenic metabolism by microbial communities from an arsenic-rich shallow-water hydrothermal system in Ambitle Island, Papua New Guinea

    Science.gov (United States)

    Ruiz Chancho, M.; Pichler, T.; Amend, J. P.; Akerman, N. H.

    2011-12-01

    Arsenic, although toxic, is used as an energy source by certain microbes, some of which can catalyse the reduction of arsenate by using different electron donors, while others oxidize arsenite with oxygen or nitrate as electron acceptors. The marine shallow-water hydrothermal system in Tutum Bay, Ambitle Island, Papua New Guinea is ideal for investigating the metabolism of microbes involved in arsenic cycling, because there hydrothermal vents discharge fluids with arsenite concentrations as high as 950 μg/L. Vent fluids are hot (˜100°C), slightly acidic (pH˜6) and reducing. Upon mixing with colder and oxygen-rich seawater the fluid chemistry changes rapidly within a few meters from the hydrothermal source. The objective of this work was to study arsenic metabolism due to microbial activity in Tutum Bay. Sediments collected at 7.5 and 30 m along a transect beginning at a hydrothermal vent were used as inocula in the microbial culturing experiments. Media were designed using chemical analyses of the hydrothermal fluids. Following culture experiments, arsenic species identification and quantification were performed for the growth media with HPLC-ICP(HR)MS, using anion exchange and reversed phase chromatography. Quality control included mass balance calculations and spiking experiments. A fast reduction of arsenate to arsenite was observed in the first 24 hours leading to the conclusion that the microbial communities were capable of reducing arsenic. However, mass balance calculations revealed that more than 30% of the arsenic had been transformed to one or more unknown species, which could not be detected by ion exchange chromatography. The addition of peroxide combined with reversed phase chromatography revealed the presence of several unknown species. Following the addition of peroxide some of the unknown species were identified to be thio-arsenic compounds, because they were oxidized to their oxo-analogues. Nevertheless, a significant fraction of unknown

  10. Determination of Arsenic Species in Poultry Wastes

    Science.gov (United States)

    Jackson, B. P.; Bertsch, P. M.

    2001-05-01

    Two benzenearsenic compounds, p-arsanilic acid (p-ASA) and roxarsone (ROX), are commonly used feed additives in the poultry industry for disease prevention and increased weight gain. Because these compounds are not readily adsorbed by poultry, As in poultry litter can reach concentrations >41 mg/kg, which, for comparison, is the maximum allowable concentration for land application of sewage sludge according to USEPA 503 regulations. In contrast to land application of sewage sludge or industrial by-products such as fly ash, the potential for As loading of soil from poultry litter application has received little attention, despite the more prevalent use of poultry litter as a soil amendment. Furthermore, little is known concerning the biogeochemistry of these organo-arsenic compounds in soils. In incubation studies, we found that soil solution As concentrations were higher for poultry litter amendments when compared with fly ash amendments despite much higher As loading rates for the fly ashes. Further work has shown that >90% of total As can be solubilized from poultry litter through simple water extractions. In order to identify the two benzenearsenic feed additives we have developed ion chromatography methodology to separate As(III), As(V), MMA, DMA, p-ASA and ROX with element specific detection by ICP-MS. All species are well separated and detection limits are <50 ng/L for all species. Analysis of a water extraction of a poultry litter sample showed that the majority of soluble As was present as ROX but trace concentrations of As(V) and DMA were also identified along with an number of unknown As compounds. This methodology will prove useful in future studies of the fate and transport of p-ASA and ROX, and in identifying these compounds in watersheds where poultry litter has been extensively applied.

  11. Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fayiga, Abioye O. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States); Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States) and Key Laboratory of Terrestrial Ecological Process, Chinese Academy of Sciences, Shenyang 110016 (China)]. E-mail: lqma@ifas.ufl.edu; Zhou Qixing [Key Laboratory of Terrestrial Ecological Process, Chinese Academy of Sciences, Shenyang 110016 (China)

    2007-06-15

    This study examined the effects of heavy metals and plant arsenic uptake on soil arsenic distribution. Chemical fractionation of an arsenic-contaminated soil spiked with 50 or 200 mg kg{sup -1} Ni, Zn, Cd or Pb was performed before and after growing the arsenic hyperaccumulator Pteris vittata L for 8 weeks using NH{sub 4}Cl (water-soluble plus exchangeable, WE-As), NH{sub 4}F (Al-As), NaOH (Fe-As), and H{sub 2}SO{sub 4} (Ca-As). Arsenic in the soil was present primarily as the recalcitrant forms with Ca-As being the dominant fraction (45%). Arsenic taken up by P. vittata was from all fractions though Ca-As contributed the most (51-71% reduction). After 8 weeks of plant growth, the Al-As and Fe-As fractions were significantly (p < 0.01) greater in the metal-spiked soils than the control, with changes in the WE-As fraction being significantly (p = 0.007) correlated with plant arsenic removal. The plant's ability to solubilize soil arsenic from recalcitrant fractions may have enhanced its ability to hyperaccumulate arsenic. - Arsenic taken up by P. vittata was from all fractions with most from the Ca-fraction.

  12. Distribution and excretion of arsenic in cynomolgus monkey following repeated administration of diphenylarsinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yayoi [National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba, Ibaraki (Japan); Negishi, Takayuki [Aoyama Gakuin University, Department of Chemistry and Biological Science, Tokyo (Japan); Mizumura, Ayano; Watanabe, Takayuki [Chiba University, Graduate School of Pharmaceutical Sciences, Chiba (Japan); Hirano, Seishiro [Chiba University, Graduate School of Pharmaceutical Sciences, Chiba (Japan); National Institute for Environmental Studies, Research Center for Environmental Risk, Tsukuba, Ibaraki (Japan)

    2008-08-15

    Diphenylarsinic acid (DPAA), a possible product of degradation of arsenic-containing chemical weapons, was detected in well water in Kamisu City, Ibaraki Prefecture, Japan, in 2003. Although some individuals in this area have been affected by drinking DPAA-containing water, toxicological findings on DPAA are limited. To elucidate the mechanism of its toxicity, it is necessary to determine the metabolic behavior of DPAA in the body. In this study, pregnant cynomolgus monkeys at the 50th day of pregnancy were used. The monkeys were treated daily with 1.0 mg DPAA/kg body weight using a nasogastric tube, and the distribution and excretion of arsenic were examined after the repeated administration and 198-237 days after the last administration of DPAA. Fecal excretion was higher than urinary excretion (ca. 3:2 ratio), and arsenic accumulated in the hair and erythrocytes. Distribution of DAPP to plasma and hemolyzed erythrocytes was also examined by high-performance liquid chromatography-inductively coupled argon plasma mass spectrometry (HPLC-ICP MS). Two peaks were found in the elution profile of arsenic, due to free and probably protein-bound DPAA. The protein-bound arsenic compounds were presumably trivalent diphenylarsenic compounds, since free DPAA was recovered after treatment of heat-denatured samples with hydrogen peroxide. (orig.)

  13. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  14. Arsenic speciation by liquid chromatography coupled with ionspray tandem mass spectrometry

    DEFF Research Database (Denmark)

    Corr, J. J.; Larsen, Erik Huusfeldt

    1996-01-01

    Ionspray mass spectrometry, a well established organic analysis technique, has been coupled to high-performance liquid chromatography for speciation of organic arsenic compounds, The ionspray source and differentially pumped interface of the mass spectrometer were operated in dual modes for...

  15. Determination of arsenenic compounds in environmental and biological samples with LAMMA and HPLC-ICP-MS

    International Nuclear Information System (INIS)

    Different arsonium salts and alkyl- or aryl arsine sulfides were analyzed with a Laser-Microprobe-Mass-Analyzer (LAMMA-500). The positive-ion spectra of the arsonium salts showed clear signals for the (CH3)3AsR+ fragment. In the positive-ion spectra of alkyl- or arylarsine sulfides these arsenic compounds the molecular ions R3AsS+ were never observed, but in most of the spectra the protonated parent compounds R3AsSH2+ were present. The negative-ion spectra showed mainly fragments S-n (n = 1, 2, 3, 4) and AsSn (n = 1, 2, 3). Chlorella vulgaris Beijerinck var. vulgaris with a concentration of 13,000 mg As/kg dry mass were analyzed with the LAMMA-500 to identify arsenic compounds. Surprisingly, arsenic could not be detected by the LAMMA technique at these high arsenic concentrations. Electron microscopy of Chlorella cells reveals, that particles adhered at the surface of the cells. Scanning transmission electron microscopy showed a high correlation between the arsenic concentration and the iron concentration in these particles. Algae may protect themselves from high arsenic concentrations, by precipitating FeAsO4 at the cell surface. Different Chlorella sp. were grown to investigate the arsenic tolerance of Chlorella strains. Chlorella Boehm and Chlorella Kessleri grew better in arsenic-containing than in arsenic-free media. The growth of Chlorella 108 was depressed in high-arsenic media. After harvesting, the algal biomass was extracted and arsenic compounds determined in the extracts with HPLC-ICP-MS. Approximately 98 % of the total arsenic were present as arsenic acid. A method for the simultaneous identification and quantification of arsenocholine, arsenous acid, dimethylarsinic acid, arsenobetaine, methylarsonic acid, and arsenic acid at concentrations below 1 μg/L was developed. The developed HPLC-MPN-ICP-MS system allows the determination of arsenic compounds in urine sample at concentrations of 0.5 μg As/L with a relative standard deviation of 20 %. (author)

  16. The MRP1-mediated effluxes of arsenic and antimony do not require arsenic-glutathione and antimony-glutathione complex formation.

    Science.gov (United States)

    Salerno, Milena; Petroutsa, Maria; Garnier-Suillerot, Arlette

    2002-04-01

    Arsenic trioxide is an effective treatment for acute promyelocytic leukemia, but resistance to metalloid salts is found in humans. Using atomic absorption spectroscopy, we have measured the rate of uptake of arsenic trioxide and of antimony tartrate in GLC4 and GLC4/ADR cells overexpressing MRP1 and the rate of their MRP1-mediated effluxes as a function of the intracellular GSH concentration. In sensitive cells, after 1 h, a pseudosteady state is reached where intra- and extracellular concentrations of metalloid are the same. This precludes the formation, at short term, of complexes between arsenic or antimony with GSH. In resistant cells reduced intracellular accumulation of arsenic (or antimony), reflecting an increased rate of arsenic (or antimony) efflux from the cells, is observed. No efflux of the metalloid is observed in GSH depleted cells. The two metalloids and GSH are pumped out by MRP1 with the same efficiency. Moreover for the three compounds 50% of the efflux is inhibited by 2 microM MK571. This led us to suggest that As- and Sb-containing species could be cotransported with GSH. PMID:12018890

  17. Review of arsenic contamination and human exposure through water food in rural areas in Vietnam

    International Nuclear Information System (INIS)

    The Red River Delta in Vietnam is one of the regions whose quaternary aquifers are polluted by arsenic. Chronic toxification by arsenic can cause severe illnesses such as cancer, skin lesions, developmental defects, cardiovascular and neurological diseases, and diabetes. In this study, a food processing craft village in the Red River Delta was investigated regarding the potential risk faced by the population due to arsenic. The potential sources of arsenic are the groundwater, the crops grown in the surroundings, and animal products from local husbandry. However, the occurrence of arsenic in nature is variable, and its bioavailability and toxicity depend very much on its specification: trivalent compounds are more toxic and often more mobile than pentavalent compounds, while inorganic species are generally more toxic than organic ones. Local conditions, such as the redox potential, strongly influence its specification and thus potential bioavailability. The introduction to this work elucidates the key factors which potentially cause human exposure to arsenic: the geological setting of the study area, land and water use patterns, and the current state of research regarding the mobilization, bioavailability and plant uptake of arsenic. Although the study area is located in a region where the groundwater is known to be moderately contaminated by arsenic, the level of arsenic in the groundwater in the village had not previously been determined. In this study, water use in the village was examined by a survey among the farmers and by water analyses, which are presented in the following chapters. Four main water sources (rain, river, tube well and a public municipal waterworks) are used for the different daily activities; the highest risk to human health was found to be the bore well water, which is pumped from the shallow Holocene aquifer. The water from the bore wells is commonly used for cleaning and washing as well as to feed the animals and for food processing

  18. Review of arsenic contamination and human exposure through water food in rural areas in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Celia

    2016-05-01

    The Red River Delta in Vietnam is one of the regions whose quaternary aquifers are polluted by arsenic. Chronic toxification by arsenic can cause severe illnesses such as cancer, skin lesions, developmental defects, cardiovascular and neurological diseases, and diabetes. In this study, a food processing craft village in the Red River Delta was investigated regarding the potential risk faced by the population due to arsenic. The potential sources of arsenic are the groundwater, the crops grown in the surroundings, and animal products from local husbandry. However, the occurrence of arsenic in nature is variable, and its bioavailability and toxicity depend very much on its specification: trivalent compounds are more toxic and often more mobile than pentavalent compounds, while inorganic species are generally more toxic than organic ones. Local conditions, such as the redox potential, strongly influence its specification and thus potential bioavailability. The introduction to this work elucidates the key factors which potentially cause human exposure to arsenic: the geological setting of the study area, land and water use patterns, and the current state of research regarding the mobilization, bioavailability and plant uptake of arsenic. Although the study area is located in a region where the groundwater is known to be moderately contaminated by arsenic, the level of arsenic in the groundwater in the village had not previously been determined. In this study, water use in the village was examined by a survey among the farmers and by water analyses, which are presented in the following chapters. Four main water sources (rain, river, tube well and a public municipal waterworks) are used for the different daily activities; the highest risk to human health was found to be the bore well water, which is pumped from the shallow Holocene aquifer. The water from the bore wells is commonly used for cleaning and washing as well as to feed the animals and for food processing

  19. Bimetallic nanoparticles for arsenic detection.

    Science.gov (United States)

    Moghimi, Nafiseh; Mohapatra, Mamata; Leung, Kam Tong

    2015-06-01

    Effective and sensitive monitoring of heavy metal ions, particularly arsenic, in drinking water is very important to risk management of public health. Arsenic is one of the most serious natural pollutants in soil and water in more than 70 countries in the world. The need for very sensitive sensors to detect ultralow amounts of arsenic has attracted great research interest. Here, bimetallic FePt, FeAu, FePd, and AuPt nanoparticles (NPs) are electrochemically deposited on the Si(100) substrate, and their electrochemical properties are studied for As(III) detection. We show that trace amounts of As(III) in neutral pH could be determined by using anodic stripping voltammetry. The synergistic effect of alloying with Fe leads to better performance for Fe-noble metal NPs (Au, Pt, and Pd) than pristine noble metal NPs (without Fe alloying). Limit of detection and linear range are obtained for FePt, FeAu, and FePd NPs. The best performance is found for FePt NPs with a limit of detection of 0.8 ppb and a sensitivity of 0.42 μA ppb(-1). The selectivity of the sensor has also been tested in the presence of a large amount of Cu(II), as the most detrimental interferer ion for As detection. The bimetallic NPs therefore promise to be an effective, high-performance electrochemical sensor for the detection of ultratrace quantities of arsenic. PMID:25938763

  20. Variability in human metabolism of arsenic

    International Nuclear Information System (INIS)

    Estimating the nature and extent of human cancer risks due to arsenic (As) in drinking water is currently of great concern, since millions of persons worldwide are exposed to arsenic, primarily through natural enrichment of drinking water drawn from deep wells. Humans metabolize and eliminate As through oxidative methylation and subsequent urinary excretion. While there is debate as to the role of methylation in activation/detoxification, variations in arsenic metabolism may affect individual risks of toxicity and carcinogenesis. Using data from three populations, from Mexico, China, and Chile, we have analyzed the distribution in urine of total arsenic and arsenic species (inorganic arsenic (InAs), monomethyl arsenic (MMA), and dimethyl arsenic (DMA). Data were analyzed in terms of the concentration of each species and by evaluating MMA:DMA and (MMA+DMA):InAs ratios. In all persons most urinary As was present as DMA. Male:female differences were discernible in both high- and low-exposure groups from all three populations, but the gender differences varied by populations. The data also indicated bimodal distributions in the ratios of DMA to InAs and to MMA. While the gene or genes responsible for arsenic methylation are still unknown, the results of our studies among the ethnic groups in this study are consistent with the presence of functional genetic polymorphisms in arsenic methylation leading to measurable differences in toxicity. This analysis highlights the need for continuing research on the health effects of As in humans using molecular epidemiologic methods

  1. Arsenic chemistry in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of

  2. The molecular mechanism of arsenic carcinogenesis

    International Nuclear Information System (INIS)

    Arsenic compounds are known human carcinogens. Although many carcinogens are also mutagens, arsenite is not mutagenic in the V79 (hprt and Na+/K+ ATPase) system or in the G12 (qpt) system. This clearly indicates that arsenite per se does not cause any type of mutation detectable at these loci, including point mutations, small deletions and multilocus deletions. The lack of arsenic mutagenesis has led to studies emphasizing its comutagenicity. In this study, arsenite was found to enhance both UV- and MNU-mutagenesis in V79 or G12 cells. Although arsenite is comutagenic with both UV254 and UV360, the latter seems more important because of its natural relevance. The ability of arsenite to inhibit the repair of MNU-induced DNA damage was measured by a nick translation assay which measures DNA strand breaks by incorporating radioactive dNMP at their 3'OH ends in permeabilized V79 cells. It was found that strand breaks resulting from MNU or its repair accumulate in the presence of arsenite. MNU-induced poly(ADP-ribose) synthesis, measured by the incorporation of [3H]NAD+ in permeabilized cells, was also increased by post-treatment of the cells with arsenite. This supports the hypothesis that arsenite inhibits the completion of DNA repair. The accumulated strand breaks in the presence of arsenite are probably not due to direct inhibition of DNA polymerase α, the presumed repair enzyme, since very high concentrations of arsenite are needed. DNA polymerase β and DNA ligase are probably not the direct targets of arsenite for a similar reason. Thus arsenite probably inhibits the completion of DNA repair in an indirect way. Arsenite per se can inhibit metabolic cooperation and it can induce SV40 gene amplification. This suggests arsenite might also function as a tumor-promoter

  3. Breast-feeding Protects against Arsenic Exposure in Bangladeshi Infants

    OpenAIRE

    Fängström, Britta; Moore, Sophie; Nermell, Barbro; Kuenstl, Linda; Goessler, Walter; Grandér, Margaretha; Kabir, Iqbal; Palm, Brita; Arifeen, Shams El; Vahter, Marie

    2008-01-01

    Background Chronic arsenic exposure causes a wide range of health effects, but little is known about critical windows of exposure. Arsenic readily crosses the placenta, but the few available data on postnatal exposure to arsenic via breast milk are not conclusive. Aim Our goal was to assess the arsenic exposure through breast milk in Bangladeshi infants, living in an area with high prevalence of arsenic-rich tube-well water. Methods We analyzed metabolites of inorganic arsenic in breast milk ...

  4. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis

    OpenAIRE

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-01-01

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001)...

  5. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    OpenAIRE

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; ISLAM, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2012-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning kn...

  6. Hydrogen in compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    1993-05-01

    Progress in the understanding of hydrogen and its interactions in III/V and II/VI compound semiconductors is reviewed. Donor, acceptor and deep level passivation is well established in III/V compounds based on electrical measurements and on spectroscopic studies. The hydrogen donor levels in GaAs and GaP are estimated to lie near E{sub v}+0.5 eV and E{sub v}+0.3 eV, respectively. Arsenic acceptors have been passivated by hydrogen in CdTe and the very first nitrogen-hydrogen local vibrational model spectra in ZnSe have been reported. This long awaited result may lead to an explanation for the poor activation of nitrogen acceptors in ZnSe grown by techniques which involve high concentrations of hydrogen.

  7. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    Science.gov (United States)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization but rather appears to increase arsenic mobilization in the aqueous phase, raising concerns with this approach.

  8. Effect of water hyacinth root extract on arsenic level in different organs of arsenic-treated rat

    OpenAIRE

    Shaheen Lipika Quayum

    2007-01-01

    The present study investigated whether the administration of the ethanol extract of water hyacinth (Eichhornia crassipes) ameliorates arsenic from arsenic-treated rats. To induce arsenic accumulation in different organs, arsenic trioxide was administered orally by gavage at a dose of 500 µg/rat/day for 7 days. In search of an effective therapeutic agent to counteract arsenic accumulation and arsenic-induced oxidative stress, different concentrations of ethanol extract of root of water hyacint...

  9. Detection of arsenic-containing hydrocarbons in canned cod liver tissue.

    Science.gov (United States)

    Arroyo-Abad, Uriel; Mattusch, Jürgen; Mothes, Sibylle; Möder, Monika; Wennrich, Rainer; Elizalde-González, Maria P; Matysik, Frank-Michael

    2010-06-30

    Arsenic is a metalloid well known to be potentially toxic depending of its species. Lipid-soluble arsenicals (arsenolipids) are present in a wide range of biological samples in which they could play a role in the biosynthesis of organoarsenic compounds from inorganic arsenic compounds. Arsenolipids have recently attracted considerable interest. In order to gain deeper insights into the impact of arsenolipids new analytical approaches for reliable determination of this class of arsenic-containing hydrocarbons in various matrices are needed. High concentrations of arsenolipids were found in seafood which served as sample material in this study. We report the investigation of three arsenolipids found in canned cod liver from which they were extracted and purified by solid phase extraction (SPE) using a silica gel column and ethyl acetate/methanol as eluent. Analytical studies were conducted by means of gas chromatography coupled with ICP-MS, MIP-AES and EI-qMS and by TOF-MS. The results obtained by GC-ICP-MS and GC-MIP-AES showed the existence of numerous arsenic compounds in the SPE fractions collected. Three major peaks were found within a retention time window between 10 and 25 min. The presence of arsenic compounds in the fish tissue could be confirmed using GC-EI-qMS analysis. Corresponding information of the molecular weights of the major arsenic species were provided by TOF-MS which allows highly accurate mass determinations. The results showed the presence of the arsenic-containing hydrocarbons with the following molecular formulas: C(17)H(37)AsO (calculated for [M+H](+) 333.2133; found 333.2136; Deltam=0.90 ppm); C(19)H(41)AsO (calculated for [M+H](+) 361.2446; found 361.2446; Deltam=0.00 ppm); C(23)H(37)AsO (calculated for [M+H](+) 405.2133; found 405.2145; Deltam=2.96 ppm). Suggestions for the corresponding structures are discussed. PMID:20685432

  10. Current developments in toxicological research on arsenic

    OpenAIRE

    Bolt, Hermann M.

    2013-01-01

    There is a plethora of recent publications on all aspects relevant to the toxicology of arsenic (As). Over centuries exposures to arsenic continue to be a major public health problem in many countries. In particular, the occurrence of high As concentrations in groundwater of Southeast Asia receives now much attention. Therefore, arsenic is a high-priority matter for toxicological research. Key exposure to As are (traditional) medicines, combustion of As-rich coal, presence of As in groundwate...

  11. Dissolved Air Flotation of arsenic adsorbent particles

    OpenAIRE

    Santander, M.; Valderrama, L.

    2015-01-01

    The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF) and dissolved air flotation (DAF). A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808) as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with fl...

  12. Arsenic Toxicity in Male Reproduction and Development

    OpenAIRE

    Kim, Yoon-Jae; Kim, Jong-Min

    2015-01-01

    Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic a...

  13. The effectiveness of water-treatment systems for arsenic used in 11 homes in Southwestern and Central Ohio, 2013

    Science.gov (United States)

    Thomas, Mary Ann; Ekberg, Mike

    2016-01-01

    In 2013, the U.S. Geological Survey and the Miami Conservancy District investigated the effectiveness of methods used to remove arsenic from drinking water at 11 homes in southwestern and central Ohio. The untreated (raw) ground-water had arsenic concentrations of 7.7–382 micrograms per liter (µg/L), and the median concentration was 30 µg/L. The pH was neutral to slightly alkaline, and redox conditions were strongly reducing, as indicated by high concentrations of iron. The predominant arsenic species was arsenite (As3+), which is difficult to treat because it exists in water as an uncharged compound (H3AsO3).The water-treatment systems included (1) seven single-tap reverse-osmosis systems, (2) two whole-house oxidation/filtration systems, and (3) two systems that included wholehouse anion exchange and single-tap reverse osmosis. All but one system included pretreatment by a water softener, and two systems included preoxidation to convert arsenite (As3+) to arsenate (As5+) before treatment by anion exchange.None of the treatment systems removed all of the arsenic from the drinking water. About one-half of the systems decreased the arsenic concentration to less than the maximum contamination level of 10 µg/L. The effectiveness of the systems varied widely; the percentage of arsenic removed ranged from 2 to 90 percent, and the median was 65 percent.At some sites, the low effectiveness of arsenic removal may have been related to system maintenance and(or) operation issues. At two sites, homeowners acknowledged that the treatment systems had not been maintained for several years. At two other sites, the treatment systems were being maintained, but the water-quality data indicated that one of the components was not working, unbeknownst to the homeowner. EPA research at a small number of sites in Ohio indicated that operation and maintenance of some arsenic-treatment systems was not always simple.Another factor that affected system effectiveness was the quality of

  14. Acute arsenic poisoning in two siblings.

    Science.gov (United States)

    Lai, Melisa W; Boyer, Edward W; Kleinman, Monica E; Rodig, Nancy M; Ewald, Michele Burns

    2005-07-01

    We report a case series of acute arsenic poisoning of 2 siblings, a 4-month-old male infant and his 2-year-old sister. Each child ingested solubilized inorganic arsenic from an outdated pesticide that was misidentified as spring water. The 4-month-old child ingested a dose of arsenic that was lethal despite extraordinary attempts at arsenic removal, including chelation therapy, extracorporeal membrane oxygenation, exchange transfusion, and hemodialysis. The 2-year-old fared well with conventional therapy. PMID:15995066

  15. XAS Studies of Arsenic in the Environment

    International Nuclear Information System (INIS)

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples

  16. Arsenic in the soils of Zimapan, Mexico

    International Nuclear Information System (INIS)

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapan Valley range from 4 to 14 700 mg As kg-1. Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg-1 only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment. -- Much of the arsenic is relatively immobile but presents long-term source of arsenic

  17. Uptake and transformation of arsenic during the vegetative life stage of terrestrial fungi

    International Nuclear Information System (INIS)

    Many species of terrestrial fungi produce fruiting bodies that contain high proportions of arsenobetaine (AB), an arsenic compound of no known toxicity. It is unknown whether fungi produce or accumulate AB from the surrounding environment. The present study targets the vegetative life stage (mycelium) of fungi, to examine the role of this stage in arsenic transformations and potential formation of AB. The mycelia of three different fungi species were cultured axenically and exposed to AB, arsenate (As(V)) and dimethylarsinoyl acetic acid for 60 days. Agaricus bisporus was additionally exposed to hypothesized precursors for AB and the exposure time to As(V) and dimethlyarsinic acid was also extended to 120 days. The mycelia of all fungi species accumulated all arsenic compounds with two species accumulating significantly more AB than other compounds. Few biotransformations were observed in these experiments indicating that it is unlikely that the mycelium of the fungus is responsible for biosynthesizing AB. - Highlights: • Mycelia of terrestrial fungi were exposed to arsenobetaine (AB) and potential precursors. • Mycelium may be selectively accumulating AB and transporting it to fruiting bodies. • Mycelium did not biosynthesize AB. - Mycelia of edible mushrooms preferentially accumulate arsenobetaine but do not biosynthesize this non-toxic arsenical

  18. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    López Alejandro

    2004-10-01

    Full Text Available Abstract Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS. Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS was totally oxidized too, anglesite (PbSO4 formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1. Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight of arsenic removal. Further studies are needed to determine other factors that influence specifically the

  19. Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Highlights: → Arsenic in fish-based food samples can be determined without the need of a dissolution stage. → Speciation of the main forms of arsenic in fish-based baby foods does not require chromatography. → The behavior of arsenic compounds in ETAAS strongly depends on the chemical modifier used. - Abstract: A procedure for the speciation analysis of arsenic in fish-based baby foods is presented. Inorganic arsenic, methylarsonic acid (MA), dimethylarsinic acid (DMA) and arsenobetaine (AB) were determined by electrothermal atomic absorption spectrometry (ETAAS) using suspensions prepared in a 0.01 mol L-1 tetramethylammonium hydroxide (TMAH) solution. Speciation is based on the use of three different chemically modified ETAAS atomizers to obtain the analytical signals. Using a palladium salt as the chemical modifier, the signal corresponding to the total arsenic concentration is obtained. When palladium is replaced by Ce(IV), the signal is solely due to inorganic arsenic (III and V) + MA. If no signal is obtained in this latter case, it is possible to distinguish between DMA and AB using a zirconium coated atomizer. The signal obtained in this way is due solely to DMA, and the concentration of AB can be obtained by the difference with the total arsenic content. Determinations by ETAAS require the use of the standard additions method. The limits of detection for the determination of AB, DMA and inorganic arsenic (+MA) are 15, 25 and 50 ng g-1 expressed as arsenic, respectively. These detection limits are good enough for the procedure to be appropriate for the rapid determination of these compounds, avoiding extraction processes and/or chromatographic separations. Data for commercial samples, as well as for four standard reference materials, are given.

  20. Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Garcia, Ignacio; Briceno, Marisol [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel, E-mail: hcordoba@um.es [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain)

    2011-08-05

    Highlights: {yields} Arsenic in fish-based food samples can be determined without the need of a dissolution stage. {yields} Speciation of the main forms of arsenic in fish-based baby foods does not require chromatography. {yields} The behavior of arsenic compounds in ETAAS strongly depends on the chemical modifier used. - Abstract: A procedure for the speciation analysis of arsenic in fish-based baby foods is presented. Inorganic arsenic, methylarsonic acid (MA), dimethylarsinic acid (DMA) and arsenobetaine (AB) were determined by electrothermal atomic absorption spectrometry (ETAAS) using suspensions prepared in a 0.01 mol L{sup -1} tetramethylammonium hydroxide (TMAH) solution. Speciation is based on the use of three different chemically modified ETAAS atomizers to obtain the analytical signals. Using a palladium salt as the chemical modifier, the signal corresponding to the total arsenic concentration is obtained. When palladium is replaced by Ce(IV), the signal is solely due to inorganic arsenic (III and V) + MA. If no signal is obtained in this latter case, it is possible to distinguish between DMA and AB using a zirconium coated atomizer. The signal obtained in this way is due solely to DMA, and the concentration of AB can be obtained by the difference with the total arsenic content. Determinations by ETAAS require the use of the standard additions method. The limits of detection for the determination of AB, DMA and inorganic arsenic (+MA) are 15, 25 and 50 ng g{sup -1} expressed as arsenic, respectively. These detection limits are good enough for the procedure to be appropriate for the rapid determination of these compounds, avoiding extraction processes and/or chromatographic separations. Data for commercial samples, as well as for four standard reference materials, are given.

