WorldWideScience

Sample records for arsenic 86

  1. Arsenic

    Science.gov (United States)

    ... of countries, including Argentina, Bangladesh, Chile, China, India, Mexico, and the United States of America. Drinking-water, ... ingestion of inorganic arsenic include developmental effects, neurotoxicity, diabetes, pulmonary disease and cardiovascular disease. Arsenic-induced myocardial ...

  2. Arsenic ototoxicity

    Institute of Scientific and Technical Information of China (English)

    Gulin Gokçen Kesici

    2016-01-01

    High levels of arsenic are found in many parts of the world and more than 100 million people may have been exposed to it. There is growing evidence to indicate that arsenic has a deleterious effect on the auditory system. This paper provides the general information of arsenic and its ototoxic effects.

  3. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Schoolmeester, W.L.; White, D.R.

    1980-02-01

    Arsenic poisoning continues to require awareness of its diverse clinical manifestations. Industry is the major source of arsenic exposure. Although epidemiologic studies strongly contend that arsenic is carcinogenic, there are little supportive research data. Arsenic poisoning, both acute and chronic, is often overlooked initially in the evaluation of the patient with multisystem disease, but once it is suspected, many accurate methods are available to quantitate the amount and duration of exposure. Treatment with dimercaprol remains the mainstay of therapy, and early treatment is necessary to prevent irreversible complications.

  4. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Low, D.G.

    1971-01-01

    The use of arsenic in ant poisons, herbicides, and insecticides affords the necessary contact with the poison by pets. Treatment was discussed in relation to two circumstances: very early poisoning in which the owner has observed ingestion of the arsenic, and when the signs of the poisoning are evident. Treatment for early ingestion involves emptying the stomach before the arsenic can pass in quantity into the intestine. This is followed with a 1% solution of sodium bicarbonate, with the administering of 3 to 6 mg of apomorphine. When signs of arsenic toxicity are already advanced, there is little advantage to be gained by either gastric lavage or administration of an emetic. The treatment then consists of the intramuscular administration of dimercaprol (BAL) at a dosage of 3 mg/lb of body weight three times a day until recovery. This is the specific antidote for arsenic. 1 reference.

  5. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Furr, A.

    1977-01-01

    The route of arsenic exposure is usually by ingestion, thus the veterinarian is concerned with treating either an acute or a peracute condition. The arsenic compounds are considered to be highly toxic with a rapid onset of clinical signs. The toxicity and rapidity of onset are variable, depending upon the age and the species of animal. The chemical form and solubility of the toxicant also play a role in the course of the clinical syndrome. Inorganic arsenicals inhibit the sulfhydryl enzyme systems which are essential for normal cellular respiration and for metabolism of fats and carbohydrates. Therapeutic measures are intended to either remove or inactivate the unabsorbed material in the intestine, protect the alimentary tract, reverse the toxic syndrome and restore the homeostatic equilibrium of the animal. 5 references.

  6. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Low, D.G.

    1974-01-01

    The use of arsenic in ant poisons, herbicides, and insecticides affords the necessary contact with the poison by pets. The gastrointestinal tract appears to suffer the greatest though there may also be injury to the liver and kidneys. The treatments discussed were in relation to very early poisoning in which the owner had observed ingestion of the arsenic, and when the signs of the poisoning were evident. Early observation treatment included emptying the stomach before the arsenic passed in quantity into the intestine. If the signs of toxicity were already advanced, then the treatment consisted of the intramuscular administration of dimercaprol (BAL) at a dosage of 3 mg/lb of body weight three times a day until recovery. l reference.

  7. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  8. Massive acute arsenic poisonings.

    Science.gov (United States)

    Lech, Teresa; Trela, Franciszek

    2005-07-16

    Arsenic poisonings are still important in the field of toxicology, though they are not as frequent as about 20-30 years ago. In this paper, the arsenic concentrations in ante- and post-mortem materials, and also forensic and anatomo-pathological aspects in three cases of massive acute poisoning with arsenic(III) oxide (two of them with unexplained criminalistic background, in which arsenic was taken for amphetamine and one suicide), are presented. Ante-mortem blood and urine arsenic concentrations ranged from 2.3 to 6.7 microg/ml, respectively. Post-mortem tissue total arsenic concentrations were also detected in large concentrations. In case 3, the contents of the duodenum contained as much as 30.1% arsenic(III) oxide. The high concentrations of arsenic detected in blood and tissues in all presented cases are particularly noteworthy in that they are very rarely detected at these concentrations in fatal arsenic poisonings. PMID:15939162

  9. Arsenic Trioxide Injection

    Science.gov (United States)

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  10. Cryptic exposure to arsenic.

    Science.gov (United States)

    Rossy, Kathleen M; Janusz, Christopher A; Schwartz, Robert A

    2005-01-01

    Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic) and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving new technologies are not exempt from arsenic exposure. Its acute and chronic effects are noteworthy. Treatment options exist for arsenic-induced pathology, but prevention of toxicity remains the main focus. Vitamin and mineral supplementation may play a role in the treatment of arsenic toxicity.

  11. Cryptic exposure to arsenic

    Directory of Open Access Journals (Sweden)

    Rossy Kathleen

    2005-01-01

    Full Text Available Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving new technologies are not exempt from arsenic exposure. Its acute and chronic effects are noteworthy. Treatment options exist for arsenic-induced pathology, but prevention of toxicity remains the main focus. Vitamin and mineral supplementation may play a role in the treatment of arsenic toxicity.

  12. Arsenic: the forgotten poison?

    Science.gov (United States)

    Barton, E N; Gilbert, D T; Raju, K; Morgan, O S

    1992-03-01

    Chronic arsenic poisoning is an uncommon cause of peripheral neuropathy in Jamaica. A patient with this disorder is described. The insidious nature of chronic arsenic poisoning, with its disabling complications, is emphasised.

  13. Arsenic pollution sources.

    Science.gov (United States)

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  14. Arsenic compounds toxic to rice

    Energy Technology Data Exchange (ETDEWEB)

    Epps, E.A.; Sturgis, M.B.

    1939-01-01

    A study has been made of the kinds of arsenic compounds that may be toxic to rice and of means for correcting the toxicity. Some of the arsenic compounds in flooded soils are reduced, with consequent increase in soluble arsenic content of the soil and decrease in total arsenic content due to liberation of gaseous compounds of arsenic. It was demonstrated that some of the arsenic was lost as arsine. Many of the naturally-occurring compounds of arsenic are not attacked by the micro-organisms and do not become more soluble. Additions of sulfur to soils containing toxic amounts of arsenic decreased the amount of soluble arsenic in the soil.

  15. Arsenic cardiotoxicity: An overview.

    Science.gov (United States)

    Alamolhodaei, Nafiseh Sadat; Shirani, Kobra; Karimi, Gholamreza

    2015-11-01

    Arsenic, a naturally ubiquitous element, is found in foods and environment. Cardiac dysfunction is one of the major causes of morbidity and mortality in the world. Arsenic exposure is associated with various cardiopathologic effects including ischemia, arrhythmia and heart failure. Possible mechanisms of arsenic cardiotoxicity include oxidative stress, DNA fragmentation, apoptosis and functional changes of ion channels. Several evidences have shown that mitochondrial disruption, caspase activation, MAPK signaling and p53 are the pathways for arsenic induced apoptosis. Arsenic trioxide is an effective and potent antitumor agent used in patients with acute promyelocytic leukemia and produces dramatic remissions. As2O3 administration has major limitations such as T wave changes, QT prolongation and sudden death in humans. In this review, we discuss the underlying pathobiology of arsenic cardiotoxicity and provide information about cardiac health effects associated with some medicinal plants in arsenic toxicity.

  16. Arsenic removal from water

    Science.gov (United States)

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  17. Biological removal of arsenic pollution by soil fungi.

    Science.gov (United States)

    Srivastava, Pankaj Kumar; Vaish, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Singh, Nandita; Tripathi, Rudra Deo

    2011-05-15

    Fifteen fungal strains were isolated from arsenic contaminated (range 9.45-15.63 mg kg(-1)) agricultural soils from the state of West Bengal, India. Five fungal strains were belonged to the Aspergillus and Trichoderma group each, however, remaining five were identified as the Neocosmospora, Sordaria, Rhizopus, Penicillium and sterile mycelial strain. All these fungal strains were cultivated on medium supplemented with 100, 500, 1000, 5000 and 10,000 mg l(-1) of sodium arsenate. After 30-day cultivation under laboratory conditions, radial growth of these strains was determined and compared with control. Toxicity and tolerance of these strains to arsenate were evaluated on the basis of tolerance index. Out of fifteen, only five fungal strains were found resistant and survived with tolerance index pattern as 0.956 (sterile mycelial strain)>0.311 (Rhizopus sp.)>0.306 (Neocosmospora sp.)>0.212 (Penicillium sp.)>0.189 (Aspergillus sp.) at 10,000 mg l(-1) of arsenate. The arsenic removal efficacy of ten fungal strains, tolerant to 5000 mg l(-1) arsenate, was also assayed under laboratory conditions for 21 days. All these strains were cultivated individually on mycological broth enriched with 10 mg l(-1) of arsenic. The initial and final pH of cultivating medium, fungal biomass and removal of arsenic by each fungal strain were evaluated. Fungal biomass of ten strains removed arsenic biologically from the medium which were ranged from 10.92 to 65.81% depending on fungal species. The flux of biovolatilized arsenic was determined indirectly by estimating the sum of arsenic content in fungal biomass and medium. The mean percent removal as flux of biovolatilized arsenic ranged from 3.71 to 29.86%. The most effective removal of arsenic was observed in the Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal strains. These fungal strains can be effectively used for the bioremediation of arsenic-contaminated agricultural soils.

  18. Environmental Source of Arsenic Exposure

    OpenAIRE

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a ...

  19. Arsenic compounds and cancer.

    Science.gov (United States)

    Axelson, O

    1980-01-01

    Exposure to arsenic compounds has been epidemiologically associated with various types of cancers, particularly cancer of the lung among copper smelters and pesticide workers, whereas skin cancers and liver angiosarcomas have been associated with ingestion of arsenic for treatment of skin disorders, especially psoriasis. Attempts to reproduce cancer in animals have been mainly unsuccessful, however. Experimental evidence suggests that arsenic inhibits DNA repair; this might help to explain the somewhat conflicting observations from epidemiologic studies and animal experiments with regard to carcinogenicity, and perhaps also cardiovascular morbidity related to arsenic exposure. PMID:7463514

  20. Arsenic Exposure from Drinking Water and QT-Interval Prolongation: Results from the Health Effects of Arsenic Longitudinal Study

    Science.gov (United States)

    Wu, Fen; Parvez, Faruque; Ahmed, Alauddin; Eunus, Mahbub; McClintock, Tyler R.; Patwary, Tazul Islam; Islam, Tariqul; Ghosal, Anajan Kumar; Islam, Shahidul; Hasan, Rabiul; Levy, Diane; Sarwar, Golam; Slavkovich, Vesna; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    Background: Arsenic exposure from drinking water has been associated with heart disease; however, underlying mechanisms are uncertain. Objective: We evaluated the association between a history of arsenic exposure from drinking water and the prolongation of heart rate–corrected QT (QTc), PR, and QRS intervals. Method: We conducted a study of 1,715 participants enrolled at baseline from the Health Effects of Arsenic Longitudinal Study. We assessed the relationship of arsenic exposure in well water and urine samples at baseline with parameters of electrocardiogram (ECG) performed during 2005–2010, 5.9 years on average since baseline. Results: The adjusted odds ratio (OR) for QTc prolongation, defined as a QTc ≥ 450 msec in men and ≥ 460 msec in women, was 1.17 (95% CI: 1.01, 1.35) for a 1-SD increase in well-water arsenic (108.7 µg/L). The positive association appeared to be limited to women, with adjusted ORs of 1.24 (95% CI: 1.05, 1.47) and 1.24 (95% CI: 1.01, 1.53) for a 1-SD increase in baseline well-water and urinary arsenic, respectively, compared with 0.99 (95% CI: 0.73, 1.33) and 0.86 (95% CI: 0.49, 1.51) in men. There were no apparent associations of baseline well-water arsenic or urinary arsenic with PR or QRS prolongation in women or men. Conclusions: Long-term arsenic exposure from drinking water (average 95 µg/L; range, 0.1–790 µg/L) was associated with subsequent QT-interval prolongation in women. Future longitudinal studies with repeated ECG measurements would be valuable in assessing the influence of changes in exposure. PMID:23384555

  1. Arsenic poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Reagor, J.C.

    Reports of heavy metal intoxication submitted to the Texas Veterinary Medical Diagnostic Laboratory indicate that arsenic is the most common heavy metal intoxicant in Texas. The most frequent sources of arsenic are compounds used as herbicides and cotton defoliants. The misuse of these compounds and subsequent intoxication of cattle is discussed in this paper. 8 references, 1 table.

  2. Arsenic in Food

    Science.gov (United States)

    ... Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share Tweet Linkedin Pin it More ... and previous or current use of arsenic-containing pesticides. Are there ... compounds in water, food, air, and soil: organic and inorganic (these together ...

  3. [Acute arsenic poisoning].

    Science.gov (United States)

    Montelescaut, Etienne; Vermeersch, Véronique; Commandeur, Diane; Huynh, Sophie; Danguy des Deserts, Marc; Sapin, Jeanne; Ould-Ahmed, Mehdi; Drouillard, Isabelle

    2014-01-01

    Acute arsenic poisoning is a rare cause of suicide attempt. It causes a multiple organs failure caused by cardiogenic shock. We report the case of a patient admitted twelve hours after an ingestion of trioxide arsenic having survived thanks to a premature treatment.

  4. [Acute arsenic poisoning].

    Science.gov (United States)

    Montelescaut, Etienne; Vermeersch, Véronique; Commandeur, Diane; Huynh, Sophie; Danguy des Deserts, Marc; Sapin, Jeanne; Ould-Ahmed, Mehdi; Drouillard, Isabelle

    2014-01-01

    Acute arsenic poisoning is a rare cause of suicide attempt. It causes a multiple organs failure caused by cardiogenic shock. We report the case of a patient admitted twelve hours after an ingestion of trioxide arsenic having survived thanks to a premature treatment. PMID:25486670

  5. Arsenic exposure in drinking water: an unrecognized health threat in Peru

    Science.gov (United States)

    Sima, Laura; Arias, M Helena Jahuira; Mihalic, Jana; Cabrera, Lilia Z; Danz, David; Checkley, William; Gilman, Robert H

    2014-01-01

    Abstract Objective To assess the extent of arsenic contamination of groundwater and surface water in Peru and, to evaluate the accuracy of the Arsenic Econo-Quick™ (EQ) kit for measuring water arsenic concentrations in the field. Methods Water samples were collected from 151 water sources in 12 districts of Peru, and arsenic concentrations were measured in the laboratory using inductively-coupled plasma mass spectrometry. The EQ field kit was validated by comparing a subset of 139 water samples analysed by laboratory measurements and the EQ kit. Findings In 86% (96/111) of the groundwater samples, arsenic exceeded the 10 µg/l arsenic concentration guideline given by the World Health Organization (WHO) for drinking water. In 56% (62/111) of the samples, it exceeded the Bangladeshi threshold of 50 µg/l; the mean concentration being 54.5 µg/l (range: 0.1–93.1). In the Juliaca and Caracoto districts, in 96% (27/28) of groundwater samples arsenic was above the WHO guideline; and in water samples collected from the section of the Rímac river running through Lima, all had arsenic concentrations exceeding the WHO limit. When validated against laboratory values, the EQ kit correctly identified arsenic contamination relative to the guideline in 95% (106/111) of groundwater and in 68% (19/28) of surface water samples. Conclusion In several districts of Peru, drinking water shows widespread arsenic contamination, exceeding the WHO arsenic guideline. This poses a public health threat requiring further investigation and action. For groundwater samples, the EQ kit performed well relative to the WHO arsenic limit and therefore could provide a vital tool for water arsenic surveillance. PMID:25177071

  6. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Science.gov (United States)

    Roberge, Jason; O’Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L.; Harris, Robin B.

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated. PMID:22690182

  7. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  8. Environmental arsenic exposure of children around a former copper smelter site.

    Science.gov (United States)

    Hwang, Y H; Bornschein, R L; Grote, J; Menrath, W; Roda, S

    1997-01-01

    Arsenic residues in the communities surrounding former smelters remain a public health concern, especially for infants and children. To evaluate environmental exposure among these children, a population-based cross-sectional study was conducted in the vicinity of a former copper smelter in Anaconda, Montana. A total of 414 children less than 72 months old were recruited. First morning voided urine samples and environmental samples were collected for arsenic measurements. The geometric mean of speciated urinary arsenic was 8.6 microg/liter (GSD = 1.7, N = 289). Average arsenic levels of different types of soil ranged from 121 to 236 microg/g and were significantly related to proximity and wind direction to the smelter site. The same significant relationship was observed for interior dust arsenic. Speciated urinary arsenic was found to be significantly related to soil arsenic in bare areas in residential yards (P arsenic was demonstrable and warranted parents' attention to reduce exposure of their children to environmental arsenic. PMID:9012374

  9. 40 CFR 86.233-94-86.234-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.233-94-86.234-94 Section 86.233-94-86.234-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New...

  10. 40 CFR 86.238-94-86.239-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.238-94-86.239-94 Section 86.238-94-86.239-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New...

  11. USEPA Arsenic Demonstration Program

    Science.gov (United States)

    The presentation provides background information on the USEPA arsenic removal program. The summary includes information on the history of the program, sites and technology selected, and a summary of the data collected from two completed projects.

  12. EXAFS study on arsenic species and transformation in arsenic hyperaccumulator

    Institute of Scientific and Technical Information of China (English)

    HUANG; Zechun; CHEN; Tongbin; LEI; Mei; HU; Tiandou; HUANG

    2004-01-01

    Synchrotron radiation extended X-ray absorption fine structure (SR EXAFS) was employed to study the transformation of coordination environment and the redox speciation of arsenic in a newly discovered arsenic hyperaccumulator, Cretan brake (Pteris cretica L. var nervosa Thunb). It showed that the arsenic in the plant mainly coordinated with oxygen, except that some arsenic coordinated with S as As-GSH in root. The complexation of arsenic with GSH might not be the predominant detoxification mechanism in Cretan brake. Although some arsenic in root presented as As(V) in Na2HAsO4 treatments, most of arsenic in plant presented as As(III)-O in both treatments, indicating that As(V) tended to be reduced to As(III) after it was taken up into the root, and arsenic was kept as As(III) when it was transported to the above-ground tissues. The reduction of As(V) primarily proceeded in the root.

  13. Acute and chronic arsenic toxicity

    OpenAIRE

    Ratnaike, R.

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption o...

  14. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  15. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    Science.gov (United States)

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  16. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  17. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An arsenic hyperaccumulator Pteris vittata L. (Chinese brake) was first discovered in China by means of field survey and greenhouse cultivation. Field survey showed that Chinese brake had large accumulating capacity to arsenic; the orders of arsenic content in different parts of the fern were as follows: leaves>leafstalks>roots, which is totally different from that of ordinary plants; bioaccumulation coefficients of the above ground parts of the fern decreased as a power function of soil arsenic contents. In the control of pot trials with normal unpolluted soil containing 9 mg/kg of arsenic, the bioaccumulation coefficients of the above ground parts and rhizoids of Chinese brake were as high as 71 and 80 respectively. Greenhouse cultivation in the contaminated soil from mining areas has shown that more than 1 times greater arsenic can be accumulated in the leaves of the fern than that of field samples with the largest content of 5070 mg/kg As on a dry matter basis. During greenhouse cultivation, arsenic content in the leaves of the fern increased linearly with time prolonging. Not only has Chinese brake extraordinary tolerance and accumulation to arsenic, but it grew rapidly with great biomass, wide distribution and easy adaptation to different environmental conditions as well. Therefore, it has great potential in future remediation of arsenic contamination. It also demonstrates important value for studies of arsenic physiology and biochemistry such as arsenic absorption, translocation and detoxification mechanisms in plants.

  18. [Arsenic - Poison or medicine?].

    Science.gov (United States)

    Kulik-Kupka, Karolina; Koszowska, Aneta; Brończyk-Puzoń, Anna; Nowak, Justyna; Gwizdek, Katarzyna; Zubelewicz-Szkodzińska, Barbara

    2016-01-01

    Arsenic (As) is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC) has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine.

  19. Chronic arsenic poisoning.

    Science.gov (United States)

    Hall, Alan H

    2002-03-10

    Symptomatic arsenic poisoning is not often seen in occupational exposure settings. Attempted homicide and deliberate long-term poisoning have resulted in chronic toxicity. Skin pigmentation changes, palmar and plantar hyperkeratoses, gastrointestinal symptoms, anemia, and liver disease are common. Noncirrhotic portal hypertension with bleeding esophageal varices, splenomegaly, and hypersplenism may occur. A metallic taste, gastrointestinal disturbances, and Mee's lines may be seen. Bone marrow depression is common. 'Blackfoot disease' has been associated with arsenic-contaminated drinking water in Taiwan; Raynaud's phenomenon and acrocyanosis also may occur. Large numbers of persons in areas of India, Pakistan, and several other countries have been chronically poisoned from naturally occurring arsenic in ground water. Toxic delirium and encephalopathy can be present. CCA-treated wood (chromated copper arsenate) is not a health risk unless burned in fireplaces or woodstoves. Peripheral neuropathy may also occur. Workplace exposure or chronic ingestion of arsenic-contaminated water or arsenical medications is associated with development of skin, lung, and other cancers. Treatment may incklude the use of chelating agents such as dimercaprol (BAL), dimercaptosuccinic acid (DMSA), and dimercaptopanesulfonic acid (DMPS).

  20. Inorganic arsenic toxicosis in cattle.

    Science.gov (United States)

    Riviere, J E; Boosinger, T R; Everson, R J

    1981-03-01

    In 4 occurrences of arsenic poisoning in cattle, the principal clinical sign was acute hemorrhagic diarrhea attributable to hemorrhagic gastroenteritis. Arsenic concentrations in the liver, kidney and rumen contents varied. In one occurrence, arsenic in the hair of affected survivors was assayed at 0.8-3.40 ppm, vs 0.09-0.10 ppm in randomly selected control samples of hair. Sudden death was the only clinical sign in another occurrence in which gastric contents contained arsenic at 671 ppm. In another occurrence, arsenic poisoning caused lesions similar to those of salmonellosis.

  1. Arsenic poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    McLennan, M.W.; Dodson, M.E.

    1972-06-01

    A case of acute arsenic poisoning in cattle was reported. The losses occurred on a property in the south east of South Australia. The weather had been hot for two or three days before the death occurred. The tank supplying the water trough had almost run dry. The cattle then attempted to meet their water requirements by drinking from the sheep dipping vat. A sample of rumen contents and a sample of water from the dipping vat were checked for arsenic. The rumen sample contained 45 ppM As/sub 2/O/sub 3/ and the sample of dipping fluid contained 200 ppM As. The lesions observed were similar to earlier reported arsenic poisoning. 5 references.

  2. Environmental Source of Arsenic Exposure

    Science.gov (United States)

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made. PMID:25284196

  3. Environmental source of arsenic exposure.

    Science.gov (United States)

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  4. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    Science.gov (United States)

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  5. Nuclear Power Day '86

    International Nuclear Information System (INIS)

    The proceedings in two volumes of the event ''Nuclear Power Day '86'' held in the Institute of Nuclear Research, contain full texts of 13 papers which all fall under the INIS Scope. The objective of the event was to acquaint broad technical public with the scope of the State Research and Development Project called ''Development of Nuclear Power till the Year 2000''. The papers were mainly focused on increased safety and reliability of nuclear power plants with WWER reactors, on the development of equipment and systems for disposal and burial of radioactive wastes, the introduction of production of nuclear power facilities of an output of 1,000 MW, and on the construction of nuclear heat sources. (Z.M.)

  6. Arsenic contamination in New Orleans soil: temporal changes associated with flooding.

    Science.gov (United States)

    Rotkin-Ellman, Miriam; Solomon, Gina; Gonzales, Christopher R; Agwaramgbo, Lovell; Mielke, Howard W

    2010-01-01

    The flooding of New Orleans in late August and September 2005 caused widespread sediment deposition in the flooded areas of the city. Post-flood sampling by US EPA revealed that 37% of sediment samples exceeded Louisiana corrective screening guidelines for arsenic of 12mg/kg, but there was debate over whether this contamination was pre-existing, as almost no pre-flood soil sampling for arsenic had been done in New Orleans. In this study, archived soil samples collected in 1998-1999 were location-matched with 70 residential sites in New Orleans where post-flood arsenic concentrations were elevated. Those same locations were sampled again during the recovery period 18 months later. During the recovery period, sampling for arsenic was also done for the first time at school sites and playgrounds within the flooded zone. Every sample of sediment taken 1-10 months after the flood exceeded the arsenic concentration found in the matched pre-flood soils. The average difference between the two sampling periods was 19.67mg/kg (95% CI 16.63-22.71) with a range of 3.60-74.61mg/kg. At virtually all of these sites (97%), arsenic concentrations decreased substantially by 18 months into the recovery period when the average concentration of matched samples was 3.26mg/kg (95% CI 1.86-4.66). However, 21 (30%) of the samples taken during the recovery period still had higher concentrations of arsenic than the matched sample taken prior to the flooding. In addition, 33% of samples from schoolyards and 13% of samples from playgrounds had elevated arsenic concentrations above the screening guidelines during the recovery period. These findings suggest that the flooding resulted in the deposition of arsenic-contaminated sediments. Diminution of the quantity of sediment at many locations has significantly reduced overall soil arsenic concentrations, but some locations remain of concern for potential long-term soil contamination.

  7. Acute and chronic arsenic toxicity.

    Science.gov (United States)

    Ratnaike, R N

    2003-07-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water.

  8. Arsenic and cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Bianchi F.

    2013-04-01

    Full Text Available A growing body of epidemiologic, experimental and clinical evidence shows that arsenic may exert relevant cardiovascular effects with early damage such as endothelial dysfunction. Early biomarkers of cardiovascular damage together with markers of exposure, genetic and epigenetic effects, DNA damage, apoptosis, oxidative stress remain unexplored and a study is ongoing in Italy.

  9. Rural methods to mitigate arsenic contaminated water

    OpenAIRE

    Parajuli, Krishna

    2013-01-01

    Consumption of arsenic contaminated water is one of the burning issues in the rural world. Poor public awareness program about health effects of drinking arsenic contaminated water and the rural methods to mitigate this problem poses a great threat of arsenic poisoning many people of the rural world. In this thesis, arsenic removal efficiency and the working mechanism of four rural and economical arsenic mitigation technologies i.e. solar oxidation and reduction of arsenic (SORAS), Bucket tr...

  10. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China.

    OpenAIRE

    Liu, Jie; Zheng, Baoshan; Aposhian, H. Vasken; Zhou, Yunshu; Chen, Ming-liang; Zhang, Aihua; Waalkes, Michael P.

    2002-01-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooki...

  11. Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation.

    Directory of Open Access Journals (Sweden)

    Vasundhara Paliwal

    Full Text Available Pseudomonas putida CSV86, a plasmid-free strain possessing capability to transfer the naphthalene degradation property, has been explored for its metabolic diversity through genome sequencing. The analysis of draft genome sequence of CSV86 (6.4 Mb revealed the presence of genes involved in the degradation of naphthalene, salicylate, benzoate, benzylalcohol, p-hydroxybenzoate, phenylacetate and p-hydroxyphenylacetate on the chromosome thus ensuring the stability of the catabolic potential. Moreover, genes involved in the metabolism of phenylpropanoid and homogentisate, as well as heavy metal resistance, were additionally identified. Ability to grow on vanillin, veratraldehyde and ferulic acid, detection of inducible homogentisate dioxygenase and growth on aromatic compounds in the presence of heavy metals like copper, cadmium, cobalt and arsenic confirm in silico observations reflecting the metabolic versatility. In silico analysis revealed the arrangement of genes in the order: tRNA(Gly, integrase followed by nah operon, supporting earlier hypothesis of existence of a genomic island (GI for naphthalene degradation. Deciphering the genomic architecture of CSV86 for aromatic degradation pathways and identification of elements responsible for horizontal gene transfer (HGT suggests that genetic bioaugmentation strategies could be planned using CSV86 for effective bioremediation.

  12. 45 CFR 86.43-86.50 - [Reserved

    Science.gov (United States)

    2010-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited §§ 86.43-86.50...

  13. Moonshine-related arsenic poisoning.

    Science.gov (United States)

    Gerhardt, R E; Crecelius, E A; Hudson, J B

    1980-02-01

    Twelve sequential cases of arsenic poisoning were reviewed for possible sources of ingestion. Contaminated illicit whiskey (moonshine) appeared to be the source in approximately 50% of the patients. An analysis of.confiscated moonshine revealed that occasional specimens contained high levels of arsenic as a contaminant. Although arsenic poisoning occurs relatively infrequently, contaminated moonshine may be an important cause of the poisoning in some areas of the country.

  14. Arsenic poisoning of Bangladesh groundwater

    Science.gov (United States)

    Nickson, Ross; McArthur, John; Burgess, William; Ahmed, Kazi Matin; Ravenscroft, Peter; Rahmanñ, Mizanur

    1998-09-01

    In Bangladesh and West Bengal, alluvial Ganges aquifers used for public water supply are polluted with naturally occurring arsenic, which adversely affects the health of millions of people. Here we show that the arsenic derives from the reductive dissolution of arsenic-rich iron oxyhydroxides, which in turn are derived from weathering of base-metal sulphides. This finding means it should now be possible, by sedimentological study of the Ganges alluvial sediments, to guide the placement of new water wells so they will be free of arsenic.

  15. Arsenic content of homeopathic medicines

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, H.D.; Saryan, L.A.

    1986-01-01

    In order to test the widely held assumption that homeopathic medicines contain negligible quantities of their major ingredients, six such medicines labeled in Latin as containing arsenic were purchased over the counter and by mail order and their arsenic contents measured. Values determined were similar to those expected from label information in only two of six and were markedly at variance in the remaining four. Arsenic was present in notable quantities in two preparations. Most sales personnel interviewed could not identify arsenic as being an ingredient in these preparations and were therefore incapable of warning the general public of possible dangers from ingestion. No such warnings appeared on the labels.

  16. 45 CFR 86.71 - Interim procedures.

    Science.gov (United States)

    2010-10-01

    ... reference. These procedures may be found at 45 CFR 80-6 through 80-11 and 45 CFR Part 81. (Secs. 901, 902... to “outside” discriminatory organizations, ; 86.31(b)(7), (c) Assurances, ; 86.4 Duration of...) Separate teams, ; 86.41(b) B BFOQ, ; 86.61 C Comparable facilities Housing, ; 86.32 Other, 86.33,...

  17. Homicidal arsenic poisoning.

    Science.gov (United States)

    Duncan, Andrew; Taylor, Andrew; Leese, Elizabeth; Allen, Sam; Morton, Jackie; McAdam, Julie

    2015-07-01

    The case of a 50-year-old man who died mysteriously after being admitted to hospital is reported. He had raised the possibility of being poisoned prior to his death. A Coroner's post-mortem did not reveal the cause of death but this was subsequently established by post-mortem trace element analysis of liver, urine, blood and hair all of which revealed very high arsenic concentrations.

  18. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  19. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    Science.gov (United States)

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  20. ARSENIC - SUSCEPTIBILITY & IN UTERO EFFECTS

    Science.gov (United States)

    Exposure to inorganic arsenic remains a serious public health problem at many locations worldwide. If has often been noted that prevalences of signs and symptoms of chronic arsenic poisoning differ among various populations. For example, skin lesions or peripheral vascular dis...

  1. Arsenic Mobility and Groundwater Extraction in Bangladesh

    Science.gov (United States)

    Harvey, Charles F.; Swartz, Christopher H.; Badruzzaman, A. B. M.; Keon-Blute, Nicole; Yu, Winston; Ali, M. Ashraf; Jay, Jenny; Beckie, Roger; Niedan, Volker; Brabander, Daniel; Oates, Peter M.; Ashfaque, Khandaker N.; Islam, Shafiqul; Hemond, Harold F.; Ahmed, M. Feroze

    2002-11-01

    High levels of arsenic in well water are causing widespread poisoning in Bangladesh. In a typical aquifer in southern Bangladesh, chemical data imply that arsenic mobilization is associated with recent inflow of carbon. High concentrations of radiocarbon-young methane indicate that young carbon has driven recent biogeochemical processes, and irrigation pumping is sufficient to have drawn water to the depth where dissolved arsenic is at a maximum. The results of field injection of molasses, nitrate, and low-arsenic water show that organic carbon or its degradation products may quickly mobilize arsenic, oxidants may lower arsenic concentrations, and sorption of arsenic is limited by saturation of aquifer materials.

  2. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  3. Magnetic Rotation in 86Sr

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Yun; LIU; Jia-jian; LI; Jian; WU; Xiao-guang; SUN; Hui-bin; HE; Chuang-ye; LI; Cong-bo; LI; Guang-sheng; YAO; Shun-he; LI; Hong-wei; HU; Shi-peng; WANG; Jin-long

    2013-01-01

    The high-spin states in 86Sr were populated via the heavy-ion fusion-evaporation reaction 82Se(9Be,5n)86Sr at a beam energy of 53 MeV provided by the HI-13 tandem accelerator of China Institute of Atomic Energy.A new dipole transition sequence,i.e.,457.5,493.8,506.9,476.4,575.6,and 616.8 keV

  4. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  5. Osteoresorptive arsenic intoxication.

    Science.gov (United States)

    Dani, Sergio Ulhoa

    2013-04-01

    A 47-year-old woman consulted her dermatologist complaining whole body dermatitis, urticaria and irritating bullous eruptions on the plantar and side surfaces of her feet. She had had multiple hypopigmented spots on her skin since her early adulthood. The patient was treated with topical medication without significant improvement of symptoms. One year later she suffered a myocardial infarction, accompanied by refractory anaemia. At the age of 49, a breast cancer was diagnosed and shortly thereafter her last menstruation occurred. At age 50years, upon complaint of weight loss despite normal food intake, Hashimoto thyroiditis with latent hyperthyroidism, vitamin D insufficiency with secondary hyperparathyroidism, and poikilocytic anaemia with anisochromia, hypochromia, anisocytosis, elliptocytes, drepanocytes, dacryocytes, acanthocytes, echinocytes, schizocytes, stomatocytes and target cells were diagnosed. The osteodensitometric and laboratory examinations revealed osteoporosis with sustained elevation of urinary Dipyridinolin-crosslinks (u-Dpd), and urinary arsenic (u-As) of 500μg/l (equivalent to 0.5 parts per million-ppm, 2.5μg/mg creatinine/dl, u-As: Phosphate of 26μg/mmol; the estimated bone As:P and As/kg body weight were 500μg/g and 11.3mg/kg, respectively). Thalassemia, immunoglobinopathy and iron deficiency were excluded. Supplementation with oral vitamin D and calcium, and antiresorptive therapy with intravenous zolendronate normalised the u-Dpd, significantly decreased the urinary arsenic concentration, and cured the anemia and the urticaria. A diagnosis of osteoresorptive arsenic intoxication (ORAI) was established. PMID:23337042

  6. Microbial responses to environmental arsenic.

    Science.gov (United States)

    Páez-Espino, David; Tamames, Javier; de Lorenzo, Víctor; Cánovas, David

    2009-02-01

    Microorganisms have evolved dynamic mechanisms for facing the toxicity of arsenic in the environment. In this sense, arsenic speciation and mobility is also affected by the microbial metabolism that participates in the biogeochemical cycle of the element. The ars operon constitutes the most ubiquitous and important scheme of arsenic tolerance in bacteria. This system mediates the extrusion of arsenite out of the cells. There are also other microbial activities that alter the chemical characteristics of arsenic: some strains are able to oxidize arsenite or reduce arsenate as part of their respiratory processes. These type of microorganisms require membrane associated proteins that transfer electrons from or to arsenic (AoxAB and ArrAB, respectively). Other enzymatic transformations, such as methylation-demethylation reactions, exchange inorganic arsenic into organic forms contributing to its complex environmental turnover. This short review highlights recent studies in ecology, biochemistry and molecular biology of these processes in bacteria, and also provides some examples of genetic engineering for enhanced arsenic accumulation based on phytochelatins or metallothionein-like proteins.

  7. Removing arsenic from drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Hathaway, S.W.; Rubel, R. (Environmental Protection Agency, Cincinnati, OH (USA))

    1987-08-01

    Pilot-plant tests of two treatment methods, activated alumina and ion exchange, for removing arsenic from drinking water were evaluated at the Fallon, Nevada, Naval Air Station (NAS). The arsenic concentration was 0.080-0.116 mg/liter, exceeding the 0.05 mg/liter maximum contaminant level. Although the valence of arsenic was not determined, in prechlorination process and test results suggest it was probably arsenic V. Chlorinated drinking water from the NAS was used for evaluating the efficacy of treatment under several different conditions. The activated alumina and ion exchange systems were operated through three different loading and regeneration cycles each. The major water quality factors affecting the removal of arsenic by these methods were pH of feedwater, arsenic concentration, sulfate concentration, and alkalinity. The major operational factors affecting removal were flow rate, down time, and media clogging. Capital and operating costs for arsenic removal are estimated for the activated alumina method at optimum pH (5.5) for each of the three small community systems drawing water from the same aquifer. In addition, several containers of the regeneration waste were used for a special study to characterize, dewater, and render the waste non-toxic for disposal in a sanitary landfill.

  8. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (parsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; parsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  9. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-01

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (parsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; parsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  10. Effects of exogenous salicylic acid on growth characteristics and biochemical content of wheat seeds under arsenic stress.