  1. Determination of multiple human arsenic metabolites employing high performance liquid chromatography inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Stice, Szabina; Liu, Guangliang; Matulis, Shannon; Boise, Lawrence H; Cai, Yong

    2016-01-15

    During the metabolism of different arsenic-containing compounds in human, a variety of metabolites are produced with significantly varying toxicities. Currently available analytical methods can only detect a limited number of human metabolites in biological samples during one run due to their diverse characteristics. In addition, co-elution of species is often unnoticeable with most detection techniques leading to inaccurate metabolic profiles and assessment of toxicity. A high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) method was developed that can identify thirteen common arsenic metabolites possibly present in human with special attention dedicated to thiolated or thiol conjugated arsenicals. The thirteen species included in this study are arsenite (As(III)), arsino-glutathione (As(GS)3), arsenate (As(V)), monomethylarsonous acid (MMA(III)), monomethylarsino-glutathione (MMA(III)(GS) 2), monomethylarsonic acid (MMA(V)), dimethylarsinous acid (DMA(III) (from DMA(III)I)), S-(dimethylarsinic)cysteine (DMA(III) (Cys)), dimethylarsino-glutathione (DMA(III)(GS)), dimethylarsinic acid (DMA(V)), dimethylmonothioarsinic acid (DMMTA(V)), dimethyldithioarsinic acid (DMDTA(V)), dimethylarsinothioyl glutathione (DMMTA(V)(GS)). The developed method was applied for the analysis of cancer cells that were incubated with darinaparsin (DMA(III)(GS)), a novel chemotherapeutic agent for refractory malignancies, and the arsenic metabolic profile obtained was compared to results using a previously developed method. This method provides a useful analytical tool which is much needed in unequivocally identifying the arsenicals formed during the metabolism of environmental arsenic exposure or therapeutic arsenic administration. PMID:26708625

  2. Arsenic removal in water by means of coagulation-flocculation processes

    International Nuclear Information System (INIS)

    Arsenic and arsenical compounds are considered as carcinogenic and risky for humans according to epidemiological evidence related with the ingestion of arsenical water during a long period. In many places the only source of drinking water contains arsenic and, therefore, removal strategies have to be investigated. This work shows experimental results of coagulation-flocculation processes implemented to evaluate the efficiency in the removal of arsenic from drinking water. The main objectives include the evaluation of the relevant aspect that controls the removal efficiency. Experimental tests were performed with coagulant concentrations from 5 to 500 mg/L, solid particle concentrations from 0 to 6000 mg/L, and initial arsenic concentrations from 0.5 to 5 mg/L. These variables were simultaneously varied in more than 100 experiments. The efficiency in remediation ranged from 0% to 95%. Removal efficiency near 95% was obtained when using ferric chloride as coagulant, and was close to 80% when using aluminium sulfate as coagulant in arsenate solutions. The remediation efficiency decreased significantly when the ferric chloride concentration was higher than 50 mg/L in relation to the obtained results for aluminum sulfate for different type and concentration of soil particles. The highest removal efficiency were obtained at ph between 3 and 5 in oxidized solutions. Obtained results simulated by means of multiple linear regression analysis (R>0.90) allow determining that the main parameters that control the removal of arsenic from drinking water are coagulant concentration, ph, and solid particles concentration. Conversely, particle mineralogy and coagulant type have less significant effect on the removal by means of coagulation-flocculation mechanisms. Obtained results are relevant for the removal of As in water treatment plants as well as for the development of small scale filters. The samples were studied by scanning electron microscopy and energy dispersive X

  3. Total arsenic in marine organisms from Cienfuegos Bay, Cuba

    International Nuclear Information System (INIS)

    , Las Minas and O'bourque have an average ingestion rate of fish of 51 kg yr-1, varying from 21 to 116. Only a few studies have investigated the total As content in marine organisms from Cuba. In particular, a survey of marine products from the Western coast, displayed concentrations of Arsenic ranging from 0.01 to 4.82 μg g-1d.w.. Total Arsenic in fish and crustaceans was also measured in Cienfuegos Bay in 1974 and results showed low concentrations of this compound (1.2 μg g-1 d.w. in fish and 1.7 in crustaceans). Sixteen species of fish, two of molluscs and three of crustaceans were caught in Cienfuegos Bay. The target species were selected among those of dietary importance for the population. The arsenic contents in the samples were determined using an Energy Dispersive X Ray Fluorescence (EDXRF) method (Si/Li detector with 180 eV for Mn Kα and Cd-109 annular source. The elaboration of the spectra and quantitative analysis was carried out using the QSAX System. Compton peak was used for the matrix effects correction. Several Biological Certified Reference Materials (NRCC DOLT-2 Dogfish Liver, NRCC TORT-2 Lobster Hepatopancreas, NIES CRM-9 Sargasso, NRCC DORM-1 Dogfish Muscle and IAEA-140/TM Seaweed Fucus sp.) were measured for calculating the As concentrations in the samples. The highest values of Arsenic were found in crustaceans, which showed a mean value of 26.5 μg g-1 d.w. (values ranging from 6.9 to 53.9). These levels are in agreement with others found in literature for shrimps and marine crabs captured in estuaries and enclosed bays. The higher Arsenic content in tissues of bottom dwellers such as shrimps and crabs, can be attributed to their habitat being close to the sediment. Sediments are always higher in Arsenic than water and bottom water usually contains higher As concentration than surface water. When comparing the obtained values from this study with those reported in 1974 for shrimps from Cienfuegos bay, we observed that the mean value of Arsenic

  4. Total arsenic in marine organisms from Cienfuegos Bay, Cuba

    International Nuclear Information System (INIS)

    , Las Minas and O'bourque have an average ingestion rate of fish of 51 kg yr-1, varying from 21 to 116. Only a few studies have investigated the total As content in marine organisms from Cuba. In particular, a survey of marine products from the Western coast, displayed concentrations of Arsenic ranging from 0.01 to 4.82 μg g-1d.w. Total Arsenic in fish and crustaceans was also measured in Cienfuegos Bay in 1974 and results showed low concentrations of this compound (1.2 μg g-1 d.w. in fish and 1.7 in crustaceans). Sixteen species of fish, two of molluscs and three of crustaceans were caught in Cienfuegos Bay. The target species were selected among those of dietary importance for the population. The arsenic contents in the samples were determined using an Energy Dispersive X Ray Fluorescence (EDXRF) method (Si/Li detector with 180 eV for Mn Kα and Cd-109 annular source. The elaboration of the spectra and quantitative analysis was carried out using the QSAX System. Compton peak was used for the matrix effects correction. Several Biological Certified Reference Materials (NRCC DOLT-2 Dogfish Liver, NRCC TORT-2 Lobster Hepatopancreas, NIES CRM-9 Sargasso, NRCC DORM-1 Dogfish Muscle and IAEA-140/TM Seaweed Fucus sp.) were measured for calculating the As concentrations in the samples. The highest values of Arsenic were found in crustaceans, which showed a mean value of 26.5 μg g-1 d.w. (values ranging from 6.9 to 53.9). These levels are in agreement with others found in literature for shrimps and marine crabs captured in estuaries and enclosed bays. The higher Arsenic content in tissues of bottom dwellers such as shrimps and crabs, can be attributed to their habitat being close to the sediment. Sediments are always higher in Arsenic than water and bottom water usually contains higher As concentration than surface water. When comparing the obtained values from this study with those reported in 1974 for shrimps from Cienfuegos bay, we observed that the mean value of Arsenic

  5. Occurrence of arsenic species in algae and freshwater plants of an extreme arid region in northern Chile, the Loa River Basin.

    Science.gov (United States)

    Pell, Albert; Márquez, Anna; López-Sánchez, José Fermín; Rubio, Roser; Barbero, Mercedes; Stegen, Susana; Queirolo, Fabrizio; Díaz-Palma, Paula

    2013-01-01

    This study reports data on arsenic speciation in two green algae species (Cladophora sp. and Chara sp.) and in five aquatic plants (Azolla sp., Myriophyllum aquaticum, Phylloscirpus cf. desserticola, Potamogeton pectinatus, Ruppia filifolia and Zannichellia palustris) from the Loa River Basin in the Atacama Desert (northern Chile). Arsenic content was measured by Mass spectrometry coupled with Inductively Coupled Plasma (ICP-MS), after acidic digestion. Liquid chromatography coupled to ICP-MS was used for arsenic speciation, using both anionic and cationic chromatographic exchange systems. Inorganic arsenic compounds were the main arsenic species measured in all samples. The main arsenic species in the extracts of freshwater algae and plants were arsenite and arsenate, whereas glycerol-arsenosugar (gly-sug), dimethylarsinic acid (DMA) and methylarsonic acid (MA) were present only as minor constituents. Of the samples studied, algae species accumulated more arsenic than aquatic plants. Total arsenic content ranged from 182 to 11100 and from 20 to 248 mg As kg(-1) (d.w.) in algae and freshwater plants, respectively. In comparison with As concentration in water samples, there was hyper-accumulation (>0.1% d.w.) in Cladophora sp. PMID:22981629

  6. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  7. Arsenic Adsorption Onto Iron Oxides Minerals

    Science.gov (United States)

    Aredes, S.; Klein, B.; Pawlik, M.

    2004-12-01

    The predominant form of arsenic in water is as an inorganic ion. Under different redox conditions arsenic in water is stable in the +5 and +3 oxidation states. Arsenic oxidation state governs its toxicity, chemical form and solubility in natural and disturbed environments. As (III) is found in anoxic environments such as ground water , it is toxic and the common species is the neutral form, H3AsO3. As (V) is found in aerobic conditions such as surface water, it is less toxic and the common species in water are: H2AsO4 - and HAsO4 {- 2}. The water pH determines the predominant arsenate or arsenite species, however, both forms of arsenic can be detected in natural water systems. Iron oxides minerals often form in natural waters and sediments at oxic-anoxic boundaries. Over time they undergo transformation to crystalline forms, such as goethite or hematite. Both As(V) and As(III) sorbs strongly to iron oxides, however the sorption behavior of arsenic is dependent on its oxidation state and the mineralogy of the iron oxides. Competition between arsenic and others ions, such fluoride, sulphate and phosphate also play a role. On the other hand, calcium may increase arsenic adsorption onto iron oxides. Electrokinetic studies and adsorption experiments were carried out in order to determine which conditions favour arsenic adsorption. Hematite, goethite and magnetite as iron based sorbents were used. Test were also conducted with a laterite soil rich in iron minerals. The focus of this study is to evaluate physical and chemical conditions which favour arsenic adsorption onto iron oxides minerals, the results contribute to an understanding of arsenic behaviour in natural and disturbed environments. Furthermore, results could contribute in developing an appropriate remediation technology for arsenic removal in water using iron oxides minerals.

  8. Impaired arsenic metabolism in children during weaning

    International Nuclear Information System (INIS)

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, a rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 μg/L, range 2.4-940 μg/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.

  9. ARSENIC REMOVAL AND ECOLOGICALLY SAFE CONTAINMENT OF ARSENIC-WASTE: A SUSTAINABLE SOLUTION FOR ARSENIC CRISIS IN CAMBODIA

    Science.gov (United States)

    An appalling degree of arsenic contamination in groundwater has affected more than a million people in wide region of Mekong delta flood plain in Cambodia. Arsenic is by far the most toxic species of all naturally occurring groundwater contaminants and disposal of removed arse...

  10. Swallowing a bitter pill-oral arsenic trioxide for acute promyelocytic leukemia.

    Science.gov (United States)

    Torka, Pallawi; Al Ustwani, Omar; Wetzler, Meir; Wang, Eunice S; Griffiths, Elizabeth A

    2016-05-01

    Parenteral arsenic trioxide (ATO) has been firmly established as a standard therapy for acute promyelocytic leukemia (APL). Despite widespread use of oral arsenicals in medicine historically, they had disappeared from modern pharmacopeia until oral ATO was redeveloped in Hong Kong in 2000. Since then, over 200 patients with leukemia (predominantly APL) have been treated with oral ATO in Hong Kong and China. Oral arsenic trioxide and other formulations of arsenic appear to have a clinical efficacy comparable to that of IV formulations. These drugs given orally also appear to have a slightly better safety profile, lower operational costs and improved convenience for patients. The clinical experience with oral ATO has previously been reported piecemeal as case series, pilot studies or subgroup analyses rather than in a comprehensive cohort. In this report we attempt to synthesize the published English language literature on oral arsenicals and present the argument for further development of these compounds. Systematic study of this drug with well-designed randomized multi-center clinical trials is needed to accelerate its development and incorporation into clinical practice. PMID:26709030

  11. Speciation of arsenic in water, sediment, and plants of the Moira watershed, Canada, using HPLC coupled to high resolution ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jian; Hintelmann, Holger; Dimock, Brian; Dzurko, Mark Stephen [Department of Chemistry, Trent University, 1600 West Bank Drive, K9J 7B8, Peterborough, Ontario (Canada)

    2003-09-01

    High-performance liquid chromatography (HPLC) coupled with high-resolution sector field ICP-MS was applied to the speciation of arsenic in environmental samples collected from the Moira watershed, Ontario, Canada. Arsenic contamination in Moira River and Moira Lake from historic gold mine operations is of increasing environmental concern to the local community. In this study, the current arsenic contamination status in water, sediment, and plants was investigated. Elevated levels of arsenic in the surface water of up to 75 ng mL{sup -1} in Moira River and 50 ng mL{sup -1} in Moira Lake were detected, 98% of which was present as arsenate. High concentrations of arsenic (>300 ng mL{sup -1}), mainly present as arsenite, were detected in sediment porewaters. A sediment profile of As from the West basin of Moira Lake showed lower As concentrations compared with data from the 1990s. An optimized extraction procedure using a phosphoric acid-ascorbic acid mixture demonstrated that an unknown ''As-complex'' which may consist of As, sulfide and organic matter is potentially responsible for the release of arsenite from the sediment to the overlying water column. Arsenic concentrations in plant samples ranged from 2.6 to 117 mg kg{sup -1}, dry weight. Accumulation of arsenic was observed in submerged plants collected from Moira River and Moira Lake. Only a small part of the arsenic (6.3-16.1%) in the plants was extractable with methanol-water (9:1), and most of this arsenic (70-93%) was inorganic arsenic. A variety of organic arsenic compounds, including simple methylated compounds (methylarsonic acid and dimethylarsinic acid), trimethylarsine oxide, and tetramethylarsonium cation were detected at trace levels. No arsenobetaine and arsenocholine was found in any plant sample. An unknown compound, most probably an arsenosugar was detected in the two submerged plants, coontail (Ceratophyllum demersum) and long-stemmed waterwort (Elatine triandra). These

  12. Bioaccumulation of Arsenic by Fungi

    Directory of Open Access Journals (Sweden)

    Ademola O. Adeyemi

    2009-01-01

    Full Text Available Problem statement: Arsenic is a known toxic element and its presence and toxicity in nature is a worldwide environmental problem. The use of microorganisms in bioremediation is a potential method to reduce as concentration in contaminated areas. Approach: In order to explore the possible bioremediation of this element, three filamentous fungi-Aspergillus niger, Serpula himantioides and Trametes versicolor were investigated for their potential abilities to accumulate (and possibly solubilize arsenic from an agar environment consisting of non buffered mineral salts media amended with 0.2, 0.4, 0.6 and 0.8% (w/v arsenopyrite (FeAsS. Growth rates, dry weights, arsenic accumulation and oxalate production by the fungi as well as the pH of the growth media were all assessed during this study. Results: There was no visible solubilization of FeAsS particles underneath any of the growing fungal colonies or elsewhere in the respective agar plates. No specific patterns of growth changes were observed from the growth ratios of the fungi on agar amended with different amounts of FeAsS although growth of all fungi was stimulated by the incorporation of varying amounts of FeAsS into the agar with the exception of A. niger on 0.4% (w/v amended agar and T. versicolor on 0.8% (w/v amended agar. The amounts of dry weights obtained for all three fungi also did not follow any specific patterns with different amounts of FeAsS and the quantities obtained were in the order A. niger > S. himantioides > T. versicolor. All fungi accumulated as in their biomasses with all amounts of FeAsS although to varying levels and T. versicolor was the most effective with all amounts of FeAsS while A. niger was the least effective. Conclusion: The accumulation of arsenic in the biomasses of the test fungi as shown in this study may suggested a role for fungi through their bioaccumulating capabilities as agents in the possible bioremediation of arsenic contaminated environments.

  13. The evolution of arsenic in the treatment of acute promyelocytic leukemia and other myeloid neoplasms: Moving toward an effective oral, outpatient therapy.

    Science.gov (United States)

    Falchi, Lorenzo; Verstovsek, Srdan; Ravandi-Kashani, Farhad; Kantarjian, Hagop M

    2016-04-15

    The therapeutic potential of arsenic derivatives has long been recognized and was recently rediscovered in modern literature. Early studies demonstrated impressive activity of this compound in patients with relapsed acute promyelocytic leukemia (APL). Over the last 2 decades, intravenous arsenic trioxide has been used successfully, both alone and in combination with other agents, for the treatment of APL and, with some success, of other myeloid neoplasms. Arsenic trioxide is currently part the standard of care for patients with APL. More recently, oral formulations of this compound have been developed and are entering clinical practice. In this review, the authors discuss the evolution of arsenic in the treatment of APL and other myeloid neoplasms. Cancer 2016;122:1160-8. © 2015 American Cancer Society. PMID:26716387

  14. 29 CFR 1915.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  15. 29 CFR 1926.1118 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  16. ARSENIC EFFECTS ON TELOMERE AND TELOMERASE ACTIVITY

    Science.gov (United States)

    Arsenic effects on telomere and telomerase activity. T-C. Zhang, M. T. Schmitt, J. Mo, J. L. Mumford, National Research Council and U.S Environmental Protection Agency, NHEERL, Research Triangle Park, NC 27711Arsenic is a known carcinogen and also an anticancer agent for acut...

  17. Arsenic and human health effects: A review.

    Science.gov (United States)

    Abdul, Khaja Shameem Mohammed; Jayasinghe, Sudheera Sammanthi; Chandana, Ediriweera P S; Jayasumana, Channa; De Silva, P Mangala C S

    2015-11-01

    Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed. PMID:26476885

  18. Arsenic Consumption in the United States.

    Science.gov (United States)

    Wilson, Denise

    2015-10-01

    Exposure limits for arsenic in drinking water and minimal risk levels (MRLs) for total dietary exposure to arsenic have long been established in the U.S. Multiple studies conducted over the last five years have detected arsenic in foods and beverages including juice, rice, milk, broth (beef and chicken), and others. Understanding whether or not each of these foods or drinks is a concern to certain groups of individuals requires examining which types of and how much arsenic is ingested. In this article, recent studies are reviewed and placed in the context of consumption patterns. When single sources of food or drink are considered in isolation, heavy rice eaters can be exposed to the most arsenic among adults while infants consuming formula containing contaminated organic brown rice syrup are the most exposed group among children. Most food and drink do not contain sufficient arsenic to exceed MRLs. For individuals consuming more than one source of contaminated water or food, however, adverse health effects are more likely. In total, recent studies on arsenic contamination in food and beverages emphasize the need for individual consumers to understand and manage their total dietary exposure to arsenic. PMID:26591332

  19. Speciation of arsenic animal feed additives by microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Pergantis, S A; Heithmar, E M; Hinners, T A

    1997-10-01

    Phenylarsonic compounds have been used as poultry and swine feed additives for the purpose of growth promotion and disease prevention. Owing to the lack of suitable analytical methods, however, knowledge of their metabolism, environmental fate and impact remains incomplete. In order to compensate for this, analytical procedures were developed that allow the speciation of arsenic animal feed additives by using microbore high-performance liquid chromatography (microHPLC) coupled on-line with ICP-MS. More specifically, reversed-phase (RP) chromatographic methods were optimised to achieve the separation of various phenylarsonic acids from each other and from the more toxic inorganic arsenic compounds. This mode of chromatography, however, exhibits limitations, especially in the presence of naturally occurring organoarsenic compounds. The application of RP ion-pairing chromatography eliminates such shortcomings by minimising the co-elution of arsenic species. In general, the microHPLC-ICP-MS methods developed in this study provide high selectivity, extremely good sensitivity, low limits of detection (low-ppb or sub-pg amounts of As), require small sample volumes (< 1 microliter), minimise waste and operate most efficiently under low mobile-phase flow rates (15-40 microliters min-1), which are compatible for use with other types of mass spectrometers, e.g., electrospray. Reference materials containing naturally occurring arsenic compounds were spiked with phenylarsonic compounds and then analysed by using the procedures developed in this study. PMID:9463956

  20. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels. PMID:27460822

  1. Methylation of inorganic arsenic by murine fetal tissue explants.

    Science.gov (United States)

    Broka, Derrick; Ditzel, Eric; Quach, Stephanie; Camenisch, Todd D

    2016-07-01

    Although it is generally believed that the developing fetus is principally exposed to inorganic arsenic and the methylated metabolites from the maternal metabolism of arsenic, little is known about whether the developing embryo can autonomously metabolize arsenic. This study investigates inorganic arsenic methylation by murine embryonic organ cultures of the heart, lung, and liver. mRNA for AS3mt, the gene responsible for methylation of arsenic, was detected in all embryonic tissue types studied. In addition, methylated arsenic metabolites were generated by all three tissue types. The fetal liver explants yielded the most methylated arsenic metabolites (∼7% of total arsenic/48 h incubation) while the heart, and lung preparations produced slightly greater than 2% methylated metabolites. With all tissues the methylation proceeded mostly to the dimethylated arsenic species. This has profound implications for understanding arsenic-induced fetal toxicity, particularly if the methylated metabolites are produced autonomously by embryonic tissues. PMID:26446802

  2. Elucidating the pathway for arsenic methylation

    International Nuclear Information System (INIS)

    Although biomethylation of arsenic has been studied for more than a century, unequivocal demonstration of the methylation of inorganic arsenic by humans occurred only about 30 years ago. Because methylation of inorganic arsenic activates it to more reactive and toxic forms, elucidating the pathway for the methylation of this metalloid is a topic of considerable importance. Understanding arsenic metabolism is of public health concern as millions of people chronically consume drinking water that contains high concentrations of inorganic arsenic. Hence, the focus of our research has been to elucidate the molecular basis of the steps in the pathway that leads from inorganic arsenic to methylated and dimethylated arsenicals. Here we describe a new S-adenosylmethionine (AdoMet)-dependent methyltransferase from rat liver cytosol that catalyzes the conversion of arsenite to methylated and dimethylated species. This 42-kDa protein has sequence motifs common to many non-nucleic acid methyltransferases and is closely related to methyltransferases of previously unknown function that have been identified by conceptual translations of cyt19 genes of mouse and human genomes. Hence, we designate rat liver arsenic methyltransferase as cyt19 and suggest that orthologous cyt19 genes encode an arsenic methyltransferase in the mouse and human genomes. Our studies with recombinant rat cyt19 find that, in the presence of an exogenous or a physiological reductant, this protein can catalyze the entire sequence of reactions that convert arsenite to methylated metabolites. A scheme linking cyt19 and thioredoxin-thioredoxin reductase in the methylation and reduction of arsenicals is proposed

  3. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  4. Arsenic Geochemistry in Source Waters of the Los Angeles Aqueduct

    OpenAIRE

    Hering, Janet G; Wilkie, Jennifer A; Chiu, Van Q

    1997-01-01

    Arsenic is a widely distributed constituent of geologic materials, with an average crustal abundance of 1.8 ppm. The natural processes of weathering of arsenic-containing minerals and volcanism contribute arsenic to groundwaters, surface freshwaters, and seawater. Recently, increased attention has focused on arsenic geochemistry in natural waters. This attention has been motivated by concern over the human health effects of arsenic exposure; consumption of drinking water can be a significant,...

  5. Estimated probability of arsenic in groundwater from bedrock aquifers in New Hampshire, 2011

    Science.gov (United States)

    Ayotte, Joseph D.; Cahillane, Matthew; Hayes, Laura; Robinson, Keith W.

    2012-01-01

    wells, and in ecological-level analysis of disease outcomes. The approach for modeling arsenic in groundwater could also be applied to other environmental contaminants that have potential implications for human health, such as uranium, radon, fluoride, manganese, volatile organic compounds, nitrate, and bacteria.

  6. Summary of four scientific studies on Arsenicum album high dilution effect against Arsenic intoxication in mice

    Directory of Open Access Journals (Sweden)

    Laurence Terzan

    2012-09-01

    Full Text Available Background: Groundwater arsenic affects millions of people in about 20 countries. In West Bengal (India and Bangladesh alone over 100 million people are exposed. The arsenic concentration in contaminated groundwater in Bangladesh was above the maximum permissible level of 0.05 mg/l as recommended by WHO for developing countries [1]. Drinking water is not the only source of poisoning. In arsenic contaminated areas, crops, vegetables, cereals, poultry, cattle, etc, also contain traces of arsenic. Chronic arsenic intoxication has been associated with several diseases such as melanosis, leuco-melanosis, hyperkeratosis, oedema, skin cancer… Cazin et al [2], have demonstrated the effect of high dilutions of arsenic compounds. They noted increased arsenic elimination from blood through urine and faeces in intoxicated rats. According to these research, the aim of Khuda Buksh studies [3-4-5] was to investigate whether high dilution Arsenicum album have any effect on arsenic accumulation in different tissues and to understand also how this high dilution could produce a protective effect on all the different organs. Methodology: Firstly, the effect of Arsenicum album 30 cH on the amount of arsenic accumulation was determined by spectrophotometric analysis in four tissues namely liver, kidney and testis in mice intoxicated by arsenic. The protective effect in chronic and acute arsenic intoxicated mice of Arsenicum Album 6cH, 30cH and 200cH has been evaluated using not only the activities of enzymatic and biomarker toxicity (aspartate amino transferase (AST, alanine amino transferase (ALT, acid phosphatase (AcP, alkaline phosphatase (AlkP, lipid peroxidation (LPO and reduced glutathione (GSH but also the cytogenetical parameters (chromosome aberrations (CA, mitotic index (MI, sperm head anomaly (SHA etc., . Because, it is well demonstrated that these enzymes biomarkers reflect the degree of hepatotoxicity and oxidative stress caused by

  7. How to distinguish natural and anthropogenic arsenic emissions? - A case study of Kittilä Suurikuusikko gold mine in Finland

    Science.gov (United States)

    Backnäs, Soile; Turunen, Kaisa; Pasanen, Antti

    2013-04-01

    -20 %) than the unweathered bedrock (4%) and the background bedrock samples (4 %). The oxalate extracted arsenic fractions were similar in all bedrock samples. The results show that the arsenic chemically adsorbed in weathered bedrock and glacial till have significant impact in the arsenic emissions from the Suurikuusikko mine. The difference in natural and mining affected water quality was seen in dissolved and total arsenic and as well as in alkali and alkali earth metal (e.g. Li, Na, K, Mg and Mn) concentrations in water samples. Due to reducing conditions in studied water samples arsenic was present mainly as pentavalent arsenate-compounds (H2AsO4- and HAsO42-). Although arsenic concentration in the tailings seepage water was high compared to background concentrations in ground and surface waters, arsenic was adsorbed in the wetland soil and the mining activity did not influence the arsenic concentrations in the nearby river Seurujoki.

  8. A review on environmental factors regulating arsenic methylation in humans

    International Nuclear Information System (INIS)

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers

  9. ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis.

    Science.gov (United States)

    Sung, Dong-Yul; Kim, Tae-Houn; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I

    2009-09-01

    A forward-genetic screen in Arabidopsis led to the isolation of several arsenic tolerance mutants. ars5 was the strongest arsenate- and arsenite-resistant mutant identified in this genetic screen. Here, we report the characterization and cloning of the ars5 mutant gene. ars5 is shown to exhibit an increased accumulation of arsenic and thiol compounds during arsenic stress. Rough mapping together with microarray-based expression mapping identified the ars5 mutation in the alpha subunit F (PAF1) of the 26S proteasome complex. Characterization of an independent paf1 T-DNA insertion allele and complementation by PAF1 confirmed that paf1 mutation is responsible for the enhanced thiol accumulation and arsenic tolerance phenotypes. Arsenic tolerance was not observed in a knock-out mutant of the highly homologous PAF2 gene. However, genetic complementation of ars5 by the overexpression of PAF2 suggests that the PAF2 protein is functionally equivalent to PAF1 when expressed at high levels. No detectible difference was observed in total ubiquitinylated protein profiles between ars5 and wild-type (WT) Arabidopsis, suggesting that the arsenic tolerance observed in ars5 is not derived from a general impairment in proteasome-mediated protein degradation. Quantitative RT-PCR showed that arsenic induces the enhanced transcriptional activation of several key genes that function in glutathione and phytochelatin biosynthesis in the WT, and this arsenic induction of gene expression is more dramatic in ars5. The enhanced transcriptional response to arsenic and the increased accumulation of thiol compounds in ars5, compared with WT, suggest the presence of a positive regulation pathway for thiol biosynthesis that is enhanced in the ars5 background. PMID:19453443

  10. Solutions for Arsenic Control in Mining Processes and Extractive Industry

    Science.gov (United States)

    Neitola, Raisa; Korhonen, Tero; Backnäs, Soile; Turunen, Kaisa; Kaartinen, Tommi; Laine-Ylijoki, Jutta; Wahlström, Margareta; Venho, Antti; Ahoranta, Sarita; Nissilä, Marika; Puhakka, Jaakko

    2015-04-01

    In mining, quarrying and industrial minerals production arsenic is a common element, thus creating a challenge in mining processes. This project aimed to develop solutions to control and remove As-compounds in materials and effluents of beneficiation processes and other mining operations. Focus was on various technologies e.g. traditional mineral processing, bioprocessing, water treatment, as well as various materials such as gold ores and concentrates, industrial by-products, and mine waters. The results of suggest that by novel mineral processing and proper water treatment methods the amount of As-compounds in tailings and effluents can be reduced to levels that satisfy the regulations concerning mining waste management. According to the environmental research, mining activities tend to increase the proportion of potentially mobile and available elements in soil. The effect of mining activity on geogenic contamination needs to be considered in risk assessment.

  11. Determination and identification of hydrophilic and hydrophobic arsenic species in methanol extract of fresh cod liver by RP-HPLC with simultaneous ICP-MS and ESI-Q-TOF-MS detection.

    Science.gov (United States)

    Arroyo-Abad, Uriel; Lischka, Susanne; Piechotta, Christian; Mattusch, Jürgen; Reemtsma, Thorsten

    2013-12-01

    The present study was focused on the determination and identification of arsenic species in methanolic extracts of cod liver. Arsenic species were fractionated and the fractions analysed by RP-HPLC-ICP-MS coupled with ESI-Q-TOF-MS. The total concentration of arsenic in the fresh cod liver was analysed by ICP-MS to be 1.53±0.02 mg As kg(-1)w.w. and the extraction recovery was ca. 100% and the column recovery >93%. Besides polar inorganic and methylated arsenic species (>70%) more hydrophobic arsenic-containing fatty acids and hydrocarbons occurred. Based on the mass spectrometric data proposals for molecular structures were elaborated for 20 of the organic As species included 10 arsenic-containing fatty acids (AsFA) and an arsenic-containing hydrocarbon (AsHC) mentioned for the first time in fresh cod liver. Arsenobetaine was found as main water-soluble arsenic compound in cod liver followed by higher molecular mass arsenic-containing fatty acids and hydrocarbons. PMID:23871064

  12. A broad view of arsenic.

    Science.gov (United States)

    Jones, F T

    2007-01-01

    In the mind of the general public, the words "arsenic" and "poison" have become almost synonymous. Yet, As is a natural metallic element found in low concentrations in virtually every part of the environment, including foods. Mining and smelting activities are closely associated with As, and the largest occurrence of As contamination in the United States is near the gold mines of northern Nevada. Inhabitants of Bangladesh and surrounding areas have been exposed to water that is naturally and heavily contaminated with As, causing what the World Health Organization has described as the worst mass poisoning in history. Although readily absorbed by humans, most inorganic As (>90%) is rapidly cleared from the blood with a half-life of 1 to 2 h, and 40 to 70% of the As intake is absorbed, metabolized, and excreted within 48 h. Arsenic does not appreciably bioaccumulate, nor does it biomagnify in the food chain. The United States has for some time purchased more As than any other country in the world, but As usage is waning, and further reductions appear likely. Arsenic is used in a wide variety of industrial applications, from computers to fireworks. All feed additives used in US poultry feeds must meet the strict requirements of the US Food and Drug Administration Center for Veterinary Medicine (Rockville, MD) before use. Although some public health investigators have identified poultry products as a potentially significant source of total As exposure for Americans, studies consistently demonstrate that <1% of samples tested are above the 0.5 ppm limit established by the US Food and Drug Administration Center for Veterinary Medicine. Although laboratory studies have demonstrated the possibility that As in poultry litter could pollute ground waters, million of tons of litter have been applied to the land, and no link has been established between litter application and As contamination of ground water. Yet, the fact that <2% of the United States population is involved in

  13. ARSENIC SPECIATION IN CARROT EXTRACTS WITH AN EMPHASIS ON THE DETECTION OF MMA(III) AND MMTA

    Science.gov (United States)

    The two predominant routes of arsenic exposure are dietary ingestion and drinking water consumption. Dietary arsenic, unlike drinking water arsenic, contains a variety of arsenicals with dramatically different toxicities. The list of arsenicals detected in dietary samples conti...