    Science.gov (United States)

    Zengin, Fikriye

    2015-01-01

    The present study illustrates the phytotoxic effect of As on wheat seedlings and pre-application of salicylic acid in alleviating toxic effect of arsenic. Wheat seedlings treated with different concentrations (50-400 μM) of arsenic decreased the germination rate (34.7% and 86.9%), root and coleptile length, fresh and dry weight of roots and coleoptile, chlorophyll (67%) and protein content (27.1%), while increased proline and MDA content. However, pretreatment with 1mM saliycilic acid partially alleviated the toxic effect of arsenic on germination parameters and significantly reduced the proline (181.2%) and MDA (80%) content thereby increasing chlorophyll and protein content in As stressed wheat plants (p arsenic toxicity.

  11. Assessment of potential location of high arsenic contamination using fuzzy overlay and spatial anisotropy approach in iron mine surrounding area.

    Science.gov (United States)

    Weerasiri, Thanes; Wirojanagud, Wanpen; Srisatit, Thares

    2014-01-01

    Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19 ± 2.86, 6.60 ± 3.04, and 4.90 ± 2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL) for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest.

  12. Assessment of Potential Location of High Arsenic Contamination Using Fuzzy Overlay and Spatial Anisotropy Approach in Iron Mine Surrounding Area

    Directory of Open Access Journals (Sweden)

    Thanes Weerasiri

    2014-01-01

    Full Text Available Fuzzy overlay approach on three raster maps including land slope, soil type, and distance to stream can be used to identify the most potential locations of high arsenic contamination in soils. Verification of high arsenic contamination was made by collection samples and analysis of arsenic content and interpolation surface by spatial anisotropic method. A total of 51 soil samples were collected at the potential contaminated location clarified by fuzzy overlay approach. At each location, soil samples were taken at the depth of 0.00-1.00 m from the surface ground level. Interpolation surface of the analysed arsenic content using spatial anisotropic would verify the potential arsenic contamination location obtained from fuzzy overlay outputs. Both outputs of the spatial surface anisotropic and the fuzzy overlay mapping were significantly spatially conformed. Three contaminated areas with arsenic concentrations of 7.19±2.86, 6.60±3.04, and 4.90±2.67 mg/kg exceeded the arsenic content of 3.9 mg/kg, the maximum concentration level (MCL for agricultural soils as designated by Office of National Environment Board of Thailand. It is concluded that fuzzy overlay mapping could be employed for identification of potential contamination area with the verification by surface anisotropic approach including intensive sampling and analysis of the substances of interest.

  13. Discovery of the Arsenic Isotopes

    CERN Document Server

    Shore, A; Heim, M; Schuh, A; Thoennessen, M

    2009-01-01

    Twenty-nine arsenic isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  14. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    2002-01-01

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  15. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.

    Science.gov (United States)

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2011-10-01

    The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO₄ and AlAsO₄ minerals (from organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata. PMID:21840210

  16. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    Science.gov (United States)

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from…

  17. Expo 86: An Escalation Prototype.

    Science.gov (United States)

    Ross, Jerry; Staw, Barry M.

    1986-01-01

    British Columbia remained committed to its decision to host a world's fair (Expo 86) despite rapidly increasing deficit projections. Expo is examined as a prototypical example of the escalation of commitment. Theory is proposed that integrates determinants of escalation from several levels of analysis over time. (CJH)

  18. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    Science.gov (United States)

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic.

  19. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  20. RARE CASE REPORT OF CHRONIC ARSENIC POISONING

    OpenAIRE

    Mundle; Neelima; Sushrut; Yogesh; Shukan; Shalik; Siddharth

    2014-01-01

    Today, arsenic is primarily used in the produc tion of glass and semiconductors., Arsenic may be found as a water or food contaminant, particularly in shellfish and other seafood, and often contaminates fruits and vegetables, particularly rice

  1. Inorganic arsenic poisoning in pastured feeder lambs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.A.; Crane, M.R.; Tomson, K.

    1971-01-01

    Clinical signs and necropsy findings in a group of feeder lambs were suggestive of inorganic arsenic poisoning. Source of exposure was established and toxic concentrations of arsenic were detected in the tissues. 13 references, 1 table.

  2. Airborne exposure and estimated bioavailability of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Yager, J.W. [Electric Power Research Inst., Madison, WI (United States); Clewell, H.J. III [ICF Consulting, Fairfax, VA (United States); Hicks, J. [Geomatrix, (United States)

    2000-07-01

    A pilot group of workers were used in a study to determine the relationship between exposure to arsenic present in fly ash particles and urinary excretion of inorganic arsenic and its methylated metabolites. Arsenic was measured in the breathing zone of workers during full shift work schedules and daily urine samples were collected to determine the concentration of arsenic and its metabolites. Airborne particle size distribution samples were collected on six-stage personal cascade impactors. Previous studies of airborne exposure to arsenic in copper smelters predict urinary values nearly three times higher than those seen in exposure to arsenic in fly ash. The results suggest that differences in biological uptake of airborne arsenic probably depend on characteristics such as solubility, particle size and distribution and matrix composition of the arsenic compounds.

  3. Arsenic in the aetiology of cancer.

    Science.gov (United States)

    Tapio, Soile; Grosche, Bernd

    2006-06-01

    Arsenic, one of the most significant hazards in the environment affecting millions of people around the world, is associated with several diseases including cancers of skin, lung, urinary bladder, kidney and liver. Groundwater contamination by arsenic is the main route of exposure. Inhalation of airborne arsenic or arsenic-contaminated dust is a common health problem in many ore mines. This review deals with the questions raised in the epidemiological studies such as the dose-response relationship, putative confounders and synergistic effects, and methods evaluating arsenic exposure. Furthermore, it describes the metabolic pathways of arsenic, and its biological modes of action. The role of arsenic in the development of cancer is elucidated in the context of combined epidemiological and biological studies. However, further analyses by means of molecular epidemiology are needed to improve the understanding of cancer aetiology induced by arsenic.

  4. RARE CASE REPORT OF CHRONIC ARSENIC POISONING

    Directory of Open Access Journals (Sweden)

    Mundle

    2014-12-01

    Full Text Available Today, arsenic is primarily used in the produc tion of glass and semiconductors., Arsenic may be found as a water or food contaminant, particularly in shellfish and other seafood, and often contaminates fruits and vegetables, particularly rice

  5. 40 CFR 86.004-25 - Maintenance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Maintenance. 86.004-25 Section 86.004...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.004-25 Maintenance. Section 86.004-25 includes text...) Maintenance performed on vehicles, engines, subsystems, or components used to determine exhaust,...

  6. 40 CFR 86.1725-99 - Maintenance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Maintenance. 86.1725-99 Section 86....1725-99 Maintenance. The provisions of § 86.094-25 and subsequent model year provisions apply to this... are subject to the applicable Otto-cycle or diesel engine maintenance requirements of § 86.094-25...

  7. 40 CFR 86.007-25 - Maintenance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Maintenance. 86.007-25 Section 86.007-25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.007-25 Maintenance. Section 86.007-25 includes...

  8. 40 CFR 86.001-25 - Maintenance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Maintenance. 86.001-25 Section 86.001...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.001-25 Maintenance. Section 86.001-25 includes text... engines. (2) Maintenance performed on vehicles, engines, subsystems, or components used to...

  9. Arsenic in contaminated soil and river sediment

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, G. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany)); Pierra, A. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany)); Klemm, W. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany))

    1994-09-01

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As[sup 3+], As[sup 5+]) and the bonding types have been analyzed. (orig.)

  10. High-Spin States in ~(86)Sr

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The previous works for high spins states of 86Sr were very scarce. In the past, the spin of highest level of 86Sr was 13 found by the reaction 84Kr(α, 2nγ)86Sr in 28 MeV. The current work updates the level scheme of 86Sr to get more information about high spin states in 86Sr.

  11. Arsenic - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Arsenic URL of this page: https://medlineplus.gov/languages/arsenic.html Other topics A-Z A B C ... V W XYZ List of All Topics All Arsenic - Multiple Languages To use the sharing features on ...

  12. 21 CFR 556.60 - Arsenic.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  13. 29 CFR 1910.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... container in the change-room which prevents dispersion of inorganic arsenic outside the container. (vi) The... readily through the skin. Because inorganic arsenic is a poison, you should wash your hands thoroughly... 29 Labor 6 2010-07-01 2010-07-01 false Inorganic arsenic. 1910.1018 Section 1910.1018...

  14. Chloride sublimation of gold-arsenic concentrates

    International Nuclear Information System (INIS)

    Present article is devoted to chloride sublimation of gold-arsenic concentrates. The results of studies of chloride sublimation of gold-arsenic comprising concentrates of Chore deposit of Tajikistan are considered. It is found that by application sodium chloride for gold-arsenic comprising concentrates it is possible to extract gold and silver from flotation concentrates.

  15. Arsenic intoxication associated with tubulointerstitial nephritis.

    Science.gov (United States)

    Prasad, G V; Rossi, N F

    1995-08-01

    Arsenic poisoning is an often unrecognized cause of renal insufficiency. We report a case of tubulointerstitial nephritis associated with an elevated urinary arsenic concentration. Removal of the putative source of arsenic resulted in symptomatic improvement, resolution of abnormal abdominal radiographs, and stabilization of renal function. This case emphasizes the importance of heavy metal screening in patients with multisystem complaints and tubulointerstitial nephritis.

  16. Differences in Urinary Arsenic Metabolites between Diabetic and Non-Diabetic Subjects in Bangladesh

    Directory of Open Access Journals (Sweden)

    Tamie Nakajima

    2013-03-01

    Full Text Available Ingestion of inorganic arsenic (iAs is considered to be related to the development of diabetes mellitus. In order to clarify the possible differences in the metabolism in diabetics, we measured urinary iAs metabolites in diabetic cases and non-diabetic control subjects in Faridpur, an arsenic-contaminated area in Bangladesh. Physician-diagnosed type 2 diabetic cases (140 persons and non-diabetic controls (180 persons were recruited. Drinking water and spot urine samples were collected. Mean concentrations of total arsenic in drinking water did not differ between cases (85.1 μg/L and controls (85.8 μg/L. The percentage of urinary iAs (iAs% was significantly lower in cases (8.6% than in controls (10.4%, while that of dimethylarsinic acid (DMA% was higher in cases (82.6% than in controls (79.9%. This may have been due to the higher secondary methylation index (SMI in the former (11.6 rather than the latter (10.0. Adjusting for matching factors (sex and unions, and the additional other covariates (age and water arsenic significantly attenuated the differences in iAs%, SMI, and DMA%, respectively, though the difference in monomethylarsonic acid% was newly significant in the latter adjustment. Our study did not suggest any significant differences in urinary arsenic metabolites between diabetic and non-diabetic subjects.

  17. Arsenic concentration in rice, fish, meat and vegetables in Cambodia: a preliminary risk assessment.

    Science.gov (United States)

    Wang, Hong-Sheng; Sthiannopkao, Suthipong; Chen, Zhuo-Jia; Man, Yu-Bon; Du, Jun; Xing, Guang-Hua; Kim, Kyoung-Woong; Mohamed Yasin, Mohamed Salleh; Hashim, Jamal Hisham; Wong, Ming-Hung

    2013-12-01

    To assess arsenic contaminations and its possible adverse health effects, food samples were collected from Kandal, Kratie and Kampong Cham in Cambodia. The highest and the lowest concentrations were observed in fish (mean 2,832 ng g(-1), ww) collected from Kandal province and cattle stomach (1.86 ± 1.10 ng g(-1), ww) collected from Kratie, respectively. The daily intake of arsenic via food consumption was 604, 9.70 and 136 μg day(-1) in Kandal, Kratie and Kampong Cham, respectively. The arsenic dietary intake in Kandal ranked No. 1 among all the 17 compared countries or regions. Fish consumption contributed the greatest proportion of total arsenic daily intake in Kandal (about 63.0 %) and Kampong Cham (about 69.8 %). It is revealed to be a much more important exposure pathway than drinking water for residents in Kampong Cham. The results of risk assessment suggested that the residents in Cambodia, particularly for people in Kandal province, suffer high public health risks due to consuming arsenic-contaminated food.

  18. Effects of nanoparticle-encapsulated curcumin on arsenic-induced liver toxicity in rats.

    Science.gov (United States)

    Sankar, Palanisamy; Gopal Telang, Avinash; Kalaivanan, Ramya; Karunakaran, Vijayakaran; Manikam, Kesavan; Sarkar, Souvendra Nath

    2015-01-01

    We investigated the therapeutic effectiveness of the nanoparticle-encapsulated curcumin (CUR-NP) against sodium arsenite-induced hepatic oxidative damage in rats. The CUR-NP prepared by emulsion technique was spherical in shape with an encapsulation efficiency of 86.5%. The particle size ranged between 120 and 140 nm with the mean particle size being 130.8 nm. Rats were divided into five groups of six each. Group 1 served as control. Group 2 rats were exposed to sodium arsenite (25 ppm) daily through drinking water for 42 days. Groups 3, 4, and 5 were treated with arsenic as in group 2, however, they were administered, empty nanoparticles, curcumin (100 mg/kg bw) and CUR-NP (100 mg/kg bw), respectively, by oral gavage during the last 14 days of arsenic exposure. Arsenic increased the activities of serum alanine aminotransferase and aspartate aminotransferase and caused histological alterations in liver indicating hepatotoxicity. Arsenic increased lipid peroxidation, depleted reduced glutathione and decreased the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in liver. All these effects of arsenic were attenuated with both curcumin and CUR-NP. However, the magnitude of amelioration was more pronounced with CUR-NP. The results indicate that curcumin given in nano-encapsulated form caused better amelioration than free curcumin. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 628-637, 2015.

  19. Annual report 1985-86

    International Nuclear Information System (INIS)

    The paper is the annual report of the Scottish Universities Research and Reactor Centre, 1985-86. The contents include a description of the research activities, and the reactor and associated activities. The research activities include: environmental radioactivity, neutron activation analysis, clinical studies, gamma ray irradiation processing, radiation effects on insulation, radiogenic isotope geology, stable isotopes in geology and biological sciences, and radiocarbon studies. The reactor activities include: reactor operation, isotope production, and computing and counting systems. (U.K.)

  20. Annual report 1985-86

    International Nuclear Information System (INIS)

    The paper presents the annual report of the Universities Research Reactor, Risley, United Kingdom, for the period 1985-86. The contents of the report contains: the research programme, activation analysis service, teaching programme, and the reactor operation and safety arrangements. The research programme includes topics on: radiation biology, radiation chemistry, radionuclide migration, trace elements, gamma-ray penetration, reactor studies, neutron monitors, neutron activation, and ultracold neutrons. (U.K.)

  1. Arsenic – Poison or medicine?

    Directory of Open Access Journals (Sweden)

    Karolina Kulik-Kupka

    2016-04-01

    Full Text Available Arsenic (As is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine. Med Pr 2016;67(1:89–96

  2. Mineral resource of the month: arsenic

    Science.gov (United States)

    Brooks, William E.

    2008-01-01

    Arsenic has a long and varied history: Although it was not isolated as an element until the 13th century, it was known to the ancient Chinese, Egyptians and Greeks in compound form in the minerals arsenopyrite, realgar and orpiment. In the 1400s, “Scheele’s Green” was first used as an arsenic pigment in wallpaper, and leached arsenic from wallpaper may have contributed to Napoleon’s death in 1821. The 1940s play and later movie, Arsenic and Old Lace, dramatizes the metal’s more sinister role. Arsenic continues to be an important mineral commodity with many modern applications.

  3. Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation.

    Science.gov (United States)

    Huq, S M Imamul; Joardar, J C; Parvin, S; Correll, Ray; Naidu, Ravi

    2006-09-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibility in mind, arsenic content of 2,500 water, soil and vegetable samples from arsenic-affected and arsenic-unaffected areas were analyzed during 1999-2004. Other sources of foods and fodders were also analyzed. Irrigating a rice field with groundwater containing 0.55 mg/L of arsenic with a water requirement of 1,000 mm results in an estimated addition of 5.5 kg of arsenic per ha per annum. Concentration of arsenic as high as 80 mg per kg of soil was found in an area receiving arsenic-contaminated irrigation. A comparison of results from affected and unaffected areas revealed that some commonly-grown vegetables, which would usually be suitable as good sources of nourishment, accumulate substantially-elevated amounts of arsenic. For example, more than 150 mg/kg of arsenic has been found to be accumulated in arum (kochu) vegetable. Implications of arsenic ingested in vegetables and other food materials are discussed in the paper. PMID:17366772

  4. Arsenic-cadmium interaction in rats.

    Science.gov (United States)

    Díaz-Barriga, F; Llamas, E; Mejía, J J; Carrizales, L; Santoyo, M E; Vega-Vega, L; Yáñez, L

    1990-11-01

    Simultaneous exposure to cadmium and arsenic is highly probable in the urban area of San Luis Potosi, Mexico due to common localization of copper and zinc smelters. Therefore, in this work, rats were intraperitoneally exposed either to cadmium or arsenic alone, or simultaneously to both metals. The effects of these treatments on three different toxicological parameters were studied. Cadmium modified the LD50 of arsenic and conversely arsenic modified the LD50 for cadmium. At the histopathological level, arsenic appeared to protect against the cadmium effects, especially on testes. This protective effect seemed to be related to the glutathione levels found in this tissue: rats exposed to both arsenic and cadmium, presented glutathione values intermediate to those observed after exposure to either metal alone; arsenic had the highest value and cadmium the lowest. In liver, rats exposed to arsenic, cadmium or arsenic and cadmium, presented glutathione values below those in the saline group, with the lowest value corresponding to the arsenic and cadmium treatment. The results appear to support the proposed interaction between arsenic and cadmium and coexposure to both metals seems to alter certain effects produced by either metal alone. PMID:2219140

  5. Arsenic occurrence in New Hampshire drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.C.; Blum, J.D.; Klaue, B. [Dartmouth Coll., Hanover, NH (United States). Dept. of Earth Sciences; Karagas, M.R. [Dartmouth Medical School, Hanover, NH (United States). Dept. of Community and Family Medicine

    1999-05-01

    Arsenic concentrations were measured in 992 drinking water samples collected from New Hampshire households using online hydride generation ICP-MS. These randomly selected household water samples contain much less arsenic than those voluntarily submitted for analysis to the New Hampshire Department of Environmental Services (NHDES). Extrapolation of the voluntarily submitted sample set to all New Hampshire residents significantly overestimates arsenic exposure. In randomly selected households, concentrations ranged from <0.0003 to 180 {micro}g/L, with water from domestic wells containing significantly more arsenic than water from municipal sources. Water samples from drilled bedrock wells had the highest arsenic concentrations, while samples from surficial wells had the lowest arsenic concentrations. The authors suggest that much of the groundwater arsenic in New Hampshire is derived from weathering of bedrock materials and not from anthropogenic contamination. The spatial distribution of elevated arsenic concentrations correlates with Late-Devonian Concord-type granitic bedrock. Field observations in the region exhibiting the highest groundwater arsenic concentrations revealed abundant pegmatite dikes associated with nearby granites. Analysis of rock digests indicates arsenic concentrations up to 60 mg/kg in pegmatites, with much lower values in surrounding schists and granites. Weak acid leaches show that approximately half of the total arsenic in the pegmatites is labile and therefore can be mobilized during rock-water interaction.

  6. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    Science.gov (United States)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (arsenic present in soils or rice paddies is released via volatilization. Additionally, past studies often have not monitored arsenic release in the aqueous phase. Two main pathways for microbial arsenic volatilization are known and include methylation of arsenic during methanogenesis and methylation by arsenite S-adenosylmethionine methyltransferase. In this study, we compare the roles of these two pathways in arsenic volatilization and aqueous mobilization through mesocosm experiments with cow dung and arsenic-bearing wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization but rather appears to

  7. Managing hazardous pollutants in Chile: arsenic.

    Science.gov (United States)

    Sancha, Ana María; O'Ryan, Raul

    2008-01-01

    Chile is one of the few countries that faces the environmental challenge posed by extensive arsenic pollution, which exists in the northern part of the country. Chile has worked through various options to appropriately address the environmental challenge of arsenic pollution of water and air. Because of cost and other reasons, copying standards used elsewhere in the world was not an option for Chile. Approximately 1.8 million people, representing about 12% of the total population of the country, live in arsenic-contaminated areas. In these regions, air, water, and soil are contaminated with arsenic from both natural and anthropogenic sources. For long periods, water consumed by the population contained arsenic levels that exceeded values recommended by the World Health Organization. Exposure to airborne arsenic also occurred near several large cities, as a consequence of both natural contamination and the intensive mining activity carried out in those areas. In rural areas, indigenous populations, who lack access to treated water, were also exposed to arsenic by consuming foods grown locally in arsenic-contaminated soils. Health effects in children and adults from arsenic exposure first appeared in the 1950s. Such effects included vascular, respiratory, and skin lesions from intake of high arsenic levels in drinking water. Methods to remove arsenic from water were evaluated, developed, and implemented that allowed significant reductions in exposure at a relatively low cost. Construction and operation of treatment plants to remove arsenic from water first began in the 1970s. Beginning in the 1990s, epidemiological studies showed that the rate of lung and bladder cancer in the arsenic-polluted area was considerably higher than mean cancer rates for the country. Cancer incidence was directly related to arsenic exposure. During the 1990s, international pressure and concern by Chile's Health Ministry prompted action to regulate arsenic emissions from copper smelters. A

  8. Speciation analysis of arsenic in groundwater from Inner Mongolia with an emphasis on acid-leachable particulate arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Gong Zhilong [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Lu Xiufen [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Watt, Corinna [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Wen Bei [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); He Bin [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Mumford, Judy [National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Human Studies Division, Epidemiology and Biomarkers Branch, Research Triangle Park, NC 27711 (United States); Ning Zhixiong [Ba Men Anti-Epidemic Station, Lin He, Inner Mongolia (China); Xia Yajuan [Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia (China); Le, X. Chris [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada)]. E-mail: xc.le@ualberta.ca

    2006-01-05

    Arsenic in drinking water affects millions of people around the world. While soluble arsenic is commonly measured, the amount of particulate arsenic in drinking water has often been overlooked. We report here determination of the acid-leachable particulate arsenic and soluble arsenicals in well water from an arsenic-poisoning endemic area in Inner Mongolia, China. Water samples (583) were collected from 120 wells in Ba Men, Inner Mongolia, where well water was the primary drinking water source. Two methods were demonstrated for the determination of soluble arsenic species (primarily inorganic arsenate and arsenite) and total particulate arsenic. The first method used solid phase extraction cartridges and membrane filters to separate arsenic species on-site, followed by analysis of the individual arsenic species eluted from the cartridges and filters. The other method uses liquid chromatography separation with hydride generation atomic fluorescence detection to determine soluble arsenic species. Analysis of acidified water samples using inductively coupled plasma mass spectrometry provided the total arsenic concentration. Arsenic concentrations in water samples from the 120 wells ranged from <1 to {approx}1000 {mu}g L{sup -1}. On average, particulate arsenic accounted for 39 {+-} 38% (median 36%) of the total arsenic. In some wells, particulate arsenic was six times higher than the soluble arsenic concentration. Particulate arsenic can be effectively removed using membrane filtration. The information on particulate and soluble arsenic in water is useful for optimizing treatment options and for understanding the geochemical behavior of arsenic in groundwater.

  9. Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fayiga, Abioye O. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States); Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States) and Key Laboratory of Terrestrial Ecological Process, Chinese Academy of Sciences, Shenyang 110016 (China)]. E-mail: lqma@ifas.ufl.edu; Zhou Qixing [Key Laboratory of Terrestrial Ecological Process, Chinese Academy of Sciences, Shenyang 110016 (China)

    2007-06-15

    This study examined the effects of heavy metals and plant arsenic uptake on soil arsenic distribution. Chemical fractionation of an arsenic-contaminated soil spiked with 50 or 200 mg kg{sup -1} Ni, Zn, Cd or Pb was performed before and after growing the arsenic hyperaccumulator Pteris vittata L for 8 weeks using NH{sub 4}Cl (water-soluble plus exchangeable, WE-As), NH{sub 4}F (Al-As), NaOH (Fe-As), and H{sub 2}SO{sub 4} (Ca-As). Arsenic in the soil was present primarily as the recalcitrant forms with Ca-As being the dominant fraction (45%). Arsenic taken up by P. vittata was from all fractions though Ca-As contributed the most (51-71% reduction). After 8 weeks of plant growth, the Al-As and Fe-As fractions were significantly (p < 0.01) greater in the metal-spiked soils than the control, with changes in the WE-As fraction being significantly (p = 0.007) correlated with plant arsenic removal. The plant's ability to solubilize soil arsenic from recalcitrant fractions may have enhanced its ability to hyperaccumulate arsenic. - Arsenic taken up by P. vittata was from all fractions with most from the Ca-fraction.

  10. Main: 1H86 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1H86 トウモロコシ Corn Zea mays L. Polyamine Oxidase Precursor Name=Pao; Zea Mays Molecul...PEGKGREFFLYASSRRGYYGVWQEFEKQYPDANVLLVTVTDEESRRIEQQSDEQTKAEIMQVLRKMFPGKDVPDATDILVPRWWSDRFYKGTFSNWPVGVNRYEYDQLRAPVGRVYFTGEHTSEHYNGYVHGAYLSGIDSAEILINCAQKKMCKYHVQGKYD corn_1H86.jpg ...

  11. 40 CFR 86.094-3 - Abbreviations.

    Science.gov (United States)

    2010-07-01

    ...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.094-3 Abbreviations. (a) The abbreviations in § 86... Petroleum Gas NMHC—Nonmethane Hydrocarbons NMHCE—Non-Methane Hydrocarbon Equivalent PM—Particulate...

  12. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  13. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Zheng, B.S.; Aposhian, H.V.; Zhou, Y.S.; Chen, M.L.; Zhang, A.H.; Waalkes, M.P. [NIEHS, Research Triangle Park, NC (USA)

    2002-07-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China was investigated. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such over exposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  14. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    Science.gov (United States)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (cow dung and arsenic-bearing wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization but rather appears to increase arsenic mobilization in the aqueous phase, raising concerns with this approach.

  15. Urinary Trivalent Methylated Arsenic Species in a Population Chronically Exposed to Inorganic Arsenic

    Science.gov (United States)

    Valenzuela, Olga L.; Borja-Aburto, Victor H.; Garcia-Vargas, Gonzalo G.; Cruz-Gonzalez, Martha B.; Garcia-Montalvo, Eliud A.; Calderon-Aranda, Emma S.; Del Razo, Luz M.

    2005-01-01

    Chronic exposure to inorganic arsenic (iAs) has been associated with increased risk of various forms of cancer and of noncancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. In this study we examined the relationship between urinary profiles of MAsIII and DMAsIII and skin lesion markers of iAs toxicity in individuals exposed to iAs in drinking water. The study subjects were recruited among the residents of an endemic region of central Mexico. Drinking-water reservoirs in this region are heavily contaminated with iAs. Previous studies carried out in the local populations have found an increased incidence of pathologies, primarily skin lesions, that are characteristic of arseniasis. The goal of this study was to investigate the urinary profiles for the trivalent and pentavalent As metabolites in both high- and low-iAs–exposed subjects. Notably, methylated trivalent arsenicals were detected in 98% of analyzed urine samples. On average, the major metabolite, DMAsIII, represented 49% of total urinary As, followed by DMAsV (23.7%), iAsV (8.6%), iAsIII (8.5%), MAsIII (7.4%), and MAsV (2.8%). More important, the average MAsIII concentration was significantly higher in the urine of exposed individuals with skin lesions compared with those who drank iAs-contaminated water but had no skin lesions. These data suggest that urinary levels of MAsIII, the most toxic species among identified metabolites of iAs, may serve as an indicator to identify individuals with increased susceptibility to toxic and cancer-promoting effects of arseniasis. PMID:15743710

  16. 21 CFR 524.86 - Amitraz liquid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Amitraz liquid. 524.86 Section 524.86 Food and..., FEEDS, AND RELATED PRODUCTS OPHTHALMIC AND TOPICAL DOSAGE FORM NEW ANIMAL DRUGS § 524.86 Amitraz liquid. (a) Specifications. Amitraz liquid contains 19.9 percent amitraz in an organic solvent. (b)...

  17. 45 CFR 86.51 - Employment.

    Science.gov (United States)

    2010-10-01

    ... in Employment in Education Programs or Activities Prohibited § 86.51 Employment. (a) General. (1) No... Federal financial assistance. (2) A recipient shall make all employment decisions in any education program... 45 Public Welfare 1 2010-10-01 2010-10-01 false Employment. 86.51 Section 86.51 Public...

  18. 45 CFR 86.52 - Employment criteria.

    Science.gov (United States)

    2010-10-01

    ... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.52 Employment criteria. A... 45 Public Welfare 1 2010-10-01 2010-10-01 false Employment criteria. 86.52 Section 86.52...

  19. 45 CFR 86.23 - Recruitment.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Recruitment. 86.23 Section 86.23 Public Welfare... in Admission and Recruitment Prohibited § 86.23 Recruitment. (a) Nondiscriminatory recruitment. A recipient to which this subpart applies shall not discriminate on the basis of sex in the recruitment...

  20. 45 CFR 86.53 - Recruitment.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Recruitment. 86.53 Section 86.53 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.53 Recruitment. (a) Nondiscriminatory recruitment and hiring. A recipient shall not discriminate on the basis of sex in the...

  1. 40 CFR 86.098-25 - Maintenance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Maintenance. 86.098-25 Section 86.098-25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.098-25 Maintenance. (a) (b)(1)-(2) (3)(i)-(v)...

  2. 40 CFR 86.094-25 - Maintenance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Maintenance. 86.094-25 Section 86.094...-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.094-25 Maintenance. (a)(1) Applicability. This section applies to light-duty vehicles, light-duty trucks, and heavy-duty engines. (2)...

  3. 45 CFR 86.59 - Advertising.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Advertising. 86.59 Section 86.59 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.59 Advertising. A recipient shall not in any advertising related to employment indicate preference, limitation, specification,...

  4. 40 CFR 86.884-10 - Information.

    Science.gov (United States)

    2010-07-01

    ... this part or 40 CFR part 1065, only the specified information need accompany the engine. The... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Information. 86.884-10 Section 86.884... New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-10 Information. The...

  5. 10 CFR 72.86 - Criminal penalties.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criminal penalties. 72.86 Section 72.86 Energy NUCLEAR..., Inspections, and Enforcement § 72.86 Criminal penalties. (a) Section 223 of the Atomic Energy Act of 1954, as amended, provides for criminal sanctions for willful violation of, attempted violation of, or...

  6. 47 CFR 61.86 - Supplements.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Supplements. 61.86 Section 61.86... Rules for Tariff Publications of Dominant and Nondominant Carriers § 61.86 Supplements. A carrier may not file a supplement except to suspend or cancel a tariff publication, or to defer the effective...

  7. 45 CFR 86.56 - Fringe benefits.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Fringe benefits. 86.56 Section 86.56 Public... Basis of Sex in Employment in Education Programs or Activities Prohibited § 86.56 Fringe benefits. (a) Fringe benefits defined. For purposes of this part, fringe benefits means: Any medical,...

  8. 45 CFR 86.54 - Compensation.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Compensation. 86.54 Section 86.54 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.54 Compensation. A recipient shall... of pay or other compensation; (b) Results in the payment of wages to employees of one sex at a...

  9. 50 CFR 27.86 - Begging.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Begging. 27.86 Section 27.86 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PROHIBITED ACTS Disturbing Violations: Personal Conduct § 27.86 Begging. Begging...

  10. 24 CFR 8.6 - Communications.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Communications. 8.6 Section 8.6... URBAN DEVELOPMENT General Provisions § 8.6 Communications. (a) The recipient shall take appropriate steps to ensure effective communication with applicants, beneficiaries, and members of the public....

  11. 32 CFR 552.86 - References.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true References. 552.86 Section 552.86 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY MILITARY RESERVATIONS AND NATIONAL CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Fort Lewis Land Use Policy § 552.86 References. (a)...

  12. 33 CFR 86.23 - Construction.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Construction. 86.23 Section 86.23 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES ANNEX III: TECHNICAL DETAILS OF SOUND SIGNAL APPLIANCES Bell or Gong § 86.23 Construction. Bells and...

  13. Arsenic in Drinking Water-A Global Environmental Problem

    Science.gov (United States)

    Wang, Joanna Shaofen; Wai, Chien M.

    2004-01-01

    Information on the worldwide occurrence of groundwater pollution by arsenic, the ensuing health hazards, and the debatable government regulations of arsenic in drinking water, is presented. Diagnostic identification of arsenic, and methods to eliminate it from water are also discussed.

  14. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Directory of Open Access Journals (Sweden)

    Zhou Jiang

    Full Text Available Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86. Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation, Sulfolobus (sulfur and iron oxidation, Metallosphaera and Acidicaldus (iron oxidation. Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  15. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Science.gov (United States)

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  16. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jaroslav, S.

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3 to 7 km. Settled fly-ash contained 0.0004 to 0.75 percent arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed.

  17. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, J.

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3-7 km. Settled fly-ash contained 0.0004-0.75% arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed. 5 references.

  18. Epidemiologic evidence of diabetogenic effect of arsenic.

    Science.gov (United States)

    Tseng, Chin-Hsiao; Tseng, Ching-Ping; Chiou, Hung-Yi; Hsueh, Yu-Mei; Chong, Choon-Khim; Chen, Chien-Jen

    2002-07-01

    It is well documented that arsenic can lead to skin lesions, atherosclerotic diseases and cancers. The association between arsenic exposure and diabetes mellitus is a relatively new finding. Up to now, there are six epidemiologic reports linking diabetes mellitus with arsenic exposure from environmental and occupational sources. Two reports in Taiwan carried out in the blackfoot disease-hyperendemic villages, one cross-sectional and one prospective follow-up of the same cohort, indicate that arsenic exposure from drinking artesian well water is associated with prevalence and incidence of diabetes mellitus in a dose-responsive pattern. The observation of the relation between arsenic exposure and diabetes mellitus is further supported by studies carried out in Sweden and Bangladesh. In Sweden, case-control analyses of death records of copper smelters and glass workers revealed a trend of increasing diabetes mellitus with increasing arsenic exposure from inhalation. In Bangladesh, prevalence of diabetes mellitus among arsenic-exposed subjects with keratosis was about five times higher than unexposed subjects. Increasing trends of diabetes mellitus with indices of arsenic exposure in drinking water seems to be independent of the presence of skin lesions associated with arsenic exposure. Although these studies consistently show an association between arsenic exposure and diabetes mellitus, the weak study designs of cross-sectional or case-control, the use of glucosuria or diabetes death as diagnostic criteria and the lack of adjustment for possible confounders in some studies, are major limitations that may reduce the strength of the evidence. PMID:12076511

  19. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  20. Arsenic removal from drinking water during coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Hering, J.G. [California Inst. of Tech., Pasadena, CA (United States); Chen, P.Y. [Industrial Technology Research Inst., Chutung Hsinchu (Taiwan, Province of China); Wilkie, J.A.; Elimelech, M. [Univ. of California, Los Angeles, CA (United States). Dept. of Civil and Environmental Engineering

    1997-08-01

    The efficiency of arsenic removal from source waters and artificial freshwaters during coagulation with ferric chloride and alum was examined in bench-scale studies. Arsenic(V) removal by either ferric chloride or alum was relatively insensitive to variations in source water composition below pH 8. At pH 8 and 9, the efficiency of arsenic(V) removal by ferric chloride was decreased in the presence of natural organic matter. The pH range for arsenic(V) removal with alum was more restricted than with ferric chloride. For source waters spiked with 20 {micro}g/L arsenic(V), final dissolved arsenic(V) concentrations in the product water of less than 2 {micro}g/L were achieved with both coagulants at neutral pH. Removal of arsenic(III) from source waters by ferric chloride was both less efficient and more strongly influenced by source water composition than removal of arsenic(V). The presence of sulfate (at pH 4 and 5) and natural organic matter (at pH 4 through 9) adversely affected the efficiency of arsenic(III) removal by ferric chloride. Arsenic(III) could not be removed from source waters by coagulation with alum.

  1. Acute arsenic poisoning diagnosed late.

    Science.gov (United States)

    Shumy, Farzana; Anam, Ahmad Mursel; Kamruzzaman, A K M; Amin, Md Robed; Chowdhury, M A Jalil

    2016-04-01

    Acute arsenicosis, although having a 'historical' background, is not common in our times. This report describes a case of acute arsenic poisoning, missed initially due to its gastroenteritis-like presentation, but suspected and confirmed much later, when the patient sought medical help for delayed complications after about 2 months.

  2. The microbial genomics of arsenic.

    Science.gov (United States)

    Andres, Jérémy; Bertin, Philippe N

    2016-03-01

    Arsenic, which is a major contaminant of many aquatic ecosystems worldwide, is responsible for serious public health issues. However, life has evolved various strategies for coping with this toxic element. In particular, prokaryotic organisms have developed processes enabling them to resist and metabolize this chemical. Studies based on genome sequencing and transcriptome, proteome and metabolome profiling have greatly improved our knowledge of prokaryotes' metabolic potential and functioning in contaminated environments. The increasing number of genomes available and the development of descriptive and comparative approaches have made it possible not only to identify several genetic determinants of the arsenic metabolism, but also to elucidate their phylogenetic distribution and their modes of regulation. In addition, studies using functional genomic tools have established the pleiotropic character of prokaryotes' responses to arsenic, which can be either common to several species or species-specific. These approaches also provide promising means of deciphering the functioning of microbial communities including uncultured organisms, the genetic transfers involved and the possible occurrence of metabolic interactions as well as the evolution of arsenic resistance and metabolism.

  3. Acute arsenic poisoning diagnosed late.

    Science.gov (United States)

    Shumy, Farzana; Anam, Ahmad Mursel; Kamruzzaman, A K M; Amin, Md Robed; Chowdhury, M A Jalil

    2016-04-01

    Acute arsenicosis, although having a 'historical' background, is not common in our times. This report describes a case of acute arsenic poisoning, missed initially due to its gastroenteritis-like presentation, but suspected and confirmed much later, when the patient sought medical help for delayed complications after about 2 months. PMID:26508422

  4. Bimetallic nanoparticles for arsenic detection.

    Science.gov (United States)

    Moghimi, Nafiseh; Mohapatra, Mamata; Leung, Kam Tong

    2015-06-01

    Effective and sensitive monitoring of heavy metal ions, particularly arsenic, in drinking water is very important to risk management of public health. Arsenic is one of the most serious natural pollutants in soil and water in more than 70 countries in the world. The need for very sensitive sensors to detect ultralow amounts of arsenic has attracted great research interest. Here, bimetallic FePt, FeAu, FePd, and AuPt nanoparticles (NPs) are electrochemically deposited on the Si(100) substrate, and their electrochemical properties are studied for As(III) detection. We show that trace amounts of As(III) in neutral pH could be determined by using anodic stripping voltammetry. The synergistic effect of alloying with Fe leads to better performance for Fe-noble metal NPs (Au, Pt, and Pd) than pristine noble metal NPs (without Fe alloying). Limit of detection and linear range are obtained for FePt, FeAu, and FePd NPs. The best performance is found for FePt NPs with a limit of detection of 0.8 ppb and a sensitivity of 0.42 μA ppb(-1). The selectivity of the sensor has also been tested in the presence of a large amount of Cu(II), as the most detrimental interferer ion for As detection. The bimetallic NPs therefore promise to be an effective, high-performance electrochemical sensor for the detection of ultratrace quantities of arsenic. PMID:25938763

  5. Arsenic chemistry in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of

  6. Arsenic speciation by LC-ICP-MS in white wine produced in south America

    International Nuclear Information System (INIS)

    Complete text of publication follows. It is well-known that arsenic may cause toxic effects on humans and other animals and the predominant pathways of arsenic exposure are drinking water and dietary intake (Coelho et al., Talanta, 66 (2005) 818-822.). Thus, it is important to assess As concentration in food and beverages. Arsenic is usually present in wine as a consequence of herbicides and insecticides used for grape production, soil type and kind of process for wine production, as well as wine storage conditions (Ibanez et al., J. Food Compos. Anal. 21 (2008) 672-683.). There are few studies concerning arsenic speciation in wine have been published, but most of them focused on European and North American wines. There is no information about arsenic speciation in wines from Argentine, Brazil and Chile, which are the major producers in South America. In this work is proposed the use of liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) technique for As speciation in white wine. The main parameters of arsenic speciation were evaluated in order to achieve best separation and sensitivity. Fourteen white wine samples produced in South America were analyzed. Separation of arsenic species was performed using an anion exchange column with ammonium phosphate solution (pH 6.0) as mobile phase. Samples were ten-fold diluted in the mobile phase prior to analysis by LC-ICP-MS. The follow As species were detected in wine: arsenite [As(III)], arsenate [As(V)] and dimethylarsinic acid (DMA). Accuracy was evaluated using spikes where As species recoveries ranged from 95 to 106%. Additionally, the sum of arsenic species concentration found by LC-ICP-MS was in agreement with the total arsenic concentration determined by ICP-MS after sample digestion. As(III) and As(V) were detected in all wine samples (from Argentine, Brazil and Chile) and DMA was detected only in wines produced in Argentine. Results for As determination in samples were from 2.9 to 10

  7. Arsenic Contamination in Food-chain: Transfer of Arsenic into Food Materials through Groundwater Irrigation

    OpenAIRE

    Huq, S.M. Imamul; Joardar, J.C.; Parvin, S.; Correll, Ray; Naidu, Ravi

    2006-01-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibilit...

  8. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    OpenAIRE

    Wuthiphun, L.; Towatana, P.; Arrykul, S.; V. Chongsuvivatwong

    2007-01-01

    Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash) on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil cove...

  9. Outbreak of arsenic and toxaphene poisoning in Kenyan cattle. [Arsenic was detected in cattle dips

    Energy Technology Data Exchange (ETDEWEB)

    Maitai, C.K.; Kamau, J.A.; Gacuhi, D.M.; Njoroge, S.

    1975-02-15

    In a case of poisoning involving 70 cattle analysis of specimens obtained during post mortem examination showed that the toxic substances were arsenic and toxaphene. This was consistent with both the clinical and post mortem findings. Arsenic was detected in water from an abandoned cattle dip in the farm. Soil samples collected in the vicinity of the dip contained both arsenic and toxaphene.

  10. Method of arsenic removal from water

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, Ashok (El Cerrito, CA)

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  11. Arsenic--state of the art.

    Science.gov (United States)

    Landrigan, P J

    1981-01-01

    Approximately 1.5 million workers in the United States are exposed to arsenic. Occupational exposure is primarily by inhalation. NIOSH recommends that time-integrated exposure to arsenic in air not exceed 2 micrograms/m3. Recent exposure is accurately measured by urine assay; urine arsenic concentrations above 50 micrograms/liter indicate increased absorption. Hair assay is a semiquantitative index of past exposure. Toxicity is associated primarily with the trivalent (3+) form of arsenic. Acute poisoning is caused most commonly by contaminated food or drink; it is rarely occupational. Chronic intoxication is characterized by dermatitis, hyperpigmentation, keratoses, peripheral neuropathy (primarily sensory), irritation of the upper and lower respiratory tract, and occasionally by hepatic toxicity and peripheral vasculopathy (blackfoot disease). Arsenic is not carcinogenic in animal species, but is mutagenic in Syrian hamster cells. In man, arsenic is known definitely to cause cancer of skin, lung, and liver (angiosarcoma) and possibly to cause lymphoma.

  12. Arsenic stress after the Proterozoic glaciations

    OpenAIRE

    Ernest Chi Fru; Emma Arvestål; Nolwenn Callac; Abderrazak El Albani; Stephanos Kilias; Ariadne Argyraki; Martin Jakobsson

    2015-01-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental mar...

  13. Presence of Arsenic in Commercial Beverages

    Directory of Open Access Journals (Sweden)

    Jason Roberge

    2009-01-01

    Full Text Available Problem statement: This study’s goal was to assess the arsenic concentration of various beverages and broths purchased from a local chain supermarket. A source of chronic arsenic exposure occurs via food and beverage consumption. Groundwater levels of total arsenic are regulated (-1 by the Environmental Protection Agency (EPA but few studies have examined arsenic concentrations in common beverages. Approach: In the initial analysis of 19 items, total arsenic concentration was assessed from a variety of fruit juices, sports drinks, sodas and broths. Items found to contain levels of total arsenic ≥5.0 µg L-1 were further evaluated. Additional analysis included purchasing multiple brands of items ≥5.0 µg L-1and analyzing them for total arsenic and chemical species of arsenic. Results: Among the beverages in the initial analysis, apple juice (10.79 µg L-1 and grape juice (49.87 µg L-1 contained the highest levels of total arsenic. Upon examination of items with As concentrations above 5.0 µg L-1, varying concentrations of total arsenic were found in apple cider (range: 5.41-15.27 µg L-1, apple juice (range: 10.67-22.35 µg L-1, baby fruit juice (range: 13.91-16.51 µg L-1 and grape juice (range: 17.69-47.59 µg L-1. Conclusion: Many commercially available juices contained concentrations of arsenic that were higher than the standard for total arsenic allowed in groundwater as set forth by the EPA. The concentration of As in these juices varied between and within brands. In general, those consuming apple and grape juices are the young and elderly and it is these populations that may be more vulnerable to over exposure of heavy metals.

  14. Arsenic Toxicity in Male Reproduction and Development

    OpenAIRE

    Kim, Yoon-Jae; Kim, Jong-Min

    2015-01-01

    Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic a...

  15. Therapeutic efficacy of new dimercaptosuccinic acid (DMSA) analogues in acute arsenic trioxide poisoning in mice.

    Science.gov (United States)

    Kreppel, H; Paepcke, U; Thiermann, H; Szinicz, L; Reichl, F X; Singh, P K; Jones, M M

    1993-01-01

    The therapeutic efficacy of six newly synthesized analogues of dimercaptosuccinic acid (DMSA) was investigated in acute arsenic trioxide poisoning in mice. Meso-2,3-di(acetylthio)succinic acid (DATSA) and meso-2,3- di(benzoylthio)succinic acid (DBTSA) are analogues of DMSA with protected thiol groups ("prodrugs"), and DMDMS, DEDMS, DnPDMS, and DiPDMS are various di-esters of DMSA with methyl, ethyl, n-propyl, and isopropyl alcohols, respectively. Thirty minutes after s.c. injection of an LD80 of arsenic trioxide (65 mumol/kg) male NMRI mice were treated with a single equimolar dose (0.7 mmol/kg) of DMSA i.p. or one of the analogues i.p. or via gastric tube (i.g.). Control animals received arsenic trioxide and saline 30 min later. The survival rate was recorded for 30 days. All of the animals treated with DMSA i.p. survived and all controls died within 2 days. Administered i.g., DATSA and DBTSA increased the survival rate to 29% and 43%, and injected i.p. to 86%. Treatment with DMDMS i.p. and i.g., and with DEDMS, DnPDMS, and DiPDMS i.g. did not reduce lethality. Given i.p., DnPDMS increased the survival rate to 72%, and DEDMS and DiPDMS to 86%, respectively. To investigate the efficacy of the DMSA analogues in reducing the tissue content of arsenic, male NMRI mice received an s.c. injection of an LD5 of arsenic trioxide containing a tracer dose of 73-As(III) (42.5 mumol/kg body wt). Thirty minutes later, saline (controls) or a single equimolar dose (0.7 mmol/kg) of DMSA i.p., or one of the analogues i.p. or i.g. was administered. The arsenic content of various organs (blood, liver, kidneys, heart, lungs, spleen, small intestine, large intestine, brain, testes, skeletal muscle, and skin) at 30 min, 2 h, 4 h, 6 h, and 8 h after the arsenic injection was measured using a gamma counter.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Certain cases of poisoning by arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Cristol, P.; Fourcade, J.; Ravoire, J.; Bezenech, C.

    1939-05-01

    Cases of acute and chronic poisoning by arsenic are reported. Diffuse pains, angor, edema of the limbs and genitals, complicated by heptic insufficiency and chronic bronchitis were determined in a subject having lived near an industrial plant processing arseniferous ores for several years. The plant emitted several hundred kg of finely dispersed arsenic oxide daily which settled on forage and vegetables. Symptoms of poisoning by arsenic were also detected in cattle in the same area. The installation of Cottrell type dust separators has helped to suppress the arsenic oxide emissions.

  17. Arsenic-bound excitons in diamond

    Science.gov (United States)

    Barjon, J.; Jomard, F.; Morata, S.

    2014-01-01

    A set of new excitonic recombinations is observed in arsenic-implanted diamond. It is composed of two groups of emissions at 5.355/5.361 eV and at 5.215/5.220/5.227 eV. They are respectively attributed to the no-phonon and transverse-optical phonon-assisted recombinations of excitons bound to neutral arsenic donors. From the Haynes rule, an ionization energy of 0.41 eV is deduced for arsenic in diamond, which shows that arsenic is a shallower donor than phosphorus (0.6 eV), in agreement with theory.

  18. Industrial contributions of arsenic to the environment.

    Science.gov (United States)

    Nelson, K W

    1977-08-01

    Arsenic is present in all copper, lead, and zinc sulfide ores and is carried along with those metals in the mining, milling and concentrating process. Separation, final concentration and refining of by-product arsenic as the trioxide is achieved at smelters. Arsenic is the essential consistent element of many compounds important and widely used in agriculture and wood preservation. Lesser amounts are used in metal alloys, glass-making, and feed additives. There is no significant recycling. Current levels of arsenic emissions to the atmosphere from smelters and power plants and ambient air concentrations are given as data of greatest environmental interest. PMID:908308

  19. Arsenic and antimony transporters in eukaryotes.

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  20. Acute arsenic poisoning in two siblings.

    Science.gov (United States)

    Lai, Melisa W; Boyer, Edward W; Kleinman, Monica E; Rodig, Nancy M; Ewald, Michele Burns

    2005-07-01

    We report a case series of acute arsenic poisoning of 2 siblings, a 4-month-old male infant and his 2-year-old sister. Each child ingested solubilized inorganic arsenic from an outdated pesticide that was misidentified as spring water. The 4-month-old child ingested a dose of arsenic that was lethal despite extraordinary attempts at arsenic removal, including chelation therapy, extracorporeal membrane oxygenation, exchange transfusion, and hemodialysis. The 2-year-old fared well with conventional therapy. PMID:15995066

  1. XAS Studies of Arsenic in the Environment

    International Nuclear Information System (INIS)

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples

  2. Arsenic in the soils of Zimapan, Mexico

    International Nuclear Information System (INIS)

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapan Valley range from 4 to 14 700 mg As kg-1. Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg-1 only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment. -- Much of the arsenic is relatively immobile but presents long-term source of arsenic

  3. 78 FR 59984 - Submission for Review: Information Collection 3206-NEW; Standard Form 86 Certification (SF 86C)

    Science.gov (United States)

    2013-09-30

    ... MANAGEMENT Submission for Review: Information Collection 3206-NEW; Standard Form 86 Certification (SF 86C...), Office of Management and Budget (OMB) Control No. 3206- NEW, for Standard Form 86 Certification (SF 86C... information, Standard Form 86 Certification (SF 86C). The SF 86C is an information collection completed...

  4. Chromosome studies in human subjects chronically exposed to arsenic in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Vig, B.K.; Figueroa, M.L.; Cornforth, M.N.; Jenkins, S.H.

    1984-01-01

    A two-year study was carried out on human subjects of various ages and backgrounds who had been drinking water containing more than 0.05 mg/liter (0.05 ppm) arsenic for a period of at least five years. The main aim was to correlate the frequency of chromosome aberrations and sister chromatid exchanges in the lymphocytes with the amount of arsenic in the water. In addition, the incidence of skin cancer, fetal wastage, and genetic or developmental abnormalities were explored. Several other variables--eg, coffee, wine, and cigarette consumption; sex; residence (rural vs urban); and exposure to chemicals, smelters, or pesticides--were also taken into consideration. The data on chromosome aberrations (104 exposed and 86 control individuals) and on sister chromatid exchanges (98 exposed and 83 control individuals) did not show that arsenic at concentrations (greater than 0.05 mg/liter) has any effect on these parameters. Similarly, no other health effects of arsenic at these concentrations were found.

  5. A case-control study of GST polymorphisms and arsenic related skin lesions

    Directory of Open Access Journals (Sweden)

    Mahiuddin Golam

    2007-02-01

    Full Text Available Abstract Background Polymorphisms in GSTT1, GSTM1 and GSTP1 impact detoxification of carcinogens by GSTs and have been reported to increase susceptibility to environmentally related health outcomes. Individual factors in arsenic biotransformation may influence disease susceptibility. GST activity is involved in the metabolism of endogenous and exogenous compounds, including catalyzing the formation of arsenic-GSH conjugates. Methods We investigated whether polymorphisms in GSTT1, GSTP1 and GSTM1 were associated with risk of skin lesions and whether these polymorphisms modify the relationship between drinking water arsenic exposure and skin lesions in a case control study of 1200 subjects frequency matched on age and gender in community clinics in Pabna, Bangladesh in 2001–2002. Results and discussion GSTT1 homozygous wildtype status was associated with increased odds of skin lesions compared to the null status (OR1.56 95% CI 1.10–2.19. The GSTP1 GG polymorphism was associated with greater odds of skin lesions compared to GSTP1 AA, (OR 1.86 (95%CI 1.15–3.00. No evidence of effect modification by GSTT1, GSTM1 or GSTP1 polymorphisms on the association between arsenic exposure and skin lesions was detected. Conclusion GSTT1 wildtype and GSTP1 GG are associated with increased risk of skin lesions.

  6. Relationship of urinary arsenic metabolites to intake estimates in residents of the Red River Delta, Vietnam

    International Nuclear Information System (INIS)

    This study investigated the status of arsenic (As) exposure from groundwater and rice, and its methylation capacity in residents from the Red River Delta, Vietnam. Arsenic levels in groundwater ranged from <1.8 to 486 μg/L. Remarkably, 86% of groundwater samples exceeded WHO drinking water guideline of 10 μg/L. Also, estimated inorganic As intake from groundwater and rice were over Provisional Tolerable Weekly Intake (15 μg/week/kg body wt.) by FAO/WHO for 92% of the residents examined. Inorganic As and its metabolite (monomethylarsonic acid and dimethylarsinic acid) concentrations in human urine were positively correlated with estimated inorganic As intake. These results suggest that residents in these areas are exposed to As through consumption of groundwater and rice, and potential health risk of As is of great concern for these people. Urinary concentration ratios of dimethylarsinic acid to monomethylarsonic acid in children were higher than those in adults, especially among men, indicating greater As methylation capacity in children. - Positive correlations between estimated arsenic intake and urinary inorganic arsenic and its metabolites were observed in human from the Red River Delta, Vietnam

  7. Males in rural Bangladeshi communities are more susceptible to chronic arsenic poisoning than females: analyses based on urinary arsenic.

    Science.gov (United States)

    Watanabe, C; Inaoka, T; Kadono, T; Nagano, M; Nakamura, S; Ushijima, K; Murayama, N; Miyazaki, K; Ohtsuka, R

    2001-12-01

    Spot urine samples were collected from the inhabitants of two rural communities in northwestern Bangladesh. We compared arsenic levels in the urine samples ([As](u); n = 346) with those in water from tube wells ([As](tw); range < 1-535 microg/L; n = 86) on an individual basis. The small variation of [As](u) within subjects and highly positive correlation with [As](tw) indicate that [As](u) is a useful indicator of exposure. Analyses of [As](u) showed that creatinine correction was necessary, that [As](u) only reflected recent exposure, and that there were substantial interindividual differences for a given [As](tw) level. To evaluate the toxic effects of arsenic exposure, we constructed a system for rating skin manifestations, which revealed distinct sex-related differences. Comparison of males and females in the same households confirmed that skin manifestations were more severe in the males, and in the males of one community a dose-response relationship between [As](u) and the degree of skin manifestation was evident. The results of this study indicate that [As](u) in spot urine samples can be used as an exposure indicator for As. They suggest that there might be sex-related, and perhaps community-related, differences in the relationship between [As](u) and skin manifestations, although several confounding factors, including sunlight exposure and smoking habits, might contribute to the observed sex difference. The existence of such differences should be further confirmed and examined in other populations to identify the subpopulations sensitive to chronic arsenic toxicity.

  8. [Tracing for arsenic exposure--a differentiation of arsenic compounds is essential for the health assessment].

    Science.gov (United States)

    Weistenhöfer, Wobbeke; Ochsmann, Elke; Drexler, Hans; Göen, Thomas; Klotz, Katrin

    2016-01-01

    Arsenic is ubiquitous and harmful to health in occupation and environment. Arsenic exposure is measured through analysis of arsenic compounds in urine. The identification of several arsenic species is necessary to understand the hazardous potential of the arsenic compounds which differ highly in their toxicity. To estimate the extent of an occupational exposure to arsenic, arsenic species were evaluated for the first time by the working group "Setting of Threshold Limit Values in Biological Material" of the DFG Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area and Biologische Arbeitsstoffreferenzwerte (BAR) of 0.5 μg / L urine for arsenic (III), 0.5 μg / L urine for arsenic (V), 2 μg / L urine for monomethylarsonic acid (MMA) and 10 μg / L urine for dimethylarsinic acid (DMA) were set. If the reference value for total arsenic is exceeded, a further differentiation of arsenic species now enables to estimate the individual health risks taking into account special influences such as seafood consumption.

  9. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  10. Arsenic species excretion after dimercaptopropanesulfonic acid (DMPS) treatment of an acute arsenic trioxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich-Ramm, R. [Ordinariat fuer Arbeitsmedizin der Universitaet Hamburg und Zentralinstitut fuer Arbeitsmedizin, Hamburg (Germany); Schaller, K.H.; Angerer, J. [Institut und Poliklinik fuer Arbeits-, Sozial- und Umweltmedizin der Universitaet Erlangen-Nuernberg, Schillerstr. 25, 91054 Erlangen (Germany); Horn, J. [Medizinische Klinik II, Toxikologische-internistische Intensivstation, Klinikum Nuernberg, Nuernberg (Germany)

    2003-02-01

    We studied the urinary excretion of the different arsenic species in urine samples from a young man who tried to commit suicide by ingesting about 0.6 g arsenic trioxide. He received immediate therapy with dimercaptopropanesulfonic acid (DMPS) after his delivery into the hospital. We assessed urinary arsenite (inorganic trivalent arsenic), arsenate (inorganic pentavalent arsenic), pentavalent dimethylarsinic acid (DMA) and pentavalent monomethylarsonic acid (MMA) in urine with ion-exchange chromatography and on-line hydride-technique atomic absorption spectrometry. The predominant amount of the excreted arsenic was unchanged trivalent inorganic arsenic (37.4%), followed by pentavalent inorganic arsenic (2.6%), MMA (2.1%), DMA (0.2%) and one unidentified arsenic species (0.7%, if calculated as DMA). In the first urine voiding in the clinic, the total arsenic concentration was 215 mg/l, which fell 1000-fold after 8 days of DMPS therapy. A most striking finding was the almost complete inhibition of the second methylation step in arsenic metabolism. As mechanisms for the reduced methylation efficiency, the saturation of the enzymatic process of arsenic methylation, the high dosage of antidote DMPS, which might inhibit the activity of the methyl transferases, and analytical reasons are discussed. The high dosage of DMPS is the most likely explanation. The patient left the hospital after a 12-day treatment with antidote. (orig.)

  11. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  12. Arsenic mobilization and immobilization in paddy soils

    Science.gov (United States)

    Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.

    2010-05-01

    Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).

  13. Arsenic Adsorption Onto Iron Oxides Minerals

    Science.gov (United States)

    Aredes, S.; Klein, B.; Pawlik, M.

    2004-12-01

    The predominant form of arsenic in water is as an inorganic ion. Under different redox conditions arsenic in water is stable in the +5 and +3 oxidation states. Arsenic oxidation state governs its toxicity, chemical form and solubility in natural and disturbed environments. As (III) is found in anoxic environments such as ground water , it is toxic and the common species is the neutral form, H3AsO3. As (V) is found in aerobic conditions such as surface water, it is less toxic and the common species in water are: H2AsO4 - and HAsO4 {- 2}. The water pH determines the predominant arsenate or arsenite species, however, both forms of arsenic can be detected in natural water systems. Iron oxides minerals often form in natural waters and sediments at oxic-anoxic boundaries. Over time they undergo transformation to crystalline forms, such as goethite or hematite. Both As(V) and As(III) sorbs strongly to iron oxides, however the sorption behavior of arsenic is dependent on its oxidation state and the mineralogy of the iron oxides. Competition between arsenic and others ions, such fluoride, sulphate and phosphate also play a role. On the other hand, calcium may increase arsenic adsorption onto iron oxides. Electrokinetic studies and adsorption experiments were carried out in order to determine which conditions favour arsenic adsorption. Hematite, goethite and magnetite as iron based sorbents were used. Test were also conducted with a laterite soil rich in iron minerals. The focus of this study is to evaluate physical and chemical conditions which favour arsenic adsorption onto iron oxides minerals, the results contribute to an understanding of arsenic behaviour in natural and disturbed environments. Furthermore, results could contribute in developing an appropriate remediation technology for arsenic removal in water using iron oxides minerals.

  14. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  15. ARSENIC REMOVAL AND ECOLOGICALLY SAFE CONTAINMENT OF ARSENIC-WASTE: A SUSTAINABLE SOLUTION FOR ARSENIC CRISIS IN CAMBODIA

    Science.gov (United States)

    An appalling degree of arsenic contamination in groundwater has affected more than a million people in wide region of Mekong delta flood plain in Cambodia. Arsenic is by far the most toxic species of all naturally occurring groundwater contaminants and disposal of removed arse...

  16. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  17. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China.

    Science.gov (United States)

    Liu, Jie; Zheng, Baoshan; Aposhian, H Vasken; Zhou, Yunshu; Chen, Ming-Liang; Zhang, Aihua; Waalkes, Michael P

    2002-02-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such overexposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  18. Bioaccumulation of Arsenic by Fungi

    Directory of Open Access Journals (Sweden)

    Ademola O. Adeyemi

    2009-01-01

    Full Text Available Problem statement: Arsenic is a known toxic element and its presence and toxicity in nature is a worldwide environmental problem. The use of microorganisms in bioremediation is a potential method to reduce as concentration in contaminated areas. Approach: In order to explore the possible bioremediation of this element, three filamentous fungi-Aspergillus niger, Serpula himantioides and Trametes versicolor were investigated for their potential abilities to accumulate (and possibly solubilize arsenic from an agar environment consisting of non buffered mineral salts media amended with 0.2, 0.4, 0.6 and 0.8% (w/v arsenopyrite (FeAsS. Growth rates, dry weights, arsenic accumulation and oxalate production by the fungi as well as the pH of the growth media were all assessed during this study. Results: There was no visible solubilization of FeAsS particles underneath any of the growing fungal colonies or elsewhere in the respective agar plates. No specific patterns of growth changes were observed from the growth ratios of the fungi on agar amended with different amounts of FeAsS although growth of all fungi was stimulated by the incorporation of varying amounts of FeAsS into the agar with the exception of A. niger on 0.4% (w/v amended agar and T. versicolor on 0.8% (w/v amended agar. The amounts of dry weights obtained for all three fungi also did not follow any specific patterns with different amounts of FeAsS and the quantities obtained were in the order A. niger > S. himantioides > T. versicolor. All fungi accumulated as in their biomasses with all amounts of FeAsS although to varying levels and T. versicolor was the most effective with all amounts of FeAsS while A. niger was the least effective. Conclusion: The accumulation of arsenic in the biomasses of the test fungi as shown in this study may suggested a role for fungi through their bioaccumulating capabilities as agents in the possible bioremediation of arsenic contaminated environments.

  19. Hijacking membrane transporters for arsenic phytoextraction.

    Science.gov (United States)

    LeBlanc, Melissa S; McKinney, Elizabeth C; Meagher, Richard B; Smith, Aaron P

    2013-01-10

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator.

  20. 29 CFR 1915.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  1. Biotechnology based processes for arsenic removal

    NARCIS (Netherlands)

    Huisman, J.; Olde Weghuis, M.; Gonzalez-Contreras, P.A.

    2011-01-01

    The regulations for arsenic control have become strict. Therefore, better technologies to remove arsenic from bleeds and effluents are desired. In addition, no single solution is suitable for all cases. The properties of the process streams and the storage facilities are major factors determining th

  2. Arsenic and human health effects: A review.

    Science.gov (United States)

    Abdul, Khaja Shameem Mohammed; Jayasinghe, Sudheera Sammanthi; Chandana, Ediriweera P S; Jayasumana, Channa; De Silva, P Mangala C S

    2015-11-01

    Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed.

  3. 29 CFR 1926.1118 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  4. Arsenic Consumption in the United States.

    Science.gov (United States)

    Wilson, Denise

    2015-10-01

    Exposure limits for arsenic in drinking water and minimal risk levels (MRLs) for total dietary exposure to arsenic have long been established in the U.S. Multiple studies conducted over the last five years have detected arsenic in foods and beverages including juice, rice, milk, broth (beef and chicken), and others. Understanding whether or not each of these foods or drinks is a concern to certain groups of individuals requires examining which types of and how much arsenic is ingested. In this article, recent studies are reviewed and placed in the context of consumption patterns. When single sources of food or drink are considered in isolation, heavy rice eaters can be exposed to the most arsenic among adults while infants consuming formula containing contaminated organic brown rice syrup are the most exposed group among children. Most food and drink do not contain sufficient arsenic to exceed MRLs. For individuals consuming more than one source of contaminated water or food, however, adverse health effects are more likely. In total, recent studies on arsenic contamination in food and beverages emphasize the need for individual consumers to understand and manage their total dietary exposure to arsenic. PMID:26591332

  5. ARSENIC EFFECTS ON TELOMERE AND TELOMERASE ACTIVITY

    Science.gov (United States)

    Arsenic effects on telomere and telomerase activity. T-C. Zhang, M. T. Schmitt, J. Mo, J. L. Mumford, National Research Council and U.S Environmental Protection Agency, NHEERL, Research Triangle Park, NC 27711Arsenic is a known carcinogen and also an anticancer agent for acut...

  6. Bioaccumulation of arsenic and silver by the caddisfly larvae Hydropsyche siltalai and H. pellucidula

    DEFF Research Database (Denmark)

    Awrahman, Zmnako; Rainbow, Philip S; Smith, Brian D;

    2015-01-01

    , respectively, for H. pellucidula in moderately hard synthetic water at 10 °C. The assimilation efficiencies (±SE) of As and Ag from radiolabeled ingested food were 46.0 ± 7.7% and 75.7 ± 3.6%, respectively, for H. siltalai, and 61.0 ± 4.2% and 52.6 ± 8.6%, respectively, for H. pellucidula. Ag, but not As, AEs......Biodynamic modeling was used to investigate the uptake and bioaccumulation of arsenic and silver from water and food by two Hydropsychid caddisfly larvae: Hydropsyche siltalai and Hydropsyche pellucidula. Radiotracer techniques determined the uptake rate constants of arsenic and silver from water...... and silver concentrations in environmental water and food (suspended particles) samples were measured. Biodynamic models successfully predicted accumulated As and Ag concentrations in resident H. siltalai and H. pellucidula at each site. The models also showed that more than 95% of accumulated As and almost...

  7. Speciation of Six-Arsenic Species of Rice in Korea by HPLC/ICPMS

    Directory of Open Access Journals (Sweden)

    Kim J.Y.

    2013-04-01

    Full Text Available Determination of arsenic (As speciation in rice is necessary because inorganic As species are more toxic than organic As. Arsenic levels of rice in Korea were determined by microwave extraction and High Performance Liquid Chromatography coupled with Inductively Coupled Plasma-Mass Spectrometry. The extraction method showed a high recovery and low Limit of Detection (LOD and Limit of Quantitation (LOQ. Most of the As species in rice were noticed to be inorganic [Arsenite (AsIII, Dimethylarsinic acid (DMA]. The percentage of inorganic As/total As is 69.01 % (36.40-87.86 %. Arsenite and DMA were the major compounds in rice in Korea when compare to U.S. rice. The order and percentage of As species showed were AsIII (56-70 %>DMA (23-38 %>AsV (5 %>MMA(1 %.

  8. Arsenic pesticides and environmental pollution: exposure, poisoning, hazards and recommendations.

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M; Mohammad, Amina El-Hosini; Morsy, Tosson A

    2013-08-01

    Arsenic is a metalloid element. Acute high-dose exposure to arsenic can cause severe systemic toxicity and death. Lower dose chronic arsenic exposure can result in subacute toxicity that can include peripheral sensorimotor neuropathy, skin eruptions, and hepatotoxicity. Long-term effects of arsenic exposure include an in Due to the physiologic effects of the arsenic on all body systems, thus, chronic arsenic-poisoned patient is a major nursing challenge. The critical care nurse provides valuable assessment and interventions that prevent major multisystem complications from arsenic toxicity.

  9. Research plan for arsenic in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The document stresses the implications of recent research findings and emphasizes identification of key strengths and sources of uncertainty and variability in the arsenic risk assessment. This document also explains how information gained through research can: impact the method used in new investigations to assess the risks of arsenic, and support or suggest changes in the assumptiosn and methods used in arsenic risk assessments. This Arsenic Research Plan addresses the protection of human health, especially the research needed to implement the 1996 Safe Drinking Water Act Amendments (SDWAA). It is intended to serve as a blueprint that will be discussed with parties interested in addressing key strengths and uncertainties in the arsenic risk assessment.

  10. Arsenic in Drinking Water—A Global Environmental Problem

    Science.gov (United States)

    Shaofen Wang, Joanna; Wai, Chien M.

    2004-02-01

    Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.

  11. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels. PMID:27460822

  12. 40 CFR 86.337-79 - Information.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Information. 86.337-79 Section 86.337... Information. The following information, as applicable, shall be recorded for each test: (a) Engine description and specification. A copy of the information specified in this paragraph must accompany each...

  13. 42 CFR 86.15 - Payments.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Payments. 86.15 Section 86.15 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES GRANTS FOR EDUCATION PROGRAMS IN OCCUPATIONAL SAFETY AND HEALTH Occupational Safety...

  14. 40 CFR 86.228-94 - Transmissions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Transmissions. 86.228-94 Section 86.228-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New...

  15. 40 CFR 86.210-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.210-94 Section 86.210-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  16. 40 CFR 86.241-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.241-94 Section 86.241-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  17. 40 CFR 86.208-94 - Dynamometer.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Dynamometer. 86.208-94 Section 86.208-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New...

  18. 40 CFR 86.202-94 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Definitions. 86.202-94 Section 86.202-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New...

  19. 40 CFR 86.243-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.243-94 Section 86.243-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  20. 40 CFR 86.217-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.217-94 Section 86.217-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  1. 40 CFR 86.212-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.212-94 Section 86.212-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  2. 40 CFR 86.203-94 - Abbreviations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Abbreviations. 86.203-94 Section 86.203-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New...

  3. 40 CFR 86.245-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.245-94 Section 86.245-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  4. 40 CFR 86.225-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.225-94 Section 86.225-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  5. 40 CFR 86.220-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.220-94 Section 86.220-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  6. 40 CFR 86.207-94 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false 86.207-94 Section 86.207-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty...

  7. 40 CFR 86.1801-01 - Applicability.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Applicability. 86.1801-01 Section 86.1801-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... light-duty vehicles, light-duty trucks, medium-duty passenger vehicles, and 2005 and later model...

  8. 42 CFR 430.86 - Discovery.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Discovery. 430.86 Section 430.86 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... objection to discovery action initiated under this section. The presiding officer also has the power...

  9. 45 CFR 86.33 - Comparable facilities.

    Science.gov (United States)

    2010-10-01

    ... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 86.33 Comparable facilities. A recipient... the other sex. (Secs. 901, 902, Education Amendments of 1972, 86 Stat. 373, 374)...

  10. 40 CFR 86.004-2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... Methanol-Fueled Heavy-Duty Vehicles § 86.004-2 Definitions. The definitions of § 86.001-2 continue to apply...-duty diesel engines, for carbon monoxide, particulate, and oxides of nitrogen plus non-methane... non-methane hydrocarbons emission standards, a period of use of 10 years or 185,000 miles,...

  11. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  12. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Hui Shen

    2016-02-01

    Full Text Available Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001 following arsenic exposure: inorganic arsenic (iAs, monomethyl arsenic (MMA, dimethyl arsenic (DMA, and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD: 1.00; 95% confidence interval (CI: 0.60–1.40; p< 0.00001 and MMA (SMD: 0.49; 95% CI: 0.21–0.77; p = 0.0006 also increase, while the percentage of DMA (SMD: −0.57; 95% CI: −0.80–−0.31; p< 0.0001, primary methylation index (SMD: −0.57; 95% CI: −0.94–−0.20; p = 0.002, and secondary methylation index (SMD: −0.27; 95% CI: −0.46–−0.90; p = 0.004 decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  13. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    Science.gov (United States)

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  14. Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation

    Institute of Scientific and Technical Information of China (English)

    CHEN Tongbin; HUANG Zechun; HUANG Yuying; XIE Hua; LIAO Xiaoyong

    2003-01-01

    Synchrotron radiation X-ray fluorescencespectroscopy (SRXRF) was used to study the cellular distri-butions of arsenic and other elements in root, petiole, pinna of a newly discovered arsenic hyperaccumulator, Pteris nervosa. It was shown that there was a trend in P. nervosa totransport arsenic from cortex tissue to vascular tissue in root, and keep arsenic in vascular during transportation in petiole, and transport arsenic from vascular tissue to adaxial cortex tissues in midrib of pinnae. More arsenic was accumulated in mesophyll than in epidermis in pinnae. The distributions of some elements, such as K, Ca, Mn, Fe, Cu, Zn, in petiole, midrib and pinna were similar to that of arsenic, indicating that those cations might cooperate with arsenic in those transportation processes; whereas the distributions of Cl and Br in pinna were the reverse of that of arsenic, indicating that those anions might compete with arsenic in pinna of P. nervosa.

  15. Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan.

    Science.gov (United States)

    Liu, Chia-Chuan; Maity, Jyoti Prakash; Jean, Jiin-Shuh; Sracek, Ondra; Kar, Sandeep; Li, Zhaohui; Bundschuh, Jochen; Chen, Chien-Yen; Lu, Hsueh-Yu

    2011-01-01

    Fluid and mud samples collected from Hsiaokunshui (HKS), Wushanting (WST), Yenshuikeng (YSK), Kunshuiping (KSP), Liyushan (LYS), and Sinyangnyuhu (SYNH) mud volcanoes of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. The relationship between the release of arsenic (As) and activities of sulfate-reducing bacteria has been assessed to understand relevant geochemical processes in the mud volcanoes. Arsenic (0.02-0.06 mg/L) and humic substances (4.13 × 10(-4) to 1.64 × 10(-3) mM) in the fluids of mud volcanoes showed a positive correlation (r = 0.99, p volcano. Arsenic and iron in mud sediments formed two separate groups i) high As, but low Fe in HKS, WST, and SYNH; and ii) low As, but high Fe in the YSK, KSP, and LYS mud volcanoes. The Eh(S.H.E.) values of the mud volcano liquids were characterized by mild to strongly reducing conditions. The HKS, SYNH, and WST mud volcanoes (near the Chishan Fault) belongs to strong reducing environment (-33 to -116 mV), whereas the LYS, YSK, and KSP mud volcanoes located near the coastal plain are under mild reducing environment (-11 to 172 mV). At low Eh values mud volcanoes, saturation index (SI) values of poorly crystalline phases such as amorphous ferric hydroxide indicate understaturation, whereas saturation is reached in relatively high Eh(S.H.E.) values mud volcanoes. Arsenic contents in sediments are low, presumably due to its release to fluids (As/Fe ratio in YSK, KSP, and LYS sediment: 4.86 × 10(-4)-6.20 × 10(-4)). At low Eh(S.H.E.) values (mild to strong reducing environment), arsenic may co-precipitate with sulfides as a consequence of sulfate reduction (As/Fe ratios in WST, HKS, and SYNH sediments: 0.42-0.69).