  14. Arsenic contamination and arsenicosis in China

    International Nuclear Information System (INIS)

    Arsenicosis is a serious environmental chemical disease in China mainly caused by drinking water from pump wells contaminated by high levels of arsenic. Chronic exposure of humans to high concentrations of arsenic in drinking water is associated with skin lesions, peripheral vascular disease, hypertension, blackfoot disease, and high risk of cancers. Lead by the Ministry of Health of China, we carried out a research about arsenicosis in China recently. Areas contaminated with arsenic from drinking water are determined by 10% pump well water sample method while areas from burning coal are determined by existing data. Two epidemic areas of Shanxi Province and Inner Mongolia are investigated for the distribution of pump wells containing high arsenic. Well water in all the investigated villages of Shanxi Province showed polluted by high arsenic, and the average rate of unsafe pump well water is 52%. In Inner Mongolia, the high percentage of pump wells containing elevated arsenic is found only in a few villages. The average rate of unsafe pump well water is 11%. From our research, we find that new endemic areas are continuously emerging in China. Up to now, epidemic areas of arsenicosis mainly involve eight provinces and 37 counties in China. In the affected areas, the discovery of wells and coal with high levels of arsenic is continuing sporadically, and a similar scattered distribution pattern of patients is also being observed

  15. [Competitive Microbial Oxidation and Reduction of Arsenic].

    Science.gov (United States)

    Yang, Ting-ting; Bai, Yao-hui; Liang, Jin-song; Huo, Yang; Wang, Ming-xing; Yuan, Lin-ijang

    2016-02-15

    Filters are widely applied in drinking water treatment plants. Our previous study, which explored the asenic redox in a filter of drinking water plant treating underground water, found that As3+ could be oxidized to As5+ by biogenic manganese oxides, while As5+ could be reduced to As3+ by some microbial arsenic reductases in the biofilter system. This microbial competition could influence the system stability and treatment efficiency. To explore its mechanism, this study selected a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) and a arsenic-reducing strain (Brevibacterium sp. LSJ-9) to investigate their competitive relationship in nutrient acquisition and arsenic redox in the presence of Mn2+, As3+ or As5+ The results revealed that the concentration and valence of Mn and As varied with different reaction time; biological manganese oxides dominated the arsenic redox by rapidly oxidizing the As3+ in the existing system and the As3+ generated by arsenic reductase into As. PCR and RT-PCR results indicated that the arsenic reductase (arsC) was inhibited by the manganese oxidase (cumA). The expression of 16S rRNA in QJX-1 was two orders of magnitude higher than that in LSJ-9, which implied QJX-1 was dominant in the bacterial growth. Our data revealed that hydraulic retention time was critical to the valence of arsenic in the effluent of filter in drinking water treatment plant. PMID:27363151

  16. Determination of arsenic species in Solanum Lyratum Thunb using capillary electrophoresis with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Shuai, Pei-Yu; Yang, Xiao-Jun; Qiu, Zong-Qing; Wu, Xiao-Hui; Zhu, Xi; Pokhrel, Ganga Raj; Fu, Yu-Ying; Ye, Hui-Min; Lin, Wen-Xiong; Yang, Gui-Di

    2016-08-01

    A simple and highly efficient interface to couple capillary electrophoresis with inductively coupled plasma mass spectrometry by a microflow polyfluoroalkoxy nebulizer and a quadruple ion deflector was developed in this study. By using this interface, six arsenic species, including arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, and arsenocholine, were baseline-separated and determined in a single run within 11 min under the optimized separation conditions. The instrumental detection limit was in the range of 0.02-0.06 ng/mL for the six arsenic compounds. Repeatability expressed as the relative standard deviation (n = 5) of both migration time and peak area were better than 2.5 and 4.3% for six arsenic compounds. The proposed method, combined with a closed-vessel microwave-assisted extraction procedure, was successfully applied for the determination of arsenic species in the Solanum Lyratum Thunb samples from Anhui province in China with the relative standard deviations (n = 5) ≤4%, method detection limits of 0.2-0.6 ng As/g and a recovery of 98-104%. The experimental results showed that arsenobetaine was the main speciation of arsenic in the Solanum Lyratum Thunb samples from different provinces in China, with a concentration of 0.42-1.30 μg/g. PMID:27378629

  17. Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of Arsenic in a marine ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J.S.; Francesconi, K.A.

    1981-02-12

    The high concentration (relative to seawater) of arsenic in many marine animals eaten as human food has stimulated interest in the cycling of arsenic in the marine environment. Although arsenic is present in arsenobetaine ((CH/sub 3/)/sub 3/As/sup +/CH/sub 2/COO/sup -/) in the wester rock lobster (Panulirus cygnus), the dusky shark (Carcharhinus obscurus) and the school whiting (Sillago bassensis) it is not clear what intermediate stages are involved in the biosynthesis of this compound from arsenate, the major form of arsnenic in seawater. We now report the isolation of the two main arsenical constituents of the brown kelp, Ecklonia radiata, and their identification as a 2-hydroxy-3-sulphopropyl-5-deoxy-5-(dimethylarsenoso)furanoside and a 2,3-dihydroxypropyl-5-deoxy-5-(dimethylarsenoso)furanoside. A ..beta..-ribo structure for the sugar system is strongly indicated in each case. Ecklonia is the major organisms that concentrates arsenic in the coastal ecosystem to which the western rock lobster and school whiting belong. It is clear that the compounds described here could readily be further metabolized to arsenobetaine and may well be the source of arsenobetaine in marine fauna associated with the region.

  18. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  19. Current Status and Prevention Strategy for Coal-arsenic Poisoning in Guizhou, China

    OpenAIRE

    Li, Dasheng; An, Dong; Zhou, Yunsu; Liu, Jie; Waalkes, Michael P.

    2006-01-01

    Arsenic exposure from burning coal with high arsenic contents occurs in southwest Guizhou, China. Coal in this region contains extremely high concentrations of inorganic arsenic. Arsenic exposure from coal-burning is much higher than exposure from arsenic-contaminated water in other areas of China. The current status and prevention strategies for arsenic poisoning from burning high-arsenic coal in southwest Guizhou, China, is reported here. Over 3,000 arsenic-intoxicated patients were diagnos...

  20. Environmental arsenic exposure and sputum metalloproteinase concentrations.

    OpenAIRE

    Josyula, Arun B.; Poplin, Gerald S.; Kurzius-Spencer, Margaret; McClellen, Hannah E.; Kopplin, Michael J.; Stürup, Stefan; Clark Lantz, R.; Jefferey L. Burgess

    2006-01-01

    Biomarkers of exposure & early effects: field studiesBiomarker: arsenic, creatinin, MMP levelsExposure/effect represented: arsenicStudy design: cross-sectionalStudy size: 73 subjectsAnalytical technique: ELISA, HPLCTissue/biological material/sample size: urine samplesRelationship with exposure or effect of interest (including dose-response): inorganic arsenic positively correlated with logMMP-9/TIMP-1 ratio in sputum (Pearson's r Ό 0:351, P Ό 0:009) and negatively correlated with the log of s...

  1. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  2. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose

    2009-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water

  3. Arsenic in rice: A cause for concern

    DEFF Research Database (Denmark)

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri;

    2015-01-01

    Inorganic arsenic intake is likely to affect long-term health. High concentrations are found in some rice-based foods and drinks widely used in infants and young children. In order to reduce exposure we recommend avoidance of rice drinks for infants and young children. For all rice products, strict...... regulation should be enforced regarding arsenic content. Moreover, infants and young children should consume a balanced diet including a variety of grains as carbohydrate sources. While rice protein based infant formulas are an option for infants with cows' milk protein allergy, the inorganic arsenic content...

  4. Arsenic(III) Immobilization on Rice Husk

    OpenAIRE

    Malay Chaudhuri; Mohammed Ali Mohammed

    2013-01-01

    A number of large aquifers in various parts of the world have been identified with contamination by arsenic. Long-term exposure to arsenic in drinking water causes cancer of the skin, lungs, urinary bladder and kidney, as well as skin pigmentation and hyperkeratosis. Arsenic occurs in groundwater in two valence states, as trivalent arsenite [As(III)] and pentavalent arsenate [As(V)]. As(III) is more toxic and more difficult to remove from water by adsorption on activated alumina. In this stud...

  5. [Advance on oxidative stress mechanism of arsenic toxicology].

    Science.gov (United States)

    Li, Zhen; An, Yan

    2009-09-01

    Inorganic arsenic is one of proven human carcinogens, which there are so far no sound laboratory-based evidences and there are very few reports in the literature regarding arsenic carcinogenic effects in in vivo animal experiment. Because of this lack of adequate evidences, the mechanism for understanding arsenic toxicology remains vague. Recently, many modes of action for arsenic carcinogenesis have been proposed, oxidative stress is one of the stronger theories of arsenic action modes which have a substantial mass of supporting data. Further more, many researchers have pointed out that induction of oxidative stress by methylated metabolites of inorganic arsenics plays an important role in the toxicity and carcinogenicity of arsenics. The role of oxidative stress induced by arsenic in arsenic toxicology was reviewed. PMID:19877531

  6. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  7. Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    López-García, Ignacio; Briceño, Marisol; Hernández-Córdoba, Manuel

    2011-08-01

    A procedure for the speciation analysis of arsenic in fish-based baby foods is presented. Inorganic arsenic, methylarsonic acid (MA), dimethylarsinic acid (DMA) and arsenobetaine (AB) were determined by electrothermal atomic absorption spectrometry (ETAAS) using suspensions prepared in a 0.01 mol L(-1) tetramethylammonium hydroxide (TMAH) solution. Speciation is based on the use of three different chemically modified ETAAS atomizers to obtain the analytical signals. Using a palladium salt as the chemical modifier, the signal corresponding to the total arsenic concentration is obtained. When palladium is replaced by Ce(IV), the signal is solely due to inorganic arsenic (III and V)+MA. If no signal is obtained in this latter case, it is possible to distinguish between DMA and AB using a zirconium coated atomizer. The signal obtained in this way is due solely to DMA, and the concentration of AB can be obtained by the difference with the total arsenic content. Determinations by ETAAS require the use of the standard additions method. The limits of detection for the determination of AB, DMA and inorganic arsenic (+MA) are 15, 25 and 50 ng g(-1) expressed as arsenic, respectively. These detection limits are good enough for the procedure to be appropriate for the rapid determination of these compounds, avoiding extraction processes and/or chromatographic separations. Data for commercial samples, as well as for four standard reference materials, are given. PMID:21704752

  8. Toxic compounds in honey.

    Science.gov (United States)

    Islam, Md Nazmul; Khalil, Md Ibrahim; Islam, Md Asiful; Gan, Siew Hua

    2014-07-01

    There is a wealth of information about the nutritional and medicinal properties of honey. However, honey may contain compounds that may lead to toxicity. A compound not naturally present in honey, named 5-hydroxymethylfurfural (HMF), may be formed during the heating or preservation processes of honey. HMF has gained much interest, as it is commonly detected in honey samples, especially samples that have been stored for a long time. HMF is a compound that may be mutagenic, carcinogenic and cytotoxic. It has also been reported that honey can be contaminated with heavy metals such as lead, arsenic, mercury and cadmium. Honey produced from the nectar of Rhododendron ponticum contains alkaloids that can be poisonous to humans, while honey collected from Andromeda flowers contains grayanotoxins, which can cause paralysis of limbs in humans and eventually leads to death. In addition, Melicope ternata and Coriaria arborea from New Zealand produce toxic honey that can be fatal. There are reports that honey is not safe to be consumed when it is collected from Datura plants (from Mexico and Hungary), belladonna flowers and Hyoscamus niger plants (from Hungary), Serjania lethalis (from Brazil), Gelsemium sempervirens (from the American Southwest), Kalmia latifolia, Tripetalia paniculata and Ledum palustre. Although the symptoms of poisoning due to honey consumption may differ depending on the source of toxins, most common symptoms generally include dizziness, nausea, vomiting, convulsions, headache, palpitations or even death. It has been suggested that honey should not be considered a completely safe food. PMID:24214851

  9. Disposal of water treatment wastes containing arsenic - A review

    International Nuclear Information System (INIS)

    Solid waste management in developing countries is often unsustainable, relying on uncontrolled disposal in waste dumps. Particular problems arise from the disposal of treatment residues generated by removing arsenic (As) from drinking water because As can be highly mobile and has the potential to leach back to ground and surface waters. This paper reviews the disposal of water treatment wastes containing As, with a particular emphasis on stabilisation/solidification (S/S) technologies which are currently used to treat industrial wastes containing As. These have been assessed for their appropriateness for treating As containing water treatment wastes. Portland cement/lime mixes are expected (at least in part) to be appropriate for wastes from sorptive filters, but may not be appropriate for precipitative sludges, because ferric flocs often used to sorb As can retard cement hydration. Brine resulting from the regeneration of activated alumina filters is likely to accelerate cement hydration. Portland cement can immobilise soluble arsenites and has been successfully used to stabilise As-rich sludges and it may also be suitable for treating sludges generated from precipitative removal units. Oxidation of As(III) to As(V) and the formation of calcium-arsenic compounds are important immobilisation mechanisms for As in cements. Geopolymers are alternative binder systems that are effective for treating wastes rich in alumina and metal hydroxides and may have potential for As wastes generated using activated alumina. The long-term stability of cemented, arsenic-bearing wastes is however uncertain, as like many cements, they are susceptible to carbonation effects which may result in the subsequent re-release of As.

  10. Can Homeopathic Arsenic Remedy Combat Arsenic Poisoning in Humans Exposed to Groundwater Arsenic Contamination?: A Preliminary Report on First Human Trial

    Directory of Open Access Journals (Sweden)

    Anisur Rahman Khuda-Bukhsh

    2005-01-01

    Full Text Available Groundwater arsenic (As has affected millions of people globally distributed over 20 countries. In parts of West Bengal (India and Bangladesh alone, over 100 million people are at risk, but supply of As-free water is grossly inadequate. Attempts to remove As by using orthodox medicines have mostly been unsuccessful. A potentized homeopathic remedy, Arsenicum Album-30, was administered to a group of As affected people and thereafter the As contents in their urine and blood were periodically determined. The activities of various toxicity marker enzymes and compounds in the blood, namely aspartate amino transferase, alanine amino transferase, acid phosphatase, alkaline phosphatase, lipid peroxidation and reduced glutathione, were also periodically monitored up to 3 months. The results are highly encouraging and suggest that the drug can alleviate As poisoning in humans.

  11. Arsenic speciation by liquid chromatography coupled with ionspray tandem mass spectrometry

    DEFF Research Database (Denmark)

    Corr, J. J.; Larsen, Erik Huusfeldt

    1996-01-01

    Ionspray mass spectrometry, a well established organic analysis technique, has been coupled to high-performance liquid chromatography for speciation of organic arsenic compounds, The ionspray source and differentially pumped interface of the mass spectrometer were operated in dual modes for...... fragmentation patterns showing molecular dissociation through an expected common product ion were obtained for the four arsenosugars, Molecular mode detection was utilized for qualitative verification of speciation analysis by high-performance liquid chromatography coupled to inductively coupled plasma mass...

  12. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    Science.gov (United States)

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  13. Arsenic stress after the Proterozoic glaciations

    Science.gov (United States)

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  14. TELOMERASE AND CHRONIC ARSENIC EXPOSURE IN HUMANS

    Science.gov (United States)

    Arsenic exposure has been associated with increased risk of skin, lung and bladder cancer in humans. The mechanisms of carcinogenesis are not well understood. Telomerase, a ribonucleoprotein containing human telomerase reverse transcriptase (hTERT), can extend telomeres of eukary...

  15. Toxicokinetics and Pharmacokinetic Modeling of Arsenic

    Science.gov (United States)

    This chapter provides an overview of arsenic toxicokinetics and physiologically-basedpharmacokinetic (PBPK) modeling with particular emphasis on key 'actors needed fordevelopment of a model useful for dose-response analysis, applications of arsenicmodels, as well research needs.U...

  16. ARSENIC REMOVAL BY SOFTENING AND COAGULATION

    Science.gov (United States)

    Drinking water regulations for arsenic (As) and disinfection by-product precursor materials (measured as TOC) are becoming increasingly stringent. Among the modifications to conventional treatment that can improve removal of As and TOC, precipitative softening and coagulation are...

  17. Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan

    International Nuclear Information System (INIS)

    The metalloid arsenic and the chlorinated insecticide endosulfan are common environmental contaminants. Humans, animals, and birds are exposed to these chemicals through water and food. Although health effects due to either arsenic or endosulfan exposure are documented, the toxicological impact of co-exposure to these environmental pollutants is unpredictable and unknown. The present study was undertaken to assess whether concurrent exposure to arsenic and endosulfan induces significant alterations in immunological functions. Day-old chicks were exposed to 3.7 ppm of arsenic via drinking water and to 30 ppm of endosulfan-mixed feed either individually or concurrently for up to 60 days. All the chicks were vaccinated with Ranikhet disease virus (F-strain; RD-F) on days 1 and 30. During the course of study and at term, parameters of cellular and humoral immunity were determined. None of the treatments altered the absolute body weight or body weight gain, except arsenic significantly reduced weight gain on day 60. Absolute, but not the relative, weights of spleen, thymus and bursa of Fabricius were significantly reduced in all the treatment groups. The metalloid and insecticide combination significantly depressed the ability of peripheral blood and splenic lymphocytes to proliferate in response to antigen RD-F and mitogen Con A. The delayed type hypersensitivity response to 2,4-dinitro-1-chlorobenzene or to PHA-P was also significantly decreased. Nitric oxide production by RD-F or lipopolysaccharide-stimulated peripheral blood and splenic mononuclear cells was significantly suppressed following concurrent exposure to arsenic and endosulfan. Furthermore, the combined exposure also decreased the antibody response to RD-F. The suppression of cellular and humoral immune responses was also evident following administration of individual compounds, and it was not exacerbated following concurrent exposure. To our knowledge, this is the first report describing the suppression

  18. Speciation of arsenic in water samples

    International Nuclear Information System (INIS)

    Two methods are presented in this report for the determination of inorganic species of arsenic. For both methods, the parameters influencing the separations have been investigated using radiotracers. Following optimization of the methods; the applicability was tested by determining As(III) and As(V) in real water samples. The detection limit of these arsenic species in both fresh and sea water was about 0.02 μg/L. (author). 2 refs, 3 figs, 3 tabs

  19. Arsenic Induced Decreases in the Vascular Matrix

    OpenAIRE

    Hays, Allison M.; Lantz, R. Clark; Rodgers, Laurel S.; Sollome, James J.; Vaillancourt, Richard R.; Andrew, Angeline S; Hamilton, Joshua W.; Camenisch, Todd D.

    2008-01-01

    Chronic ingestion of arsenic is associated with increased incidence of respiratory and cardiovascular diseases. To investigate the role of arsenic in early events in vascular pathology, C57BL/6 mice ingested drinking water with or without 50 ppb sodium arsenite (AsIII) for four, five or eight weeks. At five and eight weeks, RNA from the lungs of control and AsIII exposed animals was processed for microarray. Sixty-five genes were significantly and differentially expressed. Differential expres...

  20. Arsenic biotransformation and volatilization in transgenic rice

    OpenAIRE

    Meng, Xiang-yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P.; Zhu, Yong-Guan

    2011-01-01

    Biotransformation of arsenic includes oxidation, reduction, methylation and conversion to more complex organic arsenicals. Members of the class of arsenite [As(III)] S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di- and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants.Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica r...

  1. Arsenic: Not So Evil After All?

    Science.gov (United States)

    Lykknes, Annette; Kvittingen, Lise

    2003-05-01

    This article presents parts of the history of the element arsenic in order to illustrate processes behind development of knowledge in chemistry. The particular aspects presented here are the use of arsenic as a stimulant by Styrian peasants, in Fowler's solution, in drugs of the 19th century (e.g., salvarsan), and in current medical treatment, all of which challenge the myth of this element as exclusively poisonous.

  2. Arsenic accumulation in some higher fungi

    OpenAIRE

    Stijve, T.; Vellinga, Else C.; Herrmann, A.

    1990-01-01

    The high arsenic concentrations reported in literature for Laccaria amethystina were amply confirmed. In addition, it was demonstrated that Laccaria fraterna also accumulates the element, whereas in other species of Laccaria the phenomenon was far less outspoken. Few other basidiomycetes proved to have an affinity for the toxic element. The arsenic concentrations in the principal edible mushrooms of commerce were found to be very low, i.e. on the average 0.5 mg/kg on dry matter. Among the asc...

  3. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. PMID:21435676

  4. Earthworms produce phytochelatins in response to arsenic.

    Directory of Open Access Journals (Sweden)

    Manuel Liebeke

    Full Text Available Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  5. Arsenic, reactive oxygen, and endothelial dysfunction.

    Science.gov (United States)

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health. PMID:25788710

  6. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    Science.gov (United States)

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks. PMID:26776948

  7. Development and application of liquid and gas-chromatographic speciation techniques with element specific (ICP-MS) detection to the study of anaerobic arsenic metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Wickenheiser, E.B.; Drescher, C.; Hirner, A.V. [Institute for Environmental and Analytical Chemistry, University of Essen (Germany); Michalke, K.; Hensel, R. [Institute for Microbiology, University of Essen (Germany)

    1998-11-01

    Following the observation of volatile hydride and methylated arsenic species in the gases released from sewage treatment facilities and municipal landfills, we have developed a method for investigating the production of such gases by an anaerobic organism. Here we report the application of high performance ion chromatography (HPIC), hydride generation gas chromatography (HG-GC), and purge and trap gas chromatography (PT-GC), coupled with inductively-coupled plasma mass spectrometry (ICP-MS) to study the formation of ionic and volatile arsenic compounds produced in a batch culture of the anaerobic methanogen Methanobacterium formicicum. In this time course experiment we observed arsenite, mono- and dimethylated arsenic acid, arsine, mono-, di- and trimethylarsine, as well as a currently unknown volatile arsenic species. (orig.) With 5 figs., 2 tabs., 14 refs.

  8. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    Science.gov (United States)

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this...

  9. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    International Nuclear Information System (INIS)

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive 73As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of 73As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H2O2 into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo

  10. DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMASIII AND DMASIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC

    Science.gov (United States)

    DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMAsIII and DMAsIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC. L. M. Del Razo1, M. Styblo2, W. R. Cullen3, and D.J. Thomas4. 1Toxicology Section, Cinvestav-IPN, Mexico, D.F., 2Univ. North Carolina, Chapel Hill, NC; 3Uni...

  11. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic

    International Nuclear Information System (INIS)

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic. - Highlights: ► Arsenic speciation was extracted using 1% HNO3 in microwave. ► Inorganic arsenic was the predominant species in all of CHMs samples. ► The highest concentration of inorganic arsenic was found in the Chrysanthemum. - Inorganic arsenic was the predominant species in all of CHMs samples.

  12. Composition and stability of a molybdenum-arsenic complex in aqueous-organic media

    Energy Technology Data Exchange (ETDEWEB)

    Kolli, N.Ya.; Morosanova, S.A.; Torshina, N.L.

    1986-11-01

    The process of complexation in the arsenic(V)-molybdenum(VI)-H/sub 3/O/sup +/-organic-solvent system has been studied. The results obtained by the mole ratio method, the method of modified isomolar series, and Bjerrum's method make it possible to assert that a molybdenum-arsenic complex of the 12 series forms in water-ethanol, water-dimethylformamide, and water-acetone media and that its apparent stability constants are higher than in an aqueous solution, being equal to 5.8 x 10/sup 6/, 3.9 x 10/sup 6/, and 2.5 x 10/sup 6/, respectively. The increase in the intensity of the absorption of the molybdenum-arsenic complex formed in the UV region and the decrease in the excess concentration of molybdate ions are attributed to the stabilization of the structure of the aqueous-organic solution formed. The 2,4,6-trimethylpyridinium molybdoarsenate has been isolated in its solid form. The fit between the IR spectrum of the compound obtained and the spectrum of sodium 12-molybdoarsenate described in the literature confirms the presence of a molybdenum-arsenic complex of the 12 series in aqueous-organic media studies.

  13. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    Science.gov (United States)

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures. PMID:26580737

  14. A case-control study of GST polymorphisms and arsenic related skin lesions

    Directory of Open Access Journals (Sweden)

    Mahiuddin Golam

    2007-02-01

    Full Text Available Abstract Background Polymorphisms in GSTT1, GSTM1 and GSTP1 impact detoxification of carcinogens by GSTs and have been reported to increase susceptibility to environmentally related health outcomes. Individual factors in arsenic biotransformation may influence disease susceptibility. GST activity is involved in the metabolism of endogenous and exogenous compounds, including catalyzing the formation of arsenic-GSH conjugates. Methods We investigated whether polymorphisms in GSTT1, GSTP1 and GSTM1 were associated with risk of skin lesions and whether these polymorphisms modify the relationship between drinking water arsenic exposure and skin lesions in a case control study of 1200 subjects frequency matched on age and gender in community clinics in Pabna, Bangladesh in 2001–2002. Results and discussion GSTT1 homozygous wildtype status was associated with increased odds of skin lesions compared to the null status (OR1.56 95% CI 1.10–2.19. The GSTP1 GG polymorphism was associated with greater odds of skin lesions compared to GSTP1 AA, (OR 1.86 (95%CI 1.15–3.00. No evidence of effect modification by GSTT1, GSTM1 or GSTP1 polymorphisms on the association between arsenic exposure and skin lesions was detected. Conclusion GSTT1 wildtype and GSTP1 GG are associated with increased risk of skin lesions.

  15. Natural arsenic contaminated diets perturb reproduction in fish.

    Science.gov (United States)

    Boyle, David; Brix, Kevin V; Amlund, Heidi; Lundebye, Anne-Katrine; Hogstrand, Christer; Bury, Nic R

    2008-07-15

    The toxicological effect of natural diets elevated in metals on reproduction in fish is poorly understood. The reproductive output of zebrafish fed the polychaete Nereis diversicolor collected from a metal-impacted estuary, Restronguet Creek, Cornwall, UK, was compared to fish fed N. diversicolor collected from a nonmetal impacted estuary, Blackwater, Essex, UK. Fish fed the metal laden N. diversicolorfor 68 days showed reduced reproductive output, characterized by reduced cumulative egg production (47%), cumulative number of spawns (30%), as well as reduced average number of eggs produced per spawn and % hatch rate. The mRNA transcript levels of the egg-yolk protein vitellogenin was also reduced 1.5 fold in the livers of female fish fed metal-laden N. diversicolor. No difference was seen between the lipid, protein, or moisture content of the two diets and no difference in growth was seen between the two fish populations. The Restronguet Creek polychaetes have elevated arsenic, cadmium, copper, zinc, lead, and silver body burdens, but the only element found to accumulate in the tissues of zebrafish fed this diet was As. The As in these N. diversicolor was found to be predominantly potentially toxic inorganic As species, 58% of total As content, which is unusual for aquatic organisms where arsenic is typically biotransformed into less toxic organoarsenical compounds. These results demonstrate that reproduction in fish is a sensitive target of exposure to a natural diet contaminated with As and this exposure route could be of significance to the health of fish populations. PMID:18754393

  16. Soil arsenic in Armadale, Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.H.; Lloyd, O.L.; Hubbard, F.H.

    1986-03-01

    As part of an investigation into the high mortality from lung cancer and the high sex ratios of births in Armadale, central Scotland, concentrations of arsenic were measured in soil cores from 48 sites in Armadale and 6 sites in a comparison town. Concentrations in Armadale were substantially higher than those in the comparison town, and many of the highest range of values were in that part of the town where the epidemiological abnormalities of lung cancer and of birth sex ratios were most pronounced. The study indicated that clues to the etiology of high rates of disease in small areas could be sought most profitably if close links were maintained between epidemiological and environmental investigations.

  17. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China

    International Nuclear Information System (INIS)

    With the aim of better understanding the distribution of arsenic, 144 coal samples were collected from southwestern Guizhou, and the concentrations of arsenic were determined by atomic fluorescence spectrometry (AFS) and inductively coupled plasma mass spectrometry (ICP-MS). The content of arsenic varies from 0.3 ppm to 3.2 wt.%. In most coal samples, the arsenic content was lower than 30 ppm, which was close to a representative value of arsenic concentration of coal in China. Arsenic contents in 37 samples, which were from several small coal mines, were more than 30 ppm, among which only 16 samples were more than 100 ppm, and only a few samples contained more than 1000 ppm, which were very restricted and the coal seams were generally unworkable. Combustion of two kinds of high arsenic coal with and without CaO additive was studied in a bench scale drop tube furnace (DTF) to understand the partition and emission of arsenic in the process. The PM was size segregated by low pressure impactor (LPI) into 13 size stages ranging from 9.8 to 0.0281 μm. X-ray fluorescence spectrometry (XRF) was used to determine the chemical composition of the PM, and inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the arsenic content. A bimodal mode distribution of the PM was formed during coal combustion; the large mode (coarse particle) was formed at 4.0 μm, and the other mode (fine particles) was at about 0.1 μm. A middle mode was gradually obvious in high temperature for both of the two coal combustions, which may have been derived from coagulation and agglomeration of metal elements vapors. More gaseous arsenic was formed in 50% oxygen content than 20% oxygen content. Arsenic in sulfide is easier to vaporize than as arsenate. Along with the increasing temperature from 1100 oC to 1400 oC, the arsenic concentration in PM1 increased from 0.07 mg/N m3 to 0.25 mg/N m3. With the addition of the calcium based sorbent, the arsenic concentration in

  18. Improvement of bioreporter bacteria-based test systems for the analysis of arsenic in drinking water and the rhizosphere

    International Nuclear Information System (INIS)

    Contamination of drinking water with arsenic can be measured in laboratories with atom absorption spectrometry (AAS), mass spectrometry with inductive coupled plasma (ICP-MS) or atom fluorescence spectrometry (AFS) at the relevant concentrations below 50 μg/L. Field test kits which easily and reliably measure arsenic concentrations are not yet available. Test systems on the basis of bioreporter bacteria offer an alternative. Based on the natural resistance mechanism of bacteria against arsenic compounds toxic for humans, bioreporter bacteria can be constructed that display arsenic concentrations with light emission (luminescence or fluorescence) or colour reactions. This is achieved by coupling the gene for the ArsR-protein and arsenic regulated promoters with suitable reporter genes. The resulting bioreporter bacteria report bioavailable arsenic in a dose dependent manner at the toxicologically relevant level of 2 to 80 μg/L and are therewith suitable both for the guideline levels of the WHO of 10 μg/L and for the national standards in South East Asia of 50 μg/L. This alternative method has the advantage of being independent from sophisticated apparatus as by eye detection is feasible and offers the possibility of measuring directly the bioavailable fraction. Bioreporter bacteria are also suitable for in situ research. Yet, in order to apply such bioreporter bacteria as a low-cost analytical tool in a regular manner, open questions exist regarding the preservation of the specific activity, the vitality of bioreporter bacteria and the improvement of bioreporter test systems for layman. The aim of this thesis hence was to optimize and improve bioreporter based test systems to allow easy conservation, storage and transport, and also an application without the need of a sophisticated infrastructure. For that purpose it was intended (i) to develop and validate a method that allows arsenic detection without external calibration (chapter 2) and (ii) to improve the

  19. Improvement of bioreporter bacteria-based test systems for the analysis of arsenic in drinking water and the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kuppardt, Anke

    2010-02-05

    Contamination of drinking water with arsenic can be measured in laboratories with atom absorption spectrometry (AAS), mass spectrometry with inductive coupled plasma (ICP-MS) or atom fluorescence spectrometry (AFS) at the relevant concentrations below 50 {mu}g/L. Field test kits which easily and reliably measure arsenic concentrations are not yet available. Test systems on the basis of bioreporter bacteria offer an alternative. Based on the natural resistance mechanism of bacteria against arsenic compounds toxic for humans, bioreporter bacteria can be constructed that display arsenic concentrations with light emission (luminescence or fluorescence) or colour reactions. This is achieved by coupling the gene for the ArsR-protein and arsenic regulated promoters with suitable reporter genes. The resulting bioreporter bacteria report bioavailable arsenic in a dose dependent manner at the toxicologically relevant level of 2 to 80 {mu}g/L and are therewith suitable both for the guideline levels of the WHO of 10 {mu}g/L and for the national standards in South East Asia of 50 {mu}g/L. This alternative method has the advantage of being independent from sophisticated apparatus as by eye detection is feasible and offers the possibility of measuring directly the bioavailable fraction. Bioreporter bacteria are also suitable for in situ research. Yet, in order to apply such bioreporter bacteria as a low-cost analytical tool in a regular manner, open questions exist regarding the preservation of the specific activity, the vitality of bioreporter bacteria and the improvement of bioreporter test systems for layman. The aim of this thesis hence was to optimize and improve bioreporter based test systems to allow easy conservation, storage and transport, and also an application without the need of a sophisticated infrastructure. For that purpose it was intended (i) to develop and validate a method that allows arsenic detection without external calibration (chapter 2) and (ii) to

  20. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    Science.gov (United States)

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L. Comparison of arsenic concentrations in Pennsylvania groundwater by physiographic province indicates that the Central Lowland physiographic province had the highest median arsenic concentration (4.5 µg/L) and the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L (59 percent) and greater than or equal to 10.0 µg/L (43 percent). Evaluation of four major aquifer types (carbonate, crystalline, siliciclastic, and surficial) in Pennsylvania showed that all types had median arsenic concentrations less than 4.0 µg/L, and the highest arsenic concentration (490.0 µg/L) was in a siliciclastic aquifer. The siliciclastic and surficial aquifers had the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L and 10.0 µg/L. Elevated arsenic concentrations were associated with low pH (less than or equal to 4.0), high pH (greater than or equal to 8.0), or reducing conditions. For waters classified as anoxic (405 samples), 20 percent of sampled wells contained water with elevated concentrations of arsenic; for waters classified as oxic (1,530 samples) only 10 percent of sampled wells contained water with elevated arsenic concentrations. Nevertheless, regardless of the reduction

  1. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    Directory of Open Access Journals (Sweden)

    Fabrizio Bianchi

    2013-04-01

    Full Text Available The arsenic (As exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects.

  2. Uptake of Arsenic in Rice Plant Varieties Cultivated with Arsenic Rich Groundwater

    Directory of Open Access Journals (Sweden)

    Piyal Bhattacharya

    2010-07-01

    Full Text Available Groundwater of many areas of West Bengal, India is severely contaminated with arsenic. The paddy soil gets con¬taminated from the groundwater and thus there is a probability of bioaccumulation of arsenic in rice plants cultivated with arsenic contaminated groundwater and soil. This study aims at assessing the level of arsenic in irrigation water and soil and to investigate the seasonal bioaccumulation of arsenic in the various parts (straw, husk and grain of the rice plant of differ¬ent varieties in the arsenic affected two blocks (Chakdaha and Ranaghat-I of Nadia district, West Bengal. It was found that the arsenic uptake in rice during the pre-monsoon season is more than that of the post-monsoon season. The accumulation of arsenic found to vary with different rice varieties; the maximum accumulation was in White minikit (0.31±0.005 mg/kg and IR 50 (0.29±0.001 mg/kg rice varieties and minimum was found to be in the Jaya rice variety (0.14±0.002 mg/kg. In rice plant maximum arsenic accumulation occurred in the straw part (0.89±0.019-1.65±0.021 mg/kg compared to the ac¬cumulation in husk (0.31±0.011-0.85±0.016 mg/kg and grain (0.14±0.002-0.31±0.005 mg/kg parts. For any rice sample concentration of arsenic in the grain did not exceed the WHO recommended permissible limit in rice (1.0 mg/kg.

  3. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Science.gov (United States)

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  4. Arsenic uptake by Lemna minor in hydroponic system.

    Science.gov (United States)

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration. PMID:24933913

  5. Arsenic and the Epigenome: Linked by Methylation(SOT)

    Science.gov (United States)

    Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically-exposed individuals are susceptible to arsenic poisoning, or arsenicosis. In some exposed populations arsenicosis susceptibility is dependent in part on the abil...

  6. Map of Arsenic concentrations in groundwater of the United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map graphic image at http://water.usgs.gov/GIS/browse/arsenic_map.png illustrates arsenic values, in micrograms per liter, for groundwater samples from about...

  7. Arsenic

    Science.gov (United States)

    ... may also expose normal cells in a lab dish to the substance to see if it causes ... www.cancer.org . Known and Probable Human Carcinogens National organizations and websites Along with the American Cancer ...

  8. Accumulation and transport mechanisms of arsenic in rice

    OpenAIRE

    Islam, Md. Rafiqul; Kamiya, Takehiro; Uraguchi, Shimpei; Fujiwara, Toru

    2009-01-01

    Both species of arsenic (As), arsenate and arsenite are highly toxic to plants. Arsenic contamination is a major problem in Southeast Asia particularly in Bangladesh and West Bengal. In these countries, As-contaminated groundwater is widely used for irrigating rice in dry season that results in elevated As accumulation in soils and in rice grain and straw. So it is important for understanding the accumulation and transport mechanisms of arsenic in rice. We monitored increased arsenic content ...

  9. Environmental arsenic exposure and serum matrix metalloproteinase-9

    OpenAIRE

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B

    2012-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was anal...

  10. Effect of drinking arsenic-contaminated water in children

    OpenAIRE

    Majumdar, Kunal K.; Guha Mazumder, D.N.

    2012-01-01

    Chronic arsenic toxicity due to drinking of arsenic-contaminated water has been a major environmental health hazard throughout the world including India. Although a lot of information is available on health effects due to chronic arsenic toxicity in adults, knowledge of such effect on children is scanty. A review of the available literature has been made to highlight the problem in children. Scientific publications on health effects of chronic arsenic toxicity in children with special referen...

  11. Arsenic removal in drinking water by reverse osmosis

    OpenAIRE

    Ahmad, Md. Fayej

    2012-01-01

    Arsenic is widely distributed in nature in the air, water and soil. Acute and chronic arsenic exposure by drinking water has been reported in many countries, especially Argentina, Bangladesh, India, Mexico, Mongolia, Thailand and Taiwan. There are many techniques used to remove arsenic from drinking water. Among them reverse osmosis is widely used. Therefore the purpose of this study is to find the conditions favorable for removal of arsenic from drinking water by using reverse osmosis ...

  12. Gut Microbiome Phenotypes Driven by Host Genetics Affect Arsenic Metabolism

    OpenAIRE

    Lu, Kun; Mahbub, Ridwan; Cable, Peter Hans; Ru, Hongyu; Parry, Nicola M. A.; Bodnar, Wanda M.; Wishnok, John S.; Styblo, Miroslav; Swenberg, James A.; Fox, James G; Tannenbaum, Steven R.

    2014-01-01

    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect th...

  13. Removal of arsenic and COD from industrial wastewaters by electrocoagulation

    OpenAIRE

    H. POIROT; Michon, C.; O. POTIE; S. ZOD; Valentin, G.; Leclerc, J.P.; F. LAPICQU

    2011-01-01

    The paper deals with the treatment of arsenic-containing industrial wastewaters by electrocoagulation. The waste issued from a paper mill industry downstream of the biological treatment by activated sludge was enriched with arsenic salts for the purpose of investigation of the treatment of mixed pollution. First, the treatment of single polluted waters, i.e. containing either the regular organic charge from the industrial waste or arsenic salts only, was studied. In the case of arsenic-contai...

  14. Arsenic on the Hands of Children after Playing in Playgrounds

    OpenAIRE

    Kwon, Elena; Zhang, Hongquan; Wang, Zhongwen; Jhangri, Gian S; Lu, Xiufen; Fok, Nelson; Gabos, Stephan; Li, Xing-Fang; Le, X. Chris

    2004-01-01

    Increasing concerns over the use of wood treated with chromated copper arsenate (CCA) in playground structures arise from potential exposure to arsenic of children playing in these playgrounds. Limited data from previous studies analyzing arsenic levels in sand samples collected from CCA playgrounds are inconsistent and cannot be directly translated to the amount of children’s exposure to arsenic. The objective of this study was to determine the quantitative amounts of arsenic on the hands of...

  15. Arsenic-related Bowen's disease, palmar keratosis, and skin cancer.

    OpenAIRE

    Cöl, M; Cöl, C; Soran, A; Sayli, B S; Oztürk, S

    1999-01-01

    Chronic arsenical intoxication can still be found in environmental and industrial settings. Symptoms of chronic arsenic intoxication include general pigmentation or focal "raindrop" pigmentation of the skin and the appearance of hyperkeratosis of the palms of the hands and soles of the feet. In addition to arsenic-related skin diseases including keratosis, Bowen's disease, basal-cell-carcinoma, and squamous-cell carcinoma, there is also an increased risk of some internal malignancies. Arsenic...

  16. Residues of lead, cadmium, and arsenic in livers of Mexican free-tailed bats

    Energy Technology Data Exchange (ETDEWEB)

    Thies, M.; Gregory, D. (Oklahoma State Univ., Stillwater (United States))

    1994-05-01

    Since 1936, the size of the summer population of Mexican free-tailed bats, Tadarida brasiliensisat Carlsbad Caverns, New Mexico, declined from an estimated 8.7 million to 700,000 in 1991. This decline has been attributed primarily to human disturbance and the heavy agricultural use of organochlorine pesticides. Members of this species forage extensively over heavily agricultural areas, feeding on insects potentially contaminated with high levels of insecticides and trace metals. However, contamination from elements such as lead, cadmium, and arsenic have not been examined. The accumulation of these elements in wild vertebrates is often a primary reflection of contamination of the food supply. The presence of elemental contaminants in body tissues of bats is poorly documented. The objectives of this study were to examine and compare lead, cadmium, and arsenic contamination in livers of adult T. Brasiliensis from Carlsbad Caverns and Vickery Cave, a maternity colony in northwestern Oklahoma. Lead, cadmium, and arsenic were specifically selected because of their documented toxic and/or reproductive effects and their potential availability to this species. Large quantities of tetraethyl lead have been released into the environment and other lead compounds continue to be released by industrial manufacturing and petroleum refinement processes. Cadmium is used in a number of industrial processes such as metal plating and fabrication of alloys and is released from phosphate fertilizers and combusted coals. Teratogenicity appears to be greater for cadmium than for other elements. Arsenical compounds have been commonly used as herbicides and defoliants. These compounds have been demonstrated to cause abnormal embryonic development, degenerative tissue changes, cancer, chromosomal damage, and death in domestic animals.

  17. Comparative investigations of sodium arsenite, arsenic trioxide and cadmium sulphate in combination with gamma-radiation on apoptosis, micronuclei induction and DNA damage in a human lymphoblastoid cell line

    International Nuclear Information System (INIS)

    In the field of radiation protection the combined exposure to radiation and other toxic agents is recognised as an important research area. To elucidate the basic mechanisms of simultaneous exposure, the interaction of the carcinogens and environmental toxicants cadmium and two arsenic compounds, arsenite and arsenic trioxide, in combination with gamma-radiation in human lymphoblastoid cells (TK6) were investigated. Gamma-radiation induced significant genotoxic effects such as micronuclei formation, DNA damage and apoptosis, whereas arsenic and cadmium had no significant effect on these indicators of cellular damage at non-toxic concentrations. However, in combination with gamma-radiation arsenic trioxide induced a more than additive apoptotic rate compared to the sum of the single effects. Here, the level of apoptotic cells was increased, in a dose-dependent way, up to two-fold compared to the irradiated control cells. Arsenite did not induce a significant additive effect at any of the concentrations or radiation doses tested. On the other hand, arsenic trioxide was less effective than arsenite in the induction of DNA protein cross-links. These data indicate that the two arsenic compounds interact through different pathways in the cell. Cadmium sulphate, like arsenite, had no significant effect on apoptosis in combination with gamma-radiation at low concentrations and, at high concentrations, even reduced the radiation-induced apoptosis. An additive effect on micronuclei induction was observed with 1 μM cadmium sulphate with an increase of up to 80% compared to the irradiated control cells. Toxic concentrations of cadmium and arsenic trioxide seemed to reduce micronuclei induction. The results presented here indicate that relatively low concentrations of arsenic and cadmium, close to those occurring in nature, may interfere with radiation effects. Differences in action of the two arsenic compounds were identified

  18. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  19. Arsenic management through well modification and simulation.

    Science.gov (United States)

    Halford, Keith J; Stamos, Christina L; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 microg/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 microg/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulic-conductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 microg/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 microg/L over a 20-year period. PMID:20113363

  20. Arsenic management through well modification and simulation

    Science.gov (United States)

    Halford, Keith J.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 (mu or u)g/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 (mu or u)g/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulicconductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 (mu or u)g/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 (mu or u)g/L over a 20-year period.

  1. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Herreweghe, Samuel van; Swennen, Rudy; Vandecasteele, Carlo; Cappuyns, Valerie

    2003-04-01

    Leaching experiments, a mineralogical survey and larger samples are preferred when arsenic is present as discrete mineral phases. - Availability, mobility, (phyto)toxicity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The three-step sequential extraction scheme recommended by the BCR and two extraction schemes based on the phosphorus-like protocol proposed by Manful (1992, Occurrence and Ecochemical Behaviours of Arsenic in a Goldsmelter Impacted Area in Ghana, PhD dissertation, at the RUG) were applied to four standard reference materials (SRM) and to a batch of samples from industrially contaminated sites, heavily contaminated with arsenic and heavy metals. The SRM 2710 (Montana soil) was found to be the most useful reference material for metal (Mn, Cu, Zn, As, Cd and Pb) fractionation using the BCR sequential extraction procedure. Two sequential extraction schemes were developed and compared for arsenic with the aim to establish a better fractionation and recovery rate than the BCR-scheme for this element in the SRM samples. The major part of arsenic was released from the heavily contaminated samples after NaOH-extraction. Inferior extraction variability and recovery in the heavily contaminated samples compared to SRMs could be mainly contributed to subsample heterogeneity.

  2. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples

    International Nuclear Information System (INIS)

    Leaching experiments, a mineralogical survey and larger samples are preferred when arsenic is present as discrete mineral phases. - Availability, mobility, (phyto)toxicity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The three-step sequential extraction scheme recommended by the BCR and two extraction schemes based on the phosphorus-like protocol proposed by Manful (1992, Occurrence and Ecochemical Behaviours of Arsenic in a Goldsmelter Impacted Area in Ghana, PhD dissertation, at the RUG) were applied to four standard reference materials (SRM) and to a batch of samples from industrially contaminated sites, heavily contaminated with arsenic and heavy metals. The SRM 2710 (Montana soil) was found to be the most useful reference material for metal (Mn, Cu, Zn, As, Cd and Pb) fractionation using the BCR sequential extraction procedure. Two sequential extraction schemes were developed and compared for arsenic with the aim to establish a better fractionation and recovery rate than the BCR-scheme for this element in the SRM samples. The major part of arsenic was released from the heavily contaminated samples after NaOH-extraction. Inferior extraction variability and recovery in the heavily contaminated samples compared to SRMs could be mainly contributed to subsample heterogeneity

  3. Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal.

    Science.gov (United States)

    Shakya, S; Pradhan, B; Smith, L; Shrestha, J; Tuladhar, S

    2012-03-01

    Arsenic (As) contamination of groundwater is a serious Environmental Health Management issue of drinking water sources especially in Terai region of Nepal. Many studies have reported that due to natural abundance of arsenic in the environment, various bacteria have developed different resistance mechanisms for arsenic compound. In this study, the culturable arsenic-resistant bacteria indigenous to surfacewater as well as groundwater from Rautahat District of Nepal were randomly isolated by standard plate count method on the basis of viable growth on plate count agar amended with arsenate ranging from 0, 0.5, 10, 40, 80 to 160 milligram per liter (mg/l). With respect to the morphological and biochemical tests, nine morphologically distinct potent arsenate tolerant bacteria showed relatedness with Micrococcus varians, Micrococcus roseus, Micrococcus luteus, Pseudomonas maltophilia, Pseudomonas sp., Vibrio parahaemolyticus, Bacillus cereus, Bacillus smithii 1 and Bacillus smithii 2. The isolates were capable of tolerating more than 1000 mg/l of arsenate and 749 mg/l of arsenite. Likewise, bioaccumulation capability was highest with M. roseus (85.61%) and the least with B. smithii (47.88%) indicating the potential of the organisms in arsenic resistance and most probably in bioremediation. PMID:21868146

  4. TRACE ANALYSIS OF ARSENIC BY COLORIMETRY, ATOMIC ABSORPTION, AND POLAROGRAPHY

    Science.gov (United States)

    A differential pulse polarographic method was developed for determining total arsenic concentrations in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and isolation of arsenic by solvent extraction, the peak current for arsenic is ...

  5. Population Based Exposure Assessment of Bioaccessible Arsenic in Carrots

    Science.gov (United States)

    The two predominant arsenic exposure routes are food and water. Estimating the risk from dietary exposures is complicated, owing to the chemical form dependent toxicity of arsenic and the diversity of arsenicals present in dietary matrices. Two aspects of assessing dietary expo...

  6. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    OpenAIRE

    Madhurima Pandey; Sushma Yadav; Piyush Kant Pandey

    2007-01-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically ...

  7. Arsenic speciation in solids using X-ray absorption spectroscopy

    Science.gov (United States)

    Foster, Andrea L.; Kim, Chris S.

    2014-01-01

    Synchrotron-based X-ray absorption spectroscopy (XAS) is an in situ, minimally-destructive, element-specific, molecular-scale structural probe that has been employed to study the chemical forms (species) of arsenic (As) in solid and aqueous phases (including rocks, soils, sediment, synthetic compounds, and numerous types of biota including humans) for more than 20 years. Although several excellent reviews of As geochemistry and As speciation in the environment have been published previously (including recent contributions in this volume), the explosion of As-XAS studies over the past decade (especially studies employing microfocused X-ray beams) warrants this new review of the literature and of data analysis methods.

  8. Characterization of electrocoagulation for removal of chromium and arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Parga, J.R.; Valverde, V. [Institute of Technology of Saltillo, Dept. of Metallurgy and Materials Science, V. Carranza 2400, Saltillo Coah., C.P. 25280 (Mexico); Cocke, D.L.; Gomes, J.A.G.; Kesmez, M.; Moreno, H. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Weir, M.; Mencer, D. [Wilkes University, Dept. of Chemistry, Wilkes-Barre, PA 18766 (United States)

    2005-05-01

    Protection of the global environment and, in particular, providing a sustainable source of clean water is a necessity for human survival. The wide use of heavy metals by modern industries has generated by-products containing heavy metals. Specifically, large quantities of chromium and arsenic containing compounds are being discharged into the environment. This study has been conducted to determine the feasibility of an electrocoagulation (EC) process using air injection to remove these inorganic elements with iron electrodes. Powder X-ray diffraction, scanning electron microscopy, and transmission Moessbauer spectroscopy were used to characterize the solid products formed at iron electrodes during EC. The results of this study suggest that magnetite particles and amorphous iron oxyhydroxides are present in the examined EC products. The field pilot-scale study demonstrated the removal of Cr(VI)/Cr(III) and As(III)/As(V) with an efficiency of more than 99 % from both wastewater and wells. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  9. Well Water Arsenic Exposure, Arsenic Induced Skin-Lesions and Self-Reported Morbidity in Inner Mongolia

    OpenAIRE

    Yajuan Xia; Wade, Timothy J; Kegong Wu; Yanhong Li; Zhixiong Ning; X Chris Le; Binfei Chen; Yong Feng; Mumford, Judy L.; Xingzhou He

    2009-01-01

    Residents of the Bayingnormen region of Inner Mongolia have been exposed to arsenic-contaminated well water for over 20 years, but relatively few studies have investigated health effects in this region. We surveyed one village to document exposure to arsenic and assess the prevalence of arsenic-associated skin lesions and self-reported morbidity. Five-percent (632) of the 12,334 residents surveyed had skin lesions characteristics of arsenic exposure. Skin lesions were strongly associated with...

  10. Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample

    OpenAIRE

    Nachman, Keeve E.; Baron, Patrick A; Raber, Georg; Francesconi, Kevin A.; Navas-Acien, Ana; Love, David C.

    2013-01-01

    Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were colle...

  11. Carbonate ions and arsenic dissolution by groundwater

    Science.gov (United States)

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  12. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Directory of Open Access Journals (Sweden)

    Cody S Sheik

    Full Text Available Extensive use of chromium (Cr and arsenic (As based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI. Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  13. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Science.gov (United States)

    Sheik, Cody S; Mitchell, Tyler W; Rizvi, Fariha Z; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J; Krumholz, Lee R

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways. PMID:22768219

  14. Comparative Distribution and Retention of Arsenic in Arsenic (+3 Oxidation State) Methyltransferase Knockout and Wild Type Mice

    Science.gov (United States)

    The mouse arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a ~ 43 kDa protein that catalyzes conversion of inorganic arsenic into methylated products. Heterologous expression of AS3MT or its silencing by RNA interference controls arsenic methylation phenotypes...

  15. Current developments in toxicological research on arsenic.

    Science.gov (United States)

    Bolt, Hermann M

    2013-01-01

    There is a plethora of recent publications on all aspects relevant to the toxicology of arsenic (As). Over centuries exposures to arsenic continue to be a major public health problem in many countries. In particular, the occurrence of high As concentrations in groundwater of Southeast Asia receives now much attention. Therefore, arsenic is a high-priority matter for toxicological research. Key exposure to As are (traditional) medicines, combustion of As-rich coal, presence of As in groundwater, and pollution due to mining activities. As-induced cardiovascular disorders and carcinogenesis present themselves as a major research focus. The high priority of this issue is now recognized politically in a number of countries, research funds have been made available. Also experimental research on toxicokinetics and toxicodynamics and on modes of toxic action is moving very rapidly. The matter is of high regulatory concern, and effective preventive measures are required in a number of countries. PMID:27092031

  16. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  17. Assessment of arsenic in Australian grown and imported rice varieties on sale in Australia and potential links with irrigation practises and soil geochemistry.

    Science.gov (United States)

    Fransisca, Yunnita; Small, Darryl M; Morrison, Paul D; Spencer, Michelle J S; Ball, Andrew S; Jones, Oliver A H

    2015-11-01

    Chronic dietary exposure to arsenic, particularly the inorganic forms (defined as elemental arsenic, predominantly As(3+) and As(5+), and all its inorganic compounds except arsine), is a matter of concern for human health. Ingestion of arsenic usually occurs via contaminated water but recent studies show there is also a risk of exposure from food, particularly Asian rice (Oryza sativa). Australia is a rice growing country, contributing around 2% of the world rice trade, and a large proportion of the population consumes rice regularly. In the present study we investigated concentrations of arsenic in both Australian grown and imported rice on sale in Australia and examined the potential links with irrigation practises and soil geochemistry. The results indicated a wide spread of arsenic levels of 0.09-0.33 mg kg(-1), with Australian grown Arborio and sushi varieties of O. sativa containing the highest mean value of ∼0.22 mg kg(-1). Arsenic levels in all samples were below the 1 mg kg(-1) limit set by Food Standards Australia New Zealand. PMID:25577696

  18. Speciation of Six-Arsenic Species of Rice in Korea by HPLC/ICPMS

    Directory of Open Access Journals (Sweden)

    Kim J.Y.

    2013-04-01

    Full Text Available Determination of arsenic (As speciation in rice is necessary because inorganic As species are more toxic than organic As. Arsenic levels of rice in Korea were determined by microwave extraction and High Performance Liquid Chromatography coupled with Inductively Coupled Plasma-Mass Spectrometry. The extraction method showed a high recovery and low Limit of Detection (LOD and Limit of Quantitation (LOQ. Most of the As species in rice were noticed to be inorganic [Arsenite (AsIII, Dimethylarsinic acid (DMA]. The percentage of inorganic As/total As is 69.01 % (36.40-87.86 %. Arsenite and DMA were the major compounds in rice in Korea when compare to U.S. rice. The order and percentage of As species showed were AsIII (56-70 %>DMA (23-38 %>AsV (5 %>MMA(1 %.

  19. Extraction of arsenic as the diethyl dithiophosphate complex with supercritical fluid and quantitation by cathodic stripping voltammetry.

    Science.gov (United States)

    Arancibia, Verónica; López, Alex; Zúñiga, M Carolina; Segura, Rodrigo

    2006-02-28

    The separation of arsenic based on in situ chelation with ammonium diethyl dithiophosphate (ADDTP) has been carried out using methanol-modified supercritical CO(2). Aliquots of extract were added to an electroanalytical cell and arsenic was determined by square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). Quantitative extractions of As(DDTP)(3) were achieved when the experiments were carried out at a pressure of 2500psi, a temperature of 90 degrees C, 2.0mL of methanol, 20.0min of static extraction and 5.0min of dynamic extraction in the presence of 18mg of ADDTP. Analysis of arsenic was made using 150mgL(-1) of Cu(II) in 1M HCl solution as supporting electrolyte in the presence of ADDTP as ligand. Preconcentration was carried out by deposition at a potential of -0.50V and the intermetallic compound Cu(x)As(y) was reduced at a potential of -0.77 to -0.82V, depending on ligand concentration. The results showed that the presence of ligand plays an important role, increasing the method's sensitivity and preventing the oxidation of As(III). The calibration graph of the As(DDTP)(3) solution was linear from 0.8 to 12.5mugL(-1) of arsenic (LOD 0.5mugL(-1), R=0.9992, t(acc)=60s). The method was validated using carrot pulp spiked with arsenic solution. This method was applied to the determination of arsenic in samples of carrots, beets and irrigation water. Arsenic in beets was: skin 4.10+/-0.18mgkg(-1); pulp 3.83+/-0.19mgkg(-1) and juice 0.71+/-0.09mgL(-1); arsenic in carrots was: skin 2.15+/-0.09mgkg(-1); pulp 0.59+/-0.11mgkg(-1) and juice 0.71+/-0.03mgL(-1). Arsenic in water were: Chiu-Chiu 0.08mgL(-1), Inacaliri 1.12mgL(-1), and Salado river 0.17+/-0.07mgL(-1). PMID:18970500

  20. Inorganic arsenic levels in baby rice are of concern

    International Nuclear Information System (INIS)

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe

  1. Inorganic arsenic levels in baby rice are of concern

    Energy Technology Data Exchange (ETDEWEB)

    Meharg, Andrew A. [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom)], E-mail: a.meharg@abdn.ac.uk; Sun, Guoxin [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Williams, Paul N. [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom); Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Adomako, Eureka; Deacon, Claire [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom); Zhu, Yong-Guan [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Feldmann, Joerg; Raab, Andrea [Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, Aberdeen AB24 3UE (United Kingdom)

    2008-04-15

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as {mu}g/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe.

  2. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Science.gov (United States)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  3. Anionic sorbents for arsenic and technetium species

    International Nuclear Information System (INIS)

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption

  4. Trivalent arsenic inhibits the functions of chaperonin complex.

    Science.gov (United States)

    Pan, Xuewen; Reissman, Stefanie; Douglas, Nick R; Huang, Zhiwei; Yuan, Daniel S; Wang, Xiaoling; McCaffery, J Michael; Frydman, Judith; Boeke, Jef D

    2010-10-01

    The exact molecular mechanisms by which the environmental pollutant arsenic works in biological systems are not completely understood. Using an unbiased chemogenomics approach in Saccharomyces cerevisiae, we found that mutants of the chaperonin complex TRiC and the functionally related prefoldin complex are all hypersensitive to arsenic compared to a wild-type strain. In contrast, mutants with impaired ribosome functions were highly arsenic resistant. These observations led us to hypothesize that arsenic might inhibit TRiC function, required for folding of actin, tubulin, and other proteins postsynthesis. Consistent with this hypothesis, we found that arsenic treatment distorted morphology of both actin and microtubule filaments. Moreover, arsenic impaired substrate folding by both bovine and archaeal TRiC complexes in vitro. These results together indicate that TRiC is a conserved target of arsenic inhibition in various biological systems. PMID:20660648

  5. Arsenic detection in water: YPO4:Eu3+ nanoparticles

    Science.gov (United States)

    Ghosh, Debasish; Luwang, Meitram Niraj

    2015-12-01

    This work reports on the novel technique of detection of arsenic in aqueous solution utilising the luminescence properties of lanthanide doped nanomaterials. Eu3+ (5%) doped YPO4nanorodswere utilised for the said experiment. Co-precipitation method was used for the synthesis of the materials and characterised them with different instrumental techniques like X-ray diffraction (XRD), Infra-red (IR), UV-absorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence studies. This nanoparticle can adsorb both arsenic and arsenious acids. We studied the effect of arsenic adsorption on the luminescence behaviour of the nanoparticles. Arsenic acid enhanced the luminescence intensity whereas arsenious acid quenched the luminescence. This luminescence enhancement or quenching is related with arsenic concentration. This relation of luminescence property with concentration of arsenic can be used to detect arsenic in industrial waste.

  6. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism.

    Science.gov (United States)

    Lu, Kun; Mahbub, Ridwan; Cable, Peter Hans; Ru, Hongyu; Parry, Nicola M A; Bodnar, Wanda M; Wishnok, John S; Styblo, Miroslav; Swenberg, James A; Fox, James G; Tannenbaum, Steven R

    2014-02-17

    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect the biotransformation of arsenic. Using an integrated approach combining 16S rRNA gene sequencing and HPLC-ICP-MS arsenic speciation, we demonstrate that IL-10 gene knockout leads to a significant taxonomic change of the gut microbiome, which in turn substantially affects arsenic metabolism. PMID:24490651

  7. Method development for arsenic analysis by modification in spectrophotometric technique

    Directory of Open Access Journals (Sweden)

    M. A. Tahir

    2012-01-01

    Full Text Available Arsenic is a non-metallic constituent, present naturally in groundwater due to some minerals and rocks. Arsenic is not geologically uncommon and occurs in natural water as arsenate and arsenite. Additionally, arsenic may occur from industrial discharges or insecticide application. World Health Organization (WHO and Pakistan Standard Quality Control Authority have recommended a permissible limit of 10 ppb for arsenic in drinking water. Arsenic at lower concentrations can be determined in water by using high tech instruments like the Atomic Absorption Spectrometer (hydride generation. Because arsenic concentration at low limits of 1 ppb can not be determined easily with simple spectrophotometric technique, the spectrophotometric technique using silver diethyldithiocarbamate was modified to achieve better results, up to the extent of 1 ppb arsenic concentration.

  8. Biosensors for Inorganic and Organic Arsenicals

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2014-11-01

    Full Text Available Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.

  9. Solubility and transport of arsenic coal ash

    International Nuclear Information System (INIS)

    An experimental method combined with a numerical model allows a comparison of two methods for the disposal of ash that contains arsenic, from the Rio Escondido coal-fired power plant. The calculation yields significant differences in aquifer migration times for the site. The wet disposal method gave 10 years time and the dry method gave 22 years. Experiments were performed on the rate of dissolution of the arsenic from ash samples; and these results indicate a first order kinetics reaction. 8 refs., 8 figs., 8 tabs

  10. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Salgado, S. [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain); Quijano, M.A., E-mail: marian.quijano@upm.es [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain); Bonilla, M.M. [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Total As and As species were analyzed in edible marine algae. Black-Right-Pointing-Pointer A microwave-assisted extraction method with deionized water was applied. Black-Right-Pointing-Pointer As compounds identified comprised DMA, As(V) and four arsenosugars Black-Right-Pointing-Pointer Considerably high As(V) concentrations were found in the most of the algae studied. - Abstract: Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 {mu}g g{sup -1}. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography-ultraviolet photo-oxidation-hydride generation atomic-fluorescence spectrometry (HPLC-(UV)-HG-AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 {mu}g g{sup -1}, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 {mu}g g{sup -1}). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 {mu}g g{sup -1}) and generally high arsenate (As(V)) concentrations (up to 77 {mu}g g{sup -1}) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  11. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Highlights: ► Total As and As species were analyzed in edible marine algae. ► A microwave-assisted extraction method with deionized water was applied. ► As compounds identified comprised DMA, As(V) and four arsenosugars ► Considerably high As(V) concentrations were found in the most of the algae studied. - Abstract: Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g−1. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g−1, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g−1). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (−1) and generally high arsenate (As(V)) concentrations (up to 77 μg g−1) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  12. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  13. THE ROLE OF ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE IN ARSENIC METABOLISM

    Science.gov (United States)

    Arsenic (As) is widely distributed in the environment. Epidemiological studies have linked chronic exposures to inorganic As (iAs) to adverse health effects such as skin lesions, peripheral neuropathy, cardiovascular, hepatic and renal disorders, diabetes mellitus, skin cancer,...