  16. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    OpenAIRE

    Yager, J W; Hicks, J B; FABIANOVA, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic a...

  17. ARSENIC SPECIATION IN CARROT EXTRACTS WITH AN EMPHASIS ON THE DETECTION OF MMA(III) AND MMTA

    Science.gov (United States)

    The two predominant routes of arsenic exposure are dietary ingestion and drinking water consumption. Dietary arsenic, unlike drinking water arsenic, contains a variety of arsenicals with dramatically different toxicities. The list of arsenicals detected in dietary samples conti...

  18. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic.

    Science.gov (United States)

    Zhang, Hai-Nan; Yang, Lina; Ling, Jian-Ya; Czajkowsky, Daniel M; Wang, Jing-Fang; Zhang, Xiao-Wei; Zhou, Yi-Ming; Ge, Feng; Yang, Ming-Kun; Xiong, Qian; Guo, Shu-Juan; Le, Huang-Ying; Wu, Song-Fang; Yan, Wei; Liu, Bingya; Zhu, Heng; Chen, Zhu; Tao, Sheng-Ce

    2015-12-01

    Arsenic is highly effective for treating acute promyelocytic leukemia (APL) and has shown significant promise against many other tumors. However, although its mechanistic effects in APL are established, its broader anticancer mode of action is not understood. In this study, using a human proteome microarray, we identified 360 proteins that specifically bind arsenic. Among the most highly enriched proteins in this set are those in the glycolysis pathway, including the rate-limiting enzyme in glycolysis, hexokinase-1. Detailed biochemical and metabolomics analyses of the highly homologous hexokinase-2 (HK2), which is overexpressed in many cancers, revealed significant inhibition by arsenic. Furthermore, overexpression of HK2 rescued cells from arsenic-induced apoptosis. Our results thus strongly implicate glycolysis, and HK2 in particular, as a key target of arsenic. Moreover, the arsenic-binding proteins identified in this work are expected to serve as a valuable resource for the development of synergistic antitumor therapeutic strategies.

  19. A broad view of arsenic.

    Science.gov (United States)

    Jones, F T

    2007-01-01

    In the mind of the general public, the words "arsenic" and "poison" have become almost synonymous. Yet, As is a natural metallic element found in low concentrations in virtually every part of the environment, including foods. Mining and smelting activities are closely associated with As, and the largest occurrence of As contamination in the United States is near the gold mines of northern Nevada. Inhabitants of Bangladesh and surrounding areas have been exposed to water that is naturally and heavily contaminated with As, causing what the World Health Organization has described as the worst mass poisoning in history. Although readily absorbed by humans, most inorganic As (>90%) is rapidly cleared from the blood with a half-life of 1 to 2 h, and 40 to 70% of the As intake is absorbed, metabolized, and excreted within 48 h. Arsenic does not appreciably bioaccumulate, nor does it biomagnify in the food chain. The United States has for some time purchased more As than any other country in the world, but As usage is waning, and further reductions appear likely. Arsenic is used in a wide variety of industrial applications, from computers to fireworks. All feed additives used in US poultry feeds must meet the strict requirements of the US Food and Drug Administration Center for Veterinary Medicine (Rockville, MD) before use. Although some public health investigators have identified poultry products as a potentially significant source of total As exposure for Americans, studies consistently demonstrate that <1% of samples tested are above the 0.5 ppm limit established by the US Food and Drug Administration Center for Veterinary Medicine. Although laboratory studies have demonstrated the possibility that As in poultry litter could pollute ground waters, million of tons of litter have been applied to the land, and no link has been established between litter application and As contamination of ground water. Yet, the fact that <2% of the United States population is involved in

  20. Social implications of arsenic poisoning in Bangladesh.

    Science.gov (United States)

    Hassan, M Manzurul; Atkins, Peter J; Dunn, Christine E

    2005-11-01

    Besides its toxicity, groundwater arsenic contamination creates widespread social problems for its victims and their families in Bangladesh. There is, for instance, a tendency to ostracise arsenic-affected people, arsenicosis being thought of as a contagious disease. Within the community, arsenic-affected people are barred from social activities and often face rejection, even by their immediate family members. Women with visible arsenicosis symptoms are unable to get married and some affected housewives are divorced by their husbands. Children with symptoms are not sent to school in an effort to hide the problem. This paper employs mainly qualitative methods to interpret people's understandings about the toxic impact of groundwater arsenic poisoning on their social lives. Arsenic-affected patients in southwest Bangladesh were asked to determine their 'own priorities' in measuring arsenic toxicity on their social activities and to explore their perceptions about their own survival strategies. We found that patients' experiences reveal severe negative social impacts, and a sharp difference of perceptions about arsenic and social issues between arsenicosis patients and unaffected people.

  1. Arsenic contamination and arsenicosis in China

    International Nuclear Information System (INIS)

    Arsenicosis is a serious environmental chemical disease in China mainly caused by drinking water from pump wells contaminated by high levels of arsenic. Chronic exposure of humans to high concentrations of arsenic in drinking water is associated with skin lesions, peripheral vascular disease, hypertension, blackfoot disease, and high risk of cancers. Lead by the Ministry of Health of China, we carried out a research about arsenicosis in China recently. Areas contaminated with arsenic from drinking water are determined by 10% pump well water sample method while areas from burning coal are determined by existing data. Two epidemic areas of Shanxi Province and Inner Mongolia are investigated for the distribution of pump wells containing high arsenic. Well water in all the investigated villages of Shanxi Province showed polluted by high arsenic, and the average rate of unsafe pump well water is 52%. In Inner Mongolia, the high percentage of pump wells containing elevated arsenic is found only in a few villages. The average rate of unsafe pump well water is 11%. From our research, we find that new endemic areas are continuously emerging in China. Up to now, epidemic areas of arsenicosis mainly involve eight provinces and 37 counties in China. In the affected areas, the discovery of wells and coal with high levels of arsenic is continuing sporadically, and a similar scattered distribution pattern of patients is also being observed

  2. [Competitive Microbial Oxidation and Reduction of Arsenic].

    Science.gov (United States)

    Yang, Ting-ting; Bai, Yao-hui; Liang, Jin-song; Huo, Yang; Wang, Ming-xing; Yuan, Lin-ijang

    2016-02-15

    Filters are widely applied in drinking water treatment plants. Our previous study, which explored the asenic redox in a filter of drinking water plant treating underground water, found that As3+ could be oxidized to As5+ by biogenic manganese oxides, while As5+ could be reduced to As3+ by some microbial arsenic reductases in the biofilter system. This microbial competition could influence the system stability and treatment efficiency. To explore its mechanism, this study selected a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) and a arsenic-reducing strain (Brevibacterium sp. LSJ-9) to investigate their competitive relationship in nutrient acquisition and arsenic redox in the presence of Mn2+, As3+ or As5+ The results revealed that the concentration and valence of Mn and As varied with different reaction time; biological manganese oxides dominated the arsenic redox by rapidly oxidizing the As3+ in the existing system and the As3+ generated by arsenic reductase into As. PCR and RT-PCR results indicated that the arsenic reductase (arsC) was inhibited by the manganese oxidase (cumA). The expression of 16S rRNA in QJX-1 was two orders of magnitude higher than that in LSJ-9, which implied QJX-1 was dominant in the bacterial growth. Our data revealed that hydraulic retention time was critical to the valence of arsenic in the effluent of filter in drinking water treatment plant.

  3. [Competitive Microbial Oxidation and Reduction of Arsenic].

    Science.gov (United States)

    Yang, Ting-ting; Bai, Yao-hui; Liang, Jin-song; Huo, Yang; Wang, Ming-xing; Yuan, Lin-ijang

    2016-02-15

    Filters are widely applied in drinking water treatment plants. Our previous study, which explored the asenic redox in a filter of drinking water plant treating underground water, found that As3+ could be oxidized to As5+ by biogenic manganese oxides, while As5+ could be reduced to As3+ by some microbial arsenic reductases in the biofilter system. This microbial competition could influence the system stability and treatment efficiency. To explore its mechanism, this study selected a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) and a arsenic-reducing strain (Brevibacterium sp. LSJ-9) to investigate their competitive relationship in nutrient acquisition and arsenic redox in the presence of Mn2+, As3+ or As5+ The results revealed that the concentration and valence of Mn and As varied with different reaction time; biological manganese oxides dominated the arsenic redox by rapidly oxidizing the As3+ in the existing system and the As3+ generated by arsenic reductase into As. PCR and RT-PCR results indicated that the arsenic reductase (arsC) was inhibited by the manganese oxidase (cumA). The expression of 16S rRNA in QJX-1 was two orders of magnitude higher than that in LSJ-9, which implied QJX-1 was dominant in the bacterial growth. Our data revealed that hydraulic retention time was critical to the valence of arsenic in the effluent of filter in drinking water treatment plant. PMID:27363151

  4. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  5. Current Status and Prevention Strategy for Coal-arsenic Poisoning in Guizhou, China

    OpenAIRE

    Li, Dasheng; An, Dong; Zhou, Yunsu; Liu, Jie; Waalkes, Michael P.

    2006-01-01

    Arsenic exposure from burning coal with high arsenic contents occurs in southwest Guizhou, China. Coal in this region contains extremely high concentrations of inorganic arsenic. Arsenic exposure from coal-burning is much higher than exposure from arsenic-contaminated water in other areas of China. The current status and prevention strategies for arsenic poisoning from burning high-arsenic coal in southwest Guizhou, China, is reported here. Over 3,000 arsenic-intoxicated patients were diagnos...

  6. Arsenic in North Carolina: public health implications.

    Science.gov (United States)

    Sanders, Alison P; Messier, Kyle P; Shehee, Mina; Rudo, Kenneth; Serre, Marc L; Fry, Rebecca C

    2012-01-01

    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7712 showed detectable arsenic concentrations that ranged between 1 and 806μg/L. Additionally, 1436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes.

  7. Appraisal of TEX86 and TEX86L thermometries in subpolar and polar regions

    Science.gov (United States)

    Ho, Sze Ling; Mollenhauer, Gesine; Fietz, Susanne; Martínez-Garcia, Alfredo; Lamy, Frank; Rueda, Gemma; Schipper, Konstanze; Méheust, Marie; Rosell-Melé, Antoni; Stein, Rüdiger; Tiedemann, Ralf

    2014-04-01

    TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms) is a sea surface temperature (SST) proxy based on the distribution of archaeal isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs). In this study, we appraise the applicability of TEX86 and TEX86L in subpolar and polar regions using surface sediments. We present TEX86 and TEX86L data from 160 surface sediment samples collected in the Arctic, the Southern Ocean and the North Pacific. Most of the SST estimates derived from both TEX86 and TEX86L are anomalously high in the Arctic, especially in the vicinity of Siberian river mouths and the sea ice margin, plausibly due to additional archaeal contributions linked to terrigenous input. We found unusual GDGT distributions at five sites in the North Pacific. High GDGT-0/crenarchaeol and GDGT-2/crenarchaeol ratios at these sites suggest a substantial contribution of methanogenic and/or methanotrophic archaea to the sedimentary GDGT pool here. Apart from these anomalous findings, TEX86 and TEX86L values in the surface sediments from the Southern Ocean and the North Pacific do usually vary with overlaying SSTs. In these regions, the sedimentary TEX86-SST relationship is similar to the global calibration, and the derived temperature estimates agree well with overlaying annual mean SSTs at the sites. However, there is a systematic offset between the regional TEX86L-SST relationships and the global calibration. At these sites, temperature estimates based on the global TEX86L calibration are closer to summer SSTs than annual mean SSTs. This finding suggests that in these subpolar settings a regional TEX86L calibration may be a more suitable equation for temperature reconstruction than the global calibration.

  8. Determination of total arsenic, inorganic and organic arsenic species in wine.

    Science.gov (United States)

    Herce-Pagliai, C; Moreno, I; González, G; Repetto, M; Cameán, A M

    2002-06-01

    Forty-five wine samples from the south of Spain of different alcoholic strength were analysed for total arsenic and its inorganic [As(III), As(V)] and organic (monomethylarsonic acid [MMAA], dimethylarsinic acid [DMAA]) species. The As levels of the wine samples ranged from 2.1 to 14.6 microg l(-1). The possible effect of the alcoholic fermentation process on the levels of the total arsenic and arsenical species was studied. The average total arsenic levels for the different samples were very similar, without significant differences between all types of wines. In table wines and sherry, the percentages of total inorganic arsenic were 18.6 and 15.6%, with DMAA or MMAA being the predominant species, respectively. In most samples, DMAA was the most abundant species, but the total inorganic aresenic fraction was considerable, representing 25.4% of the total concentration of the element. The estimated daily intakes of total arsenic and total inorganic arsenic for average Spanish consumers were 0.78 and 0.15 microg/person day(-1), respectively. The results suggest that the consumption of these types of wines makes no significant contribution to the total and inorganic arsenic intake for normal drinkers. However, wine consumption contributes a higher arsenic intake than through consumption of beers and sherry brandies.

  9. Insights into arsenic multi-operons expression and arsenic resistance mechanisms in Rhodopseudomonas palustris CGA009

    Directory of Open Access Journals (Sweden)

    Chungui eZhao

    2015-09-01

    Full Text Available Arsenic (As is widespread in the environment and causes numerous health problems. Rhodopseudomonas palustris has been regarded as a good model organism for studying arsenic detoxification since it was first demonstrated to methylate environmental arsenic by conversion to soluble or gaseous methylated species. However, the detailed arsenic resistance mechanisms remain unknown though there are at least three arsenic-resistance operons (ars1, ars2 and ars3 in R. palustris. In this study, we investigated how arsenic multi-operons contributed to arsenic detoxification in R. palustris. The expression of ars2 or ars3 operons increased with increasing environmental arsenite (As(III concentrations (up to 1.0 mM while transcript of ars1 operon was not detected in the middle log-phase (55 h. ars2 operon was actively expressed even at the low concentration of As(III (0.01 μM, whereas the ars3 operon was expressed at 1.0 µM of As(III, indicating that there was a differential regulation mechanism for the three arsenic operons. Furthermore, ars2 and ars3 operons were maximally transcribed in the early log-phase where ars2 operon was 5.4-fold higher than that of ars3 operon. A low level of ars1 transcript was only detected at 43 h (early log-phase. Arsenic speciation analysis demonstrated that R. palustris could reduce As(V to As(III.

  10. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose

    2009-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water

  11. Environmental arsenic exposure and sputum metalloproteinase concentrations.

    OpenAIRE

    Josyula, Arun B.; Poplin, Gerald S.; Kurzius-Spencer, Margaret; McClellen, Hannah E.; Kopplin, Michael J.; Stürup, Stefan; Clark Lantz, R.; Jefferey L. Burgess

    2006-01-01

    Biomarkers of exposure & early effects: field studiesBiomarker: arsenic, creatinin, MMP levelsExposure/effect represented: arsenicStudy design: cross-sectionalStudy size: 73 subjectsAnalytical technique: ELISA, HPLCTissue/biological material/sample size: urine samplesRelationship with exposure or effect of interest (including dose-response): inorganic arsenic positively correlated with logMMP-9/TIMP-1 ratio in sputum (Pearson's r Ό 0:351, P Ό 0:009) and negatively correlated with the log of s...

  12. Health implications of arsenic in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Pontius, F.W. (American Water Works Association, Denver, CO (United States)); Brown, K.G. (Kenneth G. Brown Inc., Chapel Hill, NC (United States)); Chen, C.J. (National Taiwan Univ., Taipei (Taiwan, Province of China). Inst. of Public Health)

    1994-09-01

    The adequacy of the current maximum contaminant level (MCL) for arsenic is being evaluated by the US Environmental Protection Agency. If recent theoretical estimates of chronic effects and cancer risks prove accurate, the current MCL may not effectively protect health. Knowledge of arsenic pharmacokinetics and mechanisms in humans, however, is not complete enough to provide a definitive answer, and current epidemiologic evidence is too inconsistent and too fraught with uncertainty regarding arsenic exposure to be helpful in assessing low-level risks. 85 refs.

  13. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  14. Urinary arsenic levels in timber treatment operators.

    Science.gov (United States)

    Gollop, B R; Glass, W I

    1979-01-10

    An investigation was carried out into arsenic levels in urine of timber treatment operators at six treatment plants in the Waikato-Rotorua area. The mean arsenic level for treatment operators was 222 migrograms/l compared with the normal range of 5-40 micrograms/l. In order to reduce the present significant exposure to treatment chemicals such as arsenic and chromium, it is recommended that the wood preservation industry take engineering measures to reduce the present air emissions and adopt strict work practices in hygiene and protective clothing in similar manner to those handling mercury and lead. PMID:285363

  15. Multi-trace elements level in drinking water and the prevalence of multi-chronic arsenical poisoning in residents in the west area of Iran

    International Nuclear Information System (INIS)

    First, we determined the levels of 8 trace elements (As, Se, Hg, Cd, Ag, Mn, Cr and Pb) in 530 village drinking water sources by graphite furnace or flame atomic absorption spectroscopy method, in Kurdistan Province in the west of Iran. The results showed that the level of As, Cd and Se in 28 village drinking water sources exceeded WHO or National Standard limits. The levels of concentration of arsenic in drinking water ranged from 42 to 1500 μg/L. Then in a cross-sectional survey, 587 people from 211 households were chosen for clinical examinations of multi-chronic arsenical poisoning including pigment disorders, keratosis of palms and soles, Mee's line in fingers and nails and the gangrene as a systemic manifestation. Of 587 participants, 180 (30.7%) participants were affected by representing the type of chronic arsenical poisoning. The prevalence of Mee's line, keratosis, and pigment disorders were 86.1%, 77.2% and 67.8% respectively. Therefore, the prevalence of Mee's line between inhabitants was higher than the other disorders. The results show a strong linear relationship between arsenic exposure and occurrence of multi-chronic arsenical poisoning (R2 = 0.76). The association between age for more than 40 years and gender for more than 60 years with chronic arsenical poisoning is significant (p < 0.05). Also, there is a relationship between subjects who were affected with disorders and duration of living in the village. Except for gangrene disorder, the odds ratio of prevalence of other disorders with arsenic exposure level in drinking water show a highly significant relationship between arsenic content and the risk of chronic disorders (p < 0.01). These results confirm the need to further study trace elements in drinking waters, food products and other samples in this area and the relationship to other chronic diseases arising out of arsenicosis.

  16. Multi-trace elements level in drinking water and the prevalence of multi-chronic arsenical poisoning in residents in the west area of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Barati, A.H., E-mail: ah_barati@yahoo.com [Department of Medical Physics, Faculty of Medicine, Kurdistan University of Medical Sciences, P.O.Box-66135-756, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Maleki, A. [Department of Environmental Health, Faculty of Health Sciences, Kurdistan University of Medical Sciences, Sanandaj (Iran, Islamic Republic of); Alasvand, M. [Department of Medical Physiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj (Iran, Islamic Republic of)

    2010-03-01

    First, we determined the levels of 8 trace elements (As, Se, Hg, Cd, Ag, Mn, Cr and Pb) in 530 village drinking water sources by graphite furnace or flame atomic absorption spectroscopy method, in Kurdistan Province in the west of Iran. The results showed that the level of As, Cd and Se in 28 village drinking water sources exceeded WHO or National Standard limits. The levels of concentration of arsenic in drinking water ranged from 42 to 1500 {mu}g/L. Then in a cross-sectional survey, 587 people from 211 households were chosen for clinical examinations of multi-chronic arsenical poisoning including pigment disorders, keratosis of palms and soles, Mee's line in fingers and nails and the gangrene as a systemic manifestation. Of 587 participants, 180 (30.7%) participants were affected by representing the type of chronic arsenical poisoning. The prevalence of Mee's line, keratosis, and pigment disorders were 86.1%, 77.2% and 67.8% respectively. Therefore, the prevalence of Mee's line between inhabitants was higher than the other disorders. The results show a strong linear relationship between arsenic exposure and occurrence of multi-chronic arsenical poisoning (R{sup 2} = 0.76). The association between age for more than 40 years and gender for more than 60 years with chronic arsenical poisoning is significant (p < 0.05). Also, there is a relationship between subjects who were affected with disorders and duration of living in the village. Except for gangrene disorder, the odds ratio of prevalence of other disorders with arsenic exposure level in drinking water show a highly significant relationship between arsenic content and the risk of chronic disorders (p < 0.01). These results confirm the need to further study trace elements in drinking waters, food products and other samples in this area and the relationship to other chronic diseases arising out of arsenicosis.

  17. Arsenic burden of cooked rice: Traditional and modern methods.

    Science.gov (United States)

    Sengupta, M K; Hossain, M A; Mukherjee, A; Ahamed, S; Das, B; Nayak, B; Pal, A; Chakraborti, D

    2006-11-01

    Arsenic contamination of rice by irrigation with contaminated groundwater and secondarily increased soil arsenic compounds the arsenic burden of populations dependent on subsistence rice-diets. The arsenic concentration of cooked rice is known to increase with the arsenic concentration of the cooking water but the effects of cooking methods have not been defined. We tested the three major rice cooking procedures followed globally. Using low-arsenic water (As rice: water::1:6; discard excess water) removed up to 57% of the arsenic from rice containing arsenic 203-540 microg/kg. Approximately half of the arsenic was lost in the wash water, half in the discard water. A simple inexpensive rice cooker based on this method has been designed and used for this purpose. Despite the use of low-arsenic water, the contemporary method of cooking unwashed rice at rice:water::1:1.5-2.0 until no discard water remains did not modify the arsenic content. Preliminary washing until clear did remove 28% of the rice arsenic. The results were not influenced by water source (tubewell, dug well, pond or rain); cooking vessel (aluminium, steel, glass or earthenware); or the absolute weight of rice or volume of water. The use of low-As water in the traditional preparation of arsenic contaminated rice can reduce the ingested burden of arsenic. PMID:16876928

  18. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  19. Ana insect model for assessing arsenic toxicity: Arsenic elevated glutathione content in the musca domestica and trichoplusia ni

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, K.; Pardini, R.S. [Univ. of Nevada, Reno, NV (United States)

    1995-12-01

    Throughout history, arsenic has acquired an unparalled reputation as a poison. Arsenic was used as a poison as early as 2000 B.C. The toxicity of arsenic (As) extends to mammals, fish, insects, plants and fungi. According to epidemiological evidence, inorganic arsenic compounds have been strongly suggested as human carcinogens. Human exposure to arsenic through various means is correlated with an increased incidence of skin, lung, and possibly liver cancers. Inorganic trivalent arsenic is systematically more poisonous than the pentavalent form and it is possible that pentavalent arsenic is reduced to the trivalent form before exerting any toxic effects. This study focuses on the potential to use two insect species, the housefly, Musca domestica and the cabbage looper moth, Trichoplusia ni, and a model for the study of arsenic toxicity. After 48 hours of exposure to Arsenic, a significant induction of Glutathione level and subsequent decrease in the level of GSSG in both species were observed. 21 refs., 2 figs., 1 tab.

  20. [Effects of organic fertilization on arsenic absorption of pakchoi (Brassica chinensis) on arsenic-contaminated red soil].

    Science.gov (United States)

    Li, Lian-Fang; Geng, Zhi-Xi; Zeng, Xi-Bai; Bai, Ling-Yu; Su, Shi-Ming

    2011-01-01

    A pot experiment with arsenic-contaminated red soil was conducted to study the effects of applying pig dung and chicken manure on the growth and arsenic absorption of pakchoi (Brassica chinensis), and on soil available arsenic. Applying pig dung and chicken manure to the arsenic-contaminated red soil increased the biomass of pakchoi to some extent. Comparing with the control, applying pig dung increased the pakchoi biomass significantly (P Organic fertilization promoted the arsenic absorption of pakchoi, with the arsenic uptake after applying pig dung increased by 20.7%-53.9%. The application of pig dung and chicken manure to arsenic-contaminated red soil could somewhat increase the soil available arsenic content and the arsenic uptake by crops, and thus, increase the risks of agricultural product quality and environment.

  1. Arsenic poisoning of cattle and other domestic animals

    Energy Technology Data Exchange (ETDEWEB)

    Moxham, J.W.; Coup, M.R.

    1968-01-01

    One hundred and sixty-one incidents of arsenic poisoning in domestic animals were recorded at Ruakura Veterinary Diagnostic Station from 1955 to 1967. Cattle was the animal species most subject to arsenic poisoning. Clincal signs, post-mortem findings and sources of arsenic are given. Arsenic poisoning was more prevalent in younger cattle and during the warmer months of the year. With cattle most incidents were associated with carelessly discarded arsenical compounds, although most deaths occurred when these compounds were deliberately used. In other species, losses were generally caused by the deliberate use of arsenical preparations for dipping, drenching and weed spraying. 10 references, 2 tables.

  2. Manufacture of high purity low arsenic anhydrous hydrogen fluoride

    International Nuclear Information System (INIS)

    A process for manufacturing anhydrous hydrogen fluoride with reduced levels of arsenic impurity from arsenic contaminated anhydrous hydrogen fluoride is described which comprises: (a) contacting the anhydrous hydrogen fluoride with an effective amount of hydrogen peroxide to oxidize the arsenic impurity in the presence of a catalyst which comprises a catalytic amount of (i) molybdenum or an inorganic molybdenum compound and (ii) a phosphate compound, at a temperature and for a period of time sufficient to oxidize volatile trivalent arsenic impurities in the anhydrous hydrogen fluoride to non-volatile pentavalent arsenic compounds, and (b) distilling the resulting mixture and recovering anhydrous hydrogen fluoride with reduced levels of arsenic impurity

  3. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Lien, Li-Ming [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Neurology, Shin Kong WHS Memorial Hospital, Taipei, Taiwan (China); Chung, Wen-Ting [Department of Neurology, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsieh, Fang-I; Hsieh, Pei-Fan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Wu, Meei-Maan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan (China); Tseng, Hung-Pin [Department of Neurology, Lotung Poh-Ai Hospital, I-Lan, Taiwan (China); Chiou, Hung-Yi, E-mail: hychiou@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Chen, Chien-Jen [Genomics Research Center, Academia Sinica, Taipei, Taiwan (China)

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields

  4. Chronic respiratory symptoms in children following in utero and early life exposure to arsenic in drinking water in Bangladesh

    Science.gov (United States)

    Smith, Allan H; Yunus, Mohammad; Khan, Al Fazal; Ercumen, Ayse; Yuan, Yan; Smith, Meera Hira; Liaw, Jane; Balmes, John; von Ehrenstein, Ondine; Raqib, Rubhana; Kalman, David; Alam, Dewan S; Streatfield, Peter K; Steinmaus, Craig

    2013-01-01

    Background Arsenic exposure via drinking water increases the risk of chronic respiratory disease in adults. However, information on pulmonary health effects in children after early life exposure is limited. Methods This population-based cohort study set in rural Matlab, Bangladesh, assessed lung function and respiratory symptoms of 650 children aged 7–17 years. Children with in utero and early life arsenic exposure were compared with children exposed to less than 10 µg/l in utero and throughout childhood. Because most children drank the same water as their mother had drunk during pregnancy, we could not assess only in utero or only childhood exposure. Results Children exposed in utero to more than 500 µg/l of arsenic were more than eight times more likely to report wheezing when not having a cold [odds ratio (OR) = 8.41, 95% confidence interval (CI): 1.66–42.6, P < 0.01] and more than three times more likely to report shortness of breath when walking on level ground (OR = 3.86, 95% CI: 1.09–13.7, P = 0.02) and when walking fast or climbing (OR = 3.19, 95% CI: 1.22–8.32, P < 0.01]. However, there was little evidence of reduced lung function in either exposure category. Conclusions Children with high in utero and early life arsenic exposure had marked increases in several chronic respiratory symptoms, which could be due to in utero exposure or to early life exposure, or to both. Our findings suggest that arsenic in water has early pulmonary effects and that respiratory symptoms are a better marker of early life arsenic toxicity than changes in lung function measured by spirometry. PMID:24062297

  5. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    Science.gov (United States)

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  6. Arsenic Exposure From Drinking Water, Arsenic Methylation Capacity, and Carotid Intima-Media Thickness in Bangladesh

    Science.gov (United States)

    Chen, Yu; Wu, Fen; Graziano, Joseph H.; Parvez, Faruque; Liu, Mengling; Paul, Rina Rani; Shaheen, Ishrat; Sarwar, Golam; Ahmed, Alauddin; Islam, Tariqul; Slavkovich, Vesna; Rundek, Tatjana; Demmer, Ryan T.; Desvarieux, Moise; Ahsan, Habibul

    2013-01-01

    We conducted a cross-sectional study to evaluate the interrelationships between past arsenic exposure, biomarkers specific for susceptibility to arsenic exposure, and carotid intima-media thickness (cIMT) in 959 subjects from the Health Effects of Arsenic Longitudinal Study in Bangladesh. We measured cIMT levels on average 7.2 years after baseline during 2010–2011. Arsenic exposure was measured in well water at baseline and in urine samples collected at baseline and during follow-up. Every 1-standard-deviation increase in urinary arsenic (357.9 µg/g creatinine) and well-water arsenic (102.0 µg/L) concentration was related to a 11.7-µm (95% confidence interval (CI): 1.8, 21.6) and 5.1-µm (95% CI: −0.2, 10.3) increase in cIMT, respectively. For every 10% increase in monomethylarsonic acid (MMA) percentage, there was an increase of 12.1 µm (95% CI: 0.4, 23.8) in cIMT. Among participants with a higher urinary MMA percentage, a higher ratio of urinary MMA to inorganic arsenic, and a lower ratio of dimethylarsinic acid to MMA, the association between well-water arsenic and cIMT was stronger. The findings indicate an effect of past long-term arsenic exposure on cIMT, which may be potentiated by suboptimal or incomplete arsenic methylation capacity. Future prospective studies are needed to confirm the association between arsenic methylation capacity and atherosclerosis-related outcomes. PMID:23788675

  7. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh.

    Science.gov (United States)

    Chen, Yu; Wu, Fen; Graziano, Joseph H; Parvez, Faruque; Liu, Mengling; Paul, Rina Rani; Shaheen, Ishrat; Sarwar, Golam; Ahmed, Alauddin; Islam, Tariqul; Slavkovich, Vesna; Rundek, Tatjana; Demmer, Ryan T; Desvarieux, Moise; Ahsan, Habibul

    2013-08-01

    We conducted a cross-sectional study to evaluate the interrelationships between past arsenic exposure, biomarkers specific for susceptibility to arsenic exposure, and carotid intima-media thickness (cIMT) in 959 subjects from the Health Effects of Arsenic Longitudinal Study in Bangladesh. We measured cIMT levels on average 7.2 years after baseline during 2010-2011. Arsenic exposure was measured in well water at baseline and in urine samples collected at baseline and during follow-up. Every 1-standard-deviation increase in urinary arsenic (357.9 µg/g creatinine) and well-water arsenic (102.0 µg/L) concentration was related to a 11.7-µm (95% confidence interval (CI): 1.8, 21.6) and 5.1-µm (95% CI: -0.2, 10.3) increase in cIMT, respectively. For every 10% increase in monomethylarsonic acid (MMA) percentage, there was an increase of 12.1 µm (95% CI: 0.4, 23.8) in cIMT. Among participants with a higher urinary MMA percentage, a higher ratio of urinary MMA to inorganic arsenic, and a lower ratio of dimethylarsinic acid to MMA, the association between well-water arsenic and cIMT was stronger. The findings indicate an effect of past long-term arsenic exposure on cIMT, which may be potentiated by suboptimal or incomplete arsenic methylation capacity. Future prospective studies are needed to confirm the association between arsenic methylation capacity and atherosclerosis-related outcomes.

  8. Toxicokinetics and Pharmacokinetic Modeling of Arsenic

    Science.gov (United States)

    This chapter provides an overview of arsenic toxicokinetics and physiologically-basedpharmacokinetic (PBPK) modeling with particular emphasis on key 'actors needed fordevelopment of a model useful for dose-response analysis, applications of arsenicmodels, as well research needs.U...

  9. Arsenic stress after the Proterozoic glaciations.

    Science.gov (United States)

    Fru, Ernest Chi; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-04

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  10. Health effects of arsenic in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Fowle, J.R.; Abernathy, C.O.; Mass, M.J.; McKinney, J.D.; North, D.W.

    1991-01-01

    Current knowledge about metabolism, essentiality, and toxicity is summarized in the document. These are placed in a risk assessment context. Research needs are identified with their implications for improving the ability to assess risk from exposure to arsenic.

  11. TELOMERASE AND CHRONIC ARSENIC EXPOSURE IN HUMANS

    Science.gov (United States)

    Arsenic exposure has been associated with increased risk of skin, lung and bladder cancer in humans. The mechanisms of carcinogenesis are not well understood. Telomerase, a ribonucleoprotein containing human telomerase reverse transcriptase (hTERT), can extend telomeres of eukary...

  12. Study of arsenic injury to rice plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, T.; Matsumoto, H.; Okahashi, C.; Wada, M.

    1968-01-01

    Growth injury happened to rice plants when waste liquid flowed from a mercury refinery into paddy fields in July 1967. Arsenic turned out to be the main cause of the growth injury. Investigation of the contaminated fields revealed that the injury was the most severe at the water inlet to the field, and was comparatively slight in the middle of it. The quantity of arsenic absorbed in the soil was very large at the inlet and was decreasingly small towards the centre of them. Moreover, excessive quantities of arsenic were often found on the surface of the fields. The constituent was seen permeating the lower layers of the soil. The permeation was deep in proportion to the good drainage of soil. Drastic measures should be taken with a special reference to quantity of arsenic and type of soil.

  13. Beneficiation Experiment on Recovery of Pyrite and Arsenic from the Pb-Zn Tailings of Tin Poly-metallic Ores%从某锡多金属矿铅锌尾矿中回收硫砷的选矿试验

    Institute of Scientific and Technical Information of China (English)

    叶雪均; 陈晓芳

    2011-01-01

    In order to prevent the loss of sulfur and arsenic from the Pb-Zn tailings of Tin poly-metallic sulfide ores,the beneficiation tests on this tailing were carried out to comprehensively recover sulfur and arsenic.The results showed that by the process of low intensity magnetic separation-bulk flotation of sulfur and arsenic-the flotation separation of sulfur-arsenic, sulfur concentrate with S grade of 43.14%, Arsenic content of 0.56% and S recovery of 64.12%, and arsenic concentrate with arsenic grade of 12.08% and arsenic recovery of 86.79% were obtained with the high-efficient depressant YAs during the flotation separation of sulfur and arsenic.This method can achieve the effective separation and recovery of sulfur and arsenic.%为解决某锡多金属硫化矿选厂选铅锌尾矿中硫砷的流失问题,对该尾矿进行了综合回收硫砷的选矿试验.试验结果表明:采用弱磁选一硫砷混合浮选一硫砷分离浮选流程,并在硫砷分离浮选时采用砷的高效抑制剂Y-As,可获得硫品位为43.14%、含砷0.56%、硫回收率为64.12%的综合硫精矿和砷品位为12.08%、砷回收率为86.79%的砷精矿,实现了硫、砷的有效分离和回收.

  14. Arsenic Induced Decreases in the Vascular Matrix

    OpenAIRE

    Hays, Allison M.; Lantz, R. Clark; Rodgers, Laurel S.; Sollome, James J.; Vaillancourt, Richard R.; Andrew, Angeline S; Hamilton, Joshua W.; Camenisch, Todd D.

    2008-01-01

    Chronic ingestion of arsenic is associated with increased incidence of respiratory and cardiovascular diseases. To investigate the role of arsenic in early events in vascular pathology, C57BL/6 mice ingested drinking water with or without 50 ppb sodium arsenite (AsIII) for four, five or eight weeks. At five and eight weeks, RNA from the lungs of control and AsIII exposed animals was processed for microarray. Sixty-five genes were significantly and differentially expressed. Differential expres...

  15. Arsenic: Not So Evil After All?

    Science.gov (United States)

    Lykknes, Annette; Kvittingen, Lise

    2003-05-01

    This article presents parts of the history of the element arsenic in order to illustrate processes behind development of knowledge in chemistry. The particular aspects presented here are the use of arsenic as a stimulant by Styrian peasants, in Fowler's solution, in drugs of the 19th century (e.g., salvarsan), and in current medical treatment, all of which challenge the myth of this element as exclusively poisonous.

  16. Arsenic accumulation in some higher fungi

    OpenAIRE

    Stijve, T.; Vellinga, Else C.; Herrmann, A.

    1990-01-01

    The high arsenic concentrations reported in literature for Laccaria amethystina were amply confirmed. In addition, it was demonstrated that Laccaria fraterna also accumulates the element, whereas in other species of Laccaria the phenomenon was far less outspoken. Few other basidiomycetes proved to have an affinity for the toxic element. The arsenic concentrations in the principal edible mushrooms of commerce were found to be very low, i.e. on the average 0.5 mg/kg on dry matter. Among the asc...

  17. Megaloblastic, dyserythropoietic anemia following arsenic ingestion.

    Science.gov (United States)

    Lerman, B B; Ali, N; Green, D

    1980-01-01

    Following acute arsenic ingestion, a 35 year old woman experienced multiple organ failure, including renal and respiratory insufficiency, toxic hepatitis, peripheral neuropathy, and encephalopathy. In addition, she developed an anemia; the bone marrow showed a striking dyserythropoiesis with megaloblastic features. Her recovery was heralded by normalization of the bone marrow morphology, followed by improvement in all other organ dysfunction except for the peripheral neuropathy. Arsenic poisoning is a cause of megaloblastic anemia; early hematologic recovery suggests favorable prognosis.