  14. Arsenic resistant bacteria isolated from arsenic contaminated river in the Atacama Desert (Chile).

    Science.gov (United States)

    Escalante, G; Campos, V L; Valenzuela, C; Yañez, J; Zaror, C; Mondaca, M A

    2009-11-01

    In this study, arsenic resistant bacteria were isolated from sediments of an arsenic contaminated river. Arsenic tolerance of bacteria isolated was carried out by serial dilution on agar plate. Redox abilities were investigated using KMnO4. arsC and aox genes were detected by PCR and RT-PCR, respectively. Bacterial populations were identified by RapID system. Forty nine bacterial strains were isolated, of these, 55 % corresponded to the reducing bacteria, 4% to oxidizing bacteria, 8% presented both activities and in 33% of the bacteria none activity was detected. arsC gene was detected in 11 strains and aox genes were not detected. The activity of arsenic transforming microorganisms in river sediment has significant implications for the behavior of the metalloid. PMID:19779656

  15. Evaluation of two new arsenic field test kits capable of detecting arsenic water concentrations close to 10 microg/L.

    Science.gov (United States)

    Steinmaus, Craig M; George, Christine M; Kalman, David A; Smith, Allan H

    2006-05-15

    Millions of people worldwide are exposed to arsenic-contaminated drinking water. Arsenic field test kits may offer a cost-effective approach for measuring these exposures in the field, although the accuracy of some kits used in the past has been poor. In this study, arsenic concentrations were measured in 136 water sources in western Nevada using two relatively new arsenic test kits and compared to laboratory measurements using atomic fluorescence spectroscopy (AFS). Spearman's rank correlation coefficients comparing the Quick Arsenic and Hach EZ kits to laboratory measurements were 0.96 (p or = 500 microg/L), test kit and AFS measurements were in the same category in 71% (Quick Arsenic) and 62% (Hach EZ) of samples, and within one category of each other in 99% (Quick Arsenic) and 97% (Hach EZ) of samples. Both kits identified all water samples with high arsenic concentrations (> 15 microg/L) as being above the United States Environmental Protection Agency's drinking water standard and the World Health Organization's guideline value for arsenic of 10 microg/L. These results suggestthatthese easily portable kits can be used to identify water sources with high arsenic concentrations and may provide an important tool for arsenic surveillance and remediation programs. PMID:16749706

  16. Mechanism of arsenic tolerance and bioremoval of arsenic by Acidithiobacilus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Chandra Prabha M N

    2011-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 This paper reports the studies on mechanism of arsenic tolerance and bioremoval of arsenic ions (arsenite or arsenate by Acidithiobacillus ferrooxidans. Exposure of cells to arsenic ions resulted in increased cell surface hydrophobicity, decreased electrophoretic mobility and stronger adsorption affinity towards arsenopyrite. The mechanism of tolerance to arsenic ions were specific and could be attributed to the changes in specific protein expression in the outer membrane and cytosolic membrane fractions. Biosorption studies showed decrease in solution arsenic concentration only with ferrous–grown cells indicating that presence of ferric ions in the EPS was necessary for binding or entrapment of arsenic ions in the EPS. Bacterial EPS of ferrous–grown wild cells were able to uptake arsenate ions due to the strong affinity of ferric ions towards arsenate ions. Neither cells nor the ferric ions were capable of precipitating or oxidizing arsenite ions directly. Both arsenate ions and arsenite ions were co–precipitated with ferric ions formed during the growth of the bacteria.  

  17. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  18. Parageneses and Crystal Chemistry of Arsenic Minerals

    Czech Academy of Sciences Publication Activity Database

    Majzlan, J.; Drahota, P.; Filippi, Michal

    Chantilly: Mineralogical Society of America, 2014 - (Bowell, J.; Alpers, C.; Jamieson, H.; Nordstrom, D.; Majzlan, J.), s. 17-184. (Reviews in Mineralogy and Geochemistry. 79). ISBN 978-0-939950-94-2 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : arsenic * mineralogy * parageneses * crystal structure Subject RIV: DB - Geology ; Mineralogy

  19. 29 CFR 1910.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... rise to radiological evidence or pneumoconiosis. Arsenic does have a depressant effect upon the bone... regulated areas, food or beverages are not consumed, smoking products, chewing tobacco and gum are not used...-practice controls. (ii) Work operations, such as maintenance and repair activities, for which the...

  20. Arsenic - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... español) Chinese - Simplified (简体中文) Arsenic English 关于砷的常问问题 - 简体中文 (Chinese - Simplified) Food and Drug Administration Spanish (español) Arsénico Characters not ...

  1. Questions and Answers: Apple Juice and Arsenic

    Science.gov (United States)

    ... and monomethylarsonic acid (MMA), may also be a health concern. Are apple and other fruit juices safe to drink? The FDA has been ... this, the FDA is considering how any possible health risk from these two forms of ... arsenic in fruit juice? The FDA has proposed an “action level” ...

  2. Arsenic accumulation in some higher fungi

    NARCIS (Netherlands)

    Stijve, T.; Vellinga, Else C.; Herrmann, A.

    1990-01-01

    The high arsenic concentrations reported in literature for Laccaria amethystina were amply confirmed. In addition, it was demonstrated that Laccaria fraterna also accumulates the element, whereas in other species of Laccaria the phenomenon was far less outspoken. Few other basidiomycetes proved to h

  3. Speciation of arsenic in environmental waters

    International Nuclear Information System (INIS)

    A system for speciation of arsenic in environmental waters by selective hydride formation and on-line AAS is described. Starting from literature data, the separation scheme and the necessary apparatus are outlined. Preliminary practical experience then leads to the formulation of further improvements and accompanying testing experiments. (author). 51 refs, 7 figs, 1 tab

  4. Arsenic(III Immobilization on Rice Husk

    Directory of Open Access Journals (Sweden)

    Malay Chaudhuri

    2013-02-01

    Full Text Available A number of large aquifers in various parts of the world have been identified with contamination by arsenic. Long-term exposure to arsenic in drinking water causes cancer of the skin, lungs, urinary bladder and kidney, as well as skin pigmentation and hyperkeratosis. Arsenic occurs in groundwater in two valence states, as trivalent arsenite [As(III] and pentavalent arsenate [As(V]. As(III is more toxic and more difficult to remove from water by adsorption on activated alumina. In this study, immobilization (adsorption of As(III by quaternized rice husk was examined. Batch adsorption test showed that extent of adsorption was dependent on pH, As (III concentration, contact time and rice husk dose. Maximum adsorption occurred at pH 7-8, and equilibrium adsorption was attained in 2 h. Equilibrium adsorption data were described by the Langmuir and Freundlich isotherm models. According to the Langmuir isotherm, adsorption capacity of quaternized rice husk is 0.775 mg As(III/g, which is 4.3x higher than that (0.180 mg As(III/g of activated alumina. Quaternized rice husk is a potentially useful adsorbent for removing arsenic from groundwater.

  5. Arsenic mobilization from sediments in microcosms under sulfate reduction.

    Science.gov (United States)

    Sun, Jing; Quicksall, Andrew N; Chillrud, Steven N; Mailloux, Brian J; Bostick, Benjamin C

    2016-06-01

    Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30-40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful. PMID:27037658

  6. Arsenic hydrogeochemistry in an irrigated river valley - A reevaluation

    Science.gov (United States)

    Nimick, D.A.

    1998-01-01

    Arsenic concentrations in ground water of the lower Madison River valley, Montana, are high (16 to 176 ??g/L). Previous studies hypothesized that arsenic-rich river water, applied as irrigation, was evapoconcentrated during recharge and contaminated the thin alluvial aquifer. Based on additional data collection and a reevaluation of the hydrology and geochemistry of the valley, the high arsenic concentrations in ground water are caused by a unique combination of natural hydrologic and geochemical factors, and irrigation appears to play a secondary role. The high arsenic concentrations in ground water have several causes: direct aquifer recharge by Madison River water having arsenic concentrations as high as 100 ??g/L, leaching of arsenic from Tertiary volcano-clastic sediment, and release of sorbed arsenic where redox conditions in ground water are reduced. The findings are consistent with related studies that demonstrate that arsenic is sorbed by irrigated soils in the valley. Although evaporation of applied irrigation water does not significantly increase arsenic concentrations in ground water, irrigation with arsenic-rich water raises other environmental concerns.

  7. Evaluation of Exposure to Arsenic in Residential Soil

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda; Scrafford, Carolyn; Mink, Pamela; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-12-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89?17.7 ?g/L, respectively) and older participants (3.8, 1.9, 0.91?19.9 ?g/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background.

  8. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.

    Directory of Open Access Journals (Sweden)

    Changzhou Yan

    Full Text Available Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h and extended (13 d depuration periods under phosphate enriched (+P and phosphate depleted (-P treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA were found to be the two predominant arsenic species detected in solutions under -P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels.

  9. Evaluation of electrokinetic remediation of arsenic-contaminated soils.

    Science.gov (United States)

    Kim, Soon-Oh; Kim, Won-Seok; Kim, Kyoung-Woong

    2005-09-01

    The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH(2)PO(4)) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals. PMID:16237600

  10. Soil Contamination by Arsenic in Urban Areas: A case study of Arak City

    Directory of Open Access Journals (Sweden)

    E Solgi

    2015-08-01

    Conclusion: It seems that arsenic in soil is controlled by natural and anthropogenic factors. The highest concentrations of arsenic in center and the north areas reflected arsenic loading is originated from anthropogenic sources such as vehicles and industrial processes.

  11. Chemical extraction of arsenic from contaminated soil under subcritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seok-Young, E-mail: quartzoh@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680 749 (Korea, Republic of); Yoon, Myong-Keun; Kim, Ick-Hyun [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680 749 (Korea, Republic of); Kim, Ju Yup; Bae, Wookeun [Department of Civil and Environmental Engineering, Hanyang University, Gyunggi-Do 425 791 (Korea, Republic of)

    2011-07-15

    In this research, we investigated a chemical extraction process, under subcritical conditions, for arsenic (As)-contaminated soil in the vicinity of an abandoned smelting plant in South Korea. The total concentration of As in soil was 75.5 mg/kg, 68% of which was As(+ III). X-ray photoelectron spectroscopy analysis showed that the possible As(+ III)-bearing compounds in the soil were As{sub 2}O{sub 3} and R-AsOOH. At 20 {sup o}C, 100 mM of NaOH could extract 26% of the As from the soil samples. In contrast, 100 mM of ethylenediaminetetraacetic acid (EDTA) and citric acid showed less than 10% extraction efficiency. However, as the temperature increased to 250 and 300 {sup o}C, extraction efficiencies increased to 75-91% and 94-103%, respectively, regardless of the extraction reagent used. Control experiments with subcritical water at 300 {sup o}C showed complete extraction of As from the soil. Arsenic species in the solution extracted at 300 {sup o}C indicated that subcritical water oxidation may be involved in the dissolution of As(+ III)-bearing minerals under given conditions. Our results suggest that subcritical water extraction/oxidation is a promising option for effective disposal of As-contaminated soil. - Research highlights: {yields} Extraction efficiency by EDTA, citric acid, and NaOH is limited at room temperature. {yields} Extraction efficiencies increase to 94-103% at 300 {sup o}C regardless of the extraction reagent used. {yields} Subcritical water oxidation may be responsible for the dissolution of As(+ III)-bearing minerals.

  12. Inverse association between toenail arsenic and body mass index in a population of welders

    OpenAIRE

    Grashow, Rachel; Zhang, Jinming; Fang, Shona C; Weisskopf, Marc G.; Christiani, David C.; Kile, Molly L.; Cavallari, Jennifer M

    2014-01-01

    Recent data show that arsenic may play a role in obesity-related diseases. However, urinary arsenic studies report an inverse association between arsenic level and body mass index (BMI). We explored whether toenail arsenic, a long-term exposure measure, was associated with BMI in 74 welders with known arsenic exposure. BMI showed significant inverse associations with toenail arsenic (p=0.01), which persisted in models adjusted for demographics, diet and work history. It is unclear whether low...

  13. In Vivo Assessment of Arsenic Bioavailability in Rice and Its Significance for Human Health Risk Assessment

    OpenAIRE

    Juhasz, Albert L.; Smith, Euan; Weber, John; Rees, Matthew; Rofe, Allan; Kuchel, Tim; Sansom, Lloyd; Naidu, Ravi

    2006-01-01

    Background Millions of people worldwide consume arsenic-contaminated rice; however, little is known about the uptake and bioavailability of arsenic species after arsenic-contaminated rice ingestion. Objectives In this study, we assessed arsenic speciation in greenhouse-grown and supermarket-bought rice, and determined arsenic bioavailability in cooked rice using an in vivo swine model. Results In supermarket-bought rice, arsenic was present entirely in the inorganic form compared to greenhous...

  14. Association of Genetic Variation in Cystathionine-β-Synthase and Arsenic Metabolism

    OpenAIRE

    Porter, Kristin E.; Basu, Anamika; Alan E Hubbard; Bates, Michael N.; Kalman, David; Rey, Omar; Smith, Allan; Smith, Martyn T.; Steinmaus, Craig; Skibola, Christine F.

    2010-01-01

    Variation in individual susceptibility to arsenic-induced disease may be partially explained by genetic differences in arsenic metabolism. Mounting epidemiological evidence and in vitro studies suggest that methylated arsenic metabolites, particularly monomethylarsonic (MMA3), are more acutely toxic than inorganic arsenic; thus, MMA3 may be the primary toxic arsenic species. To test the role of genetic variation in arsenic metabolism, polymorphisms in genes involved in one-carbon metabolism [...

  15. geochemical controls on arsenic and phosphorus in natural and engineered systems

    OpenAIRE

    Davis, Jason Edward

    2000-01-01

    This thesis elucidates fundamental reactions that can control concentrations of arsenic and phosphate in water sources. High levels of arsenic or phosphorus have significant implications for the environment-- arsenic is extremely toxic to humans while phosphorus can cause eutrophication. Initial work focused on arsenic solids that might exert geochemical control on soluble arsenic. Formation of proposed iron, barium, copper and zinc-arsenic solids were systematically examined under ...

  16. Arsenic chemistry with sulfide, pyrite, zero-valent iron, and magnetite

    Science.gov (United States)

    Sun, Fenglong

    The aim of this thesis is to study the immobilization reactions of arsenic in water. Since compounds containing iron or sulfide are common in most natural and engineered systems, the research focused on the redox reactions and adsorption of arsenic with sulfide, pyrite, zero-valent iron (ZVI), and magnetite which were studied through wet chemistry methods and spectroscopic techniques. The kinetic and thermodynamic information of the reactions of As(V) with S(-II), As(V)/As(III) with pyrite and surface-oxidized pyrite, As(V) with ZVI and acid-treated ZVI, As(III) with magnetite was used to identify mechanisms. The necessity to maintain strictly anoxic conditions was emphasized for the study of arsenic redox chemistry with sulfides and ZVI. The major findings of this research can be stated as follows. First, dissolved sulfide reduced As(V) to lower valences to form a yellow precipitate at acidic pH. The reaction involved the formation of thioarsenic intermediate species. Dissolved O2, granular activated carbon (GAC) and dissolved Fe(II) inhibited the removal of As(V) by sulfide. Elemental sulfur catalyzed the reduction of As(V) by sulfide, which implied the possible benefit of using sulfur-loaded GAC for arsenic removal. Possible reaction mechanisms were discussed. Second, As(III) adsorbed on pristine pyrite over a broader pH range than on surface-oxidized pyrite, while As(V) adsorbed over a narrower pH range with pristine pyrite. As(V) was completely reduced to As(III) on pristine pyrite at acidic pH but not at higher pH. The reduction was first-order with respect to As(V). As(V) was not reduced on surface-oxidized pyrite at pH = 4--11. The different behaviors of As(V) and As(III) on pristine and surface oxidized pyrite determines the toxicity and mobility of arsenic under oxic/anoxic environments. Third, commercial ZVI reduced As(V) to As(III) at low pH (nano-ZVI particles. The optimum conditions and kinetic data for arsenic removal are applicable in field

  17. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.;

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast...... of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography–ICP-MS following microwave......-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg–1 wet weight. For inorganic arsenic, the concentrations found were very low (...

  18. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi; Trang, Pham Thi Kim; Jakobsen, Rasmus; Nhan, Pham Quy; Long, Tran Vu; Viet, Pham Hung; Murray, Andrew Sean

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5...

  19. The evolving use of arsenic in pharmacotherapy of malignant disease.

    Science.gov (United States)

    Kritharis, Athena; Bradley, Thomas P; Budman, Daniel R

    2013-06-01

    For more than 2,000 years, arsenic and its derivatives have shown medical utility. Owing to the toxicities and potential carcinogenicity of arsenicals, their popularity has fluctuated. The exact mechanism of action of therapeutic arsenic is not well characterized but likely to involve apoptosis, generation of reactive oxygen species, inhibition of intracellular transduction pathways, and cell functions. Arsenic trioxide has received approval for use in patients with relapsed acute promyelocytic leukemia for remission induction. Arsenic has additionally shown activity in a range of solid tumors, myelodysplastic syndrome, multiple myeloma, and in autoimmune diseases. The following is a review of the history of arsenic, its cellular metabolism, pharmacology, genetic basis of disposition, associated toxicities, and clinical efficacy. PMID:23494203

  20. Low doses of arsenic, via perturbing p53, promotes tumorigenesis.

    Science.gov (United States)

    Ganapathy, Suthakar; Li, Ping; Fagman, Johan; Yu, Tianqi; Lafontant, Jean; Zhang, Guojun; Chen, Changyan

    2016-09-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure. PMID:27425828

  1. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters

    Science.gov (United States)

    Winkel, Lenny; Berg, Michael; Amini, Manouchehr; Hug, Stephan J.; Annette Johnson, C.

    2008-08-01

    Arsenic contamination of groundwater resources threatens the health of millions of people worldwide, particularly in the densely populated river deltas of Southeast Asia. Although many arsenic-affected areas have been identified in recent years, a systematic evaluation of vulnerable areas remains to be carried out. Here we present maps pinpointing areas at risk of groundwater arsenic concentrations exceeding 10μgl-1. These maps were produced by combining geological and surface soil parameters in a logistic regression model, calibrated with 1,756 aggregated and geo-referenced groundwater data points from the Bengal, Red River and Mekong deltas. We show that Holocene deltaic and organic-rich surface sediments are key indicators for arsenic risk areas and that the combination of surface parameters is a successful approach to predict groundwater arsenic contamination. Predictions are in good agreement with the known spatial distribution of arsenic contamination, and further indicate elevated risks in Sumatra and Myanmar, where no groundwater studies exist.

  2. A critical review of arsenic exposures for Bangladeshi adults.

    Science.gov (United States)

    Joseph, Tijo; Dubey, Brajesh; McBean, Edward A

    2015-09-15

    Groundwater, the most important source of water for drinking, cooking, and irrigation in Bangladesh, is a significant contributor to the daily human intake of arsenic. Other arsenic intake pathways, established as relevant for Bangladeshi adults through this review, include consumption of contaminated edible plant parts and animal-origin food, inhalation of contaminated air, soil ingestion, betel quid chewing, and tobacco smoking. This review qualifies and quantifies these arsenic intake pathways through analysis of the range of arsenic levels observed in different food types, water, soil, and air in Bangladesh, and highlights the contributions of dietary intake variation and cooking method in influencing arsenic exposures. This study also highlights the potential of desirable dietary patterns and intakes in increasing arsenic exposure which is relevant to Bangladesh where nutritional deficiencies and lower-than-desirable dietary intakes continue to be a major concern. PMID:26004539

  3. Arsenic speciation in soil using high performance liquid chromatography/inductively coupled plasma/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bass, D.A.; Yaeger, J.S.; Parish, K.J.; Crain, J.S.; Kiely, J.T.; Gowdy, M.J. [Argonne National Lab., IL (United States); Mohrman, G.B.; Besmer, M.G. [Rocky Mountain Arsenal, Commerce City, CO (United States)

    1996-08-01

    A method has been developed to identify and quantify As(III), As(V), and organoarsenic compounds in soil samples from the Rocky Mountain Arsenal (RMA) by high performance liquid chromatography/inductively coupled plasma/mass spectrometry (HPLC/ICP/MS). The soils were extracted using tetrabutylammonium hydroxide (TBAH) and sonication. The percentages of As(III), As(V), and organoarsenic species extracted from soil samples were 30, 50, and 100 respectively. The arsenic species were not altered during the extraction process. They were separated by reversed-phase, ion-pairing, HPLC using a microbore Inertsil-ODS{trademark} column. The HPLC column effluent was introduced into an ICP/MS system using a direct injection nebulizer (DIN). Detection limits of less than 1 pg were readily obtained for each arsenic species. Internal standards are recommended to increase accuracy and precision. Soil samples spiked with arsenic oxide, sodium arsenate, dimethylarsinic acid (DMAA), and chlorovinyl arsenious acid (CVAA) were extracted, identified and quantified with the HPLC/ICP/MS system. The soil samples were analyzed in support of the analytical needs of a thermal desorption treatability study being conducted at the RMA.

  4. Survey of inorganic arsenic in marine animals and marine certified reference materials by anion exchange high-performance liquid chromatography-inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Larsen, Erik Huusfeldt; Julshamn, Kåre

    2005-01-01

    A method for the determination of inorganic arsenic in seafood samples using high-performance liquid chromatography-inductively coupled plasma mass spectrometry is described. The principle of the method relied on microwave-assisted alkaline dissolution of the sample, which at the same time oxidized...... arsenite [As(Ill)] to arsenate [As(V)], whereby inorganic arsenic could be determined as the single species As(V). Anion exchange chromatography using isocratic elution with aqueous ammonium carbonate as the mobile phase was used for the separation of As(V) from other coextracted organoarsenic compounds...

  5. Rice consumption contributes to arsenic exposure in US women

    OpenAIRE

    Gilbert-Diamond, Diane; Cottingham, Kathryn L.; Gruber, Joann F.; Punshon, Tracy; Sayarath, Vicki; Gandolfi, A. Jay; Baker, Emily R.; Jackson, Brian P.; Folt, Carol L; Margaret R Karagas

    2011-01-01

    Emerging data indicate that rice consumption may lead to potentially harmful arsenic exposure. However, few human data are available, and virtually none exist for vulnerable periods such as pregnancy. Here we document a positive association between rice consumption and urinary arsenic excretion, a biomarker of recent arsenic exposure, in 229 pregnant women. At a 6-mo prenatal visit, we collected a urine sample and 3-d dietary record for water, fish/seafood, and rice. We also tested women's ho...

  6. Analytical approaches for arsenic determination in air : a critical review

    OpenAIRE

    Sánchez-Rodas Navarro, Daniel Alejandro; Sánchez de la Campa Verdona, Ana María; Alsioufi, Louay

    2015-01-01

    This review describes the different steps involved in the determination of arsenic in air, considering the particulate matter (PM) and the gaseous phase. The review focuses on sampling, sample preparation and instrumental analytical techniques for both total arsenic determination and speciation analysis. The origin, concentration and legislation concerning arsenic in ambient air are also considered. The review intends to describe the procedures for sample collection of total suspended particl...

  7. The Role of Photochemistry the Transport and Transformation of Arsenic

    OpenAIRE

    Sedlak, David L.; Bentley, Abra

    1997-01-01

    Arsenic, a toxic trace element, enters surface waters from abandoned mines and geothermal springs. Once arsenic is discharged to surface waters, photochemical reactions can alter the oxidation state of the metal or cause the dissolution of the mineral phases onto which it could adsorb. To assess the role of these photochemical reactions arsenic fate and transport, we conducted laboratory studies and collected samples from arseniccontaminated surface waters. Results of laboratory studies indic...

  8. Resistance to Arsenic- and Antimony-Based Drugs

    OpenAIRE

    Milena Salerno; Arlette Garnier-Suillerot

    2003-01-01

    Organic arsenicals were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and sleeping sickness. For the treatment of diseases caused by trypanosomatid parasites, organic derivatives of arsenic and the related metalloid antimony are still the drugs of choice. Arsenic trioxide, As203, has been used for a long time in traditional Chinese medicines for treatment of various diseases, and it has recently been shown to be clinically ac...

  9. Arsenic geochemistry and human health in South East Asia

    OpenAIRE

    McCarty, Kathleen M.; Hanh, Hoang Thi; Kim, Kyoung-Woong

    2011-01-01

    Arsenic occurs naturally in many environmental components and enters the human body through several exposure pathways. Natural enrichment of arsenic may result in considerable contamination of soil, water, and air. Arsenic in groundwater can exceed values hundreds of time higher than the concentration recommended for drinking water. Such exposure levels indicate a serious potential health risk to individuals consuming raw groundwater. Human activities that have an impact on the environment ma...

  10. Quality of our groundwater resources: arsenic and fluoride

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  11. Purification of arsenic contaminated ground water using hydrated manganese dioxide

    International Nuclear Information System (INIS)

    An analytical methodology has been developed for the separation of arsenic from ground water using inorganic material in neutral medium. The separation procedure involves the quantitative retention of arsenic on hydrated manganese dioxide, in neutral medium. The validity of the separation procedure has been checked by a standard addition method and radiotracer studies. Neutron activation analysis (NAA), a powerful measurement technique, has been used for the quantitative determination of arsenic. (author)

  12. Alternative technology for arsenic removal from drinking water

    OpenAIRE

    Purenović Milovan

    2007-01-01

    Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in wat...

  13. Study on accumulation mechanism of arsenic and selenium in Pteris vittata L. using synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Pteris vittata L. is known as an arsenic hyper-accumulator. We investigated the accumulation mechanism of arsenic and selenium in the fern cultivated with the culture solution containing As(V) or Se(VI) by utilizing synchrotron radiation X-ray fluorescence analysis. The chemical speciations of arsenic, selenium, and sulfur in the fern were carried out by X-ray absorption near edge structure (XANES) analyses and the elemental distributions in their tissues were visualized by micro-XRF imaging. Arsenic was highly accumulated in pinna especially in the base of sporangium as As(III). Selenium could be taken in the root and less accumulated in the aerial parts. About 60% of Se in the fern was present as Se(-II) and this indicated the selenium was reduced from Se(VI) during uptake process. The chemical speciation of sulfur revealed that the ratio of S(-II) and S(V) compounds such as glutathione (GSH) and cysteic acid, respectively, increased when the fern was cultivated with As(V) and Se(VI). This result demonstrated that sulfur had a certain function in detoxification process of P. vittata L. (author)

  14. Monomethylarsonous acid, but not inorganic arsenic, is a mitochondria-specific toxicant in vascular smooth muscle cells.

    Science.gov (United States)

    Pace, Clare; Banerjee, Tania Das; Welch, Barrett; Khalili, Roxana; Dagda, Ruben K; Angermann, Jeff

    2016-09-01

    Arsenic exposure has been implicated as a risk factor for cardiovascular diseases, metabolic disorders, and cancer, yet the role mitochondrial dysfunction plays in the cellular mechanisms of pathology is largely unknown. To investigate arsenic-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs), we exposed rat aortic smooth muscle cells (A7r5) to inorganic arsenic (iAs(III)) and its metabolite monomethylarsonous acid (MMA(III)) and compared their effects on mitochondrial function and oxidative stress. Our results indicate that MMA(III) is significantly more toxic to mitochondria than iAs(III). Exposure of VSMCs to MMA(III), but not iAs(III), significantly decreased basal and maximal oxygen consumption rates and concomitantly increased compensatory extracellular acidification rates, a proxy for glycolysis. Treatment with MMA(III) significantly increased hydrogen peroxide and superoxide levels compared to iAs(III). Exposure to MMA(III) resulted in significant decreases in mitochondrial ATP, aberrant perinuclear clustering of mitochondria, and decreased mitochondrial content. Mechanistically, we observed that mitochondrial superoxide and hydrogen peroxide contribute to mitochondrial toxicity, as treatment of cells with MnTBAP (a mitochondrial superoxide dismutase mimetic) and catalase significantly reduced mitochondrial respiration deficits and cell death induced by both arsenic compounds. Overall, our data demonstrates that MMA(III) is a mitochondria-specific toxicant that elevates mitochondrial and non-mitochondrial sources of ROS. PMID:27327130

  15. Redox-controlled groundwater mobilization of soil arsenic: A case study and model

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, J.; Gerath, M.; Duvel, W.

    1996-12-31

    Arsenic contaminates the groundwater beneath and downstream from a chemical manufacturing plant, although historical waste emissions from the plant have consisted principly of isopropanol, and fatty acids. Groundwater and soil analysis of organics, metals, anions, D.O. (dissolved oxygen), and redox potential are consistent with a model for redox-controlled mobilization of that arsenic which is naturally present in the soil at background concentrations of around 10 mg/kg. According to this model, aerobic biodegradation of organic compounds from the plant`s waste stream consumes D.O. and lowers the redox potential of portions of the aquifer. Somewhere below 0.5 mg/l D.O., particles of iron and manganese hydroxide tend to dissolve and release the arsenic adsorbed to their surfaces. Bacterial mediation and organic complexation are then believed to determine the formation of soluble arsenite and arsenate complexes. A numerical flow/transport/reaction model of the plant site was set up using the BIOPLUME II code in order to simulate bacterial D.O. consumption in the aquifer and evaluate remedial alternatives. Modeling results show that site cleanup (increase of D.O. above 0.5 mg/l) will require approximately nine years with no action, four years with excavation of the source leachfield, and two years with source excavation plus oxygen injection. A combination of soil excavation and oxygen injection is presently under design in order to quickly reduce the consumption of D.O. in the saturated aquifer and remove a necessary condition for arsenic mobilization.

  16. Detection of Inorganic Arsenic in Rice Using a Field Test Kit: A Screening Method.

    Science.gov (United States)

    Bralatei, Edi; Lacan, Severine; Krupp, Eva M; Feldmann, Jörg

    2015-11-17

    Rice is a staple food eaten by more than 50% of the world's population and is a daily dietary constituent in most South East Asian countries where 70% of the rice export comes from and where there is a high level of arsenic contamination in groundwater used for irrigation. Research shows that rice can take up and store inorganic arsenic during cultivation, and rice is considered to be one of the major routes of exposure to inorganic arsenic, a class I carcinogen for humans. Here, we report the use of a screening method based on the Gutzeit methodology to detect inorganic arsenic (iAs) in rice within 1 h. After optimization, 30 rice commodities from the United Kingdom market were tested with the field method and were compared to the reference method (high-performance liquid chromatography-inductively coupled plasma-mass spectrometry, HPLC-ICP-MS). In all but three rice samples, iAs compound can be determined. The results show no bias for iAs using the field method. Results obtained show quantification limits of about 50 μg kg(-1), a good reproducibility for a field method of ±12%, and only a few false positives and negatives (<10%) could only be recorded at the 2015 European Commission (EC) guideline for baby rice of 100 μg kg(-1), while none were recorded at the maximum level suggested by the World Health Organization (WHO) and implemented by the EC for polished and white rice of 200 μg kg(-1). The method is reliable, fast, and inexpensive; hence, it is suggested to be used as a screening method in the field for preselection of rice which violates legislative guidelines. PMID:26506262

  17. The Morphology of Chromium and LIF Measurement of Atomic Arsenic in Laminar Diffusion Flames

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young Bin [Department of Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of)

    1997-06-26

    The morphology and size distribution of chromium oxides and the concentration measurement of atomic arsenic have been studied in laminar diffusion flames. Nitrogen was added to vary flame temperatures in hydrogen flames. Ethene flames were used in order to investigate the potential for interaction between the soot aerosol that is formed in these flames and the chromium aerosol. Two sources of chromium compounds were introduced:chromium nitrate and chromium hexacarbonyl. A detailed investigation of the morphology was carried out by scanning electron microscopy(SEM). The amounts of Cr(VI) and total Cr were determined by a spectrophotometric method and by X-ray fluorescence spectrometry, respectively. Also, LIF was used for the measurement of atomic arsenic, which was excited at 197.2 nm and was detected at 249.6 nm. Results showed that the morphology of the particles varied with the flame temperature and with the chromium source. The particles were characterized by porous structures, cenospheres and agglomerated dense particles when chromium nitrate solution was added to the flames. At low to moderate temperature, porous sintered cenospheric structures were formed, in some cases with a blow hole. At higher temperatures, an agglomerated cluster which was composed Cr(VI) from the undiluted H{sub 2} flame was more than 10 times larger than in the 50%H{sub 2}/50%N{sub 2} flame on a mass basis. Single point LIF measurement of atomic arsenic indicated that arsenic exist only in the low temperature, fuel rich region. (author). 14 refs., 1 tab., 7 figs.

  18. Environmental Arsenic Exposure and Microbiota in Induced Sputum

    Directory of Open Access Journals (Sweden)

    Allison G. White

    2014-02-01

    Full Text Available Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb. To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%, Proteobacteria (17% and Bacteriodetes (12% were the main phyla in all samples, with Neisseriaceae (15%, Prevotellaceae (12% and Veillonellacea (7% being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  19. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    OpenAIRE

    Peltekov A.B.; Boyanov B.S.; Markova T.S.

    2014-01-01

    The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS). In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5). In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine...

  20. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth

    Directory of Open Access Journals (Sweden)

    Emily F. Winterbottom

    2015-06-01

    Full Text Available Although considerable evidence suggests that in utero arsenic exposure affects children's health, these data are mainly from areas of the world where groundwater arsenic levels far exceed the World Health Organization limit of 10 μg/L. We, and others, have found that more common levels of in utero arsenic exposure may also impact children's health. However, the underlying molecular mechanisms are poorly understood. To address this issue, we analyzed the expression of key developmental genes in fetal placenta in a birth cohort of women using unregulated water supplies in a US region with elevated groundwater arsenic. We identified several genes whose expression associated with maternal arsenic exposure in a fetal sex-specific manner. In particular, expression of the HEDGEHOG pathway component, GLI3, in female placentae was both negatively associated with arsenic exposure and positively associated with infant birth weight. This suggests that modulation of GLI3 in the fetal placenta, and perhaps in other fetal tissues, contributes to arsenic's detrimental effects on fetal growth. We showed previously that arsenic-exposed NIH3T3 cells have reduced GLI3 repressor protein. Together, these studies identify GLI3 as a key signaling node that is affected by arsenic, mediating a subset of its effects on developmental signaling and fetal health.

  1. Arsenic-transforming microbes and their role in biomining processes.

    Science.gov (United States)

    Drewniak, L; Sklodowska, A

    2013-11-01

    It is well known that microorganisms can dissolve different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital elements (e.g., P, Fe, S, Mg and Mo), but some may also contain toxic metals or metalloids, like arsenic. The toxicity of arsenic is disclosed after the dissolution of the mineral, which raises two important questions: (1) why do microorganisms dissolve arsenic-bearing minerals and release this metal into the environment in a toxic (also for themselves) form, and (2) How do these microorganisms cope with this toxic element? In this review, we summarize current knowledge about arsenic-transforming microbes and their role in biomining processes. Special consideration is given to studies that have increased our understanding of how microbial activities are linked to the biogeochemistry of arsenic, by examining (1) where and in which forms arsenic occurs in the mining environment, (2) microbial activity in the context of arsenic mineral dissolution and the mechanisms of arsenic resistance, (3) the minerals used and technologies applied in the biomining of arsenic, and (4) how microbes can be used to clean up post-mining environments. PMID:23299972

  2. Development of an arsenic trioxide vapor and arsine sampling train

    International Nuclear Information System (INIS)

    A sampling train was evaluated using 76As tracer for the measurement of particulate arsenic, arsine, and arsenic trioxide vapor in air and industrial process gas streams. In this train, a demister was used to remove droplets of water and oil, and particulates were removed by a filter. Vapor arsenic trioxide was collected in an impinger solution, and arsine gas was collected on silvered quartz beads. Hydrogen sulfide gas did not reduce the arsine trapping efficiency of the silvered beads, and charcoal proved to be an effective trap for both arsine and arsenic trioxide vapor. 1 figure, 2 tables

  3. Environmental arsenic exposure, selenium and sputum alpha-1 antitrypsin

    DEFF Research Database (Denmark)

    Burgess, Jefferey L; Kurzius-Spencer, Margaret; Poplin, Gerald S;

    2014-01-01

    Exposure to arsenic in drinking water is associated with increased respiratory disease. Alpha-1 antitrypsin (AAT) protects the lung against tissue destruction. The objective of this study was to determine whether arsenic exposure is associated with changes in airway AAT concentration and whether...... selenium positively associated with sputum AAT (P=0.004 and P=0.002, respectively). In analyses stratified by town, these relationships remained significant only in Ajo, with the higher arsenic exposure. Reduction in AAT may be a means by which arsenic induces respiratory disease, and selenium may protect...

  4. Development of an Antioxidant Phytoextract of Lantana grisebachii with Lymphoprotective Activity against In Vitro Arsenic Toxicity

    Science.gov (United States)

    Soria, Elio A.; Quiroga, Patricia L.; Albrecht, Claudia; Ramos Elizagaray, Sabina I.; Cantero, Juan J.; Bongiovanni, Guillermina A.

    2014-01-01

    Phytochemicals have been presumed to possess prophylactic and curative properties in several pathologies, such as arsenic- (As-) induced immunosuppression. Our aim was to discover a lymphoprotective extract from Lantana grisebachii Stuck. (Verbenaceae) (LG). We assessed its bioactivity and chemical composition using cell-based assays. Fractions produced from a hexane extract acutely induced nitrite formation in T-activated cell cultures (P flavonoids. Among the phenolics, the only predominant compound was 0.723 mg of chlorogenic acid per gram of dry plant, in addition to 10 unknown minor compounds. A fatty acid profile was assessed. It contained one-third of saturated fatty acids, one-third of ω9, followed by ω6 (~24%) and ω3 (~4%), and scarce ω7. Summing up, L. grisebachii was a source of bioactive and lymphoprotective compounds, which could counteract As-toxicity. This supports its phytomedical use and research in order to reduce As-related dysfunctions. PMID:25002868

  5. Arsenic removal in water by means of coagulation-flocculation processes; Remocion de arsenico en agua mediante procesos de coagulacion-floculacion

    Energy Technology Data Exchange (ETDEWEB)

    Franco, M. F.; Carro P, M. E., E-mail: ffrancis@efn.uncor.edu [Universidad Nacional de Cordoba, Facultad de Ciencias Exactas, Fisicas y Naturales, Departamento de Construcciones Civiles, Av. Velez Sarsfield 1611, Cordoba (Argentina)

    2014-10-01

    Arsenic and arsenical compounds are considered as carcinogenic and risky for humans according to epidemiological evidence related with the ingestion of arsenical water during a long period. In many places the only source of drinking water contains arsenic and, therefore, removal strategies have to be investigated. This work shows experimental results of coagulation-flocculation processes implemented to evaluate the efficiency in the removal of arsenic from drinking water. The main objectives include the evaluation of the relevant aspect that controls the removal efficiency. Experimental tests were performed with coagulant concentrations from 5 to 500 mg/L, solid particle concentrations from 0 to 6000 mg/L, and initial arsenic concentrations from 0.5 to 5 mg/L. These variables were simultaneously varied in more than 100 experiments. The efficiency in remediation ranged from 0% to 95%. Removal efficiency near 95% was obtained when using ferric chloride as coagulant, and was close to 80% when using aluminium sulfate as coagulant in arsenate solutions. The remediation efficiency decreased significantly when the ferric chloride concentration was higher than 50 mg/L in relation to the obtained results for aluminum sulfate for different type and concentration of soil particles. The highest removal efficiency were obtained at ph between 3 and 5 in oxidized solutions. Obtained results simulated by means of multiple linear regression analysis (R>0.90) allow determining that the main parameters that control the removal of arsenic from drinking water are coagulant concentration, ph, and solid particles concentration. Conversely, particle mineralogy and coagulant type have less significant effect on the removal by means of coagulation-flocculation mechanisms. Obtained results are relevant for the removal of As in water treatment plants as well as for the development of small scale filters. The samples were studied by scanning electron microscopy and energy dispersive X

  6. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    Science.gov (United States)

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported. PMID:25438126

  7. New Sorbents for Removing Arsenic From Water

    Science.gov (United States)

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  8. Tropospheric arsenic over marine and continental regions

    International Nuclear Information System (INIS)

    Particulate and vapor concentrations of atmospheric As have been measured over various marine and continental areas. Particulate sample were collected on double Whatman 41 filters. Particulate-vapor samples were collected using an in-line filter system with a 0.45-μm pore size Nuclepore filters as a particle prefilter in front of two Whatman 41 filters impregnated with tetrabutylammonium hydroxide and glycerol for vapor As collection. Arsenic determinations were by destructive neutron activation. The data from the Nuclepore-impregnated filter samples indicates that the major fraction of As in the atmosphere is particulate but a vapor component of As is detectable, most frequently associated with high sampling temperatures and high total As concentrations. With the data presented here, estimates of representative global near-surface concentrations of atmospheric arsenic have been made

  9. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Directory of Open Access Journals (Sweden)

    Madhurima Pandey

    2007-03-01

    Full Text Available The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  10. Arsenic contamination of groundwater in Bangladesh

    International Nuclear Information System (INIS)

    Shallow groundwater with high arsenic concentrations from naturally occurring sources is the primary source of drinking water for millions of people in Bangladesh. It has resulted in a major public health crisis with as many as 70 million people possibly at risk. The International Atomic Energy Agency (IAEA) is supporting international efforts and the Government of Bangladesh to find alternative, safe and sustainable sources of drinking water. (IAEA)

  11. Arsenic trioxide: safety issues and their management

    Institute of Scientific and Technical Information of China (English)

    Wing-Yan AU; Yok-Lam KWONG

    2008-01-01

    Arsenic trioxide (As2O3) has been used medicinally for thousands of years.Its therapeutic use in leukaemia was described a century ago.Recent rekindling in the interest of As2O3 is due to its high efficacy in acute promyelocytic leukaemia (APL).As2O3 has also been tested clinically in other blood and solid cancers.Most studies have used intravenous As2O3,although an oral As2O3 is equally efficacious.Side effects of As2O3 are usually minor,including skin reactions,gastrointestinal upset,and hepatitis.These respond to symptomatic treatment or temporary drug cessation,and do not compromise subsequent treatment with As2O3.During induction therapy in APL,a leucocytosis may occasionally occur,which can be associated with fluid accumulation and pulmonary infiltration.The condition is similar to the APL differentiation syndrome during treatment with all-trans retinoic acid,and responds to cytoreductive treatment and corticosteroids.Intravenous As2O3 treatment leads to QT prolongation.In the presence of under-lying cardiopulmonary diseases or electrolyte disturbances,particularly hypokalaemia and hypomagnesaemia,serious arrhythmias may develop,with torsades du pointes reported in 1% of cases.This may be related to a dose-dependent arsenic-mediated inhibition of potassium ion channels that compro-mises cardiac repolarization.Because of slow intestinal absorption,oral-As2O3 gives a lower plasma arsenic concentration,which is associated with lesser QT prolongation and hence a more favorable cardiac safety profile.As2O3 does not appear to enter the central nervous system.However,if the blood brain barrier is breached,elemental arsenic may enter the cerebrospinal fluid.As2O3 is predomi-nantly excreted in the kidneys,and dose adjustment is required when renal func-tion is impaired.

  12. Arsenic concentrations in groundwaters of Cyprus

    Science.gov (United States)

    Christodoulidou, M.; Charalambous, C.; Aletrari, M.; Nicolaidou Kanari, P.; Petronda, A.; Ward, N. I.

    2012-10-01

    SummaryCyprus being a Mediterranean island with long dry summers and mild winters suffers from water deficiency and over exploitation of its water resources. Groundwater in Cyprus is a valuable natural resource as approximately 50% of the total water needs come from underground water supplies. According to the Directive 118/2006/EC, groundwater should be protected from deterioration and chemical pollution, this is particularly important for groundwater dependent ecosystems and for the use of groundwater as a water supply for human consumption. During 2007 to 2009, as part of a national monitoring programme, 84 boreholes were sampled in Cyprus and subsequently analysed for total arsenic by inductively coupled plasma mass spectrometry (ICP-MS). The groundwater concentrations ranged from <0.3 to 41 μg/L As. Several boreholes located in a rural farming district near Nicosia had concentrations above the World Health Organisation (WHO) Drinking Water Guideline limit of 10 μg/L As. Evaluation of the groundwater sampling procedure for boreholes provided data recommending that water samples should be collected after an initial borehole washout for 5 min. Further sampling of these boreholes in 2010, revealed total arsenic concentrations of <0.3-64.2 μg/L As, with the predominant arsenic species (determined using a novel field-based methodology) being arsenate (AsV). The maximum total arsenic concentration is 6-fold higher than the WHO Drinking Water Guideline limit (10 μg/L As) and approximately half of the United Nations Food and Agriculture Organisation (UN-FAO) irrigational limit of 100 μg/L As.

  13. Arsenic evolution in fractured bedrock wells in central Maine, USA

    Science.gov (United States)

    Yang, Q.; Zheng, Y.; Culbertson, C.; Schalk, C.; Nielsen, M. G.; Marvinney, R.

    2010-12-01

    Elevated arsenic concentration in fractured bedrock wells has emerged as an important and challenging health problem, especially in rural areas without public water supply and mandatory monitoring of private wells. This has posed risks of skin, bladder, prostate diseases and cancers to private well users. In central Maine, including the study site, 31% of bedrock wells in meta-sedimentary formations have been reported of elevated arsenic concentrations of > 10 µg/L. Geophysical logging and fracture specific water sampling in high arsenic wells have been conducted to understand how water flowing through the aquifers enters the boreholes and how arsenic evolves in the fracture bedrock wells. Two domestic wells in Manchester, Maine, located 50 meter apart with 38 µg/L and 73 µg/L of arsenic in unfiltered water, were investigated to characterize fractures by geophysical logging and to determine flow rates by pumping test. Water samples, representing the bore hole and the fractures, were collected and analyzed for arsenic under ambient and pumping conditions. Transmissivity of the fractures was estimated at 0.23-10.6 m2/day. Water with high dissolved arsenic was supplied primarily by high yielding fractures near the bottom of the borehole. Dissolved arsenic concentrations in borehole water increased as fracture water with high arsenic was replacing borehole water with initially low dissolved arsenic in response to pumping. The precipitation of iron particulates enriched in arsenic was common during and after pumping. Laboratory experiment on well water samples over a period of 16 days suggested that in the borehole arsenic was mainly settled with iron enriched particles, likely amorphous ferric oxyhydroxides, with possibly minor adsorption on the iron minerals. Another bedrock well in Litchfield, Maine, with 478 µg/L of arsenic in the unfiltered well water, is being investigated to quantify and reconstruct of the groundwater flow under ambient and pumping conditions

  14. Benefits of high resolution IC-ICP-MS for the routine analysis of inorganic and organic arsenic species in food products of marine and terrestrial origin

    Energy Technology Data Exchange (ETDEWEB)

    Kohlmeyer, Ute; Jantzen, Eckard; Kuballa, Juergen; Jakubik, Sandra [GALAB Laboratories, Max-Planck-Str. 1, 21502, Geesthacht (Germany)

    2003-09-01

    A recently developed and validated method for simultaneous determination of 17 inorganic and organic arsenic compounds in marine biota has been successfully applied to routine analysis of different food products, including fish, shellfish, edible algae, rice, and other types of grain. During one year, approximately 250 food samples were analyzed, mostly fish and rice. Long-term stability and robustness of the system was observed and reproducible results for certified reference materials were ensured by means of control charts. The separation was performed by ion-pair chromatography on an anion-exchange column to separate anionic, neutral, and cationic arsenic species in one chromatographic run. Hyphenation to ICP-MS allowed element-specific and sensitive detection of the different arsenic species with a detection limit as low as 8 ng As L{sup -1}in the sample extract, which is equivalent to 2 ng As g {sup -1} in the original sample. Special emphasis was laid on the analysis of marine algae and rice samples. These food types can contain elevated levels of the very toxic inorganic arsenic species (up to 90% in rice) and therefore are the focus of interest in the food industry. In marine algae, inorganic arsenic was mainly present as arsenate whereas in rice arsenite predominated. (orig.)

  15. Total arsenic in foods after sequential wet digestion, dry ashing, coprecipitation with ammonium pyrrolidine dithiocarbamate, and graphite-furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A graphite-furnace atomic absorption (GFAAS) method is described for determining total arsenic (organic and inorganic compounds) in foods. Samples ranging from 1 to 40 g (depending on moisture content) were digested with HNO3 and dry-ashed at 500 degree C overnight after addition of MgO. After dissolution in HCl, the arsenic was reduced with iodide and ascorbic acid and precipitated with ammonium pyrrolidine dithiocarbamate (APDC) in the presence of nickel carrier. Precipitates were collected on 0.3μm cellulose acetate filters and dissolved in 10% HNO3 containing modifier. Ba(NO3)2 was added to remove a sulfate interference resulting from decomposition of APDC. Arsenic was determined using GFAAS. Accuracy of the method was good for 7 US National Bureau of Standards (NBS) Standard Reference Materials and 3 National Research Council of Canada (NRCC) round-robin samples. Recovery of arsenic(V) from foods averaged 99.2% for peak heights and 97.1% for peak areas, with relative standard deviations (RSD) of 2.2% for peak heights and 3.3% for peak areas for all NBS and NRCC materials. Detection limit of the method was ca 10 ng arsenic

  16. Sedimentology and arsenic pollution in the Bengal Basin: insight into arsenic occurrence and subsurface geology.

    Science.gov (United States)

    Hills, Andrew; McArthur, John

    2014-05-01

    The Bengal delta system is a geologically recent feature overlying a deeply incised palaeo-surface formed during the Last Glacial Maximum. This surface is a series of terraces and valleys created by river incision (Goodbred & Kuehl 2003). The terraces were weathered, forming a thin, indurated laterite deposit (Goodbred & Kuehl 2000) at depths greater than 50 m. McArthur et al. (2008) define this as a palaeosol and have identified it at depths greater than 30 m though out Bangladesh and West Bengal. It has been observed that arsenic concentrations at these sites are lower than the rest of the delta. It has been assumed that the surface morphology at sites where there is a palaeosol are similar and can therefore be characterised by remote sensing, in the form of Google Earth images. Sites were selected in Bangladesh and West Bengal, from work by McArthur et al. (2011); Hoque et al. (2012), where groundwater chemistry and sedimentology data are available making it possible to determine if the subsurface is a palaeo-channel or palaeo-interfluve. Arsenic concentration data have been inputted into Google Earth and the palaeo-channels marked where the arsenic concentration is greater than 10 µg/L, and palaeo-interfluves where arsenic concentration is less than 10 µg/L. The surface morphologies in these domains have been examined for similarities, and it was shown that avulsion scars and abandoned river channels are found where arsenic concentrations are greater than 10 µg/L. Conversely the surrounding areas that are devoid of channel scars have arsenic concentrations less than 10 µg/L. Using the correlation between avulsion features being representative of palaeo-channels and high arsenic concentrations, sites were selected that had a similar surface morphology to the type localities. A comparison of these images and arsenic concentrations showed that the postulate is valid for over 80 percent of cases. Where this is not valid, this could indicate that the subsurface

  17. ACCELERATED SOLVENT EXTRACTION OF ARSENICALS FROM SEAFOOD MATRICES WITH ION CHROMATOGRAPHY AND ICP-MS DETECTION

    Science.gov (United States)

    The two major sources of arsenic exposure are water and diet. Dietary exposure is considerably more difficult to assess because of the diversity of arsenicals present in dietary matrices coupled with species dependent toxicity of arsenic. Dietary arsenic assessments are further c...

  18. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    Science.gov (United States)

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  19. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic Re

  20. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Yan Xiulan [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Liao Xiaoyong, E-mail: liaoxy@igsnrr.ac.cn [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Wen Yi; Chong Zhongyi; Liang Tao [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China)

    2011-12-15

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level ({>=}10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: > Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. > P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. > Phenanthrene suppresses arsenic translocation from roots to fronds. > Phenanthrene causes As(III) elevation in roots while reduction in fronds. > Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  1. Draft Genome Sequence of Brevibacterium linens AE038-8, an Extremely Arsenic-Resistant Bacterium.

    Science.gov (United States)

    Maizel, Daniela; Utturkar, Sagar M; Brown, Steven D; Ferrero, Marcela A; Rosen, Barry P

    2015-01-01

    To understand the arsenic biogeocycles in the groundwaters at Tucumán, Argentina, we isolated Brevibacterium linens sp. strain AE38-8, obtained from arsenic-contaminated well water. This strain is extremely resistant to arsenicals and has arsenic resistance (ars) genes in its genome. Here, we report the draft genome sequence of B. linens AE38-8. PMID:25883298

  2. Draft Genome Sequence of Brevibacterium linens AE038-8, an Extremely Arsenic-Resistant Bacterium

    OpenAIRE

    Maizel, Daniela; Utturkar, Sagar M.; Brown, Steven D.; Ferrero, Marcela A.; ROSEN, BARRY P.

    2015-01-01

    To understand the arsenic biogeocycles in the groundwaters at Tucumán, Argentina, we isolated Brevibacterium linens sp. strain AE38-8, obtained from arsenic-contaminated well water. This strain is extremely resistant to arsenicals and has arsenic resistance (ars) genes in its genome. Here, we report the draft genome sequence of B. linens AE38-8.

  3. Effects of organic matter and ageing on the bioaccessibility of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, Louise; Koch, Iris [Environmental Sciences Group, Royal Military College, P.O. Box 17 000, Station Forces, Kingston, Ontario K7K7B4 (Canada); Reimer, Kenneth J., E-mail: reimer-k@rmc.ca [Environmental Sciences Group, Royal Military College, P.O. Box 17 000, Station Forces, Kingston, Ontario K7K7B4 (Canada)

    2011-10-15

    Arsenic-contaminated soils may pose a risk to human health. Redevelopment of contaminated sites may involve amending soils with organic matter, which potentially increases arsenic bioaccessibility. The effects of ageing on arsenic-contaminated soils mixed with peat moss were evaluated in a simulated ageing period representing two years, during which arsenic bioaccessibility was periodically measured. Significant increases (p = 0.032) in bioaccessibility were observed for 15 of 31 samples tested, particularly in comparison with samples originally containing >30% bioaccessible arsenic in soils naturally rich in organic matter (>25%). Samples where percent arsenic bioaccessibility was unchanged with age were generally poor in organic matter (average 7.7%) and contained both arsenopyrite and pentavalent arsenic forms that remained unaffected by the organic matter amendments. Results suggest that the addition of organic matter may lead to increases in arsenic bioaccessibility, which warrants caution in the evaluation of risks associated with redevelopment of arsenic-contaminated land. - Highlights: > Adding organic matter to contaminated soils may increase arsenic bioaccessibility. > Ageing soils with >25% organic matter can lead to increased arsenic bioaccessibility. > No changes in arsenic bioaccessibility for soils poor in organic matter (mean 7.7%). > No changes in arsenic bioaccessibility for samples containing arsenopyrite. > Organic matter in soil may favour oxidation of trivalent arsenic to pentavalent form. - Adding organic carbon may increase arsenic bioaccessibility, especially in samples originally containing >30% bioaccessible arsenic in organic carbon-rich soils (>25%).

  4. Detecting and quantifying lewisite degradation products in environmental samples using arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Bass, D.A.; Yaeger, J.S.; Kiely, J.T.; Crain, J.S.; Shem, L.M.; O`Neill, H.J.; Gowdy, M.J. [Argonne National Lab., IL (United States); Besmer, M.; Mohrman, G.B. [Rocky Mountain Arsenal, Commerce City, CO (United States)

    1995-12-31

    This report describes a unique method for identifying and quantifying lewisite degradation products using arsenic (III) and arsenic (IV) speciation in solids and in solutions. Gas chromatographic methods, as well as high-performance liquid chromatographic methods are described for separation of arsenic species. Inductively coupled plasma-mass spectrographic methods are presented for the detection of arsenic.

  5. HPLC-ICP-MS for a comparative study on the extraction approaches for arsenic speciation in terrestrial plant, Ceratophyllum demersum

    International Nuclear Information System (INIS)

    For the determination of arsenic compounds in terrestrial plant samples, crucial step is the efficient extraction of arsenic from the solid plant matrix. However, the use of methanol-water extraction often resulted in low extraction efficiencies of less than 50%. In this study, eight solid- liquid extraction procedures (mainly based on mechanical mixing and sonication) were valuated for the recovery of arsenic species from a submerged freshwater plant, coontail (Ceratophyllum demersum), collected in Moira River, Ontario, Canada. Speciation of As in the extracts was carried out with both anion-, nd cation-exchange HPLC with sector-field inductively coupled plasma mass spectrometric (SF-ICP-MS) detection. The results obtained depended critically n the extraction solvents used in different extraction procedures. Extraction with methanol-water led only to 9%?44% recoveries of As. A high extraction yield (approximately 82%) was obtained by water extraction. Alkaline hydrolysis also resulted in high extraction efficiencies (86%?98%), ut severe oxidation of As(III) to As(V) was observed. A protease enzymatic extraction led to a recovery of 48%. Approximately 0.5% of the total As in he plant sample was lipid-soluble. It was found that the extraction of inorganic arsenic species was suppressed by the presence of methanol in the extraction solvents, while high content of methanol in the extraction solvents was effective for the extraction of organic arsenic species. Therefore, it is recommended to perform the extraction both with water alone nd with methanol-water (9+1, v/v), in order to obtain the complete As species profile in terrestrial plants. (author)

  6. Secondary arsenic minerals in the environment: A review

    Czech Academy of Sciences Publication Activity Database

    Drahota, P.; Filippi, Michal

    2009-01-01

    Roč. 35, č. 8 (2009), s. 1243-1255. ISSN 0160-4120 R&D Projects: GA AV ČR KJB300130702 Institutional research plan: CEZ:AV0Z30130516 Keywords : arsenic * secondary arsenic mineral * environmental sample * solubility * environmental stability Subject RIV: DD - Geochemistry Impact factor: 4.786, year: 2009

  7. History of Arsenic as a Poison and Medicinal

    Science.gov (United States)

    Since ancient times, human exposure to the metalloid arsenic has been both intentional and unintentional. The intentional exposure to arsenic has been to inflict harm on others as well as to be a curative agent for those who are ill. The unintentional exposure has either been f...

  8. Assessment of natural arsenic in groundwater in Cordoba Province, Argentina.

    Science.gov (United States)

    Francisca, Franco M; Carro Perez, Magalí E

    2009-12-01

    Groundwater in the central part of Argentina contains arsenic concentrations that, in most cases, exceed the value suggested by international regulations. In this region, Quaternary loessical sediments with a very high volcanic glass fraction lixiviate arsenic and fluoride after weathering. The objectives of this study are to analyze the spatial distribution of arsenic in different hydrogeological regions, to define the naturally expected concentration in an aquifer by means of hydrogeochemistry studies, and to identify emergent health evidences related to cancer mortality in the study area. The correlation between arsenic and fluoride concentrations in groundwater is analyzed at each county in the Cordoba Province. Two dimensionless geoindicators are proposed to identify risk zones and to rapidly visualize the groundwater quality related to the presence of arsenic and fluoride. A surface-mapping system is used to identify the spatial variability of concentrations and for suggesting geoindicators. The results show that the Chaco-Pampean plain hydrogeologic region is the most affected area, with arsenic and fluoride concentrations in groundwater being generally higher than the values suggested by the World Health Organization (WHO) for drinking water. Mortality related to kidney, lung, liver, and skin cancer in this area could be associated to the ingestion of arsenic-contaminated water. Generated maps provide a base for the assessment of the risk associated to the natural occurrence of arsenic and fluoride in the region. PMID:19165608

  9. Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila

    International Nuclear Information System (INIS)

    Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg-1 dry weight of arsenic when exposed to 40 μM for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa. - Tetrahymena thermophila can rapidly methylate arsenic, and produce volatile arsenicals.

  10. FIELD STUDY OF ARSENIC REMOVAL FROM GROUNDWATER BY ZEROVALENT IRON

    Science.gov (United States)

    Contamination of ground-water resources by arsenic is a widespread environmental problem; consequently, there is a need for developments and improvements of remedial technologies to effectively manage arsenic contamination in ground water and soils. In June 2005, a 7 m long, 14 ...

  11. Adsorption characteristics of arsenic and boron by soil

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, M.

    1986-01-01

    In order to obtain baseline data concerning the surface and ground water pollution caused by coal ash disposal, adsorption characteristics of arsenic (III) and boron by soil have been studied through laboratory experiments. The main results are as follows: (1) Arsenic (III) and boron adsorption on soil was strongly dependent on pH with adsorption maxima at pH 8 and 8-9, respectively. (2) Arsenic (III) and boron adsorption on soil over the entire concentration ranges investigated could be described by the Langmuir adsorption isotherm and the Freundlich adsorption isotherm, respectively. The Henry adsorption isotherm was also applicable over the lower concentration ranges of arsenic (III) and boron (As (III): < 0.1 deltag/ml; B: < 5deltag/ml.) (3) Arsenic (III) and boron adsorption on soil is controlled mainly by the contents of extractable Fe oxide and hydroxide for arsenic (III) and by the contents of extractable Al hydroxide and allophane (amorphous aluminium silicates) for boron. (4) Adsorption and movement of arsenic (III) and boron during the infiltration of coal ash leachate in soil layer were investigated by means of the unsteady-state, one-dimensional convective-diffusive mass transport model. This model is very useful for evaluation and prediction of the contamination of ground water by trace elements such as arsenic (III) and boron leached at coal ash disposal site.

  12. POU/POE TREATMENT OF ARSENIC IN GROUND WATER

    Science.gov (United States)

    Point-of-use/Point-of-entry (POU/POE) arsenic removal systems were installed in seventeen homes that were found to have high levels of arsenic (50-480ug/L) in their well water. This presetation will describe the process and the problems encountered in selecting the treatment syst...

  13. Arsenic in detergents: Possible danger and pollution hazard

    Science.gov (United States)

    Angino, E.E.; Magnuson, L.M.; Waugh, T.C.; Galle, O.K.; Bredfeldt, J.

    1970-01-01

    Arsenic at a concentration of 10 to 70 parts per million has been detected in several common presoaks and household detergents. Arsenic values of 2 to 8 parts per billion have been measured in the Kansas River. These concentrations are close to the amount (10 parts per billion) recommended by the United States Public Health Service as a drinking-water standard.

  14. Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xixiang [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang Yongyu; Yang Jun [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhu Yongguan, E-mail: ygzhu@rcees.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2011-04-15

    Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg{sup -1} dry weight of arsenic when exposed to 40 {mu}M for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa. - Tetrahymena thermophila can rapidly methylate arsenic, and produce volatile arsenicals.

  15. Analytical Strategies for the Determination of Arsenic in Rice

    Directory of Open Access Journals (Sweden)

    Bruno E. S. Costa

    2016-01-01

    Full Text Available Arsenic is an element of concern given its toxicological significance, even at low concentrations. Food is a potential route of exposure to inorganic arsenic and in this regard arsenic in rice is associated with soil contamination, fertilizer application, and the use of arsenic-containing irrigation water. Therefore, there is a need to investigate the regional rice crops with a view to future discussions on the need for possible regulatory measures. Several studies have reported high concentrations of arsenic in rice grown in soils irrigated with contaminated water; however, procedures used, including sample pretreatment and preconcentration steps, have to be followed to ensure sensitivity, accuracy, and reproducibility. Arsenic is a difficult element to measure in complex matrices, such as foods, because the matrix must be destroyed at an elevated temperature without the loss of the analyte or contamination. This review summarizes the major methods for the determination of arsenic in rice samples. The main purpose of this review is to provide an update on the recent literature concerning the strategies for the determination of arsenic and to critically discuss their advantages and weaknesses. These difficulties are described along with recent developments aimed at overcoming these potential issues.