  18. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    Science.gov (United States)

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks. PMID:26776948

  19. Disruption of Mitotic Progression by Arsenic.

    Science.gov (United States)

    States, J Christopher

    2015-07-01

    Arsenic is an enigmatic xenobiotic that causes a multitude of chronic diseases including cancer and also is a therapeutic with promise in cancer treatment. Arsenic causes mitotic delay and induces aneuploidy in diploid human cells. In contrast, arsenic causes mitotic arrest followed by an apoptotic death in a multitude of virally transformed cells and cancer cells. We have explored the hypothesis that these differential effects of arsenic exposure are related by arsenic disruption of mitosis and are differentiated by the target cell's ability to regulate or modify cell cycle checkpoints. Functional p53/CDKN1A axis has been shown to mitigate the mitotic block and to be essential to induction of aneuploidy. More recent preliminary data suggest that microRNA modulation of chromatid cohesion also may play a role in escape from mitotic block and in generation of chromosomal instability. Other recent studies suggest that arsenic may be useful in treatment of solid tumors when used in combination with other cytotoxic agents such as cisplatin.

  20. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. PMID:21435676

  1. Earthworms produce phytochelatins in response to arsenic.

    Directory of Open Access Journals (Sweden)

    Manuel Liebeke

    Full Text Available Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  2. Earthworms produce phytochelatins in response to arsenic.

    Science.gov (United States)

    Liebeke, Manuel; Garcia-Perez, Isabel; Anderson, Craig J; Lawlor, Alan J; Bennett, Mark H; Morris, Ceri A; Kille, Peter; Svendsen, Claus; Spurgeon, David J; Bundy, Jacob G

    2013-01-01

    Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species) as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  3. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    Science.gov (United States)

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this...

  4. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water

    NARCIS (Netherlands)

    L. Cavalca; A. Corsini; P. Zaccheo; V. Andreoni; G. Muyzer

    2013-01-01

    Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This revie

  5. DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMASIII AND DMASIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC

    Science.gov (United States)

    DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMAsIII and DMAsIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC. L. M. Del Razo1, M. Styblo2, W. R. Cullen3, and D.J. Thomas4. 1Toxicology Section, Cinvestav-IPN, Mexico, D.F., 2Univ. North Carolina, Chapel Hill, NC; 3Uni...

  6. Effects of arsenic on nitrogen metabolism in arsenic hyperaccumulator and non-hyperaccumulator ferns

    Science.gov (United States)

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of two four-month old fern plants, Pteris vittata, an arsenic-hyperaccumulator, and Pteris ensiformis, ...

  7. Use of arsenic-73 in research supports USEPA's regulatory decisions on inorganic arsenic in drinking water*

    Science.gov (United States)

    Inorganic arsenic is a natural contaminant of drinking water in the United States and throughout the world. Long term exposure to inorganic arsenic in drinking water at elevated levels (>100 ug/L) is associated with development of cancer in several organs, cardiovascular disease,...

  8. Multiple primary cancers in a case of chronic arsenic poisoning--an autopsy report.

    Science.gov (United States)

    Tanimoto, A; Hamada, T; Kanesaki, H; Matsuno, K; Koide, O

    1990-03-01

    This is an autopsy report of multiple primary cancers observed in a patient who had clinically been diagnosed as chronic arsenic poisoning. An 88-year-old man, non-smoker, had worked in an arsenic mine for 6 years from the age of 47. He had undergone operations for Bowen's disease and gastric cancer at ages 80 and 86, respectively. At autopsy, squamous cell carcinoma of the lung and a polypoid lesion in the piriform recess were found. Furthermore, microscopic examination revealed latent prostatic adenocarcinoma and oncocytoma in the kidney. The polypoid lesion of the piriform recess appeared to originate from the duct of the minor salivary gland in the pharynx, showing an adenoid cystic carcinoma-like pattern with squamous cell carcinoma in part. The cause of death was thought to be respiratory failure due to bronchopneumonia and pulmonary edema as well as hydrothorax, and chronic heart failure following ischemic heart disease. Bowen's disease was followed by four internal malignant tumors, even though the etiological relation between these cancers and arsenic is not clear.

  9. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China

    International Nuclear Information System (INIS)

    With the aim of better understanding the distribution of arsenic, 144 coal samples were collected from southwestern Guizhou, and the concentrations of arsenic were determined by atomic fluorescence spectrometry (AFS) and inductively coupled plasma mass spectrometry (ICP-MS). The content of arsenic varies from 0.3 ppm to 3.2 wt.%. In most coal samples, the arsenic content was lower than 30 ppm, which was close to a representative value of arsenic concentration of coal in China. Arsenic contents in 37 samples, which were from several small coal mines, were more than 30 ppm, among which only 16 samples were more than 100 ppm, and only a few samples contained more than 1000 ppm, which were very restricted and the coal seams were generally unworkable. Combustion of two kinds of high arsenic coal with and without CaO additive was studied in a bench scale drop tube furnace (DTF) to understand the partition and emission of arsenic in the process. The PM was size segregated by low pressure impactor (LPI) into 13 size stages ranging from 9.8 to 0.0281 μm. X-ray fluorescence spectrometry (XRF) was used to determine the chemical composition of the PM, and inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the arsenic content. A bimodal mode distribution of the PM was formed during coal combustion; the large mode (coarse particle) was formed at 4.0 μm, and the other mode (fine particles) was at about 0.1 μm. A middle mode was gradually obvious in high temperature for both of the two coal combustions, which may have been derived from coagulation and agglomeration of metal elements vapors. More gaseous arsenic was formed in 50% oxygen content than 20% oxygen content. Arsenic in sulfide is easier to vaporize than as arsenate. Along with the increasing temperature from 1100 oC to 1400 oC, the arsenic concentration in PM1 increased from 0.07 mg/N m3 to 0.25 mg/N m3. With the addition of the calcium based sorbent, the arsenic concentration in

  10. Soil arsenic in Armadale, Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.H.; Lloyd, O.L.; Hubbard, F.H.

    1986-03-01

    As part of an investigation into the high mortality from lung cancer and the high sex ratios of births in Armadale, central Scotland, concentrations of arsenic were measured in soil cores from 48 sites in Armadale and 6 sites in a comparison town. Concentrations in Armadale were substantially higher than those in the comparison town, and many of the highest range of values were in that part of the town where the epidemiological abnormalities of lung cancer and of birth sex ratios were most pronounced. The study indicated that clues to the etiology of high rates of disease in small areas could be sought most profitably if close links were maintained between epidemiological and environmental investigations.

  11. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    Directory of Open Access Journals (Sweden)

    Fabrizio Bianchi

    2013-04-01

    Full Text Available The arsenic (As exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects.

  12. Arsenic neurotoxicity--a review.

    Science.gov (United States)

    Vahidnia, A; van der Voet, G B; de Wolff, F A

    2007-10-01

    Arsenic (As) is one of the oldest poisons known to men. Its applications throughout history are wide and varied: murder, make-up, paint and even as a pesticide. Chronic As toxicity is a global environmental health problem, affecting millions of people in the USA and Germany to Bangladesh and Taiwan. Worldwide, As is released into the environment by smelting of various metals, combustion of fossil fuels, as herbicides and fungicides in agricultural products. The drinking water in many countries, which is tapped from natural geological resources, is also contaminated as a result of the high level of As in groundwater. The environmental fate of As is contamination of surface and groundwater with a contaminant level higher than 10 particle per billion (ppb) as set by World Health Organization (WHO). Arsenic exists in both organic and inorganic species and either form can also exist in a trivalent or pentavalent oxidation state. Long-term health effects of exposure to these As metabolites are severe and highly variable: skin and lung cancer, neurological effects, hypertension and cardiovascular diseases. Neurological effects of As may develop within a few hours after ingestion, but usually are seen in 2-8 weeks after exposure. It is usually a symmetrical sensorimotor neuropathy, often resembling the Guillain-Barré syndrome. The predominant clinical features of neuropathy are paresthesias, numbness and pain, particularly in the soles of the feet. Electrophysiological studies performed on patients with As neuropathy have revealed a reduced nerve conduction velocity, typical of those seen in axonal degeneration. Most of the adverse effects of As, are caused by inactivated enzymes in the cellular energy pathway, whereby As reacts with the thiol groups of proteins and enzymes and inhibits their catalytic activity. Furthermore, As-induced neurotoxicity, like many other neurodegenerative diseases, causes changes in cytoskeletal protein composition and hyperphosphorylation

  13. Arsenic levels in immigrant children from countries at risk of consuming arsenic polluted water compared to children from Barcelona.

    Science.gov (United States)

    Piñol, S; Sala, A; Guzman, C; Marcos, S; Joya, X; Puig, C; Velasco, M; Velez, D; Vall, O; Garcia-Algar, O

    2015-11-01

    Arsenic is a highly toxic element that pollutes groundwater, being a major environmental problem worldwide, especially in the Bengal Basin. About 40% of patients in our outpatient clinics come from those countries, and there is no published data about their arsenic exposure. This study compares arsenic exposure between immigrant and native children. A total of 114 children (57 natives, 57 immigrants), aged 2 months to 16 years, were recruited and sociodemographic and environmental exposure data were recorded. Total arsenic in urine, hair, and nails and arsenic-speciated compounds in urine were determined. We did not find significant differences in total and inorganic arsenic levels in urine and hair, but in organic arsenic monomethylarsenic acid (MMA) and dimethylarsinous acid (DMA) in urine and in total arsenic in nails. However, these values were not in the toxic range. There were significant differences between longer than 5 years exposure and less than 5 years exposure (consumption of water from tube wells), with respect to inorganic and organic MMA arsenic in urine and total arsenic in nails. There was partial correlation between the duration of exposure and inorganic arsenic levels in urine. Immigrant children have higher arsenic levels than native children, but they are not toxic. At present, there is no need for specific arsenic screening or follow-up in immigrant children recently arrived in Spain from exposure high-risk countries.

  14. Exposure to inorganic arsenic in soil increases urinary inorganic arsenic concentrations of residents living in old mining areas.

    Science.gov (United States)

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2004-03-01

    The short term human exposure studies conducted on populations exposed to high concentrations of inorganic arsenic in soil have been inconsistent in demonstrating a relationship between environmental concentrations and exposure measures. In Australia there are many areas with very high arsenic concentrations in residential soil most typically associated with gold mining activities in rural areas. This study aimed to investigate the relationship between environmental arsenic and urinary inorganic arsenic concentrations in a population living in a gold mining area (soil arsenic concentrations between 9 and 9900 mg kg(-1)), and a control population with low arsenic levels in soil (between 1 and 80 mg kg(-1)). Risk factors for increased urinary arsenic concentrations were also explored. There was a weak but significant relationship between soil arsenic concentrations and inorganic urinary arsenic concentration with a Spearman correlation coefficient of 0.39. When participants with greater than 100 mg kg(-1) arsenic in residential soil were selected, the coefficient increased to 0.64. The geometric mean urinary inorganic arsenic concentration for the exposed group was 1.64 microg L(-1) (risk factors. These results show that high concentrations of arsenic in soil can make a contribution to urinary inorganic arsenic concentrations.

  15. Arsenic and the Epigenome: Linked by Methylation(SOT)

    Science.gov (United States)

    Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically-exposed individuals are susceptible to arsenic poisoning, or arsenicosis. In some exposed populations arsenicosis susceptibility is dependent in part on the abil...

  16. Map of Arsenic concentrations in groundwater of the United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map graphic image at http://water.usgs.gov/GIS/browse/arsenic_map.png illustrates arsenic values, in micrograms per liter, for groundwater samples from about...

  17. Arsenic uptake by Lemna minor in hydroponic system.

    Science.gov (United States)

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.

  18. Arsenic uptake by Lemna minor in hydroponic system.

    Science.gov (United States)

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration. PMID:24933913

  19. Clinical manifestations and arsenic methylation after a rare subacute arsenic poisoning accident.

    Science.gov (United States)

    Xu, Yuanyuan; Wang, Yi; Zheng, Quanmei; Li, Bing; Li, Xin; Jin, Yaping; Lv, Xiuqiang; Qu, Guang; Sun, Guifan

    2008-06-01

    One hundred and four workers ingested excessive levels of arsenic in an accident caused by leakage of pipeline in a copper-smelting factory. Clinical examinations were performed by physicians in a local hospital. Excreted urinary arsenic species were determined by cold trap hydride generation atomic absorption spectrometry. In the initial toxic phase, gastrointestinal symptoms were predominant (83 people, 79.8%). Most patients showed leucopenia (72 people, 69.2%), and increased serum alanine aminotransferase (84 people, 80.8%) and aspartate aminotransferase (58 people, 55.8%). Thirty-five patients (33.6%) had elevated red blood cells in urine. After 17 days of admission, many subjects (45 people, 43.3%) developed peripheral neuropathy and 25 of these 45 patients (24.0%) showed a decrease in motor and sensory nerve conduction velocity. In the comparison of urinary arsenic metabolites among subacute arsenic-poisoned, chronic high arsenic-exposed and control subjects, we found that subacute arsenic-poisoned patients had significantly elevated proportions of urinary inorganic arsenic (iAs) and methylarsonic acid (MMA) but reduced proportion of urinary dimethylarsinic acid (DMA) compared with chronic high arsenic-exposed and control subjects. Chronic exposed subjects excreted higher proportions of iAs and MMA but lower proportions of DMA in urine compared with control subjects. These results suggest that gastrointestinal symptoms, leucopenia, and hepatic and urinary injury are predominant in the initial phase of subacute arsenic poisoning. Peripheral neuropathy is the most frequent manifestation after the initial phase. The biomethylation of arsenic decreases in a dose rate-dependent manner.

  20. Uptake of Arsenic in Rice Plant Varieties Cultivated with Arsenic Rich Groundwater

    Directory of Open Access Journals (Sweden)

    Piyal Bhattacharya

    2010-07-01

    Full Text Available Groundwater of many areas of West Bengal, India is severely contaminated with arsenic. The paddy soil gets con¬taminated from the groundwater and thus there is a probability of bioaccumulation of arsenic in rice plants cultivated with arsenic contaminated groundwater and soil. This study aims at assessing the level of arsenic in irrigation water and soil and to investigate the seasonal bioaccumulation of arsenic in the various parts (straw, husk and grain of the rice plant of differ¬ent varieties in the arsenic affected two blocks (Chakdaha and Ranaghat-I of Nadia district, West Bengal. It was found that the arsenic uptake in rice during the pre-monsoon season is more than that of the post-monsoon season. The accumulation of arsenic found to vary with different rice varieties; the maximum accumulation was in White minikit (0.31±0.005 mg/kg and IR 50 (0.29±0.001 mg/kg rice varieties and minimum was found to be in the Jaya rice variety (0.14±0.002 mg/kg. In rice plant maximum arsenic accumulation occurred in the straw part (0.89±0.019-1.65±0.021 mg/kg compared to the ac¬cumulation in husk (0.31±0.011-0.85±0.016 mg/kg and grain (0.14±0.002-0.31±0.005 mg/kg parts. For any rice sample concentration of arsenic in the grain did not exceed the WHO recommended permissible limit in rice (1.0 mg/kg.

  1. Solid materials for removing arsenic and method thereof

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Sanner, Robert D. (Livermore, CA); Dias, Victoria L. (Livermore, CA); Reynolds, John G. (San Ramon, CA)

    2010-09-28

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  2. Arsenic-related Bowen's disease, palmar keratosis, and skin cancer.

    OpenAIRE

    Cöl, M; Cöl, C; Soran, A; Sayli, B S; Oztürk, S

    1999-01-01

    Chronic arsenical intoxication can still be found in environmental and industrial settings. Symptoms of chronic arsenic intoxication include general pigmentation or focal "raindrop" pigmentation of the skin and the appearance of hyperkeratosis of the palms of the hands and soles of the feet. In addition to arsenic-related skin diseases including keratosis, Bowen's disease, basal-cell-carcinoma, and squamous-cell carcinoma, there is also an increased risk of some internal malignancies. Arsenic...

  3. Solid materials for removing arsenic and method thereof

    Science.gov (United States)

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2008-07-01

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  4. Analytical Strategies for the Determination of Arsenic in Rice

    OpenAIRE

    Bruno E. S. Costa; Luciana M. Coelho; Cleide S. T. Araújo; Rezende, Helen C.; Coelho, Nívia M. M.

    2016-01-01

    Arsenic is an element of concern given its toxicological significance, even at low concentrations. Food is a potential route of exposure to inorganic arsenic and in this regard arsenic in rice is associated with soil contamination, fertilizer application, and the use of arsenic-containing irrigation water. Therefore, there is a need to investigate the regional rice crops with a view to future discussions on the need for possible regulatory measures. Several studies have reported high concentr...

  5. Arsenic on the Hands of Children after Playing in Playgrounds

    OpenAIRE

    Kwon, Elena; Zhang, Hongquan; Wang, Zhongwen; Jhangri, Gian S; Lu, Xiufen; Fok, Nelson; Gabos, Stephan; Li, Xing-Fang; Le, X. Chris

    2004-01-01

    Increasing concerns over the use of wood treated with chromated copper arsenate (CCA) in playground structures arise from potential exposure to arsenic of children playing in these playgrounds. Limited data from previous studies analyzing arsenic levels in sand samples collected from CCA playgrounds are inconsistent and cannot be directly translated to the amount of children’s exposure to arsenic. The objective of this study was to determine the quantitative amounts of arsenic on the hands of...

  6. Impact of arsenic in foodstuffs on the people living in the arsenic-affected areas of West Bengal, India.

    Science.gov (United States)

    Mandal, Badal K; Suzuki, Kazuo T; Anzai, Kazunori

    2007-10-01

    Although the accumulation of arsenic (As) in human blood is linked with some diseases and with occupational exposure, there are few reports on speciation of As in blood. On the basis of our earlier article, elevated level of arsenicals in human urine and blood were found in the ex-exposed population via As-containing drinking water. The aim of the present study was to get an insight on impact of As in foodstuffs on the people living in the As-affected areas. Moreover, speciation of arsenicals in urine, and water-samples found in arsenobetaine (AsB). Since sampling population (n=25) was not taking any seafood, As in foodstuffs was thought to be the prime source for this discrepancy. So, speciation of methanol extract of freeze-dried red blood cells (RBCs) and foodstuffs, and trichloro acetic acid (TCA) treated plasma by high performance liquid chromatography-inductively coupled argon plasma mass spectrometer (HPLC-ICP MS) collected from the study population (n=33) was carried out to support our hypothesis. Results showed that urine contained AsB (1.7%), arsenite (iAs(III)) (14.3), arsenate (iAs(V)) (4.9), monomethylarsonous acid (MMA(III)) (0.64), monomethylarsonic acid (MMA(V)) (13.6), dimethylarsinous acid (DMA(III)) (7.7), and dimethylarsinic acid (DMA(V)) (65.4). Blood contained 21.3 microg L(- 1) (mean) As and of which 27.3% was in plasma and 72.7% in RBCs. RBCs contained AsB (21.6%) and DMA(V) (78.4) and blood plasma contained AsB (12.4%), iAs(III) (25.9), MMA(V) (30.3), and DMA(V) (31.4). Furthermore, speciation of As in foodstuffs showed that most of them contained AsB (3.54-25.81 microg kg(- 1)) (25.81-312.44 microg kg(- 1)) along with iAs(III) (9.62-194.93), iAs(V) (17.63-78.33), MMA(V) (9.47-73.22) and DMA(V) (13.43-101.15) that supported the presence of AsB and elevated As in urine and blood samples of the present study group. Inorganic As (iAs) predominates in rice (67.17-86.62%) and in spices (40-90.35%), respectively over organic As. So, As in the

  7. Triaxial superdeformed bands in {sup 86}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.; LaFosse, D.R.; Devlin, M.; Lerma, F. [Chemistry Department, Washington University, St. Louis, Missouri 63130 (United States); Wood, V.Q.; Saladin, J.X.; Winchell, D.F. [Physics Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Baktash, C.; Yu, C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; MacLeod, R.W. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Afanasjev, A.V.; Ragnarsson, I. [Department of Mathematical Physics, Lund Institute of Technology, Box 118, S-22100 Lund (Sweden)

    1998-01-01

    Four new superdeformed bands have been found in the nucleus {sup 86}Zr. The good agreement between experiment and configuration-dependent shell correction calculations suggests that three of the bands have triaxial superdeformed shapes. Such unique features in mass A{approximately}80 superdeformed bands have been predicted, but not observed experimentally until now. A fourth band in {sup 86}Zr is interesting due to a fairly constant and unusually high dynamic moment of inertia. Possible interpretations of this structure are discussed. {copyright} {ital 1998} {ital The American Physical Society}

  8. Arsenic

    Science.gov (United States)

    ... may also expose normal cells in a lab dish to the substance to see if it causes ... www.cancer.org . Known and Probable Human Carcinogens National organizations and websites Along with the American Cancer ...

  9. Arsenic management through well modification and simulation

    Science.gov (United States)

    Halford, Keith J.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 (mu or u)g/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 (mu or u)g/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulicconductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 (mu or u)g/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 (mu or u)g/L over a 20-year period.

  10. Arsenic management through well modification and simulation.

    Science.gov (United States)

    Halford, Keith J; Stamos, Christina L; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 microg/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 microg/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulic-conductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 microg/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 microg/L over a 20-year period. PMID:20113363

  11. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  12. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    OpenAIRE

    Madhurima Pandey; Sushma Yadav; Piyush Kant Pandey

    2007-01-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically ...

  13. Population Based Exposure Assessment of Bioaccessible Arsenic in Carrots

    Science.gov (United States)

    The two predominant arsenic exposure routes are food and water. Estimating the risk from dietary exposures is complicated, owing to the chemical form dependent toxicity of arsenic and the diversity of arsenicals present in dietary matrices. Two aspects of assessing dietary expo...

  14. Effect of drinking arsenic-contaminated water in children

    Directory of Open Access Journals (Sweden)

    Kunal K Majumdar

    2012-01-01

    Full Text Available Chronic arsenic toxicity due to drinking of arsenic-contaminated water has been a major environmental health hazard throughout the world including India. Although a lot of information is available on health effects due to chronic arsenic toxicity in adults, knowledge of such effect on children is scanty. A review of the available literature has been made to highlight the problem in children. Scientific publications on health effects of chronic arsenic toxicity in children with special reference to psychological issues are reviewed. The prevalence of skin abnormalities such as pigmentation change and keratosis, the diagnostic signs of chronic arsenic toxicity, vary in various arsenic-exposed children population in different regions of the world. The occurrence of chronic lung disease including pulmonary interstitial fibrosis has been described in arsenic-exposed children in Chile. Affection of intellectual function has also been reported to occur in arsenic-exposed children studied in Thailand, Bangladesh, and India. Methylation patterns of arsenic in children aggregate in families and are correlated in siblings, providing evidence of a genetic basis for the variation in arsenic methylation. Chronic arsenic toxicity due to drinking of arsenic-contaminated water causes significant morbidity in children resulting in skin lesions, lung disease, and defect in intellectual function.

  15. The Arsenic Project: A multidisciplinary Project in Nicaragua

    NARCIS (Netherlands)

    Admiraal, M.; Couasnon, A.; Huijzenveld, T.; Hutten, R.; Schölvinck, O.; Van Veen, N.

    2015-01-01

    In Nicaragua, active research for arsenic started in 1996, after the first case of arsenic poisoning was reported in a rural community. Arsenic concentrations present in drinking water cause chronic poisoning, which depending on the exposure, lead to several life-threatening long term effects. It i

  16. 21 CFR 862.3120 - Arsenic test system.

    Science.gov (United States)

    2010-04-01

    ... arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and blood. Measurements obtained by this device are used in the diagnosis and treatment of arsenic poisoning. (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arsenic test system. 862.3120 Section...

  17. TRACE ANALYSIS OF ARSENIC BY COLORIMETRY, ATOMIC ABSORPTION, AND POLAROGRAPHY

    Science.gov (United States)

    A differential pulse polarographic method was developed for determining total arsenic concentrations in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and isolation of arsenic by solvent extraction, the peak current for arsenic is ...

  18. DIVERSITY OF ARSENIC METABOLISM IN CULTURED HUMAN CANCER CELL LINES

    Science.gov (United States)

    Diversity of arsenic metabolism in cultured human cancer cell lines. Arsenic has been known to cause a variety of malignancies in human. Pentavalent As (As 5+) is reduced to trivalent As (As3+) which is further methylated by arsenic methyltransferase(s) to monomethylarson...

  19. Childhood cancer incidence and arsenic exposure in drinking water in Nevada.

    Science.gov (United States)

    Moore, Lee E; Lu, Meng; Smith, Allan H

    2002-01-01

    Inorganic arsenic exposure through drinking water causes cancer in adults; however, the carcinogenic potential in children remains unknown. A recent leukemia cluster in Churchill County, Nevada, where arsenic levels in water supplies are relatively high, has prompted concern. The authors investigated the incidence of childhood cancer between 1979 and 1999 in all 17 Nevada counties, grouped by low (i.e., water supplies. The standardized incidence ratios (SIRs) for all childhood cancers combined were 1.00 (95% confidence interval [CI] = 0.94, 1.06), 0.72 (95% CI = 0.43, 1.12), and 1.25 (95% CI = 0.91, 1.69) for low-, medium-, and high-exposure counties, respectively. There was no relationship between arsenic levels in water and childhood leukemia (SIRs = 1.02, 0.61, and 0.86, respectively [95% CIIs = 0.90, 1.15; 0.12, 1.79; and 0.37, 1.70, respectively]). For all childhood cancers, excluding leukemias, the SIRs were 0.99 (95% CI = 0.92, 1.07), 0.82 (95% CI = 0.42, 1.22), and 1.37 (0.92, 1.83), respectively. The excess in 5- to 9-yr-old children and 10- to 14-yr-old children was in bone cancers, and the excess in 15- to 19-yr-old young adults was primarily in lymphomas. The findings in this study are reassuring in that leukemia risks were not increased at the concentrations of arsenic in water found in this study. Nonetheless, the results raise the possibility that there are increased risks for nonleukemic childhood cancers that require confirmation in other studies, particularly those in which higher exposures are addressed.

  20. A cluster-based randomized controlled trial promoting community participation in arsenic mitigation efforts in Bangladesh

    Directory of Open Access Journals (Sweden)

    George Christine

    2012-06-01

    Full Text Available Abstract Objective To reduce arsenic (As exposure, we evaluated the effectiveness of training community members to perform water arsenic (WAs testing and provide As education compared to sending representatives from outside communities to conduct these tasks. Methods We conducted a cluster based randomized controlled trial of 20 villages in Singair, Bangladesh. Fifty eligible respondents were randomly selected in each village. In 10 villages, a community member provided As education and WAs testing. In a second set of 10 villages an outside representative performed these tasks. Results Overall, 53% of respondents using As contaminated wells, relative to the Bangladesh As standard of 50 μg/L, at baseline switched after receiving the intervention. Further, when there was less than 60% arsenic contaminated wells in a village, the classification used by the Bangladeshi and UNICEF, 74% of study households in the community tester villages, and 72% of households in the outside tester villages reported switching to an As safe drinking water source . Switching was more common in the outside-tester (63% versus community-tester villages (44%. However, after adjusting for the availability of arsenic safe drinking water sources, well switching did not differ significantly by type of As tester (Odds ratio =0.86[95% confidence interval 0.42-1.77. At follow-up, among those using As contaminated wells who switched to safe wells, average urinary As concentrations significantly decreased. Conclusion The overall intervention was effective in reducing As exposure provided there were As-safe drinking water sources available. However, there was not a significant difference observed in the ability of the community and outside testers to encourage study households to use As-safe water sources. The findings of this study suggest that As education and WAs testing programs provided by As testers, irrespective of their residence, could be used as an effective, low cost

  1. 基于粒度的土壤团聚体中砷的形态分布特征%Distribution Characteristics of Arsenic Fractions in Soil Aggregates Based on Particle Size

    Institute of Scientific and Technical Information of China (English)

    赵然然; 张志国; 李晓军; 仝冬丽; 李娜; 侯梅芳

    2016-01-01

    Allocation and forms of arsenic in different soil aggregates were tested to better understand the mobility and environmental risk of arsenic. Water stable aggregates (>2 mm, 2~0.25 mm, 0.25~0.053 mm, and2 mm, 0.25~0.053 mm and Fe/Mn oxides co-precipitated arsenic (13.38~26.39 mg·kg-1) > specially adsorbed arsenic (5.19~8.86 mg·kg-1) >non-specially adsorbed arsenic (1.13~2.95 mg·kg-1). While the contents of arsenic fractions in 2~0.25 mm aggregates was in the order:residual arsenic (85.91 mg·kg-1)>specially adsorbed arsenic (28.48 mg·kg-1)>Fe/Mn oxides co-precipitated arsenic (25.63 mg·kg-1)>non-specially adsorbed arsenic (6.00 mg·kg-1). The contents of non-specially and specially adsorbed arsenic in the>0.25 mm were higher than that in the2 mm、2~0.25 mm、0.25~0.053 mm和2 mm、0.25~0.053 mm 以及铁锰氧化物结合态(13.38~26.39 mg·kg-1)>专性吸附态(5.19~8.86 mg·kg-1)>非专性吸附态(1.13~2.94 mg·kg-1)。而2~0.25 mm 粒级团聚体中各形态砷为:残渣态(85.91 mg·kg-1)>专性吸附态(28.48 mg·kg-1)>铁锰氧化物结合态(25.63 mg·kg-1)>非专性吸附态(6.00 mg·kg-1)。非专性吸附态和专性吸附态砷在>0.25 mm粒级团聚体中的含量显著高于<0.25 mm粒级团聚体。

  2. 40 CFR 86.413-2006 - Labeling.

    Science.gov (United States)

    2010-07-01

    ... 40 CFR 86.449 the statement must also include the phrase “is certified to an HC+NOX emission standard... motorcycle shall, at the time of manufacture, affix a permanent, legible label, of the type and in the manner... catalyst; TWC Three-way catalyst; AIR Secondary air injection (pump); PAIR Pulsed secondary air...

  3. 40 CFR 86.128-79 - Transmissions.

    Science.gov (United States)

    2010-07-01

    ... ultimate purchaser under in-use conditions. (b) Vehicles equipped with free wheeling or overdrive, except... the specified rate, the vehicle shall be operated at maximum available power until the vehicle speed..., or § 86.1844-01 as applicable. (h) Downshifting is allowed at the beginning of or during a power...

  4. 40 CFR 86.1702-99 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... Inherently Low-Emission Vehicle (ILEV), as defined in 40 CFR 88.302, either conventionally or alternatively... Range Test cycle is defined in § 86.1770. All States Trading Region (ASTR) means the region comprised of... produced by the electric motor or through regenerative braking to assist in vehicle operation. Element...

  5. 40 CFR 86.1 - Reference materials.

    Science.gov (United States)

    2010-07-01

    ....C. 552(a) and 1 CFR part 51. To enforce any edition other than that specified in this section, a... Chromatography, 1994 SAE Handbook—SAE International Cooperative Engineering Program, Volume 1: Materials, Fuels....094-8, 86.096-8. (iii) SAE J1850, July 1995, Class B Data Communication Network Interface,...

  6. 40 CFR 86.1848-01 - Certification.

    Science.gov (United States)

    2010-07-01

    ... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1848-01 Certification. (a)(1) If, after a review of the... new motor vehicle covered by the certificate will meet the requirements of the Act and of this part... trucks and incomplete heavy-duty vehicles, a certificate covers only those new motor vehicles which,...

  7. 40 CFR 86.1801-12 - Applicability.

    Science.gov (United States)

    2010-07-01

    ... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1801-12 Applicability. (a) Applicability. Except as otherwise... passenger vehicles, and Otto-cycle complete heavy-duty vehicles, including multi-fueled, alternative fueled... to a certain vehicle group based on its model year, vehicle class, motor fuel, engine type, or...

  8. 40 CFR 86.1601 - General applicability.

    Science.gov (United States)

    2010-07-01

    ... Performance Adjustments for New and In-Use Motor Vehicles and Engines § 86.1601 General applicability. This subpart applies to manufacturers of motor vehicles and motor vehicle engines (hereafter referred to as... manufacturers certifying new light-duty vehicles, light-duty trucks, and Otto-cycle complete heavy-duty...

  9. 40 CFR 86.094-2 - Definitions.

    Science.gov (United States)

    2010-07-01

    .../or the results of systems interaction, and/or hardware items on a motor vehicle or motor vehicle... the driving cycle and testing conditions contained in 40 CFR part 86, subpart C, at temperatures... period of use of 11 years or 120,000 miles, whichever occurs first. (c) For an Otto-cycle...

  10. 42 CFR 86.38 - Accountability.

    Science.gov (United States)

    2010-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES GRANTS FOR EDUCATION PROGRAMS IN OCCUPATIONAL SAFETY AND HEALTH Occupational Safety and Health Direct Traineeships § 86.38 Accountability. Accountability for payments will be...

  11. 42 CFR 86.20 - Additional conditions.

    Science.gov (United States)

    2010-10-01

    ... Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES GRANTS FOR EDUCATION PROGRAMS IN OCCUPATIONAL SAFETY AND HEALTH Occupational Safety and Health Training Grants § 86.20 Additional conditions. The Secretary may with respect...

  12. 40 CFR 86.095-35 - Labeling.

    Science.gov (United States)

    2010-07-01

    ... at high altitude; and (3) A statement that the emission performance warranty provisions of 40 CFR... warranty provisions of 40 CFR part 85, subpart V do not apply when the vehicle is tested at low altitude... 19XX Model Year Light-Duty Trucks under the special provision of 40 CFR 86.092-1(b).”; (F) (G)...

  13. EMP susceptibility of CPU-80C86

    International Nuclear Information System (INIS)

    This paper introduced the first time simulative test which is about the susceptibility of EMP effect for VLSI of the CPU and in brief describing the disturbed phenomena of the 80c86 CPU because of the electromagnetism pulse square wave infusion

  14. On the age of Gliese 86

    Energy Technology Data Exchange (ETDEWEB)

    Fuhrmann, K.; Chini, R.; Buda, L.-S.; Pozo Nuñez, F., E-mail: klaus@ing.iac.es [Astronomisches Institut, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum (Germany)

    2014-04-10

    Gliese 86 is a nearby planet hosting a visual binary consisting of a K-type primary, Gl 86 A, and a white dwarf secondary, Gl 86 B. In this work, we present a model atmosphere analysis of the M {sub A} = 0.83 M {sub ☉} primary, whose chemistry unambiguously identifies it as a 10 Gyr old disk star. For the secondary, this gives rise to a progenitor mass M {sub prog} = 1.11 ± 0.05 M {sub ☉}, and—by inference with its local sibling o {sup 2} Eri—a white dwarf mass M {sub B} = 0.49 ± 0.02 M {sub ☉}. The discrepancy with the 2-3 Gyr chromospheric age of Gl 86 A, as first noted by Rocha-Pinto, Castilho and Maciel, is thus most plausibly the result of a former accretion of mass and angular momentum from the distant degenerate. In consequence, this also implies that with respect to shorter-period systems, like Sirius or Procyon, one must expect significant wind accretion when they evolve through the planetary nebula phase, such that the system ages cannot be reliably determined from their currently bright primaries.

  15. 40 CFR 86.010-2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... the 2010 model year. DTC means diagnostic trouble code. Engine or engine system as used in §§ 86.007... the activation of an OBD malfunction indicator light and storage of a DTC. MIL-on DTC means the...). Industry standards may refer to this as a confirmed or an active DTC. Onboard Diagnostics (OBD) group...

  16. 45 CFR 86.32 - Housing.

    Science.gov (United States)

    2010-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex... of one sex. (Secs. 901, 902, 907, Education Amendments of 1972, 86 Stat. 373, 374, 375; 20...

  17. 45 CFR 86.37 - Financial assistance.

    Science.gov (United States)

    2010-10-01

    ... SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discrimination on the Basis of Sex in Education Programs or Activities Prohibited § 86.37 Financial assistance. (a) General... its students, a recipient shall not: (1) On the basis of sex, provide different amount or types...

  18. 40 CFR 86.1803-01 - Definitions.

    Science.gov (United States)

    2010-07-01

    ..., performed in accordance with the procedures contained in 40 CFR part 86, subpart O. Complete heavy-duty... evaporative emissions resulting from the daily cycling of ambient temperatures. Drive train configuration... certified test group, or have completed bench or road testing demonstrated to be equal or more severe...

  19. Complementary arsenic speciation methods: A review

    Energy Technology Data Exchange (ETDEWEB)

    Nearing, Michelle M., E-mail: michelle.nearing@rmc.ca; Koch, Iris, E-mail: koch-i@rmc.ca; Reimer, Kenneth J., E-mail: reimer-k@rmc.ca

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  20. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    Science.gov (United States)

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis. PMID:14670068

  1. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    Science.gov (United States)

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis.

  2. Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population.

    Science.gov (United States)

    Chen, Hsiu-Ling; Lee, Ching-Chang; Huang, Winn-Jung; Huang, Han-Ting; Wu, Yi-Chen; Hsu, Ya-Chen; Kao, Yi-Ting

    2016-03-01

    This study assessed the total arsenic content and arsenic speciation in rice to determine the health risks associated with rice consumption in various age-gender subgroups in Taiwan. The average total arsenic levels in white rice and brown rice were 116.6 ± 39.2 and 215.5 ± 63.5 ng/g weight (n = 51 and 13), respectively. The cumulative cancer risk among males was 10.4/100,000. The highest fraction of inorganic/total arsenic content in white rice ranged from 76.9 to 88.2 % and from 81.0 to 96.5 % in brown rice. The current study found different arsenic speciation of rice in southern Taiwan, where the famous blackfoot disease has been reported compared with arsenic speciation from other Taiwan areas. Therefore, rice and other grains should be further monitored in southern Taiwan to evaluate whether arsenic contamination is well controlled in this area.

  3. Metallothionein does not sequester arsenic(III) ions in condition of acute arsenic toxicity.

    Science.gov (United States)

    Garla, Roobee; Ganger, Renuka; Mohanty, Biraja P; Verma, Shivcharan; Bansal, Mohinder P; Garg, Mohan L

    2016-07-29

    The major cause of toxicity of trivalent arsenicals is due to their interaction with the sulfhydryl groups in proteins. Because of its high content, Metallothionein (MT) provides one of the most favorable conditions for the binding of As(III) ions to it. MT has long been anticipated for providing resistance in case of arsenic (As) toxicity with similar mechanism as in case of cadmium toxicity. The present study investigates whether the sequestration of As ions by MT is one of the mechanisms in providing protection against acute arsenic toxicity. A rat model study on the metal stoichiometric analysis of MT1 isoform isolated from the liver of arsenic treated, untreated and zinc treated animals has been carried out using the combination of particle induced X-ray emission (PIXE) and electrospray ionisation mass spectrometry (ESI-MS). The results revealed the absence of arsenic bound MT1 in the samples isolated from arsenic treated animals. Although, both Cu and Zn ions were present in MT1 samples isolated from all the treatment groups. Moreover, only partially metallated MT1 with varying number of Zn ions were observed in all the groups. These results suggest that the role of MT during acute arsenic toxicity is different from its already established role in case of cadmium toxicity.

  4. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household.

    Science.gov (United States)

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-16

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family's residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  5. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Science.gov (United States)

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure. PMID:26784217

  6. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household.

    Science.gov (United States)

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family's residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  7. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F. [China Medical University, Shenyang (China). Dept. for Occupational & Environmental Health

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  8. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Directory of Open Access Journals (Sweden)

    Yongfang Li

    2016-01-01

    Full Text Available In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members. Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  9. Arsenic biotransformation and volatilization in transgenic rice.

    Science.gov (United States)

    Meng, Xiang-Yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P; Zhu, Yong-Guan

    2011-07-01

    • Biotransformation of arsenic includes oxidation, reduction, methylation, and conversion to more complex organic arsenicals. Members of the class of arsenite (As(III)) S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di-, and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants. • Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica rice (Oryza sativa) cv Nipponbare, and the transgenic rice produced methylated arsenic species, which were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). • Both monomethylarsenate (MAs(V)) and dimethylarsenate (DMAs(V)) were detected in the roots and shoots of transgenic rice. After 12 d exposure to As(III), the transgenic rice gave off 10-fold greater volatile arsenicals. • The present study demonstrates that expression of an arsM gene in rice induces arsenic methylation and volatilization, theoretically providing a potential stratagem for phytoremediation. PMID:21517874

  10. Occurrence of arsenic contamination in Canada: sources, behavior and distribution.

    Science.gov (United States)

    Wang, Suiling; Mulligan, Catherine N

    2006-08-01

    Recently there has been increasing anxieties concerning arsenic related problems. Occurrence of arsenic contamination has been reported worldwide. In Canada, the main natural arsenic sources are weathering and erosion of arsenic-containing rocks and soil, while tailings from historic and recent gold mine operations and wood preservative facilities are the principal anthropogenic sources. Across Canada, the 24-h average concentration of arsenic in the atmosphere is generally less than 0.3 microg/m3. Arsenic concentrations in natural uncontaminated soil and sediments range from 4 to 150 mg/kg. In uncontaminated surface and ground waters, the arsenic concentration ranges from 0.001 to 0.005 mg/L. As a result of anthropogenic inputs, elevated arsenic levels, above ten to thousand times the Interim Maximum Acceptable Concentration (IMAC), have been reported in air, soil and sediment, surface water and groundwater, and biota in several regions. Most arsenic is of toxic inorganic forms. It is critical to recognize that such contamination imposes serious harmful effects on various aquatic and terrestrial organisms and human health ultimately. Serious incidences of acute and chronic arsenic poisonings have been revealed. Through examination of the available literature, screening and selecting existing data, this paper provides an analysis of the currently available information on recognized problem areas, and an overview of current knowledge of the principal hydrogeochemical processes of arsenic transportation and transformation. However, a more detailed understanding of local sources of arsenic and mechanisms of arsenic release is required. More extensive studies will be required for building practical guidance on avoiding and reducing arsenic contamination. Bioremediation and hyperaccumulation are emerging innovative technologies for the remediation of arsenic contaminated sites. Natural attenuation may be utilized as a potential in situ remedial option. Further

  11. Arsenic Speciation in Blue Mussels (Mytilus edulis) Along a Highly Contaminated Arsenic Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Whaley-Martin, K.J.; Koch, I.; Moriarty, M.; Reimer, K.J. (Royal)

    2012-11-01

    Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strong arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R{sup 2} = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R{sup 2} = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.

  12. ARSENIC DEGRADATION BY Pseudomonas aeruginosa FOR WATER BIOREMEDIATION. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Esther E. Pellizzari

    2015-03-01

    Full Text Available The aim of this study was to investigate the arsenic resistance in pure cultivations of Pseudomonas aeruginosa isolated from Presidencia Roque Sáenz Peña groundwater (Chaco province, and evaluate the possibility of its use to remove arsenic from groundwater. Strains were immobilized in natural stone and cultivated in salts broth and 1 mgAs/L. The arsenic resistance and biofilm formation were observed, obtaining interaction between cells, rock and arsenic. Arsenic removal was evaluated during 3 months and its final percentage of the experiment was 60%.

  13. Arsenic Exposure and the Induction of Human Cancers

    Directory of Open Access Journals (Sweden)

    Victor D. Martinez

    2011-01-01

    Full Text Available Arsenic is a metalloid, that is, considered to be a human carcinogen. Millions of individuals worldwide are chronically exposed through drinking water, with consequences ranging from acute toxicities to development of malignancies, such as skin and lung cancer. Despite well-known arsenic-related health effects, the molecular mechanisms involved are not fully understood; however, the arsenic biotransformation process, which includes methylation changes, is thought to play a key role. This paper explores the relationship of arsenic exposure with cancer development and summarizes current knowledge of the potential mechanisms that may contribute to the neoplastic processes observed in arsenic exposed human populations.

  14. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  15. Speciation of arsenic in sulfidic waters

    Directory of Open Access Journals (Sweden)

    Ford Robert G

    2003-03-01

    Full Text Available Formation constants for thioarsenite species have been determined in dilute solutions at 25°C, ΣH2S from 10-7.5 to 10-3.0 M, ΣAs from 10-5.6 to 10-4.8 M, and pH 7 and 10. The principal inorganic arsenic species in anoxic aquatic systems are arsenite, As(OH30, and a mononuclear thioarsenite with an S/As ratio of 3:1. Thioarsenic species with S/As ratios of 1 : 1,2 : 1, and 4 : 1 are lesser components in sulfidic solutions that might be encountered in natural aquatic environments. Thioarsenites dominate arsenic speciation at sulfide concentrations > 10-4.3 M at neutral pH. Conversion from neutral As(OH30 to anionic thioarsenite species may regulate the transport and fate of arsenic in sulfate-reducing environments by governing sorption and mineral precipitation reactions.

  16. Current developments in toxicological research on arsenic.

    Science.gov (United States)

    Bolt, Hermann M

    2013-01-01

    There is a plethora of recent publications on all aspects relevant to the toxicology of arsenic (As). Over centuries exposures to arsenic continue to be a major public health problem in many countries. In particular, the occurrence of high As concentrations in groundwater of Southeast Asia receives now much attention. Therefore, arsenic is a high-priority matter for toxicological research. Key exposure to As are (traditional) medicines, combustion of As-rich coal, presence of As in groundwater, and pollution due to mining activities. As-induced cardiovascular disorders and carcinogenesis present themselves as a major research focus. The high priority of this issue is now recognized politically in a number of countries, research funds have been made available. Also experimental research on toxicokinetics and toxicodynamics and on modes of toxic action is moving very rapidly. The matter is of high regulatory concern, and effective preventive measures are required in a number of countries.

  17. [Noncirrhotic liver fibrosis after chronic arsenic poisoning].

    Science.gov (United States)

    Piontek, M; Hengels, K J; Borchard, F; Strohmeyer, G

    1989-10-27

    A 67-year-old woman with portal hypertension, splenomegaly without portal vein thrombosis, leucopenia and thrombocytopenia of splenic origin had repeated episodes of life-threatening haemorrhage from esophageal varices. Since childhood she had suffered from psoriasis and had been treated over a period of 15 years with Fowler's solution (in all about 25 g of arsenic trioxide). She had the characteristic skin lesions of arsenical poisoning-palmar hyperkeratoses and two basal cell carcinomas on the trunk. Histological examination of a wedge biopsy from the liver showed definite structural changes with fibrosis around the central veins and in the portal tracts. There was no evidence of cirrhotic alteration. The hepatocytes were normal by light microscopy and electron microscopy. This case of noncirrhotic hepatic fibrosis is considered to have been caused by chronic arsenical poisoning.

  18. Emissions of arsenic in Sweden and their reduction.

    Science.gov (United States)

    Lindau, L

    1977-08-01

    The role of arsenic in Sweden is generally described, including raw materials, exports/imports, products, consumption, etc. An attempt was also made to estimate the transport of arsenic in Sweden. The quantities of arsenic in raw materials, the emissions of arsenic from such processes as copper smelters and chemical industries, and the amounts of products containing arsenic were calculated. The studies show that a copper smelter is the main user of arsenical materials, the very largest emitting source and also the plant which manufacturers most arsenic products. A summary of measurements of arsenic in air, water and soil in Sweden has also been made. The concentrations near a smelter, in the Baltic, in cities and in "clean-air areas" are given. The efforts made to date to reduce the emissions of arsenic and the measures planned for the next few years are described. A reduction has already been achieved and a further rather large decrease will come, especially in arsenic levels in water. The possibilities of minimizing the use of materials and products containing arsenic is also discussed. PMID:908306

  19. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Science.gov (United States)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  20. Arsenic in the environment: enrichments in the Slovenian soils

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2005-12-01

    Full Text Available Arsenic, a toxic element with metalloid properties, is found in detectable concentrations in environmental samples. In nature it is enriched in metal (sulphide ore deposits, mainly as arsenides of Cu, Ni and Fe. Arsenic compounds are used mainly in agricultureand forestry as pesticides and herbicides. The ecosystem can be contaminated with arsenic via both natural and anthropogenic sources. Uses of arsenic contaminated water present so far the greatest health hazard. Occurrences of mining related arsenic problems havealso been recorded in many parts of the world.The impact of mining and metallurgic industry with regard to arsenic contents in soils in some potentially contaminated areas in Slovenia is discussed. Enriched contents of arsenic were found in Mežica. Arsenic correlates very well with lead, zinc and other heavymetals which are enriched as a result of long lasting lead production in the area. Also in Celje and Jesenice arsenic has the same distribution pattern as other anthropogenically introduced pollutants. In Idrija there are some slightly arsenic enriched areas, but there is no correlation with mercury, so the origin of arsenic in not clear yet.

  1. The Case for Visual Analytics of Arsenic Concentrations in Foods

    Directory of Open Access Journals (Sweden)

    Omotayo R. Awofolu

    2010-04-01

    Full Text Available Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i metabolism of arsenic in the human body; (ii arsenic concentrations in various foods; (ii factors affecting arsenic uptake in plants; (ii introduction to visual analytics; and (iv benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species.

  2. Inorganic arsenic levels in baby rice are of concern

    International Nuclear Information System (INIS)

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe

  3. Inorganic arsenic levels in baby rice are of concern

    Energy Technology Data Exchange (ETDEWEB)

    Meharg, Andrew A. [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom)], E-mail: a.meharg@abdn.ac.uk; Sun, Guoxin [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Williams, Paul N. [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom); Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Adomako, Eureka; Deacon, Claire [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom); Zhu, Yong-Guan [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Feldmann, Joerg; Raab, Andrea [Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, Aberdeen AB24 3UE (United Kingdom)

    2008-04-15

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as {mu}g/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe.

  4. ARSENIC CONTAMINATION IN DRINKING WATER: AN ASSESSMENT FOR TURKEY

    Directory of Open Access Journals (Sweden)

    Meltem BİLİCİ ÇALIŞKAN

    2009-01-01

    Full Text Available Arsenic is one of the most abundant elements in the earth's crust and classified as a non-metal or a metalloid. Arsenic is toxic and carcinogen and in the environment occurs from both natural and anthropogenic sources. In the aqueous environment inorganic arsenic appears commonly in forms of arsenite (As(III and arsenate (As(V. pH, redox potential, and the presence of complexing ions such as ions of sulfur, iron, and calcium determine the arsenic valence and speciation. Because of the naturally occurring arsenic contamination in groundwater in many parts of the world many people have faced with risk of arsenic poisoning. In Turkey especially in the west regions, natural water sources contained much higher levels of arsenic than maximum contaminated level (MCL set (10 ?g/L were determined. In this study, arsenic problem and its reasons in Turkey were investigated. For this purpose, arsenic analyses were carried out and higher levels of arsenic than MCL was detected in some regions of Izmir. High levels of arsenic in these natural waters were considered to be associated with the dissolution of some minerals and rock formation.

  5. Trivalent arsenic inhibits the functions of chaperonin complex.

    Science.gov (United States)

    Pan, Xuewen; Reissman, Stefanie; Douglas, Nick R; Huang, Zhiwei; Yuan, Daniel S; Wang, Xiaoling; McCaffery, J Michael; Frydman, Judith; Boeke, Jef D

    2010-10-01

    The exact molecular mechanisms by which the environmental pollutant arsenic works in biological systems are not completely understood. Using an unbiased chemogenomics approach in Saccharomyces cerevisiae, we found that mutants of the chaperonin complex TRiC and the functionally related prefoldin complex are all hypersensitive to arsenic compared to a wild-type strain. In contrast, mutants with impaired ribosome functions were highly arsenic resistant. These observations led us to hypothesize that arsenic might inhibit TRiC function, required for folding of actin, tubulin, and other proteins postsynthesis. Consistent with this hypothesis, we found that arsenic treatment distorted morphology of both actin and microtubule filaments. Moreover, arsenic impaired substrate folding by both bovine and archaeal TRiC complexes in vitro. These results together indicate that TRiC is a conserved target of arsenic inhibition in various biological systems. PMID:20660648

  6. Arsenic in the soils of Zimapán, Mexico.

    Science.gov (United States)

    Ongley, Lois K; Sherman, Leslie; Armienta, Aurora; Concilio, Amy; Salinas, Carrie Ferguson

    2007-02-01

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.

  7. Arsenic species and chemistry in groundwater of southeast Michigan

    Science.gov (United States)

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2002-01-01

    Groundwater samples, taken from 73 wells in 10 counties of southeast Michigan in 1997 had arsenic concentrations in the range of 0.5 to 278 ??g/l, the average being 29 ??g/l. About 12% of these wells had arsenic concentrations that exceeded the current USEPA's maximum contaminant level of 50 ??g/l. Most (53-98%) of the arsenic detected was arsenite [As(III)] and other observations supported the arsenic species distribution (low redox potential and DO). In shallow groundwater (15 m), the concentration of arsenic is possibly controlled by reductive dissolution of arsenic-rich iron hydroxide/oxyhydroxide and dissolution of arsenic sulfide minerals. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. Method development for arsenic analysis by modification in spectrophotometric technique

    Directory of Open Access Journals (Sweden)

    M. A. Tahir

    2012-01-01

    Full Text Available Arsenic is a non-metallic constituent, present naturally in groundwater due to some minerals and rocks. Arsenic is not geologically uncommon and occurs in natural water as arsenate and arsenite. Additionally, arsenic may occur from industrial discharges or insecticide application. World Health Organization (WHO and Pakistan Standard Quality Control Authority have recommended a permissible limit of 10 ppb for arsenic in drinking water. Arsenic at lower concentrations can be determined in water by using high tech instruments like the Atomic Absorption Spectrometer (hydride generation. Because arsenic concentration at low limits of 1 ppb can not be determined easily with simple spectrophotometric technique, the spectrophotometric technique using silver diethyldithiocarbamate was modified to achieve better results, up to the extent of 1 ppb arsenic concentration.

  9. A global health problem caused by arsenic from natural sources

    Energy Technology Data Exchange (ETDEWEB)

    Ng, J.C.; Wang, J.P.; Shraim, A. [University of Queensland, Brisbane, Qld. (Australia). National Research Center for Environmental Toxicology

    2003-09-01

    Arsenic is a carcinogen to both humans and animals. Arsenicals have been associated with cancers of the skin, lung, and bladder. Clinical manifestations of chronic arsenic poisoning include non-cancer end point of hyper- and hypo-pigmentation, keratosis, hypertension, cardiovascular diseases and diabetes. Epidemiological evidence indicates that arsenic concentration exceeding 50 {mu}g l{sup -1} in the drinking water is not public health protective. The current WHO recommended guideline value for arsenic in drinking water is 10 {mu}g l{sup -1}, whereas many developing countries are still having a value of 50 {mu}g 1{sup -1}. It has been estimated that tens of millions of people are at risk exposing to excessive levels of arsenic from both contaminated water and arsenic-bearing coal from natural sources. The global health implication and possible intervention strategies were also discussed in this review article.

  10. Coping with arsenic-based pesticides on Dine (Navajo) textiles

    Science.gov (United States)

    Anderson, Jae R.

    Arsenic-based pesticide residues have been detected on Arizona State Museum's (ASM) Dine (Navajo) textile collection using a handheld portable X-ray (pXRF) spectrometer. The removal of this toxic pesticide from historic textiles in museums collections is necessary to reduce potential health risks to Native American communities, museum professionals, and visitors. The research objective was divided into three interconnected stages: (1) empirically calibrate the pXRF instrument for arsenic contaminated cotton and wool textiles; (2) engineer an aqueous washing treatment exploring the effects of time, temperature, agitation, and pH conditions to efficiently remove arsenic from wool textiles while minimizing damage to the structure and properties of the textile; (3) demonstrate the devised aqueous washing treatment method on three historic Navajo textiles known to have arsenic-based pesticide residues. The preliminary results removed 96% of arsenic from a high arsenic concentration (~1000 ppm) textile opposed to minimal change for low arsenic concentration textiles (<100 ppm).

  11. Phytoremediation of arsenic in submerged soil by wetland plants.

    Science.gov (United States)

    Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai

    2011-01-01

    Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants. PMID:21598766

  12. Complementary arsenic speciation methods: A review

    Science.gov (United States)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC-ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC-ICP-MS can be used to identify compounds not extracted for HPLC-ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenicsbnd sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC-ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI-MS) with HPLC-ICP-MS provides confirmation of arsenic compounds identified during the HPLC-ICP-MS analysis, identification of unknown compounds observed during the HPLC-ICP-MS analysis and further resolves HPLC-ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC-ICP-MS and ESI-MS, HPLC-ICP-MS helps to focus the ESI-MS selection of ions. Numerous studies have shown that the information obtained from HPLC-ICP-MS analysis can be greatly enhanced by complementary approaches.

  13. Groundwater arsenic contamination from parts of the Ghaghara Basin, India: influence of fluvial geomorphology and Quaternary morphostratigraphy

    Science.gov (United States)

    Shah, Babar Ali

    2016-09-01

    A groundwater arsenic (As) distribution in Faizabad, Gonda, and Basti districts of Uttar Pradesh is shown in the entrenched channels and floodplains of the Ghaghara River. Tubewell water samples were analysed for As through flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) system. About 38, 61, and 42 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, have As >10 µg/l (WHO guideline). Moreover, 15, 45, and 26 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, have As above 50 µg/l. About 86, 69, and 35 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, are from shallow depth (21-45 m), and it is worth noticing that 47 % As-contaminated (As >10 µg/l) tubewells in these three districts are located within the depth of 10-35 m in Holocene Newer Alluvium aquifers. The high content of As (7.11 mg/kg) is measured in suspended river sediments of the Ghaghara River. Most of the As-contaminated villages in the Ghaghara Basin are located close to abandoned or present meander channels and floodplains of the Ghaghara River. In contrast, tubewells in Faizabad, Ayodhya, and Nawabganj towns are As-safe because of their positions on the Pleistocene Older Alluvium upland surfaces. Quaternary geomorphology plays an important role in groundwater arsenic contamination in the Ghaghara Basin. The sources of groundwater arsenic are geogenic and perennial mountainous rivers in the Ghaghara Basin supplied high sediment loads. The arsenic in groundwater of Ghaghara Basin is getting released from associated sediments which were likely deposited from the Himalayas. The process of release of groundwater arsenic is reductive dissolution of iron hydroxides.

  14. Biosensors for Inorganic and Organic Arsenicals

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2014-11-01

    Full Text Available Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.

  15. Arsenic in Drinking Water and Its Removal

    Institute of Scientific and Technical Information of China (English)

    Liu Zhenzhong; Deng Huiping; Zhan Jian

    2007-01-01

    Superfluous arsenic in drinking water can do harm to human health.In this paper,a broad overview of the available technologies for arsenic removal has been presented on the basis of literature survey.The main treatment methods included coagulation-sedimentation,adsorption separation and ion exchange,membrane technique,which have both advantages and disadvantages.It concluded that the selection of treatment process should be site specific and prevailing conditions and no process can serve the purpose under diverse conditions as each technology has its own limitations,In order to gain good results,some methods should be improved.

  16. Human electrocardiogram changes caused by exposure to arsenic through drinking water%水砷暴露致人群心电图改变的研究

    Institute of Scientific and Technical Information of China (English)

    梅扬; 李媛媛; 高彦辉; 赵丽军; 刘加勇; 孙殿军

    2015-01-01

    Objective Through studying the relationship between different concentrations of arsenic in drinking water and ECG changes,to investigate the effects of arsenic on human cardiovascular system.Methods During 2008-2013,people that over 20 years old and over 10 years of drinking arsenic water were investigated in 15 villages of Shanxi Province and Inner Mongolia according to the historical data of endemic arsenic poisoning through drinking water,who were divided into control group (< 0.01 mg/L),low arsenic group (0.01-< 0.05 mg/L),medium arsenic group (0.05-< 0.10 mg/L) and high arsenic group (≥0.10 mg/L) according to the concentration of water arsenic.Arsenic concentrations in drinking water samples were detected by the method of hydride generation atomic fluorescence spectrometry.ECG-site inspections were finished to record 12-lead ECG.The effect of different concentrations of arsenic in drinking water on ECG was studied.Results ECG of 1341 people were surveyed,and abnormal rate was 11.56% (155/1 341),including abnormal rate of control group,low arsenic group,medium arsenic group and high arsenic group which was 5.7% (9/158),12.85% (59/459),12.02% (28/233),and 12.02% (59/491),respectively.The abnormal rate of control group was lower than that of low arsenic group,medium arsenic group and high arsenic group (x2 =6.141,4.391,5.090,all P < 0.05).ECG changes were characterized by cardiac arrhythmias and ST-T changes.A variety of arrhythmias abnormal rate of control group [0(0/158)] was lower than that of low arsenic group,medium arsenic group and high arsenic group [4.58% (21/459),3.86% (9/233),3.46% (17/491); x2 =7.483,6.247,5.618,all P < 0.05].In addition,there were significant differences among the four groups in the rates of right ventricular enlargement and myocardial ischemia (x2 =9.525,9.848,all P < 0.05).Conclusions ECG changes of the residents in the areas of water-borne-endemic arsenic poisoning are characterized by cardiac

  17. Immobilisation of arsenic by iron(II)-oxidizing bacteria

    Science.gov (United States)

    Kappler, A.; Hohmann, C.; Winkler, E.; Muehe, M.; Morin, G.

    2008-12-01

    Arsenic-contaminated groundwater is an environmental problem that affects about 1-2% of the world's population. As arsenic-contaminated water is also used for irrigating rice fields, the uptake of arsenic via rice is in some cases even higher than via drinking water. Arsenic is often of geogenic origin and in many cases bound to iron(III) minerals. Microbial iron(III) reduction leads to dissolution of Fe(III) minerals and thus the arsenic bound to these minerals is released to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation followed by iron(III) mineral formation. Here, we present work on arsenic co-precipitation and immobilization by anaerobic and aerobic iron(II)-oxidizing bacteria. Co-precipitation batch experiments with pure cultures of nitrate-dependent, phototrophic, and microaerophilic Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation. Iron and arsenic speciation and redox state are determined by X- ray diffraction and synchrotron-based X-ray absorption methods (EXAFS, XANES). Microcosm experiments are set-up either with liquid media or with rice paddy soil amended with arsenic. Rice paddy soil from arsenic contaminated rice fields in China that include a natural population of Fe(II)-oxidizing microorganisms is used as inoculum. Dissolved and solid-phase arsenic and iron are quantified, Arsenic speciation is determined and the iron minerals are identified. Additionally, Arsenic uptake into the rice plant is quantified and a gene expression pattern in rice (Oryza sativa cv Gladia) is determined by microarrays as a response to the presence of Fe(II)-oxidizing bacteria.

  18. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  19. Hollow fiber liquid phase microextraction combined with electrothermal atomic absorption spectrometry for the speciation of arsenic (III) and arsenic (V) in fresh waters and human hair extracts.

    Science.gov (United States)

    Jiang, Hongmei; Hu, Bin; Chen, Beibei; Xia, Linbo

    2009-02-16

    A new method of hollow fiber liquid phase microextraction (HF-LPME) using ammonium pyrrolidine dithiocarbamate (APDC) as extractant combined with electrothermal atomic absorption spectrometry (ETAAS) using Pd as permanent modifier has been described for the speciation of As(III) and As(V). In a pH range of 3.0-4.0, the complex of As(III)-APDC complex can be extracted using toluene as the extraction solvent leaving As(V) in the aqueous layer. The post extraction organic phase was directly injected into ETAAS for the determination of As(III). To determine total arsenic in the samples, first As(V) was reduced to As(III) by l-cysteine, and then a microextraction method was performed prior to the determination of total arsenic. As(V) assay was based on subtracting As(III) form the total arsenic. All parameters, such as pH of solution, type of organic solvent, the amount of APDC, stirring rate and extraction time, affecting the separation of As(III) from As(V) and the extraction efficiency of As(III) were investigated, and the optimized extraction conditions were established. Under optimized conditions, a detection limit of 0.12ngmL(-1) with enrichment factor of 78 was achieved. The relative standard deviation (R.S.D.) of the method for five replicate determinations of 5ngmL(-1) As(III) was 8%. The developed method was applied to the speciation of As(III) and As(V) in fresh water and human hair extracts, and the recoveries for the spiked samples are 86-109%. In order to validate the developed method, three certified reference materials such as GBW07601 human hair, BW3209 and BW3210 environmental water were analyzed, and the results obtained were in good agreement with the certified values provided. PMID:19154804

  20. Outbreak of chronic arsenic poisoning among retired workers from an arsenic mine in Japan.

    Science.gov (United States)

    Ishinishi, N; Kodama, Y; Nobutomo, K; Inamasu, T; Kunitake, E; Suenaga, Y

    1977-01-01

    Retired former workers of Matsuo Arsenic Mine of Miyazaki prefecture in Japan were subjected to extensive medical examination. The number of retired workers subjected to examination were 61 of 208 workers who were engaged in the works of the mine and were tracked down by the work rolls. These workers left the mine more than 15 years prior to the time of the examination. The main works in the mine were classified as mining, dressing of ores, refining, and clerical work. Several findings such as arsenodermatitis, depigmentation, performation of nasal septum, hyposmia, anosmia, and peripheral nervous disturbance attributed to exposure to arsenic were observed in 9 of 21 roasters who often worked in the arsenic kitchen. No characteristic findings of arsenic poisoning, that is, gastrointestinal disturbance, disorder of the cardiovascular system, hematopoietic disorders, or liver disturbance were observed in the retired workers. Another notable finding was that 8 cases diagnosed as pneumoconiosis were found in 18 miners. PMID:908287

  1. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    Science.gov (United States)

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L.

  2. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic.

    Science.gov (United States)

    Liu, Xiao-Juan; Zhao, Quan-Li; Sun, Guo-Xin; Williams, Paul; Lu, Xiu-Jun; Cai, Jing-Zhu; Liu, Wen-Ju

    2013-01-01

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic.

  3. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic.

    Science.gov (United States)

    Kala, S V; Neely, M W; Kala, G; Prater, C I; Atwood, D W; Rice, J S; Lieberman, M W

    2000-10-27

    Worldwide, millions of people are exposed to arsenic in drinking water that exceeds the World Health Organization standard of 10 microg/liter by as much as 50-300-fold, yet little is known about the molecular basis for arsenic excretion. Here we show that transport of arsenic into bile depends on the MRP2/cMOAT transporter and that glutathione is obligatory for such transport. Using reversed phase liquid chromatography/mass spectrometry, we demonstrate that two arsenic-glutathione complexes not previously identified in vivo, arsenic triglutathione and methylarsenic diglutathione, account for most of the arsenic in the bile. The structure of the compounds was also confirmed by nuclear magnetic resonance spectroscopy. Our findings may help explain the increased susceptibility of malnourished human populations to arsenic. PMID:10938093

  4. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    丁振华; 郑宝山; 张杰; H.; E.; Belkin; R.; B.; Finkelman; 赵峰华; 周代兴; 周运书; 陈朝刚

    1999-01-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer ( EMPA) , scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX) , X-ray diffraction analysis (XRD) , low temperature ashing (LTA) , transmission electron microscopy (TEM) , X-ray absorption fine structure (XAFS) , instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+ , combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  5. Mechanism of arsenic tolerance and bioremoval of arsenic by Acidithiobacilus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Chandra Prabha M N

    2011-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 This paper reports the studies on mechanism of arsenic tolerance and bioremoval of arsenic ions (arsenite or arsenate by Acidithiobacillus ferrooxidans. Exposure of cells to arsenic ions resulted in increased cell surface hydrophobicity, decreased electrophoretic mobility and stronger adsorption affinity towards arsenopyrite. The mechanism of tolerance to arsenic ions were specific and could be attributed to the changes in specific protein expression in the outer membrane and cytosolic membrane fractions. Biosorption studies showed decrease in solution arsenic concentration only with ferrous–grown cells indicating that presence of ferric ions in the EPS was necessary for binding or entrapment of arsenic ions in the EPS. Bacterial EPS of ferrous–grown wild cells were able to uptake arsenate ions due to the strong affinity of ferric ions towards arsenate ions. Neither cells nor the ferric ions were capable of precipitating or oxidizing arsenite ions directly. Both arsenate ions and arsenite ions were co–precipitated with ferric ions formed during the growth of the bacteria.  

  6. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  7. Soil Contamination by Arsenic in Urban Areas: A case study of Arak City

    Directory of Open Access Journals (Sweden)

    E Solgi

    2015-08-01

    Conclusion: It seems that arsenic in soil is controlled by natural and anthropogenic factors. The highest concentrations of arsenic in center and the north areas reflected arsenic loading is originated from anthropogenic sources such as vehicles and industrial processes.

  8. Evaluation of Exposure to Arsenic in Residential Soil

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda; Scrafford, Carolyn; Mink, Pamela; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-12-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89?17.7 ?g/L, respectively) and older participants (3.8, 1.9, 0.91?19.9 ?g/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background.

  9. Arsenic Speciation in Honeysuckle (Lonicera japonica Thunb.) from China.

    Science.gov (United States)

    Tang, Fubin; Ni, Zhanglin; Liu, Yihua; Yu, Qing; Wang, Zhikun; Mo, Runhong

    2015-11-01

    In this study, honeysuckle, a common Chinese herbal medicine, produced from different areas was investigated for total arsenic and arsenic species concentration. The total arsenic concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) and ranged from 275 to 635 μg kg(-1). A microwave-assisted procedure with 1 % phosphoric acid (v/v) was used for the extraction of arsenic species in honeysuckle. The total arsenic species concentration found by liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) was in agreement with the total arsenic concentration determined by the ICP-MS analysis after the microwave digestion. Arsenate (As(V)) with an average proportion of 54.3 % was the predominant arsenic species in honeysuckle. The order of concentration is as follows: As(V) > arsenite (As(III)) > dimethylarsinic acid (DMA) > arsenobetaine (AsB) > monomethylarsonic acid (MMA). The proportion of organic arsenic (24.7 %) was higher than that in most terrestrial plants. Moreover, the distributions of arsenic species in the honeysuckle from different producing areas were significantly different. This study provides useful information for better understanding of the distribution of arsenic species in terrestrial plants.

  10. Arsenic hydrogeochemistry in an irrigated river valley - A reevaluation

    Science.gov (United States)

    Nimick, D.A.

    1998-01-01

    Arsenic concentrations in ground water of the lower Madison River valley, Montana, are high (16 to 176 ??g/L). Previous studies hypothesized that arsenic-rich river water, applied as irrigation, was evapoconcentrated during recharge and contaminated the thin alluvial aquifer. Based on additional data collection and a reevaluation of the hydrology and geochemistry of the valley, the high arsenic concentrations in ground water are caused by a unique combination of natural hydrologic and geochemical factors, and irrigation appears to play a secondary role. The high arsenic concentrations in ground water have several causes: direct aquifer recharge by Madison River water having arsenic concentrations as high as 100 ??g/L, leaching of arsenic from Tertiary volcano-clastic sediment, and release of sorbed arsenic where redox conditions in ground water are reduced. The findings are consistent with related studies that demonstrate that arsenic is sorbed by irrigated soils in the valley. Although evaporation of applied irrigation water does not significantly increase arsenic concentrations in ground water, irrigation with arsenic-rich water raises other environmental concerns.

  11. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.

    Directory of Open Access Journals (Sweden)

    Changzhou Yan

    Full Text Available Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h and extended (13 d depuration periods under phosphate enriched (+P and phosphate depleted (-P treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA were found to be the two predominant arsenic species detected in solutions under -P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels.

  12. Evaluation of electrokinetic remediation of arsenic-contaminated soils.

    Science.gov (United States)

    Kim, Soon-Oh; Kim, Won-Seok; Kim, Kyoung-Woong

    2005-09-01

    The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH(2)PO(4)) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals. PMID:16237600

  13. Arsenic in rice: A cause for concern

    DEFF Research Database (Denmark)

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri;

    2015-01-01

    Inorganic arsenic intake is likely to affect long-term health. High concentrations are found in some rice-based foods and drinks widely used in infants and young children. In order to reduce exposure we recommend avoidance of rice drinks for infants and young children. For all rice products, stri...

  14. Arsenic immobilization of Teniente furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, R. [Japan Oil, Gas, and Metals National Corp., Kawasaki (Japan); Tateiwa, H. [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan); Almendares, C. [Centro de Investigacion Minera y Metalurgica, Santiago (Chile); Sanchez, G. [CODELCO, Santiago (Chile). Division Ventanas

    2007-07-01

    A 5-year joint Japanese-Chilean project to modify the treatment of furnace dust from a converter in Chile producing harmful amounts of arsenic and lead was described. A pilot plant was constructed to evaluate the method's commercialization potential. Flue dust was recovered by a dust collector installed to capture suspended dust generated by the smelting furnace. Arsenic content was approximately 15 per cent. Ninety per cent of the arsenic was then liquidated to lixivia and dissolved by leaching flue dust with sulphuric acid. The leaching rate decreased when flue dust had a high content of residual sulfide ore. A flotation device was then incorporated in the treatment process in order to increase the copper recovery rate. A solvent recovery process was then adopted to recover the copper and zinc contained in the solution after the arsenic recovery. An economic evaluation of the process indicated that efforts should be made to improve the efficiency of the dust treatment method. 5 refs., 6 tabs., 10 figs.

  15. Speciation of arsenic in environmental waters

    International Nuclear Information System (INIS)

    A system for speciation of arsenic in environmental waters by selective hydride formation and on-line AAS is described. Starting from literature data, the separation scheme and the necessary apparatus are outlined. Preliminary practical experience then leads to the formulation of further improvements and accompanying testing experiments. (author). 51 refs, 7 figs, 1 tab

  16. Influence of arsenic on iron sulfide transformations

    NARCIS (Netherlands)

    Wolthers, M.; Butler, I.B.; Rickard, D.

    2007-01-01

    The association of arsenate, As(V), and arsenite, As(III), with disordered mackinawite, FeS, was studied in sulfide-limited (Fe:S = 1:1) and excess-sulfide (Fe:S = 1:2) batch experiments. In the absence of arsenic, the sulfide-limited experiments produce disordered mackinawite while the excess-sulfi

  17. Understanding arsenic contamination of groundwater in Bangladesh

    International Nuclear Information System (INIS)

    The problem of water contamination by naturally occurring arsenic confronts governments, public and private utilities, and the development community with a new challenge for implementing operational mitigation activities under difficult conditions of imperfect knowledge - especially for arsenic mitigation for the benefit of the rural poor. With more than a conservative estimate of 20 million of its 130 million people assumed to be drinking contaminated water and another 70 million potentially at risk, Bangladesh is facing what has been described as perhaps the largest mass poisoning in history. High concentrations of naturally occurring arsenic have already been found in water from tens of thousands of tube wells, the main source of potable water, in 59 out of Bangladesh's 64 districts. Arsenic contamination is highly irregular, so tube wells in neighboring locations or even different depths can be safe. Arsenic is extremely hazardous if ingested in drinking water or used in cooking in excess of the maximum permissible limit of 0.01 mg/liter over an extended period of time. Even in the early 1970s, most of Bangladesh's rural population got its drinking water from surface ponds and nearly a quarter of a million children died each year from water-borne diseases. Groundwater now constitutes the major source of drinking water in Bangladesh with 95% of the drinking water coming from underground sources. The provision of tube well water for 97 percent of the rural population has been credited with bringing down the high incidence of diarrheal diseases and contributing to a halving of the infant mortality rate. Paradoxically, the same wells that saved so many lives now pose a threat due to the unforeseen hazard of arsenic. The provenance of arsenic rich minerals in sediments of the Bengal basin as a component of geological formations is believed to be from the Himalayan mountain range. Arsenic has been found in different uncropped geological hard rock formations

  18. Questions and Answers: Apple Juice and Arsenic

    Science.gov (United States)

    ... and monomethylarsonic acid (MMA), may also be a health concern. Are apple and other fruit juices safe to drink? The FDA has been ... this, the FDA is considering how any possible health risk from these two forms of ... arsenic in fruit juice? The FDA has proposed an “action level” ...