  16. Arsenic Methylation, Oxidative Stress and Cancer - Is there a Link?

    Science.gov (United States)

    Arsenic is a multiorgan human carcinogen. The best-known example of this effect occurred in subgroups of the Taiwanese population who were chronically exposed to high levels of naturally occurring arsenic in drinking water and developed cancers of the skin, lung, urinary bladde...

  17. Arsenic in Ground-Water Resources of the United States

    Science.gov (United States)

    Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Focazio, Michael J.

    2000-01-01

    Arsenic is a naturally occurring element in rocks, soils, and the waters in contact with them. Recognized as a toxic element for centuries, arsenic today also is a human health concern because it can contribute to skin, bladder, and other cancers (National Research Council, 1999). Recently, the National Research Council (1999) recommended lowering the current maximum contaminant level (MCL) allowed for arsenic in drinking water of 50 ?g/L (micrograms per liter), citing risks for developing bladder and other cancers. The U.S. Environmental Protection Agency (USEPA) will propose a new, and likely lower, arsenic MCL during 2000 (U.S. Environmental Protection Agency, 2000). This fact sheet provides information on where and to what extent natural concentrations of arsenic in ground water exceed possible new standards. The U.S. Geological Survey (USGS) has collected and analyzed arsenic in potable (drinkable) water from 18,850 wells in 595 counties across the United States during the past two decades. These wells are used for irrigation, industrial purposes, and research, as well as for public and private water supply. Arsenic concentrations in samples from these wells are similar to those found in nearby public supplies (see Focazio and others, 1999). The large number of samples, broad geographic coverage, and consistency of methods produce a more accurate and detailed picture of arsenic concentrations than provided by any previous studies.

  18. Arsenic in Ground Water of the United States

    Science.gov (United States)

    ... p.34-36. (2001) DATA Arsenic in ground-water resources of the United States : U.S. Geological Survey Fact Sheet 063-00. (2000) ... analysis on the occurrence of arsenic in ground-water resources of the United States and limitations in drinking-water-supply characterizations : U.S. ...

  19. The microbial arsenic cycle in Mono Lake, California.

    Science.gov (United States)

    Oremland, Ronald S; Stolz, John F; Hollibaugh, James T

    2004-04-01

    Significant concentrations of dissolved inorganic arsenic can be found in the waters of a number of lakes located in the western USA and in other water bodies around the world. These lakes are often situated in arid, volcanic terrain. The highest concentrations of arsenic occur in hypersaline, closed basin soda lakes and their remnant brines. Although arsenic is a well-known toxicant to eukaryotes and prokaryotes alike, some prokaryotes have evolved biochemical mechanisms to exploit arsenic oxyanions (i.e., arsenate and arsenite); they can use them either as an electron acceptor for anaerobic respiration (arsenate), or as an electron donor (arsenite) to support chemoautotrophic fixation of CO(2) into cell carbon. Unlike in freshwater or marine ecosystems, these processes may assume quantitative significance with respect to the carbon cycle in arsenic-rich soda lakes. For the past several years our research has focused on the occurrence and biogeochemical manifestations of these processes in Mono Lake, a particularly arsenic-rich environment. Herein we review some of our findings concerning the biogeochemical arsenic cycle in this lake, with the hope that it may broaden the understanding of the influence of microorganisms upon the speciation of arsenic in more common, less "extreme" environments, such as drinking water aquifers. PMID:19712427

  20. An attempt to electrically enhance phytoremediation of arsenic contaminated water

    NARCIS (Netherlands)

    Kubiak, J.J.; Khankhane, P.J.; Kleingeld, P.J.; Lima, A.T.

    2012-01-01

    Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately and in combination. Lemna minor was chosen for As remediat

  1. Removal of arsenic from contaminated water using coagulation enhanced microfiltration

    International Nuclear Information System (INIS)

    Results of an innovative arsenic removal process were presented. The process is based on a combination of coagulation and microfiltration processes. Coagulation-Enhanced Microfiltration (CEMF) may eventually become a full-scale commercial technology. This study focused on the process with respect to groundwater treatment because of the importance of arsenic contamination in drinking water. Most experiments were bench-scale using tap water spiked with arsenic. Ferric chloride, which is commonly used in arsenic removal processes was also added. In addition, some tests were conducted on actual arsenic-contaminated water from the effluent treatment plant of a former mining site in Ontario. Results indicate a high arsenic removal efficiency in both spiked and actual water solutions. The microfiltration significantly reduced the level of arsenic in the treatment. This paper described the characteristics of membrane separation. It also presented information regarding chemically enhanced membrane filtration and coagulation-enhanced microfiltration. Bench-scale tests were conducted with both tubular membranes and with immersed capillary membranes. The effect of iron to arsenic ratios on the effectiveness of the system was also tested. It was recommended that future research should include a field study of the process on a pilot-scale to optimize process parameters and to accurately determine the cost of the process. 16 refs., 8 tabs., 9 figs

  2. ASSESSING ARSENIC EXPOSURE AND SKIN HYPERKERATOSIS IN INNER MONGOLIA, CHINA

    Science.gov (United States)

    Arsenic is a known human carcinogen. The inorganic forms, especially arsenite (As+3), are believed to be the most toxic species. Methylation is often considered to be thedetoxification pathway for the metabolism of inorganic arsenic. The ground water in Ba Men, Inner Mo...

  3. Coregulated genes link sulfide:quinone oxidoreductase and arsenic metabolism in Synechocystis sp. strain PCC6803.

    Science.gov (United States)

    Nagy, Csaba I; Vass, Imre; Rákhely, Gábor; Vass, István Zoltán; Tóth, András; Duzs, Agnes; Peca, Loredana; Kruk, Jerzy; Kós, Péter B

    2014-10-01

    Although the biogeochemistry of the two environmentally hazardous compounds arsenic and sulfide has been extensively investigated, the biological interference of these two toxic but potentially energy-rich compounds has only been hypothesized and indirectly proven. Here we provide direct evidence for the first time that in the photosynthetic model organism Synechocystis sp. strain PCC6803 the two metabolic pathways are linked by coregulated genes that are involved in arsenic transport, sulfide oxidation, and probably in sulfide-based alternative photosynthesis. Although Synechocystis sp. strain PCC6803 is an obligate photoautotrophic cyanobacterium that grows via oxygenic photosynthesis, we discovered that specific genes are activated in the presence of sulfide or arsenite to exploit the energy potentials of these chemicals. These genes form an operon that we termed suoRSCT, located on a transposable element of type IS4 on the plasmid pSYSM of the cyanobacterium. suoS (sll5036) encodes a light-dependent, type I sulfide:quinone oxidoreductase. The suoR (sll5035) gene downstream of suoS encodes a regulatory protein that belongs to the ArsR-type repressors that are normally involved in arsenic resistance. We found that this repressor has dual specificity, resulting in 200-fold induction of the operon upon either arsenite or sulfide exposure. The suoT gene encodes a transmembrane protein similar to chromate transporters but in fact functioning as an arsenite importer at permissive concentrations. We propose that the proteins encoded by the suoRSCT operon might have played an important role under anaerobic, reducing conditions on primordial Earth and that the operon was acquired by the cyanobacterium via horizontal gene transfer. PMID:25022856

  4. Monitoring response and resistance to the novel arsenical darinaparsin in an AML patient

    Directory of Open Access Journals (Sweden)

    Torsten HolmNielsen

    2013-02-01

    Full Text Available Acute myeloid leukemia (AML with inversion of chromosome 3 is characterized by overexpression of EVI1 and carries a dismal prognosis. Arsenic-containing compounds have been described to be efficacious in malignancies overexpressing EVI1. Here we describe a case of AML with inv(3(q21q26.2 treated with the organic arsenical darinaparsin. Using a “personalized medicine approach”, different arsenicals were screened for anti-leukemic effect against the patient’s cells ex vivo. The most promising compound, darinaparsin, was selected for in vivo treatment. Clinical effect was almost immediate, with a normalization of temperature, a stabilization of white blood cell (WBC counts and an increased quality of life. Longitudinal monitoring of patient response and resistance incorporating significant correlative studies on patient derived blood samples over the two cycles of darinaparsin given to this patient allowed us to evaluate potential mechanisms of response and resistance. The anti-leukemic effects of darinaparsin correlated with inhibition of the alternative NF-κB pathway and production of the inflammatory cytokine IL-8. Emergence of resistance was suspected during treatment cycle 2 and supported by xenograft studies in nude mice. Darinaparsin resistance correlated with an attenuation of the effect of treatment on the alternative NF-κB pathway. The results from this patient indicate that darinaparsin may be a good treatment option for inv(3 AML and that inhibition of the alternative NF-κB pathway may be predictive of response. Longitudinal monitoring of disease response as well as several correlative parameters allowed for the generation of novel correlations and predictors of response to experimental therapy in a heavily pretreated patient.

  5. Arsenic and diabetes and hypertension in human populations: A review

    International Nuclear Information System (INIS)

    Long-term exposure to ingested arsenic from drinking water has been well documented to be associated with an increased risk of diabetes mellitus and hypertension in a dose-response relationship among residents of arseniasis-endemic areas in southwestern Taiwan and Bangladesh. An increased risk of self-reported hypertension but not diabetes was reported in a community-based study of residents who consumed drinking water with a low level of arsenic. Increased glycosylated hemoglobin level and systolic blood pressure were observed in workers occupationally exposed to arsenic. Inconsistent findings of arsenic and diabetes in occupational studies may result from the healthy worker effect and the variation in exposure measurement, age composition, number of patients, accuracy in diagnosis and classification of underlying causes of death, competing causes of death, and method to detect diabetes. The dose-response relationship and toxicological mechanisms of arsenic-induced diabetes and hypertension need further elucidation

  6. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2014-12-01

    Full Text Available The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS. In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5. In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine were studied. The arsenic contamination of soils in the vicinity of nonferrous metals smelter KCM SA, Plovdiv, Bulgaria as a result of zinc and lead productions has been studied.

  7. Study on arsenic metabolism in animals by neutron activation analysis

    International Nuclear Information System (INIS)

    Male rats fed a diet of 5% Hijiki or 5% cellulose for 2 weeks, were administered large doses of sodium arsenate (Na2HAsO4) during two days. After 24 to 48 hours of the last arsenic administration, respective organs were isolated and dried. Potions of these were irradiated with thermal neutrons in a research reactor of Research Reactor Institute, Kyoto University, KUR. Arsenic concentrations were determined as gamma radiation from 76As. The Hijiki diet enhanced higher concentrations of arsenic in the blood cells than did the cellulose diet. These results suggested that the Hijiki diet has some effects on arsenic metabolism concerning arsenic distribution in body and its excretion. (author)

  8. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    Science.gov (United States)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are

  9. Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia

    Science.gov (United States)

    Arsenic exposure from contaminated well water is a cause of skin and bladder cancer and linked to numerous other adverse health effects. Residents of the Bayingnormen region of Inner Mongolia, China, have been exposed to arsenic-contaminated well water for over 20 years but few s...

  10. Accumulation of arsenic in leaves and grain are affected by variety and soil arsenic

    Science.gov (United States)

    The arsenic (As) levels in rice grains and food products can reach toxic levels when produced under certain growing conditions found mostly in Asia. The World Health Organization (WHO) recently set a CODEX limit of 0.2 ppm inorganic As in milled white rice, and lower limits are expected to be set f...

  11. Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications

    Czech Academy of Sciences Publication Activity Database

    Majzlan, J.; Plášil, Jakub; Škoda, R.; Gescher, J.; Kögler, F.; Rusznyak, A.; Küsel, K.; Neu, T.R.; Mangold, S.; Rothe, J.

    2014-01-01

    Roč. 48, č. 23 (2014), s. 13685-13693. ISSN 0013-936X R&D Projects: GA ČR GP13-31276P Institutional support: RVO:68378271 Keywords : extreme arsenic concentration Subject RIV: DB - Geology ; Mineralogy Impact factor: 5.330, year: 2014

  12. Attenuation of arsenic neurotoxicity by curcumin in rats

    International Nuclear Information System (INIS)

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  13. Investigation of effective urinary ingredient that can change chemical form of methylated arsenicals

    International Nuclear Information System (INIS)

    Complete text of publication follows. Arsenic pollution in Bangladesh and India (West Bengal) is associated with serious health hazards. Recent studies have revealed that trivalent methylated arsenicals such as monomethylarsonous acid (MMAsIII), which is a metabolic intermediate of methylation pathway, is more toxic than inorganic arsenic trioxide. We found that preincubation of MMAsIII with human urine samples resulted in a decrease in cytotoxicity of MMAsIII. However, there is a large difference in the effectiveness of the protection against MMAsIII cytotoxicity among individual urine samples. The effective urine samples were found not only in Japanese but also in Bangladesh people. Therefore, we attempted to clarify the mechanism underlying the detoxification of MMAsIII by human urine, and to identify the effective ingredient in human urine. MMAsIII was synthesized as a cysteine or glutathione conjugate, and cytotoxicity of MMAsIII was determined by AlamarBlue assay using human bladder urothelial (UROtsa) cells. Incubation of MMAsIII with effective urine samples resulted in a decrease in cellular arsenic incorporation. Speciation of chemical forms of arsenicals in urine was performed by HPLC-ICP-MS. It was found that MMAsIII was converted to MMAsV during the incubation with effective urine samples, but not by non-effective urine samples. Cellular incorporation of MMAsV was markedly lower than that of MMAsIII. These effects were not lost by boiling the urine, but lost by the removal of low-molecular-weight ingredients by dialysis, suggesting that the effective urine samples contain a heat-stable and low-molecular-weight ingredient, which can convert MMAsIII to MMAsV. To identify an effective component in urine, we applied urine samples to capillary electrophoresis connected to time-of-flight mass spectrometry (CE-TOFMS) and compared the concentrations of each component between effective and non-effective urine samples. As a result, several candidate compounds

  14. Multipurpose Compound

    Science.gov (United States)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  15. Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009

    OpenAIRE

    Zhao, Chungui; Zhang, Yi; Chan, Zhuhua; Chen, Shicheng; YANG, SUPING

    2015-01-01

    Arsenic (As) is widespread in the environment and causes numerous health problems. Rhodopseudomonas palustris has been regarded as a good model organism for studying arsenic detoxification since it was first demonstrated to methylate environmental arsenic by conversion to soluble or gaseous methylated species. However, the detailed arsenic resistance mechanisms remain unknown though there are at least three arsenic-resistance operons (ars1, ars2, and ars3) in R. palustris. In this study, we i...

  16. Impact of Arsenic Toxicity on Black Gram and Its Amelioration Using Phosphate

    OpenAIRE

    Saumya Srivastava; Yogesh Kumar Sharma

    2013-01-01

    The toxicity of arsenic in soil and ground water is one of the most important environmental problems particularly in South-East Asia. Arsenic-polluted irrigation water creates hazard in soil environment and also in crop quality. In the present study, response of black gram (Vigna mungo L.) to arsenic with or without phosphate application was investigated. Arsenic-treated plants showed reduction in their growth and pigment content. Arsenic significantly enhanced lipid peroxidation, electrolyte...

  17. Losses of arsenic during the low temperature ashing of atmospheric particulate samples

    International Nuclear Information System (INIS)

    Neutron activation and atomic absorption procedures have been used to study arsenic losses during low temperature ashing at power levels between 50 and 125 watts (RF). Losses of arsenic from ambient atmospheric particulate matter and various synthetic sea salt matrices containing known quantities of arsenic was observed. In general, the magnitude of arsenic losses by this treatment will depend on applied power levels and the physical and chemical properties of the arsenic sample matrix

  18. Arsenic fractionation by sequential extractions in standard reference materials and industrially contaminated soil samples: Applicability and drawbacks

    Energy Technology Data Exchange (ETDEWEB)

    Herreweghe, S. van; Swennen, R. [Fysico-Chemische Geologie, Heverlee (Belgium)

    2003-07-01

    Availability mobility (phyto)toxycity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The aim of this research was to assess the applicability of sequential extractions on highly contaminated soils where arsenic is also present as discrete As-bearing minerals. Sequential extractions are mostly developed to fractionate heavy metals occurring in trace amounts and their applicability on highly contaminated samples remains insufficiently studied. There was, furthermore, a need to evaluate sequential extraction schemes specifically focussing on metalloid element extraction such as arsenic. (orig.)

  19. Selective arsenic purification during the oxidizing digestion by a carbonated liquor of a uraniferous ore containing some

    International Nuclear Information System (INIS)

    An uranium bearing ore containing arsenical substances as impurities is digested in the presence of an oxidant by an aqueous liquor composed of a recycling solution containing alkaline carbonates and bicarbonates, as well as the uranium approaching its solubility limit, in conditions of concentration, temperature and pressure bringing about the solubilization of the uranium present in the ore and its precipitation in the digesting medium. A solid phase suspension is collected from a liquid phase which, after cooling, undergoes separation. During digestion the liquid phase is recycled and the separated solid phase is treated with an aqueous liquor to redissolve the precipitated uranium. The arsenic solubilized during the digestion is extracted by means of a magnesium compound, introduced in a quantity not less than the stoichiometric amount needed to bring about the precipitation of the magnesium arsenate

  20. Evaluation of Molecular Markers and Analytical Methods Documenting the Occurrence of Mustard Gas and Arsenical Warfare Agents in Soil.

    Science.gov (United States)

    Sassolini, Alessandro; Brinchi, Giampaolo; Di Gennaro, Antonio; Dionisi, Simone; Dominici, Carola; Fantozzi, Luca; Onofri, Giorgio; Piazza, Rosario; Guidotti, Maurizio

    2016-09-01

    The chemicals warfare agents (CWAs) are an extremely toxic class of molecules widely produced in many industrialized countries for decades, these compounds frequently contained arsenic. The plants where the CWAs have been produced or the plants where they have been demilitarized after the Second World War with unacceptable techniques can represent a serious environmental problem. CWAs standards are difficult to find on market so in present work an environmental assessment method based on markers has been proposed. Triphenylarsine, phenylarsine oxide and thiodiglycol have been selected as markers. Three reliable analytical methods based on gaschromatography and mass detection have been proposed and tested for quantitative analysis of markers. Methods performance have been evaluated testing uncertainty, linearity, recovery and detection limits and also comparing detection limits with exposure limits of reference CWAs. Proposed assessment methods have been applied to a case study of a former industrial plant sited in an area characterized by a high background of mineral arsenic. PMID:27385368

  1. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  2. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  3. Ground water pollution by arsenic and its effects on health. Removal of arsenic from water; Suichu karano hiso no jokyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, S.

    1997-07-10

    Recently environmental standard for ground water is established. It is pointed out that the need of arsenic`s removal from water is expected in high level. Present condition of removal techniques of inorganic nitrogen and problems are explained. For example, ferro (III) chloride method is effective in As(V) and most suitable range is pH4{approx}5. Removal is possible until 0.005 when initial concentration is 0.2 mg{center_dot}l{sup -1}. As far as secondary problems are, there are dry treatment of generated sludge and disposal. Earth adsorbent as a new adsorbent is adsorption method is expected. Lanthanum and yttrium compounds possess adsorption for As(III) and As(V) and re-generation use is also possible. For example, removal of As(V) with initial concentration 19 mg{center_dot}l{sup -1} until 0.01 is possible at pH5{approx}77 range when hydroxide lanthanum is used as an adsorbent. Further special characteristics of each method are explained. It is concluded that a good removal method should be selected by considering raw water`s quality, capacity of treatment water, use of treatment water and economics. 29 refs., 2 figs.

  4. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan

    International Nuclear Information System (INIS)

    Long-term exposure to ingested inorganic arsenic is associated with peripheral vascular disease (PVD) in the blackfoot disease (BFD)-hyperendemic area in Taiwan. This study further examined the interaction between arsenic exposure and urinary arsenic speciation on the risk of PVD. A total of 479 (220 men and 259 women) adults residing in the BFD-hyperendemic area were studied. Doppler ultrasound was used to diagnose PVD. Arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE). Urinary levels of total arsenic, inorganic arsenite (AsIII) and arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV) were determined. Primary methylation index [PMI = MMAV/(AsIII + AsV)] and secondary methylation index (SMI = DMAV/MMAV) were calculated. The association between PVD and urinary arsenic parameters was evaluated with consideration of the interaction with CAE and the confounding effects of age, sex, body mass index, total cholesterol, triglycerides, cigarette smoking, and alcohol consumption. Results showed that aging was associated with a diminishing capacity to methylate inorganic arsenic and women possessed a more efficient arsenic methylation capacity than men did. PVD risk increased with a higher CAE and a lower capacity to methylate arsenic to DMAV. The multivariate-adjusted odds ratios for CAE of 0, 0.1-15.4, and >15.4 mg/L x year were 1.00, 3.41 (0.74-15.78), and 4.62 (0.96-22.21), respectively (P 6.93, PMI > 1.77 and SMI > 6.93, PMI > 1.77 and SMI ≤ 6.93, and PMI ≤ 1.77 and SMI ≤ 6.93 were 1.00, 2.93 (0.90-9.52), 2.85 (1.05-7.73), and 3.60 (1.12-11.56), respectively (P V have a higher risk of developing PVD in the BFD-hyperendemic area in Taiwan

  5. Incineration treatment of arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Waterland, L.R.; King, C.; Richards, M.K.; Thurnau, R.C.

    1991-01-01

    An incineration test program was conducted at the US Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The purpose of these tests was to evaluate the incinerability of these soils in terms of the fate of arsenic and lead and the destruction of organic contaminants during the incineration process. The test program consisted of a series of bench-scale experiments with a muffle furnace and a series of incineration tests in a pilot-scale rotary kiln incinerator system.

  6. Arsenic biotransformation in earthworms from contaminated soils

    OpenAIRE

    Button, Mark; Jenkin, Gawen R.T.; Harrington, Chris F.; Michael J. Watts

    2009-01-01

    Two species of arsenic (As) resistant earthworm, Lumbricus rubellus and Dendrodrillus rubidus, their host soils and soil excretions (casts) were collected from 23 locations at a former As mine in Devon, UK. Total As concentrations, measured by ICP-MS, ranged from 255 to 13,080 mg kg-1 in soils, 11 to 877 mg kg-1 in earthworms and 284 to 4221 mg kg-1 in earthworm casts from a sub-sample of 10 of the 23 investigated sites. The samples were also measured for As speciation using HPLC-ICP-MS to in...

  7. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    Science.gov (United States)

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils. PMID:26874625

  8. On concentration dependence of arsenic diffusivity in silicon

    Science.gov (United States)

    Velichko, O. I.

    2016-05-01

    An analysis of the equations used for modeling thermal arsenic diffusion in silicon has been carried out. It was shown that for arsenic diffusion governed by the vacancy-impurity pairs and the pairs formed due to interaction of impurity atoms with silicon self-interstitials in a neutral charge state, the doping process can be described by the Fick’s second law equation with a single effective diffusion coefficient which takes into account two impurity flows arising due to interaction of arsenic atoms with vacancies and silicon self-interstitials, respectively. Arsenic concentration profiles calculated with the use of the effective diffusivity agree well with experimental data if the maximal impurity concentration is near the intrinsic carrier concentration. On the other hand, for higher impurity concentrations a certain deviation in the local regions of arsenic distribution is observed. The difference from the experiment can occur due to the incorrect use of effective diffusivity for the description of two different impurity flows or due to the formation of nonuniform distributions of neutral vacancies and neutral self-interstitials in heavily doped silicon layers. We also suppose that the migration of nonequilibrium arsenic interstitial atoms makes a significant contribution to the formation of a low concentration region on thermal arsenic diffusion.

  9. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  10. Arsenic pollution in the Yellowknife area from gold smelter activities

    International Nuclear Information System (INIS)

    Gold mined at Yelloknife in the North West Territories of Canada is associated with arsenopyrite ores which necessitates the oxidation of the arsenic and sulphur by roasting at two Yellowknife smelters. As2O3 and SO2 are emitted into the atmosphere, and despite improvements in emission control, significant emissions still occur. In order to asses the arsenic contamination in the local environment and the potential exposures to man, soil samples and samples of the native vegetation were collected in and around Yellowknife and the two smelters. Arsenic and antimony analyses were done by instrumental neutron activation analysis using the SLOWPOKE facility at University of Toronto. Zinc, copper, lead and cadmium analyses were done by atomic adsorption spectrophotometry. Arsenic was found to be accumulated in the soils in the vicinity of the two smelters to levels of several thousand ppm. Antimony levels were about 10% of arsenic and were highly correlated with arsenic. Zinc occured to 500 ppm around the smelters. Soil arsenic levels are sufficiently high to inhibit root growth in soils over a very extensive area. (author)

  11. Investigation of biomethylation of arsenic and tellurium during composting

    International Nuclear Information System (INIS)

    Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg-1 methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg-1 methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials.

  12. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  13. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 1013 n/cm2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  14. Arsenic rich iron plaque on macrophyte roots - an ecotoxicological risk?

    International Nuclear Information System (INIS)

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcollar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root + plaque' material in excess of 1000 mg kg-1, and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcollar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque. - Accumulation of metals with iron plaque on macrophyte roots in wetlands poses an ecotoxicological risk to certain herbivores

  15. Arsenic rich iron plaque on macrophyte roots - an ecotoxicological risk?

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, M.A. [School of Biological Sciences, University of Aberdeen, Cruickshank Bld, St Machar Drive, Aberdeen, AB24 3UU (United Kingdom); Instituto de Investigacion en Recursos Cinegeticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain)], E-mail: mark.taggart@uclm.es; Mateo, R. [Instituto de Investigacion en Recursos Cinegeticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain); Charnock, J.M.; Bahrami, F. [Synchrotron Radiation Department, CCLRC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom); Green, A.J. [Department of Wetland Ecology, Estacion Biologica de Donana, CSIC, Pabellon del Peru, Avenida Maria Luisa s/n, 41013 Seville (Spain); Meharg, A.A. [School of Biological Sciences, University of Aberdeen, Cruickshank Bld, St Machar Drive, Aberdeen, AB24 3UU (United Kingdom)

    2009-03-15

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcollar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root + plaque' material in excess of 1000 mg kg{sup -1}, and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcollar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque. - Accumulation of metals with iron plaque on macrophyte roots in wetlands poses an ecotoxicological risk to certain herbivores.

  16. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Gaile, Daniel P. [Department of Biostatistics, School of Public Health and Health Professions, the State University of New York, Buffalo, NY 14214 (United States); Gong, Zhihong [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Qiu, Wenting [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Ge, Yichen [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Olson, James R. [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Kavanagh, Terrance J. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 (United States); Wu, Hongmei, E-mail: hongmeiwwu@hotmail.com [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China)

    2015-03-15

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  17. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  18. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater.

    Science.gov (United States)

    Anawar, Hossain M; Akai, Junji; Sakugawa, Hiroshi

    2004-02-01

    Arsenic leaching by bicarbonate ions has been investigated in this study. Subsurface sediment samples from Bangladesh were treated with different carbonate and bicarbonate ions and the results demonstrate that the arsenic leaching efficiency of the carbonate solutions decreased in the order of Na2CO3>NaHCO3>BaCO3>MnCO3. Sodium carbonate and bicarbonate ions extracted arsenic most efficiently; Na2CO3 leached maximum 118.12 microg/l of arsenic, and NaHCO3, 94.56 microg/l of arsenic from the Ganges delta sediments after six days of incubation. The arsenic concentrations extracted in the batch experiments correlated very well with the bicarbonate concentrations. The kinetics study of arsenic release indicates that arsenic-leaching rate increased with reaction time in bicarbonate solutions. Bicarbonate ions can extract arsenic from sediment samples in both oxic and anoxic conditions. A linear relationship found between arsenic contents in core samples and those in leachates suggests that dissolved arsenic concentration in groundwater is related to the amount of arsenic in aquifer sediments. In batch experiment, bicarbonate solutions effectively extracted arsenic from arsenic adsorbed iron oxyhydroxide, reflecting that bicarbonate solutions may mobilize arsenic from iron and manganese oxyhydroxide in sediments that are ubiquitous in subsurface core samples. Carbonate ion may form complexes on the surface sites of iron hydroxide and substitute arsenic from the surface of minerals and sediments resulting in release of arsenic to groundwater. Like in the batch experiment, arsenic and bicarbonate concentrations in groundwater of Bangladesh correlated very well. Therefore, bicarbonate leaching is presumed to be one important mechanism to mobilize arsenic in bicarbonate dominated reducing aquifer of Bangladesh and other parts of the world as well. PMID:14602108

  19. Study on morphological transformation of the arsenic migration process in tungsten mine tailings%钨矿尾矿砂中砷迁移过程中的形态转化研究

    Institute of Scientific and Technical Information of China (English)

    赵永红; 曹鑫康; 周丹; 张静

    2013-01-01

    In order to master the arsenic contamination status and migration or transformation rules in the mining areas, experiments including the total quantity analysis and morphological analysis for arsenic in tailings and surrounding soil were carried out for tungsten mining area in Gannan District. Research shows that the content of arsenic in tailings and surrounding soil are significantly higher than that in the background soil. In tailings, the arsenic mainly exists in formation of organic compound and the residual; however, it mainly exists as the compound linked to oxides of Fe-Mn in the soil. The morphology of the arsenic is transformable in the migration process.%  对赣南某钨矿区堆积的尾砂以及其周围土壤中的As进行了全量和形态分析,以期掌握矿区砷污染现状及其迁移转化规律。研究表明,尾矿砂和土壤中的As明显高于当地的土壤背景值;尾矿砂中As主要以有机结合态和残渣态的形式存在,土壤中As主要以铁-锰氧化物结合态的形式存在;As在迁移过程中各形态间可能发生转化。

  20. Analytical artefacts in the speciation of arsenic in clinical samples

    International Nuclear Information System (INIS)

    Urine and blood samples of cancer patients, treated with high doses of arsenic trioxide were analysed for arsenic species using HPLC-HGAFS and, in some cases, HPLC-ICPMS. Total arsenic was determined with either flow injection-HGAFS in urine or radiochemical neutron activation analysis in blood fractions (in serum/plasma, blood cells). The total arsenic concentrations (during prolonged, daily/weekly arsenic trioxide therapy) were in the μg mL-1 range for urine and in the ng g-1 range for blood fractions. The main arsenic species found in urine were As(III), MA and DMA and in blood As(V), MA and DMA. With proper sample preparation and storage of urine (no preservation agents/storage in liquid nitrogen) no analytical artefacts were observed and absence of significant amounts of alleged trivalent metabolites was proven. On the contrary, in blood samples a certain amount of arsenic can get lost in the speciation procedure what was especially noticeable for the blood cells although also plasma/serum gave rise to some disappearance of arsenic. The latter losses may be attributed to precipitation of As(III)-containing proteins/peptides during the methanol/water extraction procedure whereas the former losses were due to loss of specific As(III)-complexing proteins/peptides (e.g. cysteine, metallothionein, reduced GSH, ferritin) on the column (Hamilton PRP-X100) during the separation procedure. Contemporary analytical protocols are not able to completely avoid artefacts due to losses from the sampling to the detection stage so that it is recommended to be careful with the explanation of results, particularly regarding metabolic and pharmacokinetic interpretations, and always aim to compare the sum of species with the total arsenic concentration determined independently

  1. Analytical artefacts in the speciation of arsenic in clinical samples

    Energy Technology Data Exchange (ETDEWEB)

    Slejkovec, Zdenka [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)], E-mail: zdenka.slejkovec@ijs.si; Falnoga, Ingrid [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Goessler, Walter [Institute of Chemistry - Analytical Chemistry, Karl-Franzens University Graz, Universitaetsplatz 1, Graz (Austria); Elteren, Johannes T. van [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Raml, Reingard [Institute of Chemistry - Analytical Chemistry, Karl-Franzens University Graz, Universitaetsplatz 1, Graz (Austria); Podgornik, Helena; Cernelc, Peter [University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana (Slovenia)

    2008-01-21

    Urine and blood samples of cancer patients, treated with high doses of arsenic trioxide were analysed for arsenic species using HPLC-HGAFS and, in some cases, HPLC-ICPMS. Total arsenic was determined with either flow injection-HGAFS in urine or radiochemical neutron activation analysis in blood fractions (in serum/plasma, blood cells). The total arsenic concentrations (during prolonged, daily/weekly arsenic trioxide therapy) were in the {mu}g mL{sup -1} range for urine and in the ng g{sup -1} range for blood fractions. The main arsenic species found in urine were As(III), MA and DMA and in blood As(V), MA and DMA. With proper sample preparation and storage of urine (no preservation agents/storage in liquid nitrogen) no analytical artefacts were observed and absence of significant amounts of alleged trivalent metabolites was proven. On the contrary, in blood samples a certain amount of arsenic can get lost in the speciation procedure what was especially noticeable for the blood cells although also plasma/serum gave rise to some disappearance of arsenic. The latter losses may be attributed to precipitation of As(III)-containing proteins/peptides during the methanol/water extraction procedure whereas the former losses were due to loss of specific As(III)-complexing proteins/peptides (e.g. cysteine, metallothionein, reduced GSH, ferritin) on the column (Hamilton PRP-X100) during the separation procedure. Contemporary analytical protocols are not able to completely avoid artefacts due to losses from the sampling to the detection stage so that it is recommended to be careful with the explanation of results, particularly regarding metabolic and pharmacokinetic interpretations, and always aim to compare the sum of species with the total arsenic concentration determined independently.

  2. Arsenic in public water supplies and cardiovascular mortality in Spain

    International Nuclear Information System (INIS)

    Background: High-chronic arsenic exposure in drinking water is associated with increased cardiovascular disease risk. At low-chronic levels, as those present in Spain, evidence is scarce. In this ecological study, we evaluated the association of municipal drinking water arsenic concentrations during the period 1998-2002 with cardiovascular mortality in the population of Spain. Methods: Arsenic concentrations in drinking water were available for 1721 municipalities, covering 24.8 million people. Standardized mortality ratios (SMRs) for cardiovascular (361,750 deaths), coronary (113,000 deaths), and cerebrovascular (103,590 deaths) disease were analyzed for the period 1999-2003. Two-level hierarchical Poisson models were used to evaluate the association of municipal drinking water arsenic concentrations with mortality adjusting for social determinants, cardiovascular risk factors, diet, and water characteristics at municipal or provincial level in 651 municipalities (200,376 cardiovascular deaths) with complete covariate information. Results: Mean municipal drinking water arsenic concentrations ranged from 10 μg/L. Compared to municipalities with arsenic concentrations 10 μg/L, respectively (P-value for trend 0.032). The corresponding figures were 5.2% (0.8% to 9.8%) and 1.5% (-4.5% to 7.9%) for coronary heart disease mortality, and 0.3% (-4.1% to 4.9%) and 1.7% (-4.9% to 8.8%) for cerebrovascular disease mortality. Conclusions: In this ecological study, elevated low-to-moderate arsenic concentrations in drinking water were associated with increased cardiovascular mortality at the municipal level. Prospective cohort studies with individual measures of arsenic exposure, standardized cardiovascular outcomes, and adequate adjustment for confounders are needed to confirm these ecological findings. Our study, however, reinforces the need to implement arsenic remediation treatments in water supply systems above the World Health Organization safety standard of 10 μg/L.

  3. Measurements of Arsenic in the Urine and Nails of Individuals Exposed to Low Concentrations of Arsenic in Drinking Water From Private Wells in a Rural Region of Québec, Canada.

    Science.gov (United States)

    Gagnon, Fabien; Lampron-Goulet, Eric; Normandin, Louise; Langlois, Marie-France

    2016-01-01

    Chronic exposure to inorganic arsenic leads to an increased risk of cancer. A biological measurement was conducted in 153 private well owners and their families consuming water contaminated by inorganic arsenic at concentrations that straddle 10 μg/L. The relationship between the external dose indicators (concentration of inorganic arsenic in wells and daily well water inorganic arsenic intake) and the internal doses (urinary arsenic--sum of As(III), DMA, and MMA, adjusted for creatinine--and total arsenic in toenails) was evaluated using multiple linear regressions, controlling for age, gender, dietary sources of arsenic, and number of cigarettes smoked. It showed that urinary arsenic was associated with concentration of inorganic arsenic in wells (p water inorganic arsenic intake (p water inorganic arsenic intake (p = .017) and rice consumption (p = .022) in children (n = 43). The authors' study reinforces the drinking-water quality guidelines for inorganic arsenic. PMID:26867295

  4. Compound odontoma

    Directory of Open Access Journals (Sweden)

    Monica Yadav

    2012-01-01

    Full Text Available Odontomas have been extensively reported in the dental literature, and the term refers to tumors of odontogenic origin. Though the exact etiology is still unknown, the postulated causes include: local trauma, infection, inheritance and genetic mutation. The majority of the lesions are asymptomatic; however, may be accompanied with pain and swelling as secondary complaints in some cases. Here, we report a case of a compound odontome in a 14 year old patient.

  5. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2006-01-01

    In 2005, seawater and natural brines accounted for 51% of US magnesium compounds production. World magnesia production was estimated to be 14.5 Mt. Most of the production came from China, North Korea, Russia and Turkey. Although no specific production figures are available, Japan and the United States are estimated to account for almost one-half of the world's capacity from seawater and brines.

  6. An Immunohistological and in Situ Hybridization Study of Arsenical Keratosis

    OpenAIRE

    FUJIWARA, Hiroshi; Tazawa, Toshio; Yamamoto, Ayako; Ito, Masaaki

    1996-01-01

    Arsenical keratosis (AK) is a common early sign of chronic arsenicism. The association between arsenicism and Bowen's disease is well documented, but a definitive understanding of the relation between AK and Bowen's disease remains elusive. In this study, eight cases of AK were examined immunohistologically with antibodies for cytokeratins, epidermal growth factor receptor, erbB2 protein, c-myc protein, and ki-67. An in situ hybridization study for c-myc, v-erb-B, and erbB2 mRNA was also perf...

  7. Arsenic-transforming microbes and their role in biomining processes

    OpenAIRE

    Drewniak, L.; Sklodowska, A.

    2013-01-01

    It is well known that microorganisms can dissolve different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital elements (e.g., P, Fe, S, Mg and Mo), but some may also contain toxic metals or metalloids, like arsenic. The toxicity of arsenic is disclosed after the dissolution of the mineral, which raises two important questions: (1) why do microorganisms dissolve arsenic-bearing minerals and release this metal into the environment in a tox...

  8. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  9. Reduction in Urinary Arsenic with Bottled-water Intervention

    OpenAIRE

    Josyula, Arun B.; McClellen, Hannah; Hysong, Tracy A.; Kurzius-Spencer, Margaret; Poplin, Gerald S.; Stürup, Stefan; Burgess, Jefferey L.

    2006-01-01

    The study was conducted to measure the effectiveness of providing bottled water in reducing arsenic exposure. Urine, tap-water and toenail samples were collected from non-smoking adults residing in Ajo (n=40) and Tucson (n=33), Arizona, USA. The Ajo subjects were provided bottled water for 12 months prior to re-sampling. The mean total arsenic (μg/L) in tap-water was 20.3±3.7 in Ajo and 4.0±2.3 in Tucson. Baseline urinary total inorganic arsenic (μg/L) was significantly higher among the Ajo s...

  10. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    International Nuclear Information System (INIS)

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  11. The Total Arsenic Concentrations of Aquatic Products and the Assessment of Arsenic Intake from Aquatic Products in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Yu Guang-Hui

    2015-07-01

    Full Text Available The aim of this study was to assess the contribution of aquatic products consumed by the resident to the daily dietary arsenic intakes of the residents of Guangzhou of Guangdong province in China. All aquatic products were sampled from supermarkets and terminal markets. Accuracy was assured using standard reference material (GBW08551 and recovery experiments. Total arsenic concentrations of aquatic products were determined after acid digestion by hydride generation atomic fluorescent spectrometry. A wide range of arsenic concentration (0.0075-1.2017 mg/kg was found among the various aquatic products, the mean arsenic concentration in aquatic production was 0.2022 mg/kg. The arsenic concentrations of various aquatic products groups were as follows: Crustacean (0.3176±0.2324 mg/kg >Mollusk fish (0.1979±0.2013 mg/k >Saltwater fish (0.1558±0.1119 mg/kg >Freshwater fish (0.1374±0.0970 mg/kg. The range of daily dietary arsenic intake of various residents through the consumption of aquatic products was 5.96-11.85 µg/day. The freshwater fish had the largest contribution to the daily dietary arsenic intakes from aquatic products in all type aquatic products, accounted for around 50%.

  12. Bacterial respiration of arsenic and selenium

    Science.gov (United States)

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  13. Arsenic trioxide: an ancient drug revived

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin

    2012-01-01

    Objective To summarize the clinical applications of arsenic trioxide (ATO) in the treatment of acute promyelocytic leukemia (APL),as well as non-APL malignancies and to discuss the mechanisms and adverse effects involved in ATO administration.Data sources The data in this article were collected from PubMed and CHKD database with relevant English and Chinese articles published from 1957 to 2011,with key words including acute promyelocytic leukemia,arsenic trioxide,treatment,and mechanism.Study selection Articles including any information about ATO in the treatment of APL were selected.Results APL is a rare subtype of acute myeloid leukemia,with dismal prognosis under treatment with traditional chemotherapy.ATO impressively increases the complete remission rate and prolongs survival of patients with APL,with only mild and transient adverse effects.The advances in the understanding of multiple mechanisms involved in ATO treatment will benefit more cancers in future.Conclusion Deeper understanding of mechanisms involved in ATO treatment may provide rationales for future clinical applications in a number of human malignancies.Chin Med J 2012; 125( 19):3556-3560

  14. Arsenic chemistry and remediation in Hawaiian soils.

    Science.gov (United States)

    Hue, Nguyen V

    2013-01-01

    Past use of arsenical pesticides has resulted in elevated levels of arsenic (As) in some Hawaiian soils. Total As concentrations of 20-100 mg/kg are not uncommon, and can exceed 900 mg/kg in some lands formerly planted with sugarcane. With high contents of amorphous aluminosilicates and iron oxides in many Hawaii's volcanic ash-derived Andisols, a high proportion (25-30%) of soil As was associated with either these mineral phases or with organic matter. Less than 1% of the total As was water soluble or exchangeable. Furthermore, the soils can sorb As strongly: the addition of 1000 mg/kg as As (+5) resulted in only between 0.03 and 0.30 mg/L As in soil solution. In contrast, soils having more crystalline minerals (e.g., Oxisols) sorb less As and thus often contain less As. Phosphate fertilization increases As bioaccessibility, whereas the addition of Fe(OH)3 decreases it. Brake fern (Pteris vittata L.) can be used to remove some soil As. Concentrations of As in fronds varied on average from 60 mg/kg when grown on a low-As Oxisol to 350 mg/kg when grown on a high-As Andisol. Ratios of leaf As to CaCl2-extractable soil As were 12 and 222 for the Oxisol and Andisol, respectively. PMID:23487989

  15. Removal of arsenic from ground water samples collected from West Bengal, India

    International Nuclear Information System (INIS)

    Arsenic contamination in ground water is one of the major concerns in many parts of the world including Bangladesh and India. Considering the high toxicity of arsenic, World Health Organization (WHO) has set a provisional guideline value of 10 μg L-1 for arsenic in drinking water. Several methods have been adopted for the removal of arsenic from drinking water. Most of the methods fail to remove As(III), the most toxic form of arsenic. An extra oxidative treatment step is essential for effective removal of total arsenic. Manganese dioxide (MnO2) oxidizes As(III) to As(V). Removal of arsenic from water using manganese dioxide has been reported. During this work, removal of arsenic from ground water samples collected from arsenic contaminated area of West Bengal, India were carried out using MnO2

  16. Bioaccessibility and degradation of naturally occurring arsenic species from food in the human gastrointestinal tract.

    Science.gov (United States)

    Chávez-Capilla, Teresa; Beshai, Mona; Maher, William; Kelly, Tamsin; Foster, Simon

    2016-12-01

    Humans are exposed to organic arsenic species through their diet and therefore, are susceptible to arsenic toxicity. Investigating the transformations occurring in the gastrointestinal tract will influence which arsenic species to focus on when studying metabolism in cells. Using a physiologically based extraction test, the bioaccessibility of arsenic species was determined after the simulated gastrointestinal digestion of rice, seaweed and fish. Pure standards of the major arsenic species present in these foodstuffs (arsenic glutathione complexes, arsenosugars and short chain fatty acids) were also evaluated to assess the effect of the food matrix on bioaccessibility and transformation. Approximately 80% of arsenic is released from these foodstuffs, potentially becoming available. Hydrolysis and demethylation of arsenic glutathione complexes and arsenosugars standards was observed, but no transformations occurred to arsenosugars present in seaweed. Demethylation of MA and DMA from rice occurs increasing the amount of inorganic arsenic species available for metabolism. PMID:27374523

  17. DEVELOPMENT OF ARSENIC SPECIATION METHODOLOGY FOR DETERMINING BACKGROUND EXPOSURE LEVELS OF INORGANIC ARSENIC IN DIETARY SAMPLES AND APPLICATION TO IN VITRO BIOACCESSIBILITY STUDIES

    Science.gov (United States)

    Ingestion of arsenic is the primary route of exposure for most people, with dietary intake and drinking water as the primary sources of that exposure. Traditionally, measurements of arsenic dietary intake are based on food consumption data coupled with total arsenic data from a ...

  18. Management of the Arsenic Groundwater System Lagunera - MEXICO

    Science.gov (United States)

    Boochs, P. W.; Billib, M.; Aparicio, J.; Gutierrez, C.

    2007-05-01

    Arsenic in drinking water is considered one of the most important environmental causes of cancer mortality in the world. Groundwater resources of the Comarca Lagunera region (Northern Mexico), which represents the main source of drinking water for more than 2 million people in the area, show arsenic concentrations ranging from 5 to 750 micro g/l. Large areas have concentrations quite above the Mexican standard of 25 micro g/l for human use and consumption. The aquifer is overexploited and the groundwater levels at the central part of the aquifer are drawn down more than 100 m in less than 50 years. The drawdown provoked the dissolution and migration of the geogenic existing arsenic within the aquifer. The presence of arsenic has been related to several potential sources. It was found out, that the main source is geothermal activity, less mining and the use of arsenical pesticides. The process of the geneses of the arsenic pollution implicates, that the highest content is on the bottom of the aquifer. Data analysis showed, that arsenic concentration is correlated to the age of the groundwater. "Older" water has higher arsenic content than "younger" water and the oldest water can be found at the bottom of the aquifer. Before 1950 the groundwater level in the Comarca Lagunera was close to the surface and there were only dug and shallow wells with low groundwater abstraction. The water was pumped from the upper parts of the aquifer and because this was "young" water it had low arsenic content. Then after 1950 a lot of wells, mainly for irrigation, were built and in 2002 there were 2350 active wells with an abstraction of about 1088 Mio cbm/year. In consequence to this the groundwater level decreased extraordinary. More and more "older" water was pumped and the arsenic content increased. Furthermore at the beginning of 1960 the river Nazas was canalized and lined, so that the natural groundwater recharge by infiltration from the river was stopped. By this way, the

  19. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs. Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-, SO4(2-/total sulfur ratio, and Fe(2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  20. A methodological approach for the identification of arsenic bearing phases in polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Matera, V.; Le Hecho, I.; Laboudigue, A.; Thomas, P.; Tellier, S.; Astruc, M

    2003-11-01

    Arsenic in the three polluted soils is mainly associated with neoformed amorphous iron (hydr)oxides. - A methodological approach is used to characterize arsenic pollution in three soils and to determine arsenic speciation and association with solid phases in three polluted soils. HPLC-ICP-MS was used for arsenic speciation analysis, SEM-EDS and XRD for physical characterization of arsenic pollution, and sequential chemical extractions to identify arsenic distribution. Arsenic was concentrated in the finest size fractions also enriched in iron and aluminium. Total arsenic concentrations in soils are close to 1%. Arsenic was mainly present as arsenate, representing more than 90% of total arsenic. No crystallised arsenic minerals were detected by XRD analysis. SEM-EDS observations indicated arsenic/iron associations. Modified Tessier's procedure showed that arsenic was mainly extracted from amorphous iron oxide phase. The results of this methodological approach lead to predict the formation of iron arsenates in the case of one of the studied soils while arsenic sorption on iron amorphous (hydr)oxides seemed to be the determinant in the two other soils.

  1. A methodological approach for the identification of arsenic bearing phases in polluted soils

    International Nuclear Information System (INIS)

    Arsenic in the three polluted soils is mainly associated with neoformed amorphous iron (hydr)oxides. - A methodological approach is used to characterize arsenic pollution in three soils and to determine arsenic speciation and association with solid phases in three polluted soils. HPLC-ICP-MS was used for arsenic speciation analysis, SEM-EDS and XRD for physical characterization of arsenic pollution, and sequential chemical extractions to identify arsenic distribution. Arsenic was concentrated in the finest size fractions also enriched in iron and aluminium. Total arsenic concentrations in soils are close to 1%. Arsenic was mainly present as arsenate, representing more than 90% of total arsenic. No crystallised arsenic minerals were detected by XRD analysis. SEM-EDS observations indicated arsenic/iron associations. Modified Tessier's procedure showed that arsenic was mainly extracted from amorphous iron oxide phase. The results of this methodological approach lead to predict the formation of iron arsenates in the case of one of the studied soils while arsenic sorption on iron amorphous (hydr)oxides seemed to be the determinant in the two other soils

  2. Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells

    International Nuclear Information System (INIS)

    Humans are exposed to arsenic and their organic derivatives, which are widely distributed in the environment, via food, water, and to a lesser extent, via air. Following uptake, inorganic arsenic undergoes biotransformation to mono- and dimethylated metabolites. Recent findings suggest that the methylation reactions represent a toxification rather than a detoxification pathway. In the present study, the genotoxic effects and the cellular uptake of inorganic arsenic [arsenate, Asi(V); arsenite, Asi(III)] and the methylated arsenic species monomethylarsonic acid [[MMA(V)], monomethylarsonous acid [MMA(III)], dimethylarsinic acid [DMA(V)], dimethylarsinous acid [DMA(III)], trimethylarsenic oxide [TMAO(V)] were investigated in Chinese hamster ovary (CHO-9) cells. The chemicals were applied at different concentrations (0.1 μM to 10 mM) for 30 min and 1 h, respectively. Cytotoxic effects were investigated by the trypan blue extrusion test and genotoxic effects by the assessment of micronucleus (MN) induction, chromosome aberrations (CA), and sister chromatid exchanges (SCE). Intracellular arsenic concentrations were determined by ICP-MS techniques. Our results show that MMA(III) and DMA(III) induce cytotoxic and genotoxic effects to a greater extent than MMA(V) or DMA(V). Viability was significantly decreased after incubation (1 h) of the cells with ≥ 1 μM Asi(III), ≥ 1 μM Asi(V), ≥ 500 μM MMA(III), ≥ 100 μM MMA(V), and 500 μM DMA(V) and ≥ 0.1 μM DMA(III). TMAO(V) was not cytotoxic at concentrations up to 10 mM. A significant increase of the number of MN, CA and SCE was found for DMA(III) and MMA(III). Asi(III + V) induced CA and SCE but no MN. TMAO(V), MMA(V) and DMA(V) were not genotoxic in the concentration range tested (up to 5 mM). The nuclear division index (NDI) was not affected by any of the tested arsenic compounds after a recovery period of 14 to 35 h. When the uptake of the chemicals was measured by ICP-MS analysis, it was found that only 0

  3. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure

    International Nuclear Information System (INIS)

    8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography with tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.

  4. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chung, Chi-Jung [Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Chu, Jan-Show [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Yang, Hsiu-Yuan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China)

    2012-08-01

    8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography with tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.

  5. Difunctional aromatic arsenic acids as reagents for liquid-liquid extraction of scandium(III)

    International Nuclear Information System (INIS)

    The arsenic compounds [C6H5As(0)OH]2(CH2)sub(n), (n = 1 to 4, 6, 8) were prepared in yields ranging from 17 to 40% from phenyldichloroarsine as a starting material by synthetic methods reported in the literature. Scandium(III) was extracted by the dimethylene compound (n = 2) in the pH range 1.0 to 2.5, with the extraction coefficient, Esub(a)0, reaching a maximum value of 1.3 at an aqueous equilibrium pH of 2.3 corresponding to the extraction of about 75% of the scandium initially present in the aqueous solution. Likewise, the compound where n = 4 was studied in the pH range 0.8 to 3.0 and the compound where n = 8 was studied in the pH range 0.0 to 2.1. The maximum values of Esub(a)0 were 35 (98% extraction) and 93 (99% extraction) at aqueous equilibrium pH of 2.7 and 1.8 for n = 4 and 8, respectively. The log Esub(a)0 was found to be second power dependent on the logarithm of the aqueous equilibrium [H+] for the compounds with n = 2, 4 and 8. Reagent dependence studies showed that the log Esub(a)0 for scandium was second power dependent on the logarithm of the uncomplexed concentration of reagent. Water and chloride were coextracted into the organic phase. (author)

  6. N-6-Adenine-Specific DNA Methyltransferase 1 (N6AMT1) Polymorphisms and Arsenic Methylation in Andean Women

    OpenAIRE

    Harari, Florencia; Engström, Karin; Concha, Gabriela; Colque, Graciela; Vahter, Marie; Broberg, Karin

    2013-01-01

    BACKGROUND: In humans, inorganic arsenic is metabolized to methylated metabolites mainly by arsenic (+3 oxidation state) methyltransferase (AS3MT). AS3MT polymorphisms are associated with arsenic metabolism efficiency. Recently, a putative N-6-adenine-specific DNA methyltransferase 1 (N6AMT1) was found to methylate arsenic in vitro. OBJECTIVE: We evaluated the role of N6AMT1 polymorphisms in arsenic methylation efficiency in humans. METHODS: We assessed arsenic methylation efficiency in 188 w...

  7. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India.

    Science.gov (United States)

    Sarkar, Angana; Kazy, Sufia K; Sar, Pinaki

    2013-03-01

    Sixty-four arsenic (As) resistant bacteria isolated from an arsenic rich groundwater sample of West Bengal were characterized to investigate their potential role in subsurface arsenic mobilization. Among the isolated strains predominance of genera Agrobacterium/Rhizobium, Ochrobactrum and Achromobacter which could grow chemolitrophically and utilize arsenic as electron donor were detected. Higher tolerance to As(3+) [maximum tolerable concentration (MTC): ≥10 mM], As(5+) (MTC: ≥100 mM) and other heavy metals like Cu(2+), Cr(2+), Ni(2+) etc. (MTC: ≥10 mM), presence of arsenate reductase and siderophore was frequently observed among the isolates. Ability to produce arsenite oxidase and phosphatase enzyme was detected in 50 and 34 % of the isolates, respectively. Although no direct correlation among taxonomic identity of bacterial strains and their metabolic abilities as mentioned above was apparent, several isolates affiliated to genera Ochrobactrum, Achromobacter and unclassified Rhizobiaceae members were found to be highly resistant to As(3+) and As(5+) and positive for all the test properties. Arsenate reductase activity was found to be conferred by arsC gene, which in many strains was coupled with arsenite efflux gene arsB as well. Phylogenetic incongruence between the 16S rRNA and ars genes lineages indicated possible incidence of horizontal gene transfer for ars genes. Based on the results we propose that under the prevailing low nutrient condition inhabitant bacteria capable of using inorganic electron donors play a synergistic role wherein siderophores and phosphatase activities facilitate the release of sediment bound As(5+), which is subsequently reduced by arsenate reductase resulting into the mobilization of As(3+) in groundwater. PMID:23238642

  8. Oceanic arsenic detoxication: the path of arsenic in marine food chains

    International Nuclear Information System (INIS)

    Arsenate appears to be readily metabolized by all marine algae. Its metabolism and mechanisms for biodegradation of the accumulated arsenolipids was investigated. The objective was to acquire sufficient understanding of the paths of arsenic in marine food chains to be able to evaluate the problems it might present to marine organisms and their effective productivity and the hazards its intermediates might present in marine products for human nutrition

  9. Arsenic distribution in soils and plants of an arsenic impacted former mining area

    International Nuclear Information System (INIS)

    A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg-1 in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg-1. - Highlights: → Environmental assessment of an abandoned arsenical tungsten mining exploitation. → Under the present soils conditions As mobility is relatively low, with [As]soluble/[As]total ≤ 2%. → The highest risk of As mobilisation would take place under reducing conditions. → The shrubs Salix atrocinerea and Genista scorpius are suitable for revegetation. → The species Scirpus holoschoenus accumulates high As contents at root level. - The plants Salix atrocinerea, Genista scorpius and Scirpus holoschoenus are suitable for revegetation or phytostabilisation approaches of As-polluted soils.

  10. Photooxidation of arsenic(III) to arsenic(V) on the surface of kaolinite clay.

    Science.gov (United States)

    Ding, Wei; Wang, Yajie; Yu, Yingtan; Zhang, Xiangzhi; Li, Jinjun; Wu, Feng

    2015-10-01

    As one of the most toxic heavy metals, the oxidation of inorganic arsenic has drawn great attention among environmental scientists. However, little has been reported on the solar photochemical behavior of arsenic species on top-soil. In the present work, the influencing factors (pH, relative humidity (RH), humic acid (HA), trisodium citrate, and additional iron ions) and the contributions of reactive oxygen species (ROS, mainly HO and HO2/O2(-)) to photooxidation of As(III) to As(V) on kaolinite surfaces under UV irradiation (λ=365nm) were investigated. Results showed that lower pH facilitated photooxidation, and the photooxidation efficiency increased with the increase of RH and trisodium citrate. Promotion or inhibition of As(III) photooxidation by HA was observed at low or high dosages, respectively. Additional iron ions greatly promoted the photooxidation, but excessive amounts of Fe(2+) competed with As(III) for oxidation by ROS. Experiments on scavengers indicated that the HO radical was the predominant oxidant in this system. Experiments on actual soil surfaces proved the occurrence of As(III) photooxidation in real topsoil. This work demonstrates that the photooxidation process of As(III) on the soil surface should be taken into account when studying the fate of arsenic in natural soil newly polluted with acidic wastewater containing As(III). PMID:26456603

  11. Arsenic distribution in soils and plants of an arsenic impacted former mining area

    Energy Technology Data Exchange (ETDEWEB)

    Otones, V. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Alvarez-Ayuso, E., E-mail: esther.alvarez@irnasa.csic.es [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Garcia-Sanchez, A.; Santa Regina, I. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Murciego, A. [Department of Geology, Plza. de los Caidos s/n., Salamanca University, 37008 Salamanca (Spain)

    2011-10-15

    A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg{sup -1} in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg{sup -1}. - Highlights: > Environmental assessment of an abandoned arsenical tungsten mining exploitation. > Under the present soils conditions As mobility is relatively low, with [As]{sub soluble}/[As]{sub total} {<=} 2%. > The highest risk of As mobilisation would take place under reducing conditions. > The shrubs Salix atrocinerea and Genista scorpius are suitable for revegetation. > The species Scirpus holoschoenus accumulates high As contents at root level. - The plants Salix atrocinerea, Genista scorpius and Scirpus holoschoenus are suitable for revegetation or phytostabilisation approaches of As-polluted soils.

  12. Speciation of arsenic and mercury in feed: why and how?

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Sloth, Jens Jørgen

    The understanding of the mechanisms of biological activities and biotransformation of trace elements such as arsenic and mercury has improved during recent years with the help of chemical speciation studies. However, the most important practical application of elemental speciation is in the area of...... toxicology. Toxicological knowledge on the individual trace element species can lead to more specific legislation of hazardous substances found in feed. Examples here are arsenic, where the inorganic forms are the most toxic, and mercury, where the organic form methylmercury is more toxic than inorganic...... mercury. In the present paper an overview of the current knowledge on arsenic and mercury speciation in feed and analytical methodologies for arsenic and mercury speciation analysis are given. Additionally the current status and expected future developments within legislation for trace element speciation...

  13. Speciation neutron activation analysis for arsenic in marine fish

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) methods involving chemical separations prior to irradiations can be developed to determine the species of an element. The technique can be called speciation NAA (SNAA). We have developed SNAA methods for assaying various arsenic species, namely As(III), As(V), dimethyl arsonic acid (DMA), monomethylarsinic acid (MMA), arsenobetaine (AsB), organically bound arsenic (OBAs), and lipid-soluble arsenic (LSAs) in marine fish samples. The method involves extraction by a methanol-MIBK-water system, cation exchange chromatography, and HPLC followed by NAA. The detection limits for various arsenic species are around 20 ng g-1 of fish under the experimental conditions of 2-h irradiation in a neutron flux of 5x1011 cm-2 s-1 at the Dalhousie University SLOWPOKE-2 facility. Details of the methods and results are presented

  14. A terminal molybdenum arsenide complex synthesized from yellow arsenic.

    Science.gov (United States)

    Curley, John J; Piro, Nicholas A; Cummins, Christopher C

    2009-10-19

    A terminal molybdenum arsenide complex is synthesized in one step from the reactive As(4) molecule. The properties of this complex with its arsenic atom ligand are discussed in relation to the analogous nitride and phosphide complexes. PMID:19764796

  15. ARSENIC INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    Science.gov (United States)

    Useful biomarkers of arsenic effects in both experimental animals and humans are needed. Arsenate and arsenite are good inducers of rat hepatic and renal heme oxygenase (HO); monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are not. Therefore, HO enzyme induction ...

  16. Treatment of arsenic-contaminated water using akaganeite adsorption

    Science.gov (United States)

    Cadena C., Fernando; Johnson, Michael D.

    2008-01-01

    The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

  17. Speciation of arsenic and mercury in feed: why and how?

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Sloth, Jens Jørgen

    2011-01-01

    The understanding of the mechanisms of biological activities and biotransformation of trace elements such as arsenic and mercury has improved during recent years with the help of chemical speciation studies. However, the most important practical application of elemental speciation is in the area of...... toxicology. Toxicological knowledge on the individual trace element species can lead to more specific legislation of hazardous substances found in feed. Examples here are arsenic, where the inorganic forms are the most toxic, and mercury, where the organic form methylmercury is more toxic than inorganic...... mercury. In the present paper an overview of the current knowledge on arsenic and mercury speciation in feed and analytical methodologies for arsenic and mercury speciation analysis are given. Additionally the current status and expected future developments within legislation for trace element speciation...

  18. The polarographic electroreduction of uranyl ion in arsenic acid solution

    International Nuclear Information System (INIS)

    The electroreduction of uranyl ion in arsenic acid studied by d.c. polarography shows one reduction wave at all the used arsenic acid concentrations corresponding to one electron reduction mechanism. At low arsenic acid concentration (0,1 - 0,3 M)UO2(ClO4)2 is reduced to HUO2AsO4. At higher acid concentration (0,6 M) the HUO2AsO4 molecules are reduced to UO2+ (pentavalent uranium). It is also reliable to study polarographic behaviour of uranyl ions in arsenic acid solutions up to pH 3,01. It is also possible to apply this method for the analytical determination of uranyl ion concentrations up to 2 mM. (Author)

  19. Biotransformation of inorganic arsenic in germfree and conventional mice

    International Nuclear Information System (INIS)

    Whole-body retention of orally administered 74As-labelled arsenic increased with increasing dose (0.4-4 mg/kg b.wt) in mice. As(III) was retained to a greater extent than As(V) at the high doses. Methylated arsenic (in percent of dose) in 48-hour urine decreased with increasing dose level. As(III) was generally more methylated than As(V). Differences in retention in relation to valence state and dose is discussed against the differences in methylation, binding and excretion of the different forms of arsenic. Germfree mice were shown to methylate inorganic arsenic to the same extent as conventional mice. Intestinal bacteria can thus not be a major source of methylation in mice. (author)

  20. Arsenic in Ground Water of the United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image shows national-scale patterns of naturally occurring arsenic in potable ground-water resources of the continental United States. The image was generated...