  19. Arsenic accumulation in some higher fungi

    NARCIS (Netherlands)

    Stijve, T.; Vellinga, Else C.; Herrmann, A.

    1990-01-01

    The high arsenic concentrations reported in literature for Laccaria amethystina were amply confirmed. In addition, it was demonstrated that Laccaria fraterna also accumulates the element, whereas in other species of Laccaria the phenomenon was far less outspoken. Few other basidiomycetes proved to h

  20. Arsenic(III Immobilization on Rice Husk

    Directory of Open Access Journals (Sweden)

    Malay Chaudhuri

    2013-02-01

    Full Text Available A number of large aquifers in various parts of the world have been identified with contamination by arsenic. Long-term exposure to arsenic in drinking water causes cancer of the skin, lungs, urinary bladder and kidney, as well as skin pigmentation and hyperkeratosis. Arsenic occurs in groundwater in two valence states, as trivalent arsenite [As(III] and pentavalent arsenate [As(V]. As(III is more toxic and more difficult to remove from water by adsorption on activated alumina. In this study, immobilization (adsorption of As(III by quaternized rice husk was examined. Batch adsorption test showed that extent of adsorption was dependent on pH, As (III concentration, contact time and rice husk dose. Maximum adsorption occurred at pH 7-8, and equilibrium adsorption was attained in 2 h. Equilibrium adsorption data were described by the Langmuir and Freundlich isotherm models. According to the Langmuir isotherm, adsorption capacity of quaternized rice husk is 0.775 mg As(III/g, which is 4.3x higher than that (0.180 mg As(III/g of activated alumina. Quaternized rice husk is a potentially useful adsorbent for removing arsenic from groundwater.

  1. Peripheral vascular diseases resulting from chronic arsenical poisoning.

    Science.gov (United States)

    Yu, Hsin-Su; Lee, Chih-Hung; Chen, Gwo-Shing

    2002-03-01

    Drinking water contaminated by arsenic remains a major public health problem. Long-term arsenic exposure has been found to be associated with peripheral vascular diseases in a variety of studies. Reports of vascular effects of arsenic in drinking water, which span almost 100 years, have been published in Taiwan, Chile, Mexico, and China. This paper reviewed the association of peripheral vascular diseases resulting from arsenic exposure to drinking water from the clinical and pathological points of view. An endemic peripheral vascular disorder called "blackfoot disease" has been noticed in a limited area in Taiwan. This disease results in gangrene in the extremities. It has been associated with the ingestion of high concentrations of arsenic-tainted artesian well water. Epidemiological studies confirmed a dose-response relationship between long-term arsenic exposure and the occurrence of blackfoot disease. Whereas arsenic has induced various clinical manifestations of vascular effects in Chile, Mexico and China, they do not compare in magnitude or severity to the blackfoot disease found in Taiwan. The pathogenesis of vascular effects induced by arsenic is still controversial. The possible mechanisms include endothelial cell destruction, arsenic-associated atherogenesis, carotene and zinc deficiency, and/or some immunological mechanism. Microcirculatory assessments revealed that deficits of capillary blood flow and permeability exist in clinically normal skin of patients with chronic arsenical poisoning. The vascular effects of chronic arsenic poisoning may involve cardiovascular and cerebrovascular systems as well. In view of the increasing public health problems caused by arsenic exposure, vascular effects should be included in the future study of health effects of arsenic.

  2. Association of Genetic Variation in Cystathionine-β-Synthase and Arsenic Metabolism

    OpenAIRE

    Porter, Kristin E.; Basu, Anamika; Alan E Hubbard; Bates, Michael N.; Kalman, David; Rey, Omar; Smith, Allan; Smith, Martyn T.; Steinmaus, Craig; Skibola, Christine F.

    2010-01-01

    Variation in individual susceptibility to arsenic-induced disease may be partially explained by genetic differences in arsenic metabolism. Mounting epidemiological evidence and in vitro studies suggest that methylated arsenic metabolites, particularly monomethylarsonic (MMA3), are more acutely toxic than inorganic arsenic; thus, MMA3 may be the primary toxic arsenic species. To test the role of genetic variation in arsenic metabolism, polymorphisms in genes involved in one-carbon metabolism [...

  3. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    Science.gov (United States)

    Yager, J W; Hicks, J B; Fabianova, E

    1997-08-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. PMID:9347899

  4. Determining the solid phases hosting arsenic in Mekong Delta sediments

    Science.gov (United States)

    Wucher, M.; Stuckey, J. W.; McCurdy, S.; Fendorf, S.

    2011-12-01

    The major river systems originating from the Himalaya deposit arsenic bearing sediment into the deltas of South and Southeast Asia. High rates of sediment and organic carbon deposition combined with frequent flooding leads to anaerobic processes that release arsenic into the pore-water. Arsenic concentrations in the groundwater of these sedimentary basins are often above the World Health Organization drinking water standard of 10 μg As L-1. As a result, 150 million people are at risk of chronic arsenic poisoning through water and rice consumption. The composition of the iron bearing phases hosting the arsenic in these deltaic sediments is poorly understood. Here we implemented a suite of selective chemical extractions to help constrain the types of arsenic bearing solid phases, which were complimented with synchrotron-based X-ray absorption spectroscopy and X-ray diffraction analyses to define the arsenic and iron mineralogy of the system. Sediment cores were collected in triplicate from a seasonally-inundated wetland in Cambodia at depths of 10, 50, 100, and 150 centimeters. We hypothesize that (i) arsenic will be predominantly associated with iron oxides, and (ii) the ratio of crystalline to amorphous iron oxides will increase with sediment depth (and age). We performed four selective extractions in parallel to quantify the various pools of arsenic. First, 1 M MgCl2 was used to extract electrostatically-bound arsenic (labile forms) from the sediment. Second, 1 M NaH2PO4 targeted strongly adsorbed arsenic. Third, 1 M HCl was used to liberated arsenic coprecipitated with amorphous Fe/Mn oxides, carbonates, and acid-volatile sulfides. Finally, a dithionite extraction was used to account for arsenic associated with reducible Fe/Mn oxides. Through this work, we identified the composition of the phases hosting arsenic at various depths through the soil profile, improving our understanding of how arsenic persists in the aquifer. In addition, defining the arsenic and

  5. Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning.

    Science.gov (United States)

    Roychowdhury, Tarit

    2010-11-01

    A somewhat detailed study was carried out in Gaighata, one of the 107 arsenic-affected blocks in West Bengal, India, to determine the degree of groundwater contamination with arsenic, its depth wise distribution, correlation with iron, arsenical health effects to the inhabitants and the factors responsible for arsenic poisoning. Groundwater in all the 107 mouzas over 13 gram-panchayets in Gaighata block contains arsenic above 0.01mgl(-1) and in 91 mouzas, arsenic concentration has been found above 0.05mgl(-1). About 59.2 and 40.3% of the tubewell water samples contain arsenic above 0.01 and 0.05mgl(-1), respectively. The approximate population drinking arsenic-contaminated water above 0.01 and 0.05mgl(-1) are 106,560 and 72,540, respectively. The tubewells that were installed within the depth range of 15.4-30.3m are mostly arsenic-contaminated. Even the shallow groundwater level (7.87-15.1m) is arsenic-contaminated. Both arsenic and iron concentrations in groundwater gradually increase from lower depth to higher depth up to 39.4m, and then decrease with increasing depth. About 58% of the deep tubewell water samples (depth range 122-182m, n=31) contain arsenic ≥0.05mgl(-1). About 72% of the arsenic-contaminated deep tubewells (n=18) were safe when surveyed first time. But within a span of 2-5 years, they became contaminated with arsenic. The linear regression shows direct correlation between arsenic and iron concentrations in groundwater (r(2)=0.8114, p<0.0001, n=912). Intakes of inorganic arsenic from water by an adult male and female in the surveyed areas are 11.7 and 13.1μg/kg body wt./day, respectively and these values are higher than the WHO recommended PTDI value of inorganic arsenic (2.1μg/kg body wt./day). Mean arsenic concentrations in urine, hair and nail samples, collected from the inhabitants of Gutri mouza are higher than their normal level and the values are 292μgl(-1) (range: 8.35-1024μg l(-1), n=193), 2.50mgkg(-1) (range: 0.17-5.99mgkg(-1), n

  6. Low doses of arsenic, via perturbing p53, promotes tumorigenesis.

    Science.gov (United States)

    Ganapathy, Suthakar; Li, Ping; Fagman, Johan; Yu, Tianqi; Lafontant, Jean; Zhang, Guojun; Chen, Changyan

    2016-09-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure. PMID:27425828

  7. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi;

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5,900 years......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross...

  8. Vaccination with recombinant Boophilus annulatus Bm86 ortholog protein, Ba86, protects cattle against B. annulatus and B. microplus infestations

    Directory of Open Access Journals (Sweden)

    Jongejan Frans

    2009-03-01

    Full Text Available Abstract Background The cattle ticks, Boophilus spp., affect cattle production in tropical and subtropical regions of the world. Tick vaccines constitute a cost-effective and environmentally friendly alternative to tick control. The recombinant B. microplus Bm86 protective antigen has been shown to protect cattle against tick infestations. Recently, the gene coding for B. annulatus Bm86 ortholog, Ba86, was cloned and the recombinant protein was secreted and purified from the yeast Pichia pastoris. Results Recombinant Ba86 (Israel strain was used to immunize cattle to test its efficacy for the control of B. annulatus (Mercedes, Texas, USA strain and B. microplus (Susceptible, Mexico strain infestations. Bm86 (Gavac and Mozambique strain and adjuvant/saline were used as positive and negative controls, respectively. Vaccination with Ba86 reduced tick infestations (71% and 40%, weight (8% and 15%, oviposition (22% and 5% and egg fertility (25% and 50% for B. annulatus and B. microplus, respectively. The efficacy of both Ba86 and Bm86 was higher for B. annulatus than for B. microplus. The efficacy of Ba86 was higher for B. annulatus (83.0% than for B. microplus (71.5%. The efficacy of Bm86 (Gavac; 85.2% but not Bm86 (Mozambique strain; 70.4% was higher than that of Ba86 (71.5% on B. microplus. However, the efficacy of Bm86 (both Gavac and Mozambique strain; 99.6% was higher than that of Ba86 (83.0% on B. annulatus. Conclusion These experiments showed the efficacy of recombinant Ba86 for the control of B. annulatus and B. microplus infestations in cattle and suggested that physiological differences between B. microplus and B. annulatus and those encoded in the sequence of Bm86 orthologs may be responsible for the differences in susceptibility of these tick species to Bm86 vaccines.

  9. Atypical non-fatal arsenic poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, M.W.M.

    1969-06-07

    Arsenic poisoning was found to be the cause of a herd of dairy cows suddenly becoming ill, developing pyrexia and diarrhea, with a gradual deterioration in health. There was also a reduction in the yield of milk. It was proven that the feed bins were strongly positive for arsenic. When the source of the arsenic was removed, the cows showed a rapid recovery in most cases.

  10. Resistance to Arsenic- and Antimony-Based Drugs

    OpenAIRE

    Milena Salerno; Arlette Garnier-Suillerot

    2003-01-01

    Organic arsenicals were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and sleeping sickness. For the treatment of diseases caused by trypanosomatid parasites, organic derivatives of arsenic and the related metalloid antimony are still the drugs of choice. Arsenic trioxide, As203, has been used for a long time in traditional Chinese medicines for treatment of various diseases, and it has recently been shown to be clinically ac...

  11. Metal Attraction: An Ironclad Solution to Arsenic Contamination?

    OpenAIRE

    Frazer, Lance

    2005-01-01

    Inorganic arsenic—the more acutely toxic form of this metalloid element—contaminates drinking water supplies around the world. In the United States, the most serious arsenic contamination occurs in the West, Midwest, Southwest, and Northeast; as many as 20 million people—many getting their water from unregulated private wells—may be exposed to excess arsenic in their drinking water. In Bangladesh, it’s estimated that as many as 40 million people may be suffering from arsenic poisoning; contam...

  12. Health effects of arsenic in drinking water: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Fowle, J.R.

    1991-01-01

    Research needed to resolve the uncertainties of cancer risk from ingestion of arsenic in drinking water is described. The recommendations fall into two categories reflecting the areas of greatest uncertainty regarding the assessment of arsenic risk: research on the mechanism of cancer, and research on the metabolism and detoxification of arsenic. The recommendations are discussed in light of risk assessment and risk management issues, stressing the need for scientists to interpret research findings for decision managers.

  13. Rice consumption contributes to arsenic exposure in US women

    OpenAIRE

    Gilbert-Diamond, Diane; Cottingham, Kathryn L.; Gruber, Joann F.; Punshon, Tracy; Sayarath, Vicki; Gandolfi, A. Jay; Baker, Emily R.; Jackson, Brian P.; Folt, Carol L; Margaret R Karagas

    2011-01-01

    Emerging data indicate that rice consumption may lead to potentially harmful arsenic exposure. However, few human data are available, and virtually none exist for vulnerable periods such as pregnancy. Here we document a positive association between rice consumption and urinary arsenic excretion, a biomarker of recent arsenic exposure, in 229 pregnant women. At a 6-mo prenatal visit, we collected a urine sample and 3-d dietary record for water, fish/seafood, and rice. We also tested women's ho...

  14. Chronic renal insufficiency from cortical necrosis induced by arsenic poisoning.

    Science.gov (United States)

    Gerhardt, R E; Hudson, J B; Rao, R N; Sobel, R E

    1978-08-01

    A 39-year-old man had anuria and azotemia and was found to be suffering from acute arsenic poisoning. After two peritoneal dialyses, partial renal function returned, and the patient has survived for five years without dialysis. Renal cortical necrosis was demonstrated by renal biopsy and renal calcification. We suggest that arsenic be added to the list of substances capable of causing renal cortical necrosis and recommend consideration of this complication in cases of arsenical poisoning.

  15. 40 CFR 86.127-96 - Test procedures; overview.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test procedures; overview. 86.127-96 Section 86.127-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... determined by the procedure described in § 86.139. This testing requires a dilution tunnel as well as...

  16. 40 CFR 86.106-96 - Equipment required; overview.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Equipment required; overview. 86.106-96 Section 86.106-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... emissions, use of a dilution tunnel is not required (see § 86.109). The CVS must be connected to...

  17. 40 CFR 86.423-78 - Test vehicles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test vehicles. 86.423-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.423-78 Test vehicles. (a)(1) Before beginning...

  18. 40 CFR 86.222-94 - Carbon monoxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon monoxide analyzer calibration. 86.222-94 Section 86.222-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.222-94 Carbon...

  19. 40 CFR 86.221-94 - Hydrocarbon analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hydrocarbon analyzer calibration. 86.221-94 Section 86.221-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.221-94 Hydrocarbon...

  20. 40 CFR 86.224-94 - Carbon dioxide analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Carbon dioxide analyzer calibration. 86.224-94 Section 86.224-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.224-94 Carbon...

  1. 40 CFR 86.1341-98 - Test cycle validation criteria.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Test cycle validation criteria. 86...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1341-98 Test cycle validation criteria. Section 86.1341-98 includes text that...

  2. 40 CFR 8.6 - Preliminary environmental review.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Preliminary environmental review. 8.6 Section 8.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL IMPACT ASSESSMENT OF NONGOVERNMENTAL ACTIVITIES IN ANTARCTICA § 8.6 Preliminary environmental review. (a) Unless...

  3. 40 CFR 86.427-78 - Emission tests.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission tests. 86.427-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.427-78 Emission tests. (a)(1) Each test vehicle shall...

  4. 40 CFR 86.435-78 - Extrapolated emission values.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Extrapolated emission values. 86.435-78 Section 86.435-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Regulations for 1978 and Later New Motorcycles, General Provisions § 86.435-78 Extrapolated emission...

  5. 40 CFR 86.226-94 - Calibration of other equipment.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calibration of other equipment. 86.226-94 Section 86.226-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.226-94 Calibration of...

  6. 40 CFR 86.246-94 - Intermediate temperature testing.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Intermediate temperature testing. 86.246-94 Section 86.246-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.246-94...

  7. 40 CFR 86.206-11 - Equipment required; overview.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Equipment required; overview. 86.206-11 Section 86.206-11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.206-11 Equipment...

  8. 40 CFR 86.230-94 - Test sequence: general requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test sequence: general requirements. 86.230-94 Section 86.230-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.230-94 Test...

  9. 40 CFR 86.236-94 - Engine starting and restarting.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Engine starting and restarting. 86.236-94 Section 86.236-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.236-94 Engine starting...

  10. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calculations; exhaust emissions. 86.244-94 Section 86.244-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations;...

  11. 40 CFR 86.230-11 - Test sequence: general requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test sequence: general requirements. 86.230-11 Section 86.230-11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.230-11 Test...

  12. 40 CFR 86.206-94 - Equipment required; overview.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Equipment required; overview. 86.206-94 Section 86.206-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.206-94 Equipment...

  13. 40 CFR 86.204-94 - Section numbering; construction.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Section numbering; construction. 86.204-94 Section 86.204-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.204-94 Section...

  14. 40 CFR 86.216-94 - Calibrations, frequency and overview.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calibrations, frequency and overview. 86.216-94 Section 86.216-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.216-94...

  15. 29 CFR 458.86 - Filing of brief.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Filing of brief. 458.86 Section 458.86 Labor Regulations... OF CONDUCT Hearing and Related Matters § 458.86 Filing of brief. Any party desiring to submit a brief... Law Judge may grant a reasonable extension of time. Copies of such brief shall be served on all of...

  16. 40 CFR 406.86 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... pollutants into a publicly owned treatment works must comply with 40 CFR part 403. In addition, the following.... 406.86 Section 406.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GRAIN MILLS POINT SOURCE CATEGORY Hot Cereal Subcategory § 406.86...

  17. 40 CFR 86.1234-96 - Running loss test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Running loss test. 86.1234-96 Section 86.1234-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Methanol-Fueled Heavy-Duty Vehicles § 86.1234-96 Running loss test. (a) Overview. Gasoline- and...

  18. 50 CFR 17.86 - Special rules-plants. [Reserved

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Special rules-plants. 17.86 Section 17.86... PLANTS (CONTINUED) ENDANGERED AND THREATENED WILDLIFE AND PLANTS Experimental Populations § 17.86 Special rules—plants....

  19. 40 CFR 86.884-13 - Data analysis.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Data analysis. 86.884-13 Section 86... New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-13 Data analysis. The following... linearity check may be performed by direct analysis of the recorder traces, or by computer analysis of...

  20. 40 CFR 86.514-78 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.514-78 Section 86.514-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases...

  1. 40 CFR 86.214-94 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.214-94 Section 86.214-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Passenger Vehicles; Cold Temperature Test Procedures § 86.214-94 Analytical gases. The provisions of §...

  2. 40 CFR 86.1314-94 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Analytical gases. 86.1314-94 Section 86.1314-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 86.1314-94 Analytical gases. (a) Gases for the CO and CO2 analyzers shall be single blends of CO...

  3. 40 CFR 86.114-94 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.114-94 Section 86.114-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...-Duty Vehicles; Test Procedures § 86.114-94 Analytical gases. (a) Analyzer gases. (1) Gases for the...

  4. 40 CFR 86.1214-85 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Analytical gases. 86.1214-85 Section 86.1214-85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Methanol-Fueled Heavy-Duty Vehicles § 86.1214-85 Analytical gases. (a) Analyzer gases. (1) Gases for...

  5. 40 CFR 86.107-98 - Sampling and analytical system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Sampling and analytical system. 86.107-98 Section 86.107-98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Complete Heavy-Duty Vehicles; Test Procedures § 86.107-98 Sampling and analytical system. Section...

  6. 40 CFR 86.421-78 - Test fleet.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test fleet. 86.421-78 Section 86.421... Later New Motorcycles, General Provisions § 86.421-78 Test fleet. (a) A test vehicle will be selected by... prior to the start of testing and not later than 30 days following notification of the test...

  7. 40 CFR 86.418-78 - Test fleet selection.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test fleet selection. 86.418-78 Section 86.418-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... 1978 and Later New Motorcycles, General Provisions § 86.418-78 Test fleet selection. (a) Test...

  8. 40 CFR 86.422-78 - Administrator's fleet.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Administrator's fleet. 86.422-78... 1978 and Later New Motorcycles, General Provisions § 86.422-78 Administrator's fleet. The Administrator... accordance with § 86.421. The number of vehicles selected shall not increase the size of the test fleet...

  9. 40 CFR 262.86 - Provisions relating to recognized traders.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Provisions relating to recognized traders. 262.86 Section 262.86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... Hazardous Waste for Recovery within the OECD § 262.86 Provisions relating to recognized traders. (a)...

  10. 40 CFR 86.1805-12 - Useful life.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Useful life. 86.1805-12 Section 86... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1805-12 Useful life. (a) Except as permitted under paragraph (b) of this section or required under paragraphs (c) and (d) of this section, the full useful...

  11. 40 CFR 86.1805-04 - Useful life.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Useful life. 86.1805-04 Section 86... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1805-04 Useful life. (a) Except as required under paragraph (b) of this section or permitted under paragraphs (d), (e) and (f) of this section, the full useful...

  12. 7 CFR 15.86 - Consolidated or joint hearings.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Consolidated or joint hearings. 15.86 Section 15.86... Hearings, Decisions and Administrative Review Under the Civil Rights Act of 1964 Initial Notice and Response § 15.86 Consolidated or joint hearings. Two or more proceedings against the same respondent,...

  13. ARSENIC CONTAMINATION IN DRINKING WATER: AN ASSESSMENT FOR TURKEY

    OpenAIRE

    Meltem BİLİCİ ÇALIŞKAN; Ayşegül PALA

    2009-01-01

    Arsenic is one of the most abundant elements in the earth's crust and classified as a non-metal or a metalloid. Arsenic is toxic and carcinogen and in the environment occurs from both natural and anthropogenic sources. In the aqueous environment inorganic arsenic appears commonly in forms of arsenite (As(III)) and arsenate (As(V)). pH, redox potential, and the presence of complexing ions such as ions of sulfur, iron, and calcium determine the arsenic valence and speciation. Because of the nat...

  14. Arsenical keratoses in Bangladesh--update and prevention strategies.

    Science.gov (United States)

    Ruiz de Luzuriaga, Arlene M; Ahsan, Habibul; Shea, Christopher R

    2011-01-01

    Arsenic is considered a Class I human carcinogen by the International Agency for Research on Cancer because of its increased risk for skin cancer, as well as internal cancers, such as lung and bladder cancer. Arsenic contamination of drinking water in Bangladesh has been called the "largest mass poisoning of a population in history." This inorganic arsenic contamination is of natural origin, with arsenic thought to be released to the groundwater from the surrounding sediment. Arsenicosis and its risk factors and prevention and management are discussed in this article.

  15. Reduction and coordination of arsenic in Indian mustard.

    Science.gov (United States)

    Pickering, I J; Prince, R C; George, M J; Smith, R D; George, G N; Salt, D E

    2000-04-01

    The bioaccumulation of arsenic by plants may provide a means of removing this element from contaminated soils and waters. However, to optimize this process it is important to understand the biological mechanisms involved. Using a combination of techniques, including x-ray absorption spectroscopy, we have established the biochemical fate of arsenic taken up by Indian mustard (Brassica juncea). After arsenate uptake by the roots, possibly via the phosphate transport mechanism, a small fraction is exported to the shoot via the xylem as the oxyanions arsenate and arsenite. Once in the shoot, the arsenic is stored as an As(III)-tris-thiolate complex. The majority of the arsenic remains in the roots as an As(III)-tris-thiolate complex, which is indistinguishable from that found in the shoots and from As(III)-tris-glutathione. The thiolate donors are thus probably either glutathione or phytochelatins. The addition of the dithiol arsenic chelator dimercaptosuccinate to the hydroponic culture medium caused a 5-fold-increased arsenic level in the leaves, although the total arsenic accumulation was only marginally increased. This suggests that the addition of dimercaptosuccinate to arsenic-contaminated soils may provide a way to promote arsenic bioaccumulation in plant shoots, a process that will be essential for the development of an efficient phytoremediation strategy for this element.

  16. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    OpenAIRE

    Peltekov A.B.; Boyanov B.S.; Markova T.S.

    2014-01-01

    The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS). In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5). In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine...

  17. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth

    Directory of Open Access Journals (Sweden)

    Emily F. Winterbottom

    2015-06-01

    Full Text Available Although considerable evidence suggests that in utero arsenic exposure affects children's health, these data are mainly from areas of the world where groundwater arsenic levels far exceed the World Health Organization limit of 10 μg/L. We, and others, have found that more common levels of in utero arsenic exposure may also impact children's health. However, the underlying molecular mechanisms are poorly understood. To address this issue, we analyzed the expression of key developmental genes in fetal placenta in a birth cohort of women using unregulated water supplies in a US region with elevated groundwater arsenic. We identified several genes whose expression associated with maternal arsenic exposure in a fetal sex-specific manner. In particular, expression of the HEDGEHOG pathway component, GLI3, in female placentae was both negatively associated with arsenic exposure and positively associated with infant birth weight. This suggests that modulation of GLI3 in the fetal placenta, and perhaps in other fetal tissues, contributes to arsenic's detrimental effects on fetal growth. We showed previously that arsenic-exposed NIH3T3 cells have reduced GLI3 repressor protein. Together, these studies identify GLI3 as a key signaling node that is affected by arsenic, mediating a subset of its effects on developmental signaling and fetal health.

  18. Environmental Arsenic Exposure and Microbiota in Induced Sputum

    Directory of Open Access Journals (Sweden)

    Allison G. White

    2014-02-01

    Full Text Available Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb. To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%, Proteobacteria (17% and Bacteriodetes (12% were the main phyla in all samples, with Neisseriaceae (15%, Prevotellaceae (12% and Veillonellacea (7% being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  19. The revival of the ancient drug-arsenic

    Institute of Scientific and Technical Information of China (English)

    黄晓军

    2003-01-01

    Arsenic, a natural substance, has been used as a traditional Chinese medicine for more than a thousand years. However, this medicine fell into disuse in the 1930s following the advent of radiotherapy and conventional cytotoxic drugs and reports about arsenic poisoning from its long-term low-dose ingestion. Until the late 1970s, it had its rebirth when a series of research papers from China described the successful application of AiLing-1,1 a traditional Chinese compound, containing arsenic trioxide (ATO) and other ingredients. Research into the molecular mechanisms of arsenic action has furthered clinical application of this drug.

  20. Hepatic venoocclusive disease and perisinusoidal fibrosis secondary to arsenic poisoning.

    Science.gov (United States)

    Labadie, H; Stoessel, P; Callard, P; Beaugrand, M

    1990-10-01

    Hepatic injury secondary to arsenic poisoning has been known long but is poorly documented. A case of a patient with hepatic injury following severe arsenic poisoning is reported. Histological study of the liver demonstrated acute venoocclusive disease and perisinusoidal fibrosis. This case indicates that arsenic poisoning causes veno-occlusive disease in humans. It also suggests that hepatic damage in arsenic poisoning is secondary to vascular endothelial injury and supports the hypothesis that different patterns of hepatic vascular injury might proceed from a common mechanism.

  1. Hepatoprotective efficacy of curcumin against arsenic trioxide toxicity

    Institute of Scientific and Technical Information of China (English)

    VV Mathews; P Binu; MV Sauganth Paul; M Abhilash; Alex Manju; R Harikumaran Nair

    2012-01-01

    Objective: To evaluate the efficacy of curcumin in combating arsenic induced hepatic oxidative stress, histopathological changes and the hepatic arsenic accumulation in rat model. Methods:Oxidative stress was induced by oral administration 4 mg/kg b.wt of arsenic trioxide (As2O3,) for 45 days in experimental rats. The level of liver arsenic concentration, lipid peroxidation, reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male Wistar rats. Hepatotoxicity was assessed by quantifying the aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phophatase (ALP). Hepatoprotective efficacy of curcumin (15 mg/kg b.wt) was evaluated by combination treatment with As2O3. Results: As2O3 administration leads to the generation of reactive oxygen species (ROS), arsenic accumulation, serum marker enzymes release and decrease in antioxidant enzymes in liver. Retention of arsenic in liver caused increased level of lipid peroxidation with a concomitant decline in the glutathione dependant antioxidant enzymes and antiperoxidative enzymes. Curcumin treatment protected the liver from arsenic induced deterioration of antioxidant levels as well as oxidative stress. And also a significant decrease in hepatic arsenic accumulation and serum marker enzymes was observed. Histopathological examination revealed a curative improvement in liver tissue. Conclusions:These findings lead to the conclusion that curcumin may have the potential to protect the liver from arsenic-induced toxic effects.

  2. Arsenical keratoses in Bangladesh--update and prevention strategies.

    Science.gov (United States)

    Ruiz de Luzuriaga, Arlene M; Ahsan, Habibul; Shea, Christopher R

    2011-01-01

    Arsenic is considered a Class I human carcinogen by the International Agency for Research on Cancer because of its increased risk for skin cancer, as well as internal cancers, such as lung and bladder cancer. Arsenic contamination of drinking water in Bangladesh has been called the "largest mass poisoning of a population in history." This inorganic arsenic contamination is of natural origin, with arsenic thought to be released to the groundwater from the surrounding sediment. Arsenicosis and its risk factors and prevention and management are discussed in this article. PMID:21095527

  3. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Science.gov (United States)

    Pandey, Piyush Kant; Yadav, Sushma; Pandey, Madhurima

    2007-01-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations. PMID:17431310

  4. Human arsenic poisoning issues in central-east Indian locations: biomarkers and biochemical monitoring.

    Science.gov (United States)

    Pandey, Piyush Kant; Yadav, Sushma; Pandey, Madhurima

    2007-03-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  5. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Directory of Open Access Journals (Sweden)

    Madhurima Pandey

    2007-03-01

    Full Text Available The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  6. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring

    Science.gov (United States)

    Jiang, Zhou; Li, Ping; van Nostrand, Joy D.; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-04-01

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59-0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs.

  7. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    Science.gov (United States)

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported.

  8. New Sorbents for Removing Arsenic From Water

    Science.gov (United States)

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  9. [Peripheral neuropathy caused by acute arsenic poisoning].

    Science.gov (United States)

    Ramírez-Campos, J; Ramos-Peek, J; Martínez-Barros, M; Zamora-Peralta, M; Martínez-Cerrato, J

    1998-01-01

    Although peripheral neuropathy is a fairly common finding in chronic arsenic poisoning, little is known about the acute effects of this metal on peripheral nerves. This report shows clinical and electrophysiological findings in a patient who developed peripheral neuropathy only three days after a high-dose ingestion of this metal due to a failed suicide attempt. We speculate that peripheral nerves and some cranial nerves can show not only clinical but also subclinical involvement that can only be detected by neurophysiological studies.

  10. Arsenic trioxide: safety issues and their management

    Institute of Scientific and Technical Information of China (English)

    Wing-Yan AU; Yok-Lam KWONG

    2008-01-01

    Arsenic trioxide (As2O3) has been used medicinally for thousands of years.Its therapeutic use in leukaemia was described a century ago.Recent rekindling in the interest of As2O3 is due to its high efficacy in acute promyelocytic leukaemia (APL).As2O3 has also been tested clinically in other blood and solid cancers.Most studies have used intravenous As2O3,although an oral As2O3 is equally efficacious.Side effects of As2O3 are usually minor,including skin reactions,gastrointestinal upset,and hepatitis.These respond to symptomatic treatment or temporary drug cessation,and do not compromise subsequent treatment with As2O3.During induction therapy in APL,a leucocytosis may occasionally occur,which can be associated with fluid accumulation and pulmonary infiltration.The condition is similar to the APL differentiation syndrome during treatment with all-trans retinoic acid,and responds to cytoreductive treatment and corticosteroids.Intravenous As2O3 treatment leads to QT prolongation.In the presence of under-lying cardiopulmonary diseases or electrolyte disturbances,particularly hypokalaemia and hypomagnesaemia,serious arrhythmias may develop,with torsades du pointes reported in 1% of cases.This may be related to a dose-dependent arsenic-mediated inhibition of potassium ion channels that compro-mises cardiac repolarization.Because of slow intestinal absorption,oral-As2O3 gives a lower plasma arsenic concentration,which is associated with lesser QT prolongation and hence a more favorable cardiac safety profile.As2O3 does not appear to enter the central nervous system.However,if the blood brain barrier is breached,elemental arsenic may enter the cerebrospinal fluid.As2O3 is predomi-nantly excreted in the kidneys,and dose adjustment is required when renal func-tion is impaired.

  11. Arsenic concentrations in groundwaters of Cyprus

    Science.gov (United States)

    Christodoulidou, M.; Charalambous, C.; Aletrari, M.; Nicolaidou Kanari, P.; Petronda, A.; Ward, N. I.

    2012-10-01

    SummaryCyprus being a Mediterranean island with long dry summers and mild winters suffers from water deficiency and over exploitation of its water resources. Groundwater in Cyprus is a valuable natural resource as approximately 50% of the total water needs come from underground water supplies. According to the Directive 118/2006/EC, groundwater should be protected from deterioration and chemical pollution, this is particularly important for groundwater dependent ecosystems and for the use of groundwater as a water supply for human consumption. During 2007 to 2009, as part of a national monitoring programme, 84 boreholes were sampled in Cyprus and subsequently analysed for total arsenic by inductively coupled plasma mass spectrometry (ICP-MS). The groundwater concentrations ranged from <0.3 to 41 μg/L As. Several boreholes located in a rural farming district near Nicosia had concentrations above the World Health Organisation (WHO) Drinking Water Guideline limit of 10 μg/L As. Evaluation of the groundwater sampling procedure for boreholes provided data recommending that water samples should be collected after an initial borehole washout for 5 min. Further sampling of these boreholes in 2010, revealed total arsenic concentrations of <0.3-64.2 μg/L As, with the predominant arsenic species (determined using a novel field-based methodology) being arsenate (AsV). The maximum total arsenic concentration is 6-fold higher than the WHO Drinking Water Guideline limit (10 μg/L As) and approximately half of the United Nations Food and Agriculture Organisation (UN-FAO) irrigational limit of 100 μg/L As.

  12. Arsenic toxicity: the effects on plant metabolism

    Directory of Open Access Journals (Sweden)

    Patrick eFinnegan

    2012-06-01

    Full Text Available The two forms inorganic arsenic, arsenate (AsV and arsenite (AsIII, are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analogue of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or other sulfhydryl-containing groups. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. These effects are reflected in a dramatic restructuring of amino acid pools in Arabidopsis thaliana upon AsV exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified.

  13. Arsenic evolution in fractured bedrock wells in central Maine, USA

    Science.gov (United States)

    Yang, Q.; Zheng, Y.; Culbertson, C.; Schalk, C.; Nielsen, M. G.; Marvinney, R.

    2010-12-01

    Elevated arsenic concentration in fractured bedrock wells has emerged as an important and challenging health problem, especially in rural areas without public water supply and mandatory monitoring of private wells. This has posed risks of skin, bladder, prostate diseases and cancers to private well users. In central Maine, including the study site, 31% of bedrock wells in meta-sedimentary formations have been reported of elevated arsenic concentrations of > 10 µg/L. Geophysical logging and fracture specific water sampling in high arsenic wells have been conducted to understand how water flowing through the aquifers enters the boreholes and how arsenic evolves in the fracture bedrock wells. Two domestic wells in Manchester, Maine, located 50 meter apart with 38 µg/L and 73 µg/L of arsenic in unfiltered water, were investigated to characterize fractures by geophysical logging and to determine flow rates by pumping test. Water samples, representing the bore hole and the fractures, were collected and analyzed for arsenic under ambient and pumping conditions. Transmissivity of the fractures was estimated at 0.23-10.6 m2/day. Water with high dissolved arsenic was supplied primarily by high yielding fractures near the bottom of the borehole. Dissolved arsenic concentrations in borehole water increased as fracture water with high arsenic was replacing borehole water with initially low dissolved arsenic in response to pumping. The precipitation of iron particulates enriched in arsenic was common during and after pumping. Laboratory experiment on well water samples over a period of 16 days suggested that in the borehole arsenic was mainly settled with iron enriched particles, likely amorphous ferric oxyhydroxides, with possibly minor adsorption on the iron minerals. Another bedrock well in Litchfield, Maine, with 478 µg/L of arsenic in the unfiltered well water, is being investigated to quantify and reconstruct of the groundwater flow under ambient and pumping conditions

  14. Construction of a modular arsenic resistance operon in E. coli and the production of arsenic nanoparticles

    Directory of Open Access Journals (Sweden)

    Matthew Charles Edmundson

    2015-10-01

    Full Text Available Arsenic is a widespread contaminant of both land and water around the world. Current methods of decontamination such as phytoremediation and chemical adsorbents can be resource and time intensive, and may not be suitable for some areas such as remote communities where cost and transportation are major issues. Bacterial decontamination, with strict controls preventing environmental release, may offer a cost-effective alternative or provide a financial incentive when used in combination with other remediation techniques. In this study we have produced E. coli strains containing arsenic resistance genes from a number of sources, overexpressing them and testing their effects on arsenic resistance. While the lab E. coli strain JM109 (the wild-type is resistant up to 20 mM sodium arsenate the strain containing our plasmid pEC20 is resistant up to 80 mM. When combined with our construct pArsRBCC arsenic-containing nanoparticles were observed at the cell surface; the elements of pEC20 and pArsRBCC were therefore combined in a modular construct, pArs, in order to evaluate the roles and synergistic effects of the components of the original plasmids in arsenic resistance and nanoparticle formation. We also investigated the use of introducing the lac operator in order to more tightly control expression from pArs. We demonstrate that our strains are able to reduce toxic forms of arsenic into stable, insoluble metallic As(0, providing one way to remove arsenate contamination, and which may also be of benefit for other heavy metals.

  15. Arsenic metabolites in humans after ingestion of wakame seaweed

    Directory of Open Access Journals (Sweden)

    Hata A.

    2013-04-01

    Full Text Available Seaweed contains large amounts of various arsenic compounds such as arsenosugars (AsSugs, but their relative toxicities have not yet been fully evaluated. A risk evaluation of dietary arsenic would be necessary. After developing an arsenic speciation analysis of wakame seaweed (Undaria pinnatifida, we conducted a wakame ingestion experiment using volunteers. Five volunteers ingested 300 g of commercial wakame after refraining from seafood for 5 days. Arsenic metabolites in the urine were monitored over a 5-day period after ingestion. Total arsenic concentration of the wakame seaweed was 34.3 ± 2.1 mg arsenic/kg (dry weight, n = 3. Two AsSugs, 3-[5′-deoxy-5′-(dimethyl-arsinoyl-β-ribofuranosyloxy]-propylene glycol (AsSug328 and 3-[5′-deoxy-5′-(dimethyl-arsinoyl-β- ribofuranosyl-oxy]-2-hydroxypropyl-2,3-dihydroxy-propyl phosphate (AsSug482 were detected, but arsenobetaine, dimethylarsinic acid (DMA, monomethylarsonic acid, and inorganic arsenics (iAs were not detected. The major peak was AsSug328, which comprised 89% of the total arsenic. Approximately 30% of the total arsenic ingested was excreted in the urine during the 5-day observation. Five arsenic compounds were detected in the urine after ingestion, the major one being DMA, which comprised 58.1 ± 5.0% of the total urinary arsenic excreted over the 5 days. DMA was believed to be metabolized not from iAs but from AsSugs, and its biological half-time was approximately 13 h.

  16. Arsenic speciation of geothermal waters in New Zealand.

    Science.gov (United States)

    Lord, Gillian; Kim, Nick; Ward, Neil I

    2012-12-01

    Total arsenic and four arsenic species; arsenite (iAs(III)), arsenate (iAs(V)), dimethylarsinic acid (DMA(V)) and monomethylarsonic acid (MA(V)), are reported in 28 geothermal features from the Taupo Volcanic Zone (TVZ) and Waikato region of New Zealand. Samples were collected for arsenic speciation analysis via a solid phase extraction (SPE) kit allowing the separation, stabilisation and pre-concentration of the species at the time of sample collection in the field. This is the first research to present data for arsenic species collected by this technique in geothermal waters from New Zealand. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), ranged from 0.008 to 9.08 mg l⁻¹ As. The highest levels were discovered in three features in Tokaanu (Taumatapuhipuhi, Takarea #5 and #6), with arsenic concentrations of 8.59, 8.70 and 9.08 mg l⁻¹ As, respectively. Inorganic arsenic species were predominant in the geothermal waters, with arsenite contributing to more than 70% of the total arsenic in the majority of samples. Organic species were also determined in all samples, indicating the presence of microbial activity. A potential risk to human health was highlighted due to the high levels of arsenic, mainly as arsenite, in geothermal features linked to bathing pools. Further research is needed into dermal absorption as a potential route of arsenic exposure whilst bathing in these hot pools, as it may contribute to an occurrence of acute arsenic-related health problems.

  17. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Highlights: → The morphology, content and distribution of ZrO2 nanoparticles inside the pores of GAC are affected by the type of GAC. → Lignite ZrO2-GAC exhibited Zr content of 12%, while bituminous based ZrO2-GAC exhibited Zr content of 9.5%. → The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO3 buffered water matrix were ∼8.6 As/g Zr and ∼12.2 mg As/g Zr at pH = 7.6. → The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while ∼1.5 mg As/g Zr and ∼3.2 mg As/g Zr at pH = 7.6. → Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO2-GAC, while the one of bituminous ZrO2-GAC decreased. - Abstract: This study investigated the effects of in situ ZrO2 nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 oC in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO2 nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO3 buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C0 ∼ 120 μg/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of competing ions. Correlation between the properties of the media and arsenic and methylene blue removal suggested that

  18. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils

    Directory of Open Access Journals (Sweden)

    Wang Gejiao

    2009-01-01

    Full Text Available Abstract Background Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III and As(V] and can be transformed by microbial redox processes in the natural environment. As(III is much more toxic and mobile than As(V, hence microbial arsenic redox transformation has a major impact on arsenic toxicity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III resistance levels and related functional genes of these species. Results A total of 58 arsenite-resistant bacteria were identified from soils with three different arsenic-contaminated levels. Highly arsenite-resistant bacteria (MIC > 20 mM were only isolated from the highly arsenic-contaminated site and belonged to Acinetobacter, Agrobacterium, Arthrobacter, Comamonas, Rhodococcus, Stenotrophomonas and Pseudomonas. Five arsenite-oxidizing bacteria that belonged to Achromobacter, Agrobacterium and Pseudomonas were identified and displayed a higher average arsenite resistance level than the non-arsenite oxidizers. 5 aoxB genes encoding arsenite oxidase and 51 arsenite transporter genes [18 arsB, 12 ACR3(1 and 21 ACR3(2] were successfully amplified from these strains using PCR with degenerate primers. The aoxB genes were specific for the arsenite-oxidizing bacteria. Strains containing both an arsenite oxidase gene (aoxB and an arsenite transporter gene (ACR3 or arsB displayed a higher average arsenite resistance level than those possessing an arsenite transporter gene only. Horizontal transfer of ACR3(2 and arsB appeared to have occurred in strains that were primarily isolated from the highly arsenic-contaminated soil. Conclusion Soils with long-term arsenic contamination may result in the evolution of highly diverse arsenite-resistant bacteria and such diversity was probably caused in

  19. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Yan Xiulan [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Liao Xiaoyong, E-mail: liaoxy@igsnrr.ac.cn [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Wen Yi; Chong Zhongyi; Liang Tao [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China)

    2011-12-15

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level ({>=}10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: > Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. > P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. > Phenanthrene suppresses arsenic translocation from roots to fronds. > Phenanthrene causes As(III) elevation in roots while reduction in fronds. > Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  20. Effects of organic matter and ageing on the bioaccessibility of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, Louise; Koch, Iris [Environmental Sciences Group, Royal Military College, P.O. Box 17 000, Station Forces, Kingston, Ontario K7K7B4 (Canada); Reimer, Kenneth J., E-mail: reimer-k@rmc.ca [Environmental Sciences Group, Royal Military College, P.O. Box 17 000, Station Forces, Kingston, Ontario K7K7B4 (Canada)

    2011-10-15

    Arsenic-contaminated soils may pose a risk to human health. Redevelopment of contaminated sites may involve amending soils with organic matter, which potentially increases arsenic bioaccessibility. The effects of ageing on arsenic-contaminated soils mixed with peat moss were evaluated in a simulated ageing period representing two years, during which arsenic bioaccessibility was periodically measured. Significant increases (p = 0.032) in bioaccessibility were observed for 15 of 31 samples tested, particularly in comparison with samples originally containing >30% bioaccessible arsenic in soils naturally rich in organic matter (>25%). Samples where percent arsenic bioaccessibility was unchanged with age were generally poor in organic matter (average 7.7%) and contained both arsenopyrite and pentavalent arsenic forms that remained unaffected by the organic matter amendments. Results suggest that the addition of organic matter may lead to increases in arsenic bioaccessibility, which warrants caution in the evaluation of risks associated with redevelopment of arsenic-contaminated land. - Highlights: > Adding organic matter to contaminated soils may increase arsenic bioaccessibility. > Ageing soils with >25% organic matter can lead to increased arsenic bioaccessibility. > No changes in arsenic bioaccessibility for soils poor in organic matter (mean 7.7%). > No changes in arsenic bioaccessibility for samples containing arsenopyrite. > Organic matter in soil may favour oxidation of trivalent arsenic to pentavalent form. - Adding organic carbon may increase arsenic bioaccessibility, especially in samples originally containing >30% bioaccessible arsenic in organic carbon-rich soils (>25%).

  1. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic Re

  2. Arsenic speciation and fucoxanthin analysis from seaweed dietary supplements using LC-MS

    Science.gov (United States)

    Inorganic species are considered more toxic to humans than organic arsenic and total arsenic. Analysis of total arsenic in metallic form, organic and inorganic arsenic species from seaweeds and dietary supplements using LC-ICP-MS was developed. Solvent extraction with sonication and microwave extr...

  3. Draft Genome Sequence of Brevibacterium linens AE038-8, an Extremely Arsenic-Resistant Bacterium.

    Science.gov (United States)

    Maizel, Daniela; Utturkar, Sagar M; Brown, Steven D; Ferrero, Marcela A; Rosen, Barry P

    2015-01-01

    To understand the arsenic biogeocycles in the groundwaters at Tucumán, Argentina, we isolated Brevibacterium linens sp. strain AE38-8, obtained from arsenic-contaminated well water. This strain is extremely resistant to arsenicals and has arsenic resistance (ars) genes in its genome. Here, we report the draft genome sequence of B. linens AE38-8. PMID:25883298

  4. Draft Genome Sequence of Brevibacterium linens AE038-8, an Extremely Arsenic-Resistant Bacterium

    OpenAIRE

    Maizel, Daniela; Utturkar, Sagar M.; Brown, Steven D.; Ferrero, Marcela A.; ROSEN, BARRY P.

    2015-01-01

    To understand the arsenic biogeocycles in the groundwaters at Tucumán, Argentina, we isolated Brevibacterium linens sp. strain AE38-8, obtained from arsenic-contaminated well water. This strain is extremely resistant to arsenicals and has arsenic resistance (ars) genes in its genome. Here, we report the draft genome sequence of B. linens AE38-8.

  5. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    Science.gov (United States)

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  6. Detecting and quantifying lewisite degradation products in environmental samples using arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Bass, D.A.; Yaeger, J.S.; Kiely, J.T.; Crain, J.S.; Shem, L.M.; O`Neill, H.J.; Gowdy, M.J. [Argonne National Lab., IL (United States); Besmer, M.; Mohrman, G.B. [Rocky Mountain Arsenal, Commerce City, CO (United States)

    1995-12-31

    This report describes a unique method for identifying and quantifying lewisite degradation products using arsenic (III) and arsenic (IV) speciation in solids and in solutions. Gas chromatographic methods, as well as high-performance liquid chromatographic methods are described for separation of arsenic species. Inductively coupled plasma-mass spectrographic methods are presented for the detection of arsenic.

  7. ASSESSING ARSENIC EXPOSURE AND SKIN HYPERKERATOSIS IN INNER MONGOLIA, CHINA

    Science.gov (United States)

    Arsenic is a known human carcinogen. The inorganic forms, especially arsenite (As+3), are believed to be the most toxic species. Methylation is often considered to be thedetoxification pathway for the metabolism of inorganic arsenic. The ground water in Ba Men, Inner Mo...

  8. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.;

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of...

  9. Arsenic drinking water regulations in developing countries with extensive exposure.

    Science.gov (United States)

    Smith, Allan H; Smith, Meera M Hira

    2004-05-20

    The United States Public Health Service set an interim standard of 50 microg/l in 1942, but as early as 1962 the US Public Health Service had identified 10 microg/l as a goal which later became the World Health Organization Guideline for drinking water in 1992. Epidemiological studies have shown that about one in 10 people drinking water containing 500 microg/l of arsenic over many years may die from internal cancers attributable to arsenic, with lung cancer being the surprising main contributor. A prudent public health response is to reduce the permissible drinking water arsenic concentrations. However, the appropriate regulatory response in those developing countries with large populations with much higher concentrations of arsenic in drinking water, often exceeding 100 microg/l, is more complex. Malnutrition may increase risks from arsenic. There is mounting evidence that smoking and arsenic act synergistically in causing lung cancer, and smoking raises issues of public health priorities in developing countries that face massive mortality from this product. Also, setting stringent drinking water standards will impede short term solutions such as shallow dugwells. Developing countries with large populations exposed to arsenic in water might reasonably be advised to keep their arsenic drinking water standards at 50 microg/l.

  10. Adsorption characteristics of arsenic and boron by soil

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, M.

    1986-01-01

    In order to obtain baseline data concerning the surface and ground water pollution caused by coal ash disposal, adsorption characteristics of arsenic (III) and boron by soil have been studied through laboratory experiments. The main results are as follows: (1) Arsenic (III) and boron adsorption on soil was strongly dependent on pH with adsorption maxima at pH 8 and 8-9, respectively. (2) Arsenic (III) and boron adsorption on soil over the entire concentration ranges investigated could be described by the Langmuir adsorption isotherm and the Freundlich adsorption isotherm, respectively. The Henry adsorption isotherm was also applicable over the lower concentration ranges of arsenic (III) and boron (As (III): < 0.1 deltag/ml; B: < 5deltag/ml.) (3) Arsenic (III) and boron adsorption on soil is controlled mainly by the contents of extractable Fe oxide and hydroxide for arsenic (III) and by the contents of extractable Al hydroxide and allophane (amorphous aluminium silicates) for boron. (4) Adsorption and movement of arsenic (III) and boron during the infiltration of coal ash leachate in soil layer were investigated by means of the unsteady-state, one-dimensional convective-diffusive mass transport model. This model is very useful for evaluation and prediction of the contamination of ground water by trace elements such as arsenic (III) and boron leached at coal ash disposal site.

  11. Arsenic from community water fluoridation: quantifying the effect.

    Science.gov (United States)

    Peterson, Emily; Shapiro, Howard; Li, Ye; Minnery, John G; Copes, Ray

    2016-04-01

    Community water fluoridation is a WHO recommended strategy to prevent dental carries. One debated concern is that hydrofluorosilicic acid, used to fluoridate water, contains arsenic and poses a health risk. This study was undertaken to determine if fluoridation contributes to arsenic in drinking water, to estimate the amount of additional arsenic associated with fluoridation, and compare this to the National Sanitation Foundation/American National Standards Institute (NSF/ANSI) standard and estimates from other researchers. Using surveillance data from Ontario drinking water systems, mixed effects linear regression was performed to examine the effect of fluoridation status on the difference in arsenic concentration between raw water and treated water samples. On average, drinking water treatment was found to reduce arsenic levels in water in both fluoridated and non-fluoridated systems by 0.2 μg/L. However, fluoridated systems were associated with an additional 0.078 μg/L (95% CI 0.021, 0.136) of arsenic in water when compared to non-fluoridated systems (P = 0.008) while controlling for raw water arsenic concentrations, types of treatment processes, and source water type. Our estimate is consistent with concentrations expected from other research and is less than 10% of the NSF/ANSI standard of 1 μg/L arsenic in water. This study provides further information to inform decision-making regarding community water fluoridation.

  12. The microbial arsenic cycle in Mono Lake, California.

    Science.gov (United States)

    Oremland, Ronald S; Stolz, John F; Hollibaugh, James T

    2004-04-01

    Significant concentrations of dissolved inorganic arsenic can be found in the waters of a number of lakes located in the western USA and in other water bodies around the world. These lakes are often situated in arid, volcanic terrain. The highest concentrations of arsenic occur in hypersaline, closed basin soda lakes and their remnant brines. Although arsenic is a well-known toxicant to eukaryotes and prokaryotes alike, some prokaryotes have evolved biochemical mechanisms to exploit arsenic oxyanions (i.e., arsenate and arsenite); they can use them either as an electron acceptor for anaerobic respiration (arsenate), or as an electron donor (arsenite) to support chemoautotrophic fixation of CO(2) into cell carbon. Unlike in freshwater or marine ecosystems, these processes may assume quantitative significance with respect to the carbon cycle in arsenic-rich soda lakes. For the past several years our research has focused on the occurrence and biogeochemical manifestations of these processes in Mono Lake, a particularly arsenic-rich environment. Herein we review some of our findings concerning the biogeochemical arsenic cycle in this lake, with the hope that it may broaden the understanding of the influence of microorganisms upon the speciation of arsenic in more common, less "extreme" environments, such as drinking water aquifers. PMID:19712427

  13. Arsenic in Drinking Water--The Silent Killer

    Science.gov (United States)

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  14. Poisoning the mind : arsenic contamination and cognitive achievement of children

    OpenAIRE

    Asadullah, Mohammad Niaz; Chaudhury, Nazmul

    2008-01-01

    Bangladesh has experienced the largest mass poisoning of a population in history owing to contamination of groundwater with naturally occurring inorganic arsenic. Continuous drinking of such metal-contaminated water is highly cancerous; prolonged drinking of such water risks developing diseases in a span of just 5-10 years. Arsenicosis-intake of arsenic-contaminated drinking water-has imp...

  15. Arsenic Methylation, Oxidative Stress and Cancer - Is there a Link?

    Science.gov (United States)

    Arsenic is a multiorgan human carcinogen. The best-known example of this effect occurred in subgroups of the Taiwanese population who were chronically exposed to high levels of naturally occurring arsenic in drinking water and developed cancers of the skin, lung, urinary bladde...

  16. FIELD STUDY OF ARSENIC REMOVAL FROM GROUNDWATER BY ZEROVALENT IRON

    Science.gov (United States)

    Contamination of ground-water resources by arsenic is a widespread environmental problem; consequently, there is a need for developments and improvements of remedial technologies to effectively manage arsenic contamination in ground water and soils. In June 2005, a 7 m long, 14 ...

  17. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    Science.gov (United States)

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  18. Instrumental neutron activation analysis of sectioned hair strands for arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, V.P. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Instrumental neutron activation analysis (INAA) is a valuable and proven method for the quantitative analysis of sectioned human head hair specimens for arsenic - and, if arsenic is found to be present at high concentrations, the approximate times when it was ingested. Reactor-flux thermal-neutron activation of the hair samples produces 26.3-h {sup 76}As, which is then detected by germanium gamma-ray spectrometry, measuring the 559.1-keV gamma-ray peak of {sup 76}As. Even normal levels of arsenic in hair, in the range of <1 ppm up to a few parts per million of arsenic can be measured - and the far higher levels associated with large internal doses of arsenic, levels approaching or exceeding 100 ppm arsenic, are readily and accurately measurable. However, all phases of forensic investigations of possible chronic (or in some cases, acute) arsenic poisoning are important, i.e., not just the analysis phase. All of these phases are discussed in this paper, based on the author`s experience and the experience of others, in criminal cases. Cases of chronic arsenic poisoning often reveal a series of two to four doses, perhaps a few months apart, with increasing doses.

  19. Poisoned Playgrounds: Arsenic in "Pressure-Treated" Wood.

    Science.gov (United States)

    Sharp, Renee; Walker, Bill

    This study of 180 pressure-treated wood samples shows that treated wood is a much greater source of arsenic exposure for children than arsenic-contaminated drinking water. The report determines that an average 5-year-old, playing less than 2 weeks on a chromated-copper-arsenate-treated (CCA) wood play set would exceed the lifetime cancer risk…

  20. History of Arsenic as a Poison and Medicinal

    Science.gov (United States)

    Since ancient times, human exposure to the metalloid arsenic has been both intentional and unintentional. The intentional exposure to arsenic has been to inflict harm on others as well as to be a curative agent for those who are ill. The unintentional exposure has either been f...

  1. Assessment of natural arsenic in groundwater in Cordoba Province, Argentina.

    Science.gov (United States)

    Francisca, Franco M; Carro Perez, Magalí E

    2009-12-01

    Groundwater in the central part of Argentina contains arsenic concentrations that, in most cases, exceed the value suggested by international regulations. In this region, Quaternary loessical sediments with a very high volcanic glass fraction lixiviate arsenic and fluoride after weathering. The objectives of this study are to analyze the spatial distribution of arsenic in different hydrogeological regions, to define the naturally expected concentration in an aquifer by means of hydrogeochemistry studies, and to identify emergent health evidences related to cancer mortality in the study area. The correlation between arsenic and fluoride concentrations in groundwater is analyzed at each county in the Cordoba Province. Two dimensionless geoindicators are proposed to identify risk zones and to rapidly visualize the groundwater quality related to the presence of arsenic and fluoride. A surface-mapping system is used to identify the spatial variability of concentrations and for suggesting geoindicators. The results show that the Chaco-Pampean plain hydrogeologic region is the most affected area, with arsenic and fluoride concentrations in groundwater being generally higher than the values suggested by the World Health Organization (WHO) for drinking water. Mortality related to kidney, lung, liver, and skin cancer in this area could be associated to the ingestion of arsenic-contaminated water. Generated maps provide a base for the assessment of the risk associated to the natural occurrence of arsenic and fluoride in the region. PMID:19165608

  2. An attempt to electrically enhance phytoremediation of arsenic contaminated water

    NARCIS (Netherlands)

    Kubiak, J.J.; Khankhane, P.J.; Kleingeld, P.J.; Lima, A.T.

    2012-01-01

    Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately and in combination. Lemna minor was chosen for As remediat

  3. CHURCHILL COUNTY, NEVADA ARSENIC STUDY: WATER CONSUMPTION AND EXPOSURE BIOMARKERS

    Science.gov (United States)

    The US Environmental Protection Agency is required to reevaluate the Maximum Contaminant Level (MCL) for arsenic in 2006. To provide data for reducing uncertainties in assessing health risks associated with exposure to low levels (<200 g/l) of arsenic, a large scale biomarker st...

  4. Analytical Strategies for the Determination of Arsenic in Rice

    Directory of Open Access Journals (Sweden)

    Bruno E. S. Costa

    2016-01-01

    Full Text Available Arsenic is an element of concern given its toxicological significance, even at low concentrations. Food is a potential route of exposure to inorganic arsenic and in this regard arsenic in rice is associated with soil contamination, fertilizer application, and the use of arsenic-containing irrigation water. Therefore, there is a need to investigate the regional rice crops with a view to future discussions on the need for possible regulatory measures. Several studies have reported high concentrations of arsenic in rice grown in soils irrigated with contaminated water; however, procedures used, including sample pretreatment and preconcentration steps, have to be followed to ensure sensitivity, accuracy, and reproducibility. Arsenic is a difficult element to measure in complex matrices, such as foods, because the matrix must be destroyed at an elevated temperature without the loss of the analyte or contamination. This review summarizes the major methods for the determination of arsenic in rice samples. The main purpose of this review is to provide an update on the recent literature concerning the strategies for the determination of arsenic and to critically discuss their advantages and weaknesses. These difficulties are described along with recent developments aimed at overcoming these potential issues.

  5. Arsenic in Ground-Water Resources of the United States

    Science.gov (United States)

    Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Focazio, Michael J.

    2000-01-01

    Arsenic is a naturally occurring element in rocks, soils, and the waters in contact with them. Recognized as a toxic element for centuries, arsenic today also is a human health concern because it can contribute to skin, bladder, and other cancers (National Research Council, 1999). Recently, the National Research Council (1999) recommended lowering the current maximum contaminant level (MCL) allowed for arsenic in drinking water of 50 ?g/L (micrograms per liter), citing risks for developing bladder and other cancers. The U.S. Environmental Protection Agency (USEPA) will propose a new, and likely lower, arsenic MCL during 2000 (U.S. Environmental Protection Agency, 2000). This fact sheet provides information on where and to what extent natural concentrations of arsenic in ground water exceed possible new standards. The U.S. Geological Survey (USGS) has collected and analyzed arsenic in potable (drinkable) water from 18,850 wells in 595 counties across the United States during the past two decades. These wells are used for irrigation, industrial purposes, and research, as well as for public and private water supply. Arsenic concentrations in samples from these wells are similar to those found in nearby public supplies (see Focazio and others, 1999). The large number of samples, broad geographic coverage, and consistency of methods produce a more accurate and detailed picture of arsenic concentrations than provided by any previous studies.

  6. Arsenic in Ground Water of the United States

    Science.gov (United States)

    ... p.34-36. (2001) DATA Arsenic in ground-water resources of the United States : U.S. Geological Survey Fact Sheet 063-00. (2000) ... analysis on the occurrence of arsenic in ground-water resources of the United States and limitations in drinking-water-supply characterizations : U.S. ...

  7. Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xixiang [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang Yongyu; Yang Jun [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhu Yongguan, E-mail: ygzhu@rcees.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2011-04-15

    Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg{sup -1} dry weight of arsenic when exposed to 40 {mu}M for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa. - Tetrahymena thermophila can rapidly methylate arsenic, and produce volatile arsenicals.

  8. A novel method to remove arsenic from water

    Science.gov (United States)

    McDonald, Kyle J.

    Arsenic is a toxic metalloid that is found ubiquitously in earth's crust. The release of arsenic into the aqueous environment and the subsequent contamination in drinking water supplies is a worldwide health crisis. Arsenic is the culprit of the largest mass poisoning of a population in history and the number one contaminant of concern in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Priority List of Hazardous Substances. Practical, affordable, and reliable treatment technologies have yet to be developed due to the difficulty in overcoming many socioeconomic and geochemical barriers. Recent studies have reported that cupric oxide (CuO) nanoparticles have shown promising characteristics as a sorbent to remove arsenic from water. However, these studies were conducted in controlled environments and have yet to test the efficacy of this treatment technology in the field. In this manuscript, a flow through adsorption column containing CuO nanoparticles was developed for lab based studies to remove arsenic from water. These studies were expanded to include a field demonstration of the CuO nanoparticle flow through adsorption column to remove naturally occurring arsenic from groundwater associated with agriculture, domestic groundwater, and in situ recovery (ISR) uranium production process water. A major limitation for many treatment technologies is the difficulties presented in the disposal of waste byproducts such as sludge and spent media. In the research contained in this manuscript, we investigate the processes of regenerating the CuO nanoparticles using sodium hydroxide (NaOH). The use of the regenerated CuO nanoparticles was examined in batch experiments and implemented in the flow through column studies. The ability to regenerate and reuse a sorbent drastically reduces costs involved in manufacturing and disposal of spent media. Also, the CuO nanoparticles were evaluated in batch experiments for the removal of naturally

  9. Arsenic methylation capacity is associated with breast cancer in northern Mexico

    Energy Technology Data Exchange (ETDEWEB)

    López-Carrillo, Lizbeth; Hernández-Ramírez, Raúl Ulises [Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México (Mexico); Gandolfi, A. Jay [Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ (United States); Ornelas-Aguirre, José Manuel [Unidad de Investigación en Epidemiología Clínica del Hospital de Especialidades No. 2, Unidad Médica de Alta Especialidad, Instituto Mexicano del Seguro Social, Ciudad Obregón, Sonora, México (Mexico); Torres-Sánchez, Luisa [Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México (Mexico); Cebrian, Mariano E., E-mail: mcebrian@cinvestav.mx [Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, México City, México (Mexico)

    2014-10-01

    Exposure to environmental contaminants, dietary factors and lifestyles may explain worldwide different breast cancer (BC) incidence. Inorganic arsenic (iAs) in the drinking water is a concern in many regions, such as northern Mexico. Studies in several countries have associated the proportion of urinary monomethylarsenic (%MMA) with increased risks for many As-related diseases, including cancer. To investigate the potential relationships between the risk of BC and the capacity to methylate iAs, a hospital-based case–control study (1016 cases/1028 controls) was performed in northern Mexico. Women were directly interviewed about their reproductive histories. The profile of As metabolites in urine was determined by HPLC-ICP-MS and methylation capacity was assessed by metabolite percentages and indexes. Total urinary As, excluding arsenobetaine (TAs-AsB), ranged from 0.26 to 303.29 μg/L. Most women (86%) had TAs-AsB levels below As biological exposure index (35 μg/L). Women with higher %MMA and/or primary methylation index (PMI) had an increased BC risk (%MMA OR{sub Q5vs.Q1} = 2.63; 95%CI 1.89,3.66; p for trend < 0.001; PMI OR{sub Q5vs.Q1} = 1.90; 95%CI 1.39,2.59, p for trend < 0.001). In contrast, women with higher proportion of urinary dimethylarsenic (%DMA) and/or secondary methylation index (SMI) had a reduced BC risk (%DMA OR{sub Q5vs.Q1} = 0.63; 95%CI 0.45,0.87, p for trend 0.006; SMI OR{sub Q5vsQ1} = 0.42, 95%CI 0.31,0.59, p for trend < 0.001). Neither %iAs nor total methylation index was associated to BC risk. Inter-individual variations in iAs metabolism may play a role in BC carcinogenesis. Women with higher capacity to methylate iAs to MMA and/or a lower capacity to further methylate MMA to DMA were at higher BC risk. - Highlights: • Arsenic methylation capacity is associated to an increased breast cancer (BC) risk. • Women with higher capacity to methylate arsenic to MMA were at higher BC risk. • Women with higher capacity to methylate arsenic to

  10. Arsenic methylation capacity is associated with breast cancer in northern Mexico

    International Nuclear Information System (INIS)

    Exposure to environmental contaminants, dietary factors and lifestyles may explain worldwide different breast cancer (BC) incidence. Inorganic arsenic (iAs) in the drinking water is a concern in many regions, such as northern Mexico. Studies in several countries have associated the proportion of urinary monomethylarsenic (%MMA) with increased risks for many As-related diseases, including cancer. To investigate the potential relationships between the risk of BC and the capacity to methylate iAs, a hospital-based case–control study (1016 cases/1028 controls) was performed in northern Mexico. Women were directly interviewed about their reproductive histories. The profile of As metabolites in urine was determined by HPLC-ICP-MS and methylation capacity was assessed by metabolite percentages and indexes. Total urinary As, excluding arsenobetaine (TAs-AsB), ranged from 0.26 to 303.29 μg/L. Most women (86%) had TAs-AsB levels below As biological exposure index (35 μg/L). Women with higher %MMA and/or primary methylation index (PMI) had an increased BC risk (%MMA ORQ5vs.Q1 = 2.63; 95%CI 1.89,3.66; p for trend < 0.001; PMI ORQ5vs.Q1 = 1.90; 95%CI 1.39,2.59, p for trend < 0.001). In contrast, women with higher proportion of urinary dimethylarsenic (%DMA) and/or secondary methylation index (SMI) had a reduced BC risk (%DMA ORQ5vs.Q1 = 0.63; 95%CI 0.45,0.87, p for trend 0.006; SMI ORQ5vsQ1 = 0.42, 95%CI 0.31,0.59, p for trend < 0.001). Neither %iAs nor total methylation index was associated to BC risk. Inter-individual variations in iAs metabolism may play a role in BC carcinogenesis. Women with higher capacity to methylate iAs to MMA and/or a lower capacity to further methylate MMA to DMA were at higher BC risk. - Highlights: • Arsenic methylation capacity is associated to an increased breast cancer (BC) risk. • Women with higher capacity to methylate arsenic to MMA were at higher BC risk. • Women with higher capacity to methylate arsenic to DMA were at lower BC

  11. Oral arsenic trioxide poisoning and secondary hazard from gastric content.

    Science.gov (United States)

    Kinoshita, Hidenori; Hirose, Yasuo; Tanaka, Toshiharu; Yamazaki, Yoshihiko

    2004-12-01

    In a suicide attempt, a 54-year-old man ingested arsenic trioxide. Gastric lavage was performed, but most of the poison remained as a mass in his stomach. A total gastrectomy was also performed to avoid intestinal perforation and arsenic poisoning. After the operation, he developed ventricular fibrillation. At one point, his circulation recovered spontaneously, but he later died from refractory circulatory failure. Many medical staff members were exposed to fumes from the patient's stomach. Some of the staff were diagnosed with corneal erosion or laryngitis. Because arsenic trioxide reacts with acid to produce arsine, the symptoms experienced by medical staff are directly attributable to arsine produced as a result of the reaction of arsenic trioxide with gastric acid. This case highlights the need for the introduction of protective measures to safeguard medical staff from exposure to arsine gas during the treatment of patients poisoned from ingested arsenic trioxide.

  12. Outbreak of fatal arsenic poisoning caused by contaminated drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, C.W.; Stroube, R.B.; Rubio, T.; Siudyla, E.A.; Miller, G.B. Jr.

    An outbreak of subacute poisoning occurred among nine members of a family; eight were ill with gastrointestinal symptoms, four developed encephalopathy, and two died. Abnormal liver function tests and leukopenia were common laboratory findings. Epidemiologic and environmental investigations traced the source of arsenic exposure to a farm well with water containing 108 ppm arsenic. The soil adjacent to the well was also contaminated with arsenic, possibly from waste pesticide. Presumably, arsenic gained access to the well through obvious leaks in the well's casing. To our knowledge, this is only the second reported outbreak of fatal arsenic poisoning from contaminated drinking water and one of few instances where illness followed exposure to a toxic substance which was disposed of, or possibly disposed of, in an indiscriminate manner.

  13. Arsenic Precipitation in the Bioleaching of Realgar Using Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2013-01-01

    Full Text Available The current study investigates the characteristics of arsenic precipitation during the bioleaching of realgar. The bioleaching performance of Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans was investigated through scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and Fourier transform infrared (FT-IR spectrophotometry. SEM and XRD analyses revealed that the arsenic-adapted strain of A. ferrooxidans was more hydrophobic and showed higher attachment efficiency to realgar compared with the wild strain. The arsenic precipitation using A. ferrooxidans resulted in the precipitation of an arsenic-rich compound on the surface of the bacterial cell, as shown in the TEM images. The FT-IR spectra suggested that the −OH and −NH groups were closely involved in the biosorption process. The observations above strongly suggest that the cell surface of A. ferrooxidans plays a role in the induction of arsenic tolerance during the bioleaching of realgar.

  14. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2014-12-01

    Full Text Available The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS. In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5. In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine were studied. The arsenic contamination of soils in the vicinity of nonferrous metals smelter KCM SA, Plovdiv, Bulgaria as a result of zinc and lead productions has been studied.

  15. Epigenetic targets of arsenic: emphasis on epigenetic modifications during carcinogenesis.

    Science.gov (United States)

    Roy, Ram Vinod; Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Hitron, John Andrew; Divya, Sasidharan Padmaja; D, Rakesh; Kim, Donghern; Yin, Yuanqin; Zhang, Zhuo; Shi, Xianglin

    2015-01-01

    DNA methylation and histone modification promote opening and closure of chromatin structure, which affects gene expression without altering the DNA sequence. Epigenetic markers regulate the dynamic nature of chromatin structure at different levels: DNA, histone, noncoding RNAs, as well as the higher-order chromatin structure. Accumulating evidence strongly suggests that arsenic-induced carcinogenesis involves frequent changes in the epigenetic marker. However, progress in identifying arsenic-induced epigenetic changes has already been made using genome-wide approaches; the biological significance of these epigenetic changes remains unknown. Moreover, arsenic-induced changes in the chromatin state alter gene expression through the epigenetic mechanism. The current review provides a summary of recent literature regarding epigenetic changes caused by arsenic in carcinogenesis. We highlight the transgenerational studies needed to explicate the biological significance and toxicity of arsenic over a broad spectrum.

  16. Outbreak of fatal arsenic poisoning caused by contaminated drinking water.

    Science.gov (United States)

    Armstrong, C W; Stroube, R B; Rubio, T; Siudyla, E A; Miller, G B

    1984-01-01

    An outbreak of subacute poisoning occurred among nine members of a family; eight were ill with gastrointestinal symptoms, four developed encephalopathy, and two died. Abnormal liver function tests and leukopenia were common laboratory findings. Epidemiologic and environmental investigations traced the source of arsenic exposure to a farm well with water containing 108 ppm arsenic. The soil adjacent to the well was also contaminated with arsenic, possibly from waste pesticide. Presumably, arsenic gained access to the well through obvious leaks in the well's casing. To our knowledge, this is only the second reported outbreak of fatal arsenic poisoning from contaminated drinking water and one of few instances where illness followed exposure to a toxic substance which was disposed of, or possibly disposed of, in an indiscriminate manner.

  17. Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia

    Science.gov (United States)

    Arsenic exposure from contaminated well water is a cause of skin and bladder cancer and linked to numerous other adverse health effects. Residents of the Bayingnormen region of Inner Mongolia, China, have been exposed to arsenic-contaminated well water for over 20 years but few s...

  18. Correlation between Arsenic Concentration in Drinking Water and Human Hair

    Directory of Open Access Journals (Sweden)

    M Mosaferi, M Yunesian, AR Mesdaghinia, S Nasseri, AH Mahvi, H Nadim

    2005-01-01

    Full Text Available Exposure to inorganic arsenic mainly occurs via drinking water, however because of potential changing of water sources during time, there is not consensus over the best route for assessment of past exposures to arsenic. At present study, we compared three potential sources of data in this regard. Thirty nine human hair samples were taken from persons residing in three villages of Bijar city in Kurdistan province of Iran with different drinking water sources and different levels of arsenic. All the subjects were female and at least one gram of scalp hair was gathered from the distal part of participants’ hair. Samples were analyzed using Neutron Activation Analysis method. Arsenic concentration of water samples were measured using Silver Diethyl Ditiocarbomate Method (SDDC and the total intake of arsenic through drinking water were calculated for each participant. According to results, arsenic content of drinking water ranged from 0 to 0.455 mg/l (average: 0.18. The figures for arsenic concentration in hair were from 0.012 to 3.41 mg/kg (average: of 0.53 and for calculated total intake from 0 to 8.9g (average: 2.02. A close relationship between calculated total intake via drinking water and arsenic concentration in hair (R=0.711, P<0.001 was obtained and also relationship between current arsenic content of drinking water and arsenic concentration in hair (R= 0.662, p<0.001. Using age as a covariate did not alter the results.

  19. Attenuation of arsenic neurotoxicity by curcumin in rats

    International Nuclear Information System (INIS)

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  20. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    Science.gov (United States)

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